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Cotin5

1 University of Verona, Verona, Italy (eleonora.tagliabue@univr.it)
2 Institut de Chirurgie Guide par l’Image, Strasbourg, France

3 National Center for Tumor Diseases, Dresden, Germany
4 Sapienza University of Rome, Rome, Italy

5 INRIA, Strasbourg, France

Abstract. Patient-specific Biomechanical Models (PBMs) can enhance
computer assisted surgical procedures with critical information. Although
pre-operative data allow to parametrize such PBMs based on each pa-
tient’s properties, they are not able to fully characterize them. In par-
ticular, simulation boundary conditions cannot be determined from pre-
operative modalities, but their correct definition is essential to improve
the PBM predictive capability. In this work, we introduce a pipeline
that provides an up-to-date estimate of boundary conditions, starting
from the pre-operative model of patient anatomy and the displacement
undergone by points visible from an intra-operative vision sensor. The
presented pipeline is experimentally validated in realistic conditions on
an ex vivo pararenal fat tissue manipulation. We demonstrate its ca-
pability to update a PBM reaching clinically acceptable performances,
both in terms of accuracy and intra-operative time constraints.

Keywords: Intra-operative model update · Boundary conditions · Biome-
chanical modeling

1 Introduction

An up-to-date Patient-specific Biomechanical Model (PBM) of the surgical sce-
nario can bring benefits to the surgical practice in several ways. In computer-
assisted interventions, such PBM can guide surgeons towards the structures of
interest, which might be hidden from the partial view available intra-operatively
[11]. A further application is in the field of autonomous robotic surgery, where a
PBM of the current surgical condition is required for verification of the robotic
actions in a controlled environment, before execution [5]. Moreover, PBMs can
play the role of virtual sensors to estimate interaction forces between instru-
ments and tissues when direct force measurement systems are not available, and
provide a feedback to the surgeon [8]. The predictive power of such PBMs highly
relies on their accurate parametrization, which has to be tailored to each new
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patient. Patient-specific geometry and tissues’ elastic properties can be extracted
from pre-operative anatomical images or using ad-hoc modalities such as elas-
tographic techniques, allowing to build a PBM with personalized properties [7].
However, information available before the intervention is often insufficient to
fully characterize PBMs to the extent required to achieve clinically accepted ac-
curacy. In particular, there is usually no way to delineate the adhesions between
neighboring organs from pre-operative data. Such adhesions define simulation
Boundary Conditions (BCs), thus they are key to obtain an accurate model [12,
15, 13]. As a consequence, reliable BCs can be estimated only from data that are
collected intra-operatively [15, 13, 11].

The problem of intra-operative estimation of BCs has been tackled by only
few works. In [18, 13], the position of BCs is initialized based on statistical at-
lases, leading to a method which is not robust to inter-patient variations. Other
approaches [14] propose to update BCs exploiting additional intra-operative sen-
sors, undermining their direct applicability to the standard clinical practice. In
[15, 13], authors propose to use stochastic filters to estimate the elasticity of
the hepatic ligaments, exploiting intra-operative observations of the tissue state.
However, the filters’ inference time strongly depends on their parameters initial-
ization, which is highly sensitive to each patient’s properties, possibly introduc-
ing a degradation in the performances from case to case.

A recent research trend has focused on the usage of Deep Neural Networks
(DNNs) to update a biomechanical model based on intra-operative data [10, 4,
17, 16, 19]. These works have shown that DNNs can learn biomechanical models
even when trained with synthetic data only, while guaranteeing very low in-
ference time. Furthermore, Pfeiffer et al. [17, 16] demonstrated that DNNs can
also learn a surface representation, thus being able to handle any input geo-
metric model. However, all these works have focused on the estimation of the
full 3D displacement field to accomplish the task of intra-operative registration,
either without taking advantage of any PBM parametrization inferred from pre-
operative data or assuming that BCs are fixed and a-priori known.

In this work, we present a complete pipeline that allows to continuously
update an existing PBM by estimating model BCs, starting directly from the raw
intra-operative point cloud of the deforming anatomy provided by a vision sensor
and without relying on any a-priori assumption about their location. We conduct
an experimental validation of the complete framework on an ex vivo human
model, including the anterior renal fascia (Gerota’s fascia), the pararenal adipose
tissue and the kidney. The manipulation of these tissues is a key step during most
of surgical kidney procedures (most importantly during partial nephrectomy).
Obtained results demonstrate that the proposed pipeline is able to update a real
PBM, respecting clinically acceptable requirements both in terms of accuracy
and timing, thus allowing to account for possible intra-operative changes of the
BCs caused by surgical manipulations.
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2 Method

In order to provide an up-to-date PBM that continuously follows the current
surgical scenario, we rely on a framework involving two independent processes
which run concurrently. The first process is entirely dedicated to a physics-based
simulation of the surgical environment capable of real-time performances [24].
Such simulation leverages the PBM created from pre-operative data, charac-
terized by both the undeformed 3D geometry of the anatomy and its known
mechanical properties. The second process is devoted to a strategy for updating
PBM parametrization during the intervention, starting from intra-operative sen-
sor data. In this work, we focus on this second task. In particular, we present a
pipeline to update simulation BCs from the 3D point cloud of the surgical scene
with a very short latency1. This allows the simulation to continuously reflect the
changes introduced in the environment by surgical manipulations (Fig. 1).

Fig. 1. Overview of the pipeline to update PBM boundary conditions. (a) Initial data:
IOS and PBM; (b) rigidly aligned data; (c) estimated IOD, where brighter color is
associated with highest displacement; (d) voxelized representation, where grid cells are
colored based on the signed distance field from PBM surface; (e) estimated BCs in grid
space; (f) PBM annotated with estimated BCs, giving the intra-operative model IOM.

Pre-processing The acquired raw 3D point cloud passes through an initial
pre-processing step. First, both color and spatial segmentation are performed
to extract the current view of the deformed Intra-Operative Surface (IOS) from
the full anatomical point cloud. The extracted IOS is then rigidly aligned to
its corresponding portion of the PBM, based on geometric features and known
spatial relations estimated at the beginning of surgery.

Displacement estimation We calculate the Intra-Operative Displacement
field (IOD) which maps each point in the IOS to its corresponding one on the
undeformed PBM. To achieve this, we estimate a correspondence with a nearest-
neighbor pairing between the point cloud and the PBM, and we refine it using

1 Project available at https://gitlab.com/altairLab/banet
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the ZoomOut method [9]. This non-rigid approach is entirely intrinsic, promotes
isometric solutions (i.e., correspondences that preserve the surface distances be-
tween the points), and has approximately linear complexity. Thus, ZoomOut
guarantees a trade-off between accuracy and timing, making it ideal for real-
time precision surgical operations, where we assume the folding and bending
of the surface preserves surface geometry (i.e., boundaries and metric) without
introducing dramatic stretching.

Voxelization In order to exploit convolutional filters, input information is con-
verted into a grid-like volume of dimension 64 × 64 × 64 and side length 30 cm.
The PBM is encoded into the grid using its signed distance field and the IOD
through a Gaussian interpolation.

BANet The boundary condition update is performed by BANet, a DNN esti-
mating at which points a given deformable tissue is attached to the surrounding
environment [22]. BANet has been validated on phantom data with simple ge-
ometry, but has never been applied to a real PBM and within a realistic clinical
situation. BANet is a U-shaped network, which consists of an encoding and a
decoding path. The former contains four stages of downsampling, each reducing
the spatial resolution by half, resulting in a bottleneck layer which is 43 grid
cells in size. This allows information to travel across the spatial domain. Ad-
ditional skip-connections enable the network to carry fine detail forward where
necessary. To ensure a high inference speed, downsampling and upsampling are
done via simple MaxPool and interpolation functions. The network is trained to
approximate the function f(PBM, IOD) = AP , where AP is the binary voxel
field representation of the attachment points. The training dataset is composed
of synthetic samples representing adipose tissues PBMs (with different random
geometries and mechanical parameters) and annotated with randomly extracted
BCs. In this work, we use the publicly available implementation of BANet with
the provided pre-trained weights [22].

PBM update Finally, BANet-estimated BCs are mapped from grid space to
the original PBM space, giving the Intra-Operative Model (IOM). This step
completes the proposed pipeline, and the obtained IOM is used to update the
intra-operative simulation running in the synchronous process.

3 Experiments and Results

Validation of the presented method is carried out on ex vivo pararenal fat tis-
sue manipulation (Fig. 2a). Tissue’s PBM is initialized with the specimen 3D
geometry, generated from manual segmentation of its CT scan, and discretized
with 65,538 tetrahedral elements. Its biomechanical properties are selected to be
aligned with those observed for adipose tissues (i.e., St Venant Kirchhoff material



Intra-operative Update of Boundary Conditions 5

(a) (b)

Fig. 2. (a) An example tissue manipulation. The surgeon manipulates the pararenal
fat and anterior fascia with a laparoscopic instrument, grasping from point A. Point
clouds of the tissue state are acquired with an RGB-D camera capturing the scene from
the same perspective of the picture. (b) The PBM of the ex-vivo perinephric tissue.
The position of the grasping points is marked with a letter and a green circle.

with Young’s modulus 3 kPa and Poisson ratio 0.45) [1]. Leveraging on the con-
structed PBM (Fig. 2b), it has been also possible to generate a synthetic dataset
based on a real anatomical model. Such dataset allows us to evaluate method
performances within a scenario which is influenced neither by sensor noise nor
by inaccuracies introduced by ZoomOut, since the IOD can be estimated by
directly matching corresponding points in the deformed and the undeformed
configurations.

The capability of the method to update the PBM such that the virtual en-
vironment resembles the current tissue condition is assessed by comparing the
deformed state in the simulated environment with the available ground truth
deformed configuration. The deformed state in the virtual environment is ob-
tained by performing a finite element (FE) simulation where model BCs are
defined by the proposed approach and computing the Root Mean Squared Error
(RMSE) between the simulated and the ground truth configurations. A state-
of-the-art direct solver [20] is used together with an iterative Newton-Raphson
method to solve the non-linear system of equations in the static domain, within
the open-source SOFA framework [6]. The obtained simulation result is weakly
sensitive to possible inaccuracies in the selected mechanical parameters, since the
driving input to the simulation is represented by a displacement (i.e., the same
displacement which is applied to the corresponding ground truth configuration)
[12].

3.1 Synthetic adipose tissue manipulation

A synthetic dataset of 600 samples of adipose tissue manipulation is generated
following the same training data generation strategy used in [22], but keeping
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the considered PBM fixed (Fig. 2b). The median RMSE (interquartile range
IQR) calculated on all the 3D model points between the deformed IOM and
the corresponding reference sample is 1.4 (0.7 − 3.2)mm, indicating an overall
good matching (Fig. 3a). Since ground truth BCs are available for the synthetic
dataset, we further assess prediction accuracy by computing the Dice coefficient
(DSC)[23], which measures the overlapping area between ground truth and pre-
dicted BCs. Median (IQR) value for DSC is 0.51 (0.40 − 0.60). Fig. 3b and c
show that the network is challenged by the complex geometry and fails to accu-
rately identify BCs when they are distributed along the sharp edges of the mesh,
especially when the amount of visible surface is very small and does not capture
the region undergoing the highest deformation. However, when the visible sur-
face captures the region with greatest deformation (Fig. 3b), BANet is able to
provide a plausible prediction, which leads to a precise matching between the
simulated and the reference configuration.

Fig. 3. Results on the synthetic dataset considering input displacements above 25mm.
Upper row: ground truth deformed configuration (green) and simulated deformed con-
figuration obtained when using predicted BCs (yellow), with the considered visible
surface (light blue). Pink mesh represents the deformed configuration when BCs are
unknown, thus undefined. Lower row: ground truth BCs (green) and predicted BCs
(red) in grid space. (a) Good overlap between simulated and ground truth config-
urations (RMSE=1.6mm), due to good prediction accuracy (DSC=0.68). (b) Good
overlap (RMSE=1.7mm) is possible even if prediction is not the same as the ground
truth one (DSC=0.09). (c) High RMSE (14.6mm) is due to an inaccurate prediction
(DSC=0.02), when visible surface does not provide enough information about tissue
state.

3.2 Real adipose tissue manipulation

The presented pipeline is employed to update the PBM during ex vivo pararenal
tissue manipulation. An expert surgeon is asked to grasp the human tissue with
a laparoscopic tool from four pre-defined points, whose position is known in
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the 3D model space thanks to CT-visible markers, and lift it to the maximum
reachable extent that prevents tissue tearing (Fig. 2a). After pulling the tissue
from all the points, the surgeon introduces a change in BCs by dissecting some
tissue adhesions, and repeats the acquisitions. Acquired data are relative to
three different initial states (i.e., two dissection stages); however, it has not been
always possible to lift from all the grasping points due to excessive tissue damage
introduced by dissection. Intra-operative point clouds capturing deformed tissue
states are acquired through an Intel RealSense D435 RGB-D camera. Collected
images allow to extract the displacement applied to the tissue by the surgeon, by
tracking a STag marker attached to the instrument (Fig. 2a) [3]. To evaluate the
presented method, point clouds at regular lifting steps of 10mm are extracted
and passed through the complete pipeline described in Section 2. As soon as a
new estimate of BCs is available, we perform a FE simulation to the obtained
IOM applying the same input displacement applied by the surgeon. We then
calculate the RMSE between each point in the acquired point cloud and its
corresponding one, as estimated by ZoomOut, in the deformed IOM.

Table 1 reports the average RMSE over 10 runs of the whole pipeline, relative
to the error at rest (average 3.62mm, which includes contributions of segmen-
tation and registration errors) at increasing pulling levels. The reason why we
report results over multiple runs is that we rely on an approximate nearest
neighbour for ZoomOut to minimize the computational overhead, which might
however introduce some differences between different runs. The average time
required to update the synchronous PBM simulation is 1.44 ± 0.14 s (with an
average of 0.039 s dedicated to pre-processing, 1.39 s to displacement estimation,
and 0.013 s to BANet), tested on a workstation with an AMD Ryzen7 3700X
CPU and NVIDIA RTX 2070 SUPER graphics card. This update rate allows
to provide feedback to the operating surgeon and/or the autonomous system
based on a model reflecting the changes in clinical settings with a latency com-
patible with standard surgical workflows. Average RMSEs remain below 5mm
in almost all the cases, which is aligned with the accuracy levels required for
model-guided intra-operative applications in the context of minimally-invasive
surgery [16, 4, 11]. Furthermore, obtained RMSEs are significantly lower than
the ones achieved when BCs are unknown, thus they cannot be defined and the
simulation remains unconstrained (last column in the table). In general, RMSE
increases with increasing deformation. This might be due to the fact that the
high deformations cause poor surface estimation from [21], which assumes that
the point cloud already represents the desired surface without noise or topologi-
cal artifacts. In such case, ZoomOut promotes a disturbed correspondence (i.e.,
isometric to a wrong surface). To improve this step, investigating the point cloud
denoising techniques seems a promising future direction. This further motivates
the worse RMSE values obtained in correspondence to grasping point B, whose
point clouds are partially occluded by the surgical tool.
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Table 1. RMSE between ground truth point clouds and their corresponding points
in the virtual environment when using predicted BCs, at increasing deformation levels
[mm]. Acquisitions are grouped by grasping point (A, B, C, D) and initial tissue state
(1, 2, 3). Reported errors are relative to the error at rest and represent the average
over 10 runs of the entire pipeline. Missing values are due to failures in instrument
tracking. Last column reports the RMSE obtained when no BCs are defined in the
virtual environment (MeanUC).

Grasp State 10mm 20mm 30mm 40mm 50mm Mean Std MeanUC

A
1 - 0.94 1.06 1.28 6.81 2.52 2.48 24.93
2 - - 1.42 2.42 2.75 2.20 0.65 31.99

B
1 2.96 6.75 - - - 4.86 1.90 13.02
2 5.05 9.91 11.47 - - 8.81 2.84 27.06
3 3.27 11.71 9.12 3.92 - 7.01 3.60 31.53

C
1 - 1.65 2.49 - - 2.07 0.42 18.66
2 5.30 2.54 3.84 - - 3.89 1.42 14.23
3 2.59 4.61 6.93 10.76 - 6.22 3.04 18.79

D
1 1.07 - - - - 1.07 0.00 7.72
2 - 1.32 1.57 3.98 5.25 3.03 1.71 19.76
3 1.51 2.28 3.57 - - 2.45 0.85 7.29

Mean 3.11 4.64 4.61 4.47 4.94
Std 1.50 3.90 3.52 3.32 1.80

4 Discussion and Conclusion

In this work, we have presented a complete pipeline that allows to update a
patient-specific pre-operative model for surgical assistance, based on data ac-
quired during the intervention. Validation experiments have shown that the pre-
sented pipeline can be used to successfully update a PBM exploiting data coming
directly from intra-operative sensors, while respecting both accuracy and time
constraints compatible with standard minimally-invasive surgical applications.
The quality of the final result is influenced by the different sources of errors
that are introduced throughout the various stages of the pipeline, from an im-
precise initial rigid alignment, to the presence of sensor noise and inaccurate
computation of corresponding points. In future works, we plan to improve the
pre-processing stage, for instance by reconstructing the point cloud from the
stereo-endoscope view [2]. Inaccurate surface matching can be addressed by ei-
ther letting the network implicitly solve the surface correspondence problem as
in [16], by providing salient points extracted from camera view to ZoomOut, or
by improving surface estimation [25]. In particular, relying on DNN to directly
solve for surface correspondences seems promising to further improve the time
performances of the current implementation, where ZoomOut is responsible of
the main computational overhead. By providing an update of model BCs with a
very short delay, our method could handle situations with dynamically changing
BCs, for example involving dissection, sutures removal or topological changes.



Intra-operative Update of Boundary Conditions 9

However, due to the fact that the surgical environment is intrinsically evolving
in time and the network has shown to benefit from the availability of more in-
formative input data, we expect that the robustness of the prediction will be
improved by considering time dynamics and we will tackle this in future works.
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