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Abstract: In this work, eleven heteroleptic copper complexes were designed and studied as pho-
toinitiators of polymerization in three-component photoinitiating systems in combination with an
iodonium salt and an amine. Notably, ten of them exhibited panchromatic behavior and could be
used for long wavelengths. Ferrocene-free copper complexes were capable of efficiently initiating
both the radical and cationic polymerizations and exhibited similar performances to that of the
benchmark G1 system. Formation of acrylate/epoxy IPNs was also successfully performed even
upon irradiation at 455 nm or at 530 nm. Interestingly, all copper complexes containing the 1,1′-
bis(diphenylphosphino)ferrocene ligand were not photoluminescent, evidencing that ferrocene could
efficiently quench the photoluminescence properties of copper complexes. Besides, these ferrocene-
based complexes were capable of efficiently initiating free radical polymerization processes. The
ferrocene moiety introduced in the different copper complexes affected neither their panchromatic
behaviors nor their abilities to initiate free radical polymerizations.

Keywords: copper complex; ferrocene; photopolymerization; visible light; photoinitiators; free
radical polymerization; heteroleptic complexes

1. Introduction

Photopolymerization or polymerization initiated through light exposure is a process
widely used industrially. Various applications such as adhesives, dentistry [1], medicine,
coatings [2], composites [3], laser writing and 3D printing [4] are already based on this
process. However, a major drawback of industrial applications of photopolymerization
is the use of UV light which is a source of safety concerns [5]. Moreover, due to the easy
availability of affordable, compact, lightweight and safe visible irradiation light sources,
such as light-emitting diodes (LEDs), the development of photoinitiating systems activable
under visible light and low light intensities has become a highly active research field.

Over the past decades, few photoinitiating systems capable of initiating both the free
radical polymerization of acrylates and the cationic polymerization of epoxides have been
developed [3,6–10]. Among them, a copper complex named G1 (Scheme 1) was developed
as a highly efficient photoinitiator for free radical and cationic polymerization under visible
LED irradiation [3,11–13]. Photoinitiating systems based on G1 can produce reactive
species (radicals and cations) following a catalytic cycle through successive reactions.
Considering the efficiency of the photocatalyst G1, other copper complexes, with similar
behavior, are still developed with the aim of concomitantly initiating both radical and
cationic polymerizations.

However, as exemplified with G1, most of the copper complexes that have been
designed to date as photoinitiators of polymerization were mainly designed for being
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activated with irradiation wavelengths below 450 nm. These wavelengths are still very
energetic as they range close to the ultraviolet spectrum. Working with higher irradiation
wavelengths could be highly beneficial since this involves milder experimental conditions,
safer systems and less energetic irradiation sources. Especially, by working at longer
wavelengths, a better light penetration can also be expected. To this end, commercial
irradiation sources already exist for wavelengths around 532 nm [11,14].
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mino)benzoate (EDB) was investigated and compared to the highly efficient system 
G1/Iod/EDB, which was used as a reference in this work [18,19]. Photoinitiating abilities 
of the ferrocene-containing copper complexes were compared to that of their ferrocene-
free analogues. 

2. Materials and Methods 
2.1. Chemical Compounds 

All reagents and solvents were purchased from Aldrich (St. Louis, MO, USA) or Alfa 
Aesar (Tewksbury, MA, USA) and used as received without further purification. Mass 
spectroscopy was performed by the Spectropole of Aix-Marseille University. ESI mass 
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In this work, two strategies were investigated to design panchromatic copper com-
plexes which absorbed light above 450 nm: (i) modification of the electron donating
substituent attached to the phenanthroline ligand and used as proligand for the design of
heteroleptic copper (I) complexes inspired by complex G1; (ii) introduction of a ferrocenyl
group in the bulky phosphorylated ligand, namely 1,1′-bis(diphenylphosphino)ferrocene
ligand, also used for the design of heteroleptic copper (I) complexes. Eleven copper com-
plexes were designed, synthesized and investigated as visible light photoinitiators of poly-
merization. Among this series of copper complexes, only one complex, i.e., Cu3BF4 was
previously reported in the literature. However, if the structure is known, this complex has
never been used in photopolymerization prior to this work [15–17]. The different copper
complexes were investigated as photoinitiators of polymerization upon irradiation with vis-
ible light-emitting diodes (LEDs) for the free radical polymerization of acrylates, the cationic
polymerization of epoxides and the formation of interpenetrated polymer networks (IPN).
The efficiency of the three-component photoinitiating systems based on these panchromatic
copper complexes, an iodonium salt (Iod) and ethyl 4-(dimethylamino)benzoate (EDB) was
investigated and compared to the highly efficient system G1/Iod/EDB, which was used as
a reference in this work [18,19]. Photoinitiating abilities of the ferrocene-containing copper
complexes were compared to that of their ferrocene-free analogues.

2. Materials and Methods
2.1. Chemical Compounds

All reagents and solvents were purchased from Aldrich (St. Louis, MO, USA) or Alfa
Aesar (Tewksbury, MA, USA) and used as received without further purification. Mass
spectroscopy was performed by the Spectropole of Aix-Marseille University. ESI mass
spectral analyses were recorded with a 3200 QTRAP (Applied Biosystems SCIEX, Waltham,
MA, USA) mass spectrometer. The HRMS mass spectral analysis was performed with
a QStar Elite (Applied Biosystems SCIEX) mass spectrometer. Elemental analyses were
recorded with a Thermo Finnigan EA 1112 elemental analysis apparatus driven by the Eager
300 software. 1H- and 13C-NMR spectra were determined at room temperature in 5 mm
o.d. tubes on a Bruker Avance 400 spectrometer of the Spectropole: 1H (400 MHz) and 13C
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(100 MHz). The 1H chemical shifts were referenced to the solvent peaks DMSO (2.49 ppm),
CDCl3 (7.26 ppm) and the 13C chemical shifts were referenced to the solvent peak DMSO
(49.5 ppm), CDCl3 (77.0 ppm). All photoinitiators were prepared with analytical purity up
to accepted standards for new organic compounds (>98%); this was checked by high field
NMR analysis. 2,9-Diphenyl-1,10-phenanthroline [20], 2,9-dibutyl-1,10-phenanthroline [21],
2-tert-butyl-1,10-phenanthroline [22] and complex G1 [3] were synthesized as previously
reported in the literature, without modification and in similar yields.

2.1.1. Compounds Used as Photoinitiators

The copper complex G1 was synthesized according to the procedure reported in [9].
The new copper complexes Cu1BF4, Cu1PF6, Cu2BF4 and Cu2PF6, inspired by G1 and
presented in Scheme 1, were synthesized according to the procedure depicted below. All
complexes were obtained in a one-step synthesis, by first complexing the phosphine-
derived ligand with copper (I), followed by the introduction of the ancillary ligand. All
complexes were isolated as solids (See Scheme 2).
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Scheme 2. Synthetic routes to Cu1-Cu6.BF4, Cu1-Cu5.PF6.

Synthesis of Cu1BF4 (Figure 1). A mixture of [Cu(CH3CN)4]BF4 (310 mg, 1 mmol)
and Xantphos (578 mg, 1 mmol, M = 578.62 g/mol) was dissolved in dichloromethane
(200 mL). The solution was allowed to stir at room temperature for 1h and a solution of
2,9-diphenyl-1,10-phenanthroline (332 mg, 1 mmol, M = 332.41 g/mol) in DCM (20 mL)
was added in one portion. The resulting solution was stirred overnight. The solution was
concentrated under reduced pressure so that its volume could be reduced to ca. 5 mL.
Diethyl ether was added into the resulting solution, affording red crystals of the complex
(934 mg, 88% yield). 1H-NMR (400 MHz, CDCl3) δ(ppm): 1.67 (s, 3H), 2.19 (s, 3H), 6.54 (s,
6H), 6.51–6.60 (m, 6H), 6.70–6.96 (m, 10H), 7.02–7.12 (m, 6H), 7.38 (dd, 4H, J = 17.6, 7.2 Hz),
7.59 (d, 2H, J = 7.5 Hz), 8.10–8.30 (m, 4H), 8.55 (d, 4H, J = 7.5 Hz); 13C-NMR (101 MHz,
CDCl3) δ(ppm): 26.23, 32.86, 122.28, 122.83, 124.45, 124.83, 125.10, 125.35, 126.39, 126.60,
126.67, 126.74, 126.81, 127.36, 127.61, 127.86, 128.22, 129.31, 130.88, 130.98, 131.09, 135.34,
150.99, 151.92; 19F-NMR (CDCl3) δ: −153.9; 31P-NMR (CDCl3) δ: −14.43; HRMS (ESI MS)
m/z: theor: 1060.2567 found: 1060.2565 (M+ detected).
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Figure 1. Chemical structure of Cu1BF4.

Synthesis of Cu1PF6 (Figure 2). A mixture of [Cu(CH3CN)4]PF6 (372 mg, 1 mmol,
M = 372.72 g/mol) and Xantphos (578 mg, 1 mmol, M = 578.62 g/mol) was dissolved in
dichloromethane (200 mL). The solution was allowed to stir at room temperature for 1 h
and a solution of 2,9-diphenyl-1,10-phenanthroline (332 mg, 1 mmol, M = 332.41 g/mol)
in dichloromethane (50 mL) was added in one portion. The resulting solution was stirred
overnight. The solution was concentrated under reduced pressure so that its volume could
be reduced to ca. 5 mL. Diethyl ether was added into the resulting solution, affording red
crystals of the complex (929 mg, 83% yield). 1H-NMR (400 MHz, CDCl3) δ(ppm): 1.67 (s,
3H), 2.19 (s, 3H), 6.54 (s, 6H), 6.51–6.60 (m, 6H), 6.70–6.96 (m, 10H), 7.02–7.12 (m, 6H), 7.38
(dd, 4H, J = 17.6, 7.2 Hz), 7.59 (d, 2H, J = 7.5 Hz), 8.10–8.30 (m, 4H), 8.55 (d, J = 7.5 Hz,
4H); 13C-NMR (101 MHz, CDCl3) δ(ppm): 26.3, 35.2, 124.6, 126.7, 127.2, 127.4, 128.1, 129.0,
129.8, 130.4, 131.6, 133.4, 137.6, 153.3; 19F-NMR (CDCl3) δ: −72.3, −74.8; 31P-NMR (CDCl3)
δ: −15.3, −144.2 (qt, J = 287 Hz); HRMS (ESI MS) m/z: theor: 1060.2567 found: 1060.2562
(M+.detected).
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Figure 2. Chemical structure of Cu1PF6.

Synthesis of Cu2BF4 (Figure 3). A mixture of [Cu(CH3CN)4]BF4 (310 mg, 1 mmol) and
bis[2-(diphenylphosphino)phenyl]ether (540 mg, 1 mmol) in 200 mL of dichloromethane
was stirred at 25 ◦C for 2 h and then treated with a solution of 2,9-diphenyl-1,10-
phenanthroline (332 mg, 1 mmol, M = 332.41 g/mol) in dichloromethane (50 mL). The
resulting solution was stirred overnight. The solution was concentrated under reduced
pressure so that its volume could be reduced to ca. 5 mL. Diethyl ether was added into
the resulting solution, affording red crystals of the complex (908 mg, 89% yield). 1H-
NMR (400 MHz, CDCl3) δ(ppm): 6.47–6.65 (m, 6H), 6.78–6.80 (m, 10H), 6.95–7.10 (m,
10H), 7.12–7.18 (m, 2H), 7.20–7.50 (m, 12H), 8.13 (s, 2H), 8.58 (d, 2H, J = 8.1 Hz); 13C-
NMR (101 MHz, CDCl3) δ(ppm): 119.2, 119.7, 124.7, 126.6, 127.1, 127.5, 128.0, 128.7, 128.8,
129.0, 129.9, 130.3, 130.7, 132.0, 133.5, 134.2, 137.5, 138.7, 156.5, 158.1; 19F-NMR (CDCl3) δ:
−154.0; 31 -NMR (CDCl3) δ: −13.7; HRMS (ESI MS) m/z: theor: 933.2219 found: 933.2221
(M+.detected).
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Synthesis of Cu2PF6 (Figure 4). A mixture of [Cu(CH3CN)4]PF6 (372 mg, 1 mmol,
M = 372.72 g/mol) and bis[2-(diphenylphosphino)phenyl]ether (540 mg, 1 mmol) in
dichloromethane (200 mL) was stirred at 25 ◦C for 2 h and then treated with a solution of
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2,9-diphenyl-1,10-phenanthroline (332 mg, 1 mmol, M = 332.41 g/mol) in dichloromethane
(50 mL). The resulting solution was stirred overnight. The solution was concentrated under
reduced pressure so that its volume could be reduced to ca. 5 mL. Diethyl ether was
added into the resulting solution, affording red crystals of the complex (1 g, 93% yield).
1H-NMR (400 MHz, CDCl3) δ(ppm): 6.47–6.65 (m, 6H), 6.78–6.80 (m, 10H), 6.95–7.10 (m,
10H), 7.12–7.18 (m, 2H), 7.20–7.50 (m, 12H), 8.13 (s, 2H), 8.58 (d, 2H, J = 8.1 Hz); 13C-NMR
(101 MHz, CDCl3) δ(ppm): 119.2, 119.7, 124.7, 126.6, 127.1, 127.5, 128.0, 128.7, 128.8, 129.0,
129.9, 130.3, 130.7, 132.0, 133.5, 134.2, 137.5, 138.7, 156.5, 158.1; 19F-NMR (CDCl3) δ: −72.3,
−74.9; 31P-NMR (CDCl3) δ: −13.7, −144.2 (qt, J = 287 Hz); HRMS (ESI MS) m/z: theor:
933.2219 found: 933.2220 (M+.detected).

Photochem 2021, 1, FOR PEER REVIEW 5 
 

 

into the resulting solution, affording red crystals of the complex (1 g, 93% yield). 1H-NMR 
(400 MHz, CDCl3) δ(ppm): 6.47–6.65 (m, 6H), 6.78–6.80 (m, 10H), 6.95–7.10 (m, 10H), 7.12–
7.18 (m, 2H), 7.20–7.50 (m, 12H), 8.13 (s, 2H), 8.58 (d, 2H, J = 8.1 Hz); 13C-NMR (101 MHz, 
CDCl3) δ(ppm): 119.2, 119.7, 124.7, 126.6, 127.1, 127.5, 128.0, 128.7, 128.8, 129.0, 129.9, 130.3, 
130.7, 132.0, 133.5, 134.2, 137.5, 138.7, 156.5, 158.1; 19F-NMR (CDCl3) δ: −72.3, −74.9; 31P-
NMR (CDCl3) δ: −13.7, −144.2 (qt, J = 287 Hz); HRMS (ESI MS) m/z: theor: 933.2219 found: 
933.2220 (M+.detected). 

 
Figure 4. Chemical structure of Cu2PF6. 

The investigated copper complexes Cu3BF4, Cu3PF6, Cu4BF4, Cu4PF6, Cu5BF4, 
Cu5PF6, and Cu6, presented in Scheme 3 were synthesized according to the procedure 
depicted below. 

 
Scheme 3. Investigated copper complexes with ferrocene derivative ligand: Cu3BF4, Cu3PF6, 
Cu4BF4, Cu4PF6, Cu5BF4, Cu5PF6 and Cu6BF4. 

Synthesis of Cu3BF4 (Figure 5). A mixture of tetrakis(acetonitrile)copper(I) tetra-
fluoroborate (314 mg, 1.0 mmol, M = 314.56 g/mol) and 1,1′-bis(diphenylphosphino)ferro-
cene (555 mg, 1.0 mmol, M = 554.39 g/mol) in dichloromethane (200 mL) was stirred at 25 
°C for 2 h and then treated with a solution of neocuproine (208 mg, 1.0 mmol, M = 208.26 
g/mol) in dichloromethane (50 mL). The resulting solution was stirred overnight. The so-
lution was concentrated under reduced pressure so that its volume could be reduced to 
ca. 5 mL. Diethyl ether was added into the resulting solution, affording red crystals of the 
complex (895 mg, 98% yield). 1H-NMR (400 MHz, CDCl3) δ(ppm): 2.46 (s, 6H), 4.77 (s, 4H), 
4.88 (s, 4H), 7.18–28 (m, 8H), 7.35–7.47 (m, 12H), 7.69 (d, 2H, J = 7.1 Hz), 8.19 (s, 2H), 8.62 
(d, 2H, J = 7.3 Hz); 13C-NMR (101 MHz, CDCl3) δ(ppm): 27.6, 72.8 (t, J = 2.4 Hz), 74.5 (t, J = 

Figure 4. Chemical structure of Cu2PF6.

The investigated copper complexes Cu3BF4, Cu3PF6, Cu4BF4, Cu4PF6, Cu5BF4,
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depicted below.
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Scheme 3. Investigated copper complexes with ferrocene derivative ligand: Cu3BF4, Cu3PF6,
Cu4BF4, Cu4PF6, Cu5BF4, Cu5PF6 and Cu6BF4.

Synthesis of Cu3BF4 (Figure 5). A mixture of tetrakis(acetonitrile)copper(I) tetrafluo-
roborate (314 mg, 1.0 mmol, M = 314.56 g/mol) and 1,1′-bis(diphenylphosphino)ferrocene
(555 mg, 1.0 mmol, M = 554.39 g/mol) in dichloromethane (200 mL) was stirred at 25 ◦C for
2 h and then treated with a solution of neocuproine (208 mg, 1.0 mmol, M = 208.26 g/mol)
in dichloromethane (50 mL). The resulting solution was stirred overnight. The solution
was concentrated under reduced pressure so that its volume could be reduced to ca. 5 mL.
Diethyl ether was added into the resulting solution, affording red crystals of the com-
plex (895 mg, 98% yield). 1H-NMR (400 MHz, CDCl3) δ(ppm): 2.46 (s, 6H), 4.77 (s, 4H),
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4.88 (s, 4H), 7.18–28 (m, 8H), 7.35–7.47 (m, 12H), 7.69 (d, 2H, J = 7.1 Hz), 8.19 (s, 2H),
8.62 (d, 2H, J = 7.3 Hz); 13C-NMR (101 MHz, CDCl3) δ(ppm): 27.6, 72.8 (t, J = 2.4 Hz),
74.5 (t, J = 19.5 Hz), 74.8 (t, J = 5.4 Hz), 125.7, 126.6, 128.2, 128.7 (t, J = 4.5 Hz), 130.1,
132.2 (t, J = 7.5 Hz), 133.8 (t, J = 14.9 Hz), 138.4, 142.9, 159.4; HRMS (ESI MS) m/z: theor:
825.1307 found: 825.1309 (M+.detected). Analyses are consistent with those reported in the
literature [15,17].
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Synthesis of Cu3PF6 (Figure 6). A mixture of tetrakis(acetonitrile)copper(I) hexafluorophos-
phate (372 mg, 1.0 mmol, M = 372.72 g/mol) and 1,1′-bis(diphenylphosphino)ferrocene (555 mg,
1.0 mmol, M = 554.39 g/mol) in 200 mL of dichloromethane was stirred at 25 ◦C for 2 h
and then treated with a solution of neocuproine (208 mg, 1.0 mmol, M = 208.26 g/mol)
in 50 mL of dichloromethane. The resulting solution was stirred overnight. The solution
was concentrated under reduced pressure so that its volume could be reduced to ca. 5 mL.
Diethyl ether was added into the resulting solution, affording red crystals of the complex
(932 mg, 96% yield). 1H-NMR (400 MHz, CDCl3) δ(ppm): 2.45 (s, 6H), 4.77 (s, 4H), 4.88
(s, 4H), 7.18–28 (m, 8H), 7.35–7.47 (m, 12H), 7.69 (d, 2H, J = 8.2 Hz), 8.22 (s, 2H), 8.65
(d, 2H, J = 8.2 Hz); 13C-NMR (101 MHz, CDCl3) δ(ppm): 27.6, 72.8 (t, J = 2.4 Hz), 74.5 (t,
J = 19.5 Hz), 74.8 (t, J = 5.4 Hz), 125.7, 126.6, 128.2, 128.7 (t, J = 4.5 Hz), 130.1, 132.2 (t,
J = 7.5 Hz), 133.8 (t, J = 14.9 Hz), 138.4, 142.9, 159.4; HRMS (ESI MS) m/z: theor: 825.1307
found: 825.1310 (M+.detected).
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M = 292.42 g/mol) in dichloromethane (50 mL). The resulting solution was stirred overnight.
The solution was concentrated under reduced pressure so that its volume could be reduced
to ca. 5 mL. Diethyl ether was added into the resulting solution, affording red crystals
of the complex (907 mg, 91% yield). 1H-NMR (400 MHz, CDCl3) δ(ppm): 0.71 (t, 6H,
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M = 292.42 g/mol) in dichloromethane (50 mL). The resulting solution was stirred overnight.
The solution was concentrated under reduced pressure so that its volume could be reduced
to ca. 5 mL. Diethyl ether was added into the resulting solution, affording red crystals
of the complex (929 mg, 88% yield). 1H-NMR (400 MHz, CDCl3) δ(ppm): 0.70 (t, 6H,
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found: 909.2244 (M+ detected).
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Synthesis of Cu5BF4 (Figure 9). A mixture of [Cu(CH3CN)4]BF4 (310 mg, 1 mmol) and
1,1′-bis(diphenylphosphino)ferrocene (555 mg, 1 mmol, M = 554.39 g/mol) in dichloromethane
(200 mL) was stirred at 25 ◦C for 2 h and then treated with a solution of 2,9-diphenyl-1,10-
phenanthroline (332 mg, 1 mmol, M = 332.41 g/mol) in dichloromethane (50 mL). The
resulting solution was stirred overnight. The solution was concentrated under reduced
pressure so that its volume could be reduced to ca. 5 mL. Diethyl ether was added into
the resulting solution, affording red crystals of the complex (964 mg, 93% yield). 1H-NMR
(400 MHz, CDCl3) δ(ppm): 4.19 (s, 4H), 4.40 (s, 4H), 6.53 (t, 4H, J = 7.4 Hz), 6.80 (t, 2H,
J = 7.2 Hz), 7.23–7.32 (m, 20H), 7.39 (d, 4H, J = 7.3 Hz), 7.87 (d, 2H, J = 9.2 Hz), 8.04 (s, 2H),
8.54 (d, 2H, J = 8.1 Hz); 13C-NMR (101 MHz, CDCl3) δ(ppm): 73.0 (brs), 74.2 (brs), 124.7,
126.6, 127.2, 128.3, 128.8 (brs), 130.9 (brs), 133.4 (brs), 137.6, 138.8, 143.4, 156.6; 19F-NMR
(CDCl3) δ: −153.3; 31P-NMR (CDCl3) δ: −8.88; HRMS (ESI MS) m/z: theor: 979.2089 found:
979.2088 (M+ detected).
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Synthesis of Cu5PF6 (Figure 10). A mixture of [Cu(CH3CN)4]PF6 (372 mg, 1 mmol,
M = 372.72 g/mol) and 1,1′-bis(diphenylphosphino)ferrocene (555 mg, 1 mmol, M = 554.39 g/mol)
in dichloromethane (200 mL) was stirred at 25 ◦C for 2 h and then treated with a solution of
2,9-diphenyl-1,10-phenanthroline (332 mg, 1 mmol, M = 332.41 g/mol) in dichloromethane
(50 mL). This reaction mixture was stirred for 48 h at room temperature. The resulting
solution was stirred overnight. The solution was concentrated under reduced pressure so
that its volume could be reduced to ca. 5 mL. Diethyl ether was added into the resulting
solution, affording red crystals of the complex. 1H-NMR (400 MHz, CDCl3) δ(ppm): 4.01
(s, 4H), 4.25 (s, 4H), 6.53 (t, 4H, J = 7.4 Hz), 6.80 (t, 2H, J = 7.2 Hz), 7.23–7.32 (m, 20H), 7.39
(d, 4H, J = 7.3 Hz), 7.87 (d, 2H, J = 9.2 Hz), 8.02 (s, 2H), 8.51 (d, 2H, J = 8.1 Hz); 13C-NMR
(101 MHz, CDCl3) δ(ppm): 73.0 (brs), 74.1 (brs), 124.7, 126.6, 127.2, 127.6, 128.3, 128.8, 129.0
(brs), 130.8 (brs), 133.3 (brs), 137.5, 138.8, 143.4, 156.7; 19F-NMR (CDCl3) δ: −72.0, −74.5;
31P-NMR (CDCl3) δ: −9.39, −144.1 (qt, J = 287.4 Hz); HRMS (ESI MS) m/z: theor: 979.2089
found: 979.2083 (M+ detected).
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1,1′-bis(diphenylphosphino)ferrocene (555 mg, 1 mmol, M = 554.39 g/mol) in dichloromethane
(200 mL) was stirred at 25 ◦C for 2 h and then treated with a solution of 2-(tert-butyl)-
1,10-phenanthroline (236 mg, 1 mmol, M = 236.32 g/mol) in dichloromethane (50 mL).
This reaction mixture was stirred for 48 h at room temperature. The solvent was removed
under reduced pressure. The residue was dissolved in a minimum of dichloromethane
and addition of pentane precipitated the expected complex, that was filtered off, washed
several times with pentane and dried under vacuum. 1H-NMR (400 MHz, CDCl3) δ(ppm):
1.22 (s, 9H), 4.34 (s, 4H), 4.55 (s, 4H), 6.90 (brs, 8H), 7.07 (t, 8H, J = 7.5 Hz), 7.24 (t, 4H,
J = 7.3 Hz), 7.65 (dd, J = 8.1, 4.8 Hz, 1H), 7.89 (d, 1H, J = 8.6 Hz), 7.94 (d, 1H, J = 8.8 Hz), 8.04
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2.1.2. Other Chemical Compounds

Bis-(4-tert-butylphenyl)iodonium hexafluorophosphate (Iod; SpeedCure 938), ethyl
4-(dimethylamino)benzoate (EDB; SpeedCure EDB) were obtained from Lambson Ltd.
(UK). Trimethylolpropane triacrylate (TMPTA) and (3,4-epoxycyclohexane)methyl-3,4-
epoxycyclohexylcarboxylate (EPOX; Uvacure 1500) were obtained from Allnex and used as
benchmark monomers for radical and cationic photopolymerization, respectively (Scheme 4).
Dichloromethane (DCM, purity ≥ 99%) and acetonitrile were used as solvents.
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2.2. UV-Visible Absorption Spectroscopy

UV-visible absorption spectra were acquired in either DCM or acetonitrile in a quartz
cell at room temperature using a Jasco V-750 spectrophotometer. The molar extinction
coefficients were determined using the Beer–Lambert law with experimental data obtained
on solutions of known concentrations.

2.3. Steady-State Fluorescence

Fluorescence spectra were acquired in a quartz cell at room temperature using a
JASCO® FP-750 spectrofluorometer. Excitation and emission spectra were recorded in
DCM in a quartz cell.

2.4. Photopolymerization Kinetics (FTIR)

Experimental conditions for each photosensitive formulation are given in the captions
of the figures. The weight percent of the photoinitiating system is calculated from the
monomer content. Photoinitiator concentrations in each photosensitive formulation were
chosen to ensure the same light absorption at 405 nm. For the investigated concentrations
(see Figure captions), no solubility issues were noticed.

All polymerizations were performed at ambient temperature (21–25 ◦C) and irradi-
ation was started at t = 10 s. Two LEDs, with an intensity around 50 mW·cm−2 at the
sample position, were used for the photopolymerization experiments: a LED@405 nm
(M405L3—Thorlabs, Newton, NJ, USA) centerred at 405 nm and a LED@455 nm
(M455L3—Thorlabs) centerred at 452 nm. A LED, with an intensity around 11 mW·cm−2

at the sample position, was used for the photopolymerization experiments: a LED@530 nm
(M530L3—Thorlabs) centerred at 530 nm. The emission spectrum is already available in
the literature [23].

A Jasco 4100 real-time Fourier transform infrared spectrometer (RT-FTIR) was used to
follow the conversion of the acrylate functions of the TMPTA and of the epoxide group
of EPOX. The photocurable formulations were deposited on a polypropylene film inside
a 1.4 mm-thick mold under air. Evolutions of the C=C double bond band and the epox-
ide group band were continuously followed from 6117 to 6221 cm−1 and from 3710 to
3799 cm−1, respectively.

3. Results and Discussion
3.1. Copper Complexes Structures Inspired by Copper Complex G1
3.1.1. Light Absorption Properties of the Studied Photoinitiators

The ground state absorption spectra of Cu1BF4, Cu1PF6, Cu2BF4, Cu2PF6 and G1
in dichloromethane are presented in Figure 12. These compounds are characterized by
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a broad and strong absorption band in the near UV spectral region (350–400 nm) which
extends up to 450 nm for G1 and up to 650 nm for the others. Absorption maxima (λmax)
and the molar extinction coefficients (ε) for λmax and at the nominal wavelength of the
used LEDs (405 nm, 455 nm and 530 nm) are gathered in Table 1. For the five photoini-
tiators, the absorption maxima ensure a good overlap with the emission spectrum of the
violet LED (centered at 405 nm) used in this work. The new copper complexes Cu1BF4,
Cu1PF6, Cu2BF4 and Cu2PF6 are characterized by rather similar absorption properties
to that determined for the copper complex G1 which is used as a reference compound
(λ405nm = 1.0 × 103, 1.1× 103, 1.1× 103, 1.2× 103 and 1.9× 103 L mol−1 cm−1, respectively).
Interestingly, an increase in the conjugation length of the phenanthroline ligand could
red-shift the absorptions of the four new copper complexes which seem compatible for
use at higher wavelengths (λ455nm = 1.2 × 103, 1.3× 103, 1.2× 103 and 1.3× 103 L mol−1

cm−1, respectively; λ530nm = 6.9 × 102, 7.4× 102, 6.6× 102 and 7.3 × 102 L mol−1 cm−1,
respectively).
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Figure 12. UV-visible absorption spectra of (a) Cu1BF4, (b) Cu1PF6, (c) Cu2BF4, (d) Cu2PF6 and (e)
G1 in dichloromethane.

Table 1. Maximum absorption wavelengths λmax, extinction coefficients at λmax and at the nominal emission wavelength of
the LEDs (405nm, 455nm and 530nm) for Cu1BF4, Cu1PF6, Cu2BF4, Cu2PF6 and G1.

Compound λmax (nm) ελmax (L mol−1 cm−1) ε405nm (L mol−1 cm−1) ε455nm (L mol−1 cm−1) ε530nm (L mol−1 cm−1)

Cu1BF4 438 1.3 × 103 1.0 × 103 1.2 × 103 6.9 × 102

Cu1PF6 438 1.4 × 103 1.1 × 103 1.3 × 103 7.4 × 102

Cu2BF4 438 1.3 × 103 1.1 × 103 1.2 × 103 6.6 × 102

Cu2PF6 438 1.4 × 103 1.2 × 103 1.3 × 103 7.3 × 102

G1 380 2.8 × 103 1.9 × 103 7.4 × 101 7.0 × 100

3.1.2. Luminescence Experiments and Reaction Pathway

To assess the properties of the excited states of the investigated copper complexes,
steady state fluorescence analyses were carried out. Unfortunately, as presented in Figure 13
with the emission spectra of Cu1PF6 and Cu2PF6 in dichloromethane, a degradation of
the copper complexes was observed after several minutes of analysis under irradiation.
This possible photolysis of the copper complexes induces a permanent modification of the
excited states and, thus, the photoluminescence properties. These facts are in line with
the results reported by Korn et al. [24], which demonstrated the presence of an equilib-
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rium in solution between the heteroleptic and the homoleptic copper complexes through
ligand exchange.
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(curve b) after photolysis λexc (A) [Cu1PF6] = 4.8× 10−5 mol L−1 (B) [Cu2PF6] = 5.3× 10−5 mol L−1.

Due to the similarity of structures of the four new copper complexes with that of
the benchmark photoinitiator G1, a similar photoredox catalytic cycle can be considered.
As depicted in Scheme 5, this catalytic cycle is based on three species: the photoinitiator
G1, the iodonium salt Ar2I+ and the amine EDB. Upon irradiation, the copper complex
G1 is excited and reacts with the iodonium salt to generate, via electron transfer reaction,
radicals and Cu (II) complex noted G1+. A reaction of the generated radicals with EDB
induces the formation of EDB·(-H) which after reaction with G1+ leads simultaneously to
the regeneration of copper complex G1 and the generation of cation EDB+

(-H) capable of
initiating cationic polymerization.

Photochem 2021, 1, FOR PEER REVIEW 11 
 

 

solution between the heteroleptic and the homoleptic copper complexes through ligand 
exchange. 

Due to the similarity of structures of the four new copper complexes with that of the 
benchmark photoinitiator G1, a similar photoredox catalytic cycle can be considered. As 
depicted in Scheme 5, this catalytic cycle is based on three species: the photoinitiator G1, 
the iodonium salt Ar2I+ and the amine EDB. Upon irradiation, the copper complex G1 is 
excited and reacts with the iodonium salt to generate, via electron transfer reaction, radi-
cals and Cu (II) complex noted G1+. A reaction of the generated radicals with EDB induces 
the formation of EDB(-H) which after reaction with G1+ leads simultaneously to the regen-
eration of copper complex G1 and the generation of cation EDB+(-H) capable of initiating 
cationic polymerization. 

 
Figure 13. Photoluminescence spectra in dichloromethane under air (curve a) before photolysis, 
(curve b) after photolysis λexc (A) [Cu1PF6] = 4.8 × 10−5 mol L−1 (B) [Cu2PF6] = 5.3 × 10−5 mol L−1. 

 
Scheme 5. Photoredox catalytic cycle for the three-component system G1/Iod/EDB—adapted from 
[3,25]. 

3.1.3. Experimental Approach for the Concomitant Initiation of the Free Radical and Cat-
ionic Polymerization 

In this polymerization part and for the sake of direct comparison, the photoinitiator 
concentrations in each photosensitive formulation were chosen to ensure the same light 
absorption at 405 nm. 

Free Radical Polymerization 
The free radical polymerization of TMPTA in the presence of Cu1BF4/Iod/EDB, 

Cu1PF6/Iod/EDB, Cu2BF4/Iod/EDB or Cu2PF6/Iod/EDB was performed under air using a 

Scheme 5. Photoredox catalytic cycle for the three-component system G1/Iod/EDB—adapted
from [3,25].

3.1.3. Experimental Approach for the Concomitant Initiation of the Free Radical and
Cationic Polymerization

In this polymerization part and for the sake of direct comparison, the photoinitiator
concentrations in each photosensitive formulation were chosen to ensure the same light
absorption at 405 nm.
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Free Radical Polymerization

The free radical polymerization of TMPTA in the presence of Cu1BF4/Iod/EDB,
Cu1PF6/Iod/EDB, Cu2BF4/Iod/EDB or Cu2PF6/Iod/EDB was performed under air us-
ing a LED emitting at 405 nm. To fully characterize the performance of the new copper
complexes, two photoinitiating systems were used as standards: (i) the three-component
system G1/Iod/EDB was used as a reference system to illustrate the performance of one
of the best copper complexes ever reported to date as a photoinitiator of polymerization;
and (ii) the two-component system Iod/EDB was also used as a standard since the N-
aromatic amine EDB can form a charge transfer complex with the iodonium salt (Iod) and
produce EDB·+ and the radical Ar· capable of initiating polymerizations [26,27]. The con-
centration of the copper complex used as photoinitiator is chosen to ensure the same light
absorption at 405 nm. Photopolymerization profiles of TMTPA are presented in Figure 14.
Among the tested systems, Cu1BF4/Iod/EDB, Cu1PF6/Iod/EDB, Cu2BF4/Iod/EDB,
Cu2PF6/Iod/EDB and G1/Iod/EDB exhibited similar polymerization rates and final C=C
double bond conversions which are higher than those obtained with the reference Iod/EDB
system. Indeed, the reaction with Cu1BF4, Cu1PF6, Cu2BF4, Cu1PF6 or G1 is really fast,
and it ended in less than 50 s with final conversion around 85%, while the charge transfer
complex leads to a final conversion around 65% after 100 s of reaction. Moreover, the
counter ion, either BF4

− or PF6
−, seems not to have an impact on the polymerization

processes. Despite the inhibition of radicals by the oxygen in the medium, the investigated
photoinitiating systems were all able to lead to fully polymerized samples. Therefore,
the four new copper complexes are equivalent to G1 and highly efficient at initiating free
radical polymerizations. For the selected conditions, the developed systems are able to
overcome the oxygen inhibition.
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Cu1PF6/Iod/EDB, Cu2BF4/Iod/EDB or Cu2PF6/Iod/EDB was performed under air using a 
LED centered at 405 nm. Similar to that carried out for the free radical polymerization 
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Figure 14. Polymerization profiles (acrylate function conversion vs. irradiation time) of TMPTA upon
irradiation with a LED at 405 nm, under air, sample thickness = 1.4 mm; the irradiation starts at 10 s,
50 mW cm−2. Photoinitiating systems: (curve a) Cu1BF4/Iod/EDB (0.72/2.0/2.0 w/w/w%), (curve
b) Cu1PF6/Iod/EDB (0.69/2.0/2.0 w/w/w%), (curve c) Cu2BF4/Iod/EDB (0.62/2.0/2.0 w/w/w%),
(curve d) Cu2PF6/Iod/EDB (0.63/2.0/2.0 w/w/w%), (curve e) G1/Iod/EDB (0.33/2.0/2.0 w/w/w%)
and (curve f) Iod/EDB (2.0/2.0 w/w%).

Cationic Polymerization

The cationic polymerization of EPOX in the presence of Cu1BF4/Iod/EDB, Cu1PF6/Iod/
EDB, Cu2BF4/Iod/EDB or Cu2PF6/Iod/EDB was performed under air using a LED centered
at 405 nm. Similar to that carried out for the free radical polymerization experiments, two
photoinitiating systems were used as standards: the three-component G1/Iod/EDB system
and the two-component Iod/EDB system. Photopolymerization profiles of EPOX are
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presented in Figure 15. Among the tested systems, Cu1BF4/Iod/EDB, Cu1PF6/Iod/EDB,
Cu2BF4/Iod/EDB and Cu2PF6/Iod/EDB are slightly less efficient than the three-component
G1/Iod/EDB system but better than the standard two-component Iod/EDB system. In-
deed, their polymerization rates and final epoxy group conversions are lower than those
obtained for the efficient reference G1/Iod/EDB system but higher than those for the
Iod/EDB system. However, the four new copper complexes are still capable of initiating
the cationic polymerization.
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Interpenetrated Polymer Networks Synthesis

Interpenetrated polymer networks (IPNs) can be synthesized by initiating concomi-
tantly a free radical and a cationic polymerization in order to obtain two chemically
different interlaced polymer networks which are not covalently bonded. This reaction
could be carried out in one pot by using a photoinitiating system capable of initiating
both polymerization in a blend of TMPTA and EPOX (50/50 w/w%), e.g., for a G1-based
photoinitiating system [9].

The polymerization of a TMPTA/EPOX blend in the presence of Cu1BF4/Iod/EDB,
Cu1PF6/Iod/EDB, Cu2BF4/Iod/EDB or Cu2PF6/Iod/EDB was performed under air us-
ing a LED emitting at 405 nm. Again, two photoinitiating systems were used as standards:
G1/Iod/EDB and Iod/EDB. Photopolymerization profiles of the IPN synthesis are pre-
sented in Figure 16. Among the tested systems, Cu1BF4/Iod/EDB, Cu1PF6/Iod/EDB,
Cu2BF4/Iod/EDB, Cu2PF6/Iod/EDB and G1/Iod/EDB exhibited similar polymerization
rates and final C=C double bond conversions which are higher than those obtained with
the reference Iod/EDB system. Indeed, the formation of the acrylic network with Cu1BF4,
Cu1PF6, Cu2BF4, Cu2PF6 or G1 is fast, and it ended in around 50 s with a final conversion
around 86%, while the Iod/EDB charge transfer complex leads to a final conversion around
70% after 400 s of irradiation. As for the formation of the epoxy network, each tested
three-component photoinitiating system led to a higher final epoxy group conversion than
the efficient reference system G1/Iod/EDB and the control system Iod/EDB. During the
synthesis of IPNs, an increase in the final conversion of both the C=C double bond and the
epoxy group were observed. This improvement could be related to the synergy between
the free radical polymerization and the cationic polymerization during the two networks’
formation. Indeed, under irradiation, the radical polymerization is at first inhibited by
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the oxygen in the medium, while the cationic polymerization starts immediately, which
induces an increase in the medium viscosity limiting the diffusional oxygen replenish-
ment. The cationic monomer also acts as a diluting agent for the radical polymer network
allowing for the achievement of a higher conversion. Indeed, since the formation of the
cationic polymer network is generally slower, the cationic monomer delays the gelation
phenomenon occurring with the formation of the radical polymer network. The exothermic
property of the radical polymerization also tends to boost the cationic polymerization,
which is quite temperature sensitive. Thus, the investigated copper complexes Cu1BF4,
Cu1PF6, Cu2BF4 and Cu2PF6 are capable of initiating simultaneously the cationic and
free radical polymerizations leading to the formation of acrylate/epoxy IPN under visible
light. Moreover, these photoinitiating systems led to better results than the corresponding
system using the highly efficient photoinitiator G1 (higher final conversion).
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Figure 16. Polymerization profiles (A) (acrylate function conversion vs. irradiation time) and
(B) (epoxide function conversion vs. irradiation time) of TMPTA/EPOX blend (50/50 w/w%) upon
irradiation with a LED at 405 nm, under air, sample thickness = 1.4 mm; the irradiation starts at 10 s,
50 mW cm−2. Photoinitiating systems: (curve a) Cu1BF4/Iod/EDB (0.73/2.0/2.0 w/w/w%), (curve b)
Cu1PF6/Iod/EDB (0.70/2.0/2.0 w/w/w%), (curve c) Cu2BF4/Iod/EDB (0.64/2.0/2.0 w/w/w%),
(curve d) Cu2PF6/Iod/EDB (0.64/2.0/2.0 w/w/w%), (curve e) G1/Iod/EDB (0.33/2.0/2.0 w/w/w%)
and (curve f) Iod/EDB (2.0/2.0 w/w%).

Toward Longer Wavelengths

According to the UV-visible absorption spectra of Cu1BF4, Cu1PF6, Cu2BF4 and
Cu2PF6, the formation of acrylate/epoxy IPN using an irradiation wavelength higher than
405 nm seems possible. The polymerization of a TMPTA/EPOX blend (50/50 w/w%) in the
presence of Cu1BF4/Iod/EDB, Cu1PF6/Iod/EDB, Cu2BF4/Iod/EDB or Cu2PF6/Iod/EDB,
was performed under air using a LED centered at 455 nm or a LED centered at 530 nm.
Iod/EDB was used as a standard to ensure that the EDB/Iod charge transfer complex could
not initiate the polymerization under this light. Photopolymerization profiles of the IPN
synthesis at 455 nm are presented in Figure 17.

Among the tested systems, the four tested three-component photoinitiating systems
allowed the formation of acrylate/epoxy IPN at 455 nm. However, performances of the
photoinitiating systems are slightly lower under an irradiation at 455 nm than at 405 nm.
Indeed, the final C=C double bond conversion is around 84%, the final epoxy group
conversion between 35% and 40%. The formation of the acrylate network and the epoxy
network with Cu1BF4, Cu1PF6, Cu2BF4 or Cu2PF6 is also slower around 100 s. The lower
performance of the photoinitiating system could be explained by the decrease in energy of
the irradiation source (LED@455 nm). Moreover, the system EDB/Iod does not initiate any
polymerization due to a lack of absorption for the corresponding charge transfer complex
at this irradiation wavelength. Therefore, the investigated copper complexes could be used
if needed for the polymerization with a LED centered at 455 nm.
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irradiation with a LED at 455 nm, under air, sample thickness = 1.4 mm; the irradiation starts at 10 s,
50 mW cm−2. Photoinitiating systems: (curve a) Cu1BF4/Iod/EDB (0.70/2.0/2.0 w/w/w%), (curve
b) Cu1PF6/Iod/EDB (0.70/2.0/2.0 w/w/w%), (curve c) Cu2BF4/Iod/EDB (0.63/2.0/2.0 w/w/w%),
(curve d) Cu2PF6/Iod/EDB (0.64/2.0/2.0 w/w/w%) and (curve e) Iod/EDB (2.0/2.0 w/w%).

Photopolymerization profiles of the IPN synthesized upon irradiation at 530 nm are
presented in Figure 18. Among all systems, the four tested three-component photoinitiating
systems allowed the formation of acrylate/epoxy IPN at 530 nm. However, performances
of the photoinitiating systems are slightly lower under an irradiation at 530 nm than at 455
or 405 nm. Indeed, the final C=C double bond conversion is around 80%, the final epoxy
group conversion between 22% and 30%. The formation of the acrylate network and the
epoxy network with Cu1BF4, Cu1PF6, Cu2BF4 or Cu2PF6 is also slower around 150 s. The
lower performance of the photoinitiating systems can have two origins: (i) the decrease in
energy of the irradiation source (LED at 530 nm); and (ii) the lower absorption of Cu1BF4,
Cu1PF6, Cu2BF4 or Cu2PF6 at 530 nm compared to 455 or 405 nm. As previously observed
at 455 nm, the system EDB/Iod does not initiate any polymerization under irradiation at
530 nm, once again due to the lack of absorption at this wavelength.
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Figure 18. Polymerization profiles (A) (acrylate function conversion vs. irradiation time) and
(B) (epoxide function conversion vs. irradiation time) of TMPTA/EPOX blend (50/50 w/w%) upon
irradiation with a LED at 530 nm, under air, sample thickness = 1.4 mm; the irradiation starts at 10 s,
11 mW cm−2. Photoinitiating systems: (curve a) Cu1BF4/Iod/EDB (0.70/2.0/2.0 w/w/w%), (curve
b) Cu1PF6/Iod/EDB (0.70/2.0/2.0 w/w/w%), (curve c) Cu2BF4/Iod/EDB (0.63/2.0/2.0 w/w/w%),
(curve d) Cu2PF6/Iod/EDB (0.64/2.0/2.0 w/w/w%) and (curve e) Iod/EDB (2.0/2.0 w/w%).

Therefore, the investigated copper complexes Cu1BF4, Cu1PF6, Cu2BF4 and Cu2PF6
can be used if needed for the polymerization with a LED centered at 455 nm or 530 nm.
Depending on the context of the application, these performances under less harmful irradi-
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ations can be really interesting. Despite this possibility, the commonly used LED centered
at 405 nm was selected for the rest of this work due to the better polymerization profiles.

Effect of the Concentration of Photoinitiators

Photoinitiating systems based on Cu1BF4, Cu1PF6, Cu2BF4 or Cu2PF6 were efficient,
with a relatively high concentration of copper complex (to ensure O.D. = 1, for a 1.4 mm
thickness sample). However, a reduction in the copper complex concentration while
maintaining the performance could be beneficial for considerations such as leaching safety
or cost issues. Moreover, since these formulations do not bleach, a reduction in the copper
complex concentration could reduce the intensity of the reddish orange shade of the
cured polymers.

Photopolymerization of the TMPTA/EPOX blend (50/50 w/w%) was performed under
air using a LED centered at 405 nm, in the presence of the three-component photoinitiating
systems Cu1BF4/Iod/EDB, Cu1PF6/Iod/EDB, Cu2BF4/Iod/EDB or Cu2PF6/Iod/EDB
with different ratios of copper complex. For each photoinitiating system, two concentrations
of copper complex were chosen to ensure O.D. = 1 and O.D. = 0.1. Final conversions for
the epoxy and acrylate functions of the tested blends are given in Table 2. For each system,
decreases in the final C=C double bond conversion and the final epoxy group conversion
were observed while reducing the copper complex concentration. The impact of this
reduction is particularly high on the cationic polymerization, while impacting less the free
radical polymerization. Noticeably, performances could be maintained, even with a 10-fold
reduction in the copper complexes content, tending to confirm our hypothesis on their
reactivities as photocatalysts in a photoredox cycle, such as G1.

Table 2. Final conversions for the epoxy and acrylate functions (in percentage) obtained un-
der air (Figure 1). A 4 mm thickness sample for the photopolymerization of TMPTA/EPOX
blend (50/50 w/w%) for 400 s exposure to a LED at 405 nm in the presence of different
photoinitiating systems.

Photoinitiating System:
Cu/Iod (2 w%)/EDB (2 w%) TMPTA EPOX

Cu1BF4 (0.73 w%) 86% 37%

Cu1BF4 (0.073 w%) 84% 30%

Cu1PF6 (0.70 w%) 86% 51%

Cu1PF6 (0.069 w%) 82% 30%

Cu2BF4 (0.64 w%) 87% 42%

Cu2BF4 (0.063 w%) 80% 28%

Cu2PF6 (0.64 w%) 86% 49%

Cu2PF6 (0.063 w%) 80% 24%

(reference) 70% 19%

3.2. Copper Complexes with a Ferrocene Derivative Ligand

The ground state absorption spectra of the seven copper complexes with a 1,1′-
bis(diphenylphosphino)ferrocene ligand are presented in Figure 19: Cu3BF4, Cu3PF6,
Cu4BF4 and Cu4PF6 in acetonitrile; Cu5BF4, Cu5PF6, and Cu6BF4 in dichloromethane.
These compounds are characterized by a broad and strong absorption band in the near
UV spectral region (350–400 nm) which extends: (i) up to 550 nm for Cu3BF4, Cu3PF6,
Cu4BF4, Cu4PF6 and Cu6BF4; (ii) up to 650 nm for the others. The absorption maxima
(λmax) and the molar extinction coefficients (ε) for λmax and at the nominal wavelength of
the LED (405 nm) are gathered in Table 3. For the seven photoinitiators, the absorption
maxima ensure a good overlap with the emission spectrum of the violet LED (centered
at 405 nm) used in this work. The seven copper complexes are characterized by rather
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similar absorption properties, in particular around 405 nm (ε405 nm range from 1.0× 103 to
1.8× 103 L mol−1 cm−1). Moreover, for Cu3BF4, Cu3PF6, Cu4BF4, Cu4PF6, Cu5BF4 and
Cu5PF6, the lowest energy transition is redshifted, depending on the electron donating
ability of the substituent introduced onto the phenanthroline ligand (Me < Bu < Ph).
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Figure 19. UV-visible absorption spectra of (a) Cu3BF4, (b) Cu3PF6, (c) Cu4BF4, (d) Cu4PF6 in
acetonitrile and (e) Cu5BF4, (f) Cu5PF6 (g) Cu6BF4 in dichloromethane.

Table 3. Maximum absorption wavelengths (λmax), extinction coefficients at λmax and at the nominal
emission wavelength of the LED (405 nm) for Cu3BF4, Cu3PF6, Cu4BF4 and Cu4PF6 in acetonitrile
and for Cu5BF4, Cu5PF6, and Cu6 in dichloromethane.

Compound λmax (nm) ελmax (L mol−1 cm−1) ε405nm (L mol−1 cm−1)

Cu3BF4 380 1.6 × 103 1.3 × 103

Cu3PF6 380 2.1 × 103 1.8 × 103

Cu4BF4 380 1.8 × 103 1.8 × 103

Cu4PF6 380 1.6 × 103 1.5 × 103

Cu5BF4 440 1.6 × 103 1.2 × 103

Cu5PF6 440 1.5 × 103 1.2 × 103

Cu6BF4 380 1.4 × 103 1.0 × 103

To assess the properties of the excited state of the investigated copper complexes,
steady state fluorescence analyses were performed. Interestingly, none of the investi-
gated copper complexes were fluorescent. These facts are in line with the finding of
Armaroli et al. [13] which reported the non-luminescence of copper complexes containing
the 1,1′-bis(diphenylphosphino)ferrocene ligand due to a metal ligand charge transfer
quenching resulting from a photoinduced intramolecular energy transfer to the ferrocene unit.

The free radical polymerization of TMPTA was performed under air using a LED emit-
ting at 405 nm in the presence of Cu3BF4/Iod/EDB, Cu3PF6/Iod/EDB, Cu4BF4/Iod/EDB,
Cu4PF6/Iod/EDB, Cu5BF4/Iod/EDB, Cu5PF6/Iod/EDB or Cu6BF4/Iod/EDB. Again,
two photoinitiating systems were used as standards: G1/Iod/EDB and Iod/EDB. Con-
centration of the different copper complexes was chosen to ensure the same light ab-
sorption at 405 nm. Photopolymerization profiles of TMTPA are presented in Figure 20.
Among the tested systems, Cu3BF4/Iod/EDB, Cu3PF6/Iod/EDB, Cu4BF4/Iod/EDB,
Cu4PF6/Iod/EDB, Cu5BF4/Iod/EDB, Cu5PF6/Iod/EDB and G1/Iod/EDB exhibited
similar polymerization rates and final C=C double bond conversions, which are higher
than those obtained with the reference Iod/EDB system. Indeed, the reaction with Cu3BF4,
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Cu3PF6, Cu4BF4, Cu4PF6, Cu5BF4, Cu5PF6 or G1 was really fast with final conversions
around 80%, while the charge transfer complex Iod/EDB could only lead to a final con-
version around 65% after 150 s of irradiation. As for the three-component Cu6/Iod/EDB
system, the reaction was slower and led to a final conversion around 45% after 400 s. The
counter ion, either BF4

− or PF6
−, seems not to have an impact on the polymerization.

Therefore, Cu3BF4, Cu3PF6, Cu4BF4, Cu4PF6, Cu5BF4 and Cu5PF6 were almost equivalent
to G1 and highly efficient to initiate the free radical polymerization. However, none of the
three-component systems based on these seven copper complexes were able to initiate a
cationic polymerization.
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Figure 20. Polymerization profiles (acrylate function conversion vs. irradiation time) of TMPTA upon
irradiation with a LED at 405 nm, under air, sample thickness = 1.4 mm; the irradiation starts at 10 s,
50 mW cm−2. Photoinitiating systems: (curve a) Cu3BF4/Iod/EDB (0.50/2.0/2.0 w/w/w%), (curve
b) Cu3PF6/Iod/EDB (0.39/2.0/2.0 w/w/w%), (curve c) Cu4BF4/Iod/EDB (0.40/2.0/2.0 w/w/w%),
(curve d) Cu4PF6/Iod/EDB (0.50/2.0/2.0 w/w/w%), (curve e) Cu5BF4/Iod/EDB (0.65/2.0/2.0 w/w/w%),
(curve f) Cu5PF6/Iod/EDB (0.65/2.0/2.0 w/w/w%), (curve g) Cu6BF4/Iod/EDB (0.68/2.0/2.0 w/w/w%),
(curve h) G1/Iod/EDB (0.33/2.0/2.0 w/w/w%) and (curve i) Iod/EDB (2.0/2.0 w/w%).

3.3. Structure/Efficiency Relationship: Role of the Ferrocene Moiety

Using the results obtained above for ferrocene-free compounds vs. ferrocene contain-
ing structures, the effect of the iron moiety can be discussed.

3.3.1. Effect on the Panchromatic Behavior

The ground state absorption spectra in dichloromethane of the copper complex
comprising 1,1′-bis(diphenylphosphino)ferrocene ligand, namely Cu5BF4, and the
corresponding ferrocene-free copper complex, Cu1BF4, are presented in Figure 21. A
slight increase in the molar extinction coefficient could be observed between 400 and
500 nm for Cu5BF4, which can be confidently assigned to the contribution of the 1,1′-
bis(diphenylphosphino)ferrocene ligand. However, the molar extinction coefficients of the
two complexes were in the similar range: at 405nm εCu1BF4 = 1.0× 103 L mol−1 cm−1 and
εCu5BF4 1.2× 103 L mol−1 cm−1. Thus, the introduction of the iron moiety in the copper
complex does not significantly impact the panchromatic behavior.
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3.3.2. Effect on the Polymerization Initiating Ability
Radical Polymerization

The free radical polymerization of TMPTA was performed under air using a LED
emitting at 405 nm in the presence of Cu1BF4/Iod/EDB or Cu5BF4/Iod/EDB. Again,
the photoinitiating system Iod/EDB was used as a standard and the concentration of the
copper complex photoinitiator was chosen to ensure the same light absorption at 405 nm
for all photoinitiating systems. Photopolymerization profiles of TMTPA are presented
in Figure 22. The two systems present similar performances. Notably, the free radical
polymerization exhibited fast kinetics in the two cases and a final conversion around
80% could be determined. Thus, the presence of the 1,1′-bis(diphenylphosphino)ferrocene
ligand in Cu5BF4 does not impact significantly the ability of the system Cu5BF4/Iod/EDB
to generate radicals.

Photochem 2021, 1, FOR PEER REVIEW 20 
 

 

 
Figure 22. Polymerization profiles (acrylate function conversion vs. irradiation time) of TMPTA 
upon irradiation with a LED at 405 nm, under air, sample thickness = 1.4 mm; the irradiation starts 
at 10 s, 50 mW cm−2. Photoinitiating systems: (curve a) Cu1BF4/Iod/EDB (0.73/2.0/2.0 w/w/w%), 
(curve b) Cu5BF4/Iod/EDB (0.64/2.0/2.0 w/w/w%), and (curve c) Iod/EDB (2.0/2.0 w/w%). 

Cationic Polymerization 
The cationic polymerization of EPOX was performed under air using a LED emitting 

at 405 nm in the presence of Cu1BF4/Iod/EDB or Cu5BF4/Iod/EDB. Again, the photoiniti-
ating system Iod/EDB was used as a standard and the concentration of the copper complex 
photoinitiator was chosen to ensure the same light absorption at 405 nm. Photopolymeri-
zation profiles of EPOX are presented in Figure 23. As stated above, the system 
Cu1BF4/Iod/EDB was capable of initiating the cationic polymerization and was slightly 
more efficient than the standard Iod/EDB system. However, the system Cu5BF4/Iod/EDB 
exhibited almost identical polymerization profiles to those of the reference system. The 
presence of the iron moiety seems to negatively impact the photoinitiating ability of this 
system to initiate the cationic polymerization. 

 
Figure 23. Polymerization profiles (epoxide function conversion vs. irradiation time) of EPOX upon 
irradiation with a LED at 405 nm, under air, sample thickness = 1.4 mm; the irradiation starts at 10 

Figure 22. Polymerization profiles (acrylate function conversion vs. irradiation time) of TMPTA
upon irradiation with a LED at 405 nm, under air, sample thickness = 1.4 mm; the irradiation starts at
10 s, 50 mW cm−2. Photoinitiating systems: (curve a) Cu1BF4/Iod/EDB (0.73/2.0/2.0 w/w/w%),
(curve b) Cu5BF4/Iod/EDB (0.64/2.0/2.0 w/w/w%), and (curve c) Iod/EDB (2.0/2.0 w/w%).
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Cationic Polymerization

The cationic polymerization of EPOX was performed under air using a LED emitting
at 405 nm in the presence of Cu1BF4/Iod/EDB or Cu5BF4/Iod/EDB. Again, the pho-
toinitiating system Iod/EDB was used as a standard and the concentration of the copper
complex photoinitiator was chosen to ensure the same light absorption at 405 nm. Pho-
topolymerization profiles of EPOX are presented in Figure 23. As stated above, the system
Cu1BF4/Iod/EDB was capable of initiating the cationic polymerization and was slightly
more efficient than the standard Iod/EDB system. However, the system Cu5BF4/Iod/EDB
exhibited almost identical polymerization profiles to those of the reference system. The
presence of the iron moiety seems to negatively impact the photoinitiating ability of this
system to initiate the cationic polymerization.
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Figure 23. Polymerization profiles (epoxide function conversion vs. irradiation time) of EPOX upon
irradiation with a LED at 405 nm, under air, sample thickness = 1.4 mm; the irradiation starts at 10 s,
50 mW cm−2. Photoinitiating systems: (curve a) Cu1BF4/Iod/EDB (0.73/2.0/2.0 w/w/w%), (curve
b) Cu5BF4/Iod/EDB (0.63/2.0/2.0 w/w/w%), and (curve c) Iod/EDB (2.0/2.0 w/w%).

IPN Synthesis

The polymerization of a TMPTA/EPOX blend in the presence of Cu1BF4/Iod/EDB
or Cu5BF4/Iod/EDB was performed under air using a LED emitting at 405 nm. Again,
the photoinitiating system Iod/EDB was used as a standard and the concentration of
the copper complex photoinitiator was chosen to ensure the same light absorption at
405 nm. Photopolymerization profiles of the IPN synthesis are presented in Figure 24.
The two systems presented similar performances toward the radical polymerization with
a final conversion around 80% but the kinetic with the Cu5BF4/Iod/EDB was slightly
slower. For the cationic polymerization, the system Cu1BF4/Iod/EDB could still lead
to a high monomer conversion but the system Cu5BF4/Iod/EDB exhibited better per-
formances than the standard Iod/EDB system. Thus, the effects of the presence of the
1,1′-bis(diphenylphosphino)ferrocene ligand on the polymerization initiating ability which
were evidenced during the free radical polymerization experiments and the cationic poly-
merization of epoxides are confirmed during the IPN synthesis. However, the detrimental
effect for the cationic polymerization seems to be drastically reduced during the polymer-
ization of the TMPTA/EPOX blend.
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(B) (epoxide function conversion vs. irradiation time) of TMPTA/EPOX blend (50/50 w/w%) upon
irradiation with a LED at 405 nm, under air, sample thickness = 1.4 mm; the irradiation starts at 10 s,
50 mW cm−2. Photoinitiating systems: (curve a) Cu1BF4/Iod/EDB (0.73/2.0/2.0 w/w/w%), (curve
b) Cu5BF4/Iod/EDB (0.65/2.0/2.0 w/w/w%), and (curve c) Iod/EDB (2.0/2.0 w/w%).

4. Conclusions

In the present paper, eleven heteroleptic copper (I) complexes were studied as pho-
toinitiators of polymerization in three-component photoinitiating systems (Cu/Iod/EDB).
Among them, ten new copper complexes were designed and synthesized to exhibit panchro-
matic behavior. Due to the modification of the electron donating substituent on the phenan-
throline ligand, interesting redshifted absorption spectra could be obtained which open
more possibilities in terms of irradiation wavelengths. The four ferrocene-free copper
complexes Cu1BF4, Cu1PF6, Cu2BF4 and Cu2PF6 were able to efficiently initiate both the
radical and cationic polymerizations and exhibited similar performances to the benchmark
system G1/Iod/EDB based on the outstanding copper complex G1. The formation of
acrylate/epoxy IPNs was successfully achieved through the concomitant initiation of both
the free radical and the cationic polymerization of 1.4 mm-thick samples under air upon
irradiation at 405 nm with a low amount of copper complex. Interestingly, the synthesis
of acrylate/epoxy IPN was also possible upon irradiation at 455 nm or at 530 nm. The
seven copper complexes containing the 1,1′-bis(diphenylphosphino)ferrocene ligand were
characterized and were able to initiate efficiently radical polymerizations. Therefore, the
iron moiety on the copper complexes did not affect either the panchromatic behavior or the
ability to initiate radical polymerization. However, a detrimental effect was observed on
their ability to initiate cationic polymerizations. Concerning IPN synthesis, the detrimental
effect of the iron moiety, even if less pronounced, is still noticeable. To still improve the
safer character of the four iron-free copper complexes, future works will consist of devel-
oping copper complexes absorbing in the red or the near-infrared region. New structures
of copper complexes will be proposed in forthcoming studies as well as their potential
applications in 3D printing.
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