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4 Sorbonne Université, École Normale Supérieure, CNRS,
Laboratoire de Physique (LPENS), F-75005 Paris, France
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Abstract

We continue investigating the generalisations of geometrical statistical models introduced in [13], in
the form of models of webs on the hexagonal lattice H having a Uq(sln) quantum group symmetry. We
focus here on the n = 3 case of cubic webs, based on the Kuperberg A2 spider, and illustrate its properties
by comparisons with the well-known dilute loop model (the n = 2 case) throughout. A local vertex-model
reformulation is exhibited, analogous to the correspondence between the loop model and a three-state
vertex model. The n = 3 representation uses seven states per link of H, displays explicitly the geometrical
content of the webs and their Uq(sl3) symmetry, and permits us to study the model on a cylinder via a
local transfer matrix. A numerical study of the effective central charge reveals that for q = −eiγ , in the
range γ ∈ [0, π/3], the web model possesses a dense and a dilute critical point, just like its loop model
counterpart. In the dense q = −eiπ/4 case, the n = 3 webs can be identified with spin interfaces of the
critical three-state Potts model defined on the triangular lattice dual to H. We also provide another
mapping to a Z3 spin model on H itself, using a high-temperature expansion. We then discuss the sector
structure of the transfer matrix, for generic q, and its relation to defect configurations in both the strip
and the cylinder geometries. These defects define the finite-size precursors of electromagnetic operators.
This discussion paves the road for a Coulomb gas description of the conformal properties of defect webs,
which will form the object of a subsequent paper. Finally, we identify the fractal dimension of critical
webs in the q = −eiπ/3 case, which is the n = 3 analogue of the polymer limit in the loop model.
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1 Introduction

Two-dimensional lattice models of loops have been widely studied for many years and have proved to be
a focal point of a diverse array of methods, including quantum integrability [1–4], algebra [5–7], conformal
field theory (CFT) [8–10], and probabilistic approaches [11, 12]. An important feature of the loop models
that we have in mind—a defining ingredient for some of the methods mentioned, and better hidden but still
implicit in others—is the presence of an underlying quantum group symmetry. For the most fundamental
loop models—the ones covered by the given set of references—this symmetry is U−q(sln) with n = 2.

In a recent paper [13] we have defined a series of statistical models on the hexagonal lattice H that extend
this symmetry to any n ≥ 2. For the cases n > 2, these models define geometrical configurations of cubic
(and bipartite, for n = 3) graphs, called webs, on H. The configurations reduce to the usual loops when
n = 2, in which case bifurcations are suppressed. The present paper is the second in a series, in which we
intend to lay the foundations for the study of such web models. The algebra underlying the description of the
loop model is the Temperley-Lieb algebra [14], while the n = 3 webs are built on the Kuperberg spider [15],
and more precisely on its A2 variant.

The most interesting feature of loop and web models is that the partition sum carries over configurations
of a set of extended, geometrical objects, whose statistical weight contains a non-local part. For the loop
model (n = 2) this non-locality simply amounts to replacing each loop by a real number, while for the web
model the weight results from a quite non-trivial reduction of each connected component to a set of loops
which are then replaced by their corresponding weights [13,15].

The transfer matrix is a powerful tool to study statistical models, especially critical models in two
dimensions, where fundamental results relate the finite-size scaling of the transfer matrix eigenvalues to the
central charge [16,17] and conformal weights [18] of the corresponding CFT. It is of course not immediately
clear whether non-local weights can be accommodated by the transfer matrix formalism. More precisely,
one may ask, for the model defined on a cylinder of circumference L (or a strip of width L), whether there
exists a finite-dimensional Hilbert space HL, defined on a time slice in the usual radial quantisation, and
a suitable representation of the transfer matrix within that space, which will allow one to compute the
non-local weights “on the fly” in the transfer process.

The answer to that question is positive for the loop model [19]: one uses for HL the space of link patterns,
which are the pairwise connections between loop strands within the time slice, the connections being defined
by the evolution prior to that time. This Hilbert space thus contains non-local information that allows one
to compute the non-local weights of loops. But for the n = 3 web model it is not at all obvious how to
achieve a similar goal.

An alternative for setting up such a non-local transfer matrix is to search for a local reformulation of the
model, in which the non-local part of the weight is rewritten locally in terms of other degrees of freedom
than the original ones. For the loop model this can be done [20], at the expense of introducing complex
Boltzmann weights (which is not a problem for the transfer matrix formalism). The result is a vertex model,
where each link of H can be in three different states [21], for which a standard, local transfer matrix can
readily be written down.

We show in Section 2 that a local reformulation can be obtained for the n = 3 web model as well, now in
the form of a coloured vertex model, in which each link of H can be in seven different states. This number
comes from the three colours and two orientations possible for states of links covered by webs, in addition to
a vacuum state carried by an empty link. An example configuration of this seven-state vertex model on H is
given in the following picture, where we show the cylinder geometry (periodic boundary conditions identify
the left and right boundaries):
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This local rewriting has a twofold advantage. On one hand, it sheds more light on the model’s underlying
U−q(sl3) symmetry, as we shall explain in details in Section 2. On the other hand, it enables us to carry
out a numerical investigation of the web model’s phase diagram. This is done in Section 3, and we conclude
that for each q in the range,

q = eiγ , with γ ∈ [0, π/3] , (1)

the web model possesses a dense and a dilute critical point, just like its loop model counterpart [1].
One of our principal goals is to identify the CFT of the web model and compute its critical exponents by

the Coulomb gas method. Although this will be deferred to a subsequent paper [22], we shall find it convenient
to prepare the ground here, by tackling some of the issues that are most conveniently discussed in the lattice
model setting. In particular, in Section 4 we discuss the conservation laws and hence the sector decomposition
of the transfer matrix, both in the cylinder and strip geometries. Each sector is related to a certain defect
configuration, which can be imposed by the boundary conditions and an appropriate modification of the
transfer matrix, and it provides a finite-size precursor of a pair of electromagnetic operators within the field
theory.

The main combinatorial objects in Section 4 are open Kuperberg webs, embedded in a rectangle or a
cylinder, and their three-colourings. We describe the transfer-matrix sectors in terms of the (coloured) open
webs subject to conditions which are analogous to the Temperley-Lieb standard modules in the loop models
case, i.e. no contractions of through lines. However, it is worth noticing that, contrary to the loop models
case, the classification of irreducible open webs in the cylinder geometry is rather non-trivial, the most
technical problem we solve at the end of Section 4.

We also consider applications in a few models. It follows from Section 3 and [13] that for q = eiπ/4

the critical point in the dilute phase of the n = 3 webs can be identified with spin interfaces of the critical
three-state Potts model defined on the triangular lattice T, dual to H. This equivalence is analogous to
the well-known identification of domain walls of the critical Ising model within the n = 2 loop model. In
Section 5 we provide another mapping between the n = 3 webs and a Z3 spin model defined on H itself, by
means of a high-temperature expansion. We discuss in particular defects within this formulation.

Another interesting special case of the n = 3 web model occurs for q = eiπ/3, where the model is trivial
because every non trivial web is weighted by 0. However a renormalization of the partition function defines
an interesting web model where only one-connected-component webs contribute. This case is analogous to
the polymer limit of the n = 2 loop model. We discuss this special case and conjecture a relation between
the fractal dimension of critical webs and electromagnetic conformal weights in Section 6.

Finally we give our conclusions and some perspectives for further developments in Section 7. Appendix A
contains our conventions and notations for quantum groups and the pivotal structure, while other technical
details are relegated to Appendix B.

2 Vertex-model representation of Kuperberg A2 web models

2.1 Geometrical definition

We first recall the definition of the Kuperberg web model, as given in our first paper [13]. The model is
defined on an hexagonal lattice H made of 2M rows and 2L columns embedded in a vertical strip or a
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Figure 1: Left panel: A configuration on H with 2M = 6 rows and 2L = 12 columns. The arrow is parallel
to the axis of the cylinder. The left and right sides of the drawing are identified by periodic boundary
conditions. Right panel: The same configuration drawn as a web.

vertical cylinder. More precisely, a row here denotes a row of vertical edges, while a column is a column of
tilted edges. It can be read from the example in Figure 1. To fix vocabulary, H is comprised of nodes and
links. It is oriented such that one third of its links are parallel to the vertical axis of the strip, or cylinder.
Configurations are closed Kuperberg webs embedded in the lattice (see Figure 1). We refer to such webs by
the label K. Kuperberg webs are planar oriented trivalent bipartite graphs. They are comprised of vertices
and edges. The two types of vertices are either sources or sinks with respects to the arrows located on edges.
A bond is a link of the hexagonal lattice covered by an edge of a web. Each bond inherits the orientation of
its corresponding edge. Thus, when a path of several links is covered by one edge, the corresponding bonds
must be consistently oriented.

The weight of a configuration c is the product of a local part and a non-local part. A fugacity x1

(respectively x2) is given to a bond covered by an edge flowing upward (respectively downward). Remark
that upward and downward are well defined as no link of H is drawn horizontally. In addition, a fugacity y
is given to each sources, and a fugacity z is given to each sink. The fugacities x1, x2, y, and z define the
local part of the weight of c. The non-local part is given by a number wK(c) assigned to each closed web; it
is computed by reducing c to the empty web by means of the relations

= [3]q (2a)

= [2]q (2b)

= + (2c)

The non-local weight is well-defined, in the sense that any planar closed Kuperberg web c can indeed be
reduced to the empty web by means of the rules (2), and moreover wK(c) does not depend on the order in
which the three rules are applied [15]. Note that the embedding of graphs in either the strip or the cylinder
ensures planarity.

The partition function then reads

ZK =
∑
c∈K

xN1
1 xN2

2 (yz)NV wK(c) , (3)
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where N1 (respectively N2) is the number of upward (respectively downward) bonds, NV is the number of
sink/source pairs of vertices, and K denotes the set of embedded Kuperberg webs. The model is discretely
rotationally invariant when x1 = x2. The vertex fugacities y, z and the Kuperberg weight wK(c) do not
depend on how a given web is embedded in H but only on the abstract graph. Thus, we dub the product of
these two parts, (yz)NV wK(c), the topological weight of the configuration c.

Note that the partition function is invariant under the transformation

yz 7→ −yz , (4a)

q 7→ −q (4b)

and under the transformation

q 7→ q−1 . (5)

In this paper, we will focus on the following subspace of the parameter space:

x1, x2, yz ≥ 0 ,

q = eiγ , with γ ∈ [0, π] . (6)

2.2 Combinatorial vertex-model formulation

We shall now describe a combinatorial vertex-model formulation of the above Kuperberg web model. It is
similar in spirit to the localisation of the loop weight in the O(N) loop model in terms of a corresponding
oriented loop model [10,20]. We first give a quick reminder of the latter construction.

The configurations of the O(N) loop model are collections of self-avoiding and mutually avoiding loops
embedded in H. The weight of a configuration is the product of local fugacity x assigned to each bond (i.e.,
a link covered by a loop) and a non-local factor N for each loop. In order to localise the latter, one needs a
way to relate N to local degrees of freedom. A convenient trick is to first assign orientations to each loop.
One then gives a weight q (respectively q−1) to a loop oriented clockwise1 (respectively anticlockwise) such
that, with N = q + q−1 = [2]q, the original loop weight is retrieved. Next, one can localise the weight of an

oriented loop by requiring that a piece of it carry a weight q−
θ

2π when it bends an angle θ. The angle θ of
an oriented edge bending will always be counted positive in the anti-clockwise direction:

We will use the same definition regarding the bending of (coloured) oriented edges in the Kuperberg web
model. On the hexagonal lattice H embedded in the strip, the weight of an oriented loop can be accounted
for by the followings local weights (where the bond fugacity is taken care of as well):

= xq−
1
6 , = xq

1
6 , = 1 , (7)

where the dashed line represent a link unoccupied by a loop. Here we only drew some of the possible node
configurations, omitting those related to the above ones by a rotation. All node configurations related by a
rotation are given the same weight. Hence the model possess the discrete rotation symmetry of H.

1Our convention on loop orientations is opposite to what one may find in part of the literature. It follows from our convention
for the coproduct of the quantum group (see Appendix A).
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When H is embedded in the cylinder, the above vertex weights give an uncorrect weight 2 to non-
contractible loops. This situation can be remedied by introducing an oriented seam line running along the
cylinder and avoiding nodes, such that additional weights are given to links crossing the seam line as follows:

= q , = q−1 , = 1 . (8)

Indeed, these weights just compensate the lack of bending for configurations that wrap around the periodic
direction.

Remark 1 From this point in the discussion we shall refer to oriented loops as having instead one of two
possible colours. We introduce this non-standard usage in order to parallel the terminology of Kuperberg
webs to be discussed below. Indeed, the cases n = 2 (loop model) and n = 3 (Kuperberg webs) both use n
distinct colours. In addition, the Kuperberg webs are endowed with orientations (arrows), but these are not
analogous to what we have hitherto called the ‘orientation’ of a loop. In fact, it will be made clear below that
the orientation (in the sense of Kuperberg webs) is a redundant information for the loop model, motivating
our change of terminology. The weight of a coloured configuration d given by the above local weights will
henceforth be denoted as wcol(d).

Let us now get back to the Kuperberg web model. We again begin by decorating the webs, as a first step
in making the weights local. We call a three-colouring of a Kuperberg web c, a map from the set of edges
of c into the set {red,blue, green}, subject to the constraint that each vertex be incident on three edges with
different colours. As usual, a bond inherits the colour of the edge it belongs to. By the above Remark 1,
these colours are the analogue of what we called ‘orientations’ in the above discussion of the loop model (but
which we shall now refer to as colours as well). A precise algebraic interpretation of the concepts of colours
(for loops and webs) and orientations (for webs only) will be given in Section 2.4.

Each coloured web d is assigned a weight wcol(d), to be defined shortly, such that the sum of these weights
over all possible three-colourings d of a given Kuperberg web c will give back the non-local weight wK(c).
Note that we use the same notation for the weight of coloured configurations in both the loop and Kuperberg
case, since the model being considered should always be clear from the context. We will describe the weight
given to a coloured web directly in terms of its local pieces.

Consider first the strip geometry. We now restrict to x1 = x2 = x and will come back to the general case
later. The local weights of the model are given by factors when a node is incident on three bonds

= zx
3
2 q−

1
6 , = zx

3
2 q

1
6 ,

= yx
3
2 q

1
6 , = yx

3
2 q−

1
6 , (9a)

or on only two bonds (which are then parts of the same embedded edge, hence having consistent orientations
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and colourings)

= xq−
1
3 , = x , = xq

1
3 ,

= xq
1
3 , = x , = xq−

1
3 , (9b)

or finally when the node is empty

= 1 . (9c)

In other words, in addition to the bond and vertex fugacities of the original Kuperberg web model, red edges
get a weight q−

θ
π when they bend an angle θ, green edges get the weight q

θ
π when they bend an angle θ,

whereas blue edges do not get any weight. There is also a special weight q±
1
6 when three colours meet at a

vertex. The sign in the exponent changes when the cyclic order of the colours meeting at a vertex is reversed
or when the orientations of the three edges meeting at the vertex are flipped simultaneously. Again, we
draw only a subset of the node configurations, omitting those related to the above by a rotation. All node
configurations related by a rotation are weighted the same way. Observe that in (9), the three lines adjacent

to a given node are understood as half-links of H, hence a half-bond is weighted by x
1
2 .

It is not difficult to deduce from this the local weights in the general case where x1 and x2 are arbitrary.
In this case, two node configurations related by a rotation are weighted differently, in general. We will not
draw the complete set of node configurations but it should be clear from the following examples how any of
them is weighted:

= zx1x
1
2
2 q
− 1

6 , = zx
1
2
1 x2q

1
6 ,

= x1q
− 1

3 , = x
1
2
1 x

1
2
2 q

1
3 . (10)

We now show that the above local weights recover the weight of a web configuration c. The local weights
define the weight wcol(ci) for a given three-colouring ci of c. We want to show that the sum of these weights
over all three-colourings recovers the Kuperberg web model weight,∑

i

wcol(ci) = xN1
1 xN2

2 (yz)NV wK(c) , (11)

where N1, N2 and NV were defined after (3).
The weight of a coloured web wcol(ci) is given by a product of bond and vertex fugacities as well as some

power of q, conveniently denoted qn(ci). It is clear that the product of bond and vertex fugacities is the same
for any three-colouring of c and is equal to xN1

1 xN2
2 (yz)NV , the same factor appearing on the right-hand side

of (11). Hence it remains to show that ∑
i

qn(ci) = wK(c) , (12)
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where the sum is over all three-colourings of c and qn(ci) is the product of local weights given by the local
factors

= q−
1
6 , = q

1
6 ,

= q
1
6 , = q−

1
6 , (13a)

together with

= q−
1
3 , = 1 , = q

1
3 ,

= q
1
3 , = 1 , = q−

1
3 , (13b)

and

= 1 , (13c)

where again any local node configuration related by a rotation to one of the above is weighted accordingly.
It will turn out convenient to generalise the reasoning by considering the coloured web as an abstract

web, i.e., as a coloured web embedded in the plane. In other words, we forget about the underlying lattice H
and allow edges to bend in any possible way, rather than through the discrete angles dictated by H. A

coloured abstract web is given a weight which is again a product of powers of q. Red edges get a weight q
−θ
π

when they bend an angle θ, green edges get a weight q
θ
π when they bend an angle θ, whereas blue edges do

not get any weight. Moreover vertices account for a weight depending on the angle α between the red and
green edges, measured from the red edge to the green one as shown here:

= q−
α
π+ 1

2 , = q−
α
π−

1
2 ,

= q
α
π−

1
2 , = q

α
π+ 1

2 . (14)

For a coloured web embedded in H, this agrees with (13). The total weight of a coloured web defined by the
above local weights is invariant under isotopy. Indeed, straightening a coloured edge does not change the
total weight of the coloured web. Moreover, bending an edge incident on a vertex, the local weight associated
to the bending compensates the change in the local weight of the given vertex. We shall use this freedom in
the following.
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In order to show (12), it is sufficient to show that the local relations (2) are satisfied by the local weights.
That is, for any relation, if we fix the colours of the external edges and sum over the possible colourings
of the internal ones, the two sides must be weighted the same. The loop rule (2a) is obviously satisfied as
a clockwise (respectively anticlockwise) oriented red loop gives a factor q2 (respectively q−2), a blue one
gives a factor 1 regardless of its orientation, and a clockwise (respectively anticlockwise) oriented green
loop gives a factor q−2 (respectively q2). The sum over colours indeed produces the required loop weight,
[3]q = q2 + 1 + q−2, for any of the two possible orientations.

Regarding the second rule (2b), we have, for the case where the external edges are red (the other cases
being similar):

+ = q
1
6×2+ 2

3 + q−
1
6×2− 2

3 = [2]q (15)

Regarding the last rule (2c), there are two cases for the colourings of the four external edges to be
considered. In the first case, all external edges have the same colour, and we find (for the case of green
external edges):

+ = + (16)

where indeed summing out the local weights over the possible colourings on the left-hand side gives q−
1
6×4 +

q
1
6×4+ 1

3×2 = q−
2
3 + q

4
3 , while summing out the local weights over the possible contractions on the right-hand

side gives the same result. In the second case, the external edges have two different colours, one on each side
of the square. In that case, the left- and right-hand sides of (2c) are again weighted the same:

= (17)

The computations for other colourings of external edges are similar. Thus we have shown (12).

When H is embedded in the cylinder, we must again introduce an oriented seam line with local weights
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given by the weight carried by oriented coloured curves when they do a full turn:

= q2 , = 1 , = q−2 ,

= q−2 , = 1 , = q2 , (18)

= 1 .

It is obvious that these weights just compensate the lack of bending for configurations that wrap around
the periodic direction, so the remainder of the proof of (11) can be taken over from the strip case discussed
above.

2.3 Local weights for any trivalent lattice

As a side-effect of the above proof, we remark that the vertex weights (9) can be generalised to account for
the local formulation of the Kuperberg web model defined on any trivalent lattice embedded in the plane.

This is more easily seen when we restrict to only one bond fugacity x. When an edge undergoes bending
(by passing through a node incident on two bonds), it is given the appropriate weight depending on the
colour and the bending angle (as defined above (14)) times the bond fugacity x. When three colours meet at
a vertex, the weight depends on the angle α between the red and green edges, measured from the red edge
to the green one:

= zx
3
2 q−

α
π+ 1

2 , = zx
3
2 q−

α
π−

1
2 ,

= yx
3
2 q

α
π−

1
2 , = yx

3
2 q

α
π+ 1

2 .

That the Kuperberg web weight is retrieved follows from the fact, that, in the last subsection, we have in
fact shown (12) for any coloured web embedded in the plane.

It is also possible to generalise further to account for two types of bond fugacities, x1 and x2, once one
chooses an appropriate time foliation of the plane.

The study of two-dimensional statistical models defined on arbitrary trivalent lattices—or by duality, on
arbitary triangulations of the plane—is relevant for the discretisation of models of two-dimensional quantum
gravity. In such models the partition function is a double sum over the triangulations, with a certain
weighting (the so-called cosmological term) coupling to the area of the corresponding surface, and over the
statistical model defined on a given triangulation. There are many interesting connections from this approach
to random matrix integrals, combinatorics and graph theory. We refer the reader to the review [23] for further
details. It should be noticed in particular that the O(N) loop model has been solved in this context, using
random matrix techniques [24], and we leave for future research to determine whether the Kuperberg web
model coupled to quantum gravity can be treated by similar means.
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Figure 2: The row to row transfer matrix in the case of periodic boundary conditions with 2L = 10.

2.4 Algebraic transfer matrix formulation

Our next goal is to define the transfer matrix corresponding to the vertex models of Section 2.2. To this
end, we associate to each link of H a local space of states whose basis is given by the link degrees of freedom.
In the loop model case, this leads to a three-dimensional local states space Hloop = span(|↑〉 , |↓〉 , | 〉). In
the Kuperberg web model, the local state space has dimension seven and is written in terms of colours and
orientations:

HK = span(|↑〉 , |↑〉 , |↑〉 , |↓〉 , |↓〉 , |↓〉 , | 〉) . (19)

The vertex weights are then understood as matrix elements between states, but to define them we need
tensor products of several local state spaces. The operators built this way are the local transfer matrices.
The weights associated to the seam line are interpreted as matrix elements of twist operators, as they
introduce twisted boundary conditions.

We shall call node of type 1 (respectively type 2) a node situated at the bottom (respectively top) of
a vertical link. For example, (7) and (9) show nodes of type 1 for the loop and Kuperberg web models,
respectively. As usual, we first discuss the loop model.

We first recall how to build the full transfer matrix from the local transfer matrices and the twist
operators. Denote by tloop

(k) the local transfer matrices propagating through a node of type k ∈ {1, 2}. They

are linear maps:

tloop
(1) : Hloop ⊗Hloop → Hloop , (20a)

tloop
(2) : Hloop → Hloop ⊗Hloop , (20b)

and we use their pictorial notation and , respectively, in Figure 2. Their matrix elements are given

by (7) in the case k = 1 plus rotations, and similarly for k = 2. Hence their composition tloop = tloop
(2) t

loop
(1)

is a linear map from Hloop ⊗Hloop to itself (i.e., an endomorphism of Hloop ⊗Hloop).2 We index the copies

tloop
i of these operators by their position i in a row as in Figure 2.

Denote by Sloop the twist operator associated with crossing the seam line running from right to left, and
its inverse S−1

loop associated with the seam line running from left to right. Then the row-to-row3 transfer
matrix Tloop in the cylinder geometry reads

Tloop =

(
L−1∏
k=0

tloop
2k+1

)(
L−1∏
k=1

tloop
2k

)
Sloopt

loop
2L S−1

loop , (21)

where Sloop acts non-trivially on site 1 only. In case of open boundary conditions we have instead4

Tloop =

(
L−1∏
k=0

tloop
2k+1

)(
L−1∏
k=1

tloop
2k

)
. (22)

2Remark that tloop corresponds to summing over the state of a vertical link, so that a pair of vertices on H is effectively
transformed into a single vertex on a (tilted) square lattice.

3Note that with our definition, the row-to-row transfer matrix propagates states through two rows of the lattice.
4Remark that no non-trivial boundary operator is used in this setup. Generalisations to non-trivial boundary interactions

are however possible [25, 26].
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It is an endomorphism of H⊗2L
loop . The partition function is then recovered as the vacuum expectation value

of powers of the row-to-row transfer matrix:

Zloop = 〈 TMloop 〉 . (23)

By the vacuum expectation value, we mean the matrix element from | 〉⊗2L
to itself. To be precise, the right-

hand-side of (23) expresses the partition function Zloop on a hexagonal lattice with 2M − 2 rows, because
while TMloop builds loop configurations on a lattice with 2M rows, the degrees of freedom on the first and last
row are constrained to be empty due to our choice of vacuum state.

Next we discuss the symmetries of the local transfer matrices. Let V be the fundamental representation
of U−q(sl2).5 Let (v1, v2) be the basis of V such that the generators of U−q(sl2) are represented by the
matrices

(−q)H =

(
−q 0
0 −q−1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
. (24)

Each local state space Hloop carries an action of U−q(sl2), as Hloop
∼= V ⊕C, where C denote the trivial

representation (corresponding to the empty state). We define the action on Hloop by relating the basis
{|↑〉 , |↓〉 , | 〉} with the basis {v1, v2, 1} on each link. We shall here need to distinguish between the three
possible spatial orientations of links, that we call inclinations for convenience. On links of inclination � we
have

(|↑〉 , |↓〉 , | 〉) = diag(q
1
6 , q−

1
6 , 1)(v1, v2, 1) , (25a)

whereas on links of inclination �

(|↑〉 , |↓〉 , | 〉) = diag(q−
1
6 , q

1
6 , 1)(v1, v2, 1) , (25b)

and finally on vertical links we have

(|↑〉 , |↓〉 , | 〉) = (v1, v2, 1) . (25c)

It can be showed that the local transfer matrices tloop
(1) and tloop

(2) are intertwiners with respect to the above

action of U−q(sl2). Remark also that the seam line operators (also called twist operators) are given by the
action of an element belonging to the Cartan subalgebra

Sloop = q2Hρ = qH , (26)

where ρ is the Weyl vector of sl2. As local transfer matrices are intertwiners, this means that the seam line
can be deformed passing through nodes of H.

There is a convenient way to write the local transfer matrices in terms of diagrams where each diagram
represents a particular intertwiner6:

tloop
(1) = x + x + x + (27a)

tloop
(2) = x + x + x + (27b)

Here, full lines represent the propagation of states living in V whereas dashed lines represent the vacuum
state living in C. Diagrams are to be read from bottom to top. For instance, the first diagram in (27a)

5The “−q” in U−q(sl2) may seam unusual but it is actually convenient in order not to introduce additional minus signs in
expressions like (7).

6This comes from the fact that these diagrams are morphisms in the Temperley-Lieb category which is equivalent as a pivotal
category to a subcategory of the category of representations of U−q(sl2).

12



represent the isomorphism V ⊗ C ∼= V as U−q(sl2) representations. The non-zero matrix elements of this
isomorphism in the basis {v1, v2, 1} are

v1 ⊗ 1 7→ v1 , v2 ⊗ 1 7→ v2 , (28)

which in the basis {|↑〉 , |↓〉 , | 〉} give

|↑〉 ⊗ | 〉 7→ q−
1
6 |↑〉 , |↓〉 ⊗ | 〉 7→ q

1
6 |↓〉 . (29)

As another example, the third diagram in (27a) represents the projection onto the trivial representation
appearing in the decomposition of the tensor product V ⊗ V , whose non zero matrix elements in the basis
{v1, v2, 1} are

v1 ⊗ v2 7→ q
1
2 , v2 ⊗ v1 7→ q−

1
2 . (30)

In the basis {|↑〉 , |↓〉 , | 〉} we thus have

|↑〉 ⊗ |↓〉 7→ q
1
6 | 〉 , |↓〉 ⊗ |↑〉 7→ q−

1
6 | 〉 . (31)

We see from (29) and (31) that we indeed recover the corresponding matrix elements of tloop
(1) in the basis

{|↑〉 , |↓〉 , | 〉} given by the vertex weights (7).
The diagrams appearing in (27) can be concatenated when their boundary edges agree. Such a concatena-

tion represents a composition of the operators associated to the diagrams. For example, in the diagrammatic
langage, tloop = tloop

(2) t
loop
(1) reads

tloop =x2 + x2 + x2 + x2

+ x2 + x + x + (32)

We recognise here elements of the dilute Temperley-Lieb algebra.
Note that, in the case of the strip geometry, the row-to-row transfer matrix is an intertwiner, whereas

in the cylinder case this is generally not the case. However in this latter situation the row-to-row transfer
matrix is still symmetric with respect to the action of the Cartan subalgebra.

The same story goes for the Kuperberg web model. The local transfer matrices are symmetric with
respect to an action of U−q(sl3). Let V1 be the first fundamental representation of U−q(sl3) and {v1, v2, v3}
be its basis such that the action of the generators reads

(−q)H1 =

−q 0 0
0 −q−1 0
0 0 1

 , E1 =

0 1 0
0 0 0
0 0 0

 , F1 =

0 0 0
1 0 0
0 0 0

 ,

(−q)H2 =

1 0 0
0 −q 0
0 0 −q−1

 , E2 =

0 0 0
0 0 1
0 0 0

 , F2 =

0 0 0
0 0 0
0 1 0

 .

(33)

Let {w1, w2, w3} be the basis of V ∗1 dual to {v1, v2, v3}, i.e. wi(vj) = δij . The action of the generators in
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this basis reads :

(−q)H1 =

−q−1 0 0
0 −q 0
0 0 1

 , E1 =

0 0 0
q 0 0
0 0 0

 , F1 =

0 q−1 0
0 0 0
0 0 0

 ,

(−q)H2 =

1 0 0
0 −q−1 0
0 0 −q

 , E2 =

0 0 0
0 0 0
0 q 0

 , F2 =

0 0 0
0 0 q−1

0 0 0

 .

(34)

Each local space of states HK carries an action of U−q(sl3) as HK
∼= V1 ⊕ V ∗1 ⊕ C where C denotes the

trivial representation of U−q(sl3). We define this action by relating the basis {|↑〉 , |↑〉 , |↑〉 , |↓〉 , |↓〉 , |↓〉 , | 〉}
with the basis {v1, v2, v3, w1, w2, w3, 1} on each link. On links of inclination � we have

(|↑〉 , |↑〉 , |↑〉 , |↓〉 , |↓〉 , |↓〉 , | 〉) = diag(q
1
3 , 1, q−

1
3 , q−

4
3 , 1, q

4
3 , 1)(v1, v2, v3, w1, w2, w3, 1) , (35)

while on links of inclination �

(|↑〉 , |↑〉 , |↑〉 , |↓〉 , |↓〉 , |↓〉 , | 〉) = diag(q−
1
3 , 1, q

1
3 , q−

2
3 , 1, q

2
3 , 1)(v1, v2, v3, w1, w2, w3, 1) , (36)

and finally on vertical links we find

(|↑〉 , |↑〉 , |↑〉 , |↓〉 , |↓〉 , |↓〉 , | 〉) = diag(1, 1, 1, q−1, 1, q, 1)(v1, v2, v3, w1, w2, w3, 1) . (37)

The local transfer matrices can then be expressed in terms of diagrams, where each diagram represent a
particular intertwiner:

tK(1) =zx1x
1
2
2 + yx

1
2
1 x2 + x1 + x1 + x2

+ x2 + x
1
2
1 x

1
2
2 + x

1
2
1 x

1
2
2 + (38a)

tK(2) =zx
1
2
1 x2 + yx1x

1
2
2 + x1 + x1 + x2

+ x2 + x
1
2
1 x

1
2
2 + x

1
2
1 x

1
2
2 + (38b)

An oriented full line represents the propagation of states inside V1 (respectively V ∗1 ) if the arrow is pointing
up (respectively down) and a dashed line represents the vacuum. In the diagrammatic formulation of the
local transfer matrices of the loop model, it was possible to avoid arrows on edges because the fundamental
representation of U−q(sl2), V , is self-dual. Here this is not the case anymore, as V ∗1 is isomorphic to the
second fundamental representation of U−q(sl3).

The diagrams appearing in (38) are open Kuperberg webs. Let us discuss briefly how these webs are
related to intertwiners [15]. Any web can be obtained as a combination of horizontal juxtaposition and
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vertical concatenation of the following elementary blocks

v = w =

ev = coev = (39)

ẽv = c̃oev =

where the last 4 diagrams represent the duality maps, see more below and in Appendix A. By horizontal
juxtaposition, we mean placing two diagrams next to each other horizontally. On the operator side, this
means taking the tensor product of the associated linear maps. The vertical concatenation, or composition,
means placing two diagrams on top of each other if their boundaries agree. On the operator side, it means
taking the composition of the associated linear maps. For instance, consider the following open webs:

A = B = (40)

Then their composition is

BA = = [3]q[2]q (41)

As can be seen in the last equation, the open webs, like the closed ones, are subject to the Kuperberg
rules (2).

These generating webs in (39) represent the following intertwiners:

v : 1 7→ q
3
2 v1 ⊗ v2 ⊗ v3 + q

1
2 v2 ⊗ v1 ⊗ v3 + q

1
2 v1 ⊗ v3 ⊗ v2

+ q−
1
2 v2 ⊗ v3 ⊗ v1 + q−

1
2 v3 ⊗ v1 ⊗ v2 + q−

3
2 v3 ⊗ v2 ⊗ v1 , (42a)

w = q
3
2w1 ⊗ w2 ⊗ w3 + q

1
2w2 ⊗ w1 ⊗ w3 + q

1
2w1 ⊗ w3 ⊗ w2

+q−
1
2w2 ⊗ w3 ⊗ w1 + q−

1
2w3 ⊗ w1 ⊗ w2 + q−

3
2w3 ⊗ w2 ⊗ w1 , (42b)

coev : 1 7→ v1 ⊗ w1 + v2 ⊗ w2 + v3 ⊗ w3 , (42c)

c̃oev : 1 7→ q−2w1 ⊗ v1 + w2 ⊗ v2 + q2w3 ⊗ v3 , (42d)

ev : wi ⊗ vj 7→ δij , (42e)

ẽv : vi ⊗ wj 7→ q4−2iδij , (42f)
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where the element w is considered as a linear form on V ⊗3
1 . For the general definition of left duality maps,

ev and coev, and right ones ẽv and c̃oev that use the pivotal element, we refer to Appendix A, see (142)
and (143).

Now we can understand which intertwiners are represented by the diagrams in (38). For instance, the
first diagram in (38a) represents the projection from V1 ⊗ V1 into the direct summand V ∗1 . It is graphically
obtained by a composition of, for instance, coev and w as

(43)

As a 3× 9 matrix in the bases {v1 ⊗ v1, v1 ⊗ v2, v1 ⊗ v3, v2 ⊗ v1, v2 ⊗ v2, v2 ⊗ v3, v3 ⊗ v1, v3 ⊗ v2, v3 ⊗ v3} of
V1 ⊗ V1 and {w1, w2, w3} of V ∗1 , it reads0 0 0 0 0 q−

1
2 0 q−

3
2 0

0 0 q
1
2 0 0 0 q−

1
2 0 0

0 q
3
2 0 q

1
2 0 0 0 0 0

 , (44)

while in the bases {|↑ ↑〉 , |↑ ↑〉 , |↑ ↑〉 , |↑ ↑〉 , |↑ ↑〉 , |↑ ↑〉 , |↑ ↑〉 , |↑ ↑〉 , |↑ ↑〉} of V1⊗ V1 and {|↓〉 , |↓〉 , |↓〉} of V ∗1 ,
it becomes 0 0 0 0 0 q

1
6 0 q−

1
6 0

0 0 q
1
6 0 0 0 q

1
6 0 0

0 q
1
6 0 q−

1
6 0 0 0 0 0

 . (45)

From the latter expression we thus see that we recover the correct vertex weigths (13) for the corresponding
states. One can show that this is true for all intertwiners.

In the strip geometry, the row-to-row transfer matrix is defined in a similar way as in the loop case,

TK =

(
L−1∏
k=0

tK2k+1

)(
L−1∏
k=1

tK2k

)
, (46)

with tKi = tK(2)t
K
(1) and the subscript denotes the position of the local transfer matrix. It is thus a U−q(sl3)

intertwiner. Define the vacuum by | 〉⊗2L
. We see from (46) that when we take the vacuum expectation

value of a product of M row-to-row transfer matrices, the result can be understood as the unique matrix
element of a sum of intertwiners from the trivial representation to itself. These intertwiners are the ones
represented by all possible closed webs embedded in H with some prefactors accounting for bond and vertex
fugacities. We thus recover the partition function (3) on a lattice with 2M − 2 rows:7

ZK = 〈 TMK 〉 . (47)

In the cylinder geometry, the seam line operator is given by the pivotal element of U−q(sl3), for the
definition we refer to Appendix A,

SK = (−q)2Hρ = q2Hρ , (48)

where ρ = α1+α2 is the Weyl vector of sl3. The last equality follows because Hρ = H1+H2 is diagonalisable
with integer eigenvalues on HK. Since SK belongs to the Cartan subalgebra and local transfer matrices are

7As in the loop model case, the original partition function is recovered for 2M − 2 rows instead of 2M rows because of our
choice of vacuum.
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intertwiners, the seam line can be deformed through nodes of H. The row-to-row transfer matrix is then
defined as

TK =

(
L−1∏
k=0

tK2k+1

)(
L−1∏
k=1

tK2k

)
SKt

K
2LS

−1
K . (49)

The pivotal element is the one implementing the quantum trace qtr, see (144), and its role in the
diagrammatic setting is to give to the closed webs embedded in the cylinder the weight given by (2), as if
they were unfolded on the plane. Hence we see that, again, taking the vacuum expectation of M -th power
of (49) recovers (3).

However, in the cylinder geometry, the row-to-row transfer matrix will, in general, not posses the full
quantum group symmetry of the local transfer matrices. Yet the invariance with respect to the action of the
Cartan subalgebra remains.

2.5 Relation with the FPL on H
We now tune x1 = x2 = x, y = z = 1 in the Kuperberg web model and consider the x → +∞ limit. In
this case, the configurations are webs that completely cover H. There are two such webs that are related by
a reflection of all of their arrows: in the first, each type 1 node is a source and each type 2 node is a sink,
while in the second it is the other way around. Both of those webs have the same weight, hence the partition
function reads

lim
x→+∞

1

xNl
ZK = 2wK(H) , (50)

where Nl is the total number of links of H. This limit is thus described by the whole lattice H acting as a
unique web, so it is interesting to regard this web in the refined model of coloured webs. The configurations
are then all three-colourings of the hexagonal lattice. Such a three-colouring model was first studied by
Baxter, who found the exact asymptotic equivalent of the partition function, or equivalently the bulk free
energy, in the special case where each three-colouring has the same statistical weight [27]. If one further
considers blue links as empty, one gets a collection of cycles made of alternating red and green links that
are jointly covering each node of H. We thus obtain the configuration space of the fully-packed loop (FPL)
model on H. The equal-weighted case would correspond to giving a fugacity N = 2 to each of these loops
(since each loop is invariant upon permuting red and green along the corresponding alternating cycle).

We now investigate closer which weighting of the FPL model is really obtained in the limit (50). By
reversing the orientation of red links, one gets oriented loops that cover every node of H. According to (13),

these loops pick a factor q−
1
6 when they turn left and a factor q

1
6 when they turn right. Hence, summing

over both orientations, contractible unoriented loops are all weighted by [2]q. We thus recover in this limit
the more general FPL model on the hexagonal lattice with an adjustable loop fugacity, N = [2]q:

ZFPL = lim
x→+∞

1

2xNl
ZK . (51)

This mapping is originally due to Reshetikhin [28]. In our case, when H is embedded in the cylinder, non-

contractible loops are given a different weight, Ñ = q2 + q−2 = [2]2q − 2. The scaling limit of the FPL model

has been studied by Coulomb Gas (CG) techniques in [29], and the particular choice of Ñ was further shown
in [30] to lead to a CFT with an extended W3 symmetry.

The FPL model is in fact integrable. In order to make this apparent, consider the local transfer matrix
tK = tK(2)t

K
(1) in our limit. As we have seen that we can regard H as a unique web, one can write tK as

tK = x3 . (52)
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Figure 3: The phase diagram of the O(N) loop model. N is shown on the horizontal axis and x is shown
on the vertical axis. The black curve indicates the loci of dilute critical points. The grey area corresponds
to the dense phase.

Now consider the integrable trigonometric R-matrix, R15, of the fifteen-vertex model with U−q(sl3) symme-
try [31]. It intertwines between V1 ⊗ V1 and itself, seen as U−q(sl3) representations. In terms of Kuperberg
web it reads

R15(u) = sin(γ − u) + sin(u) , (53)

where u denotes the additive spectral parameter and q is parameterised by q = eiγ . At u = γ, one recovers,
up to a scalar, tK.

We may also ask what kind of loop model one would obtain by the above procedure, for a general choice
of local web fugacities x, y and z. The loop configurations are given by sets Lc of cycle coverings of webs c
embedded in H, i.e. c ∈ K. Hence the partition function reads

Z =
∑

l∈Lc | c∈K

xN (yz)NV w(l) , (54)

where w(l) denotes the weight of a loop configuration. In this general case, all contractible loops do not get
the same weight, and hence w(l) does not take a simple form. Indeed, a given oriented loop picks a factor

q
1
3 when turning left at a node that is not a vertex of the underlying web c, but a factor q−

1
6 when the node

is a vertex of c.

3 Phase diagram of the Kuperberg web model

In this section, we give an exposition of the phase diagram of the web model. A fruitful comparison can be
made with the phase diagram of the O(N) loop model, with loop weight N = [2]q and bond fugacity x ≥ 0.
Recall that on the hexagonal lattice H, one can identify three critical phases in the range N ∈ [−2, 2]. The
phase diagram is shown in Figure 3. The so-called dilute phase occurs at x = xc, with [1, 32]

xc =
1√

2 +
√

2−N
, (55)

corresponding to a critical continuum limit. For x < xc, the model is not critical, and will in fact flow under
the Renormalisation Group (RG) to the trivial fixed point x = 0. For xc < x < ∞, the model is critical
and in the so-called dense phase, governed by the attractive fixed point x? = (2 −

√
2−N)−1/2 [1]. At

x = +∞, the model is also critical and in its fully-packed phase [29]. The three phases—dilute, dense and
fully-packed—are described by three distinct CFTs [10].
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Summarising, we see that for each fixed value of q satisfying (1), the model is not critical for small values
of x. Then, increasing x, we cross the dilute critical point x = xc and enter into an extended dense phase
for xc < x < ∞. We shall see that the phase diagram of the Kuperberg web model exhibits very similar
features.

The phase diagrams of the web model presented below have been obtained thanks to the numerical
diagonalisation of the row-to-row transfer matrix. To be precise, the transfer matrix we have used in our
numerical work is slightly different from the one depicted in Figure 2. It is given by a product of local
transfer matrices and the seam operator (48), as depicted below for size L = 5:

It is an endomorphism of H⊗LK . All numerical results are given thanks to this transfer matrix, or a modifi-
cation thereof where the seam operator is changed (see Section 4).

There are two differences between this transfer matrix and the one described in Section 2.4 and depicted
in Figure 2. First, we are now transfering between two rows of L vertical edges, rather than between two rows
of 2L edges with alternating inclinations � and �. From a numerical perspective this has the advantage
of considerably diminishing the dimension of the matrix, thus enabling us to study larger L than would be
possible otherwise. It is clear that the two conventions construct the same lattice and hence are physically
equivalent. It can be seen from the picture above that this transfer matrix will have the labels of the spaces
drift towards the left (by one half lattice spacing per row), so its square is related to the product of the
former transfer matrix with a shift operator. This will however not entail any modification for eigenvalues
corresponding to the vanishing lattice momentum sector, the only one to be studied in this section. In this
sector, the spectrum of the squared transfer matrix is included within that of the former matrix, and moreover
it is not hard to see that their dominant eigenvalue (the one of largest norm) coincide. So, summarising, the
change of transfer matrix makes the numerical work much more efficient, without modifying the physical
quantities to be studied. In contrast, the transfer matrix depicted in Figure 2 is more conventional. In this
case, there is no horizontal shift between incoming and outgoing states.

The effective central charge ceff provides a convenient means of investigating properties of the phase
diagram and the corresponding RG flows. We first describe how ceff can be approximated using finite-size
scaling. The free energy density for the model defined on a cylinder with a circumference of L hexagons is
given by

fL = − 2√
3L

log(Λmax) , (56)

where the numerical prefactor is related to the geometry of the hexagonal lattice8, and Λmax denotes the
real part of the dominant eigenvalue of the transfer matrix in a subspace of the spectrum. Indeed, to gain in
efficiency we have restricted the transfer matrix to a specific sector of vanishing magnetisation (see Section 4),
or more precisely, to the subspace of states having weight 0 with respect to the Cartan subalgebra symmetry.
The free energy density has the finite-size scaling [16,17]

fL = f∞ −
πceff

6L2
+ o

(
1

L2

)
, (57)

with f∞ being the free energy in the thermodynamical limit. Hence, by diagonalising the transfer matrices
for two consecutive sizes, L = 5 and L = 6, we can extract the two constants, f∞ and ceff. The sizes
are chosen in a compromise between being sufficiently close to the thermodynamical limit for the scaling
behaviour to be visible, and yet being able to perform the required number of diagonalisations in a reasonable

8The area swept by the transfer matrix is L
√
3

2
where

√
3
2

is the height of an equilateral of height 1.
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Figure 4: Phase diagram of the web model with q = eiπ/5 in the (
√
x, y) plane, as given by the contour plot

of the effective central charge for sizes L = 5 and L = 6. The interpretation is given in the main text.

time. The dimension of the vacuum sector (of vanishing magnetisation, see Section 4) used here is 5881 for
L = 6, and each of the phase diagrams presented in the following figures is based on computing fL for 22500
different parameter values. For the diagonalisation itself we employ the Arnoldi method for non-symmetric
complex matrices, in combination with standard sparse matrix and hashing techniques.

In the following we set x = x1 = x2 and y = z, so that the web model is isotropic and invariant under
the global reversal of orientations. We moreover restrict to non-negative parameters (x, y ≥ 0). We shall
depict the phase diagrams in the (

√
x, y) plane, with

√
x ∈ [0, 3] shown on the horizontal axis and y ∈ [0, 3]

on the vertical axis of the figures. To sample the critical region (1) we focus on three different values of q,
viz. q = eiπ/5, q = eiπ/4 and q = eiπ/3. The corresponding weights of an oriented loop, [3]q from (2a), are
(1 +

√
5)/2 ' 1.618, 1 and 0.

We remark that on the horizontal axis, y = 0, vertices are suppressed and the web model is equivalent,
at the level of partition functions, to the O(N) loop model with a loop weight given by N = 2[3]q, since
loops come with two orientations in the web model. The three values of q hence correspond to cases N > 2,
N = 2 and N < 2, respectively.

With these conventions, the phase diagram obtained for the first case, q = eiπ/5, can be inferred from
the corresponding values of the effective central charge, shown as a contour plot in Figure 4. At first sight,
three different regions can be distinguished:

1. To the left of an almost vertical line,
√
x . 0.6, we have ceff ≈ 0 (sand coloured region).

2. To the right of a curve that resembles a hyperbola and extends from (0.7, 3.0) to (3.0, 0.5) approxi-
mately, ceff takes large negative values (dark red region).

3. In between those, ceff takes predominantly values between 0 and 1.5 (region with shades of blue).

To interpret these regions, we refer to results and experience gathered in the study of vertex models [33]
and some related numerical investigations [34,35]. Vertex models generally possess two types of non-critical
regions. In the former, there is a finite correlation length, and using nevertheless the finite-size scaling
form (57) one sees that ceff → 0 exponentially fast in L. This agrees with the first region identified above. In
the latter, the system is frozen into long-range (“ferroelectric”, in the context of the six-vertex model) order,
and the orientational degrees of freedom are correlated throughout the system. In this case, the hypotheses
leading to (57) are inapplicable and one observes large (positive or negative) values of ceff . This behaviour
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Figure 5: Close-up of the ridge region of the web model with q = eiπ/5 in the (
√
x, y) plane, as given by the

contour plot of the effective central charge for sizes L = 5 and L = 6. The interpretation is given in the
main text.

agrees with the second region identified above. Finally, the third region is the most interesting one, inside
which the system exhibits critical behaviour characterised by an infinite bulk correlation length.

We therefore discard the non-critical regions and focus on the third, critical region. Consider first the
part that is not too close to the horizontal axis. We observe an almost vertical curve around

√
x ≈ 0.7 with

a central charge ceff ≈ 1.2. This curves takes the form of a “mountain ridge” in the landscape of ceff . A
close-up of the ridge region, shown in Figure 5, gives better evidence for our estimate for the value of ceff

and the claim that it is almost constant along the ridge. We identify this ridge as the dilute critical phase.
Notice that in the loop model it was situated at x = xc in (55), that is, attained by adjusting one parameter.
The situation in the web model is similar, except that we now have two parameters, x and y, at our disposal.
Hence adjusting one parameter will leave us with a critical curve, instead of just a critical point. Moving
along this curve corresponds to perturbing the fixed point theory by an irrelevant operator.

To the right of the dilute critical phase, and below the non-critical region 2, we observe a plateau with
ceff ≈ 0.8. We identify this as the dense critical phase. As in the loop model, it is obtained by adjusting no
parameter (within a given range), and therefore it here takes the form of a two-parameter critical surface.
Displacements along this surface correspond to the perturbation by irrelevant operators.

In a subsequent paper [22] we shall propose a Coulomb Gas description of the web model. It will turn
out that the exact value of the central charge is c = 6

5 in the dilute critical phase and c = 4
5 in the dense

critical phase, both in fine agreement with the above numerical results.
To conclude the discussion of Figure 4 we now focus on the horizontal axis, y = 0. As already mentioned,

along this line the web model is equivalent to a loop model with monomer fugacity x and loop weight
N = 1 +

√
5 ' 3.236 > 2. Rather interestingly, the O(N) model on H can exhibit critical behaviour even

though N > 2 [37]. This comes about because N can flow to infinity under the RG, from any starting value
N > 2, and provided x is adjusted accordingly the model hits the phase transition in the hard hexagon (HH)
model [38], which is known to be in the universality class of the critical three-state Potts model with c = 4

5 .
The table of [37] contains numerical estimates of the corresponding critical value, x = xHH, for selected
values N ≥ 4. For N = 4, finite-size effects are found to be severe, even using sizes as large as L = 15 (thus
far larger than L = 6 attained in our study of the web model), and the situation would be worse for the
value N ' 3.236 of interest here. Fitting the values for xHH(N) given in the table to a polynomial in 1/N ,
we can expect xHH ∼ 550. Despite the obvious difficulties of making numerical observations in this case,
the conclusion is nevertheless clear: there should be point on the horizontal axis which is in the universality
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Figure 6: Phase diagram of the web model with q = eiπ/4. Conventions are as in Figure 4.

class of the HH model.
In addition to the identification of critical points, the contour plot of ceff also contains information about

the RG flows. According to Zamolodchikov’s c-theorem [39], the RG fixed points correspond to saddle points
of ceff , and away from those—under the assumption of reflexion positivity, or unitarity—the RG flows will be
in the direction of decreasing ceff . This result is applicable even though ceff is here a finite-size approximation
to the true c-function.

We now turn to our second value of q, namely q = eiπ/4, which corresponds to [3]q = 1. The phase
diagram is shown in Figure 6. The structure is very similar to the preceeding case, with the two non-critical
regions having similar characteristics. We again observe the presence of a dilute critical phase, this time with
ceff ≈ 0.8. The corresponding fixed point can in fact be identified, in this particular case, with the “special
point” given by [13, eq. (6)]. It was shown in that reference that fixing yz = 2−1/2, corresponding here to
the horizontal line y = 2−1/4 ' 0.841, makes the web model equivalent to the three-state Potts model on
the triangular lattice T, dual to H. The position of the critical point along this line is known [40]. In terms
of the variable v = eJ − 1, it is the (unique) positive solution of v3 + 3v2 = 3, where J denotes the usual
coupling between nearest-neighbour spins. The corresponding weight of a piece of domain wall on the lattice
dual to T, hence H again, is finally x = e−J ' 0.532. So the critical three-state Potts model with c = 4

5 is
situated in our phase diagram at (

√
x, y) ' (0.729, 0.841), in fine agreement with Figure 6. Because of the

high symmetry of this critical model, it is tempting to conjecture that it may act as an attractive fixed point
controlling the whole dilute critical curve.

The other fixed point of interest along the three-state Potts line, y = 2−1/4 is situated at infinite temper-
ature, i.e., J = 0 and x = 1. At this fixed point all the lattice sites are coloured independently with uniform
probability, using the three colours. Although this is a trivial fixed point from the point of view of the
spin degrees of freedom, it may cause the corresponding geometrical description in terms of domain walls to
exhibit critical fluctuations (the infinite-temperature Ising model and site percolation are similarly related).
We can infer from this that the point (

√
x, y) = (1, 2−1/4) has central charge c = 0, and it is conceivable that

this may in fact be the attractive fixed point controlling the dense critical phase. Indeed, the latter phase is
seen to have ceff ≈ 0 from Figure 6.

Finally, on the horizontal axis y = 0, we observe a set of critical points with ceff ≈ 1. This can be explained
by the corresponding loop model having loop weight N = 2. Indeed, for this loop model the dense and dilute
fixed points coincide and are situated at xc = 2−1/2 according to (55), whence

√
xc = 2−1/4 ' 0.841. The

corresponding central charge is c = 1 indeed. For y = 0 and x > xc the loop model remains in the dense
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Figure 7: Phase diagram of the web model with fixed value of vertex fugacity y = 1 in the (
√
x, γ) plane

with q = eiγ in the range γ ∈ [0, π/3].

phase with c = 1, and critical exponents that are independent of x [41]. This c = 1 line is visible in figure 6.
However, the numerical data seem to indicate that the c = 1 line terminates at a finite value of

√
x, but

since this is inconsistent with the analytical argument, it must be a finite-size artifact. By the c-theorem,
the RG flows are orthogonal to the contour lines of constant ceff . This appears to be consistent with an RG
flow from the c = 1 point at (

√
xc, 0) ' (0.841, 0) towards the dilute critical phase with c = 4

5 .

For the third and last value of q, namely q = eiπ/3 corresponding to [3]q = 0, the phase diagram is similar
to the previous ones, with the presence of a dilute phase at ceff ≈ 0 and a dense phase at ceff ≈ −2. These
values of the effective central charges that we have read from our numerical investigation are in fact exact.
This will be shown thanks to a Coulomb Gas description of these phases in our subsequent paper [22].

Finally, we have added a plot of the phase diagram for varying values of q = eiγ , in the range γ ∈ [0, π/3].
This diagram agrees with the previous ones in figures 4 and 6 for fixed values of q and y = 1. For γ ∈ [0, π/3],
we can see both the dense and dilute phase. For γ > π/3, we could only see the dense plateau, as the effective
central charge of the would-be dilute phase becomes negative, and hence does not lead to a discernable peak
on the background of the equally negative dense plateau.

4 Electromagnetic operators in the U−q(sl3) vertex model

In this section we define modified partition functions of the loop model and the Kuperberg web model. We
denote them by Ze,mloop (respectively Ze,mK ) in the cylinder geometry and Zmloop (respectively ZmK ) in the strip
geometry.

At the critical points of the O(N) loop model, these objects are well known. In the cylinder geometry,
when M

L becomes large, one has the asymptotic equivalent [18]

Ze,mloop

Zloop
∼ e−

√
3πM
4L (he,m+h̄e,m) , (58)

where (he,m, h̄e,m) are the conformal weights of the so-called electromagnetic operators of electric and
magnetic charges, e and m [10]. In the usual field-theory normalisation the prefactor in the exponential
would be 2πM

L , but the aspect ratio must here be modified in order to account for the specific choice of
lattice H. Recall that Figure 2 depicts two rows and 2L columns. Hence, in the presence of 2M rows, the

aspect ratio is given by
√

3M
4L because the height of an equilateral triangle of side 1 is

√
3

2 .
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The electromagnetic operators are described in the Coulomb Gas (CG) formulation of the continuum
limit of the loop model. In this picture, Ze,mloop is the lattice version of the CG partition function with a pair
of electromagnetic operators inserted at the bottom and top ends of the cylinder.

In the strip geometry, one has instead

Zmloop

Zloop
∼ e−

√
3πM
8L hm , (59)

where hm is the conformal weight of the boundary magnetic operator of charge m. One can again look at
Zmloop as the lattice version of a partition function modified by the insertion of magnetic operators at both
ends of the strip. Thus, we will borrow the vocabulary of electromagnetic operators when discussing these
lattice modified partition functions.

These scaling formulae are similar in the case of Kuperberg webs. Although a CG description of the web
model will only be given in a subsequent paper [22], it is appropriate to discuss the precursors of field-theory
operators in the context of the lattice model. In this section we therefore consider the modification of the
partition function due to the insertion of a pair of electromagnetic operators. The scaling formulae

Ze,mK

ZK
∼ e−

√
3πM
4L (he,m+h̄e,m) , (60a)

ZmK
ZK

∼ e−
√

3πM
8L hm , (60b)

valid for the cylinder and strip geometries respectively, then define conformal weights of electromagnetic
excitations at critical points of the web model.

The aim of this section is to elaborate on the definition of such electromagnetic partition functions and
to provide their geometrical interpretation. For this reason, we shall sometimes refer to the modifications of
the partition functions as the insertions of geometrical defects. We shall treat the loop and web models in
parallel, discussing first the easiest case of the strip, before moving on to the cylinder geometry.

4.1 The strip geometry

4.1.1 Magnetic defects

As we have seen in Section 2, the row-to-row transfer matrix of the O(N) loop model in the strip geometry
possesses a symmetry under U−q(sl2). The Hilbert space therefore decomposes in weight subspaces, i.e.,
eigenspaces of the Cartan element H1. Let R∗2 be the weight lattice of sl2, dual to the root lattice R2 = Zα1

which is generated by α1. The weight lattice is also generated by one vector, w1 satisfying (w1,α1) = 1,9

called the fundamental weight, that is, R∗2 = Zw1. A weight vector of weight m = nw1, with n integer, is
an eigenstate of H1 with eigenvalue (m,α1) = n. In the SU(2) spin projection notations it corresponds to
the spin n/2.

The eigenspace of H1 comprised of weight vectors of weight m will be called a sector. It is stable under
the action of the transfer matrix and contains excitations that are lattice precursors of the ones created by
magnetic operators in the Coulomb Gas formalism. We call a magnetic defect state |m〉 (or simply magnetic
defect) of magnetic charge m, a pure tensor state in the sector of weight m, such that any two sites labelled
by 2i and 2i+1 cannot be occupied (i.e., non-empty) simultaneously and there are exactly |n| occupied sites.
Here are some examples with m = nw1:

|m〉 = (|↑〉 ⊗ | 〉)⊗n ⊗ | 〉⊗2L−2n
, if n ≥ 0 , (61a)

|m〉 = (|↓〉 ⊗ | 〉)⊗|n| ⊗ | 〉⊗2L−2|n|
, if n ≤ 0 . (61b)

The dilution of the insertion sites is required in order to avoid a trivial propagation. For instance, the state
|↑〉⊗3 ⊗ | 〉⊗2L−3

is not a magnetic defect, as it is mapped to 0 by the transfer matrix.
The partition function modified by the insertion of the magnetic defect is then

Zmloop = 〈m|TMloop |m〉 , (62)

9See Appendix A for our conventions on the scalar product ( , ).
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Figure 8: Left panel: A configuration in Lmcol form = 2w1 in the strip geometry. Right panel: A configuration
in Lm obtained from the left one by forgetting orientations. We also show two examples of cuts.

with Tloop being defined in (22). Because any magnetic defect of charge m becomes a magnetic defect of
charge −m under the action of raising and lowering operators, E1 and F1, the sectors of opposite magnetic
charges contain the same excitations. It is thus possible to focus only on positive magnetic charges.

The different choices for |m〉 are physically equivalent. Every magnetic defect state having a non-zero
overlap with the dominant eigenvector (that eigenvector of the transfer matrix whose eigenvalue is the
largest in norm) will lead to the same scaling behaviour (58)–(59). We believe that, in the loop models,
every magnetic defect state has a non-zero overlap with the dominant eigenvector.

One can write (62) as a sum over trajectories of transition amplitudes. Denote by Lmcol the set of coloured
(cf. Remark 1) subgraphs of H whose connected components are either coloured loops or coloured lines, such
that loops cannot touch the bottom and top boundaries, and lines touch the bottom and top boundaries
only at their end points corresponding to the occupied sites in |m〉 and with the inherited orientations; see

Figure 8 for an example with |m〉 = | 〉⊗3 ⊗ |↑〉 ⊗ | 〉 ⊗ |↑〉 ⊗ | 〉⊗6
. We call these configurations coloured. We

have then

Zmloop =
∑
c∈Lmcol

wmcol(c) , (63)

where the weight wmcol(c) is given by the local rules (7). In any given row, the number of arrows pointing
upward minus the number of arrows pointing downward is conserved, manifesting the magnetic charge
conservation. Remark that, as in the case without defects (23), the modified partition function can be
interpreted as one for a loop model on a lattice with two rows less. This is because the degrees of freedom
are completely constrained on the first and last rows, due to our choice of magnetic defect state. Yet, it
appears more convenient to keep working with the model defined by (62) on a lattice with two more rows.
We will do the same in the other settings of loop or Kuperberg web models in the strip or cylinder geometry.

In the case of the Kuperberg web model, and still in the strip geometry, the row-to-row transfer matrix
of the local formulation is symmetric under U−q(sl3). Hence we define magnetic charges belonging to the
weight lattice R∗3 of sl3. It is generated by two fundamental weights, w1 and w2.

Again, by using the action of raising and lowering operators, it is enough to focus on magnetic charges
inside the fundamental Weyl chamber, i.e, dominant weights

m = n1w1 + n2w2 , (64)

where n1 and n2 are non-negative integers. We call a magnetic defect state of charge m a pure tensor state
of weight m, such that sites labelled by 2i and 2i + 1 are not both occupied simultaneously, and there are
exactly n1 + n2 occupied sites. Here is an example:

|m〉 = (|↑〉 ⊗ | 〉)⊗n1 ⊗ (|↓〉 ⊗ | 〉)⊗n2 ⊗ | 〉⊗2L−2n1−2n2 . (65)
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Figure 9: Left panel: A configuration of Kmcol for m = w1 in the strip geometry. Right panel: A configuration
of Km obtained from the left one by forgetting colours.

To understand the choice of colours, recall that whatever the inclination of the link (�, � or |), by the
relations (35)–(37), |↑〉 has weight w1 and |↓〉 has weight w2. In fact, for any magnetic defect, there are
necessarily n1 sites occupied by upward oriented red arrows, n2 sites occupied by downward oriented green
arrows, and no blue arrows. As in the loop model case, the occupied sites have to respect some dilution in
order to avoid being mapped to zero by the transfer matrix. Therefore a state such as |↑〉⊗3 ⊗ | 〉⊗2L−3

is
not a magnetic defect, according to the above definition.

Different choices for |m〉 having a non-zero overlap with the transfer matrix eigenvector whose eigenvalue
is the largest in norm are physically equivalent. Based on experience with the loop models we expect such a
non-zero overlap to hold for any magnetic defect state. The partition function modified by the presence of
the magnetic defect is

ZmK = 〈m|TMK |m〉 , (66)

with TK defined in (46).
As in the loop models case, the next step is to rewrite ZmK in terms of coloured open web configurations.

We begin with a definition: an open Kuperberg web in a rectangle10 is a planar oriented bipartite graph with
trivalent and univalent vertices such that the univalent vertices are only at the top and bottom boundaries
of the rectangle. Assume c is an open web with 2(n1 + n2) univalent vertices such that the following holds
for both bottom and top boundaries: c has n1 (respectively n2) upward (respectively downward) oriented
edges incident on the univalent vertices. A three-colouring of such an open web c is a map from the edges
of c into the set {red,blue, green}, such that all three colours are present around any trivalent vertex, and
such that at every boundary side the n1 (respectively n2) upward (respectively downward) oriented edges
incident on the univalent vertices are red (respectively green).

Now, we can rewrite the partition function (66) in terms of the coloured open webs (i.e., via amplitudes
of trajectories):

ZmK =
∑
c∈Kmcol

wmcol(c) , (67)

where Kmcol denotes the set of subgraphs of H whose connected components are either open or closed three-
coloured webs, such that webs cannot touch the bottom and top boundaries, except for open webs that have
their univalent vertices at the occupied sites in |m〉 with the colours and orientations inherited from |m〉.
The weight of a coloured configuration wmcol(c) is given by the local weights (9), in the case x1 = x2 = x (or
by (10) in the general case). A sample configuration is shown in Figure 9 for m = w1. We remark that
the equality between (66) and (67) follows straightforwardly from the construction of the transfer matrix TK

which matrix elements are given by the expressions from (9)-(10).

10For brevity, we will call it just ‘open web’.
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4.1.2 Geometrical interpretation

We now give a geometrical interpretation of the magnetic partition functions defined in the last subsection.
More precisely, we show how to define and evaluate a non-coloured open loop or Kuperberg configuration
(similar to the closed case, but with modified rules) such that we recover Zmloop or ZmK , respectively. We also
describe how such configurations are geometrically constrained. We begin with the loop model.

The idea is to group coloured configurations in Lmcol that differ only by the colours (also called ‘orientations’
prior to Remark 1) of loops. This is exactly what one does when going from the local vertex model to the
non-local geometrical loop model. The difference with the usual argument for Zloop is the presence of lines
connected to the boundary, where their colour is fixed by the choice of magnetic defect |m〉. In other words,
the boundary-touching elements in Lmcol have constrained colours. Define by Lm the set of subgraphs of H
obtained by forgetting the colourings of the non-constrained elements of Lmcol. By summing the contributions
coming from unconstrained colourings, we obtain

Zmloop =
∑
c∈Lm

wm(c) , (68)

where the weight wm(c) is the product of a non-local weight q+ q−1 for each loop and a fugacity x for each
monomer. Indeed, as we shall see, the open lines contribute to the weight only by the fugacities of the bonds
they cover. An example of configuration in Lm is given in Figure 8.

In Section 2.4 we have seen that graphs in the O(n) loop model can be understood as intertwiners of
U−q(sl2) representations. In this picture, we can think of a bond as the propagation of states inside the
fundamental representation. It is then apparent that the insertion of a non-trivial magnetic defect will
constrain the geometry of the configurations due to the condition of keeping unchanged the Cartan weight
of a propagated state.

More precisely, define a cut as a smooth curve crossing the strip from left to right such that it avoids nodes
and its projection onto the horizontal axis is injective (no overhangs). Some examples of cuts are depicted
in Figure 8. A cut defines a Hilbert space that is the tensor product of the local Hilbert spaces of the links it
crosses. The evolution operator between two disjoint cuts is a product of local transfer matrices. The row-to-
row transfer matrix is a special case of such an evolution operator. A cut on a colored configuration defines
a pure tensor state in the basis of up/down arrows. This pure tensor state is an eigenvector of the Cartan
subalgebra, i.e. a weight vector. Moreover it has nonzero overlap with the evolution (by transfer matrices) of
the magnetic defect state, which is of Cartan weight m by symmetry of the local transfer matrices. As two
weight vectors of different Cartan weights must have zero overlap we conclude that the Cartan weight of the
pure tensor state on any cut is equally m. The presence of p bonds on a given cut indicates that the pure
tensor state is a vector of the representation V ⊗p. Hence, on any given cut, the magnetic charge m = nw1

should satisfy

m � pw1 , (69)

where � denotes the partial ordering on weights. Equivalently

n ≤ p , with n ≡ p mod 2 . (70)

We note that it is insufficient to apply the constraint (70) on cuts intersecting only vertical links (i.e., on
completed rows). This can be seen from the example
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where (70) is satisfied (with n = 2) on each completed row, but not on the cut depicted. This is why we
impose (70) on any cut. This stronger constraint imposes that each line connected to the bottom boundary
is also connected to the top boundary; we call such lines through-lines. Since the through-lines enter and
leave the strip with the same inclination (due to our choice of using the same magnetic defect |m〉 as initial
and final state), they do not pick up any powers of q from bending. Hence the through-lines contribute to
the weight of a configuration in (68) only by the fugacities of the bonds that they cover.

We are now ready to discuss the Kuperberg web model. Denote by Km the set of webs embedded in H
that are obtained from elements of Kmcol by forgetting their colourings. See Figure 9 for an example. Remark
that the colours of the edges connected to the boundary are constrained by the choice of magnetic defect.
Set m = n1w1 + n2w2, with n1, n2 ∈ Z≥0. This boundary condition imposes constraints on the possible
three-colourings of c. Different configurations ci in Kmcol, that produce the open web c once one forgets their
colourings, are exactly the three-colourings of c. By summing over their weight we obtain

ZmK =
∑
c∈Km

wm(c) , (71)

with

wm(c) =
∑
i

wmcol(ci) . (72)

where the sum is over all three-colourings of c.

We now wish to understand (71)–(72) without making reference to colourings. To this end, we first
describe more closely what is the set Km. By analogy with the loop model case, we examine what the
insertion of a defect of charge |m〉 implies for the geometry of open webs. The Cartan weight is conserved
between two cuts as evolution operators commute with the U−q(sl3) action. Indeed, any given cut of a
colored configuration gives a pure tensor state whose overlap with the evolution of the magnetic state is
nonzero. States with different Cartan weights have no overlaps, hence the pure tensor state has Cartan
weight m. It therefore must belong to a direct summand (in the Hilbert space) whose highest weight is
higher or equal to m. This means that, on a given cut, the numbers p1 and p2 of bonds pointing upward
and downward, respectively, satisfy

m � p1w1 + p2w2 (73)

with respect to the partial ordering on weights. Equivalently, this can be written

2n1 + n2 ≤ 2p1 + p2 , with 2n1 + n2 ≡ 2p1 + p2 mod 3 , (74a)

n1 + 2n2 ≤ p1 + 2p2 , with n1 + 2n2 ≡ p1 + 2p2 mod 3 . (74b)

We define a minimal cut to be a cut such that the above constraints are satisfied as equalities.
Now, consider the vector space generated by open webs embedded in the rectangle, up to boundary

preserving isotopy, such that there are n1 upward oriented edges and n2 downward oriented edges connected
to the bottom (respectively top) boundary. The ordering of these oriented edges can be different on either
boundary. We then quotient this space by the Kuperberg relations (2) and by the rule that a web not
satisfying the constraints (74) on any cut crossing the rectangle from left to right is set to zero. We call the
quotient a space of magnetised webs of (magnetic) charge m = n1w1 + n2w2.11 For instance, the following
web is a magnetised web of charge w1 +w2:

(75)

11In the terminology introduced by Kuperberg, this quotient is called a clasped web space [15].
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We conclude that the graphs appearing in Km are non-zero elements in the space of magnetised webs of
charge m with the property that their oriented edges are arranged in the same order at the top and bottom
boundaries (since the same magnetic defect is used as initial and final state).

We next describe how to compute the weight wm(c) for a given element c ∈ Km, without making reference
to colourings. The bond and vertex fugacity part is obvious, so we omit this part of the weight from the
following argument. We can reduce a magnetised web to a linear combination of magnetised webs containing
strictly less edges by applying the set of relations (2). Remark that the use of the square rule (2c) can result
in a linear combination containing a web that is not magnetised, which is then set to zero. Hence, we can
also think of this reduction as using an extension of the set of rules (2) by

= or = (76)

where the right-hand sides are assumed to form parts of magnetised webs. A web resulting from the appli-
cation of these rules that has a minimal number of edges is called irreducible.

By [15, Thm. 6.1], the space of magnetised webs of charge m for any choice of orderings of the bond
orientations in the initial and final states has the same dimension as the space Inv(Vm ⊗ V ∗m) of U−q(sl3)
invariants, where Vm denotes the irreducible representation of highest weight m. This latter space is one-
dimensional.12 Therefore, there exists an irreducible magnetised web c0 corresponding to a given pair of
initial and final states of charge m generating the whole space of magnetised webs. In particular, in the case
of Km, one can choose c0 as the web without vertices, i.e., the one where a collection of n1 + n2 disjoint
edges (through-lines) connect the bottom boundary to the top boundary.

As we have seen, the space of magnetised webs is one-dimensional, thus any magnetised web is propor-
tional to the irreducible web c0 with a given proportionality factor. We define the magnetised Kuperberg
weight wmK (c) of a magnetised web c to be this proportionality factor. Or, equivalently, the irreducible web
c0 is weighted by 1, and this weighting extends linearly to any magnetised web.

We are now equipped to demonstrate that the product of wmK (c) and local fugacities for bonds and
vertices is equal to wm(c) from (72). Consider a configuration c ∈ Km of charge m = n1w1 +n2w2. As was
shown in Section 2.2, if a loop, a digon or square is present, summing over the weights of the three-colourings
is equivalent to applying the rules (2) as long as there is no constraint on the colouring. In fact, only the
square rule is sensitive to the colouring constraint. Indeed, a loop is disconnected from the boundary and
all its colourings are therefore admissible; moreover, in the case (15) of the digon, even if the colours of the
external edges are constrained, the admissible colourings of its internal edges always recover the original
digon rule. For the case (16) of a square with external edges of the same colour, both diagrams on the
right-hand side have zero weight on any cut, so they do not break the constraint (74). On the contrary, for
the case (17) of a square with external edges of two different colours, only one diagram of the right-hand side
of (2c) contributes. This happens exactly when decomposing the square would produce a web that breaks
the constraint (74). We have thus shown that summing over all possible three-colourings is equivalent to the
use of the additional rule (76).

We conclude that by summing over three-colourings of an open web, the local weights (13)–(14) recover
the magnetised Kuperberg weight.

Remark 2 The use of the additional rule (76) does not occur if (n1, n2) = (1, 0) or (n1, n2) = (0, 1) as in
the former case (the latter being similar) we have

2 ≤ 2p1 + p2 , with 2 ≡ 2p1 + p2 mod 3 ,

1 ≤ p1 + 2p2 , with 1 ≡ p1 + 2p2 mod 3 (77)

12The argument uses duality and Schur’s lemma: by definition we have Inv(Vm ⊗ V ∗m) = HomU

(
C, Vm ⊗ V ∗m

)
, where

U = U−q(sl3), and the latter space is isomorphic to HomU (Vm, Vm), by the duality ev/coev maps, and by Schur’s lemma it is
one-dimensional.
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on any cut. The use of the square rule on a given cut crossing (p1, p2) edges implies p1 > 0 and p2 > 0.
This implies

5 ≤ 2p1 + p2 , with 2 ≡ 2p1 + p2 mod 3 ,

4 ≤ p1 + 2p2 , with 1 ≡ p1 + 2p2 mod 3 . (78)

Hence, a web resulting from the use of the square rule having (p1 − 1, p2 − 1) edges crossing the cut still
satisfies (77). Indeed, we have

2 ≤ 2(p1 − 1) + (p2 − 1) , with 2 ≡ 2(p1 − 1) + (p2 − 1) mod 3 .

1 ≤ (p1 − 1) + 2(p2 − 1) , with 1 ≡ (p1 − 1) + 2(p2 − 1) mod 3 . (79)

In other cases, there are in general webs such that the rule (76) has to be used in order to weight them.

We end this section by stressing that the partition functions defined above differ fundamentally from the
defect partition functions defined in our first paper [13] by their geometrical constraints (74).

4.2 The cylinder geometry

4.2.1 Magnetic defects

The discussion on magnetic defects in the strip geometry mostly applies to the cylinder case as well. The
main difference is that it is not sufficient anymore to consider only dominant weights as magnetic charges.
Indeed the evolution operators, such as the row-to-row transfer matrix, are no longer symmetric under the
full quantum group. Yet, the symmetry with respect to the Cartan subalgebra still holds. This means that
we can again define sectors for a given magnetic charge but it can be any weight of R∗2 in the loop model
case and any weight of R∗3 in the Kuperberg web model case. In general, two charges present in the same
representation will describe inequivalent sectors. This can be seen by looking at the weight which a magnetic
defect |m〉 picks up when winding around the cylinder in the Kuperberg web model:

q2(ρ,m) . (80)

Then consider, for example, the first fundamental representation V1 of U−q(sl3). It contains three weight
vectors of weights

h1 = w1 , (81a)

h2 = w2 −w1 , (81b)

h3 = −w2 . (81c)

These weights do not lead to the same winding phases: we have (ρ,h1) = 1, whilst (ρ,h2) = 0 and
(ρ,h3) = −1.

We define a magnetic defect state in the loop model the same way as in the strip geometry, see (61). The
partition function modified by the presence of this magnetic defect is then given by

Z0,m
loop = 〈m|TMloop |m〉 , (82)

where Tloop is defined in (21).
Consider now the Kuperberg web model. Let m ∈ R∗3 and denote by d(m) = n1w1 + n2w2 the unique

dominant weight in the Weyl orbit of m. As in the strip geometry, we define a magnetic defect state |m〉
of charge m to be a pure tensor state of weight m, such that two sites labelled by 2i and 2i + 1 cannot
be occupied simultaneously, and such that there are exactly n1 + n2 occupied sites. There are necessarily
n1 sites occupied by equally coloured upward arrows, and n2 sites occupied by equally coloured downward
arrows, with the two colours being different. In fact, the only difference with the strip geometry resides in
the possible colours of the occupied sites in |m〉. For instance, the following is a magnetic defect:

|m〉 = (|↑〉 ⊗ | 〉)⊗n1 ⊗ (|↓〉 ⊗ | 〉)⊗n2 ⊗ | 〉⊗2L−2n1−2n2 , (83)
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where arrows are coloured in some way that depends on the Weyl chamber to which m belongs. There are
six different choices of pairs of colours corresponding to the six Weyl chambers of sl3. As the state |d(m)〉
is highest-weight, using our standard convention we write

|d(m)〉 = (|↑〉 ⊗ | 〉)⊗n1 ⊗ (|↓〉 ⊗ | 〉)⊗n2 ⊗ | 〉⊗2L−2n1−2n2 . (84)

Denote by s1 (respectively s2) the Weyl reflection with respect to the hyperplane orthogonal to α1 (respec-
tively α2). Let w be an element of the Weyl group mapping d(m) to m; it can be written as a product of the
generators s1 and s2. Applying s1 corresponds to swapping red and blue, whereas applying s2 corresponds
to swapping blue and green. This procedure determines the choice of colours in (83). For instance, we have
that d(h2) = w1 and h2 = s1(w1), so

|w1〉 = (|↑〉 ⊗ | 〉)⊗ | 〉⊗2L−2
(85)

gives

|h2〉 = (|↑〉 ⊗ | 〉)⊗ | 〉⊗2L−2
. (86)

The partition function modified by the insertion of the magnetic defect is then

Z0,m
K = 〈m|TMK |m〉 , (87)

where TK is defined in (49).

4.2.2 Electric charges

We define electric charges as vectors in the space Ck generated by the basis of fundamental weights, where
k = 1 in the loop case and k = 2 in the Kuperberg web case. The seam line operators in (26) are

Sloop = q2Hρ = e2iγ(ρ,w1)H1 , (88)

with q = eiγ . For any e ∈ C, define also the generalised seam line operators

Seloop = e−2iπ(e−e0,w1)H1 , (89)

where e0 = γ
πρ. Then Sloop is recovered for e = 0.

If we define the row-to-row transfer matrix with (89) instead of (26), we obtain

T eloop =

(
L−1∏
k=0

tloop
2k+1

)(
L−1∏
k=1

tloop
2k

)
Seloopt

loop
2L (Seloop)−1 . (90)

The modified partition function then reads

Ze,0loop = 〈 (T eloop)M 〉 . (91)

It is standard usage in the Coulomb Gas context to refer to this modified partition function by saying that
a pair of opposite electric charges e− e0 and −e+ e0 have been inserted, one at the top of the cylinder, the
other at the bottom. When e = 0, we say that we are in presence of background (electric) charges e0 and
−e0.

The case of the Kuperberg web model is analogous. We define a modified seam line operator

SeK = e−2iπ[(e−e0,w1)H1+(e−e0,w2)H2] . (92)

The transfer matrix is then given by

T eK =

(
L−1∏
k=0

tK2k+1

)(
L−1∏
k=1

tK2k

)
SeKt

K
2L(SeK)−1 , (93)

31



leading to the partition function

Ze,0K = 〈 (T eK)M 〉 . (94)

Finally, in both the loop model and Kuperberg web model, one can combine magnetic defects and electric
charges to define modified partition functions

Ze,mloop = 〈m| (T eloop)M |m〉 , (95a)

Ze,mK = 〈m| (T eK)M |m〉 . (95b)

As in the strip geometry, we can rewrite these partition functions in terms of a sum over trajectories
of transition amplitudes. For the loop case, denote again by Lmcol the set of oriented subgraphs of H whose
connected components are either coloured loops (cf. Remark 1) or coloured lines, such that loops cannot
touch the bottom and top boundaries, whereas lines touch the bottom and top boundaries only at their end
points corresponding to the occupied sites in |m〉. We stress that, although we have used the same notation
as for the strip geometry, the elements of Lmcol are now embedded in the cylinder. We then have

Ze,mloop =
∑
c∈Lmcol

we,mcol (c) . (96)

The weight we,mcol (c) is given by the local weights (7) as well as modified weights for crossing the seam line:

= e−2iπ(e−e0,w1) , = e2iπ(e−e0,w1) , = 1 . (97)

In the Kuperberg case, analogously to the strip geometry, define an open Kuperberg web on a cylinder to
be a planar oriented bipartite graph with trivalent and univalent vertices such that the univalent vertices are
only at the top and bottom boundaries of the cylinder. Assume c is an open web on a cylinder with 2(n1+n2)
univalent vertices such that the following holds for both bottom and top boundaries: c has n1 (respectively
n2) upward (respectively downward) oriented edges incident on the univalent vertices. A three-colouring of
such an open web c is a map from the edges of c into the set {red,blue, green}, such that all three colours
are present around any trivalent vertex, and such that at every boundary side all the upward oriented edges
are of a colour c1 while the downward oriented ones are of a colour c2 such that c1 6= c2.

Denote by Kmcol, the set of subgraphs of H whose connected components are either open or closed coloured
webs on a cylinder, such that webs cannot touch the bottom and top boundaries, except for open webs that
touch the bottom and top boundaries at their end points corresponding to the occupied sites in |m〉, and
with the inherited colours13. We again use the same notation as in the strip geometry case, although it is
clear that the two sets are different. We then have that

Ze,mK =
∑
c∈Kmcol

we,mcol (c) . (98)

An example of configuration is given in Figure 10. The weight of a coloured configuration we,mcol (c) is given

13See the discussion below (83).
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Figure 10: Left panel: A configuration of Kmcol for m = w1 +w2 in the cylinder geometry. Right panel: A
configuration of Km obtained from the left one by forgetting colours.

by the local weights (9) and the modified weights for crossing the seam line

= e−2iπ(e−e0,h1) , = e−2iπ(e−e0,h2) , = e−2iπ(e−e0,h3) ,

= e2iπ(e−e0,h1) , = e2iπ(e−e0,h2) , = e2iπ(e−e0,h3) , (99)

= 1 ,

where we have used the weight vectors (81).

4.2.3 Geometrical interpretation

We now give a geometrical interpretation of electromagnetic partition functions. We begin with the known
results for the O(N) loop model. Recall the expression (96) for Ze,mloop , obtained by summing the weight we,mcol

over the configurations Lmcol. When no magnetic defect is present, L0
col is the set of all possible unoriented

loop configurations in H. The weight of a configuration is given by the product of bond fugacities and loop
weights. The weight of a contractible loop is clearly q + q−1. On the other hand, the insertion of a pair of
opposite electric charges ±(e− e0) assigns a different weight

e2iπ(e0−e,w1) + e−2iπ(e0−e,w1) = [2]t (100)

to non-contractible loops. We have here parameterised e0 − e = µ
πρ and t = eiµ.

Consider now the insertion of a magnetic defect of chargem = nw1, with n 6= 0. In the cylinder geometry,
define a cut to be a circle embedded in the cylinder and avoiding nodes of H such that its projection onto the
horizontal circle generating the cylinder is bijective (no overhangs). As in the strip geometry, the insertion of
magnetic defects implies a constraint on the number p of bonds present on any given cut. Any representation
containing a weight m contains the unique dominant weight in the Weyl orbit of the latter, |n|w1. Hence
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we must have that |n|w1 is lower than pw1. In other words,

|n| ≤ p , with n ≡ p mod 2 . (101)

It follows that a line connected to the cylinder boundaries must connect the bottom and top boundaries.
We can then say that |n| through-lines propagate along the cylinder.

When n 6= 0, the presence of through-lines forbid non-contractible loops. Contractible loops are still
weighted by q + q−1. Moreover, each through-line acquires an additional weight

e2iπ(e0−e,w1) (102a)

when it winds around the periodic boundary condition from left to right (respectively right to left) if n > 0
(respectively n < 0); and a weight

e−2iπ(e0−e,w1) (102b)

when it winds from right to left (respectively left to right) if n > 0 (respectively n < 0).
A special class of operators, known as watermelon operators, see e.g. [10], are obtained if one suppresses

the background charge by the additional electric charge, i.e., setting e = e0. We then get a geometrical
defect where through-lines do not get any additional weight when they wind around the cylinder. These
operators have been useful in predicting, for instance, the fractal dimension of percolation hulls [42].

Let us now discuss the Kuperberg web model. Denote by Km the set of webs embedded in H obtained
from elements of Kmcol by forgetting their colours. See Figure 10 for an example. Let c be a configuration
in Km. The different configurations ci in Kmcol that give the open web c, once one forgets their colourings,
are exactly the three-colourings of c whose edges touching the boundary are coloured according to m. By
summing their weight, we obtain

Ze,mK =
∑
c∈Km

we,m(c) , (103)

where we defined

we,m(c) =
∑
i

we,mcol (ci) . (104)

Remark that, as in the strip geometry, a magnetic defect of chargem implies a constraint on the geometry
of webs. We write the corresponding dominant weight as d(m) = n1w1 + n2w2. If we denote again by p1

(respectively p2), the number of bonds pointing upward (respectively downward) on a given cut, we must
have the constraint (73) applied to the dominant weight:

d(m) � p1w1 + p2w2 (105)

This is again due to the Cartan subalgebra symmetry which implies that m, hence d(m), must be among
the weights of the tensor product representation with p1 factors V1 and p2 factors V2 that are present on the
given cut. Any magnetic defect configuration c ∈ Km of charge m satisfies the above constraint on any cut.

The weight we,m(c) is a product of local fugacities as well as a part given by (13)-(14) and (99). We now
discuss this part of the weight that we name the electromagnetic Kuperberg weight (or Kuperberg weight for
short) we,mK (c) of a web c.

Firstly, we can ask what is the Kuperberg weight of non-contractible webs when no magnetic defect is
present. For simplicity, consider the case of a single non-contractible loop separating the pair of charges
e− e0 and −e+ e0. It will be weighted by

e2iπ(e0−e,h1) + e2iπ(e0−e,h2) + e2iπ(e0−e,h3) , (106)

as it gets a contribution from a red, a blue and a green edge, all oriented the same way crossing the seam
line, corresponding to the three weights (81) of the fundamental representation. For a charge parallel to the
Weyl vector, e0 − e = µ

πρ, this gives [3]t with the parametrisation t = eiµ.
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One can show [15] that any connected component of a planar web that is not simply a loop contains
a face that is either a digon or a square. In the absence of any electric charges, the strategy to obtain its
weight is then to apply the second and third rules of (2) to reduce the connected component, until a loop is
obtained, which can finally be replaced by its respective weight from (2a). But for the system modified by a
pair of electric charges, we must be more careful. The cylinder geometry can be represented as an annulus,
so the web is still a planar graph. However, we cannot immediately apply the reductions of the second and
third rules of (2) in case the corresponding face is the internal or external face of the annulus, the ones where
the electric charges are situated. Fortunately one can show that if a connected closed web is not a loop,
it contains a face different from the internal or external ones that is either a digon or a square.14 So the
reduction to a loop is still possible. This loop is finally replaced by the weight [3]q if it is contractible (i.e.,
homotopic to a point), or by the weight (106) if it is non-contractible (i.e., it wraps around the cylinder).

We next discuss the electromagnetic Kuperberg weight of open webs in the presence of a defect with
charges e and m 6= 0. As in the strip geometry, we can obtain the Kuperberg weight of a given web by
reducing it thanks to the rules (2) and (76). We then obtain a linear combination of webs that are irreducible,
i.e., that do not contain loops, digons or squares. The Kuperberg weight of the original web is then obtained
by weighting the irreducible webs. We will thus focus on such webs by characterising them in terms of
elementary blocks and giving the Kuperberg weight of each block. Let d(m) = n1w1 + n2w2, and consider
an irreducible open web c. It is clear that c is connected and connects the bottom and top boundary. On
the cylinder we can always decompose c into a number j of cylindrical blocks, shown here as grey ribbons

for the case j = 3. Blocks are connected to each other and to the top and bottom boundary by n1 upward
oriented edges and n2 downward oriented edges, ordered arbitrarily, except for the top-most and bottom-
most edges which must follow the order imposed by |m〉. Hence, each block is separated from the others
by a minimal cut. Of course, such a block decomposition is not unique, however, the overall weight (as we
describe below) does not depend on a choice of decomposition.

We now define three classes of blocks and give their contribution to the Kuperberg weight of the whole
web. Firstly, a block of type A is constituted by an edge winding once around the cylinder. This gives a
weight that depends on the electric charge and the colour and orientation of the edge15. This weight is

e2iπ(e0−e,w) (107a)

14Proof: A connected web that is not a loop always contains at least 3 faces surrounded by 4 or less vertices. Indeed,
suppose this is not the case for a given web c satisfying the precedent conditions. Denote by F , E and V , the number of faces,
edges and vertices of c. By the hand-shake lemma, one has 2E = 3V . The graph being also planar, the Euler relation gives
F − E + V = F − 1

2
V = 2. Because at least F − 2 faces are surrounded by 6 or more vertices, one has 3V ≥ 6(F − 2) + R,

where R is the number of vertices surrounding the two other faces. One has R ≥ 4 implying 3V ≥ 6(F − 2) + 4 = 6F − 8. This
gives 8 ≥ 6(F − 1

2
V ) = 12, a contradiction.

15Note that, on any minimal cut, the colour of an edge is fixed by the choice of magnetic charge in the same way it is fixed
for edges connected to the top and bottom boundaries, however the ordering of orientations might be different for the middle
blocks.
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for a coloured edge carrying a weight w winding from left to right (this weight is one of the weights from
the fundamental or its dual representation of U−q(sl3), depending on the orientation of the edge) and

e−2iπ(e0−e,w) (107b)

for an edge winding from right to left.
The second class of blocks, called type B, is constituted by webs that do not wrap or wind around the

cylinder. That is, webs that can be bounded by a rectangle. In Section 4.1.2, we have seen that the space of
such magnetised webs of charge m bounded by a rectangle is of dimension 1.16. We will call H-web any web
comprised of a number of vertical strands oriented in some way, to the left and to the right of the H-shaped
web (75), or this H-shaped web with its arrows reversed. It is clear that an H-web is irreducible. In fact,
it is shown in Appendix B.1 that for any choice of orientations of edges incident on univalent vertices of a
magnetised web in a rectangle, there exists an irreducible one that is a concatenation of H-webs17. One can
see that such a web admits a unique colouring (recall our definition of three-colourings). Indeed, the colours
of the top-most and bottom-most edges of any H-shaped web are fixed by the Weyl chamber of the charge
m. For instance, for a charge in the fundamental Weyl chamber, one obtains H-shaped webs coloured as

or a vertical reflection thereof. By (14), the contributions of the two vertices of a given H-shaped web
compensate to give a weight 1. Hence, the weight of a block of type B is 1.

The third class of blocks, of type C, is constituted by webs that wrap around the cylinder the following
way. A block of type C is made of n1 +n2 edges connected to the bottom boundary of the block and n1 +n2

edges connected to the top boundary of the block such that all of these edges are connected to a wrapping
cycle of edges that we denote by L. Here is an example with n1 + n2 = 2:

(108)

In this example, the cycle L is made of 4 edges. We note that the situation here has no analogue in the loop
models where the non-zero defect sectors have no wrapping structures.

In Appendix B.2, we show that given a colour for the upward oriented edges connected to the boundaries
and a different one for the downward oriented ones, there are 2 possible colourings for the cycle L when
n1 = 0 or n2 = 0, and only 1 possible colouring for L otherwise. The sum over the possible colourings of
the weights of the coloured webs gives the contribution of the type C block to the Kuperberg weight of the
whole open web.

In more details, consider the case when both n1 and n2 are non-zero and there is only one colouring. For

16In the cylindrical case the colours of arrows of the magnetic defect state might be different from those of the strip geometry
case but only the orientations matter for the argument.

17Or, of course, the trivial web consisting of only vertical edges if the two ordered sequences of orientations in the top and
bottom boundaries are the same.
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instance:

(109)

One can see that the set of vertices can be partitioned into pairs, such that the weights of the two vertices of
a given pair compensate each other (using (14)). Thus, the weight of the web solely depends on the colour
and orientation of the edge crossing the seam line. This weight is

e2iπ(e0−e,w) (110a)

for a coloured edge carrying a weight w going from left to right and

e−2iπ(e0−e,w) (110b)

for an edge going from right to left. In our example, it is given by

e2iπ(e0−e,h2) . (111)

When n2 = 0, the case of n1 = 0 being similar, there are two possible colourings for the edges constituting
L and the weight is the sum of these two contributions. For instance:

+

Again, one can see that vertices come in pairs that compensate. Hence the weight is again given by the edge
crossing the seam line. This edge crosses the seam line in the same direction in both cases and it is coloured
with the two colours that are different from the unique colour of the top-most and bottom-most edges. When
these are blue, as in our example, the non-contractible cycle of edges contributes to the Kuperberg weight
by a factor

e2iπ(e0−e,h1) + e2iπ(e0−e,h3) . (112)

It is not hard to see what is the weight for other colours of bottom-most and top-most edges.
In Appendix B.3, we show that any irreducible web is a concatenation of blocks of type A, B and C.

We now examine the set of open webs which do not get any non-trivial weight when one of the bottom-
most or top-most edges are winding around the cylinder. This constitutes the analogue of watermelon
operators present in the loop model. There are two ways to get a trivial weight when an edge winds around
the cylinder. Either, we tune the electric charge to get a vanishing total charge as in the loop model, i.e.,
we set e = e0. In this case, we see that wrapping webs get a weight 1 (respectively 2) for each type C block
when both n1 and n2 are non-zero (respectively n1 = 0 or n2 = 0). Or we can consider defects coloured
by a weight orthogonal to the electric charge. For instance, consider a total electric charge e0 − e = µ

2πρ
parallel to the Weyl vector. Then, magnetic defects of charge nh2, with n 6= 0, suit the condition because
(ρ,h2) = 0. In this case, by (112) a type C block then has a weight

ne = e2iπ(e0−e,h1) + e2iπ(e0−e,h3) = [2]t , (113)

where t = eiµ.
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5 Geometrical defects in Z3 spin models

In [13], we formulated an equivalence between a Z3 symmetric spin model on the triangular lattice dual to H
and the Kuperberg web model at the special point

q = ei
π
4 , (114a)

y = z = 2−
1
4 . (114b)

At this point, the topological weight of any configuration was shown to be 1 and the Kuperberg web model
partition function is then simply

ZK =
∑
c∈K

xN1
1 xN2

2 . (115)

This equals, up to an overall factor, the partition function of the Z3 spin model written thanks to its
low-temperature expansion.

We now exhibit another mapping between (115) and the partition function of a three-state Potts model,
this time defined on H itself. This mapping results from a high-temperature expansion of the latter and
is detailed in Section 5.1. The equality of two partition functions of the model defined on dual lattices
constitutes an example of duality [43].

In Section 5.2, we consider the possible connections between geometrical defects of the web models and
observables of the three-state Potts model in either its low- or high-temperature expansion.

5.1 Relation with a Z3 spin model via high-temperature expansion

We now formulate an equivalence with a Z3 spin model on the same lattice H using a high temperature ex-
pansion. Consider spins in the set of third roots of unity {1, e2πi/3, e4πi/3}. The group Z3

∼= {1, e2πi/3, e4πi/3}
acts on a given spin by left multiplication. The global symmetry is given by acting the same way on every
spin. Denote by 〈ij〉 a pair of adjacent nodes in H, such that j is situated higher than i. This is well
defined given our convention on the orientation of H. The model is defined by its nearest-neighbour Boltz-
mann weights W (σi, σj) associated to a pair of spins σi and σj linked by (ij) ∈ 〈ij〉. The most general
Z3-symmetric local Boltzmann weight can be written as (up to an overall scalar)

W (σi, σj) = 1 + x1σiσ̄j + x2σ̄iσj , (116)

where the bar denotes complex conjugation. The partition function of the spin model then reads

Zspin =
∑
σ∈S

∏
<ij>

W (σi, σj) =
∑
σ∈S

∏
<ij>

(1 + x1σiσ̄j + x2σ̄iσj) , (117)

where S denotes the set of spin configurations.
The high-temperature expansion consists in developing the product

∏
〈ij〉 (1 + x1σiσ̄j + x2σ̄iσj) and pic-

torially represent the term associated to a link (ij). The product of these terms will then be represented by
a subgraph G of H. If the summand 1 is chosen, then the link (ij) is empty, i.e., it is not part of G. If the
summand x1σiσ̄j is chosen, then (ij) is part of G and oriented upward. If the summand x2σ̄iσj is chosen,
then (ij) is part of G and oriented downward.

When the sum over all spin configurations is done, some subgraphs G give no contribution. Indeed any
term associated to a graph G that contains a factor σi or σ̄i for a given node i will give 0 when the the sum
over σi is applied. Hence, one can see that the only surviving graphs are closed Kuperberg webs. We can
thus rewrite the partition function as

Zspin =
∑
G∈K

xN1
1 xN2

2 , (118)

which is exactly (115).
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Consider now a general correlation functions in the spin model,〈
σk1
i1
σk2
i2
· · ·σkpip

〉
=

1

Zspin

∑
σ∈S

(
σk1
i1
σk2
i2
· · ·σkpip

) ∏
<ij>

W (σi, σj) , (119)

where kj ∈ {1, 2} and ij denotes a node of H. Denote the data of spin insertions by Γ = {(ij , kj), j ∈ J1, pK}.
The global Z3 symmetry ensures that non-zero correlators satisfy∑

j

kj ≡ 0 mod 3 . (120)

Doing again the high-temperature expansion, a graph G surviving is an open Kuperberg web embedded
in H. Denote by KΓ the set of such open webs. The correlation function can then be written as〈

σk1
i1
σk2
i2
· · ·σkpip

〉
=

1

ZK

∑
G∈KΓ

xN1
1 xN2

2 . (121)

Consider in particular the spin two-point function 〈σiσ̄j〉, with one operator inserted at a node i situated
at the bottom boundary of the cylinder (or the strip), and the other one inserted at a node j situated at the
top boundary of the cylinder (or the strip). In terms of webs, the correlation reads

〈σiσ̄j〉 =
1

ZK

∑
G∈Kσ

xN1
1 xN2

2 , (122)

where Kσ denotes the webs present in the high-temperature expansion. Here Kσ can be partitioned into 2
sets,

Kσ = K1 ∪ K2 , (123)

where K1 is the set of open webs with one edge incident on the node i and one edge incident on the node j.
K2 is the set of open webs with more edges incident on the nodes i or j. Nevertheless, remark that in all
cases, on any cut, the edges satisfy the constraint (74) with n1 = 1 and n2 = 0. The correlation functions
have the following scaling form

〈σiσ̄j〉 ∼ e
− 2πM√

3L
(hσ+h̄σ)

(124a)

in the cylinder geometry, and

〈σiσ̄j〉 ∼ e
− πM

2
√

3L
hσ (124b)

in the strip geometry.

5.2 Relations with geometrical defects of the Kuperberg web model

It is apparent from the last subsection that spin-spin correlators in both the strip and cylinder geometry
are related to geometrical defects in the vertex formulation. Indeed, the set K1 denotes precisely the set of
webs given by the insertion of a geometrical defect of charge m with d(m) = w1. The other set K2 is not
directly related to a geometrical defect. However since they all satisfy the same geometrical constraint, we
expect that they contribute to the same sector in the continuum limit.

In order to relate the spin-spin correlation to a geometrical defect, we must ensure that all the open webs
involved in the partition function have a topological weight 1. Recall that the topological weight is given by
the product of the Kuperberg weight (14) and the vertices fugacities, y and z.

In the strip geometry, we have seen that when a geometrical defect of charge w1 is present, one does not
need the additional rule (76). Hence, the trick of [13, Sec 2.2] can be applied to see that all open webs have
topological weight 1. Thus, in the strip geometry

hσ = hw1
. (125)

Remark also that, in the low-temperature expansion point of view, the same operator can be viewed as a
boundary condition changing operator that takes a fixed boundary condition to another.
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In the cylinder geometry, consider a geometrical defect of charge h2 and an electric charge such that

ne =
√

2 . (126)

Again, one does not need the additional rule (76) in this case. Moreover, because on any non-contractible
cycle, there are exactly two vertices with fugacities y and z, the weight of such a cycle is yzne = 1. Then,
again by a trick analogous to the one introduced in [13], one can see that all webs are given a topological
weight 1. This means that

(hσ, h̄σ) = (he,h2 , h̄e,h2) . (127)

The following table gives the numerical estimation of he,h2
+ h̄e,h2

:

Size L he,h2
+ h̄e,h2

5 0.134425217550764
6 0.134307263093286
7 0.134209499407688
∞ 0.13338

The values are obtained thanks to a numerical diagonalisation of the row-to-row transfer matrix for two
consecutive sizes, L and L + 1. The extrapolation to the thermodynamical limit is obtained by fitting the
finite-L values to a second-order polynomial in 1/L. It matches the exact value hσ + h̄σ = 2/15 ' 0.13333
rather precisely.

Remark finally that the presence of the modified rule (76) impedes the use of the argument of [13] to give
a weight 1 to all open webs for a defect with (n1, n2) /∈ {(1, 0), (0, 1)}. Hence the insertion of such a defect
will not only constrain the webs present in the configuration space of the modified partition function but
also give them a weight that is different from the one they would get in the unconstrained partition function.
This seems to prevent us from finding simple geometrical observables in the three-state Potts model related
to some connected subsets of interfaces as was studied, for instance, in [44].

6 Geometrical defect in the q = ei
π
3 model

We now discuss another application of the web models, concerning the points of parameter space satisfying

q = ei
π
3 . (128)

These points are the higher-rank analogues of dense and dilute polymers in the O(N) loop model case. In
the case, we have [2]q = 1 and [3]q = 0. This implies that any non-empty web c gets a vanishing Kuperberg
weight wK(c) = 0, since, at the very least, one of its components picks up one factor of [3]q when it has
been reduced to a loop by application of (2). The partition function is then equal to 1 as only the empty
web configuration contributes. However, a non-trivial model can be obtained by defining the following
renormalised partition function

Z = lim
[3]q→0

1

[3]q
(ZK − 1) . (129)

In this model, only connected webs get a non-trivial weight (we call a web connected when it consists of only
one connected component). Indeed, the Kuperberg weight of a general web can be computed by using the
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rules

= (130a)

= + (130b)

to reduce the web to a collection of loops, giving weight 1 if there is only one loop or 0 if there are more.
We can look at the weighting procedure differently. First, digons can be removed whenever they appear
without introducing any weight. Secondly, when applying the square rule, if a resulting web has more than
one connected component, set it to 0. In this case, we can rephrase it by invoking modified rules

= or = (131)

where the right-hand sides are assumed to form parts of a one-component web. Observe the similarity
with (76), however, the difference here is that we consider only closed webs. From this procedure it is clear
that the weight of a connected web is always a positive integer. For instance, the “cube” gets weight 2:

Moreover any positive integer k is the weight of some web. For instance, it can be showed by induction that
the following web has weight k:

where the dots represent k−3 pairs of vertical edges with opposite orientation (in addition to the three pairs
explicitly drawn).

Consider now the insertion of a defect of magnetic charge ρ = w1 +w2 (i.e., n1 = n2 = 1) and a vanishing
total electric charge, e0−e = 0. Here, we define the electromagnetic partition functions as before via (103).
This means that if there is a web component disconnected from the defect, the weight of the configuration
is 0. In addition, one can see from (74) with n1 = n2 = 1 that the modified square rules (76) are used exactly
when two opposite sides of a square are cut by a minimal cut. This means that they are used whenever the
original square rule would produce an open web having two connected components, one connected to the
bottom boundary and one to the top boundary. Moreover, there are no non-trivial winding weights when
the total electric charge vanishes, and the weight of a wrapping web (111) is 1 as well. Finally, wrapping
webs as in (109) are weighted by 1.
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Hence, we can summarise the procedure for computing the Kuperberg weight of an open web in our
setting. One can remove any digon or wrapping web, and use the original square rule whenever the resulting
webs are connected. Otherwise, one uses the modified square rules (76) and (131). When a web cannot be
reduced further by these rules, its weight is 1. Since (76) and (131) apply in the same case, that is, when
a web or a defect could produce two connected components by application of the original square rule, we
expect the defect considered above to be related to a two-point function indicating whether two points are
both on the single connected closed web of the configuration.

More precisely, consider the Kuperberg web model for q = ei
π
3 in the plane geometry. Define the two-

point correlation function O(a, b), with respect to Z in (129), of the indicator function I(a, b) that takes the
value 1 whenever the two points a and b are on the same connected web, and 0 otherwise. That is,

O(a, b) =
lim[3]q→0

1
[3]q

∑
c∈K

[
I(a, b)xN1

1 xN2
2 (yz)NV wK(c)

]
Z

, (132)

where wK(c) is defined in Section 2. At criticality, denote by (h, h̄) the lowest conformal weights of the
operators involved in the correlation function O(a, b). By analogy with the loop model case, we expect the
transfer matrix (49) to contain information on the continuum limit of the model defined by (129) through the
finite size scaling of its eigenvalues. Indeed, observe that the numerically estimated effective central charge
in the dense phase is not 0 (see the dense phase discussion at q = eiπ/3 in Section 3) as would have been the
case for the non-renormalised partition function (3) which is equal to 1.

In the continuum, by mapping conformally the plane to the cylinder, with a and b mapped to the bottom
and top of the cylinder, we can look at configurations contributing to the numerator of (132) as connected
open webs running along the cylinder. These are exactly the ones considered above and we can conjecture
that the conformal weights (h, h̄) are determined by the asymptotic equivalent (in the limit when M/L� 1)
of

Ze,ρK

Z
, with e = e0 =

1

3
ρ . (133)

Hence

(h, h̄) = (he0,ρ, h̄e0,ρ) . (134)

We then obtain the fractal dimension Df of critical webs at the point (128) as the corresponding co-dimension,

Df = 2− (he0,ρ + h̄e0,ρ) . (135)

7 Conclusion

We have continued our investigation of lattice models of webs, initiated in [13]. In this paper we have given a
local formulation of the Kuperberg A2 web models in terms of a vertex model. We have shown that the local
transfer matrices possess a U−q(sl3) symmetry. Thanks to a numerical diagonalisation of the row-to-row
transfer matrices for various sizes, we have been able to explore the phase diagram of the model. For q = eiγ

with γ ∈ [0, π3 ], we have identified two phases of interest where the model exhibits critical behaviour.18 These
two phases are the higher-rank analogues of the so-called dense and dilute phases of the O(N) loop model. In
particular, it appears that a straightforward generalisation of the percolation model on the triangular lattice,
obtained by considering the domain walls in the infinite-temperature three-state Potts model, is critical and
forms part of the dense phase (with q = eiπ/4).

We have then defined electromagnetic partition functions and studied in detail their interpretation in
terms of geometrical objects. In particular, we have studied potential applications of electromagnetic parti-
tion functions to random geometry. Contrarily to the loop-model case, the insertion of a magnetic defect does
not only constrain the geometry of configurations but also modifies the weight of the open web containing
the defect, due to the rule (76) additional to the standard Kuperberg rules. This, in general, prevents us

18It is possible that the full critical range would be larger (it is γ ∈ [0, π] for the loop model), but settling this question would
require further analytical input which is not presently at our disposal.
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from relating electromagnetic partition function to indicator two-point functions of the web model in the
plane (or half-plane). We have however identified some exceptions to this obstacle. In particular, we have
been able to conjecture the fractal dimension of critical webs at q = eiπ/3. Unfortunately, we have not been
able to reach interesting indicator two-point functions in the context of interfaces of the three-states Potts
model, whose interfaces are known to exhibit interesting features that are yet only partially understood
analytically [44–46]. It is also not clear whether the higher-rank An web models [36] can provide such re-
sults for Zn spin models, with potential applications to interfaces in the four-state Potts and Ashkin-Teller
models [45–47].

Our immediate continuation of the programme initiated in [13] will be to relate the dominant excitations
of the electromagnetic partition functions, defined in the present paper, to electromagnetic operators within a
Coulomb Gas formulation of the continuum limit of web models [22]. This will provide exact formulae for the
central charges of dense and dilute critical points, as well as exact expressions of the conformal weights he,m
and h̄e,m. The dense phase exhibits central charges equal to those of an integrable fifteen-vertex model [30],
closely related to a spin chain with the first fundamental representation of U−q(sl3) living on every site. It
thus seems that the dilution and the presence of the second fundamental representation at the dense critical
point do not affect the continuum limit. Interestingly, as far as we know, no integrable representatives of
the dilute phase exist. We remind that in the loop case, the dense phase is in the same universality class
as the XXZ spin chain, whereas the dilute phase is obtained from a spin chain built from the trigonometric

A
(2)
2 R-matrix, whose continuum limit has recently been shown to conceal a few surprises [48,49]. In the A2

web model case, it is not obvious what would be a candidate, if it exists, for an integrable representative of
the dilute phase.

It is also possible to define a local vertex-model formulation of the higher-rank An web models [36]. We
then expect an analogous but more complicated phase diagram. Indeed, the A3 web model has been shown
to be equivalent to the Ashkin-Teller model for a certain tuning of the parameter q and vertex fugacities [13].
We expect this to constitute the “dilute” phase of the A3 web model. In this correspondance, the critical line
of the Ashkin-Teller model is swept when tuning a ratio of the bond fugacities corresponding to the different
fundamental representation of U−q(sl4). We can then ask whether there exists a “dense” phase containing a
whole line of inequivalent critical points as well. The same questions appear in the general case of An web
models.

We can also wonder whether there exist integrable representatives of these would-be dense and dilute
phases. Indeed, it is possible that, even in the dense phase, the presence of all the fundamental representations
on each site of an integrable spin chain must be required. To our knowledge, no such case has been studied
before.

In addition, torus partition functions have historically occupied an important place in the development
of conformal field theory, due in particular to the powerful constraints of modular invariance. However,
in contradistinction with the loop-model case, the relations (2) do not immediately allow us to define web
models on higher-genus Riemann surfaces. In order to get a well-defined weight of webs on any surface, one
could consider the projections of webs onto the plane, so as to obtain webs with crossings. These crossings
can then be resolved in order to obtain a well-defined weight [15]. Another possibility would be to define the
model locally in the first place, via the vertex-model representation obtained in Section 2.3, but the weight of
connected components of webs spanning both periodic directions would then have to be clarified. Although,
therefore, there are ways to go around the problem, it is not clear if the resulting torus partition functions
would capture the operators (and their descendants) described in Section 4 in the way familiar from loop
models. We leave this problem for future work.

Finally, one may consider web models defined with open boundary conditions, which might either be free
or equipped with non-trivial boundary operators, along the lines of [25, 26] for the loop case. In this paper,
we computed phase diagrams in the periodic case only, in the open case it would be interesting to see if the
effective central charges agree.
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A Conventions for quantum groups

We recall here a definition of the Hopf algebra Uq(sln) and its pivotal structure. First, let αi, i ∈ J1, n−1K be
the simple roots of sln. We normalise them such that (αi,αj) = 2δij − δi,j+1 − δi,j−1. Denote fundamental
weights by wj , j ∈ J1, n − 1K. They satisfy (αi,wj) = δij . Then, the C(q)-algebra Uq(sln) is generated by
Ei, Fi, q

Hi for i ∈ J1, n− 1K satisfying the following relations:

qHiqHj = qHjqHi , (136a)

qHjEiq
−Hj = q(αi,αj)Ei , qHjFiq

−Hj = q−(αi,αj)Fi , (136b)

[Ei, Fj ] = δij
qHi − q−Hi
q − q−1

, (136c)

[2]qEiEjEi = E2
i Ej + EjE

2
i , if |i− j| = 1 , (136d)

[Ei, Ej ] = 0 , if |i− j| > 1 , (136e)

[2]qFiFjFi = F 2
i Fj + FjF

2
i , if |i− j| = 1 , (136f)

[Fi, Fj ] = 0 , if |i− j| > 1 . (136g)

It is a Hopf algebra with the coproduct

∆(Ei) = Ei ⊗ qHi + 1⊗ Ei , ∆(Fi) = Fi ⊗ 1 + q−Hi ⊗ Fi , ∆(qHi) = qHi ⊗ qHi , (137)

the antipode

S(Ei) = −Eiq−Hi , S(Fi) = −qHiFi , S(qHi) = q−Hi , (138)

and the counit

ε(Ei) = 0 , ε(Fi) = 0 , ε(qHi) = 1 . (139)

In what follows we use the notation Hαi := Hi. In particular, for the Weyl vector ρ = 1
2

∑n−1
i=1 i(n− i)αi,

which is the half sum over all positive roots, we have 2Hρ =
∑n−1
i=1 i(n− i)Hi.

A group-like19 element g of a Hopf algebra U is called pivotal if its conjugation automorphism expresses
the square of the antipode:

S2(x) = gxg−1, (140)

for all x ∈ U . The pivotal element of Uq(sln) is given by

g = q2Hρ = q
∑

1≤i≤n−1 i(n−i)Hi . (141)

For a Hopf algebra U with a pivotal element g, each finite-dimensional U -module V has a (left) dual
V ∗ = Hom(V,C) with the U action defined by (hf)(x) = f(S(h)x), for any f ∈ V ∗, and h, x ∈ U . With
this, we define the standard left duality maps:

evV : V ∗ ⊗ V → C, given by f ⊗ v 7→ f(v), (142)

coevV : C→ V ⊗ V ∗, given by 1 7→
∑
j∈J

vj ⊗ v∗j ,

where {vj | j ∈ J} is a basis of V and {v∗j | j ∈ J} is the dual basis of V ∗, while the pivotal element g of U
allows to define the right duality maps as follows

ẽvV : V ⊗ V ∗ → C, given by v ⊗ f 7→ f(gv) (143)

c̃oevV : C→ V ∗ ⊗ V, given by 1 7→
∑
i

v∗i ⊗ g−1vi .

19Group-like means that ∆(g) = g ⊗ g. It then follows that g is invertible, S(g) = g−1 and ε(g) = 1.
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Note that the axioms on the pivotal element ensure that the last two maps are U -intertwiners.
Finally, the quantum trace on any endomorphism f of a U -module V is defined as follows:

qtrV (f) := ẽvV ◦ (f ⊗ id) ◦ coevV (1) = trV (lg ◦ f) (144)

where trV (f) is the usual trace and lg is the left action by g.

B Some results on irreducible magnetised webs

B.1 Irreducible magnetised webs in a rectangle

We show here that for any choice of orientations of edges incident on univalent vertices of a magnetised web
in a rectangle, there exists an irreducible one that is a concatenation of H-webs. Consider finite sequences
s = (s1, s2, · · · , sn) and s′ = (s′1, s

′
2, · · · , s′n) of orientations of the edges at the bottom and top boundary

of a magnetised web. In this case, we say that the web connects s to s′. For instance, the following web
connects s = (↓, ↑) to s′ = (↑, ↓).

(145)

We will show by induction in n that there exists an irreducible magnetised web connecting s to s′ and
that is a concatenation of H-webs. The statement is obvious for n = 1. Suppose that the result is true
for n − 1 and consider s and s′ of length n. If s1 = s′1, then we can draw a vertical edge that connects
{s1} to {s′1}. Then, by the induction hypothesis, there is an irreducible magnetised web connecting s \ {s1}
to s′ \ {s′1} that is a concatenation of H-webs. By juxtaposing this web to the right of the vertical edge
considered above, we obtain an irreducible web connecting s to s′ that is a concatenation of H-webs.

If s1 6= s′1, consider the minimum index k ≥ 2 such that sk = s′1. Denote by τi(x), i ∈ J1, n − 1K, the
permutation of the ith and (i + 1)th elements of the finite sequence x of length n. Clearly, there is an
irreducible web connecting x to τi(x). Either xi and xi+1 are the same, and the irreducible web is simply a
bunch of vertical edges. Or xi and xi+1 are different, and we can use an H-shaped web as in (145), or with
all arrows reversed depending on the initial orientations of edges, connecting the bottom ith and (i + 1)th
edges to the top ones, the others being connected by vertical edges. Consider then

r = τ1 ◦ τ2 ◦ · · · ◦ τk−1(s) . (146)

By the above discussion, there is a concatenation of H-webs that we call W1, connecting s to r, one for each
transposition. Moreover, as sk 6= si for i ∈ J1, k − 1K, it is clear that each H-web corresponding to each of
the transpositions is not merely a set of vertical edges. Here is an example

Because r1 = s′1, by the argument above, we know that there exists an irreducible web W2 connecting r to s′

that is a concatenation of H-webs. Moreover, we know that it connects r1 to s′1 by a vertical edge. Consider
the concatenation of H-webs W2W1. It connects s to s′ and it is irreducible. Indeed, no digons or loops
appear in a concatenation of H-webs. For a square to appear in the concatenation W2W1, it is clear, due to
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the orientation of the edges at the top boundary of W1 (the one linked to W2), that it can only be the square
containing the two left-most edges at the top of W1. However, the left-most edge of W2 is a through-line
(by the induction assumption) and so the two left-most edges at the bottom of W2 cannot be a part of an
H-shaped web, and therefore cannot produce a square while concatenating with W1.

B.2 Colourings of type C blocks

Consider a type C block with n1 upward oriented and n2 downward oriented edges connecting the bottom
boundary to the wrapping cycle of edges L. We call these n1 + n2 edges the bottom edges. Similarly there
are n1 upward oriented and n2 downward oriented edges connecting the top boundary to the wrapping cycle
of edges L, and we call them the top edges. Consider a segment of L delimited by two consecutive points
where two bottom edges, e1 and e2, meet L. We are interested in how many top edges are connected to this
segment that we denote by [e, e′]. If e and e′ have the same orientation (both upward or both downward),
then there must be an odd number of top edges connected to [e, e′]. Whereas if e and e′ have different
orientations (one upward and one downward), then there must be an even number of top edges connected
to [e, e′].

If n1 = 0 or n2 = 0, then all bottom edges have the same orientations and there must be an odd number
of top edges connected to a segment delimited by two consecutive bottom edges. Hence this number must
be equal to 1. As all bottom edges and all top edges are coloured the same, it is clear that there are two
possible colourings for edges in L. These edges are coloured in an alternate way, with the two colours that
are different from the one of the bottom and top edges, and two such alternating colourings are possible.

If n1 6= 0 and n2 6= 0, then there exist two consecutive bottom edges e and e′ such that the segment
[e, e′] is not connected to any top edge. Indeed suppose the contrary. Denote by ei, i ∈ J1, n1 + n2K, the
bottom edges such that ei and ei+1 are consecutive, where indices are taken modulo n1 + n2. Then for all
i ∈ J1, n1 +n2K, [ei, ei+1] is connected to a number mi ≥ 1 of top edges. Moreover, every pair of consecutive
edges with different orientations has m ≥ 2, therefore we get after summing over all m’s that the number of
top edges is strictly larger than n1 + n2, a contradiction.

We thus have a pair of consecutive bottom edges e and e′ such that the segment [e, e′] is not connected
to any top edge. Necessarily e and e′ have opposite orientations and thus different colours. The segment
[e, e′] is constituted of one edge whose colour is fixed to be different to those of e and e′. It is not hard to
see that this fixes the colours of all edges in the cycle L, hence there is a unique possible colouring.

B.3 Irreducible webs in the cylinder geometry

We show here that an irreducible web c with nontrivial magnetic charge embedded in the cylinder is a
concatenation of blocks of types A, B and C.

If there exists a path avoiding all edges and vertices of c that goes from the bottom boundary to the
top boundary of the cylinder, then, up to some winding, c is contained inside a full rectangle. Hence it is a
concatenation of blocks of type A and B.

Otherwise, the web, up to some winding, looks like

where n = n1 + n2 and we have labelled the bottom-most faces and top-most faces surrounded by the web.
There are n1 upward oriented edges and n2 downward oriented edges connected to the bottom and to the
top boundaries. Orientations are in any order. All the faces f+∞

i and f−∞k are different. The cycle coloured
in cyan at the bottom of the web must then be a union of edges. We call this cycle L1. The web then looks
like
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where we have numbered the faces above L1 connected to it. We have that m ≥ n because of the minimality
of the cuts crossing the bottom-most and top-most edges. We claim that m = n. Indeed, suppose m > n.
Denote by V top

1 = m (respectively V bot
1 = n) the number of edges connected to L1 that are situated on top

(respectively at the bottom) of L1 but not in L1. We then have that V top
1 − V bot

1 > 0. There must be a face
fk that is not in the set {f+∞

i , i ∈ J1, nK}. This face must be closed, i.e., be surrounded by edges. Denote
its surrounding edges present in L1 by ei, i ∈ I, and those absent by ej , j ∈ J . Then consider the cycle
L2 = L1 ∪ {ej , j ∈ J} \ {ei, i ∈ I}. Here is an example with k = 1:

where we depicted L2 in cyan again.
Denote by Etop the number of edges that are connected to fk at the top of L2 but not in L2. Denote

by Ebot the number of edges that are connected to fk at the bottom of L1 but not in L1. Because all
digons and squares have been reduced, the face fk is surrounded by at least 6 vertices, so we must have
Etop +Ebot ≥ 4. Denote by V top

2 (respectively V bot
2 ) the number of edges connected to L2 that are situated

on top (respectively at the bottom) of L2 but not in L2. We have that

V top
2 = V top

1 + Etop − 2 , (147a)

V bot
2 = V bot

1 − Ebot + 2 , (147b)

which implies

V top
2 − V bot

2 = V top
1 − V bot

1 + Etop + Ebot − 4 > 0 . (148)

We can repeat the process and define cycles of edges Li such that V top
i − V bot

i > 0. After i0 iterations, the
process terminates, and we have that V top

i0
= n > V bot

i0
. But this contradicts the minimal cut assumption.

Hence m = n and thus the web necessarily contains a block of type C. The procedure of constructing
the wrapping cycle can be repeated until we are able to draw a path (from the top of the constructed
concatenation of C type blocks) avoiding all edges and vertices that goes from bottom to top, up to some
winding: this means that the given web c is a concatenation of blocks of type A, B and C.
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