
HAL Id: hal-03314992
https://hal.science/hal-03314992v1

Submitted on 6 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

QoS-based Trust Evaluation for Data Services as a Black
Box

Senda Romdhani, Genoveva Vargas-Solar, Nadia Bennani, Chirine Ghedira

To cite this version:
Senda Romdhani, Genoveva Vargas-Solar, Nadia Bennani, Chirine Ghedira. QoS-based Trust Evalu-
ation for Data Services as a Black Box. INTERNATIONAL CONFERENCE ON WEB SERVICES,
Sep 2021, chicago, United States. �10.1109/ICWS53863.2021.00067�. �hal-03314992�

https://hal.science/hal-03314992v1
https://hal.archives-ouvertes.fr


QoS-based Trust Evaluation for Data Services
as a Black Box

Senda Romdhani
Univ. of Lyon, CNRS

Univ. of Lyon 3, LIRIS
Lyon, France

senda.romdhani@univ-lyon3.fr

Genoveva Vargas-Solar
CNRS
LIRIS

Lyon, France
genoveva.vargas-solar@liris.cnrs.fr

Nadia Bennani
Univ. of Lyon, CNRS

INSA-Lyon, LIRIS
Villeurbanne, France

nadia.bennani@insa-lyon.fr

Chirine Ghedira-Guegan
Univ. of Lyon, CNRS

iaelyon - Univ. of Lyon 3, LIRIS
Lyon, France

chirine.ghedira-guegan@univ-lyon3.fr

Abstract—Under the black-box model, data services do not
export (meta)-data describing the conditions in which data are
collected, in which they are deployed and processed, and the
quality of the data they deliver. Thus, this model creates blind
spots that prevent determining to which extent providers can be
trusted to use their data services for building target applications.
This paper proposes a QoS-based trust evaluation model for
black box data services that combines QoS indicators, including
service performance and data quality. The paper also introduces
DETECT (Data sErvice as a black box Trust Evaluation arChi-
tecTure) which validates our model. The experimental results
demonstrate the feasibility and effectiveness of our solution.

Index Terms—Trust, Data Service, QoS, Data Quality, Perfor-
mance

I. INTRODUCTION

The explosion of data collected, managed, and provided
using online services leads to the logic of “Everything as a
Service” (XaaS: X as a Service). Currently, the use of “Data
as a Service” (i.e., data service) for accessing large volumes of
data from different providers concerns mainly data consumers
who see services as practical and easy-to-use components
for accessing data. In this context, it is necessary to identify
trustworthy data services that can provide data under specific
conditions and fulfilling quality requirements.

A trustworthy service respects the terms and QoS as
promised by its provider. In a data service’s ecosystem con-
sisting of services with different QoS and distinct data quality
properties, trust is also related to the degree of data quality
that can be ensured and essential for data integration, among
others.

Service Level Agreements (SLAs) specify clauses about the
promised QoS for given services and penalties if the service
provider violates these QoS clauses. However, SLAs rarely
include data quality aspects in their agreements. To ensure
that QoS agreements are respected, service providers deploy
solutions to monitor their services by observing and computing
QoS measures (i.e. service performance). The monitoring is
performed to make internal technical decisions related to

resource allocation. However, for privacy and security reasons,
service providers rarely share their monitoring measures. Thus,
they do not provide detailed proof that the performance of the
services adheres to the promised QoS in the SLA. In this sense,
data services adopt a black-box model under which services
do not provide details on their backend, including how data
are collected, updated, and to which extent data are fresh.
Thus, the consumer chooses the service blindly. Still, clients
are looking for alternatives to evaluate the trust level of both
services and data as criteria to select services for building
information systems and retrieving data.

To illustrate how challenging is the data service selection in
the black-box context, let us consider an e-health scenario1.

Fever in chemotherapy-induced neutropenia (FN) is the
most frequent, potentially lethal complication in patients with
cancer [1]. Fever is particularly dangerous if the white blood
count becomes low. During this time, the body’s normal
defenses against infections are down. Thus, cancer patients’
body temperature should be monitored continuously to react
promptly under a medical emergency when fever is detected.

Consider the case of Alice, a 50-year-old woman with breast
cancer treated with chemotherapy. To avoid FN complications
when she is at home, she uses medical devices provided by
the hospital’s emergency service to keep track continuously of
her temperature among other physiological measures. Devices
are programmed to collect data at different rates. According to
a specific update frequency, measures are sent to the hospital,
maintaining a database with Alice’s data. Alice also uses a
connected thermometer to measure her temperature frequently.
The device sends the data to an e-health service installed in
her smartphone. She also measures her temperature using a
regular thermometer every x days or weeks, depending on her
mood. She records these measures in a service installed on her
smartphone. Alice gives access to her health data through the
services deployed on her smartphone. Doctors should access

1This scenario was proposed in the context of the project SUMMIT.



her data at any moment. Data must be reliable to be used
effectively to make accurate decisions, and it must be delivered
promptly in case of an emergency. Each service ensures
different QoS and data quality guarantees since data are
produced and updated under different conditions (production
rates, update frequencies that affect data freshness).

A medical network can exchange data through services that
must be carefully selected according to their degree of trust.
Deciding which service to use to retrieve Alice’s physiological
data in a given situation can be critical for doctors as services
have different trust levels. In ideal conditions, services must be
regularly tagged with a trust measure that can be used selection
criterion, computed using service performance and data quality
factors. Therefore, the challenge is to propose (1) a trust
model that captures and combines service performance and
data quality aspects and (2) a mechanism to collect information
required to compute services’ trust levels.

The main contribution of our work is a trust evaluation
model for data services and the architecture DETECT that
implements it using an e-health scenario. The experimental
results show how the trust level of services with different QoS
can be computed and used to rank them given services’ lookup
requests.

The remainder of this paper is organized as follows. Sec-
tion II presents the related work. Section III describes our
QoS-based trust evaluation model. Section IV describes the
DETECT architecture. The experiments to prove our solution’s
feasibility is presented in section V. Section VI concludes the
paper and discusses future work.

II. RELATED WORK

Services trust evaluation has been addressed in service-
based environments, including SOA, web services, cloud ser-
vices, etc. Existing proposals focus on trust at the (i) service
and (ii) data levels.

a) Trustworthy Services: Service trust solutions adopt
different trust assessment solutions: fuzzy [3], probabilistic [4],
machine learning [5], multi-criteria decision-making (MCDM)
[6] and classical mathematical such as weighted-addition [7].
Service trust evaluation can be subjective [8], objective [7] and
hybrid [9]. Subjective evaluation relies on user preferences
and feedback about service usage. Users’ feedback may be
quantitative or qualitative, provided in textual form. Several
factors may influence users’ subjective feedback. For a given
service, such feedback may vary significantly from one user
to another, and there is no guarantee of users’ objectivity.
Objective evaluation involves measurable metrics associated
with the service capacities, capabilities, and performance [2].
Performance metrics are measured by monitoring services’
behavior over time and measuring to which extent the SLAs
are fulfilled [18], [19].

b) Trustworthy Data: Data similarity and data prove-
nance are two of the most common features for assessing data
trust. For similarity-based solutions, reliable data represent an
event with similar values [11]. For provenance-based solutions,
data with reliable provenance are more likely to be trustworthy

[10], [12], [17]. Several studies define metrics for evaluating
data quality [13]–[15], assuming that data providers export
and share information as proof of their honesty regarding the
delivered data quality.

c) Trustworthy Data Services - Discussion: Existing
work proposes models to define data quality metrics, including
data freshness and performance metrics: service response
time, task success ratio, and availability. Those models are
often not proposed for a specific type of service. To the
best of our knowledge, no trust evaluation solutions targeting
precisely data services combining QoS and data quality have
been proposed. There is no data trust model which seems to
consider data freshness for trust evaluation. Existing solutions
define data quality metrics, including data timeliness assuming
that meta-data is available. In the absence of such information,
there is an alternative to obtain these measures to evaluate data
freshness, especially database timeliness.

III. DATA SERVICE TRUST EVALUATION MODEL

As aforementioned, services are provided under heteroge-
neous quality of service (QoS) conditions to support various
users’ needs. However, there are no guarantees that the QoS
is continuously ensured. Thus, it is necessary to determine to
which extent a service can guarantee a certain level of QoS.
For data services, it is also necessary to determine to which
extent provided data can be trusted. Data trustworthiness can
be determined by measuring data quality.

A trust measure can be a representative indicator of services’
QoS and data quality. Service performance and data quality
can be used as a quality criterion by services’ consumers
for selecting services. Consequently, the trust level of a data
service is a value between [0, 1] defined as follows:

TDS = α× Performance + β ×DataQuality (1)

Where the weights α, β ponder the performance and data
quality factors. They depend on the preferences of target
service consumers and application requirements. These factors
are described in the following lines.

A. Performance Factor

The Performance factor measures the computing capacity
of a data service through three metrics described hereafter,
namely: availability, time efficiency, and task success ratio.

Performance =
∑

Wj ×Qj (2)

Where Qj = {availability, time efficiency, task success ratio}
and Wj corresponds to the weight of the metric j. The weight
varies according to the importance of the metric prefered by
its data service’s consumer.

The general idea behind the performance factor is that data
service is expected to be available when it is requested, it
should adhere to the response time specified in its SLA, and
it must deliver data to consumers successfully.

• Availability (Av): A data service is unavailable when a
request is denied [7].



Thus, availability can be defined as the degree to which
a data service is reachable and ready to operate when
requested. Therefore, availability as a value between [0, 1]
defined as follows:

Av =
Ak

Nk
(3)

Where Ak is the number of accepted requests by the
data service k, and Nk is the total number of requests
submitted to the data service k.

• Time Efficiency (TE): Quantifies to which extent a data
service meets the expected response time (ERt) specified
by its service provider.
TE takes values between [0, 1] and it is defined as follows:

TE = 1− Rt

ERt
if Rt < ERt (4)

TE = 0 if Rt > ERt (5)

where Rt is the average response time of the service.
• Task Success Ratio (TSR): Sometimes, data services

may be reachable and ready to operate but unable to
deliver data to consumers due, for example, to network
failures.
Thus, TSR measures successful data delivery in response
to accepted requests. It takes values between [0, 1].

TSR =
Sk

Ak
(6)

Where Sk is the number of successful requests with data
delivered to destination by a data service k.

B. Data Quality Factor

According to [2], data quality can be evaluated using
multiple data quality dimensions including completeness, time-
liness, accessibility etc. Our work chose data freshness as a
data quality indicator because our results target applications
requiring up-to-date data (e.g., e-health applications).

Data freshness measures to which extent data is meaningful
(i.e., recent) for a target application [16]. The principle behind
this is that fresh data are more valuable and trustworthy than
outdated data that lose value and negatively affect decisions.

Data freshness is measured using the notion of timeliness
determined by two dimensions: data timeliness and database
timeliness. Intuitively, data is fresh when it is up-to-date (with
respect to its production time) and inserted frequently into
a database. We assume that data are produced under different
production rates PR and data is fresh within a validity interval
T . T is defined according to the application’s domain. For
instance, for our e-health scenario, we set the data validity
interval to 60 seconds, meaning that temperature readings are
considered fresh 60 seconds after they have been collected.

Assuming that data producers continuously send data to a
data service with a specific update frequency Uf :

• Data Timeliness captures the gap between the data
production time and the time when it is needed and
makes sure it is still within the data validity interval

T = [tmin, tmax]. Timeliness for data D, TD is a value
between [0, 1] defined as follows:

TD = 1− tR − tP
T

if tR < tmax (7)

TD = 0 if tR > tmax (8)

Where tR represents the request time, tP the data produc-
tion time, tmax the maximum time for data to be fresh
and tmin = tP . Data feshness decreases (i.e., timeliness
is lower) as TD is closer to tmax. Beyond tmax, data is
no longer fresh.

• Database timeliness (TDB) measures the database up-
date frequency. A database is updated when new data
are inserted. The intuition is that frequent updates can
contribute to the preservation of data freshness. This
frequency must be ”guessed” using a protocol based on
statistical and analytics strategies for black-box services.

The above definitions of data quality metrics provide ev-
idence to correlate data freshness metrics. For example, if
a database is updated frequently, it is more likely to be
timely, but not necessarily the opposite. If the database has not
been updated within a data validity interval (specified by the
application domain and data consumers), data is more likely
to be outdated from the data consumer perspective. Thus, data
quality is a value in [0, 1] defined as follows:

DataQuality = TD × TDB (9)

In the next section, we present the proposed architecture
DETECT.

IV. DETECT: GENERAL DESCRIPTION

Figure 1 shows the architecture of DETECT (Data Trust
Evaluation system) that implements our model. It consists
of three main modules: (i) performance measuring module
(PMM), (ii) data quality measuring module (DQMM), and
(iii) trust measuring module (TMM). DETECT enables data
consumers to select the most reliable (i.e., trustworthy) data
services according to their needs and preferences. Consumers
search services and DETECT returns a list of data services
ranked by their trust level. DETECT continuously updates
services’ trust level monitoring their behavior, computing and
updating their trust measure, and tagging services with this
value.

A. Performance Measurement Module

The PMM measures the data service’s performance. It
executes this task in two steps: monitoring and evaluation.

During the monitoring step, the Performance Monitor col-
lects the performance metrics continuously using the service’s
API and stores performance measurements in a time-series
database (TSDB). Time-series indicate the recorded response
time of services in milliseconds, whether the service was
available, and whether it successfully finished the job.

During the evaluation step, the Performance Evaluator
creates a performance level base. First, it collects performance
measurements from the TSDB made within a specific time



Fig. 1. Data Service Trust Evaluation Architecture.

interval. Second, it computes performance metrics as defined
in III. Third, the Performance Evaluator evaluates the perfor-
mance level of the corresponding service by applying equation
2. The PerfDB database stores the list of services tagged with
their most recent evaluated performance level along with the
evaluation timestamp.

B. Data Quality Measurement Module

DQMM observes and evaluates the quality of the data ac-
cessed by the corresponding data service using the timeliness
metrics defined in section III.

The assessment of data timeliness and database timeliness
can be achieved from meta-data about data quality, including
data production time and database update frequency. As afore-
mentioned, we assume that data is timestamped. However, the
database update frequency is unknown to the data service’s
user, and the black box character of these data services hides
information about the way data are captured and processed.

To overcome this problem, we propose defining and deploy-
ing a meta-data observability protocol to assess the absence of
the necessary meta-data for data quality evaluation, especially
the database timeliness evaluation. The protocol consists of
the following steps.

First, the knowledge constructor observes the changes in
the database state of a given data service using sampling tech-
niques. Our protocol observes data insertions. By pulling data
samples continuously with a specific sampling frequency, the
knowledge constructor observes and measures some metrics
that help to acquire knowledge about the data service’s change
history. The sampling frequency must be chosen considering
a trade-off between retrieving enough representative samples
for the computing metrics and reducing the overhead produced
by sending requests and processing data. For data sample
timeliness, we apply the equation 8 on every data item in the
sample and then compute the average for all the data sets.
For the database change of state, one would compare the
different database states to observe whether the δ 6= {}. The δ
represents the intersection between two data sets belonging

to two consecutive samples. Thus, the approximate update
frequency of the database managed by a data service can be
measured. The database KDB stores those metrics along with
the observation’s timestamp.

Second, using KDB during an observation period, the qual-
ity evaluator (1) measures the database update frequency, (2)
computes the average data timeliness, and (3) uses those two
metrics to evaluate the data timeliness and the data freshness
of the targeted data service. Predefined T intervals of the
services are stored in the DQMM. The result of this module is
a list of data services tagged with their measured data quality
level stored in the database EDQ. Data quality is measured
periodically in order to keep this list up-to-date.

C. Data Service Trust Measuring Module

The Trust Measuring Module (TMM) evaluates a data
service’s trust level using the PMM and DQMM results. There-
fore, two collectors are used in DETECT: the performance
collector which collects performance levels of the available
data services; and the data quality collector which collects data
quality levels of the available data services. These collectors
gather trust factors and feed the trust engine on-demand. The
trust engine evaluates the trust level of each available data
service using equation 1. It further enables the data requester to
specify the importance of trust factors, including performance
and data quality. A history of the evaluated trust levels of
each service for the different requests is stored in the trust
history which contains for every measuring timestamp the
service ID, its data quality level, its performance level and
the corresponding data service trust level.

V. IMPLEMENTATION

A prototype of DETECT implements the QoS-based trust-
worthy data services selection to show the feasibility of
our solution. We used DETECT to set up Alice’s homecare
scenario for monitoring temperature. We used Prometheus2,
a monitoring tool, and its related JMETER exporters3 to
implement the Performance Monitor.

We implemented data services using HAPI FHIR solutions
which are built from a set of components called Resources
used to exchange and/or store data. They produce synthetic
data that respect the HL7-FHIR healthcare standard and pri-
vacy constraints generated from ”real” clinical/medical data.
We mainly measured the quality of data accessed through the
resource Observation4 to support diagnosis and monitoring.
Therefore, we developed our e-health scenario for monitoring
temperature querying RESTful APIs. The scenario runs on a
64GB mac where data services are deployed on self-contained
environments using Docker.

A. Trust case studies

We developed two case studies based on the eHealth sce-
nario to validate the trust model and DETECT’s applicability.

2https://prometheus.io
3https://jmeter.apache.org
4https://www.hl7.org/fhir/observation.html

https://prometheus.io
https://jmeter.apache.org
https://www.hl7.org/fhir/observation.html


Fig. 2. Experimental setting: e-health scenario.

TABLE I
SERVICES RANKED ACCORDING TO TRUST FACTORS

Performance Data Quality
S31 S11, S21

S21, S22, S23 S12, S22
S11, S12, S13 S13, S23

S31

We assume that we have two kinds of services: on-demand
services and pushed services. The chosen case studies illustrate
various requirements of applications for which performance
and data quality will be weighted accordingly.

• Case Study 1: Alerting
This use case addresses the continuous monitoring of
Alice’s temperature. The devices’ push service must
immediately alert her doctor if it observes a significant
variation in her temperature. Since Alice’s safety is
critical, the data must be sent timely. The performance
criterion for selecting services has more priority than
data freshness. Therefore, higher weight is assigned to
the performance factor in the equation 1.

• Case Study 2: Quick checkup by Alice’s doctor
This use case assumes that Alice’s doctor wants to
perform a quick checkup on her health’s latest indicators
using on-demand services from time to time. For exam-
ple, the doctor wants to have the latest temperature, and
thus data must be fresh. This use case emphasizes the data
quality factor (i.e., data freshness produced by services
managing the data produced by the different devices).
Thus, the system assigns a higher weight to the data
quality factor in the equation 1.

B. Experimental Setting

In the case studies described above, three HAPI FHIR
servers with different FHIR standards have been deployed
on Docker containers: one simulating the hospital’s server,
one simulating Alice’s smartphone’ server, and the last one

simulating the SOS server of the hospital. Each server has
its independent database on the corresponding server and is
reachable through its URL. To give access to these servers,
we deployed 7 data services, each with its access point: three
data services are deployed on the first two servers — only one
service giving access to the third server. Note that these servers
are configured in the same way in our controlled environment.
However, to simulate the variation in the performance of the
different data services, we allocated a different number of CPU
cores and the different number of services to the three HAPI
FHIR servers as depicted in figure 2 in a way that: (1) The
bigger the number of the allocated CPU resources, the better
the performance of the service since we have more resources
for the server. (2) The smaller the number of the deployed
services on the same container, the better the performance.
The reason is that the available resources on the server are
shared between a smaller number of services. For instance,
we allocated 1 CPU core to the first container while allocating
2 CPU cores to the second one (see figure 2). In order to
illustrate the environment of real-time real-world data services,
we have simulated the process of data production and data
insertion for Alice’s three devices (D1, D2, D3). We have (1)
set the data production rate and (2) only varied data insertion
rates for all devices to have different data quality levels. For
instance, device D1 has 20 seconds (sec) as an insertion rate.
Table I ranks services according to the expected performance
and data quality levels.

Our experiment tests the effect of α and β over the trust
level of data services and their ranking. For each trust request
to the Trust Engine, at a given time t and for a fixed
performance and data quality levels, we varied α and β: we
decrease the weight α from 1 to 0 while increasing β from 0 to
1 (see table II). Concerning performance evaluation at the Per-
formance Evaluator level, we currently consider availability,
task success ratio and response time equally important, and
thus they have equal weights when computing performance
level as in equation 2.

C. Results and Discussion

We performed tests using the configuration described above
in order to verify our QoS-based trust model and architecture.
The resulting ranked lists of services are presented in table II.

TABLE II
TRUST REQUEST OUTPUT

α=1,β=0 α=0,7,β=0,3 α=0,5,β=0,5 α=0,3,β=0,7 α=0,β=1
S31 S22 S21 S21 S21
S23 S21 S22 S22 S11
S22 S31 S31 S31 S22
S21 S23 S23 S23 S12
S13 S11 S11 S11 S31
S12 S22 S12 S12 S13
S11 S13 S13 S13 S23

According to table II, we notice that: (1) The service S31
has the highest trust level when service performance (α=1



and β=0) is preferred (higher weight). S31 is ranked lower
as the performance ponder is decreased. (2) The hospital’s
services are ranked below S31 when α=1 and β=0. The higher
is the weight pondering the data quality factor associated with
a service, the higher is its trust level; in consequence, S31
is ranked before S23. (3) Services that are deployed on the
first container are ranked in the lowest positions in the list
when α=1 and β=0. The higher the weight that ponders the
data quality factor associated with a service, the higher it is
ranked. Thus, the trust level of S31 is higher than that of
S13, and in consequence, S31 is better ranked. No matter the
weight we attribute to trust factors, services that are deployed
on the smartphone server are ranked below the services that
are deployed on the hospital’s server.

Hereafter, we discuss the results for each case study.
Case study 1: According to the above observations, ex-

periments demonstrate the feasibility of our trust model and
pertinence of DETECT. Indeed, as expected, results provide a
suitable trust-based ranking of data services using their per-
formance level. Note that we control the servers’ performance
in our configurations but not that of services deployed on
the same server. These services run independently, and the
allocation of resources depends on the Docker containers’
load balancing and scheduling method. However, for services
deployed on the same container, we can perform some actions
to perturb their performance, for instance, sending more user
requests.

Case study 2: In general, services have been ranked as
expected. Still, S21 is better ranked than S11, S22 is better
ranked than S21, and S31 is better ranked than S13 and S23.
These results can be explained by the correlation between
data quality and services’ performance. The infrastructure
configuration influences data timeliness negatively. An infras-
tructure configuration providing limited resources punishes the
service’s response time and data timeliness. This correlation
affects data timeliness because, in our scenario, data changes
frequently and has a short validity interval (seconds). Thus,
data freshness decreases fast when it takes too long for a
service to respond to a request. This dependence should be
represented through the trust evaluation model defined in
equation 1. Nevertheless, we did not consider this dependence
yet between the trust factors in our proposed trust model.

VI. CONCLUSION

This paper proposes a QoS-based trust evaluation model
for black-box data services combining service performance
and data quality metrics. Metrics are continuously computed
performing statistics on collected data. Continuous monitoring
provides updated insight into data services’ trust over time.
Experiments showed the feasibility of the approach in appli-
cations where trust is critical.

Our future work will enhance DETECT with a data quality
evaluation protocol to observe and measure the timeliness
metrics for black-box services. Also, as discussed in the exper-
imental results section, we need first to study the correlation
that exists between the performance of a given data service and

its data quality, and to enhance our trust model in a way to
reduce the bias of the performance on the data quality factor.

ACKNOWLEDGMENT

This work is done in the context of the project SUMMIT
number 1801172801-40892 funded by the Auvergne Rhone
Alpes region AAP program.

REFERENCES

[1] L. Lavieri, C. Koenig, O. Teuffel, P. Agyeman, and R.A. Ammann,
“Temperatures and blood counts in pediatric patients treated with
chemotherapy for cancer,” NCT01683370. 2019, Sci Data 6, 108.

[2] S. Romdhani, N. Bennani, C. Ghedira-Guegan, and G. Vargas-Solar,
“Trusted Data Integration in Service Environments: A Systematic Map-
ping,” in: Service-Oriented Computing. ICSOC 2019. Lecture Notes in
Computer Science, vol 11895. Springer.

[3] X. Zhao, L. Shen, X. Peng, and W. Zhao. “Toward SLA-constrained
service composition: An approach based on a fuzzy linguistic preference
model and an evolutionary algorithm”. in Information Sciences, vol. 316,
pp. 370-396, 2015.

[4] O. Jules, A. Hafid, and M. A. Serhani, “Bayesian network, and prob-
abilistic ontology driven trust model for SLA management of Cloud
services,” in IEEE 3rd International Conference on Cloud Networking,
2014.

[5] C. Mao, R. Lin, C. Xu, and Q. He, “Towards a Trust Prediction
Framework for Cloud Services Based on PSO-Driven Neural Network,”
in IEEE Access, vol. 5, pp. 2187-2199, 2017.

[6] J. Sidhu and S. Singh, “Design and Comparative Analysis of MCDM-
based Multi-dimensional Trust Evaluation Schemes for Determining
Trustworthiness of Cloud Service Providers,” in Grid Computing, vol.
15, n. 12, pp. 197-218, 2017.

[7] P. Manuel, “A trust model of cloud computing based on Quality of
Service,” in Annals of Operations Research, vol. 233, n. 11, pp. 281–
292, 2015.

[8] L. Qu, Y. Wang, and M. A. Orgun, “Cloud service selection based on the
aggregation of user feedback and quantitative performance assessment,”
in 10th International Conference on Services Computing, 2013.

[9] Y. Yuyu, “A novel TOPSIS evaluation scheme for cloud service trust-
worthiness combining objective and subjective aspects,” in Journal of
Systems and Software, pp. 143, 2018.

[10] O. Hartig, “Provenance Information in the Web of Data,” in Proc. of the
Linked Data on the Web Workshop at WWW, 2009.

[11] C. Dai, H. S. Lim, E. Bertino, and Y. S. Moon, “Assessing the
trustworthiness of location data based on provenance,” In Proceedings
of the 17th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pp. 276–285, 2009.

[12] H. S. Lim, Y. S. Moon, and E. Bertino, “Provenance-based trust-
worthiness assessment in sensor networks,” in Proceedings of the 7th
International Workshop on Data Management for Sensor Networks, pp.
2–7, 2010.

[13] T. Aamir, H. Dong, and A. Bouguettaya, “Trust in social-sensor cloud
service,” in 2018 IEEE International Conference on Web Services
(ICWS), pp. 359–362, IEEE, 2018.

[14] H. Jin, K. Zhou, H. Jiang, D. Lei, R. Wei, and C. Li, “Full integrity and
freshness for cloud data,” Future Generation Computer Systems, vol. 80,
pp. 640–652, 2018.

[15] S. Neumaier and J. Umbrich, “Measures for assessing the data freshness
in Open Data portals,” in 2016 2nd International Conference on Open
and Big Data (OBD), pp. 17–24. IEEE, 2016.

[16] M. Bouzeghoub, “A framework for analysis of data freshness,” in
Proceedings of the 2004 international workshop on Information quality
in information systems, pp. 59–67, 2004.

[17] S. Zawoad, R. Hasan, and K. Islam, “Secprov: Trustworthy and efficient
provenance management in the cloud,” in IEEE INFOCOM Conference
on Computer Communications, pp. 1241–1249, IEEE, 2018.

[18] X. Li, J. Yuan, H. Ma, and W. Yao, “Fast and parallel trust computing
scheme based on big data analysis for collaboration cloud service,” IEEE
Transactions on Information Forensics and Security, 13(8), pp. 1917–
1931, 2018.

[19] M. Alhamad, T. Dillon, and E. Chang, “Conceptual SLA framework for
cloud computing,” in 4th International Conference on Digital Ecosys-
tems and Technologies, pp. 606–610, IEEE, China, 2010.


	Introduction
	Related Work
	Data Service Trust Evaluation Model
	Performance Factor
	Data Quality Factor

	DETECT: General Description 
	Performance Measurement Module
	Data Quality Measurement Module
	Data Service Trust Measuring Module

	Implementation  
	Trust case studies
	Experimental Setting
	Results and Discussion

	Conclusion
	References

