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I. INTRODUCTION

Electronic structure theory relies heavily on approximations. [START_REF] Szabo | Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory[END_REF][START_REF] Helgaker | Molecular Electronic-Structure Theory[END_REF][START_REF] Jensen | Introduction to Computational Chemistry[END_REF] Loosely speaking, to make any method practical, three main approximations are typically enforced. The first fundamental approximation, known as the Born-Oppenheimer (or clamped-nuclei) approximation, consists in assuming that the motion of nuclei and electrons are decoupled. [START_REF] Born | [END_REF] The nuclei coordinates can then be treated as parameters in the electronic Hamiltonian. The second central approximation which makes calculations computationally achievable is the basis set approximation where one introduces a set of pre-defined basis functions to represent the many-electron wave function of the system. In most molecular calculations, a set of one-electron, atom-centered Gaussian basis functions are introduced to expand the so-called one-electron molecular orbitals which are then used to build the many-electron Slater determinant(s). The third and most relevant approximation in the present context is the ansatz (or form) of the electronic wave function Ψ. For example, in configuration interaction (CI) methods, the wave function is expanded as a linear combination of Slater determinants, while in (single-reference) coupled-cluster (CC) theory, [5][6][START_REF] Crawford | Reviews in Computational Chemistry[END_REF][START_REF] Piecuch | [END_REF][9][START_REF] Shavitt | Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory[END_REF] a reference Slater determinant Ψ 0 [usually taken as the Hartree-Fock (HF) wave function] is multiplied by a wave operator defined as the exponentiated excitation operator T = n k=1 Tk (where n is the number of electrons and Tk is a) Electronic mail: Denis.Jacquemin@univ-nantes.fr b) Electronic mail: scemama@irsamc.ups-tlse.fr c) Electronic mail: loos@irsamc.ups-tlse.fr kth-degree excitation operator).

The truncation of T allows to define a hierarchy of nonvariational and size-extensive methods with increasing levels of accuracy: CC with singles and doubles (CCSD), 5,[START_REF] Purvis | [END_REF] CC with singles, doubles, and triples (CCSDT), 12,13 CC with singles, doubles, triples, and quadruples (CCSDTQ), 14,15 with corresponding formal computational scalings of O(N 6 ), O(N 8 ), and O(N 10 ), respectively (where N denotes the number of orbitals). Parallel to the "complete" CC series presented above, an alternative family of approximate iterative CC models has been developed by the Aarhus group in the context of CC response theory 16 where one skips the most expensive terms and avoids the storage of the higher-excitation amplitudes: CC2, 17 CC3, 18,19 and CC4. 20,21 These iterative methods scale as O(N 5 ), O(N 7 ), and O(N 9 ), respectively, and can be seen as cheaper approximations of CCSD, CCSDT, and CCSDTQ. Coupledcluster methods have been particularly successful at computing accurately ground-and excited-state properties for small-and medium-sized molecules. [22][23][24][25][26][27][28] A similar systematic truncation strategy can be applied to CI methods leading to the well-established family of methods known as CISD, CISDT, CISDTQ, . . . where one systematically increases the maximum excitation degree of the determinants taken into account. Except for full CI (FCI) where all determinants from the Hilbert space (i.e., with excitation degree up to n) are considered, truncated CI methods are variational but lack size-consistency. The non-variationality of truncated CC methods being, in practice, less of an issue than the size-inconsistency of the truncated CI methods, the formers have naturally overshadowed the latters in the electronic structure landscape. However, a different strategy recently came back in the limelight in the context of CI methods. [29][30][31][32][33][34][35][36][37][38][39][40] FIG. 1. Five-membered rings (top) and six-membered rings (bottom) considered in this study.

Indeed, selected CI (SCI) methods, [41][42][43][44][START_REF] Caffarel | Using CIPSI Nodes in Diffusion Monte Carlo[END_REF][START_REF] Holmes | [END_REF][47][48][49][50][51][52] where one iteratively selects the important determinants from the FCI space (usually) based on a perturbative criterion, has been recently shown to be highly successful in order to produce reference energies for both ground and excited states in small-and medium-sized molecules [53][54][55][56][57][58][59][60][61][62][63][64][65][66][67][68][69][70][71][72] thanks to efficient deterministic, stochastic, or hybrid algorithms well suited for massive parallelization. We refer the interested reader to Refs. 73 and 74 for recent reviews. SCI methods are based on a well-known fact: amongst the very large number of determinants contained in the FCI space, only a tiny fraction of them significantly contributes to the energy (see, for example, Ref. 75). Accordingly, the SCI+PT2 family of methods performs a sparse exploration of the FCI space by selecting iteratively only the most energetically relevant determinants of the variational space and supplementing it with a second-order perturbative correction (PT2). 31,52,67,76,77 Although the formal scaling of such algorithms remains exponential, the prefactor is greatly reduced which explains their current attractiveness in the electronic structure community thanks to their much wider applicability than their standard FCI parent. Note that, very recently, several groups [78][79][80] have coupled CC and SCI methods via the externally-corrected CC methodology, 81 showing promising performances for weakly and strongly correlated systems.

A rather different strategy in order to reach the holy grail FCI limit is to resort to Møller-Plesset (MP) perturbation theory, 82 whose popularity originates from its black-box nature, sizeextensivity, and relatively low computational requirement, making it easily applied to a broad range of molecular systems. Again, at least in theory, one can obtain the exact energy of the system by ramping up the degree of the perturbative series. 83 The second-order Møller-Plesset (MP2) method 82 [which scales as O(N 5 )] has been broadly adopted in quantum chemistry for several decades, and is now included in the increasingly popular double-hybrid functionals 84 alongside exact exchange. Its higher-order variants [MP3, 85 MP4, 86 MP5, 87 and MP6 88,89 which scale as O(N 6 ), O(N 7 ), O(N 8 ), and O(N 9 ) respectively] have been investigated much more scarcely. However, it is now widely recognized that the series of MP approximations might show erratic, slowly convergent, or divergent behavior that limits its applicability and systematic improvability. 83,[90][91][92][93][94][95][96][97][98][99] Again, MP perturbation theory and CC methods can be coupled. The most iconic example of such coupling, namely the CCSD(T) method, 100 includes iteratively the single and double excitations and perturbatively (from MP4 and partially MP5) the triple excitations, leading to the so-called "gold-standard" of quantum chemistry for weakly correlated systems thanks to its excellent accuracy/cost ratio.

Motivated by the recent blind test of Eriksen et al. 68 reporting the performance of a large panel of emerging electronic structure methods [the many-body expansion FCI (MBE-FCI), 101-104 adaptive sampling CI (ASCI), 47,105,106 iterative CI (iCI), 48,[107][108][109] semistochastic heat-bath CI (SHCI), [START_REF] Holmes | [END_REF]56,77 the full coupled-cluster reduction (FCCR), 110,111 density-matrix renormalization group (DMRG), [112][113][114] adaptive-shift FCI quantum Monte Carlo (AS-FCIQMC), 41,115,116 and clusteranalysis-driven FCIQMC (CAD-FCIQMC) 117,118 ] on the nonrelativistic frozen-core correlation energy of the benzene molecule in the standard correlation-consistent double-ζ Dunning basis set (cc-pVDZ), some of us have recently investigated the performance of the SCI method known as Configuration Interaction using a Perturbative Selection made Iteratively (CIPSI). 31,42,44,52,67 on the very same system 66 [see also Ref. 119 for a study of the performance of phaseless auxiliaryfield quantum Monte Carlo (ph-AFQMC) 120 ]. In the continuity of this recent work, we report here a large extension by accurately estimating the (frozen-core) FCI/cc-pVDZ correlation energy of twelve cyclic molecules (cyclopentadiene, furan, imidazole, pyrrole, thiophene, benzene, pyrazine, pyridazine, pyridine, pyrimidine, s-tetrazine, and s-triazine) with the help of CIPSI employing energetically-optimized orbitals at the same level of theory. 69,121 These systems are depicted in Fig. 1. This set of molecular systems corresponds to Hilbert spaces with sizes ranging from 10 29 to 10 36 . In addition to CIPSI, the performance and convergence properties of several series of methods are investigated. In particular, we study i) the MP perturbation series up to fifth-order (MP2, MP3, MP4, and MP5), ii) the CC2, CC3, and CC4 approximate series, and ii) the "complete" CC series up to quadruples (i.e., CCSD, CCSDT, and CCSDTQ). The performance of the ground-state gold standard CCSD(T) as well as the completely renormalized (CR) CC model, CR-CC(2,3), [START_REF] Piecuch | [END_REF][122][123][124][125] are also investigated. From a theoretical point of view, one would expect the following ranking: MP2 < CC2 < MP3 < CCSD < MP4 < CCSD(T) < CR-CC(2,3) < CC3 < CCSDT < MP5 < CC4 < CCSDTQ. But, as we shall see below, this ranking is slightly altered for the present systems.

The present manuscript is organized as follows. In Sec. II, we provide theoretical details about the CIPSI algorithm and the orbital optimization procedure employed here. Section III deals with computational details concerning geometries, basis sets, and methods. In Sec. IV, we report our reference FCI correlation energies for the five-membered and sixmembered cyclic molecules obtained thanks to extrapolated orbital-optimized CIPSI calculations (Sec. IV A). These reference correlation energies are then used to benchmark and study the convergence properties of various perturbative and CC methods (Sec. IV B). Finally, we draw our conclusions in Sec. V.

II. CIPSI WITH OPTIMIZED ORBITALS

Here, we provide key details about the CIPSI method 31,67 as well as the orbital optimization procedure which has been shown to be highly effective in the context of SHCI by Umrigar and coworkers. 68,69,121 Although we focus on the ground state, the present discussion can be easily extended to excited states. 71,126 At the kth iteration, the total CIPSI energy E (k) CIPSI is defined as the sum of the variational energy

E (k) var = Ψ (k) var | Ĥ|Ψ (k) var Ψ (k) var |Ψ (k) var ( 1 
)
and a second-order perturbative energy correction

E (k) PT2 = α∈A k e (k) α = α∈A k | Ψ (k) var | Ĥ|α | 2 E (k) var -α| Ĥ|α , ( 2 
)
where Ĥ is the (non-relativistic) electronic Hamiltonian,

Ψ (k) var = I∈I k c (k) I |I (3) 
is the variational wave function, I k is the set of internal determinants |I and A k is the set of external determinants (or perturbers) |α which do not belong to the variational space at the kth iteration but are linked to it via a nonzero matrix element, i.e., Ψ (k) var | Ĥ|α 0. The sets I k and A k define, at the kth iteration, the internal and external spaces, respectively. In the selection step, the perturbers corresponding to the largest |e (k) α | values are then added to the variational space at the next iteration. In our implementation, the size of the variational space is roughly doubled at each iteration. Hereafter, we label these iterations over k which consist in enlarging the variational space as macroiterations. In practice, E (k) var is the lowest eigenvalue of the N (k) det × N (k) det CI matrix with elements I| Ĥ|J obtained via Davidson's algorithm. 127 The magnitude of E (k) PT2 provides, at iteration k, a qualitative idea of the distance to the FCI limit. 52 We then linearly extrapolate, using large variational wave functions, the CIPSI energy to E PT2 = 0 (which effectively corresponds to the FCI limit). Further details concerning the extrapolation procedure are provided below (see Sec. IV).

Orbital optimization techniques at the SCI level are theoretically straightforward, but practically challenging. Some of the technology presented here has been borrowed from completeactive-space self-consistent-field (CASSCF) methods [128][129][130][131][132] but one of the strength of SCI methods is that one does not need to select an active space and to classify orbitals as active, inactive, and virtual orbitals. Here, we detail our orbital optimization procedure within the CIPSI algorithm and we assume that the variational wave function is normalized, i.e., Ψ var |Ψ var = 1. As stated in Sec. I, E var depends on both the CI coefficients {c I } 1≤I≤N det [see Eq. ( 3)] but also on the orbital rotation parameters {κ pq } 1≤p,q≤N . Motivated by cost saving arguments, we have chosen to optimize separately the CI and orbital coefficients by alternatively diagonalizing the CI matrix after each selection step and then rotating the orbitals until the variational energy, for a given number of determinants, is minimal. We refer the interested reader to the recent work of Yao and Umrigar for a detailed comparison of coupled, uncoupled, and partiallycoupled optimizations within SCI methods. 121 Following the standard procedure, [START_REF] Helgaker | Molecular Electronic-Structure Theory[END_REF] we conveniently rewrite the variational energy as

E var (c, κ) = Ψ var |e κ Ĥe -κ |Ψ var , (4) 
where c gathers the CI coefficients, κ the orbital rotation parameters, and

κ = p<q σ κ pq â † pσ âqσ -â † qσ âpσ (5) 
is a real-valued one-electron antisymmetric operator, which creates an orthogonal transformation of the orbital coefficients when exponentiated, âpσ (â † pσ ) being the second quantization annihilation (creation) operator which annihilates (creates) a spin-σ electron in the real-valued spatial orbital φ p (r). [START_REF] Helgaker | Molecular Electronic-Structure Theory[END_REF] Applying the Newton-Raphson method by Taylor-expanding the variational energy to second order around κ = 0, i.e.,

E var (c, κ) ≈ E var (c, 0) + g • κ + 1 2 κ † • H • κ, (6) 
one can iteratively minimize the variational energy with respect to the parameters κ pq by setting

κ = -H -1 • g, (7) 
where g and H are the orbital gradient and Hessian matrices, respectively, both evaluated at κ = 0. Their elements are explicitly given by the following expressions: 133,134

g pq = ∂E var (c, κ) ∂κ pq κ=0 = σ Ψ var |[â † pσ âqσ -â † qσ âpσ , Ĥ] |Ψ var = P pq        r h r p γ q r -h q r γ r p + rst v rs pt Γ qt rs -v qt rs Γ rs pt        , (8) 
and

H pq,rs = ∂ 2 E var (c, κ) ∂κ pq ∂κ rs κ=0 = P pq P rs 1 2 σσ Ψ var |[â † rσ âsσ , [â † pσ âqσ , Ĥ] ] |Ψ var + 1 2 σσ Ψ var |[â † pσ âqσ , [â † rσ âsσ , Ĥ] ] |Ψ var = P pq P rs 1 2 u δ qr (h u p γ s u + h s u γ u p ) + δ ps (h u r γ q u + h q u γ r u ) -(h s p γ q r + h q r γ s p ) + 1 2 tuv δ qr (v uv pt Γ st uv + v st uv Γ uv pt ) + 1 2 tuv δ ps (v qt uv Γ uv rt + v uv rt Γ qt uv )] + uv (v uv pr Γ qs uv + v qs uv Γ uv ps ) - tu (v st pu Γ qu rt + v tr pu Γ qu tr + v qu rt Γ st pu + v qu tr Γ ts pu )] , (9) 
where δ pq is the Kronecker delta, P pq = 1 -(p ↔ q) is a permutation operator,

γ q p = σ Ψ var |â † pσ âqσ |Ψ var , (10a) 
Γ rs pq = σσ Ψ var |â † pσ â † rσ âsσ âqσ |Ψ var (10b)
are the elements of the one-and two-electron density matrices, and h q p = φ p (r) ĥ(r) φ q (r)dr, (11a)

v rs pq = φ p (r 1 )φ q (r 2 ) 1 |r 1 -r 2 | φ r (r 1 )φ s (r 2 )dr 1 dr 2 (11b)
are the one-and two-electron integrals, respectively. Because the size of the CI space is much larger than the orbital space, for each macroiteration, we perform multiple microiterations which consist in iteratively minimizing the variational energy (4) with respect to the N(N -1)/2 independent orbital rotation parameters for a fixed set of determinants.

After each microiteration (i.e., orbital rotation), the one-and two-electron integrals [see Eqs. (11a) and (11b)] have to be updated. Moreover, the CI matrix must be re-diagonalized and new one-and two-electron density matrices [see Eqs. (10a) and (10b)] have to be computed. Microiterations are stopped when a stationary point is found, i.e., g ∞ < τ, where τ is a user-defined threshold which has been set to 10 -4 a.u. in the present study, and a new CIPSI selection step is performed. Note that a tight convergence is not critical here as a new set of microiterations is performed at each macroiteration and a new production CIPSI run is performed from scratch using the final set of orbitals (see Sec. III). This procedure might sound computationally expensive but one has to realize that the microiterations are usually performed only for relatively compact variational spaces. Therefore, the computational bottleneck of this approach remains the diagonalization of the CI matrix for very large variational spaces.

To enhance the convergence of the microiteration process, we employ an adaptation of the Newton-Raphson method known as "trust region". 135 This popular variant defines a region where the quadratic approximation ( 6) is an adequate representation of the objective energy function (4) and it evolves during the optimization process in order to preserve the adequacy via a constraint on the step size preventing it from overstepping, i.e., κ ≤ ∆, where ∆ is the trust radius. By introducing a Lagrange multiplier λ to control the trust-region size, one replaces Eq. ( 7) by κ = -(H + λ1) -1 • g. The addition of the level shift λ ≥ 0 removes the negative eigenvalues and ensures the positive definiteness of the Hessian matrix by reducing the step size. By choosing the right value of λ, κ is constrained within a hypersphere of radius ∆ and is able to evolve from the Newton direction at λ = 0 to the steepest descent direction as λ grows. The evolution of the trust radius during the optimization and the use of a condition to reject the step when the energy rises ensure the convergence of the algorithm. More details can be found in Ref. 135.

III. COMPUTATIONAL DETAILS

The geometries of the twelve systems considered in the present study were all obtained at the CC3/aug-cc-pVTZ level of theory and were extracted from a previous study. 64 Note that, for the sake of consistency, the geometry of benzene considered here is different from the one of Ref. 66 which was obtained at a lower level of theory [MP2/6-31G(d)]. 136 The MP2, MP3, MP4, CC2, CC3, CC4, CCSD, CCSDT, and CCSDTQ calculations were performed with CFOUR, 137 the CR-CC(2,3) calculations were made with GAMESS 2014R1, 138 and MP5 and CCSD(T) calculations were computed with GAUSSIAN 09. 139 The CIPSI calculations were performed with QUAN-TUM PACKAGE. 67 In the current implementation, the selection step and the PT2 correction are computed simultaneously via a hybrid semistochastic algorithm. 67,76 Here, we employ the renormalized version of the PT2 correction which was recently implemented and tested for a more efficient extrapolation to the FCI limit thanks to a partial resummation of the higher orders of perturbation. 67 We refer the interested reader Although the FCI energy has the enjoyable property of being independent of the set of one-electron orbitals used to construct the many-electron Slater determinants, as a truncated CI method, the convergence properties of CIPSI strongly dependent on this orbital choice. In the present study, we investigate, in particular, the convergence behavior of the CIPSI energy for two sets of orbitals: natural orbitals (NOs) and optimized orbitals (OOs). Following our usual procedure, 58,59,61,[63][64][65][66]73,126 we perform first a preliminary SCI calculation using HF or- bitals in order to generate a SCI wave function with at least 10 7 determinants. Natural orbitals are computed based on this wave function and they are used to perform a new CIPSI run up to 8 × 10 7 determinants. Successive orbital optimizations are then performed, which consist in minimizing the variational CIPSI energy at each macroiteration up to approximately 2 × 10 5 determinants. When convergence is achieved in terms of orbital optimization, as our production run, we perform a new CIPSI calculation from scratch using this set of optimized orbitals to 8 × 10 7 determinants. Using optimized orbitals has the undeniable advantage to produce, for a given variational energy, more compact CI expansions (see Sec. IV). For the benzene molecule, we have also explored the use of localized orbitals (LOs) which are produced with the Boys-Foster localization procedure 140 that we apply to the natural orbitals in several orbital windows in order to preserve a strict σ-π separation in the planar systems considered here. 66 Because they take advantage of the local character of electron correlation, localized orbitals have been shown to provide faster convergence towards the FCI limit compared to natural orbitals. 62,66,68,[141][142][143][144] As we shall see below, employing optimized orbitals has the advantage to produce an even smoother and faster convergence of the SCI energy toward the FCI limit. Note that both localized and optimized orbitals do break the spatial symmetry. Unlike excited-state calculations where it is important to enforce that the wave functions are eigenfunctions of the Ŝ 2 spin operator, 145 the present wave functions do not fulfill this property as we aim for the lowest possible energy of a closed-shell singlet state. We have found that Ŝ 2 is, nonetheless, very close to zero (∼ 10 -3 ) for each system. The present CIPSI calculations have been performed on the AMD partition of GENCI's Irene supercomputer. Each Irene's AMD node is a dual-socket AMD Rome (EPYC) CPU at 2.60 GHz with 256GiB of RAM, with a total of 64 physical cores per socket. These nodes are connected via Infiniband HDR100. In total, the present calculations have required around 3 million core hours.

All the data (geometries, energies, etc) and supplementary material associated with the present manuscript are openly available in Zenodo at http://doi.org/10.5281/zenodo.5150663.

IV. RESULTS AND DISCUSSION

A. CIPSI estimates

We first study the convergence of the CIPSI energy as a function of the number of determinants. Our motivation here is to generate FCI-quality reference correlation energies for the twelve cyclic molecules represented in Fig. 1 in order to benchmark the performances of various mainstream MP and CC methods (see Sec. IV B). For the natural and optimized orbital sets, we report, in Fig. 2, the evolution of the variational correlation energy ∆E var = E var -E HF (where E HF is the HF energy) and its perturbatively corrected value ∆E var + E PT2 with respect to the number of determinants N det for each cyclic molecule. As compared to natural orbitals (solid red lines), one can see that, for a given number of determinants, the use of optimized orbitals greatly lowers ∆E var (solid blue lines). Adding the perturbative correction E PT2 yields very similar curves for both sets of orbitals (dashed lines). This indicates that, for a given number of determinants, E PT2 (which, we recall, provides a qualitative idea to the distance to the FCI limit) is much smaller for optimized orbitals than for natural orbitals. This is further evidenced in Fig. 3 where we show the behavior of ∆E var as a function of E PT2 for both sets of orbitals. From Fig. 3, it is clear one produces smaller E PT2 values when optimized orbitals are selected, hence facilitating the extrapolation procedure to the FCI limit (see below). The five-point weighted linear fit using the five largest variational wave functions are also represented (dashed black lines), while the FCI estimate of the correlation energy (solid black line) is reported for reference in Figs. 2 and3. Figure 4 compares the convergence of ∆E var for natural, localized, and optimized orbitals for benzene. As mentioned in Sec. III, although both the localized and optimized orbitals break the spatial symmetry to take advantage of the local nature of electron correlation, the latter set further improves on the use of former set. More quantitatively, optimized orbitals produce the same variational energy as localized orbitals with, roughly, a ten-fold reduction in the number of determinants. A similar improvement is observed going from natural to localized orbitals. According to these observations, all our FCI correlation energy estimates have been produced from the set of optimized orbitals.

To this end, we have extrapolated the orbital-optimized variational CIPSI correlation energies to E PT2 = 0 via a weighted five-point linear fit using the five largest variational wave functions (see Fig. 3). The fitting weights have been taken as the inverse square of the perturbative corrections. Our final FCI correlation energy estimates are reported in Tables I and II for the five-and six-membered rings, respectively, alongside their corresponding fitting error. The stability of these estimates are illustrated by the results gathered in Table III, where we list the extrapolated correlation energies ∆E extrap and their associated fitting errors obtained via weighted linear fits varying the number of fitting points from 3 to 7. The extrapolation distance ∆E dist defined as the difference between the final computed energy ∆E final and ∆E extrap is also reported. Although we cannot provide a mathematically rigorous error bar, the data provided by Table III show that the extrapolation procedure is robust and that our FCI estimates carry an error of the order of one millihartree. Logically, the FCI estimates for the five-membered rings seem slightly more accurate than for the (larger) six-membered rings. It is pleasing to see that, although different geometries are considered, our present estimate of the frozen-core correlation energy of the benzene molecule in the cc-pVDZ basis (-862.9 mE h ) is very close to the one reported in Ref. 66 (-863.4 mE h ).

Table III does report extrapolated correlation energies and fitting errors for both natural and optimized orbitals. Again, the superiority of the latter set is clear as both the variation in extrapolated values and the fitting error are much larger with the natural set. Moreover, the extrapolation distance ∆E dist is systematically decreases by several mE h . Taking cyclopentadiene as an example, the extrapolated values vary by almost 1 mE h with natural orbitals and less than 0.1 mE h with the optimized set. The fitting errors follow the same trend.

B. Benchmark of CC and MP methods

Using the CIPSI estimates of the FCI correlation energy produced in Sec. IV A, we now study the performance and convergence properties of three series of methods: i) MP2, MP3, MP4, and MP5, ii) CC2, CC3, and CC4, and iii) CCSD, CCSDT, and CCSDTQ. Additionally, we also report CCSD(T) and CR-CC(2,3) correlation energies. The raw data are reported in Tables I and II for the five-and six-membered rings, respectively. In Fig. 5, we show, for each molecule, the convergence of the correlation energy for each series of methods as a function of the formal computational scaling of the corresponding method. Statistical quantities [mean absolute error (MAE), mean signed error (MSE), minimum (Min) and maximum (Max) absolute errors with respect to the FCI reference values] are also reported in Table IV for each method as well as their formal computational scaling.

First, we investigate the "complete" and well-established series of methods CCSD, CCSDT, and CCSDTQ. Unfortunately, CC with singles, doubles, triples, quadruples, and pentuples (CCSDTQP) calculations are out of reach here. 146,147 As expected for the present set of weakly correlated systems, going from CCSD to CCSDTQ, one systematically and quickly improves the correlation energies with respective MAEs of 39.4, 4.5, 1.8 mE h for CCSD, CCSDT, and CCSDTQ. As usually observed, CCSD(T) (MAE of 4.5 mE h ) provides similar correlation energies than the more expensive CCSDT method by computing perturbatively (instead of iteratively) the triple excitations, while CCSD(T) and CR-CC(2,3) performs equally well.

Second, we investigate the approximate CC series of methods CC2, CC3, and CC4. As observed in our recent study on excitation energies, 72 CC4, which returns a MAE of 1.5 mE h , is an outstanding approximation to its CCSDTQ parent (MAE of 1.8 mE h ) and is, in the present case, even slightly more accurate in terms of mean errors as well as maximum and minimum absolute errors. Moreover, we observe that CC3 provides very accurate correlation energies with a MAE of 2.7 mE h , showing that this iterative method is particularly effective for ground-state energetics and outperforms both the perturbative CCSD(T) and iterative CCSDT models. It is important to mention that even if the two families of CC methods studied here are known to be non-variational (see Sec. I), for the present set of weakly-correlated molecular systems, they never produce a lower energy than the FCI estimate as illustrated by the systematic equality between MAEs and MSEs.

Third, let us look into the MP series which is known, as mentioned in Sec. I, to potentially exhibit "surprising" behaviors depending on the type of correlation at play. [90][91][92][93][94][95][96][97][98][99] (See Ref. 83 for a detailed discussion). For each system, the MP series decreases monotonically up to MP4 but raises quite significantly when one takes into account the fifth-order correction. We note that the MP4 correlation energy is always quite accurate (MAE of 2.1 mE h ) and is only a few millihartree higher than the FCI value (except in the case of s-tetrazine where the MP4 number is very slightly below the reference value): MP5 (MAE of 9.4 mE h ) is thus systematically worse than MP4 for these weakly-correlated systems. Importantly here, one notices that MP4 [which scales as O(N 7 )] is systematically on par with the much more expensive O(N 10 ) CCSDTQ method which exhibits a slightly smaller MAE of 1.8 mE h .

V. CONCLUSION

Using the SCI algorithm named Configuration Interaction using a Perturbative Selection made Iteratively (CIPSI), we have produced FCI-quality frozen-core correlation energies for twelve cyclic molecules (see Fig. 1) in the correlationconsistent double-ζ Dunning basis set (cc-pVDZ). These estimates, which probably carry an error of the order of one millihartree, have been obtained by extrapolating CIPSI energies to the FCI limit based on a set of orbitals obtained by minimizing the CIPSI variational energy. Using energetically optimized orbitals, one can reduce the size of the variational space by one order of magnitude for the same variational energy as compared to natural orbitals.

Thanks to these reference FCI energies, we have then benchmarked three families of popular electronic structure methods: i) the MP perturbation series up to fifth-order (MP2, MP3, MP4, and MP5), ii) the approximate CC series CC2, CC3, and CC4, and iii) the "complete" CC series CCSD, CCSDT, and CCSDTQ. With a O(N 7 ) scaling, MP4 provides an interesting accuracy/cost ratio for this particular set of weakly correlated systems, while MP5 systematically worsen the perturbative estimates of the correlation energy. In addition, CC3 (where the triples are computed iteratively) outperforms the perturbative-triples CCSD(T) method with the same O(N 7 ) scaling, its completely renormalized version CR-CC(2,3), as well as its more expensive parent, CCSDT. A similar trend is observed for the methods including quadruple excitations, where the O(N 9 ) CC4 model has been shown to be slightly more accurate than CCSDTQ [which scales as O(N 10 )], both methods providing correlation energies within 2 mE h of the FCI limit. These observations slightly alter the method ranking provided in Sec. I. Of course, the present trends are only valid for this particular class of (weakly-correlated) molecules. For example, the performance of CC3 might decline for larger systems. Thus, it would be desirable to have a broader variety of systems in the future by including more challenging systems such as, for example, transition metal compounds. Some work along this line is currently being performed.

As perspectives, we are currently investigating the performance of the present approach for excited states in order to expand the QUEST database of vertical excitation energies. 71 We hope to report on this in the near future. The compression of the variational space brought by optimized orbitals could be also beneficial in the context of quantum Monte Carlo methods to generate compact, yet accurate multi-determinant trial wave functions. [148][149][150][151] 

SUPPLEMENTARY MATERIAL

Included in the supplementary material are the raw data for each figure, geometries, basis set files, orbitals obtained at various levels of theory, input and output files for each calculation, as well as a standalone mathematica notebook gathering modules for generating figures and statistics.

FIG. 3 .

 3 FIG.3. ∆E var as a function of E PT2 computed in the cc-pVDZ basis for the twelve cyclic molecules represented in Fig.1. Two sets of orbitals are considered: natural orbitals (NOs, in red) and optimized orbitals (OOs, in blue). The five-point weighted linear fit using the five largest variational wave functions for each set is depicted as a dashed black line. The weights are taken as the inverse square of the perturbative corrections. The FCI estimate of the correlation energy is represented as a thick black line.

FIG. 5 .

 5 FIG. 5. Convergence of the correlation energy (in mE h) computed in the cc-pVDZ basis as a function of the formal computational scaling for the twelve cyclic molecules represented in Fig.1. Three series of methods are considered: i) MP2, MP3, MP4, and MP5 (blue), ii) CC2, CC3, and CC4 (green), and iii) CCSD, CCSDT, CCSDTQ (red). The FCI estimate of the correlation energy is represented as a black line.

TABLE I .

 I Total energy E (in E h ) and correlation energy ∆E (in mE h ) for the frozen-core ground state of five-membered rings in the cc-pVDZ basis set. For the CIPSI estimates of the FCI correlation energy, the fitting error associated with the weighted five-point linear fit is reported in parenthesis.
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			Cyclopentadiene		Furan				Imidazole				Pyrrole			Thiophene
	Method		E		∆E	E		∆E		E		∆E			E		∆E	E		∆E
	HF	-192.8083			-228.6433				-224.8354			-208.8286			-551.3210
	MP2	-193.4717	-663.4	-229.3508		-707.5		-225.5558	-720.4	-209.5243		-695.7	-551.9825	-661.5
	MP3	-193.5094	-701.0	-229.3711		-727.8		-225.5732	-737.8	-209.5492		-720.6	-552.0104	-689.4
	MP4	-193.5428	-734.5	-229.4099		-766.6		-225.6126	-777.2	-209.5851		-756.5	-552.0476	-726.6
	MP5	-193.5418	-733.4	-229.4032		-759.9		-225.6061	-770.8	-209.5809		-752.3	-552.0426	-721.6
	CC2	-193.4782	-669.9	-229.3605		-717.2		-225.5644	-729.0	-209.5311		-702.5	-551.9905	-669.5
	CC3	-193.5449	-736.6	-229.4090		-765.7		-225.6115	-776.1	-209.5849		-756.3	-552.0473	-726.3
	CC4	-193.5467	-738.4	-229.4102		-766.9		-225.6126	-777.2	-209.5862		-757.6	-552.0487	-727.7
	CCSD	-193.5156	-707.2	-229.3783		-735.0		-225.5796	-744.2	-209.5543		-725.7	-552.0155	-694.5
	CCSDT	-193.5446	-736.2	-229.4076		-764.3		-225.6099	-774.6	-209.5838		-755.2	-552.0461	-725.1
	CCSDTQ	-193.5465	-738.2	-229.4100		-766.7		-225.6123	-776.9	-209.5860		-757.4	-552.0485	-727.5
	CCSD(T)	-193.5439	-735.6	-229.4073		-764.0		-225.6099	-774.5	-209.5836		-754.9	-552.0458	-724.8
	CR-CC(2,3)	-193.5439	-735.6	-229.4075		-764.2		-225.6098	-774.5	-209.5835		-754.9	-552.0459	-724.9
	FCI				-739.2(1)		-768.2(1)			-778.2(1)			-758.5(1)			-728.9(3)

FIG.

2

. ∆E var (solid) and ∆E var + E PT2 (dashed) computed in the cc-pVDZ basis as functions of the number of determinants N det in the variational space for the twelve cyclic molecules represented in Fig.

1

. Two sets of orbitals are considered: natural orbitals (NOs, in red) and optimized orbitals (OOs, in blue). The FCI estimate of the correlation energy is represented as a thick black line.

TABLE II .

 II Total energy E (in E h ) and correlation energy ∆E (in mE h ) for the frozen-core ground state of six-membered rings in the basis set. For the CIPSI estimates of the FCI correlation energy, the fitting error associated with the weighted five-point linear fit is reported in parenthesis.

		Benzene		Pyrazine		Pyridazine	Pyridine		Pyrimidine	s-Tetrazine	s-Triazine
		E	∆E	E	∆E	E	∆E	E	∆E	E	∆E	E	∆E	E	∆E
	HF	-230.7222		-262.7030		-262.6699		-246.7152		-262.7137		-294.6157		-278.7173
	MP2	-231.5046 -782.3 -263.5376 -834.6 -263.5086 -838.7 -247.5227 -807.5 -263.5437 -830.1 -295.5117 -895.9 -279.5678 -850.5
	MP3	-231.5386 -816.4 -263.5567 -853.7 -263.5271 -857.3 -247.5492 -834.0 -263.5633 -849.6 -295.5152 -899.5 -863.6
		-231.5808 -858.5 -263.6059 -902.9 -263.5778 -907.9 -247.5951 -879.9 -263.6129 -899.3 -295.5743 -958.6 -279.6340 -916.7
	MP5	-231.5760 -853.8 -263.5968 -893.8 -263.5681 -898.3 -247.5881 -872.9 -263.6036 -890.0 -295.5600 -944.3 -279.6228 -905.4
	CC2	-231.5117 -789.4 -263.5475 -844.5 -263.5188 -848.9 -247.5315 -816.3 -263.5550 -841.3 -295.5247 -909.0 -279.5817 -864.4
	CC3	-231.5814 -859.1 -263.6045 -901.5 -263.5761 -906.2 -247.5948 -879.6 -263.6120 -898.4 -295.5706 -954.9 -279.6329 -915.6
	CC4	-231.5828 -860.6 -263.6056 -902.6 -263.5773 -907.5 -247.5960 -880.8 -263.6129 -899.3 -295.5716 -955.9 -279.6334 -916.1
	CCSD	-231.5440 -821.8 -263.5640 -861.0 -263.5347 -864.9 -247.5559 -840.7 -263.5716 -858.0 -295.5248 -909.1 -279.5911 -873.8
	CCSDT	-231.5802 -857.9 -263.6024 -899.4 -263.5739 -904.0 -247.5931 -877.9 -263.6097 -896.1 -295.5673 -951.6 -279.6300 -912.7
	CCSDTQ	-231.5826 -860.4 -263.6053 -902.3 -263.5770 -907.1 -247.5960 -880.8 -263.6126 -899.0 -295.5712 -955.4 -279.6331 -915.8
	CCSD(T)	-231.5798 -857.5 -263.6024 -899.4 -263.5740 -904.1 -247.5929 -877.7 -263.6099 -896.2 -295.5680 -952.2 -279.6305 -913.1
	CR-CC(2,3) -231.5792 -856.9 -263.6017 -898.7 -263.5732 -903.3 -247.5922 -877.1 -263.6091 -895.5 -295.5670 -951.3 -279.6298 -912.5
	FCI	-862.9(3)	-904.6(4)		-908.8(1)	-882.7(4)		-900.5(2)		-957.9(4)		-918.4(3)

TABLE III .

 III Extrapolation distance ∆E dist (in mE h ) defined as the difference between the final computed energy ∆E final (in mE h ) and the extrapolated correlation energies ∆E extrap (in mE h ) computed in the cc-pVDZ basis for the twelve cyclic molecules represented in Fig.1and their associated fitting errors (in mE h ) obtained via weighted linear fits with a varying number of points. Two sets of orbitals are considered: natural orbitals and optimized orbitals. The weights are taken as the inverse square of the perturbative corrections. For a m-point fit, the m largest variational wave functions are used.

	Molecule	Number of		Natural orbitals			Optimized orbitals	
		fitting points	∆E final	∆E extrap	∆E dist	Fitting error	∆E final	∆E extrap	∆E dist	Fitting error
	Cyclopentadiene	3	-728.941	-740.639	11.699	0.273	-731.987	-739.295	7.308	0.199
		4	-728.941	-740.243	11.303	0.306	-731.987	-739.309	7.322	0.088
		5	-728.941	-740.047	11.106	0.242	-731.987	-739.230	7.243	0.074
		6	-728.941	-739.952	11.011	0.187	-731.987	-739.304	7.317	0.072
		7	-728.941	-739.761	10.820	0.204	-731.987	-739.292	7.305	0.055
	Furan	3	-758.946	-766.090	7.144	0.729	-761.715	-767.790	6.076	0.064
		4	-758.946	-766.445	7.499	0.459	-761.715	-768.104	6.389	0.196
		5	-758.946	-766.582	7.636	0.318	-761.715	-768.194	6.479	0.135
		6	-758.946	-766.366	7.420	0.288	-761.715	-768.060	6.345	0.131
		7	-758.946	-766.507	7.561	0.254	-761.715	-768.086	6.372	0.101
	Imidazole	3	-767.314	-778.148	10.833	2.197	-771.362	-778.295	6.932	0.356
		4	-767.314	-777.436	10.122	1.107	-771.362	-778.270	6.908	0.150
		5	-767.314	-776.300	8.986	0.996	-771.362	-778.178	6.816	0.105
		6	-767.314	-776.104	8.789	0.712	-771.362	-778.174	6.812	0.072
		7	-767.314	-776.098	8.784	0.541	-771.362	-778.051	6.689	0.099
	Pyrrole	3	-748.961	-758.309	9.348	0.447	-751.862	-758.650	6.788	0.321
		4	-748.961	-758.749	9.788	0.393	-751.862	-758.389	6.527	0.174
		5	-748.961	-758.405	9.444	0.359	-751.862	-758.460	6.598	0.110
		6	-748.961	-758.136	9.175	0.334	-751.862	-758.352	6.490	0.100
		7	-748.961	-757.990	9.029	0.283	-751.862	-758.347	6.485	0.075
	Thiophene	3	-718.769	-728.054	9.285	0.134	-721.757	-728.744	6.987	0.691
		4	-718.769	-728.240	9.471	0.139	-721.757	-729.052	7.295	0.331
		5	-718.769	-728.243	9.474	0.087	-721.757	-728.948	7.191	0.203
		6	-718.769	-728.242	9.472	0.062	-721.757	-728.987	7.230	0.140
		7	-718.769	-728.420	9.651	0.144	-721.757	-729.067	7.310	0.117
	Benzene	3	-841.030	-860.350	19.3197	0.496	-848.540	-862.325	13.7847	0.279
		4	-841.030	-861.949	20.9186	0.811	-848.540	-863.024	14.4842	0.424
		5	-841.030	-861.807	20.7772	0.474	-848.540	-862.890	14.3496	0.266
		6	-841.030	-861.110	20.0803	0.539	-848.540	-862.360	13.8202	0.383
		7	-841.030	-861.410	20.3794	0.444	-848.540	-862.083	13.5435	0.339
	Pyrazine	3	-887.414	-904.148	16.734	0.035	-891.249	-904.867	13.619	1.420
		4	-887.414	-904.726	17.312	0.377	-891.249	-904.588	13.340	0.650
		5	-887.414	-904.274	16.859	0.383	-891.249	-904.550	13.301	0.385
		6	-887.414	-903.980	16.566	0.341	-891.249	-903.982	12.734	0.439
		7	-887.414	-903.621	16.206	0.370	-891.249	-903.746	12.497	0.359
	Pyridazine	3	-887.410	-910.856	23.446	3.053	-895.565	-909.292	13.726	0.024
		4	-887.410	-908.222	20.811	1.834	-895.565	-908.808	13.243	0.230
		5	-887.410	-909.282	21.871	1.191	-895.565	-908.820	13.255	0.133
		6	-887.410	-912.566	25.156	1.727	-895.565	-908.342	12.777	0.303
		7	-887.410	-910.694	23.283	2.210	-895.565	-908.368	12.802	0.224
	Pyridine	3	-861.424	-883.025	21.601	3.919	-868.803	-883.363	14.560	0.047
		4	-861.424	-883.862	22.438	1.869	-868.803	-883.413	14.610	0.029
		5	-861.424	-881.664	20.240	1.760	-868.803	-882.700	13.897	0.405
		6	-861.424	-880.422	18.998	1.456	-868.803	-882.361	13.558	0.341
		7	-861.424	-880.191	18.768	1.084	-868.803	-882.023	13.221	0.330
	Pyrimidine	3	-879.958	-900.386	20.428	1.884	-887.009	-900.817	13.808	0.726
		4	-879.958	-901.441	21.483	0.991	-887.009	-900.383	13.374	0.356
		5	-879.958	-900.354	20.396	0.865	-887.009	-900.496	13.487	0.214
		6	-879.958	-900.240	20.283	0.594	-887.009	-900.698	13.689	0.190
		7	-879.958	-899.689	19.732	0.565	-887.009	-900.464	13.455	0.206
	s-Tetrazine	3	-942.162	-958.736	16.574	0.320	-944.077	-957.559	13.4815	0.246
		4	-942.162	-958.727	16.564	0.148	-944.077	-957.299	13.2221	0.160
		5	-942.162	-958.500	16.337	0.172	-944.077	-957.869	13.7916	0.349
		6	-942.162	-958.162	16.000	0.260	-944.077	-957.744	13.6665	0.247
		7	-942.162	-958.161	15.999	0.198	-944.077	-957.709	13.6319	0.183
	s-Triazine	3	-898.283	-917.221	18.938	0.693	-905.180	-919.596	14.4152	0.105
		4	-898.283	-918.723	20.440	0.913	-905.180	-918.457	13.2768	0.538
		5	-898.283	-917.402	19.119	0.956	-905.180	-918.355	13.1745	0.312
		6	-898.283	-916.517	18.233	0.862	-905.180	-918.206	13.0251	0.226
		7	-898.283	-916.544	18.261	0.643	-905.180	-917.876	12.6956	0.267
	to Ref. 67 for further details. For all these calculations, Dun-					
	ning's correlation-consistent double-ζ basis (cc-pVDZ) has					
	been employed.									

  ∆E var (solid) and ∆E var + E PT2 (dashed) computed in the cc-pVDZ basis as functions of the number of determinants N det in the variational space for the benzene molecule. Three sets of orbitals are considered: natural orbitals (NOs, in red), localized orbitals (LOs, in green), and optimized orbitals (OOs, in blue). The FCI estimate of the correlation energy is represented as a thick black line.
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TABLE IV .

 IV Mean absolute error (MAE), mean signed error (MSE), and minimum (Min) and maximum (Max) absolute errors (in mE h ) with respect to the FCI correlation energy computed in the cc-pVDZ basis for various methods. The formal computational scaling of each method is also reported.

	Method	Scaling	MAE	MSE	Max	Min
	MP2	O N 5	68.4	68.4	80.6	57.8
	MP3	O N 6	46.5	46.5	58.4	37.9
	MP4	O N 7	2.1	2.0	4.7	0.7
	MP5	O N 8	9.4	9.4	13.6	5.8
	CC2	O N 5	58.9	58.9	73.5	48.9
	CC3	O N 7	2.7	2.7	3.8	2.1
	CC4	O N 9	1.5	1.5	2.3	0.8
	CCSD	O N 6	39.4	39.4	48.8	32.0
	CCSDT	O N 8	4.5	4.5	6.3	3.0
	CCSDTQ	O N 10	1.8	1.8	2.6	1.0
	CCSD(T)	O N 7	4.5	4.5	5.7	3.6
	CR-CC(2,3)	O N 7	5.0	5.0	6.6	3.6
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