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Using the simple (symmetric) Hubbard dimer, we analyze some important features of the GW approximation.
We show that the problem of the existence of multiple quasiparticle solutions in the (perturbative) one-shot GW
method and its partially self-consistent version is solved by full self-consistency. We also analyze the neutral
excitation spectrum using the Bethe-Salpeter equation (BSE) formalism within the standard GW approximation
and find, in particular, that i) some neutral excitation energies become complex when the electron-electron
interaction U increases, which can be traced back to the approximate nature of the GW quasiparticle energies;
ii) the BSE formalism yields accurate correlation energies over a wide range of U when the trace (or plasmon)
formula is employed; iii) the trace formula is sensitive to the occurrence of complex excitation energies (especially
singlet), while the expression obtained from the adiabatic-connection fluctuation-dissipation theorem (ACFDT) is
more stable (yet less accurate); iv) the trace formula has the correct behavior for weak (i.e., small U) interaction,
unlike the ACFDT expression.

I. INTRODUCTION

Many-body perturbation theory (MBPT) based on Green’s
functions is among the standard tools in condensed matter
physics for the study of ground- and excited-state properties.1–4

In particular, the GW approximation4,5 has become the method
of choice for band-structure and photoemission calculations
and, combined with the Bethe-Salpeter equation (BSE@GW)
formalism,6–13 for optical spectra calculations. Thanks to
efficient implementations,14–26 this toolkit is acquiring in-
creasing popularity in the traditional quantum chemistry
community,12,13,21,27–43 partially due to the similarity of the
equation structure to that of the standard Hartree-Fock (HF)44

or Kohn-Sham (KS)45,46 mean-field methods. Several studies
of the performance of various flavors of GW in atomic and
molecular systems are now present in the literature,17,31,33,47–60

providing a clearer picture of the pros and cons of this ap-
proach. There are, however, still some open issues, such
as i) how to overcome the problem of multiple quasiparti-
cle solutions,15,43,56,61–63 ii) what is the best way to calculate
ground-state total energies,23,42,43,64–71 and iii) what are the
limits of the BSE in the simplification commonly used in the
so-called Casida equations.7,65,72–86 In the present work, we
address precisely these questions by using a very simple and
exactly solvable model, the symmetric Hubbard dimer. Small
Hubbard clusters are widely used test systems for the GW
approximation (see, e.g. 87–92). Despite its simplicity, the
Hubbard dimer is able to capture lots of the underlying physics
observed in more realistic systems,91–94 such as, for example,
the nature of the band-gap opening in strongly correlated sys-
tems as bulk NiO.95 Here, we will use it to better understand
some features of the GW approximation and the BSE@GW
approach. Of course, care must be taken when extrapolating
conclusions to realistic systems.

The paper is organized as follows. Section II provides the
key equations employed in MBPT to calculate removal and
addition energies (or charged excitations), neutral (or optical)
excitation energies, and ground-state correlation energies. In
Sec. III, we present and discuss the results that we have ob-

tained for the Hubbard dimer. We finally draw conclusions and
perspectives in Sec. IV

II. THEORETICAL FRAMEWORK

In the following we provide the key equations of MBPT3

and, in particular, we discuss how one can calculate ground-
and excited-state properties, namely removal and addition en-
ergies, spectral function, total energies, and neutral excitation
energies. We use atomic units ~ = m = e = 1 and work at zero
temperature throughout the paper.

A. The GW approximation

Within MBPT a prominent role is played by the one-body
Green’s function G which has the following spectral represen-
tation in the frequency domain:

G(x1, x2;ω) =
∑
ν

ψν(x1)ψ∗ν(x2)
ω − εν + iη sgn(εν − µ)

, (1)

where µ is the chemical potential, η is a positive infinitesimal,
εν = EN+1

ν − EN
0 for εν > µ, and εν = EN

0 − EN−1
i for εν < µ.

Here, EN
ν is the total energy of the νth excited state of the

N-electron system (ν = 0 being the ground state). In the case
of single-determinant many-body wave functions (such as HF
or KS), the so-called Lehmann amplitudes ψν(x) reduce to
one-body orbitals and the poles of the Green’s function εν to
one-body orbital energies.

The one-body Green’s function is a powerful quantity that
contains a wealth of information about the physical system.
In particular, as readily seen from Eq. (1), it has poles at the
charged excitation energies of the system, which are proper
addition/removal energies of the N-electron system. Thus, one
can also access the (photoemission) fundamental gap

Eg = IN − AN , (2)
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where IN = EN−1
0 − EN

0 is the ionization potential and AN =

EN
0 − EN+1

0 is the electron affinity. Moreover, one can straight-
forwardly obtain the spectral function, which is closely related
to photoemission spectra, as

A(x1, x2;ω) =
1
π

sgn(µ − ω) Im G(x1, x2;ω). (3)

The ground-state total energy can also be extracted from G
using the Galitskii-Migdal (GM) formula96

EGM
0 = −

i
2

∫
dx1 lim

2→1+

[
i
∂

∂t1
+ h(r1)

]
G(1, 2), (4)

where 1 ≡ (x1, t1) is a space-spin plus time composite variable
and h(r) = −∇/2 + vext(r) is the one-body Hamiltonian, vext(r)
being the local external potential.

The one-body Green’s function can be obtained by solving a
Dyson equation of the form G = G0 + G0ΣG, where G0 is the
non-interacting Green’s function and the self-energy Σ is an
effective potential which contains all the many-body effects of
the system under study. In practice, Σ must be approximated
and a well-known approximation is the so-called GW approxi-
mation in which the self-energy reads ΣGW = vH + iGW, where
vH is the classical Hartree potential, and W = ε−1vc is the dy-
namically screened Coulomb interaction, with ε−1 the inverse
dielectric function and vc the bare Coulomb interaction.5

The equations stemming from the GW approximation
should, in principle, be solved self-consistently, since Σ is a
functional of G.5 Self-consistency, however, is computationally
demanding, and one often performs a single GW correction.
This cost-saving and popular strategy is known as one-shot
GW. The main drawback of the one-shot GW method is its
dependence on the starting point (i.e., the orbitals and ener-
gies of the HF or KS mean-field eigenstates) originating from
its perturbative nature. To overcome this problem, one can
introduce some level of self-consistency. Removal/addition
energies are thus obtained by solving iteratively the so-called
quasiparticle equation

ω = εHF
i +

〈
φHF

i

∣∣∣ΣGW
c (ω)

∣∣∣φHF
i

〉
. (5)

Here, we choose to start from HF spatial orbitals φHF
i (r) and

energies εHF
i , which are corrected by the (real part of the)

correlation contribution of the GW self-energy ΣGW
c = ΣGW −

Σx, where Σx = ivcG is the exchange part of the self-energy. As
a non-linear equation, Eq. (5) has potentially many solutions
εGW

i,ν . The so-called quasiparticle (QP) solution εGW
i,ν=0 ≡ ε

QP
i has

the largest renormalization factor (or spectral intensity)

Zi,ν =

1 − 〈
φHF

i

∣∣∣∂ΣGW
c (ω)
∂ω

∣∣∣φHF
i

〉∣∣∣∣∣∣
ω=εGW

i,ν

−1

, (6)

while the satellite (sat) peaks εGW
i,ν>0 ≡ ε

sat
i,ν share the remaining of

the spectral weight. Moreover, one can show that the following
sum rule is fulfilled97 ∑

ν

Zi,ν = 1, (7)

where the sum runs over all the solutions of the quasiparticle
equation for a given mean-field eigenstate i. Throughout this
article, i, j, k, and l denote general spatial orbitals, a and b
refer to occupied orbitals, r and s to unoccupied orbitals, while
m labels single excitations a→ r.

In eigenvalue self-consistent GW (commonly abbreviated
as evGW),39,47,48,98–100 one only updates the poles of G, while
keeping fix the orbitals (or weights). At the nth iteration, the
removal/addition energies are obtained from the GW quasipar-
ticle solutions computed from Gn−1W(Gn−1) where the satel-
lites are discarded at each iteration. Nonetheless, at the final
iteration one can keep the satellite energies to get the full
spectral function [see Eq. (3)]. In fully self-consistent GW
(scGW),22–25,101 one updates the poles and weights of G retain-
ing quasiparticle and satellite energies at each iteration.

It is instructive to mention that, for a conserving approxi-
mation, the sum of the intensities corresponding to removal
energies equals the number of electrons, i.e.,

∑
εGW

i,ν <µ Zi,ν = N.
scGW is an example of conserving approximations, while, in
general, the one-shot GW does not conserve the number of
electrons.

B. Bethe-Salpeter equation

1. Neutral excitations

Linear response theory102–104 in MBPT is described by the
Bethe-Salpeter equation.7 The standard BSE within the static
GW approximation (referred to as BSE@GW in this work,
which means the use of GW quasiparticle energies to build
the independent-particle excitation energies and of the GW
self-energy to build the static exchange-correlation kernel) can
be recast, assuming a closed-shell reference state, as a non-
Hermitian eigenvalue problem known as Casida equations:(

Aλ Bλ

−Bλ −Aλ

) (
Xλ

m
Yλ

m

)
= Ωλ

m

(
Xλ

m
Yλ

m

)
, (8)

where Ωλ
m is the mth excitation energy with eigenvector

(Xλ
m Yλ

m)ᵀ at interaction strength λ, ᵀ is the matrix transpose,
and we have assumed real-valued spatial orbitals. The in-
teraction strength λ scales the on-site interaction U, and the
non-interacting and physical systems correspond to λ = 0 and
1, respectively. The matrices Aλ and Bλ are of size OV × OV ,
where O and V are the number of occupied and virtual or-
bitals, respectively, and O + V is the total number of spatial
orbitals. Introducing the so-called Mulliken notation for the
bare two-electron integrals

(i j|kl) =

"
dr1dr2φi(r1)φ j(r1)vc(r1 − r2)φk(r2)φl(r2), (9)

and the corresponding (static) screened Coulomb potential
matrix elements at coupling strength λ, i.e., Wλ

i j,kl(ω = 0), with

Wλ
i j,kl(ω) =

"
dr1dr2φi(r1)φ j(r1)Wλ(r1, r2;ω)φk(r2)φl(r2),

(10)
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the BSE matrix elements read

Aλ,σσ′

ar,bs = δabδrs(εQP
r − ε

QP
a ) + λ

[
ασσ′ (ar|sb) −Wλ

ab,sr(ω = 0)
]
,

(11a)

Bλ,σσ
′

ar,bs = λ
[
ασσ′ (ar|bs) −Wλ

as,br(ω = 0)
]
, (11b)

where εQP
i are the GW quasiparticle energies, and α↑↓ = 2

and α↑↑ = 0 for singlet (i.e., spin-conserved) and triplet (i.e.,
spin-flip) excitations, respectively.

In the absence of instabilities (i.e., when Aλ − Bλ is positive-
definite),105 Eq. (8) is usually transformed into an Hermitian
eigenvalue problem of half the dimension

(Aλ − Bλ)1/2(Aλ + Bλ)(Aλ − Bλ)1/2Vλ
m = (Ωλ

m)2Vλ
m, (12)

where the excitation amplitudes are

(Xλ + Yλ)m = (Ωλ
m)−1/2(Aλ − Bλ)+1/2Vλ

m, (13a)

(Xλ − Yλ)m = (Ωλ
m)+1/2(Aλ − Bλ)−1/2Vλ

m. (13b)

Singlet (Ω↑↓m ≡ Ω
λ=1,↑↓
m ) and triplet (Ω↑↑m ≡ Ω

λ=1,↑↑
m ) excitation

energies are obtained by diagonalizing Eq. (8) at λ = 1.

2. Correlation energies

Our goal here is to compare the BSE correlation energy
EBSE

c obtained using two formulas, namely the trace (or plas-
mon) formula106,107 and the expression obtained using the
adiabatic-connection fluctuation-dissipation theorem (ACFDT)
formalism.42,43,67,108–112 The two approaches have been re-
cently compared at the random-phase approximation (RPA)
level for the case of Be2,71 showing similar improved per-
formances at the RPA@GW@PBE level with respect to the
RPA@PBE level and an impressive accuracy by introducing
BSE (BSE@GW@HF) correction in the trace formula. Here
we would like to get more insights into the quality of these two
approaches.

The ground-state correlation energy within the trace formula
is calculated as

ETr@BSE
c = ETr@BSE

c,↑↓ + ETr@BSE
c,↑↑

=
1
2

∑
m

Ω↑↓m − Tr
(
A↑↓

) +
1
2

∑
m

Ω↑↑m − Tr
(
A↑↑

),
(14)

where Aσσ′ ≡ Aλ=1,σσ′ is defined in Eq. (11a), and Tr denotes
the matrix trace. We note that the trace formula is an approx-
imate expression of the correlation energy since it relies on
the so-called quasi-boson approximation and on the killing
condition on the zeroth-order Slater determinant ground state
(see Ref. 71 for more details). Note that here both sums in
Eq. (14) run over all excitation energies while they are usually
restricted to the positive (hence real-valued) BSE excitation
energies. Thus, the Tr@BSE correlation energy is potentially
a complex-valued function in the presence of singlet and/or
triplet instabilities.

The ACFDT formalism,108 instead, provides an in-principle
exact expression for the correlation energy within time-
dependent density-functional theory (TDDFT).104,113,114 In
practice, however, one always ends up with an approximate
expression, which quality relies on the approximations to the
exchange-correlation potential of the KS system and to the
kernel of the TDDFT linear response equations. In this work,
therefore, we use the ACFDT expression within the BSE for-
malism and we explore how well it performs and how it com-
pares to the trace formula (14).

Within the ACFDT framework, only the singlet states do
contribute for a closed-shell ground state, and the ground-state
BSE correlation energy

EAC@BSE
c =

1
2

∫ 1

0
dλTr

(
K↑↓Pλ,↑↓

)
(15)

is obtained via integration along the adiabatic connection path
from the non-interacting system at λ = 0 to the physical system
λ = 1, where

K =

Ãλ=1 Bλ=1

Bλ=1 Ãλ=1

 (16)

is the interaction kernel,42,43,111 Ãλ,σσ′

ar,bs = ασσ′λ(ar|sb), and

Pλ =

(
Yλ(Yλ)ᵀ Yλ(Xλ)ᵀ

Xλ(Yλ)ᵀ Xλ(Xλ)ᵀ

)
−

(
0 0
0 1

)
(17)

is the correlation part of the two-body density matrix at inter-
action strength λ. Here again, the AC@BSE correlation energy
might become complex-valued in the presence of singlet insta-
bilities.

Note that the trace and ACFDT formulas yield, for any set
of eigenstates, the same correlation energy at the RPA level.111

Moreover, in contrast to density-functional theory where the
electron density is fixed along the adiabatic path,115–117 at the
BSE@GW level, the density is not maintained as λ varies.
Therefore, an additional contribution to Eq. (15) originating
from the variation of the Green’s function along the adiabatic
connection should, in principle, be added. However, as com-
monly done within RPA67,109–111 and BSE,42,43 we neglect this
additional contribution.

III. RESULTS

As discussed in Sec. I, in this work, we consider the (sym-
metric) Hubbard dimer as test case, which is governed by the
following Hamiltonian

Ĥ = −t
∑
σ=↑,↓

(
ĉ†1σĉ2σ + ĉ†2σĉ1σ

)
+ U

(
n̂1↑n̂1↓ + n̂2↑n̂2↓

)
. (18)

Here n̂1σ = ĉ†1σĉ1σ (n̂2σ = ĉ†2σĉ2σ) is the spin density operator
on site 1 (site 2), ĉ†1σ and ĉ1σ (ĉ†2σ and ĉ2σ) are the creation
and annihilation operators for an electron at site 1 (site 2) with
spin σ, U is the on-site (spin-independent) interaction, and
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FIG. 1. Spectral function of G [see Eq. (3)] as a function of (ω− µ)/t (where µ = U/2 is the chemical potential) at various values of the ratio U/t
(U/t = 1, 5, 10, and 15) for different levels of theory: exact (black), GHFWHF (red), evGW (blue), and scGW (green). All approximate schemes
are obtained using GHF as starting point.

TABLE I. Numerical values of quasiparticle energy εQP
an and satellite energy εsat

an (anti-bonding components) and respective intensities (ZQP
an and

Zsat
an ) for the spectral functions presented in Fig. 1. Energies are relative to the chemical potential µ = U/2. All spectral functions presented in

Fig. 1 are symmetric with respect to µ, which means that εQP/sat
bn = −εQP/sat

an and ZQP/sat
bn = ZQP/sat

an .

εQP
an εsat

an ZQP
an Zsat

an
U/t exact GHFWHF evGW scGW exact GHFWHF evGW scGW exact GHFWHF evGW scGW exact GHFWHF evGW scGW
1 1.0615 1.0721 1.0702 1.0651 3.0615 3.9006 4.1175 4.0793 0.9851 0.9855 0.9864 0.9861 0.0149 0.0145 0.0135 0.0132
5 2.2016 1.6739 1.6302 1.4334 4.2016 6.5728 8.8364 7.6389 0.8123 0.9183 0.9398 0.9239 0.1876 0.0817 0.0602 0.0593

10 4.3852 2.4893 2.4001 1.7787 6.3852 9.1225 14.7136 10.8296 0.6857 0.8717 0.9182 0.8777 0.3143 0.1282 0.0818 0.0823
15 6.7621 3.2887 3.1813 2.0542 8.7621 11.2887 20.5769 13.3847 0.6288 0.8430 0.9082 0.8472 0.3712 0.1570 0.0918 0.0934

−t is the hopping kinetic energy. The physics of the Hubbard
model arises from the competition between the hopping term,
which prefers to delocalize electrons, and the on-site interac-
tion, which favors localization. The ratio U/t is a measure
for the relative contribution of both terms and is the intrinsic,
dimensionless coupling constant of the Hubbard model, which
we use in the following. In this work we consider the dimer at
one-half filling.

A. Quasiparticle energies in the GW approximation

We test different flavors of self-consistency in GW calcula-
tions: one-shot GW, evGW, partial self-consistency through
the alignment of the chemical potential (pscGW), where we
shift G0 or GHF in such a way that the resulting G has the same
chemical potential than the shifted G0 or shifted GHF,118 and
scGW. In the one-shot formalism, we also test two different
starting points: the truly non-interacting Green’s function G0
(U = 0) and the HF Green’s function GHF. These two schemes
are respectively labeled as G0W0 and GHFWHF in the following.

The G0W0 self-energy (in the site basis) and re-
moval/addition energies are already given in Ref. 92 for the
Hubbard dimer at one-half filling.

Starting from GHF, which reads

GHF,IJ(ω) =
1
2

[
(−1)(I−J)

ω − (t + U/2) + iη
+

1
ω + (t − U/2) − iη

]
,

(19)
where I and J run over the sites, the (correlation part of the)
GHFWHF self-energy is Σc,IJ(ω) = ΣIJ(ω) − δIJU/2 with

Σc,IJ(ω) =
U2t
2h

[
1

ω − (t + h + U/2) + iη

+
(−1)I−J

ω + (t + h − U/2) − iη

]
, (20)

where h =
√

4t2 + 4Ut. Here we used the following expression
for the polarizability P = −iGG with elements

PIJ(ω) =
(−1)I−J

4

[
1

ω − 2t + iη
−

1
ω + 2t − iη

]
(21)

to build the screened interaction W = vc + vcPW, whose only
non-zero matrix elements reads

WII,JJ(ω) = UδIJ

+ (−1)I−J U2t
h

[
1

ω − h + iη
−

1
ω + h − iη

]
(22)

due to the local nature of the electron-electron interaction. The
quantities defined in Eqs. (19), (20), (21), and (22) can then
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be transformed to the bonding (bn) and antibonding (an) basis
[which is used to recast the BSE as Eq. (8)] thanks to the
following expressions:

|bn〉 =
|1〉 + |2〉
√

2
, |an〉 =

|1〉 − |2〉
√

2
. (23)

Therefore, the one-shot removal/addition energies read

ε1,± = +
h
2

+
U
2
±

√
(h + 2t)2 + 4tU2/h

2
, (24a)

ε2,± = −
h
2

+
U
2
±

√
(h + 2t)2 + 4tU2/h

2
, (24b)

with the quasiparticle solutions being εQP
bn = ε1,− and εQP

an = ε2,+,
which correspond to the bonding and antibonding energies, re-
spectively. As readily seen in Eqs. (24a) and (24b), in addition
to the quasiparticle, there is a unique satellite per eigenstate
given by εsat

bn = ε1,+ and εsat
an = ε2,−. Moreover, the closed-form

expression of the renormalization factors [see Eq. (6)] read

ZQP
bn/an =

t
[
h2 + 2ht + 2U2 + h

√
(h + 2t)2 + 4tU2/h

]
h3 + 4h2t + 4ht2 + 4tU2 − h2

√
(h + 2t)2 + 4tU2/h

(25)
and Zsat

bn/an = 1 − ZQP
bn/an.

The evGW and scGW calculations were performed numer-
ically using the meromorphic representation of G, following
Ref. 90 with some slight modifications (see Appendix A for
more details). At each iteration, the solution of the Dyson
equations for G and W (see Sec. II A) produces extra poles. In
order to keep the number of poles under control in scGW, the
poles with intensities smaller than a user-defined threshold (set
from 10−4 to 10−6 depending on the ratio U/t) are discarded
and the corresponding spectral weight is redistributed among
the remaining poles.

In Fig. 1, we present the spectral function of G [see Eq. (3)]
for different values of the ratio U/t (U/t = 1, 5, 10, and 15) and
using GHF as starting point. We consider three GW variants:
GHFWHF, evGW, and scGW. For U/t . 3, all the schemes con-
sidered here provide a faithful description of the quasiparticle
energies. For larger U/t, GW tends to underestimate the funda-
mental gap Eg [see Eq. (2)], as shown in the upper left panel of
Fig. 2. GHFWHF and evGW give a very similar estimate of Eg,
whereas the quasiparticle intensity ZQP

bn/an defined in Eq. (25) is
quite different and overestimated by both methods, at least in
the range of U/t considered in Fig. 2 (center left panel).

The main effects of full self-consistency are the reduction
of Eg (see upper left panel of Fig. 2), and the creation of
extra satellites with decreasing intensity (see upper panel of
Fig. 1). For small U/t, the fundamental gap is similar to the one
predicted by other methods while for increasing U/t the agree-
ment worsen and Eg is grossly underestimated. The quasiparti-
cle intensity is very similar to the one predicted by GHFWHF.
Concerning the position of the satellites, we observe that the
one-shot GHFWHF scheme gives the most promising results.
Numerical values of quasiparticle and first satellite energies
as well as their respective intensities in the spectral functions
presented in Fig. 1 are gathered in Table I.

For the sake of completeness, we also report in the bot-
tom left panel of Fig. 2 the total energy calculated using the
Galinski-Migdal formula [see Eq. (4)]. Since the Galinski-
Migdal total energy is not stationary with respect to changes
in G, one gets meaningful energies only at self-consistency.
However, for the Hubbard dimer, we do not observe a signifi-
cant impact of self-consistency, as one can see from Fig. 1 by
comparing the total energy at the GHFWHF, evGW, and scGW
levels. For each of these schemes which correspond to a dif-
ferent level of self-consistency, the Galinski-Migdal formula
provides accurate total energies only for relatively small U/t
(. 3).

If we consider GHF as starting point and we define the chem-
ical potential as µ = (εQP

an + εQP
bn )/2, then the alignment of the

chemical potential has no effect on the spectrum, this means
that GHFWHF and pscGW are equivalent.

1. G0: a bad starting point

In the following we will illustrate how the starting point
can influence the resulting quasiparticle energies. The Green’s
function obtained from the one-shot G0W0 does not satisfy
particle-hole symmetry, the fundamental gap is underestimated
(top right panel of Fig. 2) yet more accurate than GHFWHF
(top left panel of Fig. 2), the quasiparticle intensity relative
to the bonding component is close to the exact result up to
U/t ≈ 16 (center right panel of Fig. 2), while overestimated
for the antibonding components. Moreover, we note that the
intensities of the two poles of the bonding component crosses
at U/t = 24. This means that if we sort the quasiparticle and
the satellite according to their intensity at a given U/t, the
nature of the two poles is interchanged when one increases
U/t. Meanwhile, the total number of particle is not conserved
(N < 2).

Considering G0 as starting point in evGW, we encounter
the problem described in Ref. 63, namely the discontinuity
of various key properties (such as the fundamental gap in
the top right panel of Fig. 2) with respect to the interaction
strength U/t. This issue is solved, for the Hubbard dimer,
by considering a better starting point or using the fully self-
consistent scheme scGW. Note, however, that improving the
starting point does not always cure the discontinuity problem
as this issue stems from the quasiparticle approximation itself.
Full self-consistency, instead, avoids systematically disconti-
nuities since no distinction is made between quasiparticle and
satellites. Unfortunately, full self-consistency is much more
involved from a computational point of view and, moreover, it
does not give an overall improvement of the various properties
of interest, at least for the Hubbard dimer, for which GHFWHF
is to be preferred. For more realistic (molecular) systems, it
was shown in Ref. 119 that the computationally cheaper self-
consistent COHSEX scheme solves the problem of multiple
quasiparticle solutions.
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FIG. 2. Fundamental gap (Eg), quasiparticle weight factors (ZQP
bn/an), and ground state energy (E0) as functions of U/t obtained from one-shot

GW (dashed red line), evGW (dashed-dotted blue line), scGW (dotted green line) using GHF (left) or G0 (right) as starting point. The black
curves are the exact results.

B. BSE

For the Hubbard dimer the matrices Aλ and Bλ in Eq. 8 are
just single matrix elements and they simply read, for both spin
manifolds,

Aλ,↑↓ = ∆εGW + λ
U
2
, Bλ,↑↓ = λ

U
2

(
4tU
h2 + 1

)
, (26a)

Aλ,↑↑ = ∆εGW − λ
U
2
, Bλ,↑↑ = λ

U
2

(
4tU
h2 − 1

)
, (26b)

while Ãλ,↑↓ = λU. We employ the screened Coulomb poten-
tial given in Eq. (22) at ω = 0 for the kernel, and the GW
quasiparticle energies from Eqs. (24a) and (24b) to build the
GW approximation of the fundamental gap ∆εGW = εQP

an − ε
QP
bn .

For comparison purposes, we also use the exact quasiparticle
energies [see Eq. (C3) of Ref. 92], which consists in replacing
∆εGW by the exact fundamental gap Eg =

√
16t2 + U2 − 2t. In

such a case, one is able to specifically test the impact of the
GW QP energies on the quality of the neutral excitations.

We notice that, within the so-called Tamm-Dancoff approx-
imation (TDA) where one neglects the coupling matrix Bλ

between the resonant and anti-resonant parts of the BSE Hamil-
tonian [see Eq. (8)], BSE yields RPA with exchange (RPAx)
excitation energies for the Hubbard dimer. This is the case also
for approximations to the BSE kernel which are beyond GW,
such as the T-matrix approximation.92,120,121, and it is again
related to the local nature of the electron-electron interaction.
Hence, to test the effect of approximations on correlation for
this model system we must go beyond the TDA.

1. Neutral excitations

In Fig. 3, we report the real part of the singlet and triplet
excitation energies obtained from the solution of Eq. (8) for
λ = 1. For comparison, we report also the exact excitation
energies obtained as differences of the excited- and ground-
state total energies of the Hubbard dimer obtained by diago-
nalizing the Hamiltonian (18) in the Slater determinant basis
{|1 ↑, 1 ↓〉 , |1 ↑, 2 ↓〉 , |1 ↓, 2 ↑〉 , |2 ↑, 2 ↓〉} built from the sites
(see Ref. 91 for the exact total energies). For the singlet man-
ifold, this yields, for the single excitation Ω

↑↓

1 and double
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excitation Ω
↑↓

2 , the following expressions:

Ω
↑↓

1 =
1
2

(
U +

√
16t2 + U2

)
, Ω

↑↓

2 =
√

16t2 + U2, (27)

while the unique triplet transition energy is

Ω
↑↑

1 =
1
2

(
−U +

√
16t2 + U2

)
. (28)

Of course, one cannot access the double excitation within the
static approximation of BSE,7,77,84 so only the lowest singlet
and triplet excitations, Ω

↑↓

1 and Ω
↑↑

1 , are studied below.
Using one-shot GHFWHF quasiparticle energies

(BSE@GHFWHF) produces complex excitation energies
(see right panel of Fig. 3). We find the same scenario also
with other flavors of GW (not reported in the figure), such as
scGW. The occurrence of complex poles and singlet/triplet
instabilities at the BSE level are well documented13,42,43 and
is not specific to the Hubbard dimer. For example, one finds
complex poles also for H2 along its dissociation path,122 but
also for larger diatomic molecules.43 For U/t > 12.4794, the

singlet energy becomes pure imaginary, the same is observed
for the triplet energy for 7.3524 < U/t < 12.4794. These two
points corresponds to discontinuities in the first derivative of
the excitation energies with respect to U/t (see Fig. 3). The
BSE excitation energies are good approximations to their
exact analogs only for U/t . 2 for the singlet and U/t . 6 for
the triplet. Using exact quasiparticle energies instead produces
real excitation energies, with the singlet energy in very good
agreement with the exact result; the triplet energy, instead,
largely overestimates the exact value. This seems to suggest
that complex poles are caused by the approximate nature of
the GW quasiparticle energies, although, of course, the quality
of the kernel also plays a role.

2. Correlation energy

For the Hubbard dimer, we have EHF = −2t + U/2, and
the correlation energy given in Eq. (15) can be calculated
analytically. After a lengthy but simple derivation, one gets

EAC@BSE
c = −

U
2

+
t2 − 2U2

2U(2t + 3U)

{
∆εGW −

1
2(t + U)

√
[−U2 + 2(t + U)∆εGW ]

[
U(2t + 3U) + 2(t + U)∆εGW ]}

−
t + 2U

2
√

U(2t + 3U)

(
3t + 4U
2t + 3U

+
t
U

)
∆εGW atan

− U
√

U(2t + 3U)

2∆εGW (t + U) +
√

[−U2 + 2(t + U)∆εGW ][U(2t + 3U) + 2(t + U)∆εGW ]

.
(29)

Results are reported in Fig. 4 and are compared with the exact
correlation energy91

Ec = −

√
16t2 + U2

2
+ 2t. (30)

The AC@BSE correlation energy does not possess the correct
asymptotic behavior for small U, as Taylor expanding Eq. (29)
for small U, we obtain

EAC@BSE
c = −

U2

32t
−

5U3

96t2 +
323U4

6144t3 + O
(
U4

)
, (31)
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while for the exact correlation energy behaves as

Ec = −
U2

16t
+

U4

1024t3 + O
(
U6

)
. (32)

Moreover, we found that the radius of convergence of the small-
U/t expansion of EAC@BSE

c is very small due to a square-root
branch point for U/t ≈ −2/3.

In the case of the trace formula (14), the singlet and triplet
contributions behave as

ETr@BSE
c,↑↓ = −

U2

32t
−

7U3

128t2 +
99U4

2048t3 + O
(
U5

)
, (33a)

ETr@BSE
c,↑↑ = −

U2

32t
+

7U3

128t2 −
157U4

2048t3 + O
(
U5

)
, (33b)

which guarantees the correct asymptotic behavior for the total
Tr@BSE correlation energy

ETr@BSE
c = −

U2

16t
−

29U4

1024t3 + O
(
U5

)
, (34)

and cancels the cubic term (as it should).
The trace formula is strongly affected by the appearance of

the imaginary excitation energies: as shown in Fig. 4 where we
plot the real and complex components of the BSE@GHFWHF
correlation energy as functions of U/t at various levels of
theory, discontinuities appear at the values of U/t for which
the triplet and singlet energies become purely imaginary. The
ACFDT expression, instead, is more stable over the range of
U/t considered here with only a small cusp on the energy
surface at the singlet instability point after which the real part
of EAC@BSE

c behaves linearly with respect to U/t. Overall,
however, the correlation energy obtained by the trace formula is
almost on top of its exact counterpart over a wide range of U/t,
with a rather small contribution from the triplet component,
i.e., |ETr@BSE

c,↑↑ | � |ETr@BSE
c,↑↓ | . Finally, we observe that both

expressions for the correlation energy produce better results
than the Galinski-Migdal formula (4), as one can see from
Fig. 4, in particular at large U/t.

IV. CONCLUSIONS

In this work we have used the symmetric Hubbard dimer
to better understand some features of the GW approximation
and of BSE@GW. In particular, we have found that the un-
physical discontinuities that may occur in quasiparticle ener-
gies computed using one-shot or partially self-consistent GW
schemes disappear using full self-consistency. However, full
self-consistency does not give an overall improvement in term
of accuracy and, at least for the Hubbard dimer, GHFWHF is to
be preferred.

We have also analyzed the performance of the BSE@GW
approach for neutral excitations and correlation energies. We
have found that, at any level of self-consistency, the excitation
energies become complex for some critical values of U/t. This
seems related to the approximate nature of the GW quasiparti-
cle energies, since using exact quasiparticle energies (hence the
exact fundamental gap) solves this issue. The BSE excitation
energies are good approximations to the exact analogs only for
a small range of U/t (or U/t . 2 for the lowest singlet-singlet
transition and U/t . 6 for the singlet-triplet transition), while
the strong-correlation regime remains a challenge.

The correlation energy obtained from these excitation ener-
gies using the trace (or plasmon) formula has been found to be
in very good agreement with the exact results over the whole
range of U/t for which these energies are real. The occurrence
of complex singlet and triplet excitation energies shows up as
discontinuities in the correlation energy. The ACFDT formula,
instead, is less sensitive to this. However, we have found that
the AC@BSE correlation energy is less accurate than the ones
obtained using the trace formula. Both, however, perform bet-
ter than the standard Galitski-Migdal formula. Finally, we have
studied the small-U expansion of the correlation energy ob-
tained with the trace and ACFDT formulas and we found that
the former, contrary to the latter, has the correct behavior when
one includes both the singlet and triplet energy contributions.
Our findings point out to a possible fundamental problem of
the AC@BSE formalism. It would be interesting to check if it
is also the case in realistic systems.
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Appendix A: Numerical evGW and scGW calculations

Following Ref. 90, we see from Eq. 1 that the matrix ele-
ments of the exact Green’s function G in a generic orbital basis
set can be expressed in the frequency domain as a sum over
poles, i.e.,

Gi j(ω) =
∑
ν

Gi j,ν

ω − εν + iη sgn(εν − µ)
, (A1)

where we introduced the spectral intensities

Gi j,ν =

∫
dx1x2φ

∗
i (x1)ψν(x1)ψ∗ν(x2)φ j(x2). (A2)

This representation remain valid for approximate Green’s func-
tion, such as the non-interacting G or its mean-field versions.
Likewise, Σ, W, and P have similar representations. Equation
(A1) allows us to evaluate convolutions and cross-correlations

analytically. Given the two functions

A(ω) =
∑
ν

Aν

ω − aν + iη sgn(aν − µ)
, (A3a)

B(ω) =
∑
ν

Bν
ω − bν + iη sgn(bν − µ)

, (A3b)

their cross correlation functions

C(ω) =

∫
dω′

2πi
A(ω′)B(ω + ω′), (A4a)

D(ω) =

∫
dω′

2πi
A(ω′)B(ω − ω′), (A4b)

can be written as

C(ω) = −
∑
bν<µ

∑
aξ>µ

AξBν
ω − (bν − aξ) − iη

+
∑
aν<µ

∑
bξ>µ

AνBξ
ω − (bξ − aν) + iη

,

(A5)

D(ω) =
∑
aν<µ

∑
bξ<µ

AνBξ
ω − (aν + bξ) − iη

−
∑
aν>µ

∑
bξ>µ

AνBξ
ω − (aν + bξ) + iη

.

(A6)

Equations (A4a) and (A4b) enter, for example, in the evalua-
tion of P and Σ.

The Dyson equation for G can then be solved in two steps:
i) finding the poles of G, εGW

i,ν , which correspond to the zeroes
of Eq. (5) with φi(r) = φbn/an(r), with, for example, an ordi-
nary root finding algorithm; ii) once the positions of the poles
are known, one can then compute the corresponding spectral
weights via Eq. (6).
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