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PHASE TRANSITIONS IN A TWO-SPECIES MODEL FOR CELL

SEGREGATION AND LOGISTIC GROWTH

Luis Almeida1, Kevin Atsou2, Marta Marulli3, Diane Peurichard4 and Rémi
Tesson5

Abstract. We study a model of cell segregation in a population composed of two cell types. Starting
from a model initially proposed in [3], we aim to understand the impact of a cell division process
on the system’s segregation abilities. The original model describes a population of spherical cells
interacting with their close neighbors by means of a repulsion potential and which centers are subject
to Brownian motion. Here, we add a stochastic birth-death process in the agent-based model, that
approaches a logistic growth term in the continuum limit. We address the linear stability of the
spatially homogeneous steady states of the macroscopic model and obtain a precise criterion for the
phase transition, which links the system segregation ability to the model parameters. By comparing
the criterion with the one obtained without logistic growth, we show that the system’s segregation
ability is the result of a complex interplay between logistic growth, diffusion and mechanical repulsive
interactions. Numerical simulations are presented to illustrate the results obtained at the microscopic
scale.

Résumé. Nous étudions un modèle de ségrégation cellulaire dans une population composée de deux
types de cellules. En partant d’un modèle initialement proposé dans [3], nous cherchons à comprendre
l’impact d’une division cellulaire sur les capacités de ségrégation du système. Le modèle original
décrit une population de cellules sphériques interagissant avec leurs voisins proches par le biais d’un
potentiel de répulsion et dont les centres sont soumis à un mouvement brownien. Ici, nous ajoutons
un processus stochastique de naissance et de mort dans le modèle à agents, qui approche un terme de
croissance logistique dans la limite du continu. Nous étudions la stabilité linéaire des états stationnaires
spatialement homogènes du modèle macroscopique et nous obtenons un critère précis pour la transition
de phase, qui lie la capacité de ségrégation du système aux paramètres du modèle. En comparant le
critère avec celui obtenu sans croissance logistique, nous montrons que la capacité de ségrégation du
système est le résultat d’une interaction complexe entre croissance logistique, diffusion et interactions
mécaniques répulsives. Des simulations numériques sont présentés pour illustrer les résultats obtenus
à l’échelle microscopique.
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Introduction

The starting point of this work was the model previously proposed in [1], [2]. The authors provided a
detailed multiscale analysis - from a microscopic model to a macroscopic description - of a system of particles
interacting through a dynamical network. The model describes point particles with local cross-links modeled
by springs that are randomly created and destructed. Each link between two particles generates a spring-
like interaction potential, which depends on the link type (intra- or inter- species link). In the limit of large
number of particles and links and assuming that the network remodelling rate is very large, the link density
distribution becomes completely determined by the one-particle distribution function. The latter evolves on the
slow time scale through an aggregation-diffusion equation, also known as the McKean-Vlasov equation. Their
results have been extended and applied to the two-species case in order to study segregation mechanisms in
tissue morphogenesis [3]. The ability of different cell types to segregate is known to be a key process in many
biological phenomena, especially in embryogenesis or tumor metastasis. However, in their model, it was assumed
that the cell population remains constant over time, which means that there is no growth process. The goal
of this paper is to investigate whether cell growth processes can enhance or knock out the system’s segregation
abilities, when cell segregation is otherwise driven by mechanical interactions between different types of cells.
To this aim, we derive a macroscopic logistic equation from the microscopic two-species model introduced in [3],
modified to take into consideration a density-saturated growth process at the microscopic scale. We will focus on
the influence that homotypic/heterotypic repulsion has on the process of cell segregation and border sharpening,
inspired from the results in [6]. After the derivation of the macroscopic model we carry out its stability analysis
and we perform numerical simulations of the microscopic model.

1. The microscopic model

We describe the microscopic model for cells belonging to two distinct species with an additional growth
process. The model introduced in [3], is a 2D individual based model which depicts two species of cells referred
to as type A and type B cells. The cells are represented by 2D-spheres located by their centers and interacting
with each others by creating and suppressing links via a random process with neighbouring cells located in a ball
of radius R from their centers. The links creation and suppression are supposed to follow Poisson processes of
frequencies νAAc , νBBc , νABc and νAAd , νBBd , νABd , where the subscripts c and d denote respectively ’creation’ and
’deletion’ and the superscripts denote respectively the intraspecies links (AA,BB) and interspecies links (AB).
Once created, the links generate a spring-like mechanical potential which depends on the type of interactions
(Figure 1). For instance in order to account for the effect of repulsion in the segregation phenomenon, the
amplitude of the potential generated by inter-species (heterotypic) links might be greater than the one generated
by intra-species(homotypic) links. Each cell is supposed to be animated by a two dimensional brownian motion
in order to describe its movement inside the tissue.
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Figure 1. Illustration of the cells interacting through the network of links

We stress the fact that the effects due to cell deformations are neglected. The description of the model is
restricted to two spatial dimensions. The set of type A and type B cells contains respectively NA and NB
individuals and the dynamic of their centers are described by points (XA

i , X
B
l ) ∈ R2 × R2, i ∈ {1, · · · , NA}, l ∈

{1, · · · , NB}. The intra-species links generate potentials ΦAA(XA
i , X

A
j ) and ΦBB(XB

l , X
B
m) and interspecies

links generate potentials ΦAB(XA
i , X

B
l ) and ΦBA(XB

l , X
A
i ) not necessarily symmetric. Those potentials incor-

porate the fact that the two particle families act differently on each other. Hence, particle motion between two
particles linking-unlinking events is supposed to occur in the steepest gradient descent of the total mechanical
potential: {

dXA
i = −µ∇XA

i
WA(XA, XB)dt+

√
2DAdBi, ∀ i ∈ {1, . . . , NA}

dXB
i = −µ∇XA

i
WB(XA, XB)dt+

√
2DBdBi, ∀ i ∈ {1, . . . , NB}

(1)

where µ > 0 is the mobility coefficient considered to be given and Bi is a 2-dimensional Brownian motion
Bi = (B1

i ;B2
i ) with intensity DA > 0 for specie A and DB > 0 for species B. We define WS the total potential

of the type-S particle, S ∈ {A,B}, as the sum over all pairwise link potentials acting on particles S:

WS(XS , XT ) =

KSS∑
k1=1

ΦSS(XS
i(k1), X

S
j(k1)) +

KST∑
k3=1

ΦST (XS
m(k3), X

T
l(k3)), (2)

where k1 and k3 refer to the indexes of intra-species link and inter-species link, respectively, and where each link
k1 (resp. k3) is associated with a unique pair of cell indexes (i(k1), j(k1)) ((m(k3), l(k3)) resp.). The potential
ΦST refers to the action a type T particle exerts on a type S particle while ΦTS is the action a type S particle
exerts on a particle of type T . All along the paper, we will consider Hookean-type potentials of the form:

ΦST (x1, x2) =
κST

2

(
|x1 − x2| −R

)2
.

The main extension in the model is the introduction of a cell birth and death process. Our modeling is
based on the birth and death process proposed in [7]. The idea is that a cell of the type S population has a
probability βS to divide into two cells and a probability δS to die at each time step. To introduce the spatial
logistic effect at the microscopic scale, we assume that the birth and death processes depend on the local density
of individuals divided by the local carrying capacity of the population:

βS(XS
i ) = bS0 − (bS0 − θS)

(
NR0

(XS
i )

N∗

)
, δS(XS

i ) = dS0 + (θS − dS0 )

(
NR0

(XS
i )

N∗

)
(3)
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where the coefficient NR0(XS
i ) is the number of cells (of both population) which centers are located at distance

R0 of XS
i and N∗ is the target number of cells in a ball of radius R0 and is referred to as the local carrying

capacity. The parameters bS0 and dS0 are respectively the intrinsic birth rate and death rate of an individual, the
parameter θS is the turnover, which is equal to the birth and death probabilities when the population reaches its
local population carrying capacity N∗. Note that θS must be taken in the range dS0 < θS < bS0 . The probability
for a cell to give birth or die within a small time step τ is respectively (see section ’Numerical results’ for more
details on the process):

τβ(XS
i ) or τδ(XS

i ). (4)

Remark Such a birth and death process has been shown to approach (in the limit of large number of particles)
a logistic equation, where the deterministic population growth rate is b0 − d0 (see [7] and references therein).
Therefore, the condition d0 < b0 is introduced to ensure the positivity of the deterministic growth rate.

2. The derivation of the macroscopic model

We study the main steps needed to perform the derivation of the macroscopic model from the microscopic
dynamics. Following [3], we are interested in a regime of fast linking-unlinking of the particles. To this aim, we
introduce an intermediate microscopic model in which the limit of fast linking/unlinking is considered for fixed
number of cells, and then derive the PDE associated with this microscopic dynamics.

2.1. The microscopic dynamics in the limit of fast linking/unlinking processes

We denote by Aij(t), Bij(t), Cij(t) the adjacency matrices of particles A, B, and cross-links A−B respectively.
In particular, for i, j ∈ {1, . . . , NA}, Aij(t) = 1 (resp. = 0) if particles of type A i and j are connected at time
t (resp. not connected). The definition of matrix B is similar. For i ∈ {1, . . . , NA}, j ∈ {1, . . . , NB}, Cij(t) = 1
(resp. = 0) if particle i of type A and particle j of type B are connected at time t (resp. not connected). A
and B are square symmetric matrices, and C is an NA ×NB rectangular matrix.

The derivation of the reduced microscopic model relies on averaging. The particles positions XA
i , X

B
j (t)

are slow processes, and the links Aij(t), Bij(t), Cij(t) are fast processes: they quickly converge to stationary

measures, which depends on the XA,B
i (t). We will then compute the evolution of XA,B

i by averaging the basic
dynamical equation (1) over these stationary measures of the links processes.

The process for the links writes

dAij(t) = −Aij(t)dNAA,d
ij (t) + [1−Aij(t)]χ|XA

i (t)−XA
j (t)|≤RdN

AA,f
ij (t) (5)

dBij(t) = −Bij(t)dNBB,d
ij (t) + [1−Bij(t)]χ|XB

i (t)−XB
j (t)|≤RdN

BB,f
ij (t) (6)

dCij(t) = −Cij(t)dNAB,d
ij (t) + [1− Cij(t)]χ|XA

i (t)−XB
j (t)|≤RdN

AB,f
ij (t) (7)

where the NAA,d
ij , NAA,f

ij , NBB,d
ij , NBB,f

ij , NAB,d
ij , NAB,f

ij , are independent Poisson processes, with rates respec-
tively

νAAd = ν̃AAd ε−2, νAAc = ν̃AAc ε−2, νBBd = ν̃BBd ε−2, νBBc = ν̃BBf ε−2, νABd = ν̃ABd ε−2, νABc = ν̃BBc ε−2,



ESAIM: PROCEEDINGS AND SURVEYS 5

where ε� 1. Conditionally on positions XA
i , X

B
j , all the processes Aij , Bij , Cij are independent. The stationary

measures of (5)-(6)-(7), for fixed positions XA
i , X

B
j are then simply product of Bernoulli measures:

P(Aij = 1) =
ν̃AAc χ|XA

i (t)−XA
j (t)|≤R

ν̃AAc + ν̃AAd
, P(Aij = 0) = 1− P(Aij = 1)

P(Bij = 1) =
ν̃BBc χ|XB

i (t)−XB
j (t)|≤R

ν̃BBc + ν̃BBd
, P(Bij = 0) = 1− P(Bij = 1)

P(Cij = 1) =
ν̃ABc χ|XA

i (t)−XB
j (t)|≤R

ν̃ABc + ν̃ABd
, P(Cij = 0) = 1− P(Cij = 1).

Defining:

Φ̃ST (x) =
κST

2

{
(|x| −R)2 for |x| ≤ R
0 for |x| > R

,

one can write the equations for the positions, averaged over the stationary measure for the links:

dXA
i = −µ

 ν̃AAc
ν̃AAc + ν̃AAd

NA∑
j=1

∇Φ̃AA(XA
i −XA

j ) +
ν̃ABc

ν̃ABc + ν̃ABd

NB∑
j=1

∇Φ̃AB(XA
i −XB

j )

 dt+
√

2DAdBAi (8)

dXB
i = −µ

 ν̃ABc
ν̃ABc + ν̃ABd

NA∑
j=1

∇Φ̃BA(XB
i −XA

j ) +
ν̃BBc

ν̃BBc + ν̃BBd

NB∑
j=1

∇Φ̃BB(XB
i −XB

j )

 dt+
√

2DBdBBi(9)

Notice that in this limit a particle interacts with all its neighbors at distance smaller than R with intensity

decreased by a factor
ν̃ST
c

ν̃ST
c +ν̃ST

d

≤ 1. Without loss of generality, we will now choose the time and space scales

such that µ = 1.

2.2. Macroscopic description of the intermediate model

As we would like to analyze the microscopic dynamics from a macroscopic point of view, we aim to derive
the PDE associated with the dynamics (8)-(9). The standard method is to consider the so-called empirical
distributions fA(x, t), fB(x, t) of the NA type-A and NB type-B cells respectively:

fA(x, t) =

NA∑
i=1

δ
(
x−XA

i (t)
)
, fB(x, t) =

NB∑
i=1

δ
(
x−XB

i (t)
)
, (10)

where {XA
i (t), XB

i (t)} are solutions of the dynamical system (8)-(9). To find the equations satisfied by the
empirical distributions, we integrate fA(x, t), fB(x, t) against a test function φ and take the time derivatives.
One deduces that if b0, d0, θS = 0 (without growth terms), fA(x, t), fB(x, t) satisfie (weakly) the following
equations:

∂tf
A = DA∆xf

A +∇x ·
(
fA∇x

(
Φ̄AA ∗ fA

))
+∇x ·

(
fA∇x

(
Φ̄AB ∗ fB

))
∂tf

B = DB∆xf
B +∇x ·

(
fB∇x

(
Φ̄BB ∗ fB

))
+∇x ·

(
fB∇x

(
Φ̄BA ∗ fB

))
, (11)

where the factors
ν̃ST
c

ν̃ST
c +ν̃ST

d

have been included in the potential functions Φ̄ST . Now, Eqs. (11) do not take into

account growth phenomena. According to the description at the beginning of the paper, our model describes
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cell birth and death according to a logistic growth-like process: given a type-S cell (S being either A or B) at
position x, its probability PS(x) to give birth to a new cell depends on the number of neighboring cells (type-A
or type-B) contained in a ball of center x and radius R0:

PS(x) = bS0 − (bS0 − θS)

∫
B(x,R0)

(
fA(y, t) + fB(y, t)

)
dy

N∗
,

where N∗ is the local population carrying capacity. Assuming that the detection radius is small, R0 � 1, one
can write: ∫

B(x,R0)

(
fA(y, t) + fB(y, t)

)
dy = πR2

0(fA(x, t) + fB(x, t)) +O
(
R6

0

)
.

Therefore, ignoring the higher order terms in R0, the number of new particles of type-S created at location x
during a time dt can be approximated by :

fS(x, t)

(
bS0 − (bS0 − θS)

fA(x, t) + fB(x, t)

f∗

)
dxdt,

where f∗ = N∗

πR2
0
. Similarly for the death process, the number of type-S particles which are destroyed during

time dt can be approximated by:

fS(x, t)

(
dS0 − (dS0 − θS)

fA(x, t) + fB(x, t)

f∗

)
dxdt.

Introducing these source terms into Eqs (11) and dropping the bars, one obtains:
∂tf

A = DA∆xf
A +∇x ·

(
fA∇x

(
Φ̄AA ∗ fA

))
+∇x ·

(
fA∇x

(
Φ̄AB ∗ fB

))
+ νAfA

(
1− fA+fB

f∗

)
∂tf

B = DB∆xf
B +∇x ·

(
fB∇x

(
Φ̄BB ∗ fB

))
+∇x ·

(
fB∇x

(
Φ̄BA ∗ fB

))
+ νBfB

(
1− fA+fB

f∗

)
,

(12)

where νS = bS0 − dS0 .
Remarks:

• We do not normalize the cell distributions (10) by NA, NB in order to keep the information of the total
number of cells. The total mass is essential at the cell level to determine the cell birth process. If
one would like to study the asymptotic limit NA, NB →∞, one would have to normalize the empirical
distribution by the number of cells and consider the limit R→ 0 (see [3]).

• It should be noted that the PDE model with non-normalized densities differs from the one derived in [3],
in which the number of links had to be kept proportional to the number of cells to enable the limiting
procedure to be well-defined. Here, because the PDE model is kept at the level of (large but) finite
number of particles, such assumption is not needed for the derivation.

3. Stability analysis

We first note that the non-trivial constant (homogeneous) steady states f̄A, f̄B such that

f̄A + f̄B = f∗, (13)

are solutions of the macrocopic equation given by Eqs. (12). In order to assess the stability of the homogeneous
steady states, we will perform a linear stability analysis using a perturbative approach. We will briefly comment
on the cases f̄A = 0 or f̄B = 0 (also steady-states of System (12)), but will mostly focus on the non-extinction
cases (f̄A, f̄B 6= 0).
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3.1. Stability of homogeneous steady states

In order to perform a linear stability analysis, we use perturbation terms and Fourier transform as done
in [3]. To this aim, we write:

fA = f̄A + fAε , fB = f̄B + fBε ,

and will ommit the ε for the sake of simplicity. Linearizing Eqs. (12) and taking the Fourier transform, we
obtain:

∂t

(
f̂A

f̂B

)
(y, t) = M(y)

(
f̂A

f̂B

)
(y, t), (14)

where M reads:

M(y) =

(
−|y|2(2πf̄AΦ̂AA(y) +DA)− νA f̄

A

f∗ −|y|22πf̄AΦ̂AB(y)− νA f̄
A

f∗

−|y|2f̄BΦ̂BA(y)− νB f̄B

f∗ −|y|2(2πf̄BΦ̂BB(y) +DB)− νB f̄B

f∗

)
. (15)

Note that system (14) has been obtained neglecting the perturbation terms of order two.
In the general case, the homogeneous steady states will be stable only if the real part of the eigenvalues of

the matrix M(y) are both negative, otherwise it will be unstable. Since we know that det(M(y)) = λ1 · λ2 and
tr(M(y)) = λ1 + λ2, with λ1(y), λ2(y) eigenvalues, the stability occurs only if:

det(M(y)) > 0 and tr(M(y)) < 0.

We first compute the trace of matrix M(y):

tr(M(y)) = −|y|2(2πf̄AΦ̂AA(y) +DA)− νA f̄
A

f∗
− |y|2(2πf̄BΦ̂BB(y) +DB)− νB f̄

B

f∗
. (16)

In what follows, we consider the following assumption as in [3] for the parameters:

Hypothesis 1. The intraspecies (or homotypic) links generate repulsive interactions, i.e κAA > 0 and κBB > 0.

We can easily note that under Hypothesis 1, the trace is always negative. Then we compute the determinant
of matrix M(y):

det(M(y)) = |y|4
[
(f̄A2πΦ̂AA +DA)(f̄B2πΦ̂BB +DB)− f̄Af̄B4π2Φ̂ABΦ̂BA

]
+

+ |y|2
[
νB

f̄B

f∗
(f̄A2πΦ̂AA +DA − f̄A2πΦ̂AB) + νA

f̄A

f∗
(f̄B2πΦ̂BB +DB − f̄B2πΦ̂BA)

]
.

(17)

The first part with term in |y|4 is exactly the determinant computed in [3] without logistic term. The second
one is due to the introduction of logistic growth.

As the Trace of M is always negative under Hypothesis 1, one observes that the constant steady states will
be unstable if ∆(M) < 0 only. From Eq. (17), it is clear that the interspecies potential intensities controlled by
parameters κAB , κBA must be large enough to allow the determinant to be negative. In order to quantify the
relative importance of interspecies potential parameters compared to the others (diffusion intensities, growth
rates, intraspecies potential intensities), we introduce a parameter s ∈ R+ such that κAB = sκ̃AB , κBA = sκ̃BA.
We consider the following hypothesis on heterotypic interactions:

Hypothesis 2. The interspecies (or heterotypic) links interactions are both repulsive , i.e κAB > 0 and κBA > 0.
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Following the same workflow and approach of [3], we can conclude that there exists a critical value s∗L for
s beyond which the homogeneous steady-states are unstable (corresponding to segregation between the two
families):

s∗L =
(24DA + cAAf̄A)νB f̄B + (24DB + cBB f̄B)νAf̄A

νB f̄BcAB f̄A + νAf̄AcBAf̄B
, (18)

with cSS =
2πκSSνSS

c R4

νSS
c +νSS

d

and cST =
2πsκ̃ST νST

c R4

νST
c +νST

d

, S 6= T ∈ {A,B}.
Note that in the case of the extinction of one population (f̄A = 0 or f̄B = 0), the model reduces to a one-

species diffusion equation, which converges in time towards a homogeneous distribution of the survivor species
(stable homogeneous state). In what follows, the analysis is carried out outside of this particular regime (i.e for
f̄A 6= 0 and f̄B 6= 0).

3.2. Characterization of the steady-states

It is noteworthy that the system’s segregation ability depends on the mass ratio of the two families. Indeed,
the critical value s∗L for which the two-particle system departs from the homogeneous distributions f̄A, f̄B

depends on their initial relative ratio. Intuitively, this corresponds to the fact that the amount of mechanical
forces exerted by a cell type on the other one must account for its relative mass compared to the other family, for
the system to enable cell segregation. In order to give more insights into this phenomenon, we here characterize
the stability of the steady states as function of their mass distribution, by studying the influence of the value
of s∗L as function of the masses f̄A, f̄B .

Using f̄B = f∗ − f̄A we rewrite s∗L as:

s∗L =
(νBcAA + νAcBB)f̄A(f∗ − f̄A) + (24DBν

A − 24DAν
B)f̄A + 24DAν

Bf∗

f̄A(f∗ − f̄A)(νBcAB + νAcBA)
, (19)

It is easy to check that under Hypothesis 1 and Hypothesis 2, lim
f̄A→f∗

s∗L(f̄A) = +∞ and lim
f̄A→0

s∗L(f̄A) = +∞,

meaning that the states corresponding to one dominant population are always stable (see previous remark).

We are looking then for the minimum of function s∗L, i.e the zero points of
∂s∗L(f̄A)

∂f̄A . After computation we

find only one minimum f̄Am in [0, f∗]:

• If DAν
B − νADB = 0, the minimum is f̄Am = f∗

2

• If DAν
B − νADB 6= 0, the minimum is given by:

f̄Am =
f∗(DAν

B −
√
DADBνBνA)

DAνB − νADB
. (20)

The minimum of function s∗L corresponds to the least stable steady state, i.e the steady state which requires
the least mechanical efforts to enable segregation between the two species. When the two populations have the
same ratio between diffusion and growth, the least stable configuration is the symmetric one. In Figure 2 we
report the plot of s∗L as a function of fA in the case DAν

B − νADB 6= 0 (blue curve) and DAν
B − νADB = 0

(orange curve). As mentioned before, we can see that for given values of the parameters, there exist stable
steady states corresponding to the case of a dominant population. For both set of parameters, we can observe
a large plateau value meaning that a large number of steady states are unstable beyond the same value of s.

3.3. Impact of the logistic growth on segregation

It is noteworthy that in the model without logistic growth mass is conserved, i.e the homogeneous state only
depends on the initial condition, while with logistic growth, the equilibrium state is determined both by the
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Figure 2. Value of s∗L as function of f̄A, for f∗ = 1, DA = DB , νA = 100νB (blue curve),
νA = νB (orange curve).

initial condition and by the birth/death parameters. Without logistic growth, we report the following critical
value s∗C of s beyond which the system produces segregation (see [3]):

s∗C =

[
576

cABcBAfAfB

(
DA +

cAAfA

24

)(
DB +

cBBfB

24

)] 1
2

. (21)

As previously noted, both critical values s∗C , s
∗
L are markers of instability and we will discuss some simulations

to compare them. As remarked in [3], as diffusion and intra-species repulsion tend to homogenize the system,
then the inter-species repulsion forces must be large enough to compensate these phenomena and produce
segregation. Thanks to the stability analysis, we can observe and conclude that the logistic growth can either
support or repress cell segregation, depending on the choice of the parameters. The segregation is viewed as a
breakdown of stability caused by changes in the parameters which characterize the system.

In the next section we will discuss some numerical simulations on the agent-based model to explore numerically
the results provided by the stability analysis. If not otherwise stated, the parameters of the simulations are the
ones summarized in Table 1. We will explore different parameter regimes:

• case s∗C < s∗L: If s is such that s < s∗C , both model should converge towards a homogeneous state
(mixing of the two families). If s ∈ (s∗C , s

∗
L) the model without growth should segregate the two cell

types (instability of the homogeneous state), while the model with logistic growth should maintain a
homogeneous state. Finally for s > s∗L, cell segregation should be observed for both models.

• case s∗C > s∗L. Values of s such that s > s∗C should produce segregation of the two families for both
models, while for s < s∗L the system should converge towards homogeneous steady states for both
models. For s chosen in the range (s∗L, s

∗
C), the model without growth should create homogeneous state

while the model with logistic growth should segregate the two families.

4. Numerical scheme

We perform numerical simulations of the microscopic model as done in [3] following scheme in [2], on a
2D domain [−L,L] × [−L,L] = [−7.5, 7.5]2 with periodic boundary conditions. We set diffusion constants
DA = DB = 10−4 and investigate different values of inter- and intra- species intensities such as κAA, κBB , κAB =
sκ̃AB , κBA = sκ̃BA. For each equation of system (1) we have the following time discretization:

Xn+1
i = Xn

i −∇Xi
W (Xn)∆tn +

√
2D∆tnN (0, 1) (22)
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Parameters Description Values
L Length related to periodic square demain 7.5
NA Number of A-type particles 500
NB Number of B-type particles 500
µ Motility coefficient 1
DS Diffusion coefficient 10−4

κAB Interspecies (or heterotypic) interaction intensity s
κBA s
κAA Intraspecies (or homotypic) interaction intensity 4
κBB 1
R Radius of interaction (link repulsion) 1
R0 Logistic radius 1.5
r Maximal distance of a daughter cell to her parent 1.5

N∗ Local population carrying capacity
500πR2

0

4L2

νA Logistic growth rate for the A cells 5.10−4

νB Logistic growth rate for the B cells 5.10−3

Table 1. Parameters and values used for the simulations of the microscopic model

N (0, 1) is the normal distribution with mean 0 and standard deviation 1.
The logistic growth is modelled via independent Poisson processes of position-dependent frequencies βS(Xi)
and δS(Xi) for birth and death respectively. The probability of a cell to divide and/or die between time steps
t and t+ ∆t is given by: {

P(cell i divide) = 1− exp−max(0,βS(Xi)∆t)

P(cell i die) = 1− exp−max(0,δS(Xi))∆t,

where the rates βS and δS are computed thanks to (3). All simulations are performed with parameters bS0 =
4νS

3 , dS0 = νS

3 and dS0 < θS = νS < bS0 for S = A,B. Note that these parameters are chosen such that the

macroscopic logistic rate νS = bS0 − dS0 . For each dividing ’parent’ cell j, the ’daughter’ cell is supposed to be
born at a distance randomly chosen in B(Xj , r), where we chose r = 1.5 from her parent.

Finally, we ensure that only one birth/death event happens between time t and t+ ∆t by choosing the time
step ∆t� 1

max(νA,νB)N
, where N is the maximal number of particles between family A and B.

We consider a periodic domain randomly filled with NA = NB = 500 cells initially and we fix κST for S and
T such as given in table 1. For such values, the critical value s∗C of s beyond which the system without logistic

growth aggregates is s∗C ≈ 2.1. We consider different logistic rates but we keep the ratio νB

νA = 10 such that
the critical value s∗L of s beyond which the model with logistic growth should produce aggregates is around
s∗L ≈ 3.8. For each regime, we therefore explore the cases:

• s = 1.5 : both the original model and the one with logistic growth should produce homogeneous steady
states

• s = 2.5 : the original model should produce an aggregated steady state while the one with logistic
growth is expected to produce a homogeneous one.

• s = 4 : both the original model and the one with logistic growth should produce aggregated steady
states.

In Fig. 3, we show the results of the simulations at time t = 20000, without logistic growth (left column)

and with logistic growth for five different values of νB (keeping the ratio νB

νA = 10 constant, columns two to six:

νB = 10−3, 2.10−3, 5.10−3, 10−2, 0.1). For each regime, we consider the cases s = 1.5, s = 2.5, s = 4.
As one can observe in Fig. 3 column 1, the microscopic model without logistic growth is in good accordance

with the predictions of the stability analysis of the macroscopic model since we observe aggregates for s =
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Figure 3. Results of the microscopic model at time t = 20000, without logistic growth (left

column) and with logistic growth for five different values of νB (keeping the ratio νB

νA = 10

constant, columns two to six: νB = 10−3, 2.10−3, 5.10−3, 10−2, 0.1). For each regime, we
consider the cases s = 1.5, s = 2.5, s = 4. Cells of family B are represented in green, cells of
family A in red.

2.5, 4 and a homogeneous steady-state for s = 1.5. When activating the logistic growth, one can observe a
homogeneous steady-state for s = 1.5 and aggregated steady states for s = 4 provided the frequencies of the
logistic growth are small enough (columns 2-4). For s = 2.5, a better mixing of the two populations seems to
be observed compared to the case without logistic growth (compare line 2, columns 2-4 to column 1), but the
system for s = 2.5 still shows segregation abilities (compare lines 1 and 2). These observations are quantified
below. It is noteworthy that for large values of νB (columns 5,6), one can observe at time t = 20000 the
extinction of family B. This suggests that a fast logistic growth process can lead to the complete extinction of
one specie. Note that this case was excluded from the stability analysis and the analysis close to this equilibrium
state will be the subject of future work.

In order to quantify better the aggregation abilities of the system at equilibrium, we follow the steps of [3] and
define a quantifier Q which measures the segregation amount between the two families using image processing
tools. To this aim, given a RGB numerical image, we define the quantifier Q as the number of mixed red and
green pixels (pixels which have non zero red and green components), normalized by min(Pg, Pr) where Pg, Pr
are the total number of pixels with a non zero green component (resp. red component). Thus defined, Q = 1
describes a homogeneous state (perfect mixing of the two families), while Q� 1 for separated phases. Note that
because of the normalization, Q does not give a measure of the size/shape of the aggregates. This quantifier
only enables to distinct between mixed or separated phases.

In Fig. 4, we show the values of Q as function of the time for three different values of the inter-species
repulsion intensities s = 1.5 (green curves), s = 2.5 (blue curves) and s = 4 (orange curve), for NA = NB = 500
initially. For each case, we consider the case with no logistic growth (continuous lines), with logistic growth for
νB = 10−3, νA = 10−4 (round markers) and νB = 5.10−3, νA = 5.10−4 (diamond markers). As one can observe,
the value of Q decreases as s increases for all the regimes considered, with Q ≈ 1 for s = 1.5 (green curves) and
independently of the activation of the logistic growth. For s = 2.5 (blue curves), we observe that the value of Q
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Figure 4. Values of the quantifier Q as function of time for NA = NB = 500 cells initially,
for three different values of the inter-species repulsion s = 1.5 (green curves), s = 2.5 (blue
curves) and s = 4 (orange curve), for NA = NB = 500 initially. For each case, we consider the
case with no logistic growth (continuous lines), with logistic growth for νB = 10−3, νA = 10−4

(round markers) and νB = 5.10−3, νA = 5.10−4 (diamond markers).

increases as we increase the logistic growth rates, and we recover the predicted homogeneization of the logistic
growth for sufficiently large values of νB , νA. If the logistic growth rate is too small (νB = 10−3, νA = 10−4), the
system still shows some clustering for s = 2.5 and N = 500 (see the blue curve with round markers). For s = 4
(orange curves), the system produces segregated patterns independently on the logistic growth, as predicted by
the stability analysis.

We note that increasing the total number of particles NA + NB (and adapting the parameter N∗ such
that NA +NB corresponds to the equilibrium number of particles) leads to better correspondence between the
numerical results and the states predicted by the stability analysis in the macroscopic model. As an illustration,
we show in Fig. 5 the case νB = 5.10−3, νA = 5.10−4 for N = 500 and N = 1000, where the structures observed
at t = 20000 for s = 2.5 seem to be closer to a homogeneous state for N = 1000 than for N = 500. In Fig. 6,
we show the values of Q with NA = NB = 1000 particles initially, for three different values of s: s = 1.5 (green
curves), s = 2.5 (blue curves), s = 4 (orange curves) as function of the time without logistic growth (continuous
lines) and with logistic growth for νB = 5.10−3, νA = 5.10−3 (diamond). By comparing the diamond marked
curves of Fig. 6 to the ones of Fig. 4, one can observe a better prediction and stability of the patterns in time
for N = 1000 compared to N = 500.

Finally in Fig. 7, we show the evolution of the normalized number of cells NA

NA+NB
(black curves) and NB

NA+NB

(colored curves) as function of the time for νB = 10−3 and νA = 10−4, and different values of s: (I) for s = 1.5,
(II) for s = 2.5 and (III) for s = 4. As one can observe in Fig. 7, in the stable cases s = 1.5 and s = 2.5,
the fraction of cells reaches the equilibrium value corresponding to the predicted distribution given by Eq.
(20). For s = 1.5, 2.5, the system stabilizes around 35% of type B cells and 65% of type A cells, while in the
unstable case s = 4 the number of cells seems to oscillate around the initial ratio 50% for each family. Note that
these large stochastic oscillations around the mean could be analogue to the ones reported in [5]. In [5], the
authors report stochastic fluctuations in a non-spatial model of two competing species submitted to a logistic
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Figure 5. Case νB = 5.10−3, νA = 5.10−4 for N = 500 (top line) and N = 1000 (bottom line

Figure 6. Values of the quantifier Q as function of time for NA = NB = 1000 cells initially, for
three different values of the inter-species repulsion s = 1.5 (green curves), s = 2.5 (blue curves)
and s = 4 (orange curve), for NA = NB = 500 initially. For each case, we consider the case with
no logistic growth (continuous lines), and with logistic growth for νB = 5.10−3, νA = 5.10−4

(diamond markers).

growth. They show that giant fluctuations (the variance being of order of the mean squared) in the number of
individuals are obtained if the growth rates of the two families are of the same order, and that in this regime
the deterministic equation must be abandoned and a stochastic treatment used instead. By introducing spatial
mechanical interactions, we believe that the logistic regime, for which fluctuations are expected, is shifted and
plays a role when the logistic growth balances the mechanical forces. Here, even for νB = 10νA, we still observe
fluctuations in the number of cells when we are slightly after the transition value for the mechanical interactions.
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(I) (II) (III)

Figure 7. Evolution of the normalized number of cells of each family NA

NA+NB
(black curves)

and NB

NA+NB
(colored curves) as function of the time for νB = 10−3 and νA = 10−4 and different

values of s: (I) for s = 1.5, (II) for s = 2.5 (stable cases) and (III) for s = 4 (unstable case).

5. Conclusion

We have proposed a theoretical and numerical study of a cell division process in a cell aggregation model.
The modeling is based on a multiscale approach, from a microscopic model to a macroscopic description of a
system of particles interacting through a dynamical network. The model describes point particles with local
cross-links modeled by springs that are randomly created and destructed. In the mean field limit, the link
density distribution becomes a local function of the particle distribution density, evolving on a slow time scale
through a McKean-Vlasov equation. We introduced the cell division process through a logistic growth on the
macroscopic model and a birth-death process at the microscopic scale.

The linear stability analysis of the macroscopic model gives access to a criterion on the ratio between het-
erotypic and homotypic repulsion to ensure the formation of clusters. This criterion involves the logistic growth
rate and it is compared to the case of a population with fixed size. Interestingly, the theoretical stability anal-
ysis of the macroscopic model showed that introducing a logistic growth term in this cell repulsion-diffusion
model can either repress or promote segregation. Indeed, we have shown that the size of the parameter zone for
which the homogeneous state is stable depends on the logistic growth parameters, and it can be increased or
decreased by choosing the parameters appropriately. The mechanisms can be summarized as follows: Consider
a system of two types of particles where heterotypic repulsion forces dominate homotopic forces and diffusion,
such that we observe the segregation of the two families in the case of populations of fixed sizes. Close to the
transition zone (where the heterotypic forces are close to the critical value), the system can be homogenized by
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introducing a logistic term where the compressed family cell renewal is larger than the one of the predominant
family. Enabling the clustered cells to be renewed at the border of the clusters faster than the compressing
family leads to a spread out of the clustered family and the overall system converges towards a homogeneous
(mixed) state.

In order to validate the theoretical analysis, we performed numerical simulations of the microscopic model
which showed a good correspondence with the analysis of the macroscopic model, provided that the parameters
are chosen in the right regime. The numerical results showed that for sufficiently large initial number of cells and
sufficiently slow logistic growth compared to the time scale of the mechanical interactions, we could recover the
homogenization via logistic growth as foreseen by the stability analysis. In time, the system converged towards
the predicted value of cell distributions, which showed that the macroscopic model is a good approximation of
the microscopic dynamics as the number of cells increases.

Since this work was a first attempt to introduce a logistic term -both at the microscopic/stochastic level and
at the macroscopic one- in a system of mechanically interacting particles, several questions remain unanswered
and require further investigations. For instance, from a theoretical viewpoint, the rigorous derivation of the
macroscopic model is still an open problem. This will require precise estimates depending on the size and
number of cells. On the numerical viewpoint, more work is needed to better understand the interplay between
the mechanical interactions and the logistic growth in the regime of fast logistic growth. A deeper parametric
analysis is needed to better capture the link between the stochastic growth process and its deterministic approx-
imation. Future works will aim to perform the numerical comparison between the macroscopic and microscopic
model.

Acknowledgements

The work presented in this paper is the result of a fruitful collaboration that took place during the CEMRACS
2018, organized by Vincent Calvez (Institut Camille Jordan, CNRS, Univ. Lyon 1) Celine Grandmont (Equipe
projet Reo et LJLL, Inria Paris et Sorbonne Univ), Eva Locherbach (Departement de Mathematiques, Univ. de
Cergy Pontoise), Clair Poignard (Equipe Projet Monc et IMB, Inria Bordeaux et Univ. de Bordeaux), Magali
Ribot (Institut Denis Poisson, Univ. d’Orleans), Nicolas Vauchelet (Laga, Univ. Paris 13). This work was
supported by the European Research Council (ERC) under the European Union s Horizon 2020 research and
innovation program (grant agreement No 740623).

References
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