
HAL Id: hal-03315798
https://hal.science/hal-03315798v1

Submitted on 6 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BlockPerf: A hybrid blockchain emulator/simulator
framework

Julien Polge, Sankalp Ghatpande, Sylvain Kubler, Jérémy Robert, Yves Le
Traon

To cite this version:
Julien Polge, Sankalp Ghatpande, Sylvain Kubler, Jérémy Robert, Yves Le Traon. BlockPerf: A hybrid
blockchain emulator/simulator framework. IEEE Access, 2021, 9, pp.107858-107872. �10.1109/AC-
CESS.2021.3101044�. �hal-03315798�

https://hal.science/hal-03315798v1
https://hal.archives-ouvertes.fr

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3101044, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

BlockPerf: A hybrid blockchain
emulator/simulator framework
JULIEN POLGE1, SANKALP GHATPANDE1, SYLVAIN KUBLER2, JÉRÉMY ROBERT3, YVES
LE TRAON1
1University of Luxembourg - Interdisciplinary Centre for Security, Reliability and Trust, 6 rue Richard Coudenhove-Kalergi, L-1359, Luxembourg
2Université de Lorraine, CNRS, CRAN, UMR 7039, France
3Cebi Luxembourg S.A, 30, rue J.F. Kennedy, L-7327 Steinsel, Luxembourg

Corresponding author: Julien Polge (e-mail: julien.polge@uni.lu).

This work was supported by the Luxembourg National Research Fund Stability 4.0 BRIDGES19/IS/13706587.

ABSTRACT Blockchain is increasingly used for registering, authenticating and validating digital assets
(financial assets, real estate, etc.) and transactions, governing interactions, recording data and managing
identification among multiple parties in a trusted, decentralized, and secure manner. Today, a large variety of
blockchain technologies is expanding in order to fulfill technical and non-technical needs and requirements.
Within this context, determining and most importantly evaluating the characteristics/performance of a given
blockchain platform is crucial for system designers before deploying it. A number of blockchain simulators
have been proposed in the literature over the past few years, as reviewed in this paper, but are often limited
in several respects (lack of extensibility, do not allow for evaluating all aspects of a blockchain. . .). This
paper extends and improves a state-of-the-art simulator (BlockSim) into a new simulator called “BlockPerf"
to overcome those limitations. Both simulators are compared based on a real-life (benchmarking) bitcoin
scenario, whose results show that BlockPerf provides more realistic results than BlockSim, improving by
around ≈50% (in average) the outcomes.

INDEX TERMS Blockchain, Simulation, Emulation, Peer-to-peer, Consensus, Performance

I. INTRODUCTION

BLOCKCHAIN is increasingly applied to all sectors of
our daily life, spanning from financial applications [1],

[2] to industrial ones [3], [4]. Blockchain technology is
a type of distributed ledger technology (DLT) that uses a
ledger stored in a distributed manner and shared among its
participants in the network [5].

Decentralization, consistency, anonymity and traceability
are its intrinsic features making it an interesting technology
for many applications in which such aspects must be tackled.
However, it is never an easy task for researchers, developers,
and practitioners to decide what blockchain technologies)
they should select/implement, as application requirements
may significantly vary from one application to another (e.g.,
in terms of what data should be stored, the number of
transactions to be performed, etc.), without speaking about
the multiple constraints of networking, computing power and
communication that the application may face [6]. Several
blockchain performance assessment frameworks have been
proposed in the literature to overcome this difficulty, as
presented in [7]–[9], but yet they often focus on functional

aspects (e.g., type of consensus, support of smart contracts)
and consider fixed performance values (collected from the
literature) for dynamic criteria such as throughput, latency,
block validation time, etc. The reason for this is that it is
complex to formalize and model the performance of such
dynamic criteria [6], [10], as they depend on a wide range
of parameters and inter-dependent layers, as described in the
six-layer model presented in Figure 1. Looking at significant
blockchain technologies such as Bitcoin [11], Ethereum [12],
or Hyperledger Fabric [13], layers differ from one framework
to another, and even inside a given framework, different
parameter configurations are made possible. Therefore, it is
essential to evaluate the blockchain performance based on
both real-life and/or simulated environments, without which
the blockchain selection process cannot be optimal.

When looking at papers that experimentally evaluate
blockchain performance, the majority requires the imple-
mentation of the whole system (i.e., using a large set of
computers/machines) [14], which also applies to well-known
practical/benchmarking tools such as BlockBench [15] or
Hyperledger Caliper. Such approaches/tools incur high costs

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3101044, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

for deployment, lack of scalability (e.g., to carry out large-
scale experiments) and modularity. On the other hand, sim-
ulators can help to deploy and test blockchain technolo-
gies in large-scale infrastructure settings. To date, several
blockchain simulators exist (e.g., BlockSim [16], PeerSim
[17], Shadow [18], Vibes [19], etc.), but they are often lim-
ited in several respects. Recent literature reviews of existing
blockchain simulation tools [20], [21] point out the fact
that those tools often limit themselves to evaluate part of
the blockchain system (i.e., they fail in covering all layers
and associated performance metrics (a) to (o) emphasized
in Figure 1). This is particularly stressed by R. Paulavicius
et al. [20] in their systematic review and empirical survey
of blockchain simulators, in which the authors conclude
that “there is no ‘one-size-fits-all’ Proof-of-Work blockchain
simulator that is able to accurately simulate all the layers".
To overcome such a limitation, a new hybrid blockchain em-
ulator/simulator called BlockPerf is proposed, which extends
the BlockSim simulator proposed by Faria et al. [16]. One of
the main improvement lies in the fact that BlockPerf relies
on real network infrastructure (at the Network layer) while
simulating the upper layers, leading to more realistic results
than existing simulators.

State-of-the-art simulators and the extent to which they
cover the six-layer model and associated performance met-
rics are reviewed and discussed in section II. The architec-
tural design of BlockPerf, and how it extends BlockSim, is
presented in section III. In section IV, a performance com-
parison analysis between BlockPerf and BlockSim is carried
out based on a real-life (benchmarking) bitcoin scenario;
the conclusions and BlockPerf limitations being discussed in
section V.

II. BACKGROUND AND RELATED WORK
As previously discussed, evaluating a blockchain technology
or platform turns to be a complex process due to the various
inter-dependent layers and associated parameters. To better
explain this complexity, a slightly adapted version of the
model introduced in [15] is considered in this paper, which
corresponds to the six-layer model given in Figure 1. Al-
though one may find other blockchain abstraction models
in the literature, as the ones proposed by the ITU and ISO
standardization bodies [22], [23], we adopted this six-layer
model as it covers most aspects of a blockchain (DLT) plat-
form, and it is straightforward to understand. Nonetheless, to
allow readers to understand to what extent this model covers
the ongoing ITU and ISO blockchain standard initiatives,
and vice-versa, we provide a summary table in Table 1.
Considering this model, sections II-A to II-F provide the
necessary background regarding each of these layers, starting
from top (Application) to bottom (Network), by detailing the
key metrics – (a) to (o) – that a simulator should allow for
measuring/tracking throughout a simulation run. Section II-G
then discusses the extent to which existing blockchain simu-
lators cover those layers and metrics.

(o) Propagation rate

(n) Network graph evolutionNetwork
Layer

(m) Chain evolution

(l) Block evolution

(k) Transaction evolution
Node/Data

Layer

(j) Consensus computation

(i) Fork resolution

(h) Pending transactions
Consensus

Layer

(g) Currency evolution

(f) Fee evolution

(e) Reward evolution
Incentive

Layer

(d) Contract validation & execution time

(c) Contract creation timeContract
Layer

(b) Computation usage

(a) Execution timeApplication
Layer

Figure 1: Blockchain abstraction layer model & associated
metrics denoted by (a) to (o) in the rest of this paper.

Table 1: Extent to which the six-layer model introduced
in Figure 1 covers the ITU and ISO blockchain standard
initiatives, and vice-versa

Layer Focus

Standards A
pp

lic
at

io
n

C
on

tr
ac

t

In
ce

nt
iv

e

C
on

se
ns

us

N
od

e/
D

at
a

N
et

w
or

k

ITU-T SG16 Q22 F.751.1 4 4 4 4
ITU-T SG16 Q22 F.751.2 4 4 4 4
ISO/DIS 22739 4 4 4 4 4 4
ISO/WD TS 23258 4 4 4 4
ISO/CD 23257 4 4 4
ISO/CD TR 23576 4
ISO/AWI TS 23259 4

A. APPLICATION LAYER
This layer manages the user interface, APIs (Application
Programming Interface), and computational resources (e.g.,
needed for blockchain element storage, wallet creation, etc.).
In many blockchains, there is the possibility to configure
a node to run as a full node (storing a local copy of all
transactions and blocks) or as a lightweight node (in charge
of creating transactions and sending them to full nodes for
validation purposes). From a simulation (or emulation1) per-
spective, the following metrics should be measurable at this
layer:

(a) Execution time: it refers to whether the simulator keeps
track of the time needed to run the simulation;

1Simulation/Simulator and Emulation/Emulator are interchangeably used
in the rest of the paper.

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3101044, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(b) Computational resource usage: it refers to whether the
simulator keeps track of the resource usage evolution
throughout the (simulation) run, which includes CPU of
each node, swap space, storage capacity, etc.:

B. CONTRACT LAYER
Blockchain systems consist of scripts, also referred to as
“smart contracts", that run when predetermined conditions
are met (e.g., used to automate the execution of an agreement
so that all participants can be immediately certain of the
outcome). At this layer, the following metrics should be
measurable:
(c) Contract creation time: it refers to whether the simulator

keeps track of the time needed to generate the different
contracts (which can be of different sizes) over the
simulation;

(d) Contract validation & execution time: it refers to
whether the simulator keeps track of the time needed
to validate and execute the different contracts of the
simulation scenario.

C. INCENTIVE LAYER
Participation incentive means the way how honest behavior
is incentivized and dishonest discouraged. Incentives can be
in the form of transaction fees and/or rewards [24]. This
decision affects the implemented consensus algorithm (intro-
duced in the next model layer) and, respectively, is affected
by the selected algorithm. At this layer, the following metrics
should be measurable:
(e) Reward evolution: it refers to whether the simulator

keeps track of the amount of cryptocurrencies dis-
tributed from the consensus process (e.g., leader elec-
tion or mining) over the simulation;

(f) Fee evolution: it refers to whether the simulator keeps
track of the reward fees that client nodes offer to miners
to incentivize them to process their transaction(s).

(g) Currency evolution: it refers to whether the sim-
ulator keeps track of the currency generation rate,
which evolves differently according to the implemented
blockchain (e.g., in bitcoin or Ethereum, it evolves along
with the hashing difficulty).

D. CONSENSUS LAYER
Consensus protocols are needed to validate the data to pre-
vent and remove any duplicated entry and/or fraud [25], [26].
The type of blockchain to be implemented (public, private,
consortium) influence profoundly the type of consensus pro-
tocol to be used, the most well-known being Proof-of-Work
(PoW), Proof-of-Stake (PoA), or still Practical Byzantine
fault tolerance (PBFT). At this layer, the following metrics
should be measurable:
(h) Pending transactions: it refers to whether the simulator

keeps track of the number of transactions, over time, that
are waiting to be confirmed (such a waiting area is called
"Mempool" in Bitcoin, or sometimes called transaction
queues);

(i) Fork resolution: it refers to whether the simulator keeps
track of (i1) the number of forks that appear within the
chain; (i2) the stale rate (i.e., block discarded) through-
out the simulation;

(j) Consensus computation: it refers to whether the simula-
tor keeps track of the collective (or individual) computa-
tion effort required to validate transactions and blocks.

E. NODE/DATA LAYER
The node (or data) layer is responsible for structuring the
data before appending it to blocks, whose structure usually
includes information such as previous block hash, Merkle
root, time, bits, etc. At this layer, the following metrics should
be measurable:
(k) Transaction evolution: it refers to whether the simulator

keeps track of the number of transactions generated
per day (k1) and whether the simulated transactions
match the real-life data structure (k2). Unlike k1, k2
is not a quantifiable metric but rather a boolean metric
that states whether the simulator generates transaction
following the real-world blockchain specification;

(l) Block evolution: it refers to whether the simulator keeps
track of (l1) the number of blocks that are validated,
mined and accepted as part of the longest chain; (l2)
the (average) time taken by each block to be validated;
(l3) the block sizes, which depend on the size of the
transactions they include; and finally (l4) the number of
transactions included, on average, within a block.

(m) Chain evolution: it refers to whether the simulator keeps
track of the length of the chain over time (i.e., the
number of blocks that form the longest chain), which
is a good indicator of the load a new node would have to
compute if it joins the network at a given point in time.

F. NETWORK LAYER
Blockchain is a pure P2P network, which is actually an over-
lay network [27] for distributed object storing, searching,and
sharing (e.g., Ethereum relies on the Kademlia P2P protocol
[27], [28]). At this layer, the following metrics should be
measurable:
(n) Network graph evolution it refers to whether the simu-

lation accurately follows the P2P protocol overlay net-
work specifications (e.g., support for adding and discov-
ering a node at any time) and keeps track of the network
(node) evolution using network graph metrics such as
Clustering Coefficient, Mean Geodesic Distance, and
Diameter [29], [30];

(o) Throughput: it refers to whether the simulator keeps
track of the number of valid transactions per second
(Tx/s) that have been incorporated as part of a valid
block within the longest chain. The transactions that are
considered here are the ones that reach the majority of
nodes within the network depending on the underlying
consensus (i.e.,≥ 50% for PoW,≥ 66% for PBFT, etc.);

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3101044, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Table 2: Literature comparison - symbol indicates that the simulator makes available the performance metric without any
code modification and/or post-processing, while G# symbol indicates that such a modification and/or post-processing is needed
to obtained the desired performance metric

Application Contract Incentive Consensus Node/Data Network
Framework (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o)

DLSF [31] G# G# G# G# k1,k2 l1,l2,l3,l4 G# G#
Shadow [18] G# k1 G# G#
Wang et al. [32] G# k1 l2,l4
BlockSim-Net [33] G# G# G# G#k1,k2 l1,l2,l3 G# G#
eVibes Plasma [34] G# G# G# G# G# G#
Vibes [19] G# k1 l1,l2,l4 G#
eVibes [35] G# k1 l1,l2,l4
BlockSim [16], [36] G# G# k1 l1,l2 G#
Goswami [37] G# G# k1 l2,l4
Bitcoin-Simulator [38] G# G# G# k1 l1,l2,l3,l4 G#
SIMBA [39] G# G# G# k1 l2,l3,l4 G# G#
Chin et al. [40] G# G# k1 l1,l2,l4 G# G#
SimBlock [41], [42] G# G# G# k1 l1,l2,l4 G#
CIDDS [43] G#
HIVE [44] G# G# G# G# k1,k2 l1,l2,l3,l4 G#
Androulaki et al. [45] G# G# l1,l4
PeerSim [17]

G. RELATED WORK AND DISCUSSION

As of today, there are several blockchain simulators found
in the literature, a summary of which is in Table 2. This
table highlights what layers and associated metrics those
simulators cover. Note that a simulator may, in some cases,
cover a given layer but without necessarily providing as
output a performance metric. This means that either a mod-
ification of the source code or post-processing treatments
are required in order to compute the desired metric. For
example, in BlockSim, the authors claim in their paper [36]
that the simulator keeps track of the fee evolution, how-
ever, after analyzing it, we realized that it is not possible
to retrieve it without modifying part of the code. Another
example is HIVE [44] that emulates the behavior of smart
contracts within the Ethereum environment, however, we
found that it does not allow for analyzing the (h) metric
(i.e., pending transactions). To make a distinction between
simulators that make available a performance metric without
requiring any code modification or post-processing, and the
ones that require a modification/post-processing to obtain the
metric, the following two symbols are respectively used in
Table 2: (does not require any code modification and/or
post-processing) and G# (does require a code modification
and/or post-processing.

As a first simulator, let us mention Bitcoin-Simulator [38],
which has been designed for educational purposes to help
students to understand how the block generation rate (l1)
and block size (l2) evolve over time. Although it is a well-
designed pedagogical tool, it is quickly limited to carry out
in-depth simulation analyzes. More research-oriented simu-
lators have been proposed, such as Ethereum Hive [44] that
have been proposed for emulating and evaluating Ethereum’s
smart contracts from a validation & execution time per-
spective (d1-d2). However, as revealed in [35], simulating a

large number of nodes becomes difficult with limited com-
putational resources. To overcome this limitation, a series
of simulators including VIBES [19], eVIBES [35], eVIBES
Plasma [34] ones, as well as CIDDS [43], were proposed, but
unfortunately fall short of fulfilling the promise, as reported
by Lathif et al. [43]. One of the main reasons for this is that
those simulators do not adequately model the transactions at
the Node/Data layer (i.e., k2), considering them as empty in
the majority of the simulators. Such a consideration poses
several issues when evaluating the blockchain system as a
whole, knowing that transaction and block sizes may have
non-negligible impacts on the overall system performance
[46]. To overcome this issue, a new range of simulators, in-
cluding BlockSim [16], [36], SIMBA [39], DLSF and others
(cf., Table 2), have considered the transaction/block structure,
algorithms for wallet creation, message signing, and so forth,
thus leading to more realistic performance evaluation results.
Nonetheless, the network modeling is often too simplistic,
not reflecting the real behavior of the P2P overlay network
(i.e., possible communication delays, network congestion,
packet losses, computation resource limitations, etc.), which,
in our opinion, can have significant impact on the overall sys-
tem performance evaluation process. A few simulators have
been designed to consider the throughput and the network
graph evolution, such as CIDDS, PeerSim. However, these
two simulators neglect many of the upper layers and metrics,
as highlighted in Table 2.

The drawbacks discussed in this section prove that de-
signing a modular simulator that allows for testing/evaluating
different blockchains, with different consensus protocols, dif-
ferent contract and transaction/block specifications, different
incentive schemes, along with network infrastructures, turns
to be a challenging task. Figure 2 provides an overview of the
extent to which the reported blockchain simulators cover the

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3101044, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Figure 2: Overview of the extent to which state-of-the-art
simulators – the 17 reported in Table 2 – cover the six-layer
model introduced in Figure 1.

different layers of the six-layer model previously introduced.
It can be first observed that they primarily often neglect
the Contract and Incentive layers. Second, key aspects of a
blockchain systems at the Network and Data/Node layers,
namely the consideration of the real P2P overlay network
protocol behavior (n) and transaction/block structure (k1),
result in non-optimal performance evaluation results (non-
optimal compared to the reality). A new hybrid emula-
tor/simulator tool called “BlockPerf" is proposed in this
paper to overcome this limitation. BlockPerf is hybrid in the
sense that it emulates the network layer to correctly address
the network layer while simulating the upper layers based on
statistical data modeling approaches, as presented in the next
section.

III. BLOCKPERF SIMULATOR DESIGN
This section describes how BlockPerf extends BlockSim,
whose main extensions are summarized in Figure 3. These
layer extensions and/or adaptations are respectively dis-
cussed through sections III-A to III-E. Note that, at this stage,
BlockPerf does not address/model the “Smart Contract" layer
and is part of future research work.

A. APPLICATION LAYER
At this layer, BlockPerf consists of a configuration module
responsible for instantiating the run’s parameters similar
to the one used in BlockSim. BlockSim takes as input a
list of parameters, including the size of blocks, statisti-
cal models for transaction validation, block validation, and
node labels. Similarly, BlockPerf takes as input a JSON
file that extends the parameters from BlockSim to include
fork occurrences, the block size parameter, IP address of
each node, including the ‘main" one (corresponding to the
BitcoinNode class, as summarized in Table 3) that tracks
all the results using the CliStats, CpuTimeSnapshoot
and MemorySnapshot classes. Optionally, the input file
also considers the location to store all the logs and data
for each node. Note that the BitcoinNode is responsible
for tracking the execution time (a) of the overall run and
collecting the metrics regarding the overall computational

(o)
Network
Layer

(m) G#
(l)
(k)

Node/Data
Layer

(i) Consensus
Layer

(f) G#Incentive
Layer

BlockSim

(b) G#
(a)

Application
Layer

(o)
(n) Network

Layer

(m)
(l)
(k)

Node/Data
Layer

(j)
(i)
(h) G#

Consensus
Layer

(g)
(f) G#
(e)

Incentive
Layer

BlockPerf

(b)
(a)

Application
Layer

Figure 3: Illustration of how BlockPerf extends BlockSim -
 symbol indicates that the simulator makes available the
performance metric without any code modification and/or
post-processing, while G# symbol indicates that such a mod-
ification and/or post-processing is needed to obtained the
desired performance metric

resource usage (b) of the nodes.

B. INCENTIVE LAYER
This layer is responsible for instantiating the models for
rewarding participants, which vary from one blockchain to
another. While BlockSim does not simulate the incentive
layer2, BlockPerf models two types of rewards: one for the
generation of the valid blocks (known as block reward) and
the second for the inclusion of a particular transaction to
the block (known as transaction fee). These reward oper-
ations are implemented via the TxChain, BTCNode and
TickEvent classes (cf., Table 3. As of today, the block
reward is represented as a fixed amount of cryptocurrency
that can be configured for the run, while the transaction fee
is dependent on the size of the transaction, as formalized as in
Eq 1, where Txi refers to the ith transaction and f (size(Txi))
can be configured using different distributions laws (e.g.,
defined as a fixed fee, or following a Weibull, Log-normal,
or Gamma distribution). All node wallets are continuously
updated throughout the simulation run.

Txfee
i = f (size(Txi)) (1)

2Even though the authors in [36] state that the incentive layer is partly
covered, nothing from the source code provides clear evidence of this.

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3101044, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Table 3: Technical description of the major classes within BlockPerf, along with the layers they cover.

Class Name Description A
pp

lic
at

io
n

In
ce

nt
i v

e

C
on

se
ns

us

N
od

e/
D

at
a

N
et

w
or

k

CliStats Node state checking and logging (incl., parameters like operation time, computation) 3 3 3
CpuTimeSnapshot Computation process and database tracking 3 3 3
MemorySnapshot Output file generation for the memory used by a given node 3
Proxy Authentication management for network components and wallet information 3
TxChain Chain operation handling (address generation, private-public keys, unspent Tx, etc.) 3 3 3
PublicBitcoinNode Network stat monitoring (network graph, latency...) 3 3
BTCNode Monitoring of transactions/block evolution, handshaking, etc. 3 3 3
Node Node operation handling (incl., creation of transaction, Queues) 3 3
TickEvent Transactions/block timestamping 3 3
TransactionQueue Queue transaction creation (i.e., transactions to be generated by a given node) 3
BlockHeader Header tracking for the chain that a node follows 3 3
Consensus Consensus protocol model instantiation 3 3
BitcoinNode Connection handling and in charge of pushing model parameters to the network 3
ZoneConfig Node parameter consideration for the emulation layer (incl., IP addresses) 3
Event Event tick creation based on the models
Runner main class

The amount of new cryptocurrencies generated over time
depends on the consensus layer and the overall compu-
tational resources of the nodes in the network. BlockPerf
continuously monitors such resources and allocates the newly
generated cryptocurrencies to the right (mining) nodes.

C. CONSENSUS LAYER
In BlockPerf, the consensus protocol is implemented as
a model that represents the consensus process and its
operations. The consensus algorithm is coded within the
Consensus class (see Table 3), which is in charge of
selecting the miner/validator that builds the next block. The
method of selecting the node varies from one blockchain to
another, although in BlockPerf, as a first step, the Proof-Of-
Work (PoW) algorithm has been implemented. As opposed
to BlockSim that simulates the behavior of the consensus
algorithm (i.e., the block validation and a random selection
of miner), BlockPerf uses an extended approach where each
mining node, similar to PoW algorithm, selects a random
number, the input for all the non-confirmed transactions from
its queue within the limit of block size (further discussed
in Section III-D), as well as the reference of the previous
known block, which allows for being closer to a real PoW
process.This information is then combined and hashed re-
cursively until a result is obtained. The mining node selects
the transactions from the queue (sometimes called mem-
pool), check whether they meet the balance requirements,
verify whether the sender signatures match and that the
sender’s wallet has a sufficient amount of cryptocurrencies.
In BlockPerf, the BitcoinNode class keeps track of the
fork occurrences within the network.

D. NODE/DATA LAYER
Any node wishing to generate a transaction has to follow a
set of operations, namely: (i) select a wallet address (from
wallet_list) as the recipient; (ii) select a random value
for the transaction; (iii) generate the transaction by sign-

ing it using its private wallet key (those operations being
handled via the TickEvent, Transaction Queue and
TxChain classes, as reported in Table 3). The set of trans-
actions to be created per unit of time t, which is denoted
by X (t) = {Tx1, . . . ,Txk} | k ∈ N, can be configured
using different distributions laws (e.g., a fixed amount of
transactions per unit of time, or following a Weibull-like
distribution). Every new transaction created by a node calls
the propagation function from the network layer to transmit
this new transaction to its neighbors, who then append it to
their pool. Upon reception of a transaction (Txi), several op-
erations are undertaken by the recipient node, as summarized
in the flow chart Figure 4 (operations that have been added
compared with BlockSim being highlighted in green). Unlike
BlockSim, BlockPerf models transactions as they exist in the
real system (i.e., each transaction can be traced back and
follow a similar process within the system).

As a second stage, the simulator has to handle the inclusion
and/or removal of transactions – from its transaction pool –
into blocks. Although the consensus layer governs operations
towards deciding which block to be accepted by everyone
within the network, the Data Layer is concerned with the
reception of the block, being in charge of removing all the
transactions which are enclosed in the last received block
from its transaction pool, and finally attaching the new block
to its last known state of the chain (handled by the Node
class). These operations follow the sequence of operations
given in the flow chart of Figure 5 (new operations compared
with BlockSim being highlighted in green, while BlockSim’s
operations that have been modified are highlighted in or-
ange).

The linked blocks form a chain, but nodes may have
a different state of the chain (or ledger) due to network
communication delays (this is termed forks). As opposed to
many existing simulators, including BlockSim, each node in
BlockPerf has its local ledger implemented, which means that
if a node discovers that the state of the chain is different from

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3101044, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

New operation compared with BlockSimReceive Txi

Extract Txfee
i

Yes

No

Txi
exists in
Ledger?

No

Yes

Is Txi
in the local
Tx pool?

No

Yes
Discard

Is Txfee
i

valid?

Is Txi
valid?

Pass

Failed
Orphan

Does
Txi

match the
ledger

?

No

Yes
Extract Txfee

i

Figure 4: Flowchart of transaction operation sequence upon
reception of Txi in BlockPerf

New operation compared with BlockSim

BlockSim’s operation modified
Receive Block Discard

Block
already
known?

No

Yes

Add block to
queue

Block
in the main

chain
?

No

Remove from the
block pool all

transactions inclu-
ded in that block

Yes

Verify orphans due
to the new block

Block
removed from

main chain
?

Yes

No

Retrieve and validate all tran-
sactions from non-valid block

Orphan
Propagate new block

information

Figure 5: Flowchart of transaction inclusion/removal from a
block in BlockPerf

its own, it sends a request to neighboring nodes for getting
the full state of the chain. This allows being closer to reality,
which should result in more realistic simulation performance.
This improvement, compared with BlockSim, is highlighted
in the flow chart given in Figure 6 (cf. green boxes/steps).

E. NETWORK LAYER
The network layer of BlockPerf differs significantly from
BlockSim, and many other simulators reported in Table 3,
since, in BlockPerf, the blockchain network is emulated over
distributed (physical) nodes. The benefit of doing so is that
the simulation should lead to results closer to reality, as

New operation compared with BlockSim

Node starts

Receive a new
block that is ahead

of chain

Local
ledger
exists ?

Yes

No Request neighbors
for ledger’s copy

Check the
ledger’s header

Header
matches
block?

No

Yes

Store ledger as
the local one

Figure 6: Flowchart of local ledger in BlockPerf.

BlockPerf implements a P2P protocol similar to the ones used
by real blockchain systems using advertisement messages
(e.g., GETADDR and ADDR) to discover neighboring nodes.
BlockPerf also integrates:

• a wallet management module: in charge of generating
wallet addresses to uniquely identify all nodes. This
module also integrates the protocol to broadcast wallet-
related information in the network (via WALLADD mes-
sages) to make all nodes aware of existing addresses;

• a reputation score module: in charge of assigning nega-
tive scores from the connections where malformed mes-
sages were received (e.g., if the transaction correctness
fails, nodes keep receiving outdated block information).
This module is fulfilled by the PublicBitcoinNode
class, which is responsible for keeping a log of the
neighboring nodes and associated scores. Such logs
allow BlockPerf to keep track of the network graph
evolution (n) over the simulation run.

F. BLOCKPERF IMPLEMENTATION
Table 3 provides an overview of the important programming
classes underpinning BlockPerf, whose implementation is
combination of C/C++ programming languages for the net-
work layer, and Python for the upper layers. The source code
of the BlockPerf simulator is available on GitHub3.

IV. VALIDATION AND EVALUATION
This section aims to compare the extent to which BlockPerf
provides realistic results, but also to which it outperforms
BlockSim. Figure 7 provides an overview of the experimental
process that has been conducted in this respect, which con-
sists of five main stages denoted by À to Ä in Figure 7. First
(À), a real-life blockchain network (bitcoind) consisting
of 40 nodes spread over the world have been implemented,
which corresponds to the benchmarking Testbed in this
study whose metrics (a) to (o) have been collected/measured
whenever possible (see Á). Based on those metrics, several
parameters are specified as input parameters of BlockPerf

3BlockPerf repo: https://github.com/Deadlyelder/BlockPerf

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3101044, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

4

(n),(o)Network

(k),(l),(m)Node/Data

(i),(j)Consensus

(e),(g)Incentive

(a),(b)Application

4

(o)Network

(k),(l)Node/Data

(i),(j)Consensus

(a)Application

63 nodes spread
over 3 locations

2

1

cf., Section 4.1

Testbed BlockPerf BlockSim

Simulators’
comparison

5

cf., Section 4.1.1

cf., Section 4.2.2

cf., Section 4.2.3

cf., Section 4.2.4

cf., Section 4.2.5

Parameter identification for setting up BlockSim & BlockPerf

✎ Node Hash rate values
✎ Validation time model
✎ Block size model

✎ Transaction generation model
✎ Orphan & Stale block probability
✎ Network latency & throughput models

3

(n),(o)Network

(k),(l),(m)Node/Data

(i),(j)Consensus

(f),(g)Incentive

(a)Application

Hybrid blockchain emulator/
simulator framework

blockchain simulator

Figure 7: Experimental process set up and conducted in this paper to compare BlockSim and BlockPerf simulators

and BlockSim (see Â and Ã), as will be presented in
section IV-A. BlockPerf and BlockSim are then compared
against the results obtained for the (benchmarking) Testbed
in section IV-C (see Ä). A discussion about our experiments
is finally given in section IV-C.

A. BENCHMARKING TESTBED
The (benchmarking) Testbed is made of a modified ver-
sion of the reference bitcoin implementation, namely
bitcoind4. The evaluation is performed during 11 days,
whose blockchain network consists of 23 full nodes and
40 light nodes spread over three locations, namely Ireland,
Luxembourg and India. During the course of the experiment,
transactions are randomly created. Based on this experimen-
tal configuration setting, metrics (a) to (o) are measured,
whenever possible, and then reused for two purposes:

1) to serve as benchmarking metrics to evaluate the extent
to which BlockPerf and BlockSim deviate from the
reality (see Ä in Figure 7);

2) to identify, from the testbed run, several parameters
that need to be configured as inputs of BlockPerf and
BlockSim such as node hash rate values, block size
distribution model, etc. (see Â-Ã). To this end, a similar
process as the one defined in [16] has been applied to

4A slight difference can be noted, as our testbed is a private network where
all nodes are controlled and maintained throughout the experiment.

extrapolate the probability distribution model for each
parameter.

Table 4 summarizes all the metric values obtained from
the Testbed, and, for some of them refer to specific fig-
ures/graphs. For example, looking at metric k1, Table 4 re-
ports the average number of transactions/day, while Figure 11
reports the exact number transactions over the 11 days of the
experiment).

B. EXPERIMENT WITH BLOCKPERF AND BLOCKSIM &
COMPARISON

In this section, the performance of BlockPerf and BlockSim
is compared against the benchmarking testbed results. Block-
Sim experiments have been conducted on a single machine
with a 2.40 GHz Intel Xeon E5 CPU and 4GB of RAM. In
contrast, BlockPerf has been deployed over distributed nodes
– located in Ireland, Luxembourg and India – with the same
computational resource (i.e., 2.40 GHz Intel Xeon E5 CPU
and 4GB of RAM). Sections IV-B1 to IV-B5 discuss the
comparison analyses regarding the different layers, as em-
phasized in Figure 7 (see Ä). Note that for this comparative
analysis, only the metrics that are covered and for which the
results are available (i.e., metrics with in Figure 3 and
listed in Figure 7) are considered.

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3101044, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Table 4: Overview of the results

Metrics Evolution (cf.,) Testbed BlockPerf BlockSim

Application

(a) Execution time (in hours) - 264h 8h 0.5h
(b) Computation usage (Average CPU) - 80% 90% -

(Average memory) - 40% 86% -
(Average storage) - 2.6GB 2.9 GB -

Incentive
(e) Average reward per day Figure 8 - 0.043991 -
(f) Fee evolution - by default 0.00001 -
(g) Currency generat. rate per time unit Figure 9 720 BTC 384 BTC -

Consensus

(i1) Total number of forks - 2 5 2
(i2) Total number of blocks discarded Figure 10 4 13 5
(j) Min-Max consensus computation effort - 10-45 MH/s 9-42 MH/s 1-2 MH/s

Node/Data

(k1) Average Tx/day Figure 11 7341 4504 14184
(l1) Total number of validated blocks Figure 12(a) 1979 1118 4132
(l2) Average time to validate blocks Figure 12(b) 10.7min 10.9min 10.4min
(l3) Average block size Figure 12(c) 1.6 MB 1.1 MB 2 MB
(l4) Average number of Tx/block Figure 12(d) 41 44 38
(m) Chain’s length (total number of blocks) Figure 13 1980 1119 4133

Network

(n) Network graph evolution (Cluster Coefficient) - 0.473217 0.469478 1
(Mean Geodesic Distance) - 2.08631 2.11437 1
(Diameter) - 4 4 1

(o) Average throughput (Tx/s) Figure 17 1.5 1.6 2

1) Application Layer
From an Execution time (a) perspective, BlockSim and
BlockPerf allow for simulating the experiment at a faster pace
compared to the testbed, the former being 528 times faster
while the later is 33 times faster. This substantial difference
is explained by the fact that BlockSim does not rely on a real-
life network layer. In terms of Computational resource usage
(b), the average CPU, memory and storage metrics have been
reported in Table 4, although it cannot be concluded that one
simulator is better than another for those metrics.

2) Incentive Layer
Unlike BlockSim and the Testbed, BlockPerf stores log about
the Reward evolution (e), as they are generated within the
run. Figure 8 provides insight into the evolution of the reward
over the 11 days of simulation. On average, the reward is
0.043991 BTC per day, equally distributed to the miners with
a standard deviation of 0.0002 throughout the run. Although
no comparison for this metric could be made with the Testbed
and BlockSim, we nonetheless report those results as they
could serve as benchmarks for other researchers.

The Currency generation rate (g) can be compared with
the Testbed, but not with BlockSim (metric not available).
Figure 9 shows the evolution of the currency generated over
the course of the simulation, 384 BTC being generated on
average by BlockPerf, against 720 BTC generated by the
Testbed. Despite this difference, what is interesting to note
is that that the evolution in BlockPerf and Testbed follows a
similar trend.

3) Consensus Layer
During the simulation, a number of Fork resolutions (i1) are
handled by the Testbed (2 in total, one at day 4 and one at day
5), by BlockSim (2 in total, one at day 4 and one at day 5),
and by BlockPerf (4 in total, three at day 5 and two at day 6).
These forks led to the appearance of stale blocks (i2), whose

0

0, 01

0, 02

0, 03

0, 04

0, 05

1 2 3 4 5 6 7 8 9 10 11

R
ew

ar
d

(B
T

C
)

Simulation days

BlockPerf

Figure 8: Reward evolution over days (e)

0

170

340

510

680

850

1 2 3 4 5 6 7 8 9 10 11

G
en

er
at

ed
cu

rr
en

cy
(B

T
C

)

Simulation days

Testbed BlockPerf

Figure 9: Currency generated over days (g)

occurrences over the 11 days of the experiment have been
reported in Figure 10. Two observations can be made: (i)
stale blocks mostly appear in the same timeframe (between
day 4 and 6); (ii) BlockPerf provides more realistic results
than BlockSim, as the number of stale blocks in BlockPerf (4
in total) is closer to the Testbed (6) than BlockSim (13).

Regarding now the Consensus computation effort (j),
BlockPerf also provides more realistic results, ranging be-
tween 9-42 MH/s, while the Testbed ranges between 10-
45 MH/s and BlockSim between 1-2 MH/s. The reason for
such a difference is that, in BlockSim, even when specifying
as input parameters the min and max hash rate values (i.e.,
10-45 MH/s identified through the benchmarking phase, cf.

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3101044, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

0
1
2
3
4
5
6

1 2 3 4 5 6 7 8 9 10 11

N
um

be
ro

fs
ta

le
bl

oc
ks

Simulation days

Testbed BlockPerf BlockSim

Figure 10: Stale blocks per days (i2)

0

4

8

12

16

20

1 2 3 4 5 6 7 8 9 1011

T r
an

sa
ct

io
ns

:×
1
0
3

Simulation days

Testbed BlockPerf (BP) BlockSim (BS)

0

2.4

4.8

7.2

9.6

12

BS BP

R
el

at
iv

e
E

rr
or

:×
1
0
3

w.r.t Testbed

Figure 11: Transaction evolution (k1) & relative absolute
error with respect to (w.r.t) the Testbed

section IV-A), it seems that BlockSim does not consider that
parameters in the simulation run, always applying 1-2 MH/s
as hash rate range.

4) Node/Data Layer
As the first metric of that layer, let us look at the Transaction
evolution (k1) in Figure 11, which shows the number of
transactions generated daily by the Testbed and the two
simulators. It can be observed that BlockPerf closely follows
the Testbed’s transaction evolution, thus providing more real-
istic results than BlockSim. Indeed, BlockPerf and BlockSim
respectively generate 4504 and 14184 Tx/day on average,
while the Testbed generates 7341 Tx/day. For a more accurate
view on the extent that BlockPerf leads towards realistic
results, we show the relative absolute errors of BlockPerf
and BlockSim with respect to the results obtained from the
testbed is represented in the form of a boxplot in Figure 11.
For example, the max value of the BS (BlockSim)-related
boxplot (i.e., ≈ 12000) indicates that, over the 11 days
of experiments, the maximal difference in terms of number
of transactions generated by the Testbed and BlockSim is
12000, which – if we look at the transaction evolution in
Figure 11 – corresponds to day 5. Looking at the error median
values, it can be noted that the difference/error is quite
significant in BlockSim, being approximately twofold higher
compared to BlockPerf. In addition of k1, let us also note
that BlockPerf follows the real-life transaction specification
(k2), while BlockSim adopts a more simplistic model, which
may explain part of the difference in results of the transaction
evolution above-discussed (k1).

Let us now discuss about the Block evolution (l), which
consists of four sub-metrics (l1 to l4). Figure 12(a) shows

the evolution of the number of valid blocks (l1) over the
11 days of experiment. It can be observed that BlockPerf
produces fewer blocks than the testbed, which is likely due to
the unpredictable nature of the network connections and the
occurrence of forks. On the other hand, BlockSim produces
a number of blocks (≈400/day) that is twice higher than
the Testbed (≈200/day). Overall, as evidenced through the
boxplot in Figure 12(a), BlockPerf provides more realistic
results than BlockSim, whether in terms of min, quartiles and
max values. Looking now at the second sub-metric (l2: block
validation times), both BlockPerf and BlockSim provide sim-
ilar results to the testbed, as shown in Figure 12(b). Indeed,
the three curves followed the same trend and the relative
absolute error was ≤ 1 min (i.e., one-tenth of the total time
required by the Testbed). Figure 12(c) then provides insight
into the evolution throughout the run of the block validation
times (l3), along with the difference – relative absolute
error to be precise – between BlockPerf/BlockSim and the
Testbed. It is interesting to note that, when looking at the
boxplot, BlockSim provides closer results with the Testbed
than BlockPerf; however, when looking at the day-by-day
block validation times, BlockPerf evolves in a similar way
to the Testbed, while BlockSim does not. Finally, regarding
l4 (i.e., the average number of transactions mined within
blocks per day), the two simulators provide similar results
to the Testbed, following a similar trend over the course
of the run and having similar differences/errors compared
to the Testbed (the min and max errors being the same for
BlockPerf and BlockSim).

The last metric of the Node/Data layer refers to the length
of the chain (m), whose evolution over the 11 days of the
experiment for the Testbed and the two simulators are plotted
in Figure 13. It can be observed that BlockPerf provides more
realistic results than BlockSim, which becomes increasingly
significant over time. Indeed, the longer the simulation run,
the higher the difference between BlockSim and the Testbed.
This is also confirmed by the boxplot given in Figure 13, the
minimal error values of the two simulators being approxi-
mately the same, while the quartiles, median and max values
become increasingly higher for BlockSim.

5) Network Layer
Two distinct metrics are analyzed at this layer, namely how
the network graph evolves over time (n), and what through-
put performance is possible with the implemented blockchain
and scenario (o).

Regarding the first metric (n), Figures 14, 15 and 16 pro-
vide the network graph evolution over two consecutive days
(days 1 and 2) respectively regarding the Testbed, BlockPerf
and BlockSim. Pink nodes correspond to light nodes and
yellow ones to full ones, each node being denoted by the
country’s initial (L: Luxembourg, I: Ireland; In: India) and
the node’s numbering. A twofold observation can be drawn
from those graphs. First, unlike BlockPerf and the Testbed,
BlockSim assumes that all nodes are interconnected in a fully
connected mesh throughout the experimental run, adding

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3101044, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

50

130

210

290

370

450

1 2 3 4 5 6 7 8 9 1011

V
al

id
bl

oc
ks

Simulation days

Testbed BlockPerf (BP) BlockSim (BS)

0

48

96

144

192

240

BS BP

R
el

at
iv

e
A

bs
.E

rr
or

w.r.t Testbed

(a) Number of valid blocks (l1) & relative absolute error w.r.t
Testbed

9

10

11

12

13

14

15

1 2 3 4 5 6 7 8 9 1011

Ti
m

e
(i

n
m

in
)

Simulation days

0

0.5

1

1.5

2

2.5

BS BP

R
el

at
iv

e
A

bs
.E

rr
or

w.r.t Testbed

(b) Inter-block average time (l2) & relative abs. error

0, 8

1, 2

1, 6

2

1 2 3 4 5 6 7 8 9 1011

B
lo

ck
si

ze
(M

B
)

Simulation days

0

0.2

0.4

0.6

0.8

1

BS BP

R
el

at
iv

e
A

bs
.E

rr
or

w.r.t Testbed

(c) Average block sizes (l3) & relative absolute error

25

31

37

43

49

55

1 2 3 4 5 6 7 8 9 1011

N
um

be
ro

fT
x/

bl
oc

k

Simulation days

−1

1

3

5

7

9

BS BP

R
el

at
iv

e
A

bs
.E

rr
or

w.r.t Testbed

(d) Transactions per block (l4) & relative absolute error

Figure 12: Block evolution (l1-l2)

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 1011

N
um

be
ro

fb
lo

ck
s

Simulation days

Testbed BlockPerf (BP) BlockSim (BS)

0

500

1000

1500

2000

2500

BS BP

R
el

at
iv

e
A

bs
.E

rr
or

w.r.t Testbed

Figure 13: Chain’s length (m)

that it does not distinguish lightweight and full blockchain
nodes. A second observation is that the P2P logical network
infrastructure evolves quite substantially from one day to
another, whether regarding the Testbed or BlockPerf, which
are due, among other things, to eventual connection losses,
ongoing traffic,. . . . The Diameter5, mean geodesic distance6,
and clustering coefficient7 reported in Table 4 show that
the graphs evolve in a similar manner for BlockPerf and
BlockSim, which is not the case for BlockSim.

Throughput is a key metric that provides a good perfor-
mance indicator of a given blockchain system. It is nonethe-
less tricky to analytically formalize it, as it depends on

5Diameter: max (dist (ni, nj)) ∀ ni, nj ∈ N , with N the set of nodes
(full and lightweight) from the network graph.

6Mean geodesic distance: mean (dist (ni, nj)) ∀ ni, nj ∈ N , with
N = {n1, . . . , nN} the set of nodes (full and lightweight) from the
network graph.

7Clustering coefficient of entire graph: C = 1
N

∑N
i=1 Ci, where Ci

refers to the clustering coefficient of a node ni that is calculated as follows:
Ci =

2.Li
ki(ki−1)

, ki referring to the degree of node ni and Li to the number
of edges between the ki neighbors of ni.

multiple processes across the different layers. Indeed Appli-
cation (for generation), Node/Data (for accessing rewards),
Consensus (mining), Incentive (for rewards), and Network
layers (for final throughput), all combined, influence the
throughput of a given blockchain system. Figure 17 shows
the evolution of the average throughput for the considered
scenario, along with the boxplot showing the relative absolute
errors of BlockSim and BlockPerf when compared to the
Testbed. The results show that throughput ranges between
1 and 2.5 Tx/s for both the Testbed and the two simulators
(BlockPerf having slightly closer results to the Testbed than
BlockSim).

C. DISCUSSION
The previous section has shown that BlockPerf outperforms
BlockSim for most of the metrics (a)-(o), or provide more
realistic results to be more precise. We firmly believe that this
is mainly due to the assumption made by BlockSim (i.e., non-
consideration of the network-level change within the system).
Furthermore, our approach presents several advantages. First,
it covers all the layers (except the contract one) and allows
to obtain a higher number of performance metrics. Also,
by emulating the network layer, our approach replicates a
more realistic behavior, thus leading to more realistic results
than BlockSim. Finally, even if it is not yet the case, our
approach is aimed at making the plugging of any blockchain
technology easier, as our code is structured following the six-
layer model described in Figure 3.

One may wonder whether the number of nodes used in our
experiments is not too small. This parameter is not critical in
this study as the objective is not about showing how efficient
a given blockchain is (e.g., from a scalability standpoint), but

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3101044, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

L1

L2

L3

L6

I6

I12

I13

In1

In2

In3

L5

I2

I5

I8

I9

I10

I11

I14

L4

I1

I3

I4

I7

L8

L9

L10

L7

L11

L12

L13

L14

L15

I15

I16

I17

I18

I19

I20

I21

I22

I23

I24

I25

I26

I27

I28

I29

I30

I31

I32

I33

In4

In5

In6

In7 In8

In9In10

In11

In12

In13

In14

In15

(a) P2P network topology underlying the Testbed at day 1 of the experiment

L1

I6

I7

I12 I13

In1

In2

In3

L2

L3

I1

I5

I10

I11

L4I2 I8

L5L6

I14

I4

I3 I9

L8 L9

L7

L10

L11

L12

L13 L14L15 I15

I16

I17

I18

I19

I20

I21I22

I23

I24

I25

I26

I27 I28

I29

I30

I31

I32

I33

In4

In5

In6

In7In8

In9 In10

In11 In12

In13

In14

In15

(b) P2P network topology underlying the Testbed at day 2 of the experiment

Figure 14: Testbed’s network graph evolution over two days of experiment

rather on showing that the proposed simulator provides more
realistic evaluation results than an existing one (BlockSim in
this case). As a consequence, we limited the experiment to be
large enough to capture a realistic scenario, and short enough
to be manageable (in terms of costs).

One may also wonder whether the size of the datasets is

large enough to draw relevant conclusions about the compar-
ison analysis. In this regard, let us note that all the graphs
given in Figures 8 to 17 only report the average values of
all the measurements obtained on a daily basis for the corre-
sponding metrics. Just to give an indication about the number
of measurements that have been collected every day, around

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3101044, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

L1

L2

L3L6

I6

I12

I13

In1

In3

L5

I2

I5I8 I9 I10 I11

I14

In2

L4I1

I3I4 I7

L8L9 L10

L7

L11

L12

L13

L14

L15

I15

I16

I17

I18

I19

I20

I21

I22

I23

I24

I25

I26

I27I28I29I30

I31

I32

I33

In4

In5

In6

In7In8

In9 In10

In11

In12

In13

In14

In15

(a) P2P network topology underlying BlockPerf at day 1 of the experiment

L1

L2

L3L6

I12 I13

In1 In3

I2 I6

I8I9 I11

L4I1

I4 I7 I10

L5

I14

I3 I5

L8 L9

L10

In2

L7

L11

L12

L13

L14

L15

I15

I16

I17

I18

I19

I20

I21

I22

I23I24 I25

I26 I27 I28I29 I30

I31

I32

I33

In4

In5

In6

In7 In8

In9 In10

In11

In12

In13

In14

In15

(b) P2P network topology underlying BlockPerf at day 2 of the experiment

Figure 15: BlockPerf’s network graph evolution over two days of experiment

L1

L2

L3

L4

L5
L6

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11
I12

I13

I14

In1

In2

In3

Figure 16: BlockSim’s network graph remaining unchanged throughout the simulation run

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3101044, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

0

0, 5

1

1, 5

2

2, 5

1 2 3 4 5 6 7 8 9 1011

T
x/

se
c

Simulation days

Testbed BlockPerf (BP) BlockSim (BS)

0

0.2

0.4

0.6

0.8

1

BS BP

R
el

at
iv

e
A

bs
.E

rr
or

w.r.t Testbed

Figure 17: Throughput (o) & relative absolute error w.r.t
Testbed

10000 measurements/day were collected regarding metrics
(e) and (k1), 200 measurements/day regarding (l1)-(l3), and
about 50 regarding l4. Given this amount of measurements,
we confidently state that the conclusions drawn from our
comparison analysis are relevant (statistically speaking).

V. CONCLUSION, LIMITATIONS & PERSPECTIVES
A. CONCLUSION
Today, a large variety of blockchain technologies is expand-
ing in order to fulfill technical and non-technical needs and
requirements. Within this context, determining and, most
importantly, evaluating the characteristics/performance of a
given blockchain platform is crucial for system designers
before deploying it. In this respect, several blockchain sim-
ulators have been proposed in the literature over the past
few years. Still, they are often limited in several respects
(lack of extensibility, failure in covering all aspects/metrics
underpinning a blockchain system, etc.). In this paper, the
six-layer model introduced by [15] (Application, Contract,
Incentive, Consensus, Node/Data, Network) is considered,
against which 15 performance metrics have been mapped.

To overcome the limitations of state-of-the-art blockchain
simulators, a new one called BlockPerf is proposed in this pa-
per, an extension to the existing BlockSim simulator. Block-
Perf tries to cover as much as possible the layers mentioned
above along with its metrics. A comparative analysis with
BlockSim is carried, which has demonstrated that BlockPerf
provides more realistic results than BlockSim (e.g., at the
Node/Data and Network layers) respectively improved by
39% and 55% in average. However, several limitations re-
main to be addressed in the future, as discussed in the next
section. The comparison analysis conducted in this paper is
built upon a benchmarking bitcoin scenario.

B. LIMITATIONS & PERSPECTIVES
Several limitations to BlockPerf are to be addressed for it to
be a more exhaustive simulator. First, the deployment cost of
deploying nodes within BlockPerf on different geographical
locations is not a simple and straightforward task, as it re-
quires careful planning and deployment of nodes, connecting
them with the main interface within BlockPerf. However,
such a layer is, in our opinion, crucial to obtain simulation
results closer to reality.

Second, BlockPerf, in its current form, only supports
Bitcoin-related experiments, and some efforts still remain
to be done to allow for simulating different blockchain
platforms. For example, a blockchain-based system such as
the IOTA, which uses graph-based transaction chains, would
require more extensive tuning of BlockPerf to replicate the
effects of its real-world deployment.

Third, the Contract layer still remains to be developed
within BlockPerf. The ability of deploying contracts has
been a key element and argument within all the blockchain
technologies that emerged over the last years, and being
able to analyse them within the simulation environment
would likely provide further insights on its usage. However,
covering/integrating such a layer in a simulator is partic-
ularly challenging because each smart contract execution
happens within a virtual computing environment (e.g., EVM
in Ethereum), which is called by every node execute the in-
structions contained by that contract. This environment itself
relies on other layers for execution, including the execution
of certain transactions or changing the state of nodes, which
makes it difficult to obtain realistic execution effects on the
overall system, as discussed in [?]. Given this complexity, we
believe that the adoption of a hybrid approach that uses the
virtual computing environment as an emulation layer – in a
similar manner as done in BlockPerf with the network layer –
is an efficient way to cover/integrate the smart contract layer
in a simulator.

ACKNOWLEDGEMENT
Supported by the Luxembourg National Research Fund Sta-
bility 4.0 BRIDGES19/IS/13706587.

References
[1] A. A. Monrat, O. Schelén, and K. Andersson, “A survey of blockchain

from the perspectives of applications, challenges, and opportunities,” IEEE
Access, vol. 7, pp. 117 134–117 151, 2019.

[2] J. Abou Jaoude and R. G. Saade, “Blockchain applications–usage in
different domains,” IEEE Access, vol. 7, pp. 45 360–45 381, 2019.

[3] J. Al-Jaroodi and N. Mohamed, “Blockchain in industries: A survey,” IEEE
Access, vol. 7, pp. 36 500–36 515, 2019.

[4] U. Bodkhe, S. Tanwar, K. Parekh, P. Khanpara, S. Tyagi, N. Kumar, and
M. Alazab, “Blockchain for industry 4.0: A comprehensive review,” IEEE
Access, vol. 8, pp. 79 764–79 800, 2020.

[5] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain chal-
lenges and opportunities: A survey,” International Journal of Web and
Grid Services, vol. 14, no. 4, pp. 352–375, 2018.

[6] C. Fan, S. Ghaemi, H. Khazaei, and P. Musilek, “Performance evaluation
of blockchain systems: A systematic survey,” IEEE Access, vol. 8, pp.
126 927–126 950, 2020.

[7] S. Maranhão, J.-. Seigneur, and R. Hu, “Towards a standard to assess
blockchain & other dlt platforms,” in ITU, 2019.

[8] F. Gräbe, N. Kannengiesser, S. Lins, and A. Sunyaev, “Do not be fooled:
Toward a holistic comparison of distributed ledger technology designs,”
in Proceedings of the 53rd Hawaii International Conference on System
Sciences, 2020.

[9] J. Polge, J. Robert, and Y. Le Traon, “Permissioned blockchain frame-
works in the industry: A comparison,” ICT Express, 2020.

[10] W.-T. Tsai, R. Wang, S. Liu, E. Deng, and D. Yang, “Compass: A
data-driven blockchain evaluation framwework,” in IEEE International
Conference on Service Oriented Systems Engineering, 2020, pp. 17–30.

[11] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3101044, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[12] “A next-generation smart contract and decentralized application plat-
form,” https://github.com/ethereum/wiki/wiki/White-Paper, last accessed
13/04/2021.

[13] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the Thirteenth EuroSys Conference.
ACM, 2018, p. 30.

[14] S. Smetanin, A. Ometov, M. Komarov, P. Masek, and Y. Koucheryavy,
“Blockchain evaluation approaches: State-of-the-art and future perspec-
tive,” Sensors, vol. 20, no. 12, p. 3358, 2020.

[15] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan, “Block-
bench: A framework for analyzing private blockchains,” in Proceedings of
the 2017 ACM International Conference on Management of Data, 2017,
pp. 1085–1100.

[16] C. Faria and M. Correia, “Blocksim: Blockchain simulator,” in 2019 IEEE
International Conference on Blockchain (Blockchain). IEEE, 2019, pp.
439–446.

[17] A. Montresor and M. Jelasity, “Peersim: A scalable p2p simulator,” in 2009
IEEE Ninth International Conference on Peer-to-Peer Computing. IEEE,
2009, pp. 99–100.

[18] A. Miller and R. Jansen, “Shadow-bitcoin: Scalable simulation via direct
execution of multi-threaded applications,” in 8th Workshop on Cyber
Security Experimentation and Test ({CSET} 15), 2015.

[19] L. Stoykov, K. Zhang, and H.-A. Jacobsen, “Vibes: fast blockchain simu-
lations for large-scale peer-to-peer networks,” in Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference: Posters and Demos, 2017,
pp. 19–20.

[20] R. Paulavičius, S. Grigaitis, and E. Filatovas, “A systematic review and
empirical analysis of blockchain simulators,” IEEE access, vol. 9, pp.
38 010–38 028, 2021.

[21] H. Huang, W. Kong, S. Zhou, Z. Zheng, and S. Guo, “A survey of state-of-
the-art on blockchains: Theories, modelings, and tools,” ACM Computing
Surveys (CSUR), vol. 54, no. 2, pp. 1–42, 2021.

[22] “Technical paper hstp.dlt-rf: Distributed ledger technology:
Regulatory framework,” https://www.itu.int/dms_pub/itu-t/opb/tut/
T-TUT-DLT-2019-RF-PDF-E.pdf, accessed: 2021-04-12.

[23] “Blockchain and distributed ledger technologies - Reference architecture,”
International Organization for Standardization, Geneva, CH, Standard
(Under Development), Apr. 2020.

[24] A. A. Monrat, O. Schelén, and K. Andersson, “A survey of blockchain
from the perspectives of applications, challenges, and opportunities,” IEEE
Access, vol. 7, pp. 117 134–117 151, 2019.

[25] L. M. Bach, B. Mihaljevic, and M. Zagar, “Comparative analysis of
blockchain consensus algorithms,” in 2018 41st International Convention
on Information and Communication Technology, Electronics and Micro-
electronics (MIPRO), 2018, pp. 1545–1550.

[26] D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, and C. Qijun, “A
review on consensus algorithm of blockchain,” in 2017 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), 2017, pp. 2567–
2572.

[27] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen,
and D. I. Kim, “A survey on consensus mechanisms and mining strategy
management in blockchain networks,” IEEE Access, vol. 7, pp. 22 328–
22 370, 2019.

[28] L. Zheng, X. Helu, M. Li, and H. Lu, “Automatic discovery mechanism
of blockchain nodes based on the kademlia algorithm,” in International
Conference on Artificial Intelligence and Security. Springer, 2019, pp.
605–616.

[29] R. Albert and A.-L. Barabási, “Statistical mechanics of complex net-
works,” Reviews of modern physics, vol. 74, no. 1, p. 47, 2002.

[30] M. A. Javarone and C. S. Wright, “From bitcoin to bitcoin cash: a network
analysis,” in Proceedings of the 1st Workshop on Cryptocurrencies and
Blockchains for Distributed Systems, 2018, pp. 77–81.

[31] “Dslf: Distributed ledger simulation framework,” https://github.com/
i13-msrg/dlsf, accessed: 2021-01-25.

[32] B. Wang, S. Chen, L. Yao, B. Liu, X. Xu, and L. Zhu, “A simulation
approach for studying behavior and quality of blockchain networks,” in
International Conference on Blockchain. Springer, 2018, pp. 18–31.

[33] N. Agrawal, O. Biçer, A. Küpçü et al., “Blocksim-net: A network based
blockchain simulator,” arXiv preprint arXiv:2011.03241, 2020.

[34] “evibes plasma simulator,” https://github.com/i13-msrg/evibes-plasma,
accessed: 2021-01-25.

[35] A. Deshpande, P. Nasirifard, and H.-A. Jacobsen, “evibes: Configurable
and interactive ethereum blockchain simulation framework,” in Proceed-
ings of the 19th International Middleware Conference (Posters), 2018, pp.
11–12.

[36] M. Alharby and A. van Moorsel, “Blocksim: A simulation framework
for blockchain systems,” SIGMETRICS Perform. Eval. Rev., vol. 46,
no. 3, pp. 135–138, Jan. 2019. [Online]. Available: https://doi.org/10.
1145/3308897.3308956

[37] S. Goswami, “Scalability analysis of blockchains through blockchain
simulation,” 2017.

[38] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, 2016, pp. 3–16.

[39] S. M. Fattahi, A. Makanju, and A. M. Fard, “Simba: An efficient simulator
for blockchain applications,” in 2020 50th Annual IEEE-IFIP Interna-
tional Conference on Dependable Systems and Networks-Supplemental
Volume (DSN-S). IEEE, 2020, pp. 51–52.

[40] Z. H. Chin, T. T. V. Yap, and I. K. Tan, “Simulating difficulty adjustment in
blockchain with simblock,” in Proceedings of the 2nd ACM International
Symposium on Blockchain and Secure Critical Infrastructure, 2020, pp.
192–197.

[41] Y. Aoki, K. Otsuki, T. Kaneko, R. Banno, and K. Shudo, “Simblock: A
blockchain network simulator,” in IEEE INFOCOM 2019-IEEE Confer-
ence on Computer Communications Workshops (INFOCOM WKSHPS).
IEEE, 2019, pp. 325–329.

[42] R. Banno and K. Shudo, “Simulating a blockchain network with sim-
block,” in 2019 IEEE International Conference on Blockchain and Cryp-
tocurrency (ICBC). IEEE, 2019, pp. 3–4.

[43] M. R. A. Lathif, P. Nasirifard, and H.-A. Jacobsen, “Cidds: A configurable
and distributed dag-based distributed ledger simulation framework,” in
Proceedings of the 19th International Middleware Conference (Posters),
2018, pp. 7–8.

[44] “Hive simulation tool,” https://github.com/ethereum/hive, accessed: 2021-
01-25.

[45] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun,
“Evaluating user privacy in bitcoin,” in International Conference on Fi-
nancial Cryptography and Data Security. Springer, 2013, pp. 34–51.

[46] G. Leduc, S. Kubler, and J.-P. Georges, “Innovative blockchain-based
farming marketplace and smart contract performance evaluation,” Journal
of Cleaner Production, vol. 306, p. 127055, 2021.

JULIEN POLGE is a Ph.D. student at the Inter-
disciplinary Centre for Security, Reliability and
Trust (SnT) in the University of Luxembourg. He
received his M.Sc. in Complex Systems Engi-
neering from the University of Lorraine (France)
in 2017. He is part of the SerVal group (SEcu-
rity, Reasoning and VALidation) headed by Pr.
Yves Le Traon. His research work is conducted
in collaboration with the industry and focuses on
Industrial Internet of Things, Machine Learning

and Distributed Ledger Technologies.

VOLUME 4, 2016 15

https://github.com/ethereum/wiki/wiki/White-Paper
https://www.itu.int/dms_pub/itu-t/opb/tut/T-TUT-DLT-2019-RF-PDF-E.pdf
https://www.itu.int/dms_pub/itu-t/opb/tut/T-TUT-DLT-2019-RF-PDF-E.pdf
https://github.com/i13-msrg/dlsf
https://github.com/i13-msrg/dlsf
https://github.com/i13-msrg/evibes-plasma
https://doi.org/10.1145/3308897.3308956
https://doi.org/10.1145/3308897.3308956
https://github.com/ethereum/hive

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3101044, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

SANKALP GHATPANDE is R&D Engineer with
position of Research Associate at the Interdisci-
plinary Centre for Security, Reliability and Trust
(SnT) in the University of Luxembourg. He re-
ceived his M.S degree from University of Lux-
embourg in 2016. Since 2016, he has worked in
industry and academic R&D projects, national and
international, as Engineer focused on Blockchain,
IoT and Cryptography. He has also been active
in multiple volunteering projects involving imple-

mentations of specific software(s), code-analysis and multiple open source
projects. Recently, he has been involved in data analysis and machine
learning project within the financial domain with industrial partner.

SYLVAIN KUBLER is Associate Professor at the
Research Center for Automatic Control (CRAN)
in Université de Lorraine, and before Research
Associate at the Interdisciplinary Centre for Se-
curity, Reliability and Trust (SnT) in the Univer-
sity of Luxembourg (2015-2017) and Postdoctoral
Researcher at Aalto University (2013-2015). He
received his M.Sc. degree and Ph.D. degree in
Computer Science and Engineering from the Uni-
versité de Lorraine (France) respectively in 2009

and 2012. He was awarded the best Thesis in Automatic Control from the
IFAC French Workgroup GdR MACS/Club EEA. He has broad expertise in
Internet of Things, Semantic Web, Blockchain, and Multicriteria Decision
Support Systems.

JÉRÉMY ROBERT is a Digital Technology Spe-
cialist at the Cebi Luxembourg S.A., an automo-
tive and household appliances industry. He re-
ceived his M.Sc. and Ph.D. degree in Computer
Science and Engineering from the University of
Lorraine (France), respectively, in 2009 and 2012.
He has broad expertise in industrial and embedded
networks since his PhD research focused on the
use of switched Ethernet embedded in the future
space launchers. Since 2015, his work was more

about heterogeneous data communication challenges in the Industrial Inter-
net of Things and the implementation of messaging services and high-level
data formats. As the major research work was conducted in collaboration
with the industry, he naturally joined Cebi Luxembourg S.A. for supporting
the deployment of the Industry 4.0 project at the group level.

YVES LE TRAON is full professor of Computer
Science at University of Luxembourg, in the do-
main of software engineering, with a focus on soft-
ware testing, software security, and data-intensive
systems. He is currently vice-director of the In-
terdisciplinary Centre for Security, Reliability and
Trust (SnT center) and head of the SerVal group
(SEcurity, Reasoning and VALidation), which is
composed of around 25 researchers. He was head
of the CSC Research Unit (Dept. of Computer

Science) for the period of 2013-2016.

16 VOLUME 4, 2016

