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Abstract. A graph is Helly if every family of pairwise intersecting balls
has a nonempty common intersection. The class of Helly graphs is the
discrete analogue of the class of hyperconvex metric spaces. It is also
known that every graph isometrically embeds into a Helly graph, making
the latter an important class of graphs in Metric Graph Theory. We
study diameter, radius and all eccentricity computations within the Helly
graphs. Under plausible complexity assumptions, neither the diameter
nor the radius can be computed in truly subquadratic time on general
graphs. In contrast to these negative results, it was recently shown that
the radius and the diameter of an n-vertex m-edge Helly graph G can be
computed with high probability in Õ(m

√
n) time (i.e., subquadratic in

n+m). In this paper, we improve that result by presenting a deterministic
O(m

√
n) time algorithm which computes not only the radius and the

diameter but also all vertex eccentricities in a Helly graph. Furthermore,
we give a parameterized linear-time algorithm for this problem on Helly
graphs, with the parameter being the Gromov hyperbolicity δ. More
specifically, we show that the radius and a central vertex of an m-edge
δ-hyperbolic Helly graph G can be computed in O(δm) time and that
all vertex eccentricities in G can be computed in O(δ2m) time. To show
this more general result, we heavily use our new structural properties
obtained for Helly graphs.

1 Introduction

Given an undirected unweighted graphG = (V,E), the distance dG(u, v) between
two vertices u and v is the minimum number of edges on any path connecting u
and v in G. The eccentricity eG(u) of a vertex u is the maximum distance from
u to any other vertex. The radius and the diameter of G, denoted by rad(G) and
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diam(G), are the smallest and the largest eccentricities of vertices in G, respec-
tively. A vertex with eccentricity equal to rad(G) is called a central vertex of G.
We are interested in the fundamental problems of finding a central vertex and
of computing the diameter and the radius of a graph. The problem of finding
a central vertex of a graph is one of the most famous facility location problems
in Operation Research and in Location Science. The diameter and radius of a
graph play an important role in the design and analysis of networks in a variety
of networking environments like social networks, communication networks, elec-
tric power grids, and transportation networks. A naive algorithm which runs a
BFS from each vertex to compute its eccentricity and then (in order to compute
the radius, the diameter and a central vertex) picks the smallest and the largest
eccentricities and a vertex with smallest eccentricity has running time O(nm)
on an n-vertex m-edge graph. Interestingly, this naive algorithm is conditionally
optimal for general graphs as well as for some restricted families of graphs [1, 6,
18, 54] since, under plausible complexity assumptions, neither the diameter nor
the radius can be computed in truly subquadratic time (i.e., in O(namb), for
some positive a, b such that a+ b < 2) on those graphs. Already for split graphs
(a subclass of chordal graphs), computing the diameter is roughly equivalent
to Disjoint Sets, a.k.a., the monochromatic Orthogonal Vector prob-
lem [15]. Under the Strong Exponential-Time Hypothesis (SETH), we cannot
solve Disjoint Sets in truly subquadratic time, and so neither we can compute
the diameter of split graphs in truly subquadratic time [6].

In a quest to break this quadratic barrier (in the size n+m of the input), there
has been a long line of work presenting more efficient algorithms for computing
the diameter and/or the radius on some special graph classes, by exploiting their
geometric and tree-like representations and/or some forbidden pattern (e.g., ex-
cluding a minor, or a family of induced subgraphs). For example, although the
diameter of a split graph can unlikely be computed in subquadratic time, there
is an elegant linear-time algorithm for computing the radius and a central vertex
of a chordal graph [16]. Efficient algorithms for computing the diameter and/or
the radius or finding a central vertex are also known for interval graphs [34, 53],
AT-free graphs [37], directed path graphs [19], distance-hereditary graphs [21,
26, 29, 33], strongly chordal graphs [23], dually chordal graphs [7, 25], chordal
bipartite graphs [40], outerplanar graphs [43], planar graphs [11, 45], graphs
with bounded clique-width [21, 39], graphs with bounded tree-width [1, 9, 42]
and, more generally, H-minor free graphs and graphs of bounded (distance)
VC-dimension [42].

We here study the Helly graphs as a broad generalization of dually chordal
graphs which in turn contain all interval graphs, directed path graphs and
strongly chordal graphs. Recall that a graph is Helly if every family of pairwise
intersecting balls has a non-empty common intersection. This latter property on
the balls will be simply referred to as the Helly property in what follows. Helly
graphs have unbounded tree-width and unbounded clique-width, they do not
exclude any fixed minor and they cannot be characterized via some forbidden
structures. They are sometimes called absolute retracts or disk-Helly graphs by
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opposition to other Helly-type properties on graphs [22]. The Helly graphs are
well studied in Metric Graph Theory. E.g., see the survey [3] and the papers
cited therein. This is partly because every graph is an isometric subgraph of
some Helly graph, thereby making of the latter the discrete equivalent of hy-
perconvex metric spaces [36, 47]. A minimal by inclusion Helly graph H which
contains a given graph G as an isometric subgraph is unique and called the injec-
tive hull [47] or the tight span [36] of G. Polynomial-time recognition algorithms
for the Helly graphs were presented in [4, 23, 51]. Several structural properties
of these graphs were also identified (see [3] and the references cited therein).
The dually chordal graphs are exactly the Helly graphs in which the intersection
graph of balls is chordal, and they were studied independently from the general
Helly graphs [7, 8, 35, 25]. As we already mentioned it [7, 35, 25], the diameter,
the radius and a central vertex of a dually chordal graph can be found in linear
time, that is optimal. However, it was open until recently whether there are truly
subquadratic-time algorithms for these problems on general Helly graphs. First
such algorithms were recently presented in [41] for computing both the radius
and the diameter and in [38] for finding a central vertex. Those algorithms are
randomized and run, with high probability, in Õ(m

√
n) time on a given n-vertex

m-edge Helly graph (i.e., subquadratic in n + m). They make use of the Helly
property and of the unimodality of the eccentricity function in Helly graphs [24]:
every vertex of locally minimum eccentricity is a central vertex. In [41], a linear-
time algorithm for computing all eccentricities in C4-free Helly graphs was also
presented. The C4-free Helly graphs are exactly the Helly graphs whose balls are
convex. They properly include strongly chordal graphs as well as bridged Helly
graphs and hereditary Helly graphs [41].

Our Contribution. We improve those results from [41] and [38] by presenting
a deterministic O(m

√
n) time algorithm which computes not only the radius and

the diameter but also all vertex eccentricities in an n-vertex m-edge Helly graph.
Being able to efficiently compute all vertex eccentricities is of great importance.
For example, in the analysis of social networks (e.g., citation networks or rec-
ommendation networks), biological systems (e.g., protein interaction networks),
computer networks (e.g., the Internet or peer-to-peer networks), transportation
networks (e.g., public transportation or road networks), etc., the eccentricity
eG(v) of a vertex v is used to measure its importance in the network: the eccen-
tricity centrality index of v [50] is defined as 1

eG(v) .

We complete this above result with a parameterized linear-time algorithm
for computing all vertex eccentricities in Helly graphs, with the parameter being
the Gromov hyperbolicity δ, as defined by the following four point condition.
The hyperbolicity of a graph G [46] is the smallest half-integer δ ≥ 0 such
that, for any four vertices u, v, w, x, the two largest of the three distance sums
d(u, v) + d(w, x), d(u,w) + d(v, x), d(u, x) + d(v, w) differ by at most 2δ. In
this case we say that G is δ-hyperbolic. As the tree-width of a graph measures
its combinatorial tree-likeness, so does the hyperbolicity of a graph measure its
metric tree-likeness. In other words, the smaller the hyperbolicity δ of G is, the
closer G is to a tree metrically. The hyperbolicity of an n-vertex graph can be
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computed in polynomial-time (e.g., in O(n3.69) time [44]), however it is unlikely
that it can be done in subquadratic time [6, 20, 44]. A 2-approximation of hy-
perbolicity can be computed in O(n2.69) time [44] and an 8-approximation can
be computed in O(n2) time [12] (assuming that the input is the distance matrix
of the graph). Graph hyperbolicity has attracted attention recently due to the
empirical evidence that it takes small values in many real-world networks, such
as biological networks, social networks, Internet application networks, and col-
laboration networks, to name a few (see, e.g., [2, 5, 48, 52]). Furthermore, many
special graph classes (e.g., interval graphs, chordal graphs, dually chordal graphs,
AT-free graphs, weakly chordal graphs and many others) have constant hyper-
bolicity [2, 10, 17, 28, 32, 49, 55]. In fact, the dually chordal graphs and the C4-free
Helly graphs are known to be proper subclasses of the 1-hyperbolic Helly graphs
(this follows from results in [8, 28]). Notice also that any graph is δ-hyperbolic
for some δ ≤ diam(G)/2.

We show that the radius and a central vertex of an m-edge Helly graph
G with hyperbolicity δ can be computed in O(δm) time and that all vertex
eccentricities in G can be computed in O(δ2m log δ) time, even if δ is not known
to us. If either δ or a constant approximation of it is known, then the running
time of our algorithm can be lowered to O(δ2m). Thus, for Helly graphs with
constant hyperbolicity, all vertex eccentricities can be computed in linear time.
As a byproduct, we get a linear time algorithm for computing all eccentricities
in C4-free Helly graphs as well as in dually chordal graphs, generalizing known
results from [7, 25, 41]. Previously, for dually chordal graphs, it was only known
that a central vertex can be found in linear time [7, 25]. Notice that the diameter
problem can unlikely be solved in truly subquadratic time in general 1-hyperbolic
graphs and that the radius problem can unlikely be solved in truly subquadratic
time in general 2-hyperbolic graphs [18]. For general δ-hyperbolic graphs, there
are only additive O(δ)-approximations of the diameter and the radius, that can
be computed in linear time [17, 30, 31].

To show our more general results, additionally to the unimodality of the ec-
centricity function in Helly graphs, we rely on new structural properties obtained
for this class. It turns out that the hyperbolicity of a Helly graph G is governed
by the size of a largest isometric rectilinear grid in G. As a consequence, the
hyperbolicity of an n-vertex Helly graph is at most

√
n+ 1 and the diameter of

the center of G is at most 2
√
n+ 3. These properties, along with others, play a

crucial role in efficient computations of all eccentricities in Helly graphs. We also
give new characterizations of the Helly graphs. Among others, we show that the
Helly property for balls of equal radii implies the Helly property for balls with
variable radii. It would be interesting to know whether a similar result holds for
all (discrete) metric spaces. We are not aware of such a general result.

Notations. Recall that dG(u, v) denotes the distance between vertices u and v in
G = (V,E). Let n = |V | be the number of vertices and m = |E| be the number of
edges in G. The ball of radius r and center v is defined as {u ∈ V : dG(u, v) ≤ r},
and denoted by Nr

G[v]. Sometimes, Nr
G[v] is called the r-neighborhood of v. In

particular, NG[v] := N1
G[v] and NG(v) := NG[v] \ {v} denote the closed and
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open neighbourhoods of a vertex v, respectively. More generally, for any vertex-
subset S and a vertex u, we define dG(u, S) := minv∈S dG(u, v), Nr

G[S] :=⋃
v∈S N

r
G[v], NG[S] := N1

G[S] and NG(S) := NG[S] \ S. The metric pro-
jection of a vertex u on S, denoted by PrG(u, S), is defined as {v ∈ S :
dG(u, v) = dG(u, S)}. The metric interval IG(u, v) between u and v is {w ∈
V : dG(u,w) + dG(w, v) = dG(u, v)}. For any k ≤ dG(u, v), we can also define
the slice L(u, k, v) := {w ∈ IG(u, v) : dG(u,w) = k}. Recall that the eccentricity
of a vertex u is defined as maxv∈V dG(u, v) and denoted by eG(u). Note that we
will omit the subscript if the graph G is clear from the context. The radius and
the diameter of a graph G are denoted by rad(G) and diam(G), respectively. A
vertex c is called central in G if eG(c) = rad(G). The set of all central vertices
of G is denoted by C(G) := {v ∈ V : eG(v) = rad(G)} and called the center
of G. The eccentricity function eG(v) of a graph G is said to be unimodal, if
for every non-central vertex v of G there is a neighbor u ∈ NG(v) such that
eG(u) < eG(v) (that is, every local minimum of the eccentricity function is a
global minimum). Recall also that a vertex set S ⊆ V is called convex in G if,
for every vertices x, y ∈ S, all shortest paths connecting them are contained in S
(i.e., IG(x, y) ⊆ S). For β ≥ 0, we say that S is β-pseudoconvex [30] if, for every
vertices x, y ∈ S, any vertex z ∈ IG(x, y)\S satisfies min{dG(z, x), dG(z, y)} ≤ β.
A subgraph H of G is called isometric (or distance-preserving) if, for every ver-
tices x, y of H, dG(x, y) = dH(x, y).

2 Helly graphs and their hyperbolicity

Here we demonstrate that for Helly graphs, having a constant hyperbolicity is
equivalent to the following properties: having β-pseudoconvexity of balls with a
constant β, or having the diameter of the center bounded by a constant for all
subsets of vertices, or not having a large (γ × γ) rectilinear grid as an isometric
subgraph. These results generalize some known results from [13, 14, 17, 28, 30].

First we give new characterizations of Helly graphs through a formula for the
eccentricity function and relations between diameter and radius for all subsets
of vertices. For this we need to generalize our basic notations. Define for any
set M ⊆ V and any vertex v ∈ V the eccentricity of v in G with respect to
M as eM (v) = maxu∈M dG(u, v). Let diamM (G) = maxv∈M eM (v), radM (G) =
minv∈V eM (v), CM (G) = {v ∈ V : eM (v) = radM (G)}. When M = V , these
agree with earlier definitions.

Theorem 1. For a graph G the following statements are equivalent:

(1) G is Helly;
(2) the eccentricity function eM (·) is unimodal for every set M ⊆ V ;
(3) eM (v) = dG(v, CM (G)) + radM (G) holds for every set M ⊆ V and every

vertex v ∈ V ;
(4) 2radM (G)− 1 ≤ diamM (G) ≤ 2radM (G) holds for every set M ⊆ V ;

(5) radM (G) = bdiamM (G)+1
2 c holds for every set M ⊆ V .
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Proof of this theorem and of all other statements of this section can be found
in full version of this paper [27]. The equivalence between (1) and (5) can be
rephrased as follows.

Corollary 1. For every graph G = (V,E), the family of all balls {Nr
G[v] : v ∈

V, r ∈ N} of G has the Helly property if and only if the family of k-neighborhoods
{Nk

G[v] : v ∈ V } of G has the Helly property for every natural number k.

That is, the Helly property for balls of equal radii implies the Helly property
for balls with variable radii. It would be interesting to know whether a similar
result holds for all (discrete) metric spaces. We are not aware of such a general
result and did not find its analog in the literature.

We will also need the following lemma from [23].

Lemma 1. [23] For every Helly graph G = (V,E) and every set M ⊆ V , the
graph induced by the center CM (G) is Helly and it is an isometric (and hence
connected) subgraph of G.

Given this lemma, it will be convenient to denote by CM (G) not only
the set of central vertices but also the subgraph of G induced by this set.
Then, diam(CM (G)) denotes the diameter of this graph (diam(CM (G)) =
diamCM (G)(G) by this isometricity).

Let δ(G) be the smallest half-integer δ ≥ 0 such that G is δ-hyperbolic. Let
γ(G) be the largest integer γ ≥ 0 such that G has a (γ×γ) rectilinear grid as an
isometric subgraph. Let β(G) be the smallest integer β ≥ 0 such that all balls in
G are β-pseudoconvex. Finally, let κ(G) be the smallest integer κ ≥ 0 such that
diam(CM (G)) ≤ κ for every set M ⊆ V .

Theorem 2. For every Helly graph G, a constant bound on one parameter from
{δ(G), γ(G), β(G), κ(G)} implies a constant bound on all others.

The following corollaries of Theorem 2 will play an important role in efficient
computations of all eccentricities of a Helly graph. Corollary 2 gives a sublin-
ear bound on the hyperbolicity of an n-vertex Helly graph. Corollary 3 gives a
sublinear bound on the diameter of the center of an n-vertex Helly graph.

Corollary 2. The hyperbolicity of an n-vertex Helly graph G is at most
√
n+1.

Corollary 3. For any Helly graph G, diam(C(G)) ≤ 2δ(G) + 1 ≤ 2
√
n+ 3.

3 All eccentricities in Helly graphs

It is known that the radius (see [41]) and a central vertex (see [38]) of an n-vertex
m-edge Helly graph can be computed in Õ(m

√
n)-time with high probability.

In this section, we improve those results by presenting a deterministic O(m
√
n)

time algorithm which computes not only the radius and a central vertex but
also all vertex eccentricities in a Helly graph. To show this more general result,
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we heavily make use of our new structural results from Section 2. In particular,
the fact that both the hyperbolicity of a Helly graph G and the diameter of its
center C(G) are upper bounded by O(

√
n) will be very handy. The following

results from [41], [38] and [17, 30, 31] will be also very useful.

Lemma 2. [41] Let G be an m-edge Helly graph and k be a natural number.
One can compute the set of all vertices of G of eccentricity at most k, and their
respective eccentricities, in O(km) time.

Lemma 3. [38] Let G be an m-edge Helly graph and v be an arbitrary vertex.
There is an O(m)-time algorithm which either certifies that v is a central vertex
of G or finds a neighbor u of v such that e(u) < e(v).

Lemma 4. [17, 30, 31] Let G be an arbitrary m-edge graph and δ be its hyper-
bolicity. There is an O(δm)-time algorithm which finds in G a vertex c with
eccentricity at most rad(G) + 2δ. The algorithm does not need to know the value
of δ in order to work correctly.

First, by combining Lemmas 3 and 4, we show that a central vertex of a Helly
graph G can be computed in O(δm) time, where δ is the hyperbolicity of G.

Lemma 5. If G is an m-edge Helly graph, then one can compute a central vertex
and the radius of G in O(δm) time, where δ is the hyperbolicity of G.

Proof. We use Lemma 4 in order to find, in O(δm) time, a vertex c of G with
eccentricity e(c) ≤ rad(G) + 2δ. Then we apply Lemma 3 at most 2δ times in
order to descend from c to a central vertex c∗. It takes O(δm) time. ut

Combining this with Corollary 2, we get.

Corollary 4. For any n-vertex m-edge Helly graph G, a central vertex and the
radius of G can be computed in O(m

√
n) time.

We are now ready to prove our main result of this section.

Theorem 3. All vertex eccentricities in an n-vertex m-edge Helly graph G can
be computed in total O(m

√
n) time.

Proof. Our goal is to compute e(v) for every v ∈ V . For that, we first find a
central vertex c and compute the radius rad(G) of G, which takes O(m

√
n) time

by Corollary 4. If rad(G) ≤ 5
√
n + 6 (the choice of this number will be clear

later), then diam(G) ≤ 2rad(G) ≤ 10
√
n + 12 and we are done by Lemma 2

(applied for k = 10
√
n+12); it takes in this case total time O(m

√
n) to compute

all eccentricities in G. Thus, from now on, we assume rad(G) > 5
√
n + 6. By

Theorem 1(3), for every v ∈ V , e(v) = d(v, C(G))+rad(G) holds. Thus, in order
to compute all the eccentricities, it is sufficient to compute C(G). For a central

vertex c ∈ C(G) found earlier, let S = N
2
√
n+3

G [c]. By Corollary 3, C(G) ⊆ S.
In what follows, let r = rad(G). Consider the BFS layers Li(S) = {v ∈ V :

d(v, S) = i}. Note that if i ≤ r− 4
√
n− 6 ≤ r− diamS(G), then all the vertices
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of Li(S) are at distance at most r from all the vertices in S. As a result, in order
to compute C(G), it is sufficient to consider the layers Li(S), for i > r−4

√
n−6.

Set A =
⋃

i>r−4
√
n−6

Li(S). Since for every v /∈ S, d(v, c) = d(v, S) + 2
√
n+ 3 ≤ r,

we deduce that there are at most (r − 2
√
n − 3) − (r − 4

√
n − 6) = 2

√
n + 3

nonempty layers in A.
We will need to consider the “critical band” of all the layers Li(S), for 1 ≤

i ≤ r − 4
√
n − 6 (all the layers between S and A). We claim that there are at

least
√
n layers in this band. Indeed, under the above assumption, r > 5

√
n+ 6.

Then, the number of layers is exactly e(c)− 2
√
n− 3 > 3

√
n+ 3, minus at most

2
√
n+ 3 layers most distant from c (layers in A). Overall, there are at least

√
n

layers in the critical band, as claimed. Then, one layer in the critical band, call
it L, contains at most n/

√
n =
√
n vertices.

Claim 1 For every a ∈ A, there exists a “distant gate” a∗ ∈ Pr(a, L) with the
following property: Nr[a] ∩ S = Nr−d(a,L)[a∗] ∩ S.

In order to prove the claim, set p = d(a, L) and q = d(a, c) ≤ r. Let us
consider a family of balls F = {Np[a], Nq−p[c]}∪{Nr−p[s] : s ∈ Nr[a]∩(S\c)}.
We stress that Np[a]∩Nq−p[c] = Pr(a, L). Then, in order to prove the existence
of a distant gate, it suffices to prove that the balls in F intersect; indeed, if it is
the case then we may choose for a∗ any vertex in the common intersection of the
balls in F . Clearly, Np[a]∩Nq−p[c] 6= ∅ and, in the same way, Np[a]∩Nr−p[s] 6=
∅ for each s ∈ Nr[a] ∩ (S \ c). Furthermore, since L is in the critical band,
d(c, L) > 2

√
n+ 3, and therefore we have for each s, s′ ∈ S:
2(r − p) ≥ 2(q − p) = 2d(c, L) > diamS(G) ≥ d(s, s′).

In the same way (q − p) + (r − p) ≥ 2(q − p) > diamS(G) ≥ d(s, c). The latter
proves that the balls in F intersect. This concludes the proof of Claim 1.

We finally explain how to compute these distant gates, and how to use this
information in order to compute S ∩ C(G). Specifically:

– We make a BFS from every u ∈ L. it takes O(m|L|) = O(m
√
n) time. Doing

so, we can compute ∀a ∈ A, Pr(a, L), in total O(|A||L|) = O(n
√
n) time.

– Since A contains at most O(
√
n) nonempty layers, then the number of pair-

wise distinct distances d(a, L), for a ∈ A, is also in O(
√
n). Call the set

of all these distances IA. Then, ∀u ∈ L, and ∀i ∈ IA, we also compute
p(u, i) = |Nr−i

G [u]∩S|. For that, we consider the vertices u ∈ L sequentially.
Recall that we computed a BFS tree rooted at u. In particular, we can order
the vertices of S by increasing distance to u. It takes O(n) time. Similarly,
we can order IA in O(

√
n log n) = o(n) time. In order to compute all the

values p(u, i), it suffices to scan in parallel these two ordered lists. The run-
ning time is O(n) for every fixed u ∈ L, and so the total running time is
O(n|L|) = O(n

√
n).

– Now, in order to compute a distant gate a∗, for a ∈ A, we proceed as follows.
Let i = d(a, L). We scan Pr(a, L) and we store a vertex a∗ maximizing
p(a∗, i). It takes O(|A||L|) = O(n

√
n) time. On the way, ∀u ∈ L, let q(u) be

the maximum i such that a∗ ≡ u is the distant gate of some vertex a ∈ A,
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such that d(a, L) = i (possibly, q(u) = 0 if u was not chosen as the distant
gate of any vertex).

– Let s ∈ S be arbitrary. For having s ∈ S∩C(G), it is necessary and sufficient
to have s ∈ Nr[a]∩S,∀a ∈ A. Equivalently, ∀u ∈ L, one must have d(s, u) ≤
r− q(u). This can be checked in time O(|L|) per vertex in S, and so, in total
O(n
√
n) time.

ut

4 Eccentricities in Helly graphs with small hyperbolicity

In the previous section we showed that a central vertex of a Helly graph G
can be computed in O(δm) time, where δ is the hyperbolicity of G. This nice
result, combined with the property that all Helly graphs have hyperbolicity
O(
√
n) (Corollary 2), was key to the design of our O(m

√
n)-time algorithm

for computing all vertex eccentricities. Next, we deepen the connection between
hyperbolicity and fast eccentricity computation within Helly graphs.

As we have mentioned earlier, many graph classes (e.g., interval graphs,
chordal graphs, dually chordal graphs, AT-free graphs, weakly chordal graphs
and many others) have constant hyperbolicity. In particular, the dually chordal
graphs and the C4-free Helly graphs (superclasses of the interval graphs and
of the strongly chordal graphs) are proper subclasses of the 1-hyperbolic Helly
graphs. This raises the question whether all vertex eccentricities can be com-
puted in linear time in a Helly graph G if its hyperbolicity δ is a constant.

We prove in what follows that it is indeed the case, which is the main result
of this section. The following result could also be considered as a parameterized
algorithm on Helly graphs with δ as the parameter.

Theorem 4. If G is an m-edge Helly graph of hyperbolicity δ, then the eccen-
tricity of all vertices of G can be computed in O(δ2m log δ) time. The algorithm
does not need to know the value of δ in order to work correctly. If δ (or a constant
approximation of it) is known, then the running time is O(δ2m).

As a byproduct, we get a linear time algorithm for computing all vertex
eccentricities in C4-free Helly graphs as well as in dually chordal graphs, gener-
alizing known results from [7, 25, 41]. We recall that for dually chordal graphs,
until this paper it was only known that a central vertex of such a graph can be
found in linear time [7, 25].

The remainder of this section is devoted to proving Theorem 4. For that, the
following result is proved in Subsection 4.1:

Lemma 6. Let G be an m-edge Helly graph, c be a central vertex of G and
k be a natural number. There is an O(k2m)-time algorithm which computes
C(G) ∩Nk[c].

Proof (Proof of Theorem 4 assuming Lemma 6.). Since, by Theorem 1(3), e(v) =
d(v, C(G)) + rad(G) holds for every v ∈ V , as before, in order to compute all

9



the eccentricities, it is sufficient to compute C(G). We first find a central vertex
c and compute the radius rad(G) of G. This takes O(δm) time by Lemma 5.

By Corollary 3, we know that diam(C(G)) ≤ 2δ + 1. Therefore, C(G) ⊆
N2δ+1[c]. If δ is known to us, we fix k := 2δ + 1 (if only a constant approxi-
mation δ′ ≥ δ of δ is known, we set k = 2δ′ + 1). Then, we are done applying
Lemma 6. Otherwise, we work sequentially with k = 2, 3, 4, 5, 8, 9, . . . , 2p, 2p +
1, 2p+1, 2p+1+1,. . . , and we stop after finding the smallest integer (power of 2) k
such that C(G)∩Nk[c] = C(G)∩Nk+1[c]. Indeed, by the isometricity (and hence
connectedness) of C(G) in G (see Lemma 1), the set C(G) ∩Nk[c] will contain
all central vertices of G, i.e., C(G) ∩Nk[c] = C(G). The latter will happen for
some k < 2(2δ + 1) after at most O(log δ) probes. Overall, since we need to
apply Lemma 6 at most O(log δ) times, for some values k < 2(2δ + 1), the total
running time is O(δ2m log δ). If δ (or a constant approximation of it is known),
then we call Lemma 6 only once, and therefore the running time goes down to
O(δ2m). ut

4.1 Proof of Lemma 6

In what follows, G is a Helly graph, k is an integer and r = rad(G). Let
Sk = Nk[c]. If r ≤ 2k, we can compute all central vertices in O(km) time
(see Lemma 2). Thus from now on, r > 2k. As diamSk

(G) ≤ 2k, to find all
central vertices in Sk (i.e., the set C(G)∩Sk), we will need to consider only the
vertices at distance > r − 2k from Sk.

Let i < 2k be fixed (we need to consider all possible i between k and 2k − 1
sequentially). Let Ak,i = Lr−i(Sk) (where we recall that Lr−i(Sk) = {v ∈ V :
d(v, Sk) = r− i}). We want to compute Sk,i := {s ∈ Sk : Ak,i ⊆ Nr[s]}. Indeed,

C(G)∩Sk =
⋂2k−1
i=k Sk,i. The computation of Sk,i (for k, i fixed) works by phases.

We describe below the two main phases of the process.

First phase of the algorithm. To give the intuition of our approach, we will need
the following simple claim. For a vertex v ∈ V and an integer j, let L(v, j, Sk) :=
{u ∈ V : d(v, Sk) = d(v, u) + d(u, Sk) and d(v, u) = j}.

Claim 2 Let B ⊆ Ak,i be such that
⋂
{L(b, j, Sk) : b ∈ B} 6= ∅, for some

0 ≤ j < r − i. Then, for every s ∈ Sk, maxb∈B d(s, b) ≤ r if and only if
d(s,

⋂
{L(b, j, Sk) : b ∈ B}) ≤ r − j.

Proof. If d(s,
⋂
{L(b, j, Sk) : b ∈ B}) ≤ r − j, then maxb∈B d(s, b) ≤ r. Con-

versely, let us assume maxb∈B d(s, b) ≤ r. Set F = {Nr−j
G [s], N

r+k−(i+j)
G [c]} ∪

{N j
G[b] : b ∈ B}. We prove that the balls in F intersect. For each b, b′ ∈ B,

N j
G[b]∩N j

G[b′] ⊇
⋂
{L(b, j, Sk) : b ∈ B} 6= ∅. Since we assume maxb∈B d(s, b) ≤ r,

N j
G[b] ∩ Nr−j

G [s] 6= ∅. Furthermore, as for each b ∈ B we have d(b, c) =

d(b, Sk) + k = r − i + k, we obtain Nr−i+k−j
G [c] ∩ N j

G[b] = L(b, j, Sk) 6= ∅.
Finally, since we have j < r − i, (r − i+ k − j) + (r − j) > k + i ≥ k ≥ d(s, c).

Therefore, N
r+k−(i+j)
G [c] ∩ Nr−j

G [s] 6= ∅. It follows from the above that the
balls in F pairwise intersect. By the Helly property, there exists a vertex
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y in the common intersection of all the balls in F . As for each b ∈ B,
y ∈ Nr−i+k−j

G [c]∩N j
G[b] = L(b, j, Sk), we deduce that y ∈

⋂
{L(b, j, Sk) : b ∈ B}.

Finally, we have d(s,
⋂
{L(b, j, Sk) : b ∈ B}) ≤ d(s, y) ≤ r − j. ut

We are now ready to present the first phase of our algorithm (for k, i fixed). It
is divided into r− i steps: from j = 0 to j = r− i−1. At step j, for 0 ≤ j < r− i,
the intermediate output is a collection of disjoint subsets V 1

j , V
2
j , ..., V

pj
j of the

layer Lr−i−j(Sk). These disjoint subsets are in one-to-one correspondence with
some partition B1, B2, ..., Bpj of Ak,i. Specifically, the algorithm ensures that:
∀1 ≤ t ≤ pj , V

t
j =

⋂
{L(b, j, Sk) : b ∈ Bt} 6= ∅. Doing so, by the above Claim 2,

for any s ∈ Sk we have maxz∈Ak,i
d(s, z) ≤ r ⇐⇒ max1≤t≤pj d(s, V tj ) ≤ r − j.

Initially, for j = 0, every set Bt is a singleton. Furthermore, Bt = V t0 .
Then, we show how to partition Lr−i−(j+1)(Sk) from V 1

j , V
2
j , ..., V

pj
j in total

O(
∑
x∈Lr−i−j(Sk)

|NG(x)|) time. Note that in doing so we get a total running time

in O(m) for that phase. For that, let us define W t
j = N(V tj ) ∩ Lr−i−(j+1)(Sk).

Since the subsets V tj are pairwise disjoint, the construction of the W t
j ’s takes

total O(
∑
x∈Lr−i−j(Sk)

|NG(x)|) time. Furthermore:

Claim 3 W t
j =

⋂
{L(b, j + 1, Sk) : b ∈ Bt}.

Proof. We only need to prove that we have
⋂
{L(b, j+1, Sk) : b ∈ Bt} ⊆W t

j (the
other inclusion being trivial by construction). For that, let x ∈

⋂
{L(b, j+1, Sk) :

b ∈ Bt} be arbitrary. Recall that we have, for each b ∈ Bt, d(b, c) = k+d(b, Sk) =
r − i + k. In particular, x ∈ L(b, j + 1, Sk) = L(b, j + 1, c). It implies that the

balls in {NG[x], Nr−i+k−j
G [c]} ∪ {N j

G[b] : b ∈ Bt} pairwise intersect. By the

Helly property, x has a neighbour in Nr−i+k−j
G [c] ∩

(⋂
{N j [b] : b ∈ Bt}

)
=⋂

{L(b, j, Sk) : b ∈ Bt} = V tj . Since x ∈ Lr−i−(j+1)(Sk), we get that x ∈W t
j . ut

Finally, in order to compute the new sets V t
′

j+1, we proceed as follows. Let
W = {W t

j : 1 ≤ t ≤ pj}. WhileW 6= ∅, we select some vertex x ∈ Lr−i−(j+1)(Sk)
maximizing #{t : x ∈ W t

j }. Then, we create a new set
⋂
t:x∈W t

j
W t
j , and we

remove {W t
j : x ∈W t

j } fromW. Note that, by the above Claim 3,
⋂
t:x∈W t

j
W t
j =⋂

t:x∈W t
j

⋂
{L(b, j + 1, Sk) : b ∈ Bt} =

⋂
{L(b, j + 1, Sk) : b ∈

⋃
t:x∈W t

j
Bt}.

Furthermore, by maximality of vertex x,
⋂
t:x∈W t

j
W t
j is disjoint from the subsets

in {W t
j : x /∈ W t

j }. The latter ensures that all the new sets we create are
pairwise disjoint. In order to implement this above process efficiently, we store
each x ∈ Lr−i−(j+1)(Sk) in a list indexed by #{t : x ∈ W t

j }. Then, we traverse
these lists by decreasing index. We keep, for each x ∈ Lr−i−(j+1)(Sk), a pointer
to its current position in order to dynamically change its list throughout the
process. See also the proof of Lemma 2 in [41]. The running time is proportional
to
∑
{|W t

j | : 1 ≤ t ≤ pj} = O(
∑
x∈Lr−i−j(Sk)

|NG(x)|).

Second phase of the algorithm. Let C1, C2, ..., Cp denote the sets

V 1
r−i−1, ..., V

pr−i−1

r−i−1 (i.e., those obtained at the end of the first phase of
our algorithm). Note that C1, C2, ..., Cp are subsets of L1(Sk) (= NG(Sk)).
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At this point, it is not possible anymore to follow the shortest-paths between
Ak,i and Sk. Then, let X = Ak,i ∪ {c}. Set α(c) = k + i + 2 and α(a) = r for
each a ∈ Ak,i. We define the set Y = {y : ∀x ∈ X, d(y, x) ≤ α(x)}. Observe
that Sk,i = Y ∩ Sk (recall that Sk,i was defined as {s ∈ Sk : Ak,i ⊆ Nr[s]}).
Therefore, in order to compute Sk,i, it suffices to compute Y .

For that, we proceed in i + 2 steps. At step `, for 0 ≤ ` ≤ i + 1, we main-
tain a family of nonempty pairwise disjoint sets Z1

` , Z
2
` , ..., Z

q`
` and a covering

X1
` , X

2
` , . . . , X

q`
` of X such that the following is true: for every 1 ≤ t ≤ q`,

Zt` =
⋂
x∈Xt

`
N
α(x)−(i+1)+`
G [x]. Doing so, after i+ 2 steps, the set Y is nonempty

if and only if qi+1 = 1 (the above partition is reduced to one group). Further-
more, if it is the case, Y = Z1

i+1.
Initially, for ` = 0, we start from Z1

0 = C1, ..., Z
p
0 = Cp, and then the cor-

responding covering is ∀1 ≤ t ≤ p, Xt
1 = Bt ∪ {c} (with B1, B2, ..., Bp being

the partition of Ak,i after the first phase of our algorithm). – Note that this is
only a covering, and not a partition, because the vertex c is contained in all the
groups. – For going from ` to `+ 1, we proceed as we did during the first phase.
Specifically, for every t, let U t` = NG[Zt` ]. Since the sets Zt` are pairwise disjoint,
the computation of all the intermediate sets U t` takes total O(m) time.

Claim 4 U t` =
⋂
x∈Xt

`
N
α(x)−(i+1)+(`+1)
G [x].

The proof is similar to that of Claim 3. Finally, in order to compute the
new sets Zt

′

`+1, let U = {U t` : 1 ≤ t ≤ q`}. While U 6= ∅, we select some
vertex u ∈ V maximizing #{t : u ∈ U t`}. Then, we create a new set

⋂
t:u∈Ut

`
U t` ,

and we remove {U t` : u ∈ U t`} from U . The running time is proportional to∑
{|U t` | : 1 ≤ t ≤ q`} = O(m).

Complexity analysis. Overall, the first phase runs in O(m) time, and the second
phase runs in O(im) = O(km) time. Since it applies for k, i fixed, the total
running time of the algorithm of Lemma 6 (for k fixed) is in O(k2m). ut
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