
HAL Id: hal-03315809
https://hal.science/hal-03315809v3

Preprint submitted on 28 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conditional Separation as a Binary Relation.
Jean-Philippe Chancelier, Michel de Lara, Benjamin Heymann

To cite this version:
Jean-Philippe Chancelier, Michel de Lara, Benjamin Heymann. Conditional Separation as a Binary
Relation.. 2024. �hal-03315809v3�

https://hal.science/hal-03315809v3
https://hal.archives-ouvertes.fr


Conditional Separation as a Binary Relation.
A Coq Assisted Proof

Jean-Philippe Chancelier†, Michel De Lara∗, Benjamin Heymann†

March 28, 2024

Abstract

The concept of d-separation holds a pivotal role in causality theory, serving as a
fundamental tool for deriving conditional independence properties from causal graphs.
Pearl defined the d-separation of two subsets conditionally on a third one. In this study,
we present a novel perspective by showing i) how the d-separation can be extended be-
yond acyclic graphs, possibly infinite, and ii) how it can be expressed and characterized
as a binary relation between vertices. Compared to the typical perspectives in causality
theory, our equivalence opens the door to more compact and computational proofing
techniques, because the language of binary relations is well adapted to equational rea-
soning. Additionally, and of independent interest, the proofs of the results presented in
this paper are checked with the Coq proof assistant.

1 Introduction
In an era increasingly driven by data-informed decision-making, the significance of causal in-
ference has grown substantially across applied sciences, statistics, and machine learning. Pi-
oneering this field, Pearl’s seminal work [Pea95, PM18] leverages graphical models [CDLS06]
to introduce the do-calculus and the concept of d-separation on directed acyclic graphs
(DAGs). This concept plays a pivotal role in causality theory by providing a tool for deduc-
ing conditional independence properties from causal graphs.

This study introduces a novel perspective by handling graphs as binary relations — hence
what we call graph is a directed simple graph permitting loops in graph theory, and we allow
for infinite such graphs — and, from there, move in two successive directions. First, we
extend the d-separation beyond acyclic graphs, to general, possibly infinite, graphs. Second,
we characterize the d-separation property as a binary relation among the vertices of the
graph. Compared to the typical perspectives in causality theory, our equivalence opens
the door to more compact and computational proofing techniques, because the language of
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binary relations is well adapted to equational reasoning. Additionally, and of independent
interest, the proofs of the results presented in this paper are checked with the Coq proof
assistant. Last but not least, the characterization presented in this work serves as a building
block for two concurrently developed works.1

As far as we know, this is the first attempt to formalize d-separation in a proof assistant.
However, some works can be found in the literature on probabilistic conditional indepen-
dence and proof assistants. For example, in [AGT20], the authors introduce a formalism
for reasoning with conditional probabilities and joint distributions in Coq. In [YKS+16],
the authors introduce a formalism for reasoning on probabilistic conditional independence
(PCI) in Coq based on universal algebraic structure suitable for studying PCI relations called
cains (derived from causal inference) and developed in [Wan10]. What we present in this
work could be a starting point to make a link between [Wan10] and Pearl’s d-separation in
Coq. The Coq code developed by J.P. Chancelier for proving the results exposed in this
paper is publicly available on GitHub2 and counts around 7000 lines of code using Math-
comp/SSReflect [ABC+22, GMT16].

The paper is organized as follows. In Sect. 2, we revisit graphs as binary relations and
define extended-oriented paths; then, we present our extended definitions of active extended-
oriented paths and of d-separation. In Sect. 3, we state and sketch the proof of our main
result, the characterization of the d-separation relation as the complementary of the condi-
tional active relation. The main body of the proof is to be found in the Appendices, which
follow its sketch. In Appendix A, we comment on how Coq is used in parallel to mathemat-
ical proofs. In Appendix B, we show that the conditional active relation can be replaced
by the star conditional active relation in the statement of our main result. In Appendix C,
we show that the star conditional active relation is included in the complementary of the
d-separation relation. In Appendix D, we show the reverse inclusion.

2 A formal Pearl’s d-separation definition
In §2.1, we deal with graphs but using the concepts of binary relations. In §2.2, we formally
define what we call extended-oriented paths in a graph and discuss the Coq implementation
used to formalize extended-oriented paths. Thus equipped, in §2.3, we formally adapt Pearl’s
definition of active (and blocked) extended-oriented paths in a graph, from which we deduce
the (conditional) d-separation binary relation.

1The mathematical side of the present paper was written in [CDH21] in parallel to two other papers
[DCH21, HDC21], all of which aimed at providing another perspective on conditional independence (and
do-calculus). The first paper [CDH21] was a prerequisite for [DCH21] and both [CDH21, DCH21] were
a prerequisite for [HDC21]. In order to facilitate the reading of [CDH21, DCH21], which were quite long
and technical, we have implemented Coq proofs for them. The aim of the present paper is to provide a
version of the mathematical results of the preprint [CDH21] complemented with the description of the Coq
formalization used for the proofs. The aim is thus twofold, as it gives the proof of yet unpublished results
together with their Coq assisted proof.

2at URL https://github.com/jpc-cermics/relations.git
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2.1 Binary relations and graphs

We employ the vocabulary and concepts both of binary relations and of graph theory. We
denote by N the set of natural numbers (including zero), and N∗ = N \ {0}. We use the
notation Jr, sK = { r, r + 1, . . ., s− 1, s} for two natural numbers r ≤ s.

In §2.1.1, we provide background on binary relations. In §2.1.2, we list tools that will be
useful to navigate between vertices, edges and pair of edges representations in a graph, as
defined in §2.1.3.

2.1.1 Background on binary relations

Let V be a nonempty set (finite or not). We recall that a (binary) relation R on V is a subset
R ⊂ V×V and that γRλ means (γ, λ) ∈ R. For any subset Γ ⊂ V , the (sub)diagonal relation
is ∆Γ =

{
(γ, λ) ∈ V × V

∣∣ γ = λ ∈ Γ
}

and the diagonal relation is ∆ = ∆V . A relation is
reflexive if ∆ ⊂ R. A foreset of a relation R is any set of the form Rλ =

{
γ ∈ V

∣∣ γRλ
}
,

where λ ∈ V , or, by extension, of the form RΛ =
{
γ ∈ V

∣∣ ∃λ ∈ Λ , γRλ
}
, where Λ ⊂ V .

An afterset of a relation R is any set of the form γR =
{
λ ∈ V

∣∣ γRλ
}
, where γ ∈ V ,

or, by extension, of the form ΓR =
{
λ ∈ V

∣∣∃γ ∈ Γ , γRλ
}
, where Γ ⊂ V . The opposite

or complementary Rc of a binary relation R is the relation Rc = V × V \ R, that is,
defined by γRc λ ⇐⇒ ¬(γRλ). The converse R−1 of a binary relation R is defined
by γR−1 λ ⇐⇒ λR γ (and R is symmetric if R−1 = R). The composition RR′ of two
binary relations R,R′ on V is defined by γ(RR′)λ ⇐⇒ ∃δ ∈ V , γR δ and δR′ λ; then, by
induction we define3 Rn+1 = RRn for n ∈ N∗. The transitive closure of a binary relation R
is R+ = ∪∞

k=1Rk (and R is transitive if R+ = R) and the reflexive and transitive closure
is R∗ = R+ ∪ ∆ = ∪∞

k=0Rk with the convention R0 = ∆. A partial equivalence relation is
a symmetric and transitive binary relation (generally denoted by ∼ or ≡). An equivalence
relation is a reflexive, symmetric and transitive binary relation.

Binary relations are implemented as sets on a product space using the classical sets
implemented in classical_sets.v from the Coq mathcomp library [ABC+22] using SS-
Reflect tactics [GMT16]

Definition relation (T: Type) := set (T * T). .4

As described in more details below, we have developed a library for relations taking into
account all the definitions recalled at the beginning of §2.1.1.

3In what follows, when we consider a binary relation as a subset R ⊂ V × V, we will use the notation∏n
i=1 R ⊂ ∏n

i=1 V ×V, where n is a positive integer, to denote a product subset of the product set V2n, thus
making the distinction with the binary relation Rn ⊂ V × V obtained by n compositions.

4At the end of a Coq statement, ended by a dot belonging to the Vernacular (the language of Coq
commands) we add a dot or a comma which serve as text punctuation.
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2.1.2 Sequences, sets and binary relations

Being an active extended oriented path, as defined later, involves mixed properties of vertices,
oriented edges and successive pairs of oriented edges path. This is why we need to develop
tools that permit to navigate between vertices, edges and pair of edges representations. This
part is devoted to list these tools and some of their properties. To formalize graph paths,
we use sequences (as defined in mathcomp seq.v) combined with set formalization (defined
in mathcomp classical_sets.v).

• p [∈] X. We consider a set T and, for any subset D ⊂ T and n ∈ N, we denote by
Sn(D) =

∏n
i=1D the set of sequences of length n of elements of the set D (S0(D) being the

singleton set with the empty sequence) and by S≥n(D) the set of finite sequences of length
greater than or equal to n of elements of the set D, that is, the disjoint union5 ⊔k≥nSk(D).
The largest set S≥0(D) will be denoted by S(D):

S≥n(D) =
⊔

k≥n

Sk(D) and S(D) = S≥0(D) . (1)

The sets S≥n(T ) and Sn(T ) are formalized in Coq in the mathcomp library as sequences
of elements of type T and the restriction to elements in a subset (D: set T) is obtained
using the function all (in mathcomp library seq.v). As an example, the set Sn(D) is
implemented as follows

Notation "p [∈] X" := (all (fun x => x ∈ X) p).
Definition Sn (n: nat) (D: set T):= [set st| st [∈] D∧ size(st)=n]. .

• (Lift p) and (p [L∈] R). Then, we define a lift operator

L : S(T ) → S(T×T ) ,

such that

• for all n ≥ 2, the restriction of the operator L to the set Sn(T ) coincides with the
following mapping Ln : Sn(T ) → Sn−1(T×T ), given by

∀(v1, . . . , vn) ∈
n∏

i=1

T , Ln(v1, . . . , vn) =
(
(v1, v2), (v2, v3), . . . , (vn−1, vn)

)
, (2)

transforming a sequence of elements of T of length n into a sequence of oriented pairs
in T×T of length n−1,

• the restriction of the operator L on S0(T ) ∪ S1(T ) is the constant mapping giving the
empty list on T×T .

5The symbol ⊔ stands for a disjoint union.
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The lift operator L is implemented in Coq as a recursive mapping denoted Lift:

Fixpoint Lift (st: seq T): seq (T*T) :=
match st with
| x :: [:: y & st] as st1 => (x,y)::(Lift st1)
| _ => Nil (T*T)
end. .

We note that, thanks to Coq polymorphism, the lift mapping is parameterized by a type
and thus can be used to lift a sequence of vertices into a sequences of edges, but also to lift
a sequence of edges (in T×T ) into a sequence of ordered pairs of edges (in (T×T )2).

The notation p [L∈] R is used to denote the expression (Lift p) [∈] R.

• p [Suc∈] R. We must be able to check that successive elements of a sequence whose
elements are in T belong to a given subset R of T×T , that is, satisfy a relation R on T .

This is easily implemented with the help of an inductive predicate (RPath in seq1.v)

Notation "s [Suc∈] R" := (RPath R s). ,

that we do not detail here as we prove that it can be equivalently implemented with the
Lift mapping (which enables more computational proofs) as we have

Lemma RPath_equiv: ∀ (st: seq T), st [L∈] R ↔ st [Suc∈] R. .

As a first example, consider the (chain) relation CH – denoted by Chrel in Coq – defined
by ((v1, v2)CH (v3, v4) ⇐⇒ v2 = v3), on the product set T×T

Definition Chrel {T:Type} :=[set s: (T*T)*(T*T)| (s.1).2 = (s.2).1]. .

Now, the fact that lifted sequences are well chained sequences can be stated as proving the
following Coq Lemma

Lemma Lift_Suc: ∀ (st:seq T), (Lift st) [Suc∈] Chrel. .

As a second example, if the elements of a sequence belong to a set X, then the elements
of the lifted sequence belong to the product relation X×X as proved in the following lemma

Lemma Rpath_L1: ∀ (st: seq T), st [∈] X → st [L∈] (X ‘*‘ X). .

• Lift bijection. The lift operation, when restricted to the subset D defined below, is
bijective onto its image I

Definition D {T: Type}:= [set st:seq T| size(st) > 1].
Definition I {T: Type}:= [set spt:seq (T*T)| size(spt) > 0 ∧ spt [Suc∈] Chrel].
Lemma Lift_inj: ∀ (st st’: seq T), st ∈ D → Lift st = Lift st’ → st = st’.
Lemma Lift_surj: ∀ (spt: seq (T*T)), spt ∈ I → ∃ st, st∈ D ∧ Lift st=spt. .
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Moreover, the inverse of Lift is explicitely obtained by a recursive mapping UnLift (not
detailed here).

2.1.3 Graphs as binary relations

Let V be a nonempty set (finite or not), whose elements are called vertices. Let E ⊂ V × V
be a relation on V , whose elements are ordered pairs (that is, couples) of vertices called
edges. The first element of an edge is the tail of the edge, whereas the second one is the head
of the edge. Both tail and head are called endpoints of the edge, and we say that the edge
connects its endpoints. We define a loop as an element of ∆ ∩ E , that is, a loop is an edge
that connects a vertex to itself.

A graph, as we use it throughout this paper, is a couple (V , E). This definition is basic,
and we now stress proximities and differences with classic notions in graph theory. As we
define a graph, it may hold a finite or infinite number of vertices; there is at most one edge
that has a couple of ordered vertices as single endpoints, hence a graph (in our sense) is not
a multigraph (in graph theory); loops are not excluded (since we do not impose ∆∩ E = ∅).
Hence, what we call a graph would be called a directed simple graph permitting loops in
graph theory.

To define blocked and active extended-oriented paths – an essential notion in causal
inference – relative to the graph (V , E), we need to fix additional vocabulary and notation.
In the graph (V , E), the undirected edges are the elements of E ∩ E−1 — that is, edges with
both (λ, γ) ∈ E and (γ, λ) ∈ E (hence, including loops). Then, the graph (V , E) is said to be
undirected if all edges are undirected edges, or, equivalently, if E = E ∩ E−1 or if E−1 = E .
The undirected extension of a graph (V , E) is the graph (V , E ∪ E−1).

In the graph (V , E), the directed edges are the elements of E ∩ (E−1)c — that is, edges
with (λ, γ) ∈ E such that (γ, λ) ̸∈ E (recall that we do not assume that E ∩ E−1 = ∅). Then,
the graph (V , E) is said to be directed if all edges are directed edges, or, equivalently, if
E ∩ E−1 = ∅, that is, when no two edges have the same endpoints.

A graph (V , E) is given in Coq by an oriented pair composed of a type (T: Type) and
a relation on T, that is (E : relation T) (which is equivalent to a set declaration (E :
set T*T)). Thus, the (classical) set definition of mathcomp analysis classical_sets.v is
used to formalize a graph. We have not used the Coq package graph-theory to formalize
graph as we did not want to stick to finite graphs.

2.2 Extended-oriented paths in a graph

In graph theory, one finds the notions of path, chain and walk. To avoid ambiguities,
we formally define in §2.2.1 an edge path in a graph — in our sense, that is, a (directed
simple) graph (permitting loops) — as the classical notion of path in a graph [Die18]. Then,
in §2.2.2, we define an extended-oriented path in a graph as what corresponds to a chain path
in [LDLL90]. We consider a graph (V , E) as defined in §2.1.3, that is, a (directed simple)
graph (permitting loops).
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2.2.1 Edge paths in a graph

After defining edge paths and their endpoints, we introduce deployments in edge paths (see
the summary Table 1).

• Definition of edge paths. We define the set of edge paths of length n (n ≥ 1), relative
to the graph (V , E), by

Pn(V , E) =
{{

(v♭i , v
♯
i)
}
i∈J1,nK ∈

n∏

i=1

E
∣∣∣ v♯i = v♭i+1 for i ∈ J1, n−1K

}
. (3a)

For n ≥ 1, we define the set of edge paths of length greater than n, relative to the graph (V , E),
by

P>n(V , E) = ⊔n′>nPn′(V , E) , (3b)

and finally the set of edge paths, relative to the graph (V , E), by

P (V , E) = P>0(V , E) . (3c)

Using the tools introduced in §2.1.2 and Equations (3) we obtain the following formal-
ization of P>n

Definition P_gt (n: nat) (E: relation T) :=
[set spt | size(spt) > n ∧ spt [∈] E ∧ spt [Suc∈] Chrel]. ,

where E is the edge relation E and where Chrel was defined in §2.1.2.

We denote by |ϱ| the length of an edge path ϱ ∈ P (V , E) (computed in Coq by the
mapping size). An edge subpath of the edge path ϱ is an edge path obtained by a subsequence
of consecutive indices.

• Definition of endpoints of edge paths. The first element v♭1 of an edge path ϱ ={
(v♭i , v

♯
i)
}
i∈J1,nK is the tail of the edge path, whereas the last one v♯n is the head of the edge

path. Both tail (obtained with function head in Coq) and head (obtained with function last
in Coq) are called endpoints of the edge path.

We define the projection mapping ϖn : Pn(V , E) → V ×V on the tail and head endpoints
of an edge path of length n by

∀ϱ = (v♭i , v
♯
i)i∈J1,nK ∈ Pn(V , E) , ϖn(ϱ) = ϖn((v♭i , v

♯
i)i∈J1,nK) = (v♭1, v

♯
n) ∈ V × V . (4a)

We define the projection mapping ϖ : P (V , E) → V ×V on the tail and head endpoints of an
edge path by

∀ϱ ∈ P (V , E) , ϖ(ϱ) = ϖ|ϱ|(ϱ) ∈ V × V . (4b)

We also distinguish the tail and the head endpoints projection mappings of an edge path by
(see Figure 1)

ϖ = (ϖ♭, ϖ♯) where ϖ♭ : P (V , E) → V and ϖ♯ : P (V , E) → V . (4c)
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•
v♭1 •

v♯1

•
v♭|ϱ|

•
v♯|ϱ|

ϖ♭(ϱ) = (ϱ1)1 = v♭1 ϖ♯(ϱ) = (ϱ|ϱ|)2 = v♯|ϱ|
1

Figure 1: Tail and head endpoints of an edge path projection mappings (4) for ϱ ∈ P (V , E)

The endpoints are obtained in Coq by the mapping Pe (meaning path endpoints) for
a sequence of vertices, and by the mapping Epe (meaning extended path endpoints) for a
sequence of edges

Definition Pe (st: seq T) := (head ptv.1 st, last ptv.1 st).
Definition Epe (spt: seq (T*T)) := ((head ptv spt).1, (last ptv spt).2). .

We prove in the next two lemmata that Pe and Epe behave properly with respect to the
Lift bijection between D and I

Lemma Epe_Lift: ∀ (st:seq T), st ∈ D → Epe (Lift st) = Pe st.
Lemma Pe_UnLift: ∀ (spt: seq (T*T)), spt ∈ I→Pe (UnLift spt ptv.1)=Epe spt. .

As a first result linking (edge) paths and relations, we prove that

Lemma TCP: E.+ = [set vp| ∃ p, size(p) > 1 ∧ Pe ptv p = vp ∧ p [L∈] E].

which asserts that two nodes (v1,v2) are in relation through the transitive closure of a
relation E, that is (v1,v2) ∈ E.+ if and only if there exists an edge path with endpoints
(v1,v2) in the graph (V , E) represented by (T: Type),(E: relation T).

• Concatenation of edge paths. Concatenation of sequences denoted by the infix opera-
tor ⋉ (and denoted by ++ in Coq) is easily defined and is associative. When considering edge
paths, concatenation of ϱ′ ∈ P (V , E) and ϱ′′ ∈ P (V , E) gives a sequence (ϱ′ ⋉ ϱ′′) ∈ S(V×V)
which belongs to P (V , E) under the additional assumption that ϖ♯(ϱ′) = ϖ♭(ϱ′′) (see Equa-
tion (4c)), that is,

∀ϱ′ ∈ P (V , E) , ∀ϱ′′ ∈ P (V , E) , ϖ♯(ϱ′) = ϖ♭(ϱ′′) =⇒ (ϱ′ ⋉ ϱ′′) ∈ P (V , E) . (5)

• Deployment in edge paths. With any binary relation R ⊂ V×V , we associate the
subset DP [R | V , E ] of P (V , E), that we call the deployment in edge paths, defined by

∀R ⊂ V × V , DP [R | V , E ] = ϖ−1(R) ⊂ P (V , E) , (6)
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Name Expression Equation
set of (edge) paths P (V , E) Equation (3c)

tail and head endpoints ϖ = (ϖ♭, ϖ♯) Equation (4b)
projection mappings ϖ♭ : P (V , E) → V Equation (4c)

ϖ♯ : P (V , E) → V Equation (4c)
deployment in edge paths DP [· | V , E ] = ϖ−1 Equation (6)

Table 1: Notions for edge paths in a graph (§2.2.1)

where the projection ϖ has been defined in (4). The deployment in edge paths DP [R | V , E ]
is made of the edge paths whose endpoints satisfy the binary relation R.

Definition D_P (R E: relation T):=
[set spt| spt ∈ I ∧ R (Epe spt) ∧ spt [∈] E ].

It is to be noted that the deployment in edge paths may be obtained as the image by the
Lift mapping of a subset of sequences of vertices as follows

Definition D_V (R E: relation T):=
[set st| st ∈ D ∧ R (Pe st) ∧ st [Suc∈] E].

Lemma DP_DV: ∀ (R E: relation T), image (D_V R E) (@Lift T) = (D_P R E). .

Note that, when an edge path of length greater than zero is given as a lifted sequence of
elements of T (as for example in Lift (x::(rcons p y)) = st.), the endpoints (x,y)
and the intermediate nodes p of the edge path st are immediately obtained.

2.2.2 Extended-oriented paths in a graph

To define extended-oriented paths, we consider a set

O = {−1,+1} , (7)

with two elements, and implemented in Coq as an inductive type taking two values N (for −1)
and P (for 1)

Inductive O := | P | N. ,

which will serve as an orientation specification of an edge. We also introduce the set EO ⊂
V × V×O defined by

(v, v′, o) ∈ EO ⇐⇒ (v, v′) ∈ E (o) , (8)

where E (+1) = E and E (−1) = E−1.
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After defining extended-oriented paths and their endpoints, we introduce deployments in
extended-oriented paths (see the summary Table 2).

• Definition of extended-oriented paths. We define the set of extended-oriented paths
of length n (n ≥ 1), relative to the graph (V , E), by

Un(V , E) =
{{

(v♭i , v
♯
i , oi)

}
i∈J1,nK ∈

n∏

i=1

EO
∣∣∣ v♯i = v♭i+1 for i ∈ J1, n−1K

}
, (9a)

For n ≥ 1, we define the set of extended-oriented paths6 of length greater than n, relative to
the graph (V , E), by

U>n(V , E) = ⊔n′>nUn′(V , E) , (9b)

and finally the set of extended-oriented paths, relative to the graph (V , E), by

U(V , E) = U>0(V , E) . (9c)

Using the tools introduced in §2.1.2 and Equations (9), we obtain the following Coq
formalization of U>n(V , E)

Definition U_gt (n: nat) (E: relation T):=
[set sto | size(sto) > n ∧ sto [∈] (Oedge E) ∧ (Lift sto) [∈] ChrelO].

Definition Oedge (E: relation T): set (T*T*O) :=
fun (oe: T*T*O) => match oe with | (e,P) => E e | (e,N) => E.-1 e end.

Definition ChrelO := [set ppa: (T*T*O)*(T*T*O) | (ppa.1.1).2 = (ppa.2.1).1]. ,

where Oede E is used to formalize the EO subset in (8), and where ChrelO is the chain
relation on V × V×O.

An extended-oriented path can be decomposed as an oriented pair composed of an edge
path and a sequence of orientations. For that purpose, we introduce the mapping

π : S(V×V×O) → S(V × V)× S(O) , (10a)

where S(·) was defined in (1), given by

∀ρ ∈ S(V×V×O) , π(ρ) =
(
πS(V×V)(ρ), πS(O)(ρ)

)
∈ S(V × V)× S(O) , (10b)

where πS(V×V)(ρ) = {πV×V(ρi)}i∈J1,|ρ|K ∈ S(V × V) , (10c)

and πS(O)(ρ) = {πO(ρi)}i∈J1,|ρ|K ∈ S(O) , (10d)

6It is to be noted that an extended-oriented path is not a path in the graph (V, E), neither in the undirected
graph (V, E ∪ E−1). However, considering a couple (ϱ, o) ∈ Un(V, E), we obtain that ϱ ∈ Pn(V, E ∪ E−1),
that is, ϱ is an (edge) path in the unoriented graph (V, E ∪ E−1). We thus obtain a natural surjection
(ϱ, o) 7→ ϱ from U(V, E) to P (V, E ∪ E−1). This canonical surjection is not necessary injective because a
path in P (V, E ∪ E−1) that has an edge in E ∩ E−1 is the image of two distinct extended-oriented paths.
The surjection (ϱ, o) 7→ ϱ is a bijection in the special case when the graph (V, E) is directed, that is, when
E ∩ E−1 = ∅, that is, when no two edges have the same endpoints.

10



where πV×V (resp. πO) is the projection from the set V×V×O onto the set V×V (resp. O).
When ρ ∈ U(V , E), we obtain that ϱ = πS(V×V)(ρ) is an edge path that is ϱ ∈ P (V , E).

Reciprocally, given an edge path ϱ ∈ P (V , E) and a sequence o ∈ O|ϱ| of orientations of
the same size, we denote by ρ = π−1(ϱ, o) the extended-oriented path ρ ∈ U(V , E), defined
by

π−1 : (ϱ, o) ∈ Imπ 7→ ρ with ρi = (ϱi, oi) , ∀i ∈ J1, |ϱ|K. (11)

The mapping π−1 is the inverse of the mapping π, defined in Equation (10), but on the range
of the mapping π (so that using π−1 is a slight abuse of notation).

An extended-oriented subpath of the extended-oriented path ρ ∈ U(V , E) is an extended-
oriented path obtained by a subsequence of consecutive indices.

• Definition of endpoints of extended-oriented paths. The endpoints of an extended-
oriented path ρ are defined as the endpoints of the edge path πS(V×V)(ρ) as defined in (10c).

We define the projection mapping ϖU : U(V , E) → V × V on the tail and head endpoints
of extended-oriented paths by

∀ρ ∈ U(V , E) , ϖU(ρ) = ϖ
(
πS(V×V)(ρ)

)
∈ V × V , (12a)

where the projection mapping ϖ : P (V , E) → V × V on the tail and head endpoints of an
edge path has been introduced in (4). We also distinguish the tail and the head endpoints
projection mappings on extended-oriented paths by (see Figure 2)

ϖU = (ϖ♭
U , ϖ

♯
U) where ϖ♭

U : U(V , E) → V and ϖ♯
U : U(V , E) → V . (12b)

•
v♭1 •

v♯1

•
v♭|ρ|

•
v♯|ρ|

o1 o|ρ|

ϖU (ρ) = (v♭1, v
♯
|ρ|)

1
Figure 2: Projection mappings (12) on the tail and the head endpoints of an extended-
oriented path ρ ∈ U(V , E)

The Coq definition of ϖU follows

Definition Eope (stto : seq(T*T*O)) : T*T :=
((head (ptv,P) stto).1.1, (last (ptv,P) stto).1.2). ,

11



• Concatenation of extended-oriented paths. As already noted, concatenation of se-
quences denoted by the infix operator ⋉ is easily defined and is associative. When considering
extended-oriented paths, concatenation of ρ′ ∈ U(V , E) and ρ′′ ∈ U(V , E) gives a sequence
(ρ′ ⋉ ρ′′) ∈ S(V×V×O) which belongs to U(V , E) under the additional assumption that
ϖ♯

U(ρ
′) = ϖ♭

U(ρ
′′) (see Equation (12b)), that is,

∀ρ′ ∈ P (V , E) , ∀ρ′′ ∈ P (V , E) , ϖ♯(ρ′) = ϖ♭(ρ′′) =⇒ (ρ′ ⋉ ρ′′) ∈ U(V , E) . (13)

Moreover, forall ρ′ ∈ U(V , E) and ρ′′ ∈ U(V , E), we have that

ρ′ ⋉ ρ′′ = π−1
(
(πS(V×V)(ϱ

′))⋉ (πS(V×V)(ϱ
′′)), (πS(O)(o

′)⋉ πS(O)(o
′′))

)
∈ U(V , E) . (14)

• Deployment in extended-oriented paths. With any binary relation R ⊂ V × V , we
associate the subset DU [R | V , E ] of U(V , E) in (9) that we call the deployment in extended-
oriented paths, defined by

∀R ⊂ V × V , DU [R | V , E ] = ϖ−1
U (R) ⊂ U(V , E) , (15)

where the projection ϖU has been defined in (12).
The deployment DU [R | V , E ] is made of the extended-oriented paths whose endpoints

satisfy the binary relation R.

It is formalized in Coq as follows

Definition D_U (R E: relation T) := [set stto : seq (T*T*O) |size(stto)>0
∧ R (Eope stto) ∧ stto [∈] (Oedge E) ∧ stto [Suc∈] ChrelO].

Moreover, As for edge path, it is to be noted that the extended-oriented paths may be
obtained as the image of a product of sequences of vertices and sequences of orientation.
This is done by the LiftO mapping combining lift and pairing

Fixpoint pair (stt: seq (T*T)) (so: seq O) :=
match stt, so with
| (pt)::stt, o::so => (pt,o)::(pair stt so)
| (pt)::stt, [::] => (pt,P)::(pair stt [::])
| _ , _ => Nil (T*T*O)
end. Definition LiftO (st: seq T) (so: seq O) := pair (Lift st) so.

Finally, we prove that LiftO is bijective on restricted domain and image, with inverse
UnLiftO, and that the bijection properly commutes with Eope

Lemma Eope_LiftO: ∀ (st:seq T) (so:seq O),
size(st) > 1 → size (so) = size st -1 → Eope (LiftO st so) = Pe ptv st.

Lemma Pe_UnLiftO: ∀ (stto: seq (T*T*O)),
size(stto) > 0 → stto [Suc∈] ChrelO →
(Pe ptv (UnLiftO stto ptv.1).1) = Eope stto. .

12



Name Expression Equation
set of extended-oriented paths U(V , E) Equation (9c)

tail and head endpoints ϖU : U(V , E) → V × V Equation (12a)
projection mappings ϖ♭

U : U(V , E) → V Equation (12b)
ϖ♯

U : U(V , E) → V Equation (12b)
deployment in extended-oriented paths DU [· | V , E ] = ϖ−1

U Equation (15)

Table 2: Notions for extended-oriented paths in a graph (§2.2.2)

2.3 Active extended-oriented paths and d-separation

Let (V , E) be a graph — as defined in §2.1.3, that is, a (directed simple) graph (permitting
loops) — and W ⊂ V be a subset of vertices.

In §2.3.1 we formally adapt Pearl’s definition of active (and blocked) extended-oriented
paths in a graph, from which we deduce the (conditional) d-separation binary relation
in §2.3.2.

2.3.1 Definition of active extended-oriented paths

We take inspiration from [Pea86] to define the notion of blocked paths on a graph, not
necessarily finite nor acyclic. For this purpose, we first define active extended-oriented
paths relative to the graph (V , E) in Definition 2. Then, we obtain the definition of blocked
extended-oriented paths relative to the graph (V , E), as defined by [Pea86], by switching to
the complementary set.

We start by introducing a binary relation, AW
tr (active triplet), on the set V×V×O, which

is parameterized by the set of edges E of a graph (V , E) and by a subset W ⊂ V .

Definition 1 The active triplet binary relation AW
tr on the set V×V×O is defined as follows

(v♭1, v
♯
1, o1)A

W
tr (v

♭
2, v

♯
2, o2) ⇐⇒





o1 = +1 , o2 = +1 and v♯1 = v♭2 ∈ W c , (16a)
o1 = −1 , o2 = −1 and v♯1 = v♭2 ∈ W c , (16b)
o1 = −1 , o2 = +1 and v♯1 = v♭2 ∈ W c , (16c)
o1 = +1 , o2 = −1 and v♯1 = v♭2 ∈ E∗W , (16d)

where E∗ = E+ ∪∆ is the reflexive and transitive closure of the relation E.

Definition 2 (active extended-oriented paths UW
a (V , E)) We say that an extended-oriented

path ρ ∈ U(V , E) in (9) relative to the graph (V , E), is an active extended-oriented path
(w.r.t.7 the subset W ) if the successive elements (triplets) of ρ satisfy the binary relation
AW

tr defined in Equation (16), that is, ρiA
W
tr ρi+1, for all i ∈ J1, |ρ|−1K. Notice that any

extended-oriented path of length 1 is active by definition.
7w.r.t. stands for “with respect to”.
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We denote by UW
a (V , E) ⊂ U(V , E) the subset of all active extended-oriented paths (w.r.t.

the subset W ). We say that an extended-oriented path is blocked if it is not active and we
denote by UW

b (V , E) =
(
UW
a (V , E)

)c the subset of all blocked extended-oriented paths (w.r.t.
the subset W ).

The Coq formalization of the binary relation AW
tr easily follows

Definition A_tr (W: set T) (E: relation T) := ChrelO ∩
[set oe : (T*T*O) * (T*T*O)| match (oe.1.2,oe.2.2, oe.1.1.2) with

| (P,P,v) => W.^c v | (N,N,v) => W.^c v | (N,P,v) => W.^c v
| (P,N,v) => (Fset E.* W) v end]. .

The binary relation AW
tr contains the (oriented chain) relation – denoted by ChrelO in Coq

– and defined by avec ((v♭1, v
♯
1, o1)C

O
H (v♭2, v

♯
2, o2) ⇐⇒ v♯1 = v♭2). The forward set E∗W is

implemented by Fset in Coq.

Now, the Coq formalization of DU [R | V , E ] ∩ UW
a (V , E) is obtained as an intersection

of two sets

Definition D_U_a (R E: relation T) (W: set T) (x y:T):=
(D_U R E) ∩ [set stto | stto [Suc∈] (A_tr W E)]. .

When the relation R is a singleton R = {(x, y)}, the set DU [R | V , E ] ∩ UW
a (V , E) boils

down to the following equivalent definition

Definition D_U_a1 (E: relation T) (W: set T) (x y:T):=
[set stto |size(stto)>0 ∧ (Eope stto)=(x,y) ∧ stto [∈] (Oedge E)
∧ stto [Suc∈] ChrelO ∧ stto [Suc∈] (A_tr W E)]. .

2.3.2 Definition of conditional directional separation (d-separation)

We introduce in Definition 3 a new binary relation between vertices: we say that two vertices
are (conditionally) directionally separated if and only if the two vertices are different and
all the extended-oriented paths, having them as endpoints, are blocked (equivalently they
are different and there does not exist an active extended-oriented paths having them as
endpoints). This definition mimics Pearl’s d-separation [Pea86], but with two differences:
the graph is not supposed to be acyclic, and the separation is between vertices and not
between disjoint subsets.

Definition 3 Let (V , E) be a graph, and W ⊂ V be a subset of vertices. We denote

γ ∥
d
λ | W ⇐⇒ (γ ̸= λ) ∧

(
DU [{(γ, λ)} | V , E ] ⊂ UW

b (V , E)
) (

∀γ, λ ∈ V
)
, (17)

and we say that the vertices γ and λ are (conditionally) directionally separated (w.r.t. the
subset W ).
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The Coq implementation of d-separation is given by

Notation "( x [⊥d] y | W )" := (D_separated W E x y).
Definition D_separated (W: set T) (E: relation T) (x y: T) :=

~(∃ (p: seq (T*T*O)), Active_path W E p x y).

Definition Active_path
(W: set T) (E: relation T) (p: seq (T*T*O)) (x y: T) :=
match p with
| [::] => x = y
| [::eo1] => eo1.1.1 = x ∧ eo1.1.2 = y ∧ Oedge E eo1
| eo1 :: [:: eo2 & p]

=> eo1.1.1 = x ∧ (last eo2 p).1.2 = y
∧ allL (ActiveOe W E) (belast eo2 p) eo1 (last eo2 p)

end. Definition ActiveOe (W: set T) (E: relation T) :=
[set oe : (T*T*O) * (T*T*O) |

Oedge E oe.1 ∧ Oedge E oe.2 ∧ (ChrelO oe)
∧ match (oe.1.2,oe.2.2, oe.1.1.2) with
| (P,P,v) => W.^c v
| (N,N,v) => W.^c v
| (N,P,v) => W.^c v
| (P,N,v) => (Fset E.* W) v
end].

Definition allL (R: relation T) st x y := (x::(rcons st y)) [L∈] R. .

The retained formulation is indeed equivalent to Definition 3, as proved in Coq
lemma Active_eq given below

Lemma Active_eq: ∀ (E: relation T) (W: set T) (x y:T) stto,
((x=y ∧ stto = [::]) ∨ stto ∈ (D_U_a1 E W x y))
↔ Active_path W E stto x y. .

3 Characterization of d-separation by means of binary
relations

Our main result is the characterization of the conditional directional separation relation —
the extension

(
∥
d
| W

)
, or shortly ∥

d
, of the d-separation introduced in Definition 3 — as the

complementary of the conditional active relation — Equation (18g) in Definition 4 below.
For this purpose, we introduce the following binary relations on the vertices of a graph

— as defined in §2.1.3, that is, a (directed simple) graph (permitting loops).
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Definition 4 Let (V , E) be a graph, and W ⊂ V be a subset of vertices. We define the
conditional parental relation EW as

EW = ∆W cE that is, γEWλ ⇐⇒ γ ∈ W c and γEλ
(
∀γ, λ ∈ V

)
, (18a)

the conditional ascendent relation BW as

BW = E(∆W cE)∗ = EEW∗ , (18b)

which relates a descendent with an ascendent by means of elements in W c. We define their
converses E−W and B−W as

E−W = (EW )−1 = E−1∆W c , (18c)

B−W =
(
BW

)−1
= (E−1∆W c)∗E−1 = E−W∗E−1 . (18d)

With these elementary binary relations, we define the conditional common cause relation KW

as the symmetric relation

KW = B−W∆W cBW = E−W+EW+ , (18e)

the conditional cousinhood relation CW as the partial equivalence relation

CW =
(
∆WKW∆W

)+ ∪∆W , (18f)

and the conditional active relation AW as the symmetric relation

AW = ∆ ∪ BW ∪ B−W ∪ KW ∪
(
BW ∪ KW

)
CW

(
B−W ∪ KW

)
. (18g)

The Coq implementation is straightforward using the binary relation library rel.v that
we have developed.

Definition Em := E.-1.
Definition Ew := ∆_(W.^c);E.
Definition Bw := E;Ew.* .
Definition Emw := Ew.-1.
Definition Bmw := Bw.-1.
Definition Kw := (Bmw;∆_(W.^c);Bw).

Definition DKD := ( ∆_(W);Kw; ∆_(W)).
Definition Cw := ((DKD).+) ∪ ∆_(W).
Definition Dw := (Bw ∪ Kw);(Cw;(Bmw ∪ Kw)).
Definition Aw := ’∆ ∪ Bw ∪ Bmw ∪ Kw ∪ Dw. .

We now state the main result of this paper.
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Theorem 5 (Coq Theorem Th5) Let (V , E) be a graph, and W ⊂ V be a subset of vertices.
The conditional directional separation relation ∥

d
(Definition 3) is the complementary

(
AW

)c

of the conditional active relation AW (Equation (18g) in Definition 4):
(

∥
d
| W

)
=

(
AW

)c or, equivalently, γ ∥
d
λ | W ⇐⇒ ¬(γAWλ)

(
∀γ, λ ∈ V

)
. (19)

In other words, we have that
{
(γ, λ) ∈ V × V

∣∣ (γ ̸= λ) ∧DU [{(γ, λ)} | V , E ] ⊂ UW
b (V , E)

}
= (AW )c . (20)

Th5: γ ∥
d
λ | W ⇐⇒ ¬(γAWλ)

γ ∥
d
λ | W ⇐⇒ ¬(γAW

∗ λ)

L7: AW = AW
∗App. B

P8: γAW
∗ λ =⇒ ¬

(
γ ∥

d
λ | W

)

App. C

P15: ¬
(
γ ∥

d
λ | W

)
=⇒ γAW

∗ λ

App. D

γ = λ L10 : γBWλ L11 : γB−Wλ L12 : γKWλ L13 : γCW
∗ λ L14 : γ

((BW ∪ KW
)CW

∗
(B−W ∪ KW

))
λ

L16 L17 L18

1

Figure 3: Sketch of proof of Theorem 5, mentioning the corresponding Appendices and
lemmata

Proof. The proof of Theorem 5 is broken in three steps and summarized in Figure 3.

First, we will prove in postponed Lemma 7 (in §B.1) that AW = AW
∗ , where the binary rela-

tion AW
∗ is defined by Equation (41a).

Second, we will prove in postponed Proposition 8 (in Appendix C) that, for any vertices γ, λ ∈ V,
we have the implication γAW

∗ λ =⇒ ¬
(
γ ∥

d
λ | W

)
or, equivalently (see (17) in Definition 3), the

implication
γAW

∗ λ =⇒ (γ = λ) ∨
(
DU [{(γ, λ)} | V, E ] ∩ UW

a (V, E) ̸= ∅
)
.

We simply give a sketch of proof here as details are to be found in Proposition 8 accompanied by
postponed lemmata given in Appendix C. The binary relation AW

∗ defined in (23) is given by the
union of five relations. Then, the proof of Proposition 8 examines the five cases and exhibits an
active path (one in UW

a (V, E), see Definition 2) that joins the vertices γ and λ in the five cases when
γAW

∗ λ.

Third, we will prove in Proposition 15 (in Appendix D) that, for any vertices γ, λ ∈ V, we have
the implication ¬

(
γ ∥

d
λ | W

)
=⇒ γAW

∗ λ or, equivalently (see (17) in Definition 3), that

(γ = λ) ∨
(
DU [{(γ, λ)} | V, E ] ∩ UW

a (V, E) ̸= ∅
)

=⇒ γAW
∗ λ .
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We give again a sketch of proof. The case γ = λ is immediate. Thus, we assume that there exists
an extended-oriented path ρ ∈ U(V, E) joining the vertices γ and λ and such that ρ is active. If the
path length of ρ is equal to one, the proof easily follows. If the path length of ρ is ≥ 2 a proof by
induction on the path length is obtained using Lemma 18. During the induction step, four cases
are to be discussed, following the fact that the active triplet binary relation AW

tr is governed by four
cases. The scheme of the induction step is summarized in Figure 6.

This ends the proof. □

We end this section by giving the Coq statement of Theorem 5 together with the corre-
sponding Coq proof dependency graph in Figure 4.

Theorem Th5: ∀ (x y: T), ( x [⊥d] y | W ) ↔ ~ Aw (x,y).

Th5

Th5_s B_L7

D_P15C_P8

D_L18 D_L16_E42a

D_L17 D_L16_E42cD_L16_E42b

D_L17_1

C_L14

C_L12

C_L11C_L10

C_L14_2C_L14_1

C_L13_2 C_L13

C_L12_1

C_L11_1C_L10_1

C_L13_In

C_L13_I1

C_L11_2C_L10_2

B_L7_E28

B_L7_E27 B_L7_E25

Figure 4: Coq-produced dependency graph for Coq Theorem 5 (B_L7 is Lemma 7, D_P15 is
Proposition 15 and C_P8 is Proposition 8)

4 Conclusion
Together with its two companion papers [DCH21, HDC21], this paper is a contribution to
providing another perspective on conditional independence and do-calculus. In this paper,
we have considered directed graphs (DGs) not necessarily acyclic, and we have shown how the
d-separation can be extended beyond acyclic graphs and can be expressed and characterized
as a binary relation between vertices. The results in this paper are instrumental in proving
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those in [DCH21] on topological conditional separation (t-separation), hence in the use of
t-separation to establish conditional independence in [HDC21].

Moreover, there are other perspectives. First, such developpement of a theory based
on binary relations is interesting in itself as it makes it amenable to computer aided proof.
Second, there are other notions of separation (between subsets) in graph theory that can
also be expressed by means of binary relations (between vertices). We illustrate this with an
example. Let (V , E) be a graph, W ⊂ V be a subset of vertices, and γ, λ ∈ V be vertices.
Then, the three following statements are equivalent: any path from γ to λ passes through W ;
there does not exist a path from γ to λ which passes through W c; ¬(γ(E∆W cE)+λ).

A Comments on Coq in the appendices proofs
The Coq proof of Theorem 5 closely follows the mathematical proof detailed in the three
following Appendices (see also Figures 3 and 4) and, for each (mathematical) lemma, we will
give its Coq name.

The Coq proof is obtained with the help of a novel library, developed by J.P. Chancelier
and which provides tools for reasoning on binary relations and on active extended-oriented
paths. This library [Cha24] is publicly available on GitHub at URL

https://github.com/jpc-cermics/relations.git

A.1 Binary relations

All the mathematical objects described in §2.1.1, together with associated lemmata for ma-
nipulating them, are implemented in a Coq library. As relations are coded as sets, the library
we have developed (mainly contained in file rel.v) is based on the mathcomp implementa-
tion of sets classical_sets.v. It also contains a SSReflect reimplementation of transitive
(reflexive) closures of relation (ssrel.v) that are found in the Coq standard library. More-
over — as proofs on relations proceed by rewriting rules using intensively associative and
commutative properties of union and intersection of relations — we use the AAC_tactics to
ease equality proofs between long expressions with relations containing unions, intersections,
compositions and diagonal relations. For this to be possible, some specific properties of
relations with respect to AAC are to be listed and proved in Coq. This is done in aacset.v.

A.2 Extended-oriented paths in a graph

We have also developed a library for manipulating paths in a graph (seq1.v), which contains
the objects described in §2.2. Even if the the concepts of extended-oriented paths and active
extended-oriented paths are quite specific to d-separation, the library we have developed
contains many tools for manipulating node or edge paths which are of more general interest.
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A.3 Coq proofs of Theorem 5

Two files are specifically devoted to the proof of Theorem 5. The file paper_relations.v
contains the definition of the binary relations contained in Definition 4 and 6 and in Lemma 16,
together with some lemmata on their respective properties. The file paper_csbr.v contains
the proofs of the propositions and lemmata which are mathematically proved in the following
appendices.

B The star conditional active relation AW

∗
In §B.1, we introduce new binary relations to define the star conditional active relation AW

∗ .
In §B.2, we prove that AW = AW

∗ , where the conditional active relation AW has been intro-
duced in Equation (18g) of Definition 4.

B.1 Definition and properties of the star conditional active rela-
tion AW

∗
We refer the reader to Definition 4 for the definitions of basic binary relations. We add two
new ones.

Definition 6 Let (V , E) be a graph, and W ⊂ V be a subset of vertices. We introduce the
notation

W
E
= E∗W , (21)

and we define the star conditional cousinhood relation

CW

∗ =
(
∆

W
EKW∆

W
E
)+ ∪∆

W
E , (22)

and the star conditional active relation

AW

∗ = ∆ ∪ BW ∪ B−W ∪ KW ∪
(
BW ∪ KW

)
CW

∗
(
B−W ∪ KW

)
. (23)

Notice that the star conditional cousinhood relation CW
∗ in (22) is the relation CW in (18f)

with W replaced by W
E , and the star conditional active relation AW

∗ in (23) is the relation AW

in (18g) with CW replaced by CW
∗ .

B.2 Proof that AW = AW

∗
Recall that the conditional active relation AW has been introduced in Equation (18g) of
Definition 4.

Lemma 7 (Coq Lemma B_L7) We have that

AW = AW

∗ . (24)
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Proof. The proofs is in three steps.

• (Lemma B_L7_E25) We prove that

∀R ⊂ V × V , ∀Γ ⊂ V , R∗Γ = (∆ΓcR)∗Γ . (25)

For this purpose, we prove the following induction assumption Hn: for any n ≥ 1, we have that
(∪n

k=0Rk)Γ =
(
∪n
k=0(∆ΓcR)k

)
Γ, where we recall the convention R0 = ∆.

As a preliminary result, for any Γ,Λ ⊂ V, from the sequence of equalities (∆Γ) ∪ (RΛ) =
Γ ∪

(
(RΛ)\Γ

)
= Γ ∪ (∆ΓcRΛ) = (∆Γ) ∪ (∆ΓcRΛ), we deduce that

(∆Γ) ∪ (RΛ) = (∆Γ) ∪ (∆ΓcRΛ) . (26)

Thus, with Λ = Γ, we obtain that (∪1
k=0Rk)Γ =

(
∪1
k=0(∆ΓcR)k

)
Γ, that is, assumption H1 holds

true.
Now, we suppose that, for a given n ≥ 1, the induction assumption Hn holds true. Then, we

have that

(∪n+1
k=0Rk)Γ = (∆Γ) ∪

(
R
(
(∪n

k=0Rk)
)
Γ
)

(using the convention R0 = ∆)

= (∆Γ) ∪
(
∆ΓcR

(
(∪n

k=0Rk)
)
Γ
)

using the preliminary result (26) but with the binary relation R
(
(∪n

k=0Rk)
)

= (∆Γ) ∪
(
∆ΓcR

(
∪n
k=0(∆ΓcR)k

)
Γ

)
(using the induction assumption Hn)

= (∆Γ) ∪
((

∪n+1
k=1(∆ΓcR)k

)
Γ
)

=
(
∪n+1
k=0(∆ΓcR)k

)
Γ . (as (∆ΓcR)0 = ∆)

Thus, we have proven the induction assumption Hn+1.

Now, let us suppose that γ ∈ R∗Γ. Then, there exists a positive integer n ≥ 1 such that
γ ∈ (∪n

k=0Rk)Γ; using the just proven property Hn, we get that γ ∈
(
∪n
k=0(∆ΓcR)k

)
Γ and, therefore,

γ ∈ (∆ΓcR)∗Γ. Thus, we have shown that R∗Γ ⊂ (∆ΓcR)∗Γ. The converse inclusion is easier to
prove as ∆ΓcR ⊂ R. Finally, we have shown the equality R∗Γ = (∆ΓcR)∗Γ, which is (25).

• (Lemma B_L7_E27) The following inclusion is easy to prove:

∀R ⊂ V × V , ∀Γ ⊂ V , ∆RΓ ⊂ R∆ΓR−1 . (27)

• (Lemma B_L7_E28) We prove that

EW∗∆WE−W∗ = EW∗∆(E∗W )E−W∗ . (28)

Using Equation (25) with R=E and Γ=W gives E∗W = (∆W cE)∗W = EW∗W . Combined with the
Inclusion (27), we get ∆E∗W = ∆EW∗W ⊂ EW∗∆WE−W∗. Thus, we obtain that

EW∗∆(E∗W )E−W∗ ⊂ EW∗(EW∗∆WE−W∗)E−W∗ = EW∗∆WE−W∗ .
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Thus, we have obtained the inclusion EW∗∆WE−W∗ ⊃ EW∗∆(E∗W )E−W∗. The reverse inclusion
follows from the fact that W ⊂ W

E
= E∗W by (21), which gives EW∗∆WE−W∗ ⊂ EW∗∆(E∗W )E−W∗.

• (Lemma B_L7) Finally, we prove that AW = AW
∗ . For that purpose, it suffices to show that

replacing the subexpressions ∆W by ∆(E∗W ) in the expression (18g) of AW does not change the
relation. Using the definition of AW in Equation (18g), we obtain that ∆W appears only in subex-
pressions of the form BW∆WB−W or KW∆WB−W or BW∆WKW or KW∆WKW . Now, using the fact
that the two relations BW and KW always end with EW∗ and the two relation B−W and KW always
start with E−W∗ we obtain that ∆W appears only in subexpressions of the form EW∗∆WE−W∗. We
conclude, using Equation (28), that ∆W can be replaced by ∆(E∗W ) in AW without changing the
relation.

This ends the proof. □

C Proof of γAW

∗λ =⇒ ¬(γ ∥
d
λ | W )

The following Proposition 8, that we are going to prove, is half of the proof of Theorem 5.
It relies on six postponed lemmata given in this Appendix C.

C.1 Proposition 8

Proposition 8 (Coq Proposition C_P8) Let (V , E) be a graph, and W ⊂ V be a subset of
vertices. Let γ, λ ∈ V be vertices.

We have the implication
γAW

∗ λ =⇒ ¬
(
γ ∥

d
λ | W

)
(29)

where AW
∗ is the star conditional active relation (23) and ∥

d
is the conditional directional

separation relation (17).

Proof. Let γ, λ ∈ V be vertices, and assume that γAW
∗ λ where AW

∗ is the conditional active
relation (23). We start by proving that either γ = λ or there exists an active extended-oriented
path ρ, joining the vertices γ and λ.

Now, by (23), giving AW
∗ , we have that

γ

(
∆ ∪ BW ∪ B−W ∪ KW ∪

((
BW ∪ KW

)
CW
∗
(
B−W ∪ KW

)))
λ .

We consider the five cases, one by one. The first case is γ∆λ, that is, γ = λ and the conclusion
is immediate. Now, for each of the remaining case, we are going to show that there exists ρ ∈
DU [{(γ, λ)} | V, E ] ∩ UW

a (V, E) that joins γ and λ, recalling that the deployment DU [R | V, E ] in
extended-oriented paths of a binary relation R has been defined in (15).

The second case is γBWλ. We conclude that there exists ρ ∈ DU [(γ, λ) | V, E ]∩UW
a (V, E) thanks

to (32) in Lemma 10.
The third case is γB−Wλ. We conclude that there exists ρ ∈ DU [(γ, λ) | V, E ]∩UW

a (V, E) thanks
to (33) in Lemma 11.
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The fourth case is γKWλ. We conclude that there exists ρ ∈ DU [(γ, λ) | V, E ]∩UW
a (V, E) thanks

to (34) in Lemma 12.
The fifth case is γ

((
BW ∪ KW

)
CW
∗
(
B−W ∪ KW

))
λ. We conclude that there exists ρ ∈ DU [(γ, λ) | V, E ]∩

UW
a (V, E) thanks to (37) in Lemma 14.

Finally, we successively have that

γAW
∗ λ =⇒ (γ = λ) ∨ ∃ρ ∈ DU [{(γ, λ)} | V, E ] ∩ UW

a (V, E) (as just proved above)

=⇒ ¬
(
(γ = λ) ∨DU

[
{(γ, λ)} | V, E

]
⊂ UW

b (V, E)
)

by definition of the subset UW
b (V, E) =

(
UW
a (V, E)

)c of all blocked extended-oriented paths (see
Definition 2)

=⇒ ¬
(
γ ∥

d
λ | W

)
. (by (17) in Definition 3)

This ends the proof. □

C.2 Proof of Proposition 8 broken in six lemmata

The first Lemma 9 is instrumental for the following five lemmata. It is used to obtain active
extended-oriented path by concatenation. Then, the following lemmata display elementary
relational patterns (composition of relations) whose deployment in edge paths contain active
extended-oriented paths. For each relation, an explicit active extended-oriented path is built.

The binary relations used below have been introduced in Definition 4, except for the two
additional ones defined in (22) and in (23). For any positive integer n ≥ 1, we denote by
1n = (+1, . . . ,+1) (resp. −1n = (−1, . . . ,−1)) the vector of length n made of +1 (resp.
of −1).

C.2.1 Concatenation of extended-oriented paths in a graph

We recall that U(V , E) in (9c) is the set of extended-oriented paths of positive length relative
to the graph (V , E). Now, we develop the machinery to analyze active extended-oriented
paths by considering decomposition into subpaths and junctions when reconcatenating. For
this purpose, we need notation.

We denote by Ω♭ : U(V , E) → U1(V , E) (resp. Ω♯ : U(V , E) → U1(V , E) the projection on
the tail (resp. head) subpath of an extended-oriented path, defined, for ρ ∈ Un(V , E) and
n ≥ 1, by

Ω♭(ρ) = Ω♭
(
{(v♭i , v♯i , oi)}i∈J1,nK

)
=

{
(v♭1, v

♯
1, o1)

}
, (30a)

Ω♯(ρ) = Ω♯
(
{(v♭i , v♯i , oi)}i∈J1,nK

)
=

{
(v♭n, v

♯
n, on)

}
. (30b)

The extended-oriented path Ω♭(ρ) (resp. Ω♯(ρ)), depicted in Figure 5, is an extended-
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•
v♭1 •

v♯1

•
v♭|ρ|

•
v♯|ρ|

o1 o|ρ|

ρ

Ω♭(ρ) = {(v♭1, v♯1, o1)} Ω♯(ρ) = {(v♭|ρ|, v
♯
|ρ|, o|ρ|)}

1

Figure 5: Projection on the tail (resp. head) subpath of an extended-oriented path

oriented path of length one built with the first (resp. last) extended-oriented edge of the
extended-oriented path (ρ).

The following Lemma 9 is a straightforward consequence of the definitions of active
extended-oriented paths in UW

a (V , E) (see Definition 2), of concatenation ⋉ in (14) and of
the projection mappings Ω♭ and Ω♯ in (30). The proof is left to the reader.

Lemma 9 (Coq Lemma Active_path_cat) Let (V , E) be a graph, and W ⊂ V be a subset
of vertices. Let ρ ∈ U(V , E) be an extended-oriented path of length n ≥ 2. We have that

ρ ∈ UW
a (V , E) ⇐⇒ ∃ρ′, ρ′′ ∈ UW

a (V , E) , ρ = ρ′ ⋉ ρ′′ , Ω♯(ρ′)⋉ Ω♭(ρ′′) ∈ UW
a (V , E) . (31)

This Lemma 9 is mathematically simple, but more involved in Coq where manipulation of
active extended-oriented paths is more tedious, as it frequently requires proofs by induction
on path lengths.

C.2.2 Case γBWλ

Lemma 10 (Coq Lemma C_L10) Let (V , E) be a graph, and W ⊂ V be a subset of vertices.
For any vertices γ, λ ∈ V, we have that

γBWλ =⇒ there exists ρ ∈ U(V , E) such that ρ = π−1(ϱ,1|ϱ|) and
ρ ∈ DU [(γ, λ) | V , E ] ∩ UW

a (V , E) . (32)

Proof. We prove the implication (32). Let γ, λ ∈ V be such that γBWλ. By (18b), we have
that BWλ = E(∆W cE)∗, hence that γE(∆W cE)∗λ. As (∆W cE)∗ = ∆ ∪ ∪∞

n=1(∆W cE)n by definition,
if γE(∆W cE)∗λ, then either γEλ or there exists n ≥ 1 such that γE(∆W cE)nλ. Thus, we consider
two cases.

If γEλ, the extended-oriented path
{
(γ, λ,+1)

}
is both in DU [(γ, λ) | V, E ], by definition (15),

and belongs to UW
a (V, E), as it is of length 1 hence is active (see Definition 2).

If γE(∆W cE)nλ, with n ≥ 1, then there exists a sequence {vi}i∈J0,n+1K in V such that v0 = γ,
vn+1 = λ, and vi−1Evi, vi ∈ W c, viEvi+1, for i ∈ J1, nK. The following ρ = π−1

(
{(vi, vi+1)}i∈J0,nK ,1n+1

)

is an extended-oriented path that belongs to DU [(γ, λ) | V, E ], as ϖ(ρ) = (γ, λ), and also to UW
a (V, E).

Indeed, all the extended-oriented subpaths
{
(vi−1, vi,+1), (vi, vi+1,+1)

}
for i ∈ J1, nK, satisfy

Item 16a in Definition 2 because vi ∈ W c.

This ends the proof. □
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C.2.3 Case γB−Wλ

Lemma 11 (Coq Lemma C_L11) Let (V , E) be a graph, and W ⊂ V be a subset of vertices.
For any vertices γ, λ ∈ V, we have that

γB−Wλ =⇒ there exists ρ ∈ U(V , E) such that ρ = π−1(ϱ,−1|ϱ|) and
ρ ∈ DU [(γ, λ) | V , E ] ∩ UW

a (V , E) . (33)

Proof. We prove the implication (33) in the same way as for implication (32) in Lemma 10
(here, all the extended-oriented subpaths satisfy Item 16b in Definition 2). □

C.2.4 Case γKWλ

Lemma 12 (Coq Lemma C_L12) Let (V , E) be a graph, and W ⊂ V be a subset of vertices.
For any vertices γ, λ ∈ V, we have that

γKWλ =⇒ there exists ρ = π−1(ϱ, o) ∈ U(V , E), with |ρ| ≥ 2

and o = (−1, . . . ,+1) ∈ {−1} × {−1,+1}|ρ|−2 × {+1}, such that
ρ = π−1(ϱ, o) = π−1(ϱ, (−1, . . . ,+1)) ∈ DU [(γ, λ) | V , E ] ∩ UW

a (V , E) . (34)

Proof. We prove the implication (34). Let γ, λ ∈ V be such that γKWλ. By definition (18e)
of KW , we obtain that γB−W∆W cBWλ. As a consequence of the definition of the composition
of relations, there exists δ ∈ W c such that γB−W δ and δBWλ. Thus, by (33), there exists
ρ′ = π−1(ϱ′,−1|ϱ′|) ∈ DU [(γ, δ) | V, E ] ∩ UW

a (V, E) and by (32), there exists ρ′′ = π−1(ϱ′′,1|ϱ′′|) ∈
DU [(δ, λ) | V, E ]∩UW

a (V, E). We consider the extended-oriented path ρ = ρ′⋉ρ′′ ∈ DU [(γ, λ) | V, E ]
obtained by concatenation as in (14), and which is such that |ρ| ≥ 2. We claim that ρ ∈ UW

a (V, E).
Indeed, ρ′ ∈ UW

a (V, E) and ρ′′ ∈ UW
a (V, E) by assumption, so that, by Equation (31) in Lemma 9,

it only remains to show that
{
(v′, δ,−1), (δ, v′′,+1)

}
= Ω♯(ρ′)⋉ Ω♭(ρ′′) ∈ UW

a (V, E) ,
where (v′, δ) is the first edge of the extended-oriented path ρ′ = π−1

(
ϱ′,−1|ϱ′|

)
and (δ, v′′) is the last

edge of the extended-oriented path ρ′′ = π−1
(
ϱ′′,1|ϱ′′|

)
. Now, the above subpath satisfies Item 16c

in Definition 2 because vi ∈ W c. We deduce that ρ = ρ′ ⋉ ρ′′ = π−1
(
(ϱ′, ϱ′′), (−1|ϱ′|,1|ϱ′′|)

)
∈

DU [(γ, λ) | V, E ] ∩ UW
a (V, E).

This ends the proof. □

C.2.5 Case γCW
∗ λ

Lemma 13 (Coq lemmata C_L13_*) Let (V , E) be a graph, and W ⊂ V be a subset of
vertices. For any vertices γ, λ ∈ V, we have that

γCW

∗ λ =⇒ γ ∈ W
E
, λ ∈ W

E and γ = λ or
there exists ρ = π−1(ϱ, o) ∈ U(V , E), with |ρ| ≥ 2

and o = (−1, . . . ,+1) ∈ {−1} × {−1,+1}|ρ|−2 × {+1}, such that
ρ = π−1(ϱ, o) = π−1(ϱ, (−1, . . . ,+1)) ∈ DU [(γ, λ) | V , E ] ∩ UW

a (V , E) . (35)
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Proof. We prove the implication (35). We suppose that γCW
∗ λ. As CW

∗ = ∆
W

E∪
(
∆

W
EKW∆

W
E
)+

by (22), we consider three cases: either γ∆
W

Eλ, or γ∆
W

EKW∆
W

Eλ or there exists n ≥ 1 such that

γ
(
∆

W
EKW∆

W
E
)n+1

λ.
Suppose that γ∆

W
Eλ. Then γ = λ, and thus we have obtain the implication (35).

Suppose that γ∆
W

EKW∆
W

Eλ. Then, γ ∈ W
E , λ ∈ W

E and γKWλ. Therefore, by (34) there
exists ρ ∈ U(V, E), with |ρ| ≥ 2, and o ∈ {−1} × {−1,+1}|ρ|−2 × {+1} such that π−1(ϱ, o) ∈
DU [(γ, λ) | V, E ] ∩ UW

a (V, E).
Suppose that γ

(
∆

W
EKW∆

W
E
)n+1

λ. Then, there exists a sequence {δi}i∈J0,n+1K in W
E such

that δ0 = γ, δn+1 = λ and δiKW δi+1 for i ∈ J0, nK. Therefore, by (34), there exists a sequence{
ρ(i)

}
i∈J0,nK in U(V, E) of extended-oriented paths such that |ρ(i)| ≥ 2 for i ∈ J0, nK, and that ρ(i) =

π−1(ϱ(i), o(i)) ∈ DU [(δi, δi+1) | V, E ]∩UW
a (V, E) for i ∈ J0, nK, where o(i) is of the form (−1, . . . ,+1).

We define the extended-oriented path ρ = ρ(0)⋉· · ·⋉ρ(n) ∈ DU [(γ, λ) | V, E ], by iterated (associative)
concatenation as in (14), which is such that |ρ| ≥ 2 and that

ρ = π−1(ϱ(0) ⋉ · · ·⋉ ϱ(n), (o(0), . . . , o(n))) where o(i) ∈ {−1}×{−1,+1}|ϱi|−2×{+1} , ∀i ∈ J0, nK .

We claim that ρ ∈ UW
a (V, E). Indeed, ρ(i) ∈ UW

a (V, E) for i ∈ J0, nK, so that, by Equation (31) in
Lemma 9, it only remains to show that, for i ∈ J0, n− 1K,

{
(v♭i , δi+1,+1), (δi+1, v

♯
i+1,−1)

}
= Ω♯(ρi)⋉ Ω♭(ρi+1) ∈ UW

a (V, E) , (36)

where (v♭i , δi+1) is the last edge of the extended-oriented path ρ(i) = π−1(ϱ(i), o(i)) and (δi+1, v
♯
i+1)

is the first edge of the extended-oriented path ρ(i+1) = π−1(ϱ(i+1), o(i+1)). As δi+1 ∈ W
E , for

i ∈ J0, n − 1K, and because of the orientation (−1,+1), all the above subpaths satisfy Item 16d in
Definition 2. We conclude that ρ = ρ(0) ⋉ · · ·⋉ ρ(n) ∈ DU [(γ, λ) | V, E ] ∩ UW

a (V, E).
This ends the proof. □

C.2.6 Case γ
((

BW ∪ KW
)
CW
∗
(
B−W ∪ KW

))
λ

Lemma 14 (Coq Lemma C_L14) Let (V , E) be a graph, and W ⊂ V be a subset of vertices.
For any vertices γ, λ ∈ V, we have that

γ
((

BW ∪ KW
)
CW

∗
(
B−W ∪ KW

))
λ =⇒ there exists ρ ∈ U(V , E), with |ρ| ≥ 2, such that

ρ ∈ DU [(γ, λ) | V , E ] ∩ UW
a (V , E) . (37)

Proof. Suppose that γ
((

BW ∪ KW
)
CW
∗
(
B−W ∪ KW

))
λ. Therefore, there exist δ1 and δ2 in V

such that
γ
(
BW ∪ KW

)
δ1 and δ1CW

∗ δ2 and δ2
(
B−W ∪ KW

)
λ .

We are going to display an extended-oriented path ρ ∈ DU [(δ, γ) | V, E ] ∩ UW
a (V, E).

• Considering the left hand side γ
(
BW ∪ KW

)
δ1 and using Lemma 10 and 12, we obtain —

either by (32) applied to γBW δ1, or by (34) applied to γKW δ1 — that there exists

ρ(1) = π−1(ϱ(1), o(1)) = π−1(ϱ(1), (. . . ,+1)) ∈ DU [(γ, δ1) | V, E ] ∩ UW
a (V, E) .

26



• In the same way, considering the right hand side δ2
(
B−W ∪ KW

)
λ and using Lemma 11 and 12,

we obtain — either by (33) applied to δ2B−Wλ, or by (34) applied to δ2KWλ — that there
exists

ρ(2) = π−1(ϱ2, o2) = π−1(ϱ(2), (−1, . . .)) ∈ DU [(δ2, γ) | V, E ] ∩ UW
a (V, E) .

• Considering the middle expression δ1CW
∗ δ2 and using Lemma 13, we obtain by (35) that

δ1 ∈ W
E , δ2 ∈ W

E , and that there exists

ρ′ = π−1(ϱ′, o′) = π−1(ϱ′, (−1, . . . ,+1)) ∈ DU [(δ1, δ2) | V, E ] ∩ UW
a (V, E) .

We consider the extended-oriented path ρ = ρ(1) ⋉ ρ′ ⋉ ρ(2) obtained by concatenation as
in (14). By construction, we have that ρ ∈ DU [(γ, λ) | V, E ]. We claim that ρ ∈ UW

a (V, E). Indeed,
ρ(1), ρ′, ρ(2) ∈ UW

a (V, E) by assumption, so that, by Equation (31) in Lemma 9, it only remains to
show that

{
(v♭1, δ1,+1), (δ1, v

♯
1,−1)

}
= Ω♯(ρ(1))⋉ Ω♭(ρ′) ∈ UW

a (V, E) , (38)

where (v♭1, δ1) is the last edge of the extended-oriented path ρ(1) and (δ1, v
♯
1) is the first edge of the

extended-oriented path ρ′, and that
{
(v♭2, δ2,+1), (δ2, v

♯
2,−1)

}
= Ω♯(ρ′)⋉ Ω♭(ρ(2)) ∈ UW

a (V, E) , (39)

where (v♭2, δ2) is the last edge of the extended-oriented path ρ′ and (δ2, v
♯
2) is the first edge of the

extended-oriented path ρ(2). As δ1, δ2 ∈ W
E and because of the orientation (−1,+1), the two

subpaths hereabove satisfy Item 16d in Definition 2. We conclude that ρ ∈ DU [(γ, λ) | V, E ] ∩
UW
a (V, E).

This ends the proof. □

D Proof of ¬(γ ∥
d
λ | W ) =⇒ γAW

∗λ

The following Proposition 15, that we are going to prove, is the second half of the proof
of Theorem 5. It relies on the three Lemmata 16, 17 and 18, postponed at the end of this
Appendix D.

D.1 Proposition 15

Proposition 15 (Coq Proposition D_P15) Let (V , E) be a graph, and W ⊂ V be a subset
of vertices. Let γ, λ ∈ V be vertices. We have the implication

¬
(
γ ∥

d
λ | W

)
=⇒ γAW

∗ λ (40)

where AW
∗ is the star conditional active relation (23) and ∥

d
is the conditional directional

separation relation (17).
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Proof. Let γ, λ ∈ V be vertices. We show that ¬
(
γ ∥

d
λ | W

)
=⇒ γAW

∗ λ or, equivalently

(see (17) in Definition 3), that (γ = λ) ∨
(
DU [{(γ, λ)} | V, E ] ∩ UW

a (V, E) ̸= ∅
)

=⇒ γAW
∗ λ. First,

when γ = λ it is clear that γAW
∗ λ as ∆ ⊂ AW

∗ by (23). Second, we assume that there exists an
extended-oriented path ρ ∈ U(V, E) joining the two vertices γ and λ and such that ρ is active. We
are going to prove that γAW

∗ λ.

• If the path length of ρ is equal to 1, then, by definition (9c) of U1(V, E), we necessarily have
that either γEλ, or γE−1λ. Now, as E ⊂ BW ⊂ AW

∗ by (23), as E−1 ⊂ B−W ⊂ AW
∗ by (23),

we conclude that γAW
∗ λ.

• If the path length of ρ is ≥ 2, we prove by induction that we have either γAW
∗+λ or γAW

∗−λ,
where the two relations AW

∗+ and AW
∗− are defined in Equations (41a) and (41b).

– The case where the path length of ρ is equal to 2 is treated in Lemma 17.

– The proof by induction on the path length is done in Lemma 18.

– We therefore conclude that γAW
∗ λ since AW

∗ = ∆ ∪ AW
∗+ ∪ AW

∗− by (42a), obtained in
Lemma 16.

This ends the proof. □

D.2 Proof of Proposition 15 broken in three lemmata

D.2.1 Definition and properties of AW
∗+ and AW

∗−

We introduce two binary relation AW
∗+ and AW

∗− and establish three properties which are
instrumental in the next lemmata 17 and 18.

Lemma 16 (Coq Lemma D_L16_E42a , D_L16_E42b and D_L16_E42c) The two fol-
lowing relations

AW

∗+ = BW ∪ KW ∪
((

BW ∪ KW
)
CW

∗ KW

)
, (41a)

AW

∗− = B−W ∪
((

BW ∪ KW
)
CW

∗ B−W

)
, (41b)

satisfy the following properties

AW

∗ = ∆ ∪ AW

∗+ ∪ AW

∗− , (42a)
AW

∗+ ⊃ AW

∗−∆W cE , (42b)
AW

∗− ⊃ AW

∗+∆W
EE−1 . (42c)

Proof. • (Lemma D_L16_E42a) We prove (42a) as follows:

AW
∗ = ∆ ∪ BW ∪ B−W ∪ KW ∪

(
BW ∪ KW

)
CW
∗
(
B−W ∪ KW

)
(by definition (23) of AW

∗ )
= ∆ ∪ BW ∪ KW ∪

(
BW ∪ KW

)
CW
∗ KW

︸ ︷︷ ︸
=AW

∗+by (41a)

∪B−W ∪
(
BW ∪ KW

)
CW
∗ B−W

︸ ︷︷ ︸
=AW

∗−by (41b)

.
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• (Lemma D_L16_E42b) We prove (42b) as follows:

AW
∗−∆W cE =

(
B−W ∪

((
BW ∪ KW

)
CW
∗ B−W

))
∆W cE (by definition (41b) of AW

∗−)

=

(
∆ ∪

((
BW ∪ KW

)
CW
∗

))
B−W∆W cE (by factorizing B−W )

⊂
(
∆ ∪

((
BW ∪ KW

)
CW
∗

))
B−W∆W cBW (as E ⊂ BW by (18b))

=

(
∆ ∪

((
BW ∪ KW

)
CW
∗

))
KW (by definition (18e) of KW )

= KW ∪
(
BW ∪ KW

)
CW
∗ KW (by developing)

⊂ AW
∗+ . (by definition (41a) of AW

∗+)

• (Lemma D_L16_E42c) We prove (42c) as follows:

AW
∗+∆W

EE−1 =

(
BW ∪ KW ∪

((
BW ∪ KW

)
CW
∗ KW

))
∆

W
EE−1 (by definition (41a) of AW

∗+)

=
(
(BW ∪ KW )∆

W
EE−1

)
∪
((

BW ∪ KW
)
CW
∗ KW∆

W
EE−1

)
. (by developing)

We treat each of the two terms in the union separately. We are going to show that each term is
included in AW

∗−.
For the first term, we have that

(BW ∪ KW )∆
W

EE−1 ⊂
(
BW ∪ KW

)
CW
∗ B−W

as ∆
W

E ⊂ CW
∗ by (22), and as E−1 ⊂ B−W by (18d)

⊂ AW
∗− . (as AW

∗− = B−W ∪
(
(BW ∪ KW )CW

∗ B−W
)

by definition (41b))

For the second term, we have that
(
BW ∪ KW

)
CW
∗ KW∆

W
EE−1

=
(
BW ∪ KW

)(
(∆

W
EKW∆

W
E )+ ∪∆

W
E

)
KW∆

W
EE−1 (by definition (22) of CW

∗ )

=
(
BW ∪ KW

)(
(∆

W
EKW∆

W
E )+ ∪∆

W
E
)(
∆

W
EKW∆

W
E
)
E−1 (by inserting ∆

W
E )

⊂
(
BW ∪ KW

)(
(∆

W
EKW∆

W
E )+ ∪∆

W
E
)
E−1

as (R+ ∪∆
W

E )R ⊂ R+ for any relation R such that R∆
W

E = ∆
W

ER = R, which is the case for
R = ∆

W
EKW∆

W
E

=
(
BW ∪ KW

)
CW
∗ E−1 (by definition (22) of CW

∗ )
⊂

(
BW ∪ KW

)
CW
∗ B−W (as E−1 ⊂ B−W by (18d))

⊂ AW
∗− . (as AW

∗− = B−W ∪
(
(BW ∪ KW )CW

∗ B−W
)

by definition (41b))

We conclude that AW
∗+∆W

EE−1 ⊂ AW
∗−.

This ends the proof. □
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D.2.2 Case of active extended-oriented path of length 2

The following Lemma 17 is instrumental in the proof of Proposition 15. It covers the easy
case of active extended-oriented paths of length 2.

Lemma 17 (Coq Lemma D_L17) Let (V , E) be a graph, and W ⊂ V be a subset of vertices.
Let ρ ∈ UW

a (V , E) be a given active extended-oriented path of length 2 (see Definition 2) with
γ as head endpoint and λ as tail endpoint, that is, there exists a vertex δ ∈ V such that

ρ =
{
(γ, δ, o1), (δ, λ, o2)

}
with (o1, o2) ∈ O2 . (43)

Then, one of the following two possibilities holds true:

1. the extended-oriented path ρ ends with o2 = +1 orientation, and then γAW
∗+λ.

2. the extended-oriented path ρ ends with o2 = −1 orientation, and then γAW
∗−λ.

Proof. As ρ in (43) belongs to UW
a (V, E) — hence to U(V, E), the set of extended-oriented

paths of positive length in (9c) — we have that (γ, δ) ∈ E if o1 = +1, (γ, δ) ∈ E−1 if o1 = −1,
(δ, λ) ∈ E if o2 = +1, and (δ, λ) ∈ E−1 if o2 = −1. Now, we consider the four conditions enumerated
in Definition 2 which must be satisfied for the extended-oriented path ρ to be active and which
impose constraints on the vertex δ according to the possible orientations.

1. First, we consider the case when the extended-oriented path ρ ends with +1 orientation, that
is, when o2 = +1.

• Item 16a in Definition 2 corresponds to o1 = +1, o2 = +1 and δ ∈ W c, which gives that
γE(+1)∆W cδ and δ∆W cE(+1)λ. Hence, by composition of binary relations, we get that
γE∆W cEλ, using the property ∆W c∆W c = ∆W c .

• Item 16c in Definition 2 corresponds to o1 = −1, o2 = +1 and δ ∈ W c, which gives that
γE(−1)∆W cδ and δ∆W cE(+1)λ. Hence, we get that γE−1∆W cEλ.

We have obtained that the extended-oriented path ρ ends with orientation +1 and is such that
either γE∆W cEλ or γE−1∆W cEλ. Using the properties that E∆W cE ⊂ BW ⊂ AW

∗+ (by (18b)
and (41a)) and that E−1∆W cE ⊂ KW ⊂ AW

∗+ (by (18e) and (41a)), we obtain that γAW
∗+λ.

2. Second, we consider the case when the extended-oriented path ρ ends with −1 orientation,
that is, when o2 = −1:

• Item 16b in Definition 2 corresponds to o1 = −1, o2 = −1 and δ ∈ W c, which gives that
γE(−1)∆W cδ and δ∆W cE(−1)λ. Hence, we get that γE−1∆W cE−1λ,

• Item 16d in Definition 2 corresponds to o1 = +1, o2 = −1 and δ ∈ W
E , which gives that

γE(+1)∆
W

E δ and δ∆
W

EE(−1)λ. Hence, we get that γE∆
W

EE−1λ, using the property
∆

W
E∆

W
E = ∆

W
E .

We have obtained that the extended-oriented path ρ ends with orientation −1 and is such that
either γE∆

W
EE−1λ or γE−1∆W cE−1λ. Using the properties that E∆

W
EE−1 ⊂ BW∆

W
EB−W ⊂

AW
∗− (by (18b) and (41b)) and that E−1∆W cE−1 ⊂ B−W ⊂ AW

∗− (by (18d) and (41b)), we
obtain that γAW

∗−λ.

This ends the proof. □
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D.2.3 Case of active extended-oriented path of length greater than 2

The following Lemma 18 is instrumental in the proof of Proposition 15. It covers by induction
the case of active extended-oriented paths of length greater than 2.

•
γ

•v♭n−1

•
v♯n−1 • λ

• λ

︸ ︷︷ ︸
Hn−1:γAW

∗+v♯
n−1∧on−1=+1

︸ ︷︷ ︸
v♯
n−1∆W cEλ

v♯
n−1∆WE E−1λ
︷ ︸︸ ︷

•
γ

•
v♭n−1 •

v♯n−1 • λ

• λ

︸ ︷︷ ︸
Hn−1:γAW

∗−v♯
n−1∧on−1=−1

︸ ︷︷ ︸
v♯
n−1∆W cEλ

v♯
n−1∆W cE−1λ
︷ ︸︸ ︷

(ρ∈Un(V,E)∧ϖU (ρ)=(γ,λ)∧ρ∈UW
a (V,E))∧Hn−1 =⇒ Hn︷ ︸︸ ︷

1
Figure 6: Sketch of proof of induction Lemma 18 used in Proposition 15 in Appendix D

Lemma 18 (Coq Lemma D_L18) Let (V , E) be a graph, and W ⊂ V be a subset of vertices.
For any n ≥ 2 and γ, λ ∈ V, the following statement holds true. For any extended-oriented
path ρ ∈ Un(V , E) of length n joining vertices γ and λ (that is, ϖU(ρ) = (γ, λ) as in (12)),
and such that ρ is active (that is, ρ ∈ UW

a (V , E) as in Definition 2), one of the two following
properties is fullfiled:

1. Either γAW
∗+λ and the last orientation of ρ is on = +1,

2. Or γAW
∗−λ and the last orientation of ρ is on = −1.

Proof. We call Hn the statement in Lemma 18 and we prove by induction that it is satisfied
for all n ≥ 2.

The proof of H2 is given by Lemma 17.

We suppose that the induction assumption Hn−1 holds true, where n− 1 ≥ 2, and we are going
to show that Hn holds true. For this purpose, we consider an extended-oriented path ρ of length n
(n ≥ 2), joining vertices γ and λ in the graph (V, E), and which is active, that is,

ρ ∈ Un(V, E) and ϖU (ρ) = (γ, λ) and ρ ∈ UW
a (V, E) .

We decompose the extended-oriented path ρ as

ρ = {(v♭i , v♯i , oi)}i∈J1,nK = ρ′ × ρ′′ ,

31



where ρ′ = {(v♭i , v♯i , oi)}i∈J1,n−1K ∈ Un−1(V, E) is an extended-oriented path of length n−1, and

where ρ′′ = {(v♭n, v♯n, on)} ∈ U1(V, E) is an extended-oriented path of length 1. We have that v♭1 = γ

and v♯n = λ. It is clear that the extended-oriented path ρ′ is active, that is, ρ′ ∈ UW
a (V, E). Indeed,

otherwise, the extended-oriented path ρ′ would be in one of the four cases listed in Definition 3,
hence so would be the extended-oriented path ρ. But this would contradict the assumption that
ρ ∈ UW

a (V, E). As the extended-oriented path ρ′ is active and of length n−1, it satisfies the induction
assumption Hn−1. We deduce that either γAW

∗+v
♯
n−1 and the last orientation of ρ′ is on−1 = +1, or

γAW
∗−v

♯
n−1 and the last orientation of ρ′ is on−1 = −1. We analyze the two cases separately. Each

case being subdivided in two cases, we will analyse four different cases as summarized in Figure 6.

• Assume that we have γAW
∗+v

♯
n−1 and that the last orientation of ρ′ is on−1 = +1, that is, ρ′ ends

with (v♭n−1, v
♯
n−1,+1). There are two possibilities for the extended-oriented path ρ′′ = {(v♭n, v♯n, on)}.

• Suppose that ρ′′ = {(v♭n, v♯n,+1)} = {(v♭n, λ,+1)}, that is, (v♭n, λ) ∈ E by (9). As the path
ρ is active by assumption, the pattern

{
(v♭n−1, v

♯
n−1,+1), (v♭n, v

♯
n,+1)

}
must satisfy Item 16a

in Definition 2. We deduce that v♯n−1 = v♭n ∈ W c. Now, we wrap up the results obtained
so far. On the one hand, from γAW

∗+v
♯
n−1, v♯n−1 = v♭n ∈ W c and (v♭n, λ) ∈ E , we get that

γAW
∗+∆W cEλ, hence that γAW

∗+λ because the relation AW
∗+ in (41a) ends with the relation BW

and as BW∆W cE = E(∆W cE)∗(∆W cE) ⊂ BW by (18b). On the other hand, the extended-
oriented path ρ ends with +1, as it is the case for ρ′′. We conclude that the extended-oriented
path ρ of length n satisfies the case 1 of Hn, since it ends with +1 and its endpoints are such
that γAW

∗+λ. Therefore, we have proven the case 1 of the induction assumption Hn for the
extended-oriented paths of length n.

• Suppose that ρ′′ = {(v♭n, v♯n,−1)} = {(v♭n, λ,−1)}, that is, (v♭n, λ) ∈ E−1 by (9). As the path
ρ is active, the pattern

{
(v♭n−1, v

♯
n−1,+1), (v♭n, v

♯
n,−1)

}
must satisfy Item 16d in Definition 2.

We deduce that v♯n−1 = v♭n ∈ W
E . Now, we wrap up the results obtained so far. On the

one hand, from γAW
∗+v

♯
n−1, v

♯
n−1 = v♭n ∈ W

E and (v♭n, λ) ∈ E−1, we get that γAW
∗+∆W

EE−1λ,
hence that γAW

∗−λ by (42c). On the other hand, the extended-oriented path ρ ends with −1,
as it is the case for ρ′′. We conclude that the extended-oriented path ρ of length n satisfies
the case 2 of Hn, since it ends with −1 and its endpoints are such that γAW

∗−λ. Therefore,
we have proven the case 2 of the induction assumption Hn for the extended-oriented paths of
length n.

• Assume that we have γAW
∗−v

♯
n−1 and that the last orientation of ρ′ is on−1 = −1, that is, (v♭n, λ) ∈

E−1. There are two possibilities for the extended-oriented path ρ′′ = {(v♭n, v♯n, on)}.

• Suppose that ρ′′ = {(v♭n, v♯n,+1)} = {(v♭n, λ,+1)}, that is, (v♭n, λ) ∈ E by (9). As the path
ρ is active, the pattern

{
(v♭n−1, v

♯
n−1,−1), (v♭n, v

♯
n,+1)

}
must satisfy Item 16c in Definition 2.

We deduce that v♯n−1 = v♭n ∈ W c. Now, we wrap up the results obtained so far. On the one
hand, from γAW

∗−v
♯
n−1, v

♯
n−1 = v♭n ∈ W c and (v♭n, λ) ∈ E , we get that γAW

∗−∆W cE−1λ, hence
that γAW

∗+λ by (42c). On the other hand, the extended-oriented path ρ ends with +1, as it
is the case for ρ′′. We conclude that the extended-oriented path ρ of length n satisfies the
case 1 of Hn, since it ends with +1 and its endpoints are such that γAW

∗+λ. Therefore, we
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have proven the case 1 of the induction assumption Hn for the extended-oriented paths of
length n.

• Suppose that ρ′′ = {(v♭n, v♯n,−1)} = {(v♭n, λ,−1)}, that is, (v♭n, λ) ∈ E−1 by (9). As the path
ρ is active, the pattern

{
(v♭n−1, v

♯
n−1,−1), (v♭n, v

♯
n,−1)

}
must satisfy Item 16b in Definition 2.

We deduce that v♯n−1 = v♭n ∈ W c. Now, we wrap up the results obtained so far. On the
one hand, from γAW

∗−v
♯
n−1, v

♯
n−1 = v♭n ∈ W c and (v♭n, λ) ∈ E−1, we get that γAW

∗−∆W cE−1λ,
hence that γAW

∗−λ because the relation AW
∗− ends with the relation B−W and we have that

B−W∆W cE−1 = (E−1∆W c)∗E−1∆W cE−1 ⊂ B−W which implies that AW
∗−∆W cE−1 ⊂ AW

∗−. On
the other hand, the extended-oriented path ρ ends with −1, as it is the case for ρ′′. We
conclude that the extended-oriented path ρ of length n satisfies the case 2 of Hn, since it ends
with −1 and its endpoints are such that γAW

∗−λ. Therefore, we have proven the case 2 of the
induction assumption Hn for the extended-oriented paths of length n.

This ends the proof. □
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