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A B S T R A C T   

According to precision livestock farming principles, it is essential to apply feed intake forecasting processes to 
real time precision feeding strategies in order to improve the overall efficiency of the livestock feeding chain. 
Considering the lack of a mechanistic model that predicts daily feed intake in lactating sows, a novel approach 
combining an online forecasting procedure with an offline learning procedure is proposed. A database of 39,090 
lactations, from 6 different farms and containing the first 20 daily feed intake records after farrowing, was used 
(1) to identify consistent sets of clusters and trajectory curves offline, and (2) to test 3 predictive functions of 
daily feed intake online. The homogeneity of the clusters resulting from the offline learning procedure was 
assessed according to Silhouette and Calinski-Harabasz scores. The predictive quality of forecasting functions 
was assessed with the Mean Error (ME), and the Root Mean Square Error (RMSE). Time-series clustering with k- 
Shape makes it possible to extract consistent trajectory curves that are scale-, shift- and translate-invariant. The 
best number of clusters obtained either in a global approach or at farm scale was two. The trajectory curve of the 
first cluster is characterized by a mostly continuous increase of feed intake over the course of lactation, and the 
second cluster by a plateau in feed intake starting from about the 10th day of lactation. These identified tra
jectory curves are consistent with the very few studies available in the literature. When computed with the best 
forecasting function and farm specific trajectory curves, the ME of feed intake over lactation was − 0.08 kg/d, 
and the corresponding RMSE was 1.06 kg/d. Though variability in feed intake among sows and over the lactation 
period is high, online forecasting of feed intake can be improved by the use of feed intake trajectory curves. These 
trajectory curves may be computed on a regular basis with data obtained directly on the farm or on farms with 
similar practices. The online forecasting procedure requires few computing resources, and could easily be 
embedded in smart feeder control systems as a practical application in precision feeding systems for lactating 
sows.   

1. Introduction 

Feeding is an essential component of livestock production systems 
with respect to animal health and welfare, farm sustainability, and 
competitiveness. The overall efficiency of the livestock feeding chain is 
largely dependent on the match between nutrient supply and animal 
requirements, in order to limit nutrient wastage while achieving pro
duction objectives. In practice, all pigs at a given physiological stage are 
generally fed with the same standard diet corresponding to the re
quirements of an average animal representing the population. However, 
according to precision livestock farming principles (Vranken and 

Berckmans, 2017), addressing the diversity among animals could be an 
effective lever in building more efficient feeding systems (Pomar et al., 
2019; Gaillard et al., 2020). With the help of smart feeders, new sensors, 
and information technology, modern precision feeding systems for 
growing pigs have demonstrated their ability to meet individual re
quirements more efficiently (Cloutier et al., 2015). 

In lactating sows, high milk production and low voluntary feed 
intake generally lead to nutrient deficiency (Noblet et al., 1990), espe
cially in primiparous sows. To limit nutrient deficiency, one common 
practice consists in supplying ad libitum access to a feed with a high 
nutrient content, with the risk of increasing feeding cost and nutrient 
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excretion, and, consequently, reducing overall sustainability. Precision 
feeding has not yet been evaluated for lactating sows but seems to be a 
promising strategy with respect to the large variability of nutrient re
quirements among sows (NRC, 2012; Gauthier et al., 2019). To operate 
in real-time, precision feeding systems need to accurately predict the 
feed intake of lactating sows on a daily and individual basis in order to 
adjust the optimal mix between two diets, one with a high nutrient 
content and the second with a low nutrient content, as already described 
by Pomar et al. (2019) for growing pigs. As reviewed by O’Grady et al. 
(1985) and Eissen et al. (2000) sow voluntary feed intake during 
lactation is affected by many factors such as sow’s parity, body weight 
and backfat thickness at farrowing, and litter size. Feed intake is also 
very sensitive to ambient temperature with a negative effect of hot 
conditions that has been quantified by Ribeiro et al. (2018) in a meta- 
analysis, and modeled on a daily basis by Staicu et al. (2020) and 
Cabezón et al. (2016). However, these studies generally, only, report the 
average lactation feed consumption or average daily feed intake curves 
(Schinckel et al., 2010). Thus, the factors affecting the variability in the 
pattern of daily feed consumption over lactation have been investigated 
to a lesser extent, unless in the study from Koketsu et al. (1996) who 
identified different patterns of intake over manually collected feed 
intake data, and the study from Cabezón et al. (2017) who investigated 
lactating sows feed intake patterns using a statistical approach based on 
polynomial prediction functions. 

With the current development of sensors and computing resources, 
huge amounts of data are automatically and continuously collected in 
the form of discrete or continuous measurements, images, videos, and 
sounds. Valuable knowledge can be extracted from this data with 
adapted machine learning techniques. Among all data types, time-series 
have become pervasive in recent decades, with active research work and 
applications in many different fields such as stock market analysis, 
weather forecasts, and power consumption monitoring. Thus, the recent 
development of innovative feeders providing access to daily and indi
vidual feed consumption of sows, as well as the development of specific 
computational methods for storing and dealing with time-series 
(Aghabozorgi et al., 2015) are providing new opportunities to develop 
more accurate predictions of feed intake. 

In this study, we present a forecasting procedure for time-series 
supported by unsupervised learning of consistent clusters, specifically 
designed to make one-day-ahead forecasts of sow feed intake during 
lactation. Using data from different farms, our approach first uses time- 
series clustering to automatically identify consistent sets of feed intake 
trajectory curves (TCs) during lactation. Then, three functions are tested 
to make one-day-ahead forecasts of individual sow feed intake, with two 
of them supported by an assigned TC. The objective of this study is thus 
to describe and assess the quality of this approach to predicting indi
vidual feed intake in lactating sows. 

2. Research background 

With the increasing amount of time-series data in various domains, 
temporal data mining has recently attracted a great deal of attention for 
different purposes such as classification, visualization, segmentation, 
prediction, and trend analysis, in addition to pattern discovery. Time- 
series clustering is one of the most fundamental task that is usually 
applied prior to any other analysis method. This section briefly reviews 
specific knowledge about time-series clustering in order to extract 
temporal prototypes. These prototypes will further be used to support 
time-series forecasting. 

2.1. Time-series definitions 

We begin by introducing the necessary definitions. 

Definition 1. A time-series T consists of a sequence of numerical 
vectors in successive order and equally spaced out over time: T = t1, t2,

⋯,tn, with ti being a V-dimensional real-valued vector and n the length of 
the time-series T. 

The time-series T is univariate when V = 1, meaning that only one 
variable varies over time, otherwise T is multivariate. In this paper, we 
deal with univariate time-series, a sequence of numerical values over 
time. 

Definition 2. A dataset D is a set of time-series such that: D = {T1,T2,

⋯,Tm}, where m is the number of time-series in the dataset. 

2.2. Time-series clustering 

In machine learning, clustering belongs to the class of unsupervised 
learning problems whose objective is to determine how the data is 
organized without any labeled examples. The objective of clustering is to 
partition the dataset into homogeneous groups of data, called clusters, 
where data points in the same cluster are the more similar to each other 
and dissimilar to data in other clusters. Clustering can be applied to 
time-series and is defined as follows (Aghabozorgi et al., 2015): 

Definition 3. Given a time-series dataset D = {T1, T2, ⋯, Tm}, time- 
series clustering consists in partitioning D into C = {C1, C2, .., Ck}, a 
set of k clusters, with D =

⋃k
i=1Ci,Ci ∩ Cj = ∅ for i ∕= j. Homogeneous 

time-series are grouped together based on a certain similarity measure 
that maximizes inter-cluster distance and minimizes intra-cluster 
variance. 

The main challenges of the clustering process are to define similarity 
and to find the value of k that leads to a consistent set of clusters. 

2.2.1. Time-series clustering algorithms 
Numerous approaches have been proposed to deal with time-series 

objects characterized by large data sizes and potentially high dimen
sionality. For whole time-series clustering (as opposed to subsequence 
clustering, for instance), clustering algorithms are generally classified 
into three groups, namely shape-based, feature-based, and model-based, 
depending on whether or not clustering is applied directly to raw data 
(Warren Liao, 2005; Aghabozorgi et al., 2015). 

Feature-based and model-based algorithms are not directly appli
cable to raw data and require time-series conversion. Feature-based al
gorithms work on vectors of features extracted from raw time-series, 
such as mean, variance, autocorrelation, etc. (Bandara et al., 2020). This 
leads to dimensionality reduction, thus making it possible to cluster 
datasets that cannot fit into memory and time-series of unequal lengths. 
These algorithms are therefore generally less computationally expensive 
(Aghabozorgi et al., 2015). Model-based algorithms first model each 
time-series, for instance with an Auto-Regressive Moving Average 
(ARMA) model, for instance, and the clustering is carried out on the 
parameters of the obtained models (Warren Liao, 2005; Aghabozorgi 
et al., 2015). Shape-based clustering algorithms operate directly on raw 
data, and time-series that share a common progression across time are 
grouped together. These types of algorithms are good at capturing 
redundant patterns over time since they rely on a measure of similarity/ 
dissimilarity specially designed for time-series. Depending on the 
number, length, and dimensionality of the time-series being compared, 
and the complexity of that measure, shape-based algorithms can lead to 
high computational cost. 

Paparrizos and Gravano (2016) proposed a scalable and efficient 
shape-based clustering algorithm, called k-Shape, that uses a normalized 
version of the cross-correlation measure as its distance measure. This 
algorithm can effectively detect similarities in time-series presenting 
invariances such as scaling, shift, and translation (Fig. 1). k-Shape is 
based on a two-step iterative procedure, which shares similarities with 
the procedure of the well-known k-Means algorithm. First, each time- 
series is assigned to the cluster for which the similarity between time- 
series and the cluster’s centroid is greatest. Then, the centroid is 
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computed again for each cluster to reflect changes in cluster member
ship. In the case of the k-Shape algorithm, the centroid is an artificial 
sequence. The algorithm is initialized by randomly assigning a time- 
series to one of the clusters and is stopped when no more changes 
occur in cluster assignment or when a maximum number of iterations is 
reached. Scaling and translation invariances are handled by z-normal
izing each time-series before applying the k-Shape algorithm, so its 
mean is 0 and its standard deviation is 1. Shift invariances are handled 
by the Shape-Based Distance, which is presented in Section 2.2.2. 

2.2.2. Distance measures for shape-based clustering algorithms 
Measuring the similarity/dissimilarity between time-series is a major 

step in clustering algorithms and is usually carried out with a distance 
measure. Due to the temporal aspect of this data and the different 
complexities emerging from the various domains, many distance mea
sures have been proposed in the literature (Wang et al., 2013). 

The most common distance measure in time-series is the Euclidean 
distance, given by the following formula: 

dist(T1,T2) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(T1i − T2i)

2

√

where T1 and T2 are two time-series of equal length n. Because the 
Euclidean distance computes the square differences of observations 
sharing the same time index, this measure is quite fast. However, it is not 
well suited to comparing time-series of unequal lengths, or presenting 
shift and translation invariances (Fig. 1). 

These drawbacks can be compensated by elastic measures that 
compare the local alignment of time-series independently of the time 
index. For example, Dynamic Time Warping (DTW, Sakoe and Chiba, 
1978) can accurately identify the similarity of time-series presenting 
temporal drifts or varying in lengths by comparing one value in T1 with 
T2 in three different ways, namely one-to-one, one-to-many or one-to- 
none. DTW is thus more accurate than Euclidean distance and is 
considered to be the best distance measure for many time-series mining 
tasks (Ding et al., 2008; Bagnall et al., 2017), but it is also much slower 
and more computationally expensive. 

When the objective of time-series clustering is to identify common 
trajectory curves or behaviors in the object of interest, shaped-based 
distances are better suited to comparing trajectory shapes. To circum
vent the main drawback of classic shape-based distance metrics like 
Fréchet and Hausdorff that are computationally expensive, a new SBD 
measure (Shape-Based Distance) has recently been proposed by 

Paparrizos and Gravano (2016). SBD relies on cross-correlation, a sta
tistical measure that makes it possible to compare the shapes of two 
time-series T1 and T2 of unequal lengths n and m by reducing their noise 
(Aghabozorgi et al., 2015). The SBD distance measure also handles shift 
invariances. 

Definition 4. SBD distance is defined as follows: 

SBD(T1,T2) = 1 − max
w

(NCCw(T1, T2))

where NCCw(T1, T2) = (ncc1, ⋯, nccw), w ∈ {1, 2, ⋯, n + m − 1}, is the 
normalized cross-correlation sequence. The normalized cross- 
correlation sequence NCCw(T1,T2) = (ncc1,⋯, nccw) is computed for 
all w positions obtained by keeping one time-series static and sliding the 
other over it (Paparrizos and Gravano, 2016). SBD is computed at the 
position w that maximizes the similarity between T1 and T2. The SBD 
distance measure then varies between 0 and 2, where 0 indicates that T1 
and T2 are perfectly similar. The time requirement for computing the 
normalized cross-correlation sequence for all w values is high, particu
larly for long time-series, but this drawback is handled by using Fast 
Fourier Transform (Paparrizos and Gravano, 2016). 

2.2.3. Cluster prototypes 
Clustering makes it possible to automatically identify relevant 

groups of time-series without any a priori knowledge on cluster defini
tion. An additional task in time-series clustering consists in computing a 
”prototype” for each cluster. Prototypes computed during the clustering 
process are used directly by some clustering algorithms (i.e. k-Medoids, 
k-Shape) to refine cluster membership. Prototypes computed at the end 
of the clustering process offer a single representative time-series for each 
cluster that can be used for further applications such as time-series 
forecasting. Prototypes are either a medoid or a centroid sequence. A 
medoid sequence is an actual time-series from the cluster, while a 
centroid sequence is an artificial time-series computed from the time- 
series of the cluster (Aghabozorgi et al., 2015). 

3. Materials and Methods 

3.1. General approach 

The general approach of this study aims to define groups of sows 
having the same feed intake trajectory curve (offline learning through 
time-series clustering) to support the forecasting of the individual daily 
feed intake of lactating sows (online time-series forecasting). This 

Fig. 1. Illustration of scaling, shift, and translation invariances applied to a sinusoidal function (black curve). Despite different distortions, it might be interesting to 
consider the similarity in shape of the red, green, and blue lines with the black line. 
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approach is based on the combination of the individual lactating sow 
online data acquired since farrowing with herd historical data collected 
during previous farrowing batches (Fig. 2). 

A feed intake time-series Fj = f1,j, f2,j,⋯, fn,j is a sequence of numer
ical values fd,j that represent the feed intake value in kilograms at day d,
d ∈ [1,n], where n is the duration of the lactation period for a sow j. 

The offline learning procedure (Fig. 2) performed on herd historical 
data consists in a clustering algorithm that splits past recorded Fj time- 
series into homogeneous clusters (see Section 2). A prototype is then 
extracted in order to summarize the feed intake trajectory curve (TC) 
followed by each cluster. This offline learning requires the availability of 
sufficient data to be able to extract consistent prototypes. 

The online forecasting (Fig. 2) consists in predicting the value f̂ d+1,j 

of the time-series Fj,d ∈ [1,n] ∩ N. Forecasting uses both an assigned TC 
to sow j and f1,j, f2,j,⋯, fd,j sow live data recorded since farrowing. The 

forecast f̂ d+1,j may then be transmitted to any application that relies on 
daily feed intake forecasts at an individual level (e.g. precision feeding). 
The amount of feed really consumed, called fd+1,j, is finally recorded 
from the feeder by the end of the day in order to be used on the following 
days. Data preprocessing and offline and online methods are described 
in the following subsections. 

3.2. Data preprocessing 

Data collection. Data was collected using an automated feeder 
(Gestal®, JYGA Technologies Inc., Quebec, Canada) that recorded the 
feed intake and the feeding behavior of lactating sows on a daily basis. 
With this system, sows were delivered up to 8 meals over the course of 
the day. Feed was given in successive portions of a limited size, which 
were distributed by the feeder when the sows pressed a button. This 
allowed the sows to be fed according to their demand, while limiting 
feed wastage effectively. Each sow was assigned to a predefined feeding 
scale depending on parity, with a daily target consumption and 
permission given by the farmer to exceed this target by up to 30%. Each 
sow could therefore ask for less than the target, but never more than the 
maximum. 

Data cleaning. Daily feed intake was recorded between April 2013 
and June 2019 in 6 commercial farms where the farrowing crates were 
equipped with Gestal® system. The original database was composed of 

78,863 lactations of variable lengths. Lactations shorter than 12 days or 
longer than 32 days were withdrawn, as they may represent abnormal 
events (e.g. early death of sow after farrowing, adoption of a second 
litter). It was assumed that occasional electronic anomalies occurred 
when encountering missing or negative daily feed intake records, and 
daily feed intake higher than 6 kg on first day after farrowing, greater 
than 15 kg on the second day or greater than 20 kg from day 3 on. It was 
also assumed that several electronic anomalies occurred while recording 
feed intake within a lactation when the cumulative feed intake during 
lactation was over 250 kg. When one of these situations arose, the whole 
lactation was removed from the dataset. In addition, the last day of 
lactation showed a distinctive bimodal distribution, with some sows 
showing a huge drop in feed intake. Because this drop was likely related 
to specific feed allowance practices on weaning day (i.e., feeding only 
half of the ration), this day was excluded from offline learning and on
line forecasting. The combination of these cleaning steps led to a clean 
database of 64,951 lactations. 

Data selection and data splitting. Most lactations last between 17 and 
23 days as a result of biological variability in the duration of the 
gestational period and batch management at weaning (Martel, 2008). 
Shorter lactations may be due to the occurrence of lactation problems, 
whereas longer lactations may be related to specific practices such as 
keeping sows longer to nurse fostered piglets. In this study, for the se
lection of time-series, we used 20-day lactations as a compromise 

Fig. 2. Methodological approach for the daily prediction of sow feed intake during lactation, from individual sow live data and herd historical data. ̂f d+1,j represents 
the forecasted value of feed intake for sow j on day d + 1. fd+1,j represents the amount of feed really consumed at the end of day d+1 for the sow j. Blue lines represent 
offline steps and red lines represent online forecasting tasks for feed intake time-series. 

Fig. 3. Number of feed intake time-series available according to the length of 
the lactation period. 
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between decreasing the number of available Fj time-series, and 
increasing the lactation length to cover a wider range of practices 
(Fig. 3). This resulted in the selection of 39,090 20-day Fj time-series. 
This dataset, called D, was then split at random into training and test 
sets according to an 80:20 ratio, and with respect to this ratio in each 
farm. The training set of D was used for offline learning of feed intake 
trajectory curves (TCs), both per farm in the farm specific (FS) approach, 
and over all farms in the global (G) approach. The test set of D was used 
for the validation of the online forecasting simulation. 

Data description. The number of time-series available per farm, mean 
feed intake, and the standard deviation for each of the 6 farms in dataset 
D are presented in Table 1. Mean feed intake differed among farms. It 
was greatest in farm 2 and lowest in farm 1 and averaged 6.05 kg 
(±1.29). Over the period of 20 days, feed intake showed a gradual in
crease (Fig. 4). During the five first days of lactation, mean feed intake 
increased rapidly from 2 kg to 5 kg, and subsequently continued to in
crease more slowly, in line with the sows’ appetite, reaching a plateau in 
the third week of lactation. The variability in feed intake was large and 
increased over lactation as the result of the wide biological variability in 
appetite between individual sows and between successive days (Eissen 
et al., 2000). For the same reason there was also an increasing number of 
outliers calculated as being higher or lower than the interquartile range 
multiplied by 1.5. 

3.3. Unsupervised learning and prototype extraction 

As one of the more efficient time-series clustering algorithm, the k- 
Shape clustering algorithm was used to identify different sets C of 
feeding trajectory curves (TCs) in the training set of D (see 2.2.1) 
(Paparrizos and Gravano, 2016). 

Fj time-series have a lot of variability (Fig. 4), and may present 
scaling, translation, and shift invariances. k-Shape handles scaling and 
translation invariances by z-normalizing time-series, so the mean and 
standard deviation values of each time-series in the training set were 
first set to 0 and 1, respectively. This step was necessary in order to 
identify similarity in the feeding behavior of sows despite possible dif
ferences in their feed intake level. k-Shape handles shift invariance 
thanks to Shape-Based Distance (SBD). This clustering algorithm is thus 
able to identify the similarity of different time-series with a common 
progression of fj occurring at different time indices. Prototype extraction 
relies on the Shape Extraction algorithm (Paparrizos and Gravano, 
2016). k-Shape was also chosen because of its ability to deal with 
numerous time-series of equal length, and its domain-independent na
ture (Paparrizos and Gravano, 2016). 

k-Shape algorithm takes only one input parameter, which is k, the 
desired number of clusters. In this study, k represents the number of 
clusters in which time-series shared a common feed intake TC. Since this 
value cannot be known a priori, we made k vary between 2 to 8, and 
analyzed the homogeneity of the resulting clusters with the Silhouette 
(Rousseeuw, 1987) and Calinski-Harabasz (Calinski and Harabasz, 
1974) scores. The Silhouette score is an internal Cluster Validity Index 
(internal CVI) that evaluates the homogeneity of time-series within the 
cluster and the heterogeneity between clusters. The Silhouette score 
varies between − 1 and  + 1, where the value  + 1 indicates that clusters 

are well separated by the clustering algorithm and that time-series 
within a cluster are very similar, and the value − 1 indicates the oppo
site situation. The Calinski-Harabasz score is a second CVI, which is 
defined as the ratio between the within-cluster dispersion and the 
between-cluster dispersion. Higher score indicates that clusters are well 
separated. 

Offline processes were carried out both per farm and globally over 
the training set. The first approach computed global (G) prototypes 
given the whole training set of D, while the second approach worked by 
farm and computed farm-specific (FS) prototypes. In total, the FS 
approach produced 7 sets of clusters Ck per farm, k ∈ [2, 8], and the G 
approach produced 7 sets of Ck,k ∈ [2,8]. All sets of clusters were tested 
with Silhouette and Calinski-Harabasz scores. Each prototype was 
turned into a trajectory curve TC expressed in kilograms per day by 
applying back the original mean and standard deviation values gathered 
during z-normalization. 

3.4. One-day-ahead forecasting of feed intake 

In this section, we present the general principles of the online fore
casting procedure, the TC assignment task, the 3 forecasting functions 
used, and the evaluation of predicted feed intakes (Table 2). 

General principles. The one-day-ahead forecast of feed intake is 
denoted ̂f d+1,j, on lactating day d+1, for a specific sow j belonging to the 
test set of D. Online forecasting starts at day 2 and is computed each day 
for each sow, from both an assigned TC and the previous fd of the sow 
recorded since farrowing (Fig. 2). Two forecasting functions were based 
on the previous fd of the sow and benefited from offline learning of feed 
intake TCs. A third baseline forecasting function was performed 

Table 1 
Number of feed intake time-series per farm, and means and standard deviation of 
average 20-days lactation feed intake.  

Farm Number of time series Mean feed-intake (kg/d) 

1 7 872 5.14 ± 0.865 
2 3 467 6.98 ± 1.422 
3 9 111 6.50 ± 1.119 
4 651 6.22 ± 1.132 
5 10 692 6.08 ± 1.260 
6 7 297 5.99 ± 1.279 

All 39 090 6.05 ± 1.294  

Fig. 4. Daily feed intake boxplots according to lactation stage of sows (data 
obtained from 39090 time-series in six commercial farms). 

Table 2 
Summary of the one-day-ahead forecasting methods, with different offline and 
online parameters, and the resulting method short name used in the text.  

Offline learning method Online forecasting 
function 

ka Method short 
name 

Global clusteringb with k- 
Shape 

1 [2,8] G.1f.k 

Farm-specific clusteringc 

with k-Shape 
1 [2,8] FS.1f.k 

Global clustering with k- 
Shape 

2 [2,8] G.2f.k 

Farm-specific clustering with 
k-Shape 

2 [2,8] FS.2f.k 

No offline learning 3  Persistence  

a k, the clustering parameter, is equivalent to the number of trajectory curves 
available for assignment during online forecasting 

b Global (G) clustering computes k trajectory curves, given the whole training 
database. 

c Farm-specific (FS) clustering computes k trajectory curves, given the training 
database of each farm. 
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exclusively online. All TCs derived from G and FS prototypes ∀k ∈ [2, 8]
were tested in the subsequent online forecasting procedure of Fj time- 
series. All forecasting methods are summarized in Table 2. 

Trajectory curve assignment. The time-series Fj was assigned to the 
TC ∈ Ck,k ∈ [2,8], which shared the most similar progression of Fj since 
farrowing. This similarity is evaluated with SBD in z-normalized con
ditions. All throughout the lactation period, the Fj could be assigned to 
different TCs. 

Forecasting functions. Two forecasting functions were tested after TC 
assignment. The first (1f) computes a single one-day-ahead forecast 
f̂ d+1,j, which corresponds to the last observed fd,j value of Fj increased by 
the variation of the assigned prototype TCj such that: 

f̂ d+1,j = fd,j +(TCd+1,j − TCd,j) (1)  

The second (2f) computes two forecasts, a one-day-ahead forecast from 
d, and a two-days-ahead forecast from d - 1 and returns the average 
value at d + 1. This function is used to mitigate the possible variability of 
fd,j from one day to another: 

f̂ d+1,j =
(fd,j + (TCd+1,j − TCd,j)) + (fd− 1,j + (TCd+1,j − TCd− 1,j)

2
(2)  

A third baseline forecasting function was performed exclusively online, 
to evaluate and compare the benefits of TCs in feed intake forecasting. 
This method, called ”Persistence” (Table 2), is a naive forecasting 
baseline where the forecast at d + 1 corresponds to the last observed fd,j 
value. Therefore, this forecasting function does not benefit from any 
herd historical data: 

f̂ d+1,j = fd,j (3) 

Error measures and quality evaluation. To evaluate the precision of the 
forecasting methods and to identify the method with the best predictive 
quality, errors between the forecast f̂ d+1,j and the ground truth fd+1,j 

were analyzed. Mean Error per lactating sow j (MEj) was computed such 
that: 

MEj =
1
20

∑20

d=1
f̂ d,j − fd,j (4)  

A positive or a negative MEj indicates that the predictive method tends 
to overestimate or underestimate Fj over the lactation period of sow j. 

Root Mean Square Errors were computed to both evaluate the effects 
of daily variability (RMSEd) and sow variability (RMSEj) on the quality 
of the prediction. RMSEd evaluates the progression of the predictive 
quality of each method according to lactation stage. RMSEd, d ∈ [1, 20]
were computed each day over the 7,818 time-series in the test set of D 
such that: 

RMSEd =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
7818

∑7818

j=1
( f̂ d,j − fd,j)

2

√
√
√
√ (5)  

A RMSEd value close to 0 indicates very good forecasts on day d. RMSEj 
evaluates the precision of predictive methods according to individual 
sows. RMSEj, j ∈ [1,7818], were computed such that: 

RMSEj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
20

∑20

d=1
( f̂ d+1,j − fd+1,j)

2

√
√
√
√ (6)  

A RMSEj value close to 0 indicates very good forecasts over the whole 
lactation period of sow j. RMSEj makes it possible to evaluate which 
method has good predictive quality for a specific herd. 

4. Results 

4.1. Offline cluster identification, prototype, and trajectory curve 
extraction 

In the FS approach, offline learning identified 7 sets of clusters per 
farm, and extracted for each cluster the corresponding prototype and 
trajectory curve for each cluster. In the G approach, offline learning 
identified 7 sets of clusters over all 6 farms, and extracted for each 
cluster the corresponding prototype and trajectory curve. Computed 
Silhouette and Calinski-Harabasz scores for all sets of clusters are pre
sented in Table 3. The Silhouette score was always maximum for k = 2 in 
each of the 6 farms (FS approach) and also across all the time-series in 
the training set of D (G approach). For k = 2, the Silhouette scores varied 
from 0.16 up to 0.22. For k ∈ [3, 5], the Silhouette scores decreases 
consistently, and for k ∈ [6, 8], the Silhouette scores were lower than 
0.10. In the FS approach, the Calinksi-Harabasz scores were maximal for 
k = 2 in farms 1, 2, 4, 5, and 6. For farm 3, this score was maximum for k 
= 3. In the G approach, this score was maximal for k = 2. Based on these 
observations, k = 2 was chosen as the best parameter to split the training 
set of D, both in the FS and G approaches, into a consistent set of two 
clusters. 

The Fig. 5 represents each cluster, obtained for k = 2, with its z- 
normalized prototype. Within each cluster, the corresponding prototype 
is a smooth and artificial time-series that averages all the time-series. 

4.2. Evaluation of online forecasting methods 

Table 4 presents the ME and RMSE errors per day for methods FS.1f. 
k, FS.2f.k, G.1f.k, G.2f.k, k ∈ [2,8], and Persistence. 

For all methods supported by offline learning of TCs, the smallest MEj 
values were achieved for k = 2 (Table 4). In the FS.1f.k method, MEj was 
equal to -0.08 kg/d for k = 2 and decreased down to -0.15 kg/d for k = 7. 
In the FS.2f.k method, MEj was equal to -0.08 kg/d for k = 2 and 
decreased down to -0.14 kg/d for k = 8. In the G.1f.k method, MEj was 
equal to -0.04 kg/d for k = 2 and decreased down to 0.09 kg/d for k = 8. 
In the G.2f.k method, MEj was equal to -0.04 kg/d for k = 2 and 
decreased down to -0.12 kg/d for k = 7. In the Persistence method, MEj 
was equal to -0.31 kg/d. The distribution of MEj values among sows is 
presented in Fig. 6 for the four cluster-based methods, with k = 2, and 
for the Persistence method. The smallest MEj was obtained for G.1f.2 
method (Fig. 6). With this method, 75% of the sows had an ME value 
between − 0.10 and  + 0.05 kg/d. 

For all methods supported by offline learning of TCs, the smallest 
RMSEj were obtained for k = 2 (Table 4). In the FS.1f.k method, the 
RMSEj was smallest for k = 2 (1.11 kg/d) and increased up to 1.21 kg/ 
d for k = 7. In the FS.2f.k method, the RMSEj was smallest for k = 2 (1.06 
kg/d) and increased up to 1.21 kg/d for k = 7. In the G.1f.k method, the 
smallest RMSEj was obtained for k = 2 with 1.13 kg/d and was maximal 
for k = 8 with 1.19 kg/d. In G.2f.k, the RMSEj was smallest for k = 2 with 
1.07 kg/d and increased up to 1.16 kg/d for k = 5. In comparison, the 
RMSEj obtained with the Persistence method was 1.21 kg/d. The dis
tribution of RMSEj values among sows is presented in Fig. 7 for the four 
cluster-based methods, with k = 2, and for the Persistence method. The 
smallest RMSEj was obtained with FS.2f method associated with k = 2 
(Fig. 7). With this method, 75% of the sows had a mean RMSEj value 
between 0.75 and 1.3 kg/d. 

Fig. 8 presents the RMSEd errors expressed as a percentage of the 
mean values for the four cluster-based methods, with k = 2, and the 
Persistence method. For all methods, RMSEd decreased over the first 5 
days of lactation and then plateaued at a low level. On day one, RMSEd=1 
was smallest for FS.1f.2 and FS.2f.2 and represented 45.6% of the 
average true fd. For G.1f.2, G.2f.2 and Persistence, the RMSEd=1 was 
higher and reached 69.3% of the average true f1. From day 1 to 3, RMSEd 
quickly decreased and reached about 20% for all of cluster-based 
methods, while it remained greater at 32.5% with the Persistence 
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Table 3 
Evaluation of the quality of clustering according to k, the number of clusters and consequently the number of trajectory curves produced during offline learning. Best 
values for Silhouette (maximum) and Calinski-Harabasz (maximum) scores in boldface.    

k  
Farm 2 3 4 5 6 7 8 

Silhouette score 1 0.18 0.10 0.10 0.13 0.04 0.03 0.02  
2 0.16 0.11 0.07 0.05 0.03 0.03 0.01  
3 0.22 0.10 0.06 0.07 0.04 0.04 0.02  
4 0.17 0.09 0.09 0.04 0.06 0.01 − 0.00  
5 0.19 0.10 0.05 0.04 0.04 0.05 0.04  
6 0.22 0.19 0.12 0.08 0.08 0.08 0.08  
All 0.22 0.10 0.10 0.06 0.06 0.04 0.01 

Calinski-Harabasz score 1 403 258 347 308 279 247 221  
2 102 95 85 88 73 61 58  
3 358 600 492 468 397 351 349  
4 21 16 17 12 11 11 12  
5 412 349 303 284 239 250 219  
6 488 445 361 316 297 260 269  
All 1539 1305 1213 1053 943 875 804  

Fig. 5. Comparison of clusters and z-normalized prototypes for each of the 6 farms and all farms together, identified for k = 2.  
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method. From day 5 to 20, the RMSEd remained almost constant. The 
mean RMSEd, d ∈ [5, 20], for Persistence, FS.1f.2, G.1f.2, FS.2f.2, and 
G.2f.2 methods were 18.8%, 18.5%, 18.6%, 17.2%, and 17.2%, 
respectively. 

The effect of lactation stage on MEd is presented in Fig. 9. For FS.1f.2, 
FS.2f.2, G.1f.2, and G.2f.2, MEd was generally negative in the first days 
of the lactation period (day 1 to day 3), then slightly positive for a few 
days, and negative again until the end of the lactation. In comparison, 
the MEd errors obtained with the Persistence method were almost always 
negative with huge errors on the first days of the lactation period. MEd 
ranged between -0.30 and 0.20 kg/d for the FS.1f.2, FS.2f.2, G.1f.2, and 
G.2f.2 methods. It ranged between -1.20 kg/d and 0.10 kg/d for the 
Persistence method. 

5. Discussion 

5.1. Offline learning 

Clustering was used to split the training set into a consistent set of k 
clusters. The value of k = 2 was found to maximize the Silhouette score 
in each of the 6 farms and also at the global scale. The Silhouette score is 
strictly positive (0.20 on average), indicating that time-series tend to be 
closer to their own cluster than other clusters, but this score is closer to 
0 than 1, which indicates that clusters may overlap at some periods 
(Rousseeuw, 1987). Indeed, in the different clusters, the progression of 
feed intake from farrowing to day 5 is quite similar, indicating that most 
sows increase their feed intake in the same way. This might be related to 

Table 4 
Evaluation of mean error (MEj) and root mean square error (RMSEj) per sow according to the combinations of learning methods (FS: Farm Specific; G: Global), 
forecasting functions (1f,2f, Persistence), and the number of clusters k,k ∈ [2,8]

k - 2 3 4 5 6 7 8 

MEj (kg/d)  FS.1f - − 0.08 − 0.10 − 0.10 − 0.12 − 0.11 − 0.15 − 0.12  
FS.2f - − 0.08 − 0.11 − 0.09 − 0.13 − 0.12 − 0.14 − 0.14  
G.1f - − 0.04 − 0.05 − 0.08 − 0.08 − 0.08 − 0.08 − 0.09  
G.2f - − 0.04 − 0.06 − 0.09 − 0.05 − 0.09 − 0.12 − 0.08  
Persistence − 0.31 - - - - - - - 

RMSEj (kg/d)  FS.1f - 1.11 1.12 1.13 1.15 1.15 1.21 1.20  
FS.2f - 1.06 1.09 1.11 1.12 1.13 1.21 1.20  
G.1f - 1.13 1.14 1.16 1.18 1.18 1.18 1.19  
G.2f - 1.07 1.09 1.12 1.16 1.13 1.13 1.15  
Persistence 1.21 - - - - - - -  

Fig. 6. Mean Error (ME) per lactating sow according to the combination of 
learning methods (FS: Farm Specific; G: Global) and forecasting functions 
(1f,2f) with two clusters (k = 2), and without learning with the Persistence 
forecasting function. 

Fig. 7. Root Mean Square Error (RMSE) per lactating sow according to the 
combination of learning methods (FS: Farm Specific; G: Global) and forecasting 
functions (1f,2f) with two clusters (k = 2), and without learning with the 
Persistence forecasting function. 

Fig. 8. Effect of lactation stage on RMSEP per day (RMSEd expressed as a % of 
the measured value of daily feed intake) according to the combination of 
learning methods (FS: Farm Specific; G: Global) and forecasting functions 
(1f,2f) with two clusters (k = 2), and without learning with the Persistence 
forecasting function. 

Fig. 9. Effect of lactation stage on Mean Error according to the combination of 
learning methods (FS: Farm Specific; G: Global) and forecasting functions 
(1f,2f) with two clusters (k = 2), and without learning with the Persistence 
forecasting function. 
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the progressive increase in their nutrient requirements due to increasing 
milk production (NRC, 2012; Gauthier et al., 2019) and the progressive 
adaptation of their digestive tracts (Theil, 2015). This can also be related 
to the feeding practices, since maximum feed allowance is generally 
limited over the first 4 to 7 days of lactation in order to avoid digestive 
disturbances, which are frequent during this period (Göransson, 1989). 
Although we did not have access to the information about the strategy 
used in each farm during this period, it seems that daily feeding supply 
or intake also increased in most studied farms, from about 2.5 kg on day 
one up to 4 to 5 kg on day five (Fig. 10). Using k > 2 did not result in 
more consistent sets of clusters, as the Silhouette score decreases almost 
linearly. The Calinski-Harabasz score also confirms that the optimal 
number of clusters was two. Clustering with k-Shape leads to very good 
handling of shift invariances, as shown by Fig. 5 under normalized 
conditions. 

Though residual variability in z-normalized time-series is high, k- 
Shape clustering suggests that time-series could be classified into a 
limited number of prototypes, independently of feed intake level and 
variability of individual sows. One prototype found in each of the 6 
farms and in the global approach describes a rapid increase during the 
first 7 days, followed by a slower and almost linear increase. It repre
sented 54 % to 68 % of the time-series in the training set, depending on 
the farm. The second prototype describes a curvilinear increase of feed 
intake during the first 7 days, followed by a plateau, starting from 
around day 10. This second prototype represented between 32 % and 46 
% of the time-series in the training set, depending on the farm. 

Although the general shapes of the z-normalized feed intake patterns 
(Fig. 5) were rather similar among farms, some specificities could be 
identified. The variability was much lower in farm 4, probably in rela
tion to the lower number of data available. A feeding pattern with a 
plateau was observed in all farms but it started earlier in some of them 
(farm 3 and 4) and was sometime followed by a curvilinear decrease like 
in farms 3 and 6. These differences could be related the feeding practices 
in each farm, especially the shape of the target feeding curve pro
grammed in the feeder. It could also be related to some animal speci
ficities, such as the genetic origin, as shown by Schinckel et al. (2010) 
who compared three breeds of sows and observed that in one breed feed 
intake plateaued whereas in the two others it continued to increase until 
weaning. 

Fig. 10 represents, for each individual farm and all farms together, 
the trajectory curves obtained using their two specific prototypes (k =
2), after applying back the original conditions of means and standard 
deviations of the farms to the extracted prototypes. Smooth and farm 
specific feed intake trajectory curves were thus obtained within each 
farm, and for all farms together. There are very few studies available in 
the literature on variability in individual sow feed intake patterns during 
lactation in commercial swine herds, mainly because feed intake is very 

rarely recorded, except with the use of smart feeders in recent years 
(Piñeiro et al., 2019). In the study of Koketsu et al. (1996), daily sow 
feed intake was measured manually on a large number of sows, with 
data available for about 25,000 lactations from 30 commercial farms. 
Average lactation length (19 days) was similar to the present study and 
average feed intake (5.2 kg/d) was 15% lower than in the present study. 
They identified six patterns of daily feed intake according to the amount 
of feed consumed, how quickly feed intake increased, and whether a 
transient drop in feed intake occured during lactation. Three of these 
patterns presented similar trends to the two identified in the present 
study, with either a rapid or a gradual increase in feed intake over time. 
However, two of the patterns identified in Koketsu et al. (1996)’ study, 
those with a rapid increase and a major or a minor transient drop in feed 
intake, were not identified in the present dataset, even when considering 
more than two clusters (results not presented). Dourmad et al. (1991), 
who observed a drop in feed intake at about five days of lactation in lean 
sows with high appetite fed ad libitum from the day of farrowing, sug
gested that this was related to the occurrence of gastrointestinal disor
ders resulting from uncontrolled excessive feed intake at the beginning 
of lactation. It can be argued that in the present study the use of smart 
feeders, which make it posible to limit the risk of overconsumption, 
could have decreased the frequency of such a feeding pattern. According 
to Koketsu et al. (1994), the “rapid” or “gradual” feeding patterns, which 
correspond to the two identified in the present study should be 
encouraged in order to optimize reproduction and lactation perfor
mance, and reduce the risk of reproductive failure after weaning. It is 
thus possible that with another database from farms with different 
feeding practices (e.g. with ad libitum feeding since farrowing) other 
feeding patterns, with a transient drop in feed intake, could be identi
fied. Similar average feed intake patterns, as these identified in the 
present study, with a rapid or a more gradual increase in feed intake over 
lactation were also found by Schinckel et al. (2010) who compared three 
different breeds of sows using a generalized Michaelis–Menten functions 
to adjust the feed intake curves. As in the present study the daily feed 
intake of sows increased rapidly from d 1 to 4 of lactation and thereafter 
increased at a decreasing rate to reach a plateau at about d 18 to 23 of 
lactation, the level of the plateau being affected by the breed of sows and 
the season. With longer lactations (27 days) Cabezón et al. (2016), using 
a Mixed model polynomial functions to adjust the feeding curves, 
identified some feeding patterns showing a decrease in feed intake over 
the last week of lactation, as we also observed in some farms from our 
study. According to the results available in the literature and the results 
we obtained, it appears that there is a large diversity of feeding patterns 
in lactating sows. This highlights the importance of regularly carrying 
out the offline machine learning procedure with data obtained directly 
from the farm or from other farms with practices similar to those used in 
the farm applying the forecasting procedure. 

Fig. 10. Comparison of trajectory curves for each of the 6 farms and all farms together, identified for k = 2.  
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5.2. Online forecasting 

Online forecasting started with the assignment of a trajectory curve 
(TC) for each sow and each day based on the Shape-Based Distance 
between TC and fd,j values. On average, for k = 2, the assignment of a 
given sow to a prototype changed 2.2 times during her lactation. Those 
changes mainly occurred at the very beginning or at the very end of the 
lactation period. This might be due to difficulty of comparing smooth 
extracted TCs with raw individual sow time-series, when the shape 
changes. 

For each of the cluster-based forecasting methods, predictive quality 
was the best for low values of k. Increasing the number of prototypes 
decreased predictive quality, probably by assigning a less consistent TC 
on a given day, thus increasing the number of prototypes changes over 
lactation. This result may seem counterintuitive since it might be ex
pected that increasing the number or prototypes would improve the 
prediction. 

The approach with the Persistence function and no offline learning 
was used as a baseline method for comparison with methods supported 
by offline learning. Fig. 9 clearly shows that this function does not 
efficiently predict daily feed intake, especially over the first 11 days of 
lactation. Over this period, the 1f and 2f forecasting functions performed 
much better than the Persistence function with smaller ME values almost 
centered on 0 kg and smaller RMSE. After 11 days of lactation, when 
feed intake is more constant, the ME values were quite comparable for 
the different forecasting functions. However, because ME errors, which 
may be positive or negative, may cancel out each other between days, 
this single criterion is not sufficient to evaluate the accuracy of pre
dictions. RMSE thus provides another understanding of the predictive 
quality. According to both ME and RMSE criteria, the farm specific 
method with two prototypes and a forecasting function based on the 
previous two days’ feed intakes (FS.2 f2̇) appears to be the most suitable 
(MEj = -0.08 kg/d, RMSEj = 1.06 kg/d), although the same method 
based on all farm data together (G.2 f2̇) is very close (MEj = -0.04 kg/d, 
RMSEj = 1.07 kg/d). 

The smaller RMSEP obtained for the 2f functions compared to the 1f 
functions ̂f d+1,j is probably due to an improved forecast of the change in 
feed intake by taking the means between two forecasts. This could 
explain why the difference in RMSEj between the 1f and 2f forecasting 
methods, expressed as a percentage of the mean value, are greater in the 
beginning of lactation. 

5.3. Use of the full approach in practice 

As stated in Section 3.1, f̂ d+1,j forecasts may be used by any appli
cations that rely on individual prediction of daily feed intake during 
lactation at the individual level. In the precision feeding approach, 
prediction of feed intake is required to determine the optimal nutrient 
content of the diet that will be prepared by the smart feeder and fed to 
each individual sow (Gauthier et al., 2019). 

Due to k-Shape efficiency and the small length of feed intake time- 
series, time-series clustering is quite fast and mainly depends on the 
number of time-series involved in the procedure. It may require less than 
3 s to compute k clusters with their corresponding prototypes over 1000 
feed intake time-series with a single-core processor; this represents 
about one year of data in a herd with 400 sows. Conversely, the 
computation of Silhouette and Calinski-Harabasz scores is far more 
expensive in time and resources. 

Similarly, the online forecasting methods were also very fast and 
required less than one second to run, for one sow over one day, and 
require only a few computing resources. The online prediction could 
thus be easily embedded in smart feeder control systems. 

To start the forecasting system on a new farm, where feed intake data 
are not yet available, global prototypes obtained from the present study 
might be used. When sufficient feed intake data becomes available on 

the farm (i.e. about 1,000 time-series, as in farm 4), the offline learning 
procedure could be run in order to produce farm-specific prototypes. 
This offline learning requires very few parameters and, according to the 
present results, exploring k < 4 seems to offer reasonable guidance. 
However, careful preprocessing of the data is required, and the approach 
needs to be combined with automatic detection of electronic anomalies 
in input data (e.g. feeder disconnection, bad data transmission) and 
correction. This would secure both the offline learning and the online 
forecasting of feed intake. 

6. Conclusion 

Forecasting of animal feed intake time-series is a challenging task, 
with many applications in practice for precision feeding using smart 
feeders. This approach is the first contribution that applies big data 
methods to lactating sow feed intake time-series, based on both histor
ical and live data. Clustering with k-Shape makes it possible to extract 
consistent prototypes and trajectory curves that are scale-, shift-, and 
translate-invariant. With the data used in this study, k-Shape clustering 
suggests that time-series could be classified into a limited number of 
prototypes, despite the fact that feed intake is highly variable during the 
lactation period. Due to shape-based clustering, our approach is easily 
interpretable by farmers who are already used to handle the concept of 
feeding curves when programming their sow feeding systems. Finally, 
this decision support system might be easily embedded on-farm, for the 
precision feeding of lactating sows, with few requirements in computing 
resources, and is able to learn by itself from farm specific data in a 
machine learning way. 

Study involving animals 

The data used in this paper were obtained from commercial farms 
using commercial feeding devices. 
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