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Recently, great experimental efforts towards designing topological electronic states have been
invested in layered incommensurate heterostructures which form various nano- and meso-scale do-
mains. In particular, it has become clear that a delicate interplay of different spin-orbit terms is
induced in graphene on transition metal dichalcogenide substrates. We therefore theoretically study
various types of domain walls in spin-orbit coupling in graphene looking for robust one-dimensional
propagating electronic states. To do so, we use an interface Chern number and a spectral flow anal-
ysis in the low-energy theory and contrast our results to the standard arguments based on valley-
Chern numbers or Chern numbers in continuum models. Surprisingly, we find that a sign-changing
domain wall in valley-Zeeman spin-orbit coupling binds two robust Kramers pairs, within the bulk
gap opened due to a simultaneous presence of Rashba coupling. We also study the robustness to
symmetry breaking and lattice backscattering effects in tight-binding models. We show an explicit
mapping of our valley-Zeeman domain wall to a domain wall in gated spinless bilayer graphene. We
discuss the possible spectroscopic and transport signatures of various types of spin-orbit coupling
domain walls in heterostructures.

I. INTRODUCTION

Amid an explosion of research into van der Waals ma-
terials during this decade, graphene-based platforms re-
main central for discovery and design of topological states
of matter. Today’s promising platforms are based on in-
homogeneities in real space, for example, in devices and
heterostructures with designed spatial variation of order
parameters and external fields. Great progress has been
achieved in twisted multilayers in which new electronic
states may arise in Moire patterns and domains, as ob-
served in twisted bilayer graphene[1–4]. In particular,
layering graphene and transition metal dichalcogenides
realizes the early idea of seeking topological states in
graphene by inducing spin-orbit coupling (SOC) in it [5–
8]. Experiments[6–9], first principles calculations[10, 11]
and theory[11, 12] agree that the outcome is complex,
with at least four different induced coupling terms in
accord with the lowered symmetry of the system[13]:
the Kane-Mele SOC, the valley-Zeeman SOC[6, 14], the
Rashba SOC, and the Dirac mass. Therefore, under-
standing the electronic modes due to spatial variations
of multiple coupling parameters is necessary both funda-
mentally and practically.

A special type of electronic states designed for spin-
and valleytronics involves creating one-dimensional chan-
nels, which can essentially be understood as domain walls
(DW) in a certain coupling parameter. One of the first
proposals for topological channels was due to a gating
DW in bilayer graphene[15], which was later connected
to a DW in stacking order[16], leading to experimental
observation of the one-dimensional modes[17]. Further
DWs in Dirac mass parameter yielded valley-polarized
modes[18, 19]. Alternative DWs using strain field as
the parameter were proposed[20, 21], while multilayer
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systems allow for even more coupling parameters[4, 22–
24]. A unifying viewpoint of one-dimensional topolog-
ical modes as being DW modes is also exemplified in
the unexpected robustness to magnetic field of quan-
tum spin Hall helical edge states that was understood
by invoking a DW between a quantum spin Hall and
a quantum Hall domain[25]. Understanding DWs in
presence of multiple parameters is crucial, as becomes
clear in the recent finding that quantum spin Hall edge
modes may be transformed or supplemented by spin- or
valley-polarized modes as one changes the dominant SOC
parameter[13, 26]. Nevertheless, the treatment of non-
randomly varying SOC parameters in this context re-
mains scarce[27, 28].

Here we mainly focus on domain walls in valley-
Zeeman and Rashba spin-orbit couplings in graphene,
and contrast them to known domain walls in Dirac mass
and Kane-Mele SOC. Our main finding is that a domain-
wall in valley-Zeeman SOC in presence of arbitrary con-
stant Rashba SOC hosts two valley-polarized Kramers
pairs propagating along the domain wall. Importantly,
we find that these modes are not protected by a bulk
topological index of the 10-fold way [29–31], nor an in-
dex derived from the remaining lattice symmetry (C3v),
but instead by an “interface Chern number”. In essence,
the bulk “valley Chern number” index Cτbulk, i.e., the
Chern number calculated in the graphene continuum
model for a fixed valley index τ = ±1, has opposite val-
ues on the two domains with opposite signs of valley-
Zeeman SOC, but this continuum-derived bulk index is
ill-defined and does not provide topological protection of
modes even without any intervalley scattering, any sym-
metry breaking, nor bulkgap closing [32]. Alternatively,
it was proposed that the difference of two non-zero values
δCτbulk = Cτbulk,R − Cτbulk,L, occurring at a domain wall
interface between the right (R) and left (L) bulk, is topo-
logically well-defined [32]. However, we show explicitly
that δCτbulk incorrectly predicts modes in general, and
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hence does not offer a “bulk-interface" correspondence.
In contrast, we find that an “interface Chern number”
Cτinterface = 2τ strictly predicts the valley-Zeeman DW
modes by applying a more general spectral flow theo-
rem for Berry-Chern monopoles due to varying parame-
ters [33]. The theorem is an exact statement about the
existence of quantum chiral domain-wall-bound modes
due to a topological index associated to a degeneracy
point of the bands of an auxiliary homogeneous Hamil-
tonian. This degeneracy point corresponds to the real-
space point where valley-Zeeman SOC changes sign, and
is hence fully determined by the domain-wall and not by
the topology of the domains.

Our work is one demonstration of the usefulness of
the spectral flow theorem for topological modes in in-
homogeneous quantum problems, for which there is a
limited number of methods. One may treat spatial co-
ordinates classically at long distances from a topologi-
cal defect, and consider the resulting band topology due
to discrete symmetries[31, 34]. One may also use real-
space expressions that give a local indication of non-
trivial topology[35]. Nevertheless, a precise “bulk-defect”
correspondence in this case remains quite abstract and
invokes generalized bulk topological numbers[36, 37] to
cause some DW modes[32, 38, 39]. In contrast, the spec-
tral flow theorem[33, 40, 41] builds on the notion of using
topological numbers associated to local information in
parameter space[15, 42]. In our case, the valley-Zeeman
domain-wall is an interface across which parameters of
a Dirac equation vary in real-space, and the theorem is
useful both conceptually and practically as for our Dirac
operator we do not have a standard index theorem, while
the direct solution for the in-gap modes spectrum is much
more tedious and opaque.

The uncovered valley-Zeeman DW modes are in con-
trast to previously identified graphene edge modes due
to valley-Zeeman SOC, since the latter are fragile to the
Rashba SOC strength,[26] and to some lattice termina-
tions even in absence of intervalley scattering[32], due to
the modes being connected only to the bulk valley-Chern
number |Cτbulk| = 1[9, 26, 43]. Instead, we find an ex-
act mapping of our valley-Zeeman SOC DW modes onto
modes of a DW between two electrically gated regions in
spinless bilayer graphene,[15, 44] which were experimen-
tally detected[16, 17], but whose protection by δCτbulk[32]
is in this work shown to rather be due to Cτinterface. Since
experiments indicate that proximitized graphene acquires
spatially-dependent SOC of all three types, where valley-
Zeeman is considerable[7–9], we expect that our valley-
Zeeman domain-wall modes may contribute to spectro-
scopic and transport properties.

This paper is organized as follows: In Section II we
start by motivating the use of an interface Chern number,
and discuss its connection to a difference of bulk Chern
numbers. In Section III we first define domain walls in
continuum theory of graphene, we apply the spectral flow
theorem to DWs in valley-Zeeman SOC with a constant
Rashba SOC, and show the mapping to spinless bilayer

graphene. Then we introduce domain walls in the tight
binding lattice model of graphene and discuss the robust-
ness of valley-Zeeman DW modes, as well as of modes on
other domain walls. We finish with a discussion of poten-
tial impact on experiments, other domain walls in Dirac
mass and Kane-Mele SOC, and an outlook. Technical
details supplementing our analysis appear in four appen-
dices.

II. THE INTERFACE CHERN NUMBER

In this work we apply the general theory of spectral
flow due to Berry-Chern monopoles[33, 40, 41], i.e., a
spectral flow theorem (SFT), to the particular case of one
spatially varying parameter in a two-dimensional system,
i.e., a domain wall profile of a SOC in graphene. The ap-
plication of SFT is presented in full detail in Appendix A,
while here we sketch its form and relationship to bulk
topology.
We start from the bulk topology. Importantly, for

smooth domain walls (and we discuss sharp ones in
Sec. IIID), a priori the intervalley scattering is negligible
and the pertinent analysis is of the continuum model of
graphene with valley index τ conserved. The essential
problem of valley-based bulk topology was exposed in
Ref. 32, which deals with the model of bilayer graphene
with a DW profile of gate voltage — the model which we
show maps (in its spinless version) exactly to our model
of valley-Zeeman DW in graphene with constant Rashba
SOC (see Section III C). In a nutshell they show that
the bulk “valley Chern number” index Cτbulk, i.e., the
Chern number calculated in the continuum model for
a fixed valley index τ = ±1, is actually not protecting
an edge mode. The key reason is that any Chern num-
ber calculated for the infinite (kx, ky) plane (i.e., in the
single-valley continuum model) is not topologically well-
defined[33]. Hence, the edge modes disappear depending
on microscopic details of the edge, even without any in-
tervalley scattering, any symmetry breaking, nor bulkgap
closing.
The Cτbulk itself obviously cannot predict DWmodes ei-

ther, but Ref. 32 argues that in contrast the difference of
two non-zero values δCτbulk = Cτbulk,R−Cτbulk,L, occurring
at a domain wall interface between the right (R) and left
(L) bulk, is topologically well-defined. Hence their gate-
voltage DW modes in bilayer graphene are theoretically
indeed stable. This argument is illustrated in Fig. 1a,b,
with the key point that the bandstructure of R and L do-
mains becomes equal far away from (kx, ky) = (0, 0), so in
the difference δCτbulk one may compactify the two planes
into a sphere. Based on the exact mapping between the
bilayer gate-voltage DW problem and our valley-Zeeman
DW problem, it seemingly follows that the difference
δCτbulk provides protection to our modes too.
To the contrary, our point is that the δCτbulk is also

fragile in general, while the interface Chern number
Cτinterface and the SFT is generally well-defined and more
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(c) (d)

(a) (b)

Figure 1. (a) Two planar integrals in the continuum giving the bulk Chern numbers associated with the left (L) and right (R)
domain. These Chern numbers are unstable and the bulk-edge correspondence for either R or L is non-universal. (b) When the
difference of two Chern numbers δCbulk is considered, as seems natural for a domain wall, one may compactify the planes in (a)
and obtain a stable bulk index, which however is only handwavingly connected to domain wall modes. (c) Sphere integration
defining the interface Chern number Cinterface. (d) We deform the sphere into a cylinder, and as obvious in comparison to
panel (a), one finds that Cinterface = δCbulk + ∆c, where ∆c may be a function of the aspect ratio h/r.

powerful for interface (domain-wall) problems. Namely,
in this context, (1) A Cinterface can exist without refer-
ence to any well-defined bulk quantity or compact param-
eter space, which are absent in valley-resolved situations,
and (2) The SFT is an exact statement about the quan-
tum domain-wall modes, as opposed to a bulk-boundary
correspondence which is vague or it is justified a posteri-
ori by tedious explicit calculations. We now consider the
relationship between Cτinterface and δCτbulk more explic-
itly.

Let us now introduce the Cτinterface, assuming that a
Hamiltonian parameter λ (such as SOC) varies smoothly
along the x-axis (as in a domain-wall profile λ(x)): the
SFT prescribes (see Sec. A and Ref.33 for details) that
we look at an auxiliary Hamiltonian matrix H̃ in which
the operator −i∂x is replaced by a real parameter kx,
and that we seek band degeneracies of H̃ as function of
λ(x), kx, ky. If the interface profile causes such a degen-
eracy at the parameter values (x, kx, ky) = (xc, kcx, kcy) ≡
pc, one needs to calculate the interface Chern number
Cτinterface of filled bands of H̃ on a sphere surrounding pc.
Hence the naming of “interface” Chern number, which
uses only information from the vicinity of the point pc
and does not involve any integrations over, e.g., a Bril-
louin zone.

With this definition of Cτinterface, in Fig. 1c,d we de-
vise a procedure where the integration in Cτinterface is
smoothly deformed from a sphere to a cylinder to give

Cτinterface = δCτbulk + ∆cτ , (1)

where one takes the limit for the radius of the cylin-
der r → ∞; the difference ∆cτ ≡ limh/r→0 ∆cτ (h/r) is
given by the Chern integral on the side of cylinder keep-
ing its height h finite (could be arbitrarily small as long

as the cylinder encloses the degeneracy point of H̃ at the
origin). For our VZ DW continuum model we explic-
itly find ∆cτ = 0. Hence in our model, Cτinterface and
δCτbulk coincide. However, note that only the Cτinterface
invariant guarantees the domain-wall modes through the
SFT, while the exact correspondence between δCτbulk and
domain-wall modes is not guaranteed and may be found
a posteriori (e.g., Ref. 32 had to solve explicitly for the
modes).
In order to make this point concrete, we consider a

simple continuum model (with a single valley) in which
the Cinterface = 1 protects a chiral domain-wall mode,
while in contrast the corresponding Cbulk = 0, and hence
δCbulk = 0, so the bulk-derived Chern numbers predict
the absence of modes on edges and domain walls. In
this example the interface Chern number comes entirely
from the side of the cylinder in Fig. 1d, while the cylinder
bases contribute zero, i.e., ∆c = 1. The model is based on
a single spin component of the Bernevig-Hughes-Zhang
model with a gapped Dirac cone at the Γ point:

Hbulk = kxσx + kyσy + λ(M − k2
x − k2

y)σz, (2)

where we will be imagining a DW in the parameter λ(x)
going from λL ≡ λ(x = −∞) = +1 to λR ≡ λ(x =
+∞) = −1, while keeping M < 0 constant. Think-
ing of either of the two bulk domains, λ(x) ≡ λL or
λ(x) ≡ λR, we know that for any non-zero λ the M < 0
bulk Hamiltonian is trivial and Cbulk(λ = ±1) = 0, and
obviously δCbulk = 0. In contrast, for any M < 0
we find Cinterface = 1 due to the degeneracy point
(kx, ky, λ(x)) = (0, 0, 0) and hence there is one chiral
mode on a DW where λ(x) changes sign. We confirm
this in a numerical solution. Looking at the cylinder in
the limit h/r → 0 we find explicitly that in this model
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(a) (b)

(c) (d)

(e)

Figure 2. Modes of a domain wall in valley-Zeeman (VZ)
SOC, and their robustness on the lattice. (a) Generic profile
of sign-changing DW in VZ SOC λV Z , with arbitrary non-zero
value of Rashba SOC λR. (b) Sketch of modes in momentum
space predicted by the spectral flow theorem for (a). Both
valleys K,K′ are projected to ky = 0, but are offset here
for visibility. (c) An atomically sharp profile of an armchair
DW on the lattice, corresponding to (a). (d) Tight-binding
lattice model spectrum for the system sketched in (e), with
parameters Nx = 801, Ny = 2000, λV Z(±∞) = ±0.01t and
λR = 0.1t. In the spectrum we only show the in-gap modes
localized around the DW located at xDW (see (e)), with pur-
ple/pink being states in valley K/K′ (both valleys project to
ky = 0 on the lattice). The modes match the spectrum of DW
in gating of bilayer graphene (full lines; see text). (e) Sketch
of the lattice with periodic boundary conditions (identifying
two dashed edges with each other, and likewise the dotted)
and consequently a DW at position xDW and an “anti-DW”
of opposite orientation at xantiDW .

the Cinterface = ∆c comes entirely from the side of the
cylinder.

We will discuss the robustness of modes protected by
Cinterface in Sec. III E, after we introduce the lattice
model and intervalley scattering.

III. DOMAIN WALLS IN VALLEY-ZEEMAN
SOC

A. General model of smooth domain walls in the
continuum

We start by considering the low-energy continuum
Dirac theory for graphene with a smooth domain wall
in any of our coupling parameters:
H =τzσx(−i∂x) + kyσy +m(x)σz + λKM (x)τzσzsz

+ λV Z(x)τzsz + λR(x)(τzσxsy − σysx), (3)

where we assume translational invariance along the do-
main wall in y direction (any direction is equivalent in
the low-energy theory), them, λKM , λV Z and λR are the
Dirac mass, Kane-Mele spin orbit (KM), valley-Zeeman
spin-orbit (VZ) and Rashba spin-orbit (R) couplings, re-
spectively, and the Pauli matrices τi, σi, si, i = x, y, z,
are acting in the valley, sublattice and spin space, re-
spectively, while we set ~vF ≡ 1. Throughout the paper
for simplicity we consider coupling parameters in pairs:
one having a DW profile (detailed below), the other one
being constant and non-zero, while the rest of coupling
parameters are set to zero. We further require that the
two domains far away from the DW are gapped, so that
any DW modes are prominent inside a bulkgap. Obvi-
ously, if multiple well-separated DWs appear in the sys-
tem, they will behave independently and each will carry
its modes. In this section we focus on the new DW in
λV Z(x) with λR constant. In Appendix B we show that
a DW in λR(x) with λV Z constant does not carry topo-
logical modes, while for DWs in λKM (x) and m(x) we
recover their already known DW modes.
The profile of a domain wall in any one of the couplings

∆ ∈ {m,λKM , λV Z , λR} is defined as:

∆(x) ≡ ∆L + ∆R

2 + ∆R −∆L

2 η(x), (4)

characterized by the limiting values ∆L ≡ ∆(x→ −∞),
∆R ≡ ∆(x → ∞), which define the domains to the left
and to the right of the DW, and by an arbitrary smooth
function η(x), which satisfies η(x → ±∞) = ±1 (see
Fig. 2a). For a single DW the profile η(x) may be taken
as monotonous, and its particular form has no bearing
on the results in this section: one may imagine a typical
profile such as η(x) ∈ { 2

π arctan(x/l), tanh(x/l) . . .} with
a finite width length-scale l. We only consider DWmodes
in cases where both domains L,R have a full gap far away
from the DW.

B. Valley-Zeeman domain walls in the continuum
and the interface Chern number

We use the spectral flow theorem to show that a DW
in valley-Zeeman spin-orbit coupling in presence of a con-
stant non-zero Rashba spin-orbit coupling hosts propa-
gating modes which were not identified before. First, a
domain with constant λV Z , λR 6= 0 has a gap 2|λRλV Z |√

λ2
R

+λ2
V Z

at half filling even though neither coupling on its own
opens a gap in graphene. Hence we consider a domain
wall in λV Z(x). The spectral flow theorem, whose ap-
plication is presented in full detail in Appendix A, pre-
scribes to look at an auxiliary Hamiltonian matrix H̃ in
which −i∂x is replaced by a parameter kx, giving the
spectrum:
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Eτ,αβ = α

√
k2 + λV Z(x)2 + 2λ2

R + 2β
√
λ4
R + (λ2

R + λV Z(x)2)k2, (5)

with α, β = ±, k2 = k2
x + k2

y, having a valley degen-
eracy (τ = ±1) of each band. As noted, this spec-
trum has a gap if λV Z , λR 6= 0. We now look at gap-
closing degeneracy points at half filling, i.e., at band-
touching points between the two inner bands, which are
the ones having α = ±1 and β = −1. At a con-
stant λR 6= 0 the only such gap-closing may happen
at (x, kx, ky) = (xc, 0, 0) such that λV Z(xc) = 0. With
this degeneracy point identified, the spectral flow theo-
rem prescribes (see Appendix A for details) that we con-
struct the 4x4 projector (in Hilbert space of σ, s) to the
2 filled bands of H̃, Pτ = Pα=−,β=+

τ + Pα=−,β=−
τ , and

we do it using the formula for the projector to the n-th
band: P (n) =

∏
m 6=n

H̃−Em
En−Em . Finally, in the parameter

space (λV Z(x), kx, ky) we take a small sphere S2 enclos-
ing the degeneracy point (0, 0, 0), and evaluate the Chern
number of Pτ (λV Z(x), kx, ky) on this sphere, obtaining
the result

Cτ = 2τ sgn(λV Z,R − λV Z,L). (6)

The outcome of the spectral flow theorem is that a
DW across which λV Z changes sign, in presence of any
non-zero λR as shown in Fig. 2a, has |N±| = 2 chiral
propagating modes with the direction of velocity along y
being sgn(N±) = ±1 in each valley τ = ± (Fig. 2b).

C. Mapping to spinless bilayer graphene

The valley-Zeeman DW modes can be exactly mapped
onto the bound states of a DW profile in gate volt-
age in spinless bilayer graphene introduced in Ref [15].
The low energy Hamiltonian of AB-stacked gated bilayer
graphene is:

HBLG = kxσx + kyτzσy + t⊥
2 (σxηx + σyηy)− V ηz, (7)

where the new Pauli matrices ηi act in the layer space,
while t⊥ is the hopping amplitude to go from the A atom
of one layer to a B atom of the other layer. The mapping
to our graphene model with valley-Zeeman and Rashba
can be done stepwise by applying two unitary transfor-
mations. First, to recover our form of the kinetic part we
apply U† = 1+τz

2 + 1−τz
2 σz which multiplies the τ = −1

sector by σz, obtaining

H
(1)
BLG = kxτzσx + kyσy + t⊥

2 τz(σxηx +σyηy)−V ηz (8)

Second, we map the layer exchange part onto Rashba
SOC, and the gate voltage onto valley-Zeeman SOC by
performing a rotation around ηz to exchange x and y,

and then multiplying by ηy in the τ = −1 sector, which
altogether requires U† = 1−iηz√

2 ( 1+τz
2 + 1−τz

2 ηy), so that
in the end we have

H
(2)
BLG = kxτzσx+kyσy+ t⊥

2 (τzσxηy−σyηx)−V τzηz. (9)

By reinterpreting the spinless bilayer’s layer degree of
freedom as a spin degree of freedom we finally get the
Hamiltonian of graphene with a valley-Zeeman SOC
λV Z = −V and a Rashba SOC λR = t⊥

2 .
In the limit where V � t⊥ ⇒ λV Z � λR which was

studied in Ref. [15] they show that for V (x) = κV0sgn(x)
with t⊥ > 0, V0 > 0, and κ = ±1, there are 4 in-gap
branches crossing zero energy:

Eτ± = ±

vF kyτκ
2
√
t⊥
∓

√
v2
F k

2
y

4t⊥
+ V0√

2

2

∓
√

2V0. (10)

The crossings appear at ky = ∓ κ
vF

√
t⊥V0
2
√

2 , while the sign
of the velocity around the crossings is given by −κτ .
Given the identification λV Z(x) = −V (x), it means that
in our model for a DW with negative values of valley-
Zeeman SOC on the left and positive values on the right,
the bound states with τ = 1 are right movers, which
matches our results, see Fig. 2a,b.

D. General model of domain walls on the lattice

In the preceding continuum theory the electronic
modes hosted by DWs are labeled by a valley index τ , so
even the spectral flow theorem cannot prevent the mixing
and gapping-out of modes in presence of inter-valley scat-
tering on the graphene lattice. Therefore we study via
exact diagonalization the tight-binding lattice models of
DWs with two main goals: (i) To confirm the continuum
theory predictions when DW profile varies slowly over
many lattice sites; (ii) To assess the robustness to inter-
valley scattering and lattice anisotropy using an atomi-
cally sharp DW profile.
The tight-binding Hamiltonian collecting all the

position-dependent coupling terms we consider is:

H =− t
∑
<i,j>

c†i cj +
∑
i,α

(−1)limic
†
iαciα (11)

+ i
∑

<<i,j>>,α,β

λKMij νijc
†
iαs

αβ
z cjβ +H.c.

+ i
∑

<<i,j>>,α,β

λV Zij (−1)liνijc†iαs
αβ
z cjβ +H.c.

+ i
∑

<ij>,α,β

λRij ẑ · (~dij × ~sαβ) c†iαcjβ +H.c.,
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where c†iα creates an electron on site i with Sz spin α = ±,
the (−1)li = +(−) for a site on sublattice A(B), the
νij = sgn[ẑ ·

(
~d

(1)
ij × ~d

(2)
ij

)
] with ~d

(1)
ij ,

~d
(2)
ij the two NN-

bond vectors forming the path j → 1 → 2 → i between
NNN neighbors j, i, where we normalize |~dij | = 1. When
the couplings are homogeneous, independent of sites i, j,
one finds the quantitative connection to the continuum
couplings, i.e., mi = m, λKM = −3

√
3λKMij , λV Z =

−3
√

3λV Zij , λR = −3λRij/2.
Before introducing the models for domain walls, let

us recall the crystalline symmetries of the various spin-
orbit terms we introduced in the above Hamiltonian. The
Kane-Mele SOC preserves the full graphene point-group
symmetry D6h. The valley-Zeeman SOC breaks symme-
tries exchanging sublattices, such as inversion and C6,
but not the z → −z mirror symmetry, hence preserv-
ing the point group D3h. The Rashba SOC breaks the
z → −z mirror symmetry and inversion so preserves C6v.
Finally, the Dirac mass preserves the D3h symmetry such
as the valley-Zeeman SOC.

Now we consider a graphene lattice with two domains.
Requiring periodic boundary conditions on the lattice
forces the existence of two domain walls since the do-
mains meet each other twice, see Fig. 2e. More precisely,
consider first the profile of the coupling constant which
creates one DW on the lattice:

η(~Ri, ~R0) = tanh
[

(~Ri − ~R0) · ~eDW
l

]
, (12)

where ~Ri is the position of site i, ~R0 is a position in the
center of a honeycomb plaquette through which the DW
passes, while the ~eDW = x̂(ŷ) gives an armchair(zigzag)
DW on the lattice, see Fig. 2c. The Hamiltonian has
translational symmetry along the straight DW, and con-
sequently the bulk Dirac points are projected onto two
distant momenta kx in case of zigzag DW, and onto the
same ky = 0 in case of armchair DW. Effects of interval-
ley scattering are consequently masked in the zigzag DW
case, and we find the predicted continuum modes. There-
fore in the rest of the paper we present the armchair DWs
for which the intervalley lattice scattering effects are fully
exhibited. The length l is used to vary the smoothness of
the DW profile and therefore tune the amount of interval-
ley scattering. By “sharp DW” we mean the limit l→ 0,
where η(~Ri, ~R0) becomes a step-function (Fig. 2c). For
a sharp DW we verify that the precise value of couplings
on NNN bonds which cross the domain boundary do not
matter for the main features of in-gap modes.

To satisfy the periodic boundary conditions as in
Fig. 2e we position the DW to cross ~R0 ≡ ~RDW and
overlay a second domain wall profile (the so-called “anti-
DW”) to cross ~R0 ≡ ~RantiDW :

η(~Ri) ≡ η(~Ri, ~RDW ) · η(~Ri, ~RantiDW ), (13)

∆i ≡
∆L + ∆R

2 + ∆R −∆L

2 η(~Ri). (14)

The sketch in Fig. 2e represents an armchair DW and
anti-DW, hence their positions are given by xDW =
~RDW · x̂ and xantiDW = ~RantiDW · x̂. The coupling ∆
can be any one of ∆ ∈ {m,λKM , λV Z , λR}, and by con-
struction on the lattice ∆i has the values ∆L(∆R) on
the left(right) side of the DW, but has the opposite val-
ues ∆R(∆L) on the left(right) side of the anti-DW (hence
the name “anti”), see Fig. 2e for the example of valley-
Zeeman SOC, ∆ ≡ λV Z . Since the bulkgap is given by
the smaller of the bulkgaps on two domains, for simplic-
ity our profile has −∆L = ∆R ≡ ∆.
Electronic states localized in real space around DW

and around anti-DW are degenerate by lattice symmetry.
To identify these states separately, we energetically split
them by adding a small chemical potential

∑
α c
†
iαciα in

real space at the lattice sites i along the DW. To assign a
valley index to an electron state, we Fourier transform its
x-dependence, and note that the two valleys contribute
Fourier components at opposite momenta ±K.

E. Robustness of Valley-Zeeman domain-wall
modes

The main result of the tight-binding lattice model with
an armchair DW profile in valley-Zeeman SOC λV Zij and
a constant non-zero Rashba SOC λRij as defined in the
previous subsection, is that we find two co-propagating
modes in each valley per DW in exact accord with the
new modes identified in the continuum in Section III B.
We are now in a position to discuss the robustness

of these valley-Zeeman DW modes provided by the in-
terface Chern number Cτinterface = 2τ and the spectral
flow theorem. We study three ways to destroy the DW
modes: (1) Intervalley scattering, which destroys the τ
number, and hybridizes the modes in the same way as it
would any modes protected by some bulk topology Cτbulk
in general. (2) Closing the direct bulkgap, which removes
a prerequisite in the SFT proof of domain-wall modes, is
as detrimental as for bulk-topology protected modes. (3)
Destroying translation symmetry along the domain-wall,
which figures explicitly in SFT and is hence a peculiarity
of protection by Cinterface.
First, we consider closing the direct bulkgap. We add a

constant λKMij coupling, which is a natural choice since all
three types of spin-orbit coupling appear in graphene on
transition metal dichalcogenide substrates[7–9, 11, 12].
The in-gap DW modes indeed stay gapless with in-
creasing λKM all the way until the bulkgap opened by
λV Zij and λRij closes on both domains. This is fully ex-
plained in the SFT picture, since once the λKMij closes
and reopens the bulkgap in competition with the valley-
Zeeman&Rashba, the degeneracy point in parameter
space disappears.[45] Note, the SFT does not require a
bulk insulator to stabilize the DW modes, since it relies
on the bandstructure only in the vicinity of the degener-
acy point in parameter space. In other words, the bulk-
gap could close at some far away point in the Brillouin
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zone of the domains without affecting the DW modes.
In contrast, bulk topological numbers would not even be
defined in such a scenario.

Second, we consider intervalley scattering. Within the
energy resolution of our tight-binding model, the gap-
less DW modes persist even for a sharp DW profile, see
Fig. 2d (compare to continuum result in Fig. 2b). This
is however a consequence of the fact that SOC is a weak
intervalley scatterer, so although the atomically sharp
armchair DW has large intervalley scattering Fourier am-
plitudes, these are suppressed by a geometric scatter-
ing prefactor of the SOC. We confirmed that the valley-
Zeeman DW modes can be gapped by adding strong
enough atomic-scale impurities, as expected, so that this
robustness is only parametrical. Let us compare this be-
havior to the well-known valley-polarized modes for a
sign-changing DW of Dirac mass m, which are known to
be sensitive to intervalley scattering[19]. We are able to
quantify the effect. Treating a sharp DW as a perturba-
tion to ideal graphene (see details in Appendix D), we
find that intervalley scattering at second order of pertur-
bation opens a gap of size 2 2m2

3t in the DW modes, which
matches very well the tight-binding results, Fig. 4a,b.
Our perturbative approach is applicable only if m < t,
which translates to the gapped DWmodes still remaining
inside the bulkgap. Interestingly, even a small smooth-
ing of the DW profile drastically reduces this intervalley
scattering effect, e.g., a DW profile with width of a few
lattice constants l ∼ 2a reduces the gap in the modes by
an order of magnitude, see Fig. 4c.

Third, destroying translation symmetry along the DW,
i.e., removing the ky quantum number of the armchair
DW, which figures explicitly in the SFT and is hence
a peculiarity of protection by Cτinterface. As one way to
test this, in our tight-binding model of the valley-Zeeman
DW, we added a random component to the VZ SOC in
wide strips covering each DW, and observed that even
with appreciable random component (with standard de-
viation of order of the bulkgap) the density of states in-
side the bulkgap remains the same as for the perfect DW
modes, while we check that the localization of DW modes
does not change appreciably. Hence there is no patholog-
ical sensitivity to deforming the translationally invariant
DW.

We close this section with a detailed comparison
of our valley-Zeeman DW modes and the previously
identified[26] zigzag-ribbon edge modes of graphene with
λV Z in the so-called “quantum valley spin Hall state"
(QVSHS). The homogeneous bulk model used to study
QVSHS is identical to our homogeneous bulk model,
when they both focus on graphene with valley-Zeeman
and Rashba SOC.

We consider zigzag edges and DWs to eliminate inter-
valley scattering effects and focus on topological protec-
tion with τ fixed. In terms of topological protection, we
have two co-propagating modes per domain wall in each
valley due to |Cτinterface| = 2, while the QVSHS has one
“valley-centered” mode per edge in each valley associ-

ated to the (topologically ill-defined) valley-Chern num-
ber |Cv| = 1 [9, 26, 43]. To prove the different degrees
of topological protection, in our tight-binding model we
make the hoppings located on the domain walls tunable,
so that we can smoothly interpolate between a system
with two zigzag DWs (separating two domains in a peri-
odic lattice) and a system with four zigzag edges (when
the two domains become disconnected) [46]. We find
that the four valley-centered QVSHS edge modes evolve
into the four valley-Zeeman DW modes. Strikingly, the
QVSHS edge modes are gapped out by increasing the
value of λR/λV Z consistent with the claim in Ref. 26,
although this does not change the band topology. In
contrast, the DW modes remain gapless, as predicted by
the SFT and Cτinterface for any value λR 6= 0.[47]

IV. DISCUSSION AND CONCLUSIONS

Using the spectral flow theorem we derived topologi-
cally protected electronic modes of various domain walls
in graphene with Dirac mass, Kane-Mele SOC, valley-
Zeeman SOC and Rashba SOC, with precise symmetry
and chirality labeling. However this method does not
address the robustness to breaking symmetries and to
lattice effects, for which we employed tight-binding mod-
eling.
The main finding is the robust pair of Kramers pairs

on a valley-Zeeman DW in presence of a constant Rashba
SOC, which might be relevant to the efforts of induc-
ing topological phases in graphene by proximity to tran-
sition metal dichalcogenides; namely, experiments find
that the induced valley-Zeeman SOC is strong, and
there is a weaker Rashba SOC, at least on a large-scale
average[7, 8]. Due to incommensurability, on the scale of
Moire pattern there can be domains where couplings vary
significantly and even change sign. The Rashba SOC
could possibly be made constant on larger domains by
external fields perpendicular to graphene. Altogether the
valley-Zeeman DW states may form a tunable network of
propagating states between domains[1, 3, 22, 23, 43, 48].
For untwisted graphene on transition metal dichalco-
genide substrates the Moire pattern is on the nanoscale,
which might allow the propagating states to remain well-
defined, but also might lead to collective effects due to
their real-space overlap. Spectroscopic measurements on
the nanoscale might be useful to look for the modes, while
it would be interesting to expand this study with the ef-
fects of local strain due to incommensurability.
The connection between a valley-Zeeman DW and a

DW in gating of spinless bilayer graphene implies pos-
sibilities to explore valleytronics ideas. Compared to
the modes in the spinless bilayer, the valley-Zeeman DW
modes are not doubled and they lack any spin-rotation
symmetry, hence they should be more resilient to time-
reversal breaking. The spinful gated bilayer setup was
used in Ref. [44] to engineer helical modes by magnetic
field, and it is an interesting question how the valley-
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Zeeman DW modes could be manipulated using external
fields.

As we have been focusing on modes inside the bulkgap,
we note that a DW which is smooth on the nanoscale
should also host gapped excited modes beside the topo-
logically protected gapless modes[49, 50]. Such gapped
SOC DW modes would be observable inside the bulk-
gap if the DW profile was smooth enough, e.g., for
|λ| ∼ 10meV having width 70nm.[51] Hence, this phe-
nomenology might be relevant for twisted incommensu-
rate heterostructures with large Moire periods. Conse-
quently, a valley-Zeeman DW might host an in-gap tower
of propagating modes which could be tuned by chang-
ing the spatial variation lengthscale and/or the strength
of Rashba SOC. The same could be relevant for Kane-
Mele SOC DWs, whose topological modes are gapped by
Rashba SOC, but the induced amplitude of Rashba SOC
in graphene heterostructures seems to be small enough
so that all the modes of a Kane-Mele DW could still be
within the bulkgap.

In the broader perspective on topological modes in
graphene due to domain walls in spin-orbit coupling, one
may note that the Kane-Mele SOC λKM provides bulk-
index protected DW modes: either protected by time-
reversal symmetry and the Z2 bulk-index (on a topolog-
ical insulator edge, where |λKM,L| < |m| < |λKM,R|),
or protected by Sz spin-rotation symmetry and the bulk
spin-Chern number (on a sign-changing DW in λKM with
|m| < |λKM,L|, |λKM,R|), raising the question whether
there are DWs in λKM which break Sz by design but
whose modes are not equivalent to topological insulator
edge modes. A natural candidate is a DW across which
the spin-axis of the Kane-Mele coupling rotates. From
a different viewpoint, the idea that a spiralling magnetic
coupling emulates a constant spin-orbit coupling[52] has
been fruitful in designing topological modes, so it is nat-
ural to ask what modes are associated with a spiralling
spin-orbit coupling. We will show elsewhere that there
are no isolated domain-wall-bound modes, but instead
they are tied to the bulk modes.

More generally, our work should motivate further the-
oretical study of topological defects in spin-orbit cou-
pling, since a domain wall is just the simplest one-
dimensional example, while zero-dimensional defects in
spin-orbit coupling were also confirmed to host interest-
ing bound states[53, 54]. Methodically, the spectral flow
theorem proved useful and informative in understand-
ing both single-valley and two-valley systems with one-
dimensional defects in two spatial dimensions because the
resulting three-dimensional parameter space had point-
and line-like degeneracies in our models. It would be in-
teresting to further apply this approach to the numerous
quantum condensed matter models in this category.

(a) (b)

Figure 3. Spectral flow theorem for domain walls in the
continuum. (a) Generic profile of a continuum DW with ar-
bitrary asymptotic values ∆L, ∆R on the two domains. (b)
A degeneracy point in classical variable space is enclosed by
a sphere S2(θ, φ) on which one calculates the Chern number
of the projector to states below the gap.
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Appendix A: Spectral flow theorem reviewed on
example of domain walls in Kane-Mele SOC and

Dirac mass

The spectral flow theorem is presented in mathemat-
ical detail in Refs. [33, 40, 41], while here we demon-
strate its practical use in two dimensions with one spa-
tially dependent coupling by solving step-by-step the DW
in Kane-Mele coupling ∆(x) ≡ λKM (x) in presence of a
constant mass termm. This example unifies two physical
situations as discussed below, and we choose it because
each step in the calculation is fully analytical. The the-
orem involves a few steps:

1. We replace the quantum Hamiltonian of
Eq. (3), H(x,−i∂x, ky), with a matrix function
H̃(x, kx, ky) = kxτzσx + kyσy +mσz + ∆(x)τzσzsz
of classical variables so that kx now commutes
with x and thereby with η(x) and ∆(x) ≡ λKM (x).

2. We consider H̃ which have some gap in the spec-
trum that may close at most at some isolated
points (xi, kix, kiy) labeled by an integer i. Physi-
cally, this requires that on both domains far away
from the DW the H has a gap between, say the
bands n and n + 1, and we consider the lower n
bands filled. The spectrum of our H̃ is Eτs± =
±
√
k2
x + k2

y + (τs∆(x) +m)2, with τ = ±, s = ±
being the eigenvalues of τz, sz, respectively. We are
interested in the gap opened at the Dirac point, i.e.,
half filling, so there are 4 filled bands Eτs−.

3. We identify at most two possible degeneracy points
closing the gap between filled and empty bands,
namely (xi, kix, kiy) = (xic, 0, 0) where τs∆(xic) +
m = 0 so that

λKM (xic) = −τsm ∈ {+m,−m}, (A1)
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and for our smooth monotonous DW profile η(x)
the equation over all τ , s has either:

(a) No solutions for |∆L|, |∆R| < |m| (both do-
mains trivially gapped with the same mass),

(b) One solution if |∆L| < |m| < |∆R| or |∆L| >
|m| > |∆R| (edge between TI and trivial mass
gap),

(c) Both solutions for |∆L|, |∆R| > |m| with
sgn(∆L∆R) < 0 (DW between two TI do-
mains of opposite sign of λKM ).

4. We enclose a given degeneracy point (xi, kix, kiy)
with a closed surface, e.g., sphere Si(θ, φ), and on
this surface consider the projector P̃ i− onto the filled
bands of H̃. For a degeneracy line we need to adapt
the enclosing surface. This is detailed in the next
Appendix B. The spectral flow theorem states that
the number of chiral modes N i

chiral traversing the
gap (more precisely, leaving the valence band) is:

N i
chiral = Ci−, (A2)

where the chiral modes of positive(negative) veloc-
ity along y are counted positively(negatively), and
Ci− is the first Chern number of the filled states on
the sphere Si(θ, φ):

Ci− = − 1
2πi

2π∫
0

dφ
π∫

0

dθTrP i−(∂θP i−∂φP i− − ∂φP i−∂θP i−).

(A3)
The enclosing sphere Si(θ, φ) can be
parametrized using (x, kx, ky) = (xi, kix, kiy) +
ε(δx, δkx, δky) with (δx, δkx, δky) ≡
(cos(θ), sin(θ) cos(φ), sin(θ) sin(φ)), where it is
only important to preserve the orientations
of the coordinate systems, see Fig. 3b. The
coupling term is also approximated on the
sphere using the smoothness and monotonicity
of the profile η(x): τs∆(x) + m ≈ τsDRLδx,
DRL ≡ sgn(λKM,R − λKM,L) for the two possible
degeneracy points, where we rescaled the coupling
by a positive constant which does not change the
topology of P̃ (similarly we set the radius ε = 1).
The projectors to the 4 filled bands are

P iτs,− = 1
2(11− d̂iτ,s · σ) (A4)

d̂iτ,s = (τ sin(θ) cos(φ), sin(θ) sin(φ), τsDRL cos(θ)).
(A5)

The standard Chern number of spin-1/2 in mag-
netic field implies that Cτs,− = sDRL, since C is
preserved under inversion of d̂ but flips sign un-
der mirror operations. A band contributes one
mode (|Cτs,−| = 1) for each degeneracy point its
τ , s give according to Eq. (A1). In particular, if

λKM,R > λKM,L then a Kane-Mele DW profile
λKM (x) which crosses the value m hosts two chi-
ral modes (Kramers pair) with quantum numbers
τ = −s, while if it crosses the value −m there are
two (more) modes with τ = s, with chiralities al-
ways Nchiral = s.

As expected we recover the Kramers pair of topological
insulator edge modes, and we find the four modes of a
Kane-Mele DW across which λKM changes sign (while
|m| < |λKM,R|, |λKM,L|, possibly m = 0), as expected
from the spin Chern number difference of 2.
Using the above approach we also find the well-known

valley-polarized modes for a DW with a sign change of
mass m (given that |λKM | < |mR|, |mL|).[19, 40]

Appendix B: Absence of topological modes for other
DWs involving valley-Zeeman and Rashba SOC

We start by considering a DW in either λV Z or in λR
in presence of a constant m, and find no topological DW
modes. Concretely, in the first case the spectrum of H̃
is Eτs = τsλV Z ±

√
k2 +m2, which is either gapless or

has no degeneracy point, while in the second case Eαβ =
α
√
k2 +m2 + 2λ2

R + 2β|λR|
√
k2 + λ2

R, with α, β = ±,
has no degeneracy points for any value of λR(x).
More interestingly, we now consider a DW in ∆(x) ≡

λR(x) in presence of constant λV Z 6= 0. Note that the
bulkgap of graphene with both constant λR, λV Z is equal
to 2|λRλV Z |√

λ2
R

+λ2
V Z

, which is an expression symmetric to ex-
change of λV Z and λR. Nevertheless the DWs are com-
pletely different: the DW in λV Z with constant λR hosts
robust modes discussed in Section III, while in the follow-
ing we show that a DW in λR with constant λV Z hosts
no modes at all. A DW in ∆(x) ≡ λR(x) in presence of
constant λV Z 6= 0 implies that a degeneracy at half-filling
occurs on a ring

(xφ, kφx , kφy ) = (xc, |λV Z | cos(φ), |λV Z | sin(φ)), (B1)

where λR(xc) = 0, Therefore propagating modes are
a priori possible only if the Rashba SOC changes sign
across the DW. The spectral flow theorem dictates that
we enclose the entire line of degeneracy points with a sur-
face, in this case the ring is simply enclosed by a torus of
small radius ε:λRkx

ky

 =

 ε cos(θ)
(|λV Z |+ ε sin(θ)) cos(φ)
(|λV Z |+ ε sin(θ)) sin(φ)

 (B2)

The Chern number of the projector onto the filled bands
over the torus surface (one just changes the range of
θ ∈ [0, 2π] in Eq. (A3)) gives zero, and therefore there
are no topological gapless modes on the Rashba DW. We
confirmed the absence of topological DW modes travers-
ing the bulkgap on the lattice too, for both smooth and
sharp DW profiles.
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Appendix C: Exact solution of domain walls in
Kane-Mele and Dirac mass couplings

Here we demonstrate that an exact solution for zero-
modes of for arbitrary Dirac mass and Kane-Mele SOC
domain walls in the continuum matches the predictions
of the SFT. It is obvious that this calculation is tedious,
opaque and requires ansatzes.

Given the rotation invariance of the low-energy Hamil-
tonian we can consider a domain wall in the x direction
without loss of generality. We start with Eq. (3) with the
usual substitution kx → −i∂x:

H = −ivF∂xτzσx+vF kyσy+λ(x)τzszσz+m(x)σz . (C1)

We rewrite the eigenproblem HΨ = EΨ as an explicit
first order differential equation :

∂xΨ =
(
kyτzσz −

λ(x)
vF

szσy −
m(x)
vF

τzσy + i
E

vF
τzσx

)
︸ ︷︷ ︸

Λ(x)

Ψ

(C2)
Since Λ is block diagonal in the valley and spin

space, we can compute the exponential in the different
eigenspace independently. The general solution requires
to compute the space ordered integral exp(

∫ x
0 Λ(t)dt).

Since we are looking for zero modes,we restrict ourselves
to ky = 0 and E = 0 which makes the exponential easy to
obtain. Doing so we will lose information on the chirality,
but we will come back to it at the end. We introduce the
following intermediate notations:

a(x) = 1
vF

∫ x

0
szλ(t) + ξm(t) dt

so that
∫ x

0 Λ(t) dt = −a(x)σy where ξ and sz are respec-
tively the eigenvalues of τz and sz. As a consequence

exp(−a(x)σy) = ch(a(x))11− sh(a(x))σy . (C3)

Now we look for solutions of the differential equation
which are normalizable. Let us assume that λ and m
have finite limits in ±∞. Consequently

a(x) ∼
+∞

1
vF
x(szλ+∞ + ξm+∞) = xa+

a(x) ∼
−∞

1
vF
x(szλ−∞ + ξm−∞) = xa− .

This implies that

exp(aσy) ∼
±∞

exp(|a±x|)
2 11− sgn(xa±)exp(|a±x|)

2 n̂.~σ .

(C4)
To be normalizable, the divergent components of

exp(a(x)σy) must be simultaneously zero at ±∞, which
means that

ker(11− sgn(a+)σy) ∩ ker(11 + sgn(a−)σy) 6= {0} . (C5)

This is true if and only if a+a− < 0.
If m + λ changes sign, then we have a Kramers’ pair

with ξ = sz. If m−λ changes sign then we have an other
one with ξ = −sz.
Chirality can be most simply recovered in the limit of

a wide DW, and we do not expect that chirality is flipped
under smooth local deformations of the DW profile, in-
cluding collapsing the DW into a discontinuous step-like
potential. This limiting case can be fully solved with the
previous method, albeit with more difficulties than for a
smooth DW. Hence we will linearize the DW around a
position where ∆ = m + ξszλ changes sign. We already
saw a change of sign in ∆ is a sufficient and necessary
condition for the zero modes.

∆ = d∆(x)
dx

∣∣∣∣
x0

(x− x0) = ∆0

l
(x− x0) , (C6)

where x0 is the position where ∆ goes to 0. Let’s first
focus on ky = 0. By squaring the Hamiltonian we obtain
an harmonic oscillator and an homogeneous term :

H2 = −v2
F∂

2
x + ∆2

0
l2

(x− x0)2 − vF
ξ∆0

l
σy . (C7)

The eigenenergies of the harmonic oscillator part are
2vF |∆0/l|(n+1/2) with n a positive or null integer. The
last term of Eq. C7 thus precisely shifts these energies to
2vF |∆0/l|n and 2vF |∆0/l|(n+ 1). In particular the zero
energy subspace is not degenerate as opposed to all other
states which are two-fold degenerate and which contain
both eigenvectors of σy. So, the zero energy eigenstate is
also a eigenstate of σy with eigenvalue ξsgn(∆0). And of
course, if m + ξszλ changes sign, then m + (−ξ)(−sz)λ
also changes sign in the same way.
Now, since H2 = H2(ky = 0) + v2

F k
2
y, this means that

the zero eigenvector of H(ky = 0) has eigenvalue σyvF ky
where we identify σy with its eigenvalue. So, we recapit-
ulate the chiralities of the different modes in the different
cases in the following table :

m+ λ m− λ
∆0 > 0 ∆0 < 0 ∆0 > 0 ∆0 < 0

+ ↑ RM − ↓ RM + ↓ RM − ↑ RM
− ↓ LM + ↑ LM − ↑ LM + ↓ LM

The first row denotes which term is changing sign while
± is the value of ξ, ↑↓ the value of sz and RM (LM) means
right (left) mover.For a DW between a trivial and QSH
phase, then either m+λ or m−λ changes sign, but they
cannot both change sign. We recover the standard edge
states with direction of movement, spin and valley be-
ing correlated. If both terms change sign, then the DW
separates either two trivial or two QSH phases. If it sep-
arate two trivial phases, then both m+λ and m−λ have
the same sign. Thus, we have both spins at both valley,
but valley and direction of movement are still correlated.
If it separates two QSH phases, then m + λ and m − λ
have opposite signs, so direction of movement is now only
correlated with spin.
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These match exactly the results of applying the spec-
tral flow theorem.

Appendix D: Intervalley-scattering gap for armchair
domain wall in Dirac mass

Here we derive an analytical perturbative result for the
small gap due to intervalley mixing of valley-polarized

modes of a DW in Dirac mass.
Continuum theory (either SFT or direct solution)

predicts four in-gap modes and hence four zero-energy
states, with both spins present in both valleys. Here we
consider an armchair domain wall in the mass term and
perturbatively compute the valley-mixing effect near the
Dirac momenta. Our initial eigenspace is the four-fold
degenerate zero energy eigenspace for spinless fermions
(so eight-fold for electrons) of standard graphene and our
perturbation is the mass domain wall:

Htrivial =

Ny
2 −1∑
β=0

Nx−1∑
α=0

mα(c†αβ,A1cαβ,A1 + c†αβ,A2cαβ,A2− c†αβ,B1cαβ,B1− c†αβ,B2cαβ,B2), where mα =
{

+m if α < Nx
2

−m otherwise
(D1)

Here we introduce an enlarged unit-cell comprising four
atoms which belong to two adjacent elementary unit-
cells. We use the numbers {1, 2} to label this internal de-
gree of freedom. This folds the hexagonal Brillouin zone

into a rectangle where ±K are mapped to ∓2π/(3
√

3a).

The first step is to compute the matrix elements of the
mass term in the Fourier basis.

Htrivial =

Ny
2 −1∑
ky=0

Nx−1∑
k1=0
k2=0

k1−k2≡1[2]

m
1
Nx

4

1− e2iπ (k1−k2)
Nx

(c†k1ky,A1ck2ky,A1 +c†k1ky,A2ck2ky,A2−c†k1ky,B1ck2ky,B1−c†k1ky,B2ck2ky,B2)

(D2)

Because we considered a sharp domain wall and symmet-
ric domains we only couple states with an odd momen-
tum difference. As a consequence there is no first order
contribution of the mass on the Dirac cones, so we need
to go to second order. To do so we need the eigenvectors
with energies close to 0 which we obtain by using first or-
der perturbation theory on the zero energy eigenspace of
standard graphene but the perturbation is now the small
momentum in the ~x direction.

The Bloch Hamiltonian at the Dirac point K = Nx
3 ~ex

is, in units t = −1:

HK =

 0 0 1 −j2

0 0 −j 1
1 −j2 0 0
−j 1 0 0

 , (D3)

where j = e
2iπ

3 is the usual cubic root of 1, and the Bloch
Hamiltonian H−K at the other valley −K is obtained
simply by exchanging j and j2. Now we can compute
the effect at first order, namely at first order in p

Nx
,

HK+p ~ex = HK + 2iπp
Nx

 0 0 0 j
0 0 −j2 0
0 j 0 0
−j2 0 0 0


︸ ︷︷ ︸

V

. (D4)

Details of the calculation are not presented for the
sake of brevity, and finally we obtain that the ef-
fect of the mass term at second order on the low
energy states of graphene in the { j

2|A1,K〉+|A2,K〉√
2 ,

j2|B1,K〉+|B2,K〉√
2 , j|A1,−K〉+|A2,−K〉√

2 , j|B1,−K〉+|A2,−K〉√
2 } ba-

sis is :

H(2) =

0 0 0 κ∗

0 0 κ∗ 0
0 κ 0 0
κ 0 0 0

 = (<(κ)τx + =(κ)τy)σx, (D5)
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(a) (b) (c)

Figure 4. Intervalley scattering in a tight-binding lattice
model for a sign-changing armchair DW in Dirac mass, with
parameters Nx = 204, Ny = 500, m(±∞) = ±0.1t. (a), (b)
The size of the gap at ky = 0 opened in the valley-polarized
DWmodes due to intervalley scattering of an atomically sharp
DW profile. Measured in tight-binding (dots) and derived
perturbatively (line) as function of M ≡ |m(x → ±∞)/t|, in
log-log scale (a) and lin-lin scale (b). (c) Exponential decay
of the gap in DW modes (in units of t) as a function of the
width of the domain wall (in units of lattice constant).

where

κ = 16m2

N2
x

∑
p∈Z

1
(1− e2iπ 2p+1

Nx )(j − e−2iπ 2p+1
Nx )

1
vx(2p+ 1) ,

vx =
√

3π
Nx

. (D6)

This Hamiltonian opens a 2|κ| gap. To compute κ we use
that Nx → +∞, hence

κ ≈ 16m2

N2
x

∑
p∈Z

1
2iπ 2p+1

Nx
(1− j − 2iπ 2p+1

Nx
)

1
vx(2p+ 1) .

(D7)
Since vx is in 1

Nx
it is justified to only keep the first or-

der contribution in p
Nx

, which will lead to a constant term

thanks to the prefactor 1
N2
x
, while higher order contribu-

tions will disappear in the thermodynamic limit. We get

κ ≈ 16m2

(1− j)N2
x

∑
p∈Z

N2
x

2
√

3iπ2(2p+ 1)2
(D8)

= 8m2

i(1− j)
√

3π2

∑
p∈Z

1
(2p+ 1)2 = 8m2

i(1− j)
√

3π2
2π

2

8

= − 2m2
√

3(1− j)
i, (D9)

and finally

|κ| = 2m2

3 , (D10)

which is the expression quoted in the main text. The
predicted gap of 2|κ| is compared to the gap in modes we
obtain by numerical exact diagonalization of the tight-
binding Hamiltonian (Fig. 4a,b).
Finally if we go from a sharp domain wall to a smooth

domain wall, the gap gets drastically reduced, as can be
seen in Fig. 4c. Our smooth domain walls are obtained
by convolution of a sharp DW (step function) with a
gaussian of desired width ξ. The drop in the value of the
gap is coherent with our analysis as the value of the gap is
tuned by the Fourier coefficients linking states close to K
to states close to −K. Indeed, as the smoothness of the
domain wall increases, which means as its typical width
increases, the width of its Fourier transform decreases.
This gives support to our assessment that the gap is a
second order effect caused by the sharpness of the domain
wall.

[1] S. Huang, K. Kim, D. K. Efimkin, T. Lovorn,
T. Taniguchi, K. Watanabe, A. H. MacDonald, E. Tutuc,
and B. J. LeRoy, Topologically protected helical states
in minimally twisted bilayer graphene, Phys. Rev. Lett.
121, 037702 (2018).

[2] P. Rickhaus, J. Wallbank, S. Slizovskiy, R. Pisoni,
H. Overweg, Y. Lee, M. Eich, M.-H. Liu, K. Watan-
abe, T. Taniguchi, T. Ihn, and K. Ensslin, Transport
through a network of topological channels in twisted bi-
layer graphene, Nano Letters 18, 6725 (2018).

[3] H. Yoo, R. Engelke, S. Carr, S. Fang, K. Zhang,
P. Cazeaux, S. H. Sung, R. Hovden, A. W. Tsen,
T. Taniguchi, K. Watanabe, G.-C. Yi, M. Kim,
M. Luskin, E. B. Tadmor, E. Kaxiras, and P. Kim,
Atomic and electronic reconstruction at the van der waals
interface in twisted bilayer graphene, Nature Materials
18, 448 (2019).

[4] I. V. Lebedeva and A. M. Popov, Energetics and struc-
ture of domain wall networks in minimally twisted bilayer
graphene under strain, The Journal of Physical Chem-

istry C 124, 2120 (2020).
[5] A. Avsar, J. Y. Tan, T. Taychatanapat, J. Balakrish-

nan, G. K. W. Koon, Y. Yeo, J. Lahiri, A. Carvalho,
A. S. Rodin, E. C. T. O’Farrell, G. Eda, A. H. Cas-
tro Neto, and B. Özyilmaz, Spin–orbit proximity effect
in graphene, Nature Communications 5, 4875 (2014).

[6] Z. Wang, D.-K. Ki, J. Y. Khoo, D. Mauro, H. Berger,
L. S. Levitov, and A. F. Morpurgo, Origin and magni-
tude of ‘designer’ spin-orbit interaction in graphene on
semiconducting transition metal dichalcogenides, Phys.
Rev. X 6, 041020 (2016).

[7] S. Zihlmann, A. W. Cummings, J. H. Garcia, M. Kedves,
K. Watanabe, T. Taniguchi, C. Schönenberger, and
P. Makk, Large spin relaxation anisotropy and valley-
zeeman spin-orbit coupling in wse2/graphene/h-bn het-
erostructures, Phys. Rev. B 97, 075434 (2018).

[8] T. Wakamura, F. Reale, P. Palczynski, M. Q. Zhao,
A. T. C. Johnson, S. Guéron, C. Mattevi, A. Ouerghi,
and H. Bouchiat, Spin-orbit interaction induced in
graphene by transition metal dichalcogenides, Phys. Rev.

https://doi.org/10.1103/PhysRevLett.121.037702
https://doi.org/10.1103/PhysRevLett.121.037702
https://doi.org/10.1021/acs.nanolett.8b02387
https://doi.org/10.1038/s41563-019-0346-z
https://doi.org/10.1038/s41563-019-0346-z
https://doi.org/10.1021/acs.jpcc.9b08306
https://doi.org/10.1021/acs.jpcc.9b08306
https://doi.org/10.1038/ncomms5875
https://doi.org/10.1103/PhysRevX.6.041020
https://doi.org/10.1103/PhysRevX.6.041020
https://doi.org/10.1103/PhysRevB.97.075434
https://doi.org/10.1103/PhysRevB.99.245402


13

B 99, 245402 (2019).
[9] B. Yang, M.-F. Tu, J. Kim, Y. Wu, H. Wang, J. Al-

icea, R. Wu, M. Bockrath, and J. Shi, Tunable spin-
orbit coupling and symmetry-protected edge states in
graphene/ws2, 2D Materials 3, 031012 (2016).

[10] A. W. Cummings, J. H. Garcia, J. Fabian, and S. Roche,
Giant spin lifetime anisotropy in graphene induced by
proximity effects, Phys. Rev. Lett. 119, 206601 (2017).

[11] A. David, P. Rakyta, A. Kormányos, and G. Burkard, In-
duced spin-orbit coupling in twisted graphene–transition
metal dichalcogenide heterobilayers: Twistronics meets
spintronics, Phys. Rev. B 100, 085412 (2019).

[12] Y. Li and M. Koshino, Twist-angle dependence of the
proximity spin-orbit coupling in graphene on transition-
metal dichalcogenides, Phys. Rev. B 99, 075438 (2019).

[13] D. Kochan, S. Irmer, and J. Fabian, Model spin-orbit
coupling hamiltonians for graphene systems, Phys. Rev.
B 95, 165415 (2017).

[14] E. McCann and V. I. Fal’ko, z → −z symmetry of spin-
orbit coupling and weak localization in graphene, Phys.
Rev. Lett. 108, 166606 (2012).

[15] I. Martin, Y. M. Blanter, and A. F. Morpurgo, Topo-
logical confinement in bilayer graphene, Phys. Rev. Lett.
100, 036804 (2008).

[16] A. Vaezi, Y. Liang, D. H. Ngai, L. Yang, and E.-A. Kim,
Topological edge states at a tilt boundary in gated mul-
tilayer graphene, Phys. Rev. X 3, 021018 (2013).

[17] L.-J. Yin, H. Jiang, J.-B. Qiao, and L. He, Direct imaging
of topological edge states at a bilayer graphene domain
wall, Nature Communications 7, 11760 (2016).

[18] W. Yao, S. A. Yang, and Q. Niu, Edge states in graphene:
From gapped flat-band to gapless chiral modes, Phys.
Rev. Lett. 102, 096801 (2009).

[19] G. W. Semenoff, V. Semenoff, and F. Zhou, Domain walls
in gapped graphene, Phys. Rev. Lett. 101, 087204 (2008).

[20] K.-I. Sasaki, R. Saito, M. S. Dresselhaus, K. Wak-
abayashi, and T. Enoki, Soliton trap in strained graphene
nanoribbons, New Journal of Physics 12, 103015 (2010).

[21] S.-R. E. Yang, Soliton fractional charges in graphene
nanoribbon and polyacetylene: Similarities and differ-
ences, Nanomaterials 9, 10.3390/nano9060885 (2019).

[22] P. San-Jose and E. Prada, Helical networks in twisted
bilayer graphene under interlayer bias, Phys. Rev. B 88,
121408 (2013).

[23] D. K. Efimkin and A. H. MacDonald, Helical network
model for twisted bilayer graphene, Phys. Rev. B 98,
035404 (2018).

[24] Y. H. Kwan, G. Wagner, N. Chakraborty, S. H. Simon,
and S. A. Parameswaran, Domain wall competition in
the chern insulating regime of twisted bilayer graphene
(2020), arXiv:2007.07903 [cond-mat.str-el].

[25] O. Shevtsov, P. Carmier, C. Petitjean, C. Groth, D. Car-
pentier, and X. Waintal, Graphene-based heterojunc-
tion between two topological insulators, Phys. Rev. X
2, 031004 (2012).

[26] T. Frank, P. Högl, M. Gmitra, D. Kochan, and J. Fabian,
Protected pseudohelical edge states in z2-trivial proxim-
itized graphene, Phys. Rev. Lett. 120, 156402 (2018).

[27] L. Razzaghi and M. V. Hosseini, Quantum transport
of dirac fermions in graphene with a spatially varying
rashba spin–orbit coupling, Physica E: Low-dimensional
Systems and Nanostructures 72, 89 (2015).

[28] A. Brataas, A. G. Malshukov, and Y. Tserkovnyak,
Spin injection in quantum wells with spatially dependent

rashba interaction, New Journal of Physics 9, 345 (2007).
[29] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Lud-

wig, Classification of topological insulators and super-
conductors in three spatial dimensions, Phys. Rev. B 78,
195125 (2008).

[30] A. Kitaev, Periodic table for topologi-
cal insulators and superconductors, AIP
Conference Proceedings 1134, 22 (2009),
https://aip.scitation.org/doi/pdf/10.1063/1.3149495.

[31] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu,
Classification of topological quantum matter with sym-
metries, Reviews of Modern Physics 88, 035005 (2016).

[32] J. Li, A. F. Morpurgo, M. Büttiker, and I. Martin,
Marginality of bulk-edge correspondence for single-valley
hamiltonians, Phys. Rev. B 82, 245404 (2010).

[33] P. Delplace, Berry-Chern monopoles and spectral flows,
SciPost Phys. Lect. Notes , 39 (2022).

[34] J. Teo and C. Kane, Topological defects and gapless
modes in insulators and superconductors, Physical Re-
view B 82, 115120 (2010).

[35] E. Prodan, Non-commutative tools for topological insu-
lators, New Journal of Physics 12, 5003 (2010).

[36] E. Prodan, Robustness of the spin-Chern number, Phys-
ical Review B 80, 125327 (2009).

[37] D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Hal-
dane, Quantum spin-hall effect and topologically invari-
ant chern numbers, Phys. Rev. Lett. 97, 036808 (2006).

[38] M. Ezawa, Topological kirchhoff law and bulk-edge cor-
respondence for valley chern and spin-valley chern num-
bers, Phys. Rev. B 88, 161406 (2013).

[39] M. Ezawa, Spin valleytronics in silicene: Quantum spin
hall–quantum anomalous hall insulators and single-valley
semimetals, Phys. Rev. B 87, 155415 (2013).

[40] F. Faure, Manifestation of the topological index for-
mula in quantum waves and geophysical waves (2019),
arXiv:1901.10592 [math-ph].

[41] M. Marciani and P. Delplace, Chiral maxwell waves in
continuous media from berry monopoles, Phys. Rev. A
101, 023827 (2020).

[42] T. T. Heikkilä, N. B. Kopnin, and G. E. Volovik, Flat
bands in topological media, JETP Letters 94, 233 (2011).

[43] A. M. Alsharari, M. M. Asmar, and S. E. Ulloa, Mass in-
version in graphene by proximity to dichalcogenide mono-
layer, Phys. Rev. B 94, 241106 (2016).

[44] J. Klinovaja, G. J. Ferreira, and D. Loss, Helical states in
curved bilayer graphene, Phys. Rev. B 86, 235416 (2012).

[45] This simple effect of competing bulkgaps (without any
DWs) between Kane-Mele SOC and valley-Zeeman and
Rashba SOC was already identified in Refs. [13, 26].

[46] The additional “pseudohelical edge modes” of QVSHS
connect valleys, so they cannot be matched to our DW
modes, and indeed these modes are removed from the
low-energy part of the spectrum as four edges evolve into
two DWs.

[47] Here we note that Ref. 32 considers different
zigzag/bearded edge terminations in each layer of their
bilayer graphene model, and find that they might have
0,1, or 2 valley-centered modes per edge per valley in ac-
cordance with fragility of Cτbulk. However, the mapping of
their model to ours that we discovered takes their layer
index into our Sz index, hence the only natural edge ter-
minations in our model could be both zigzag or both
bearded zigzag, and these options each have 1 mode per
edge per valley. Hence, we demonstrated the fragility of

https://doi.org/10.1103/PhysRevB.99.245402
https://doi.org/10.1088/2053-1583/3/3/031012
https://doi.org/10.1103/PhysRevLett.119.206601
https://doi.org/10.1103/PhysRevB.100.085412
https://doi.org/10.1103/PhysRevB.99.075438
https://doi.org/10.1103/PhysRevB.95.165415
https://doi.org/10.1103/PhysRevB.95.165415
https://doi.org/10.1103/PhysRevLett.108.166606
https://doi.org/10.1103/PhysRevLett.108.166606
https://doi.org/10.1103/PhysRevLett.100.036804
https://doi.org/10.1103/PhysRevLett.100.036804
https://doi.org/10.1103/PhysRevX.3.021018
https://doi.org/10.1038/ncomms11760
https://doi.org/10.1103/PhysRevLett.102.096801
https://doi.org/10.1103/PhysRevLett.102.096801
https://doi.org/10.1103/PhysRevLett.101.087204
https://doi.org/10.1088/1367-2630/12/10/103015
https://doi.org/10.3390/nano9060885
https://doi.org/10.1103/PhysRevB.88.121408
https://doi.org/10.1103/PhysRevB.88.121408
https://doi.org/10.1103/PhysRevB.98.035404
https://doi.org/10.1103/PhysRevB.98.035404
https://arxiv.org/abs/2007.07903
https://doi.org/10.1103/PhysRevX.2.031004
https://doi.org/10.1103/PhysRevX.2.031004
https://doi.org/10.1103/PhysRevLett.120.156402
https://doi.org/https://doi.org/10.1016/j.physe.2015.04.023
https://doi.org/https://doi.org/10.1016/j.physe.2015.04.023
https://doi.org/10.1088/1367-2630/9/9/345
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1063/1.3149495
https://doi.org/10.1063/1.3149495
https://arxiv.org/abs/https://aip.scitation.org/doi/pdf/10.1063/1.3149495
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/PhysRevB.82.245404
https://doi.org/10.21468/SciPostPhysLectNotes.39
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1088/1367-2630/12/6/065003
https://doi.org/10.1103/PhysRevB.80.125327
https://doi.org/10.1103/PhysRevB.80.125327
https://doi.org/10.1103/PhysRevLett.97.036808
https://doi.org/10.1103/PhysRevB.88.161406
https://doi.org/10.1103/PhysRevB.87.155415
https://arxiv.org/abs/1901.10592
https://doi.org/10.1103/PhysRevA.101.023827
https://doi.org/10.1103/PhysRevA.101.023827
https://doi.org/10.1134/S0021364011150045
https://doi.org/10.1103/PhysRevB.94.241106
https://doi.org/10.1103/PhysRevB.86.235416


14

edgemodes using the strength of Rashba SOC, instead of
using a switch between zigzag/bearded.

[48] B. Tsim, N. N. T. Nam, and M. Koshino, Perfect
one-dimensional chiral states in biased twisted bilayer
graphene, Phys. Rev. B 101, 125409 (2020).

[49] S. Tchoumakov, V. Jouffrey, A. Inhofer, E. Bocquillon,
B. Plaçais, D. Carpentier, and M. O. Goerbig, Volkov-
pankratov states in topological heterojunctions, Phys.
Rev. B 96, 201302 (2017).

[50] T. L. van den Berg, A. De Martino, M. R. Calvo,
and D. Bercioux, Volkov-pankratov states in topological
graphene nanoribbons, Phys. Rev. Research 2, 023373
(2020).

[51] This estimate is obtained from an analytical for-
mula for the tower of excited states in the exam-
ple of Kane-Mele SOC with a very smooth DW
profile η(x), which in a large region of space is
well approximated by a linear profile[49]. We obtain
two series of two-fold degenerate states: En(qy) =

±
{√

2vF λ0
l
n+ v2

F q
2
y,

√
2vF λ0

l
(n+ 1) + v2

F q
2
y

}
, where

n = 0, 1, 2 . . ., the slope of the DW profile in real space is
λ0
l
≡ dλKM

dx

∣∣
x0
, with x0 being defined by λKM (x0) = 0.

For typical DW profiles the value λ0 = λKM (+∞) −
λKM (−∞). In total, the level at n = 0 is two-fold de-
generate (gapless topological modes), and all others are
four-fold, which we confirmed in a tight-binding model.
The number of DW excited modes inside the bulkgap is
estimated as nmax ∼ |λKM (±∞)|

t
l
a
.

[52] B. Braunecker and P. Simon, Interplay between classi-
cal magnetic moments and superconductivity in quantum
one-dimensional conductors: Toward a self-sustained
topological majorana phase, Phys. Rev. Lett. 111,
147202 (2013).

[53] J. D. Sau, S. Tewari, R. M. Lutchyn, T. D. Stanescu, and
S. Das Sarma, Non-Abelian quantum order in spin-orbit-
coupled semiconductors: Search for topological Majorana
particles in solid-state systems, Physical Review B 82,
214509 (2010).

[54] G. C. Ménard, A. Mesaros, C. Brun, F. Debontridder,
D. Roditchev, P. Simon, and T. Cren, Isolated pairs of
Majorana zero modes in a disordered superconducting
lead monolayer, Nature Communications 10, 1 (2019).

https://doi.org/10.1103/PhysRevB.101.125409
https://doi.org/10.1103/PhysRevB.96.201302
https://doi.org/10.1103/PhysRevB.96.201302
https://doi.org/10.1103/PhysRevResearch.2.023373
https://doi.org/10.1103/PhysRevResearch.2.023373
https://doi.org/10.1103/PhysRevLett.111.147202
https://doi.org/10.1103/PhysRevLett.111.147202
https://doi.org/10.1103/PhysRevB.82.214509
https://doi.org/10.1103/PhysRevB.82.214509
https://doi.org/10.1038/s41467-019-10397-5

	Robust propagating in-gap modes due to spin-orbit domain walls in graphene
	Abstract
	I Introduction
	II The interface Chern number
	III Domain walls in valley-Zeeman SOC
	A General model of smooth domain walls in the continuum
	B Valley-Zeeman domain walls in the continuum and the interface Chern number
	C Mapping to spinless bilayer graphene
	D General model of domain walls on the lattice
	E Robustness of Valley-Zeeman domain-wall modes

	IV Discussion and Conclusions
	 Acknowledgments
	A Spectral flow theorem reviewed on example of domain walls in Kane-Mele SOC and Dirac mass
	B Absence of topological modes for other DWs involving valley-Zeeman and Rashba SOC
	C Exact solution of domain walls in Kane-Mele and Dirac mass couplings
	D Intervalley-scattering gap for armchair domain wall in Dirac mass
	 References


