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Abstract8

This work regards the design of optimization techniques for the purposes of state estimation and

control in the framework of inland waterways, often characterized by negligible bottom slopes and

large time delays. The derived control-oriented model allows these issues to be handled in a suitable

manner. Then, the analogous moving horizon estimation and model predictive control techniques

are applied in a centralized manner to estimate the unmeasurable states and fulfill the operational

goals, respectively. Finally, the performance of the methodology is tested in simulation by means

of a realistic case study based on part of the inland waterways in the north of France. The results

show that the proposed methodology is able to guarantee the navigability condition, as well as the

other operational goals.

Keywords: Inland waterways, control-oriented modeling, model predictive control, moving9

horizon estimation, time-delay systems.10

1. Introduction11

Inland waterways are large-scale systems, composed of natural rivers and artificial canals,12

used mainly for transportation of passengers and freight. Indeed, fluvial transport constitutes13

an environmentally-friendly alternative to the traditional rail and road transport modes [1]. In14

order to facilitate the study of such systems, they are usually decomposed into reaches, which are15

parts of a stream of water between two hydraulic structures such as gates or locks. Reaches are16
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usually characterized by negligible bottom slopes, and therefore the backwater effect becomes of17

increasing importance. This effect takes place at the downstream hydraulic structure of a canal:18

when the water waves impact upon the structure, the water can flow back to the upstream end,19

resulting in a back-and-forth mass transport known as the resonance phenomena. Other applica-20

tions in the framework of free-surface water systems (e.g., sewage systems, irrigation and drainage21

canals) are generally not affected by the backwater effect. On the other hand, the dynamics of22

inland waterways are rather slow, which translates into large time delays in the network. These23

two features, typical of inland navigation networks, complicate its management.24

Inland waterways management aims at allocating the available water resources to meet the25

desired objectives. The most important goal nonetheless consists in guaranteeing the navigability R3.626

condition, i.e., ensuring that the water levels are such that vessels can travel safely. Indeed, a27

setpoint is defined for each reach, known as the Normal Navigation Level (NNL). The objective28

is to keep the water levels as close as possible to the setpoints. In addition, upper and lower29

level bounds known as the Lower and Higher Navigation Levels (LNL and HNL, respectively) are30

determined around the setpoint, thus defining the navigation rectangle. If the water level of a reach31

is outside of the rectangle, the navigability condition can no longer be guaranteed. Other common32

objectives regard, for instance, minimizing the operational cost and ensuring a long lifespan of the R1.133

actuators, e.g., gates, weirs, pumps and valves.34

Inland waterways are large-scale, complex systems affected by some phenomena that are not R3.1735

easy to account for, e.g., demands, uncontrolled inputs, rainfall and seepage, and thus it is not easy36

to assume that the water levels remain within the bounds in the absence of a control strategy. This37

fact motivates the design of monitoring and control approaches for inland waterways. Therefore, a38

suitable control policy is needed in order to fulfill the objectives. Optimal control techniques have39

been investigated for a long time to this end. In particular, Model Predictive Control (MPC) has40

received a lot of attention due to its adequacy to deal with these kinds of problems. Its underlying41

principle consists in using a dynamic model of the process to predict the effect of manipulable42

inputs, subject to operational restrictions, so that the performance of the plant is optimal regarding43

the chosen criteria. Its ease of understanding and application has fostered its use in many different44

domains. In the framework of water systems, MPC has also been widely used. For instance, in45

[2] it was applied at regional and national scales to protect against high river flows and sea tides,46
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to ensure navigation and to supply water during dry periods. This technique was also employed47

in [3], using a coalitional approach to find the best compromise between communication costs and48

control performance for irrigation canals. The combined water supply and navigability of river49

systems was tackled using MPC in [4, 5]. A nonlinear economic MPC was designed in [6] for water50

distribution networks, aiming at minimizing the economic costs associated to water treatment and51

pumping. A comparison of non-centralized MPC strategies for irrigation canals was carried out in52

[7], validating the benefits of cooperative control.53

The use of MPC requires the vector of states to be known at current time. This information is54

used as the starting point to compute the set of control actions that must be applied during the55

future horizon. In general, the measurements of all states are not available, and thus estimates56

of unmeasured states must be provided to the MPC using observers. Although there exist many57

possibilities to estimate the states, this work employs the Moving Horizon Estimation (MHE),58

which is considered as the dual problem of MPC. Their combination is especially attractive since59

the MHE formulation corresponds also to an online optimization problem that can explicitly handle60

constraints [8]. Unlike MPC, this estimation technique started receiving wider attention only in61

the recent years [9]. Indeed, the combination of MPC and MHE has been applied in diverse fields62

such as autonomous agricultural vehicles [10], unmanned aerial vehicles [11], preventive sensor63

maintenance [12], airborne wind energy systems [13] and blood glucose regulation [14]. Concerning64

water systems, the combination of these techniques is not so common, although it has been used65

for flood prevention in rivers [15] and pollution mitigation for combined sewer networks [16].66

Summary of the paper and contribution67

This work regards the development of MPC and MHE for inland waterways, aiming not only at68

guaranteeing the navigability condition of the network, but also at ensuring the rest of operational69

goals, linked to optimizing the control effort and reducing wear and tear of the equipment. The70

first steps, although focusing only on the controller design and leaving aside the topic of state71

estimation, were carried out in [17]. Since a model of the process is at the core of MPC and MHE,72

a control-oriented methodology based on the classical Integrator Delay Zero (IDZ) model [18] is73

also developed. This new modeling formulation takes into account the challenging features of these74

kinds of systems, and provides flexibility in terms of adding reaches to or removing them from the75

case study.76
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The contributions of this work to the current state of the art are listed below: R3.177

• Inland waterways are large-scale systems with slow dynamics, which result in large time78

delays. A common approach to model a system with delays consists in augmenting the79

system with more states, with as many new states as delayed samples the system exhibits80

[19]. Thus, the time delays have a direct influence on how large the resulting augmented81

system is. By contrast, this paper proposes a delayed representation by means of additional82

matrices where this augmentation procedure is not necessary.83

• In order for distribution networks such as inland waterways to be completely described, it84

is not enough to represent their dynamic behavior. Indeed, these systems are only fully85

described when their static behavior is characterized. In the case of inland waterways, the86

mass balances at the junctions must be satisfied. This leads to a model representation87

that falls under a particular family of systems known as descriptor or differential-algebraic88

systems. The classical control theory was originally formulated for dynamic systems (without89

the static part), and these results are usually more involved for descriptor systems.90

• Therefore, this paper proposes a new model formulation for inland waterways, for which the91

use of first principles yields a delayed descriptor formulation. These two features cause that92

the resulting model cannot be represented using the standard state-space formulation. To93

the best of the authors’ knowledge, the formulation derived in this work constitutes a novel94

result.95

• In addition, although this work employs only one linear model (this fact is duly justified in96

Section 3.4), the extension to a linear-parameter varying (LPV) formulation is rather direct97

using the results in [20], which allows to retain the nonlinear behavior of the system in the98

necessary cases.99

• Standard tools for control and state estimation such as the Linear Quadratic Regulator100

(LQR) and the Kalman filter need to be extended to deal with delayed descriptor systems.101

Moreover, they cannot deal with input and state/output constraints. This work proposes102

instead the combined use of MPC and MHE, which can be easily adapted for this model103

formulation. Furthermore, constraints on the inputs and the states/outputs are dealt with by104
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these techniques in a natural manner. The review of the literature shows that the combination105

of MPC and MHE for delayed descriptor systems, especially in the field of open-flow water106

systems, is a novel approach.107

The rest of the paper is organized as follows: Section 2 introduces the general waterway man-108

agement problem. The control-oriented model is derived in Section 3. The MPC and MHE opti-109

mization problems are designed in Section 4. The proposed methodology is tested in Section 5 by110

considering a realistic case study, based on the inland navigation network in the north of France.111

Finally, Section 6 draws conclusions and outlines future steps.112

Notation113

Throughout this paper, let Rγ denote the set of column real vectors of length γ, and let R≥0114

denote the set of real non-negative scalars. Scalars are denoted by either lowercase or uppercase115

letters (e.g., α, a and A); vectors, by bold lowercase letters (e.g., a and b); and matrices, by bold116

uppercase letters (e.g., A and B). Furthermore, all vectors are column vectors unless otherwise117

stated, 0 denotes a zero column vector of suitable dimensions and Iδ denotes the identity matrix118

of dimension δ. Transposition is denoted with the superscript ᵀ, and the operators <, ≤, =, ≥ and119

> denote element-wise relations of vectors.120

2. The waterways management problem121

As mentioned before, the management of inland waterways aims at ensuring that the trans- R3.3122

portation of passengers and freight is carried out safely. To guarantee seamless transport chains,123

the water levels must be kept inside the navigation rectangle. Furthermore, it is important that124

the water resources are dispatched in an optimal manner, i.e., minimizing their losses.125

To this end, cross structures are operated in the waterways to regulate the levels of the reaches.126

In particular, this work considers two kinds of structures: undershot gates and sharp crested weirs.127

An undershot gate is a bottom opening in a wall, whose height can be regulated. Conversely, in128

the case of a weir, the water flows over its crest, whose elevation is also adjustable. A schematic129

representation of an undershot gate and a weir is given in Fig. 1, and their equations are given in130

Appendix B1. Note that q is the flow through the cross structure, u is the opening/elevation, and131

y1 and y2 are the upstream and downstream water levels, respectively.132
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Figure 1: Water level regulation with: (a) an undershot gate. (b) a sharp crested weir.

A two-level control architecture is typically considered in this environment [4]: the global control133

level (represented by the MPC) determines the setpoints and sends them to the local controllers134

available at each control structure. In turn, these local controllers are in charge of ensuring that135

the adequate flows are supplied through the actuators. However, this work deals only with the136

global control level, thus assuming that the local controllers are able to perform as desired.137

The control strategy must also reject the disturbances that affect the system and interfere138

with the control objectives. In the framework of inland waterways, these disturbances refer to the139

request of lock operations by the boat masters. Indeed, boats navigate along the network until their140

final destination, probably along several reaches in their way. The access from one reach to the141

adjacent one is granted by means of locks, which typically consist in enclosures that enable boats142

to overcome the difference in elevation between the reaches. Lock operations require large water143

volumes to be withdrawn from the origin reach, which are then discharged into the destination144

reach. The reason for considering lock operations as disturbances is that they cannot be postponed145

for a long time from the moment a boat reaches a lock, and it is therefore not possible to schedule146

them in an optimal manner.147

Figure 2 depicts a navigation canal consisting of three reaches, separated from one another by148

cross structures. The red solid arrows represent uncontrolled inputs and outputs such as natural149

bifurcations. On the other hand, the green dashed arrows indicate the flows generated due to the150

lock operations. Finally, the blue dotted arrows represent controlled actions, carried out by gates151

and weirs in order to regulate the water levels. Notice that the locks are often built next to a152

control structure.153
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Figure 2: Navigation canal and its water-resource exchanges

3. Control-oriented modeling154

An inland waterways model can be regarded as composed of a set of elements, which are intro-155

duced and described below. Note that the physical nature of the variables, e.g., water levels, flows,156

openings and elevations, as well as other elements in the waterways, constrain the performance of157

the system.158

3.1. Actuators159

Gates and weirs are used to regulate the water levels in the reaches. Discharges and open-160

ings/elevations can be used in the automated control of canals, as shown in Fig. 1. The global161

control level must compute the optimal action and send it to the slave controller that operates162

the gate or weir. If the discharge is used as the control variable, the slave controller must convert163

the given discharge into an equivalent opening or elevation, which is not as straightforward as164

inverting the discharge equation [21]. Furthermore, choosing the openings and elevations allows to165

link them with the local discharges and the upstream and downstream water levels at the struc-166

ture, thus taking into account such complex dynamics [22]. For these reasons, the openings and167

elevations are chosen as control variables in this work. The conversion is carried out following the168

methodology described in [23], which basically consists in using linearized equations that describe169

the relationship between openings and discharges.170

These elements have lower and upper operating limits171

um ≤ umk ≤ um , m = 1, ..., Nm , (1)

where um and um are the lower and upper opening/elevation limits of the m-th actuator, and Nm172
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is the total number of actuators in the system.173

The type of flow at the structure determines the general linearized equation to be used:174

• The free-flow case is characterized by critical or super-critical flow at the structure, which175

overrides the effect of the downstream water level on the gate discharge. The linearized176

expression reads as177

q
(1)
2 (s) ≈ q(2)1 (s) = k(1)y y

(1)
2 (s) + kuu(s). (2)

• The submerged flow case is characterized by sub-critical flow at the structure. In this case,178

the discharge is affected by the downstream water level:179

q
(1)
2 (s) ≈ q(2)1 (s) = k(1)y y

(1)
2 (s) + k(2)y y

(2)
1 (s) + kuu(s). (3)

In both cases, q
(1)
2 is the inflow of the structure at the downstream end of reach 1, q

(2)
1 is the180

outflow of the structure at the upstream end of reach 2, y
(1)
2 is the water level upstream of the181

structure, y
(2)
1 is the water level downstream of the structure, u is the opening/elevation and k

(1)
y ,182

k
(2)
y and ku are the coefficients obtained in the linearization of the nonlinear equations of the gates R3.4183

and weirs, given by (32).184

3.2. Disturbances185

Systems and processes are usually affected by disturbances, denoted in this work by dk. There-186

fore, the control strategy must minimize their effect on the system. As mentioned in Section 2,187

these disturbances correspond to lock operations, which makes it more difficult to stay close to the188

setpoints. Although lock operations are rather unpredictable and cannot be postponed for a long189

time, they can be somewhat anticipated. Indeed, when a boat passes through a lock, its manager190

informs the rest of the managers. In this way, the arrival time of the boat to the adjacent locks191

can be predicted, taking into account the distance and the average speed of the boat, which yields192

a close approximation, with an error of only several minutes. This allows the lock managers to193

elaborate lock operation time-series profiles ahead of time.194
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3.3. Nodes195

Inland waterways are characterized by distributaries, i.e., streams that branch off from the main196

stream and flow away. When water streams flow into larger streams or lakes, they are referred to197

as tributaries. The locations in which these splittings and mergings take place are called nodes.198

They are regarded as mass balance relations modeled as equality constraints given by:199

0 = Euuk + Eunuk−n + Eddk + Edndk−n. (4)

Matrices Eu and Eun have as many rows as nodes are in the studied system, and as many R2.5200

columns as controlled inputs are available. Therefore, each equation in (4) establishes a link201

among the variables involved (mass balance at the node), and thus reduces one degree of freedom.202

Note that both the controlled inputs and the disturbances have an immediate and a delayed effect203

on the system. The delayed effect must be taken into account at the controller and estimator204

design stages. This issue is conveniently addressed in Section 4.205

3.4. Reaches206

An accurate mathematical representation of the dynamics of inland waterways is required in207

order to apply the MPC and MHE techniques. Indeed, a model of the system is needed in the208

control design stage to compute the predicted output at future time instants. Likewise, it is used209

to align measured and predicted values of the process, which results in the optimal state estimates.210

Therefore, a special effort has to be put in the computation of a precise model.211

The Saint-Venant nonlinear partial differential equations allow the accurate representation of212

the dynamics of open-flow water systems [24]. However, the lack of a general analytical solution,213

as well as their extreme sensitivity to geometry errors and unmodeled dynamics, render them inad-214

equate for control purposes. The nonlinear behavior can be retained, for instance, by considering R1.2215

LPV models, which describe a class of nonlinear systems that can be modeled as parametrized lin-216

ear systems, each of them designed at a different operating point (average flow along the canal). A217

simpler solution is to use only one linear model (obtained by linearizing the original Saint-Venant218

equations around an operating point and considering simplifying assumptions), provided that a219

single operating point is enough to describe the system dynamics. Examples of linearized models220

are the Integrator Delay (ID) model [25], the Integrator Delay Zero (IDZ) model [18], the Integrator221
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Resonance (IR) model [26], and grey-box [27] and black-box [28] models. Given that the average R1.4–R1.7222

flows in this work do not deviate too much from the operating point, it is not necessary to resort223

to nonlinear modeling strategies such as LPV models. Instead, it is enough to consider one linear224

model. Although the IR model might appear as the most suitable option since it explicitly takes225

into account the resonance phenomena, the IDZ model is chosen over the IR model for a number226

of reasons. First, the reflecting waves in the resonance phenomena are especially predominant in227

short and deep channels. Instead, the navigation reaches considered in this work are rather long.228

Moreover, the IDZ model has proved to perform well when used for control purposes for these229

kinds of systems [29].230

The IDZ input-output model links the discharges and the water levels at the boundaries of a231

reach and is given by:232

y1(s)
y2(s)

 =

p11(s) p12(s)

p21(s) p22(s)


︸ ︷︷ ︸

P

q1(s)
q2(s)

 , (5)

where the subscripts 1 and 2 indicate the initial (upstream) and final (downstream) ends of the R2.3233

reach, y1(s) and y2(s) are the upstream and downstream water levels, q1(s) and q2(s) are the234

upstream inflow and downstream outflow, and pij(s) are the different IDZ terms235

pij(s) =
zij · s+ 1

Aij · s
e−τij ·s. (6)

Remark: In this work, q1(s) ∈ R≥0 and q2(s) ∈ R≥0. However, the latter is an outflow, which236

means that it causes the water levels to diminish. Therefore, p12(s) and p22(s) are negative. R2.1237

As it can be seen in (6), the IDZ model contains an integrator whose gain is given by 1/Aij , a R2.1238

time delay τij and a zero given by −1/zij , for i, j = {1, 2}. The system can be characterized by239

two different behaviors in the frequency domain. In low frequencies, the behavior of the system is240

similar to a tank that is being filled and/or emptied. In this situation, the integrator gain and the241

time delay have a predominant role. The former reflects how the volume changes according to the242

water level variation, whereas the latter expresses the minimum time that a perturbation requires243
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to travel from one end of the canal to the other one. Two different time delays are defined:244

τ12 =
L

Cw − V
,

τ21 =
L

Cw + V
.

(7)

Equation (7) corresponds to the case in which both the wave celerity Cw and the wave velocity245

V are constant. More precisely, the celerity is defined as the relative velocity of a wave with R1.3246

respect to the fluid in which it travels, whereas the velocity measures the variation of the particles’247

position of a fluid with respect to time. In particular, τ21 is measured from the upstream end to the248

downstream end, while τ12 is measured in the inverse direction. Note also that τ11 = τ22 = 0, since249

the discharges are assumed to have an immediate effect at the locations where they take place.250

On the other hand, the high frequency phenomena is approximated by the zero of pij(s). More251

specifically, its constant gain approximates the oscillating modes caused by the gravity waves,252

which are predominant in the high frequencies.253

The parameters of the first equation in (5) are linked to the upstream water level, while those254

in the second equation are linked to the downstream water level. The notation of the parameters255

is modified based on this fact, and is as follows: A11 = A12 = Au, A21 = A22 = Ad, τ12 = τu and256

τ21 = τd. Note also that the complete model is taken into consideration. Indeed, it is common257

practice to design only downstream water level controllers [18]. Instead, the full model allows to258

take into account the backwater effect in the upstream water level, which is of relevance due to the259

negligible bottom slope of the reaches.260

The navigability condition restricts the water levels in the reaches. This constraint might be261

relaxed for a short period of time, depending on factors such as the weather condition. Thus, a262

relaxation parameter αααk is considered in the constraint, and a quadratic penalty on this parameter263

is included in the objective function.264

The navigability condition is formulated as265

y
r
−αk ≤ yk ≤ yr + αk, (8)

with y
r

and yr the lower (LNL) and upper (HNL) bounds of the NNL values, respectively. These266
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relaxation parameters αk must satisfy267

αk ≥ 0. (9)

Figure 3 depicts a waterway composed of several reaches for a better understanding of the R2.2268

variables introduced to formulate the problem, and how they are linked to one another. Note that269

the locks are not depicted in this figure, but their operations are indicated using the variable d, as270

defined in Section 3.2.271

Remark: The subscripts u and d mean at the upstream end and at the downstream end, re-272

spectively.273

gate i-1

gate i

u
u

q(i-1) q(i)

q(i+1)

(i-1)
(i+1)u(i)

y
u
(i-1)

yd
(i-1)

y
u
(i)

dy(i)
yu
(i+1)

(i-1)
(i+1)d

dd(i)

y
d
(i-2)

reach i-1

reach i

reach i+1

weir i+1

Figure 3: Navigation canal schematic with the variables involved

3.5. Final control-oriented model274

The final, equivalent state-space representation is derived step by step. This new formulation R3.5275

allows to coordinate current and delayed information in a systematic manner. Indeed, the model276

is described by variables with an immediate and a delayed effect. Those variables with a delayed277

effect are provided to the control and state estimation algorithms as parameters, ensuring that278

their values are taken into account adequately, which is crucial for a satisfactory performance of279

the algorithms. Remark: In the state-space model formulation, the notation q represents the280

discharges, whereas the variable u is saved for the openings and elevations, and will be used later281

on.282
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Model (5) can be rewritten as283

y1(s) = p11(s) q1(s)− p12(s) q2(s),

y2(s) = p21(s) q1(s)− p22(s) q2(s).
(10)

Then, (6) is substituted in (10), taking into account the parameter naming adopted in Section284

3.4, leading to285

y1(s) =
z11s+ 1

Aus
q1(s)−

z12s+ 1

Aus
e−τusq2(s),

y2(s) =
z21s+ 1

Ads
e−τdsq1(s)−

z22s+ 1

Ads
q2(s).

(11)

In order to simplify the task, the delays are initially dropped, and then reincorporated when286

the state-space representation is obtained. Additionally, a convenient manipulation of (11) leads287

to288

y1(s) =

(
1/Au
s

+
z11
Au

)
q1(s)−

(
1/Au
s

+
z12
Au

)
q2(s),

y2(s) =

(
1/Ad
s

+
z21
Ad

)
q1(s)−

(
1/Ad
s

+
z22
Ad

)
q2(s).

(12)

A standard transformation of (12) (see Chapter 2.5 in [30] for more details) yields the state-289

space representation290

ẋ(t) =

0 0

0 0

x(t) +

1 −1

1 −1

q(t),

y(t) =

 1
Au

0

0 1
Ad

x(t) +

 z11Au
− z12
Au

z21
Ad

− z22
Ad

q(t).

(13)

Model (13) is discretized with a sampling time Ts as follows:291

xk+1 =

1 0

0 1

xk +

Ts −Ts
Ts −Ts

qk,

yk =

 1
Au

0

0 1
Ad

xk +

 z11Au
− z12
Au

z21
Ad

− z22
Ad

qk.

(14)

13



The time delays are re-incorporated into (14), which yields292

xk+1 =

1 0

0 1

xk +

Ts 0

0 −Ts

qk +

 0 −Ts

Ts 0

qk−n,

yk =

 1
Au

0

0 1
Ad

xk +

 z11Au
0

0 − z22
Ad

qk +

 0 − z12
Au

z21
Ad

0

qk−n ,

(15)

with qk−n the vector of discharges delayed n samples (n = dτ/Tse,with d·e the ceiling function).293

In practice, τd ≈ τu, which leads to a single value of n.294

Finally, the disturbances introduced in Section 3.2 are incorporated to the model. Since these R2.4295

lock operations are also flows, and the locks are next to the actuators, their effect on the system is296

the same as the controlled discharges. Thus, the matrices for controlled discharges and disturbances297

are the same, leading to298

xk+1 =

1 0

0 1

xk +

Ts 0

0 −Ts

qk +

 0 −Ts

Ts 0

qk−n +

Ts 0

0 −Ts

dk +

 0 −Ts

Ts 0

dk−n,

yk =

 1
Au

0

0 1
Ad

xk +

 z11Au
0

0 − z22
Ad

qk +

 0 − z12
Au

z21
Ad

0

qk−n +

 z11Au
0

0 − z22
Ad

dk +

 0 − z12
Au

z21
Ad

0

dk−n.

(16)

As mentioned before, (16) must be obtained for each reach in the case study. Then, qk and299

qk−n must be substituted in each case by either (2) or (3) accordingly. It can be anticipated that300

this substitution will cause delayed states to appear in the model. Indeed, qk = f
(
yk,uk

)
, and301

thus qk−n = f
(
yk−n,uk−n

)
, with yk−n = g (xk−n), and f and g are the corresponding relationships302

among the variables.303

Although the step-by-step derivation of the final model is given in Section 5, it is convenient304

to present its final structure at this stage, since it will be used in Section 4 to design the controller305

and the estimator. Therefore, the general model formulation of a system with nx states, nu inputs306

and ny outputs is307
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xk+1 = Axk + Anxk−n + Buuk + Bunuk−n + Bddk + Bdndk−n, (17a)

yk = Cxk + Cnxk−n + Duuk + Dunuk−n + Dddk + Ddndk−n, (17b)

with xk ∈ Rnx , uk ∈ Rnu , yk ∈ Rny , and A, An, Bu, Bun, Bd, Bdn, C, Cn, Du, Dun, Dd and Ddn308

are time-invariant matrices of suitable dimensions. The state equation is given by (17a), and (17b)309

is the output equation. The mass balances given by (4) can be formulated by means of constraints,310

as it is now, or they can be incorporated into (17a) as shown in [31].311

Model (17) corresponds to the case of only one delay in the network. The general case for a312

system with multiple delays given by the set S = {n1, n2, ..., np} reads as313

xk+1 = Axk + Buuk + Bddk +
∑
ni∈S

(Anixk−ni
+ Buniuk−ni

+ Bdni
dk−ni

) , (18a)

yk = Cxk + Duuk + Dddk +
∑
ni∈S

(Cnixk−ni
+ Duniuk−ni

+ Ddni
dk−ni

) . (18b)

Furthermore, (4) must be modified as314

0 = Euuk + Eddk +
∑
ni∈S

(Euniuk−ni
+ Edni

dk−ni
) (19)

in order to account for multiple time delays.315

Finally, note that the delayed terms in (17) and (18) cause these models to not be representable316

using the standard state-space formulation. While the theory of other classical state feedback317

control techniques might not be used for this representation, the combination of MPC and MHE318

can deal with these models in a suitable manner. Furthermore, this formulation also allows a flexible319

and more compact notation of a system with delayed variables. Indeed, a common approach to320

represent such systems consists in the augmentation procedure described in [19], where the delay321

effect is incorporated as a dead-beat dynamic to obtain an undelayed representation. However,322

a downside of this methodology lies in the large dimensionality of the resulting description. By323

contrast, no augmented model needs to be derived in the case of MPC and MHE.324
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4. Control design and state estimation325

This section deals with the control design and state estimation, for which the model of the326

system is needed. An approach is presented for each of them, namely MPC for control and MHE327

for state estimation, for which the complete structure of the resulting multi-objective optimization328

problems is given. The last part of the section provides some insight on the combination of MPC329

and MHE in simulation.330

4.1. Control design: the MPC approach331

Modern inland waterways are complex, multivariable systems whose management requires the332

use of advanced control methods [32]. MPC is characterized by several interesting features that333

are very suitable for these kinds of systems [33, 34]:334

• The model of the system captures the dynamic and static interactions between input, output335

and disturbance variables.336

• The physical constraints on inputs and outputs can be handled in a systematic manner.337

• Multiple operational goals can be taken into account simultaneously.338

• It is particularly suitable for those systems for which the disturbances can be forecasted.339

The main principle of MPC resides in computing a sequence of inputs that causes the predicted340

response of the system to move to the desired setpoint in an optimal manner while respecting the341

constraints. The constraints imposed by the elements that make up the model have already been342

defined in Sections 3.1–3.4. On the other hand, the set of operational goals is defined below.343

4.1.1. Operational goals and multi-objective function344

One or more operational goals are expected to be achieved during the process. To this end, a345

certain criterion is optimized in the computation of the control signals. This criterion is usually346

built as the weighted sum of several terms, where each of them represents an operational goal.347

Note that the set of operational goals that can be taken into account is not unique. In this work,348

the following are considered:349
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• Maintaining the water levels close to the setpoints: This is the most important objective to350

be fulfilled. Its mathematical formulation reads as351

J1
k = (yk − yr)

ᵀ (yk − yr) , (20)

with yr the vector of NNL values.352

• Cost reduction: This term reflects the economic costs derived from operating the available353

equipment. It can be formulated as354

J2
k = γ uᵀ

kuk , (21)

with γ the vector of known costs associated to the equipment operation.355

• Smoothness of the control signal: In order to avoid wear and tear, and increase the lifespan356

of the equipment, it is a common practice to penalize the control signal variation between357

consecutive time instants:358

J3
k = ∆uᵀ

k∆uk , (22)

with ∆uk = uk − uk−1.359

• Penalty in the relaxation parameter: αk, which was introduced in (8), is penalized to ensure360

that the water levels are outside the navigation interval as little as possible:361

J4
k = αᵀ

kαk. (23)

The multi-objective function J that gathers the control objectives can be described by362

J (uk,yk,αk) =

Hp∑
k=1

4∑
j=1

βj J jk , (24)

where Hp is the prediction horizon and βj are the weights of the j-th objective. Note that Hp must363

be chosen according not only to the system dynamics (settling time), but also to take into account364
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the system delays. Therefore, Hp > ts + maxS, where ts is the settling time (in samples), and S365

was defined for (18). Moreover, in order to set the weight of each objective in a multi-objective R3.8366

optimization problem, the procedure described in [35] can be used.367

4.1.2. MPC formulation368

Gathering the control-oriented model, the system constraints and the multi-objective function,369

the design of the MPC follows classical approaches [33, 34]: an optimization problem is solved370

over a prediction horizon, minimizing a cost function while respecting the system constraints. The371

first component of the vector of control inputs is extracted from the solution and is applied to the372

system, and the rest are disregarded. This procedure is repeated at each time instant, following a R2.8373

receding-horizon strategy.374

The optimization problem is given by375

min
{ui|k}

k+Hp−1

i=k , {yi|k}
k+Hp−1

i=k , {αi|k}
k+Hp−1

i=k

J
(
ui|k,yi|k,αi|k

)
(25a)

subject to:

xi+1|k = Axi|k + Anxi−n|k + Buui|k + Bunui−n|k+ (25b)

Bddi|k + Bdndi−n|k, i ∈ {k, ..., k +Hp − 1},

yi|k = Cxi|k + Cnxi−n|k + Duui|k + Dunui−n|k+ (25c)

Dddi|k + Ddndi−n|k, i ∈ {k, ..., k +Hp − 1},

0 = Euui|k + Eunui−n|k + Eddi|k + Edndi−n|k, i ∈ {k, ..., k +Hp − 1}, (25d)

um ≤ umi|k ≤ um, i ∈ {k, ..., k +Hp − 1}, (25e)

y
r
−αi|k ≤ yi|k ≤ yr + αi|k, i ∈ {k, ..., k +Hp − 1}, (25f)

αi|k ≥ 0, i ∈ {k, ..., k +Hp − 1}, (25g)

xj|k = x̂MHE
j , j ∈ {k − n, ..., k}, (25h)

ul|k = uMPC
l , l ∈ {k − n, ..., k − 1}, (25i)

where k is the current time instant, i is the time instant along the prediction horizon and k + i|k376
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indicates the predicted value of the variable at instant k + i using information available at instant R1.8377

k. Remark: j and l are used to indicate the use of past information, for which the considered378

time intervals are different than the one described by i. Equations (25b) and (25c) correspond to379

the model described by (17), (25d) are the mass balances given in (4), and (25e)–(25g) are the380

constraints given in (1), (8) and (9), respectively. Equation (25h) sets the values of the delayed R2.10b381

states according to the solution provided by the MHE (noted as x̂MHE
i ) in past iterations. Note382

that the MHE will be introduced in Section 4.2. These delayed values are provided to the MPC383

as parameters. Similarly, the delayed control actions obtained by the MPC (noted as uMPC
i ) in384

previous iterations are also provided as parameters by means of (25i).385

The optimal solution is given by the sequences {ui|k}
k+Hp−1
i=k , {yi|k}

k+Hp−1
i=k , {αi|k}

k+Hp−1
i=k

1 . As R3.9386

it was stated before, only uk|k is applied to the system, according to the receding philosophy387

uMPC
k , uk|k. (26)

4.2. State estimation: the MHE approach388

The control strategy presented in Section 4.1 uses the states to compute the set of optimal389

control actions. The system states oftentimes are not directly measurable, and therefore they need390

to be estimated from the available data using a state estimator.391

Thus, the problem to be solved is that of designing an observer that fully reconstructs the392

system states. In this work, the MHE is used for this purpose. The main principle of this technique393

consists in formulating the estimation problem as a quadratic program using a moving estimation394

window of a fixed size [36, 37]. Indeed, it is assumed that only part of the available information395

of the system (inputs and outputs) is considered, which is shifted in time to consider the most396

recent information. Otherwise, the computational burden renders the full-information problem397

impractical to solve, as more and more data are processed with time. In this way, a truncated398

sequence of state estimates is computed at each time step instead of the full-state sequence to make399

the problem tractable [38].400

The formulation corresponding to the optimization problem solved by the MHE reads as401

1{ui|k}
k+Hp−1

i=k , {uk|k,uk+1|k, · · · ,uk+Hp−1|k}; yi|k and αi|k are defined in the same manner
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min
{x̂i|k}ki=k−N

(
x̂k−N |k − xk−N

)ᵀ
P−1

(
x̂k−N |k − xk−N

)
+ (27a)

k−1∑
i=k−N

(
wᵀ
i|kQ

−1wi|k + vᵀ
i|kR

−1vi|k

)

subject to:

wi|k = x̂i+1|k −
(
Ax̂i|k + Anx̂i−n|k + Buui|k + Bunui−n|k+ (27b)

Bddi|k + Bdndi−n|k
)
, i ∈ {k −N, ..., k − 1},

vi|k = yi|k −
(
Cx̂i|k + Cnx̂i−n|k + Duui|k + Dunui−n|k+ (27c)

Dddk+i|k + Ddndi−n|k
)
, i ∈ {k −N, ..., k − 1},

0 = Euui|k + Eunui−n|k + Eddi|k + Edndi−n|k, i ∈ {k −N, ..., k − 1}, (27d)

xr ≤ x̂i|k ≤ xr, i ∈ {k −N, ..., k − 1}, (27e)

x̂j|k = x̂MHE
j , j ∈ {k −N − n, ..., k −N − 1}, (27f)

ul|k = uMPC
l , l ∈ {k −N − n, ..., k − 1}, (27g)

ym|k = ym, m ∈ {k −N, ..., k − 1}, (27h)

with (27b) accounting for the system disturbances and (27c) for the measurement noise. Addi-402

tionally, (27d) describes the static part of the model, (27e) defines the valid interval of the state403

variables, and (27f), (27g) and (27h) set the values of the delayed states, inputs and outputs, re-404

spectively, following the same ideas as in (25). The value xk−N in (27a) corresponds to the most R3.10405

likely initial state vector, and is chosen based on the available knowledge of the system, whereas406

x̂k−N |k is the first value of the optimal state sequence computed by the MHE at time instant k.407

The error in this initial guess, given by
(
x̂k−N |k − xk−N

)
, is weighted by means of the matrix R3.11408

P−1, which indicates the confidence into the initial state, and its tuning allows to guarantee the409

boundedness of the estimation, as discussed in [39]. On the other hand, Q−1 and R−1 are the410

weighting matrices inverses of suitable dimensions linked to the confidence in the quality of the411

model and the measurements, respectively. The larger these matrices are, the lesser the confidence412

in the associated term is, as the matrices are inverted. These inverses are directly related to the co-413
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variance matrices only in the case of linear systems with zero-mean uncorrelated random variables414

for unknown disturbances [40]. In any other situation, e.g., constrained states, this connection is415

only an approximation.416

The MHE problem (27) is formulated as follows: at the current time instant k, N input-output417

pairs [(uk−N ,yk−N ) : (uk−1,yk−1)] shall be available. Therefore, N is the length of the moving418

estimation window, which bounds the size of the problem. The resulting least-squares problem is419

solved, yielding the optimal sequence {x̂i|k}ki=k−N 2.However, as is the case in the MPC problem,420

only one value in the sequence is considered, and the rest are discarded. In the MHE problem, this421

corresponds to the last value, that is, x̂k|k. Therefore,422

x̂MHE
k , x̂k|k. (28)

In the next iteration, for k′ = k + 1, the truncated data sequence is updated, and becomes423

[(uk′−N ,yk′−N : (uk′−1,yk′−1)], which is equivalent to [(uk−N+1,yk−N+1) : (uk,yk)]. Then, note424

that the oldest measurement pair (uk−N ,yk−N ) is dropped, and the newest measurement pair425

(uk,yk) is incorporated, following the moving horizon philosophy.426

4.3. Simulation427

Once the MPC and MHE are designed, they must be integrated in the simulation loop. The428

solution of the controller (the optimal control inputs), together with the measurements, are fed429

into the estimator. In turn, the estimator computes the optimal state estimates, which are used in430

the next time instant by the controller to compute the new set of control inputs.431

The real system is equipped with sensors, which provide water level measurements. Unfortu- R1.9432

nately, these real values are not available in this work. Since the MHE requires the measurements433

to estimate the states, these must be generated in simulation, using the output equation (17b).434

The effect of this limitation is that the estimator cannot be used for the first time at k = 1, but435

at k = N + 1. Indeed, an input-measurement pair (uk,yk) will be generated at each time instant436

k, using the solution of the controller. Thus, the necessary data to compute the state estimates437

will not be available until N samples have elapsed. In addition, the system must be manually R2.11438

initialized by selecting any feasible state vector.439

2{x̂i|k}ki=k−N , {x̂k−N|k, x̂k−N+1|k, · · · , x̂k|k}
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Finally, note that, at time k, the MPC yields the sequence {ui|k}
k+Hp−1
i=k . Thus, it is necessary440

to know the disturbances until, at least, the instant k + Hp − 1. By contrast, the MHE sets its441

starting point N samples in the past, and reconstructs the optimal sequence of state estimates until442

the current time instant k. This requirement in terms of available information is fulfilled based on443

the policy introduced in Section 3.2, which allows to anticipate future lock operations.444

5. Case study445

This section illustrates the performance of the MPC and the MHE by means of a realistic case446

study system, which is based on part of the inland waterways in the north of France. First, the447

system is described, emphasizing its physical features, so that the modeling step yields a model448

as close as possible to the real system. Then, the experimental design step is regarded, describing449

the considered scenarios, which try to represent faithfully an average navigation day. Finally, the450

results coming from the experimental design are presented and discussed.451

5.1. System description452

The inland waterways in the north of France is linked with the Belgian and Dutch inland453

waterways, and is managed by Voies Navigables de France3 (VNF). Its main objective is that of454

guaranteeing the navigability condition, which is achieved by keeping the water levels inside the455

navigation rectangle defined by the LNL and the HNL, and as close as possible to the NNL.456

This inland navigation network consists of more than fifty reaches that are interconnected by457

locks, gates and weirs. Part of it is depicted in Fig. 4, which shows the two reaches considered458

in the case study. The i-th reach is labeled as NRi, and its setpoint (NNL) is specified in red. In R3.13459

addition, the locks that connect adjacent reaches are labeled in black.460

A more schematic view of the system is depicted in Fig. 5, resulting in a four-reach case study.461

The case study choice is motivated by the following reasons:462

• It features a distributary, which branches off from NR1 at an intermediate point and flows463

away, to the lock of Don. This topology is regarded as of special interest, since the mass464

balance at this natural bifurcation (not controlled) is not straightforward to model. Indeed,465

a possible approach for this situation is shown below.466

3http://www.vnf.fr
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Figure 4: Part of the inland waterways in the north of France
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Figure 5: Schematic diagram of the case study

• Besides, NR2 is an important reach in this network for two reasons [41]: its strategic loca-467

tion, which allows dispatching water among the three major catchments in the region; and468

its downstream lock in Fontinettes, which performs the largest lock operations in terms of469

volume, and is therefore responsible for the largest disturbances. Being able to deal with R3.14470

the worst-case scenario can give a feel for the magnitude of the disturbances that the control471

strategy attempts to reject.472

Since the bifurcation is of natural type (uncontrolled), this node can be eliminated, based on473

an estimation of the ratios of the total flow for each stream after the bifurcation. Indeed, it can be474

considered, according to VNF, that the each of the flows after the bifurcation correspond to 50%475

of the flow before the bifurcation. This yields the simplified, final three-reach case study scheme476

given in Fig. 6. Note that the reaches are renamed for convenience, and also the nodes for labeling477

purposes.478

The physical parameters of the case study are summarized in Table 1. Note that the lengths479

of the reaches are approximately the same, which results in the same time delay (in samples) for480
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Figure 6: Simplified schematic diagram of the case study

the three reaches. A sampling time Ts = 20 min has been considered in the model discretization,481

which is deemed reasonable due to the slow dynamics of the system. This allows to use model (17),482

and thus there is no need to resort to the more general case (18).483

Table 1: Parameters of the reaches

Reach nr. LNL [m] NNL [m] HNL [m] L [m] wr [m] mr [m/m] sb [m/m] nr [s/m1/3] Qs [m3/s]

(1,2) 3.95 4.1 4.25 39000 50 0 0 0.035 0.6

(1,3) 3.95 4.1 4.25 37000 50 0 0 0.035 0.6

(4) 3.65 3.8 3.95 42000 50 0 0 0.035 0.6

LNL, NNL and HNL are the relative lower, normal and higher navigation levels (with respect484

to the bottom of the reach), L is the length of the reaches, wr is the bottom width, mr is the side485

slope of the reach (mr = 0 for a rectangular cross section), sb is the bottom slope (sb = 0 for a486

flat reach), nr is the Manning roughness coefficient and Qs is the operating point considered when487

linearizing the Saint-Venant equations. Indeed, it is considered that an average flow of 1.2 m3/s488

comes from upstream of Douai, and that it is divided into two equal parts after it. The numerical489

state-space matrices computed from these parameters are given in Appendix A.490

In order to estimate the states, the measurements of the system are needed. Depending on the491

structure of the problem, e.g., the topology of the network or the connections between reaches,492

not all measurements are required. This statement can be realized by inspecting matrix C, which493

links the states and the measurements. In the present case, it is not necessary to consider the494

measurement y
C(1,2)
k , since the associated state has an effect on the downstream level y

C(4)
k , given495

by the off-diagonal, nonzero entry in the fourth row of C. Thus, in order to show the effectiveness of496

the approach, the six states will be reconstructed with only five measurements, i.e., assuming that497

the water level y
C(1,2)
k is not available. Thus, this value will be obtained from the state estimates.498
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The lock operations that take place in Douai, Don, Cuinchy and Fontinettes disturb the system.499

Their average magnitudes and durations are given in Table 2.500

Table 2: Lock operations

Lock Dispatched water volume [m3] Duration [min]

Douai 18000 20

Cuinchy 12000 20

Don 12000 20

Fontinettes 30000 20

On the other hand, the same four nodes are equipped with controlled devices which allow to501

dispatch water to fulfill the control objectives. In particular, Douai and Fontinettes are equipped502

with undershot gates, whereas Don and Cuinchy are equipped with weirs. It is considered that both503

the gates and the weirs can deliver a maximum flow of 10 m3/s, which will have to be converted504

into maximum gate openings and sill elevations, respectively. Their nonlinear expressions, as well505

as their linearized equations, are given in Appendix B.506

5.2. Experimental design507

A 24-hour scenario, depicted in Fig. 7, is designed by considering a lock operation time-series508

model for a typical navigation profile. In the real system, the following existing management509

restrictions must be taken into account:510

• A day is divided in two periods: navigation and stoppage. Boats are only allowed to navigate511

during the navigation period, which starts each day at 6 a.m. and finishes after fourteen512

hours, at 8 p.m. The navigation is interrupted until the next day at 6 a.m.513

• The current policy allows a maximum of two lock operations per hour.514

Besides, the scenario does not consider changes in the setpoints, thus assuming that the navi-515

gation conditions do not change during the simulation. Such modifications typically occur due to516

changes in the weather condition, e.g., flood and drought episodes, which might require to readjust517

the LNL, NNL and HNL values.518

In order to test this scenario, it is necessary to compute the IDZ model of each reach as shown519

in [18], and then discretize them using Ts. The global model (17) is built by stacking the IDZ520

model of each reach, so that the MPC and MHE can be used together.521
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Figure 7: The considered lock operation profile

Furthermore, both the MPC and the MHE prediction horizon values are set equal to 12 samples522

(4 hours). This dimensioning is aligned with the time delays of the reaches, which are in the R3.15523

interval [6127, 6807] s, or equivalently [5.11, 5.67] samples. Thus, a unique delay of 6 samples can524

be considered for all the reaches, according to the ceiling rule introduced in (15). In this way,525

by setting the prediction horizon values equal to 12 samples, the waves are given enough time to526

reflect at the downstream end and travel back.527

5.3. Results528

As mentioned before, any feasible initial state might be considered, as there is no available data529

that can be used to estimate the initial conditions. Once the system reaches the steady state, it is530

disturbed by considering the 24-hour navigation profile depicted in Fig. 7. The final state-space531

model is computed, and then the results yielded by the estimator and the controller are shown.532

5.3.1. Control-oriented model533

For the sake of convenience, the steps are outlined here, while the final system matrices as well534

as the nonlinear and linearized equations are detailed in the Appendices A and B, respectively.535

First, the methodology described in [18] must be applied for each reach, and then these partial536

models (16) are stacked to build the global model. Next, the nonlinear equations of the gates and537

weirs are linearized around the NNL and Qs values given in Table 1. The linearized equations538
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must be substituted in the model. Note that qD does not depend on its upstream water elevation.539

Since this water level is outside of the scope of the control problem, it is considered that there is540

enough water upstream of Douai, and thus that this level remains constant.541

Next, it is necessary to substitute the water depths by the states in the linearized equations.542

The relationship between these variables provided by matrix C can be exploited to this effect.543

Once this step has been completed, the linearized equations can be substituted in the model. As it544

was mentioned in Section 3.5, the delayed expressions qk−n = f
(
xk−n,uk−n

)
introduce the delayed545

states in the final formulation. Note also that, since qk depends on the states, a rearrangement546

and grouping of terms is required. The final model is then given by (17), with547

xk+1 =
[
x
D(1,2)
k+1 x

C(1,2)
k+1 x

D(1,3)
k+1 xDonk+1 x

C(4)
k+1 x

F
k+1

]ᵀ
,

xk =
[
x
D(1,2)
k x

C(1,2)
k x

D(1,3)
k xDonk x

C(4)
k xFk

]ᵀ
,

xk−n =
[
x
D(1,2)
k−n x

C(1,2)
k−n x

D(1,3)
k−n xDonk−n x

C(4)
k−n x

F
k−n

]ᵀ
,

uk =
[
uDk uCk u

Don
k uFk

]ᵀ
,

uk−n =
[
uDk−n u

C
k−n u

Don
k−n u

F
k−n
]ᵀ
,

dk =
[
dDk dCk d

Don
k dFk

]ᵀ
,

dk−n =
[
dDk−n d

C
k−n d

Don
k−n d

F
k−n
]ᵀ
,

yk =
[
y
D(1,2)
k y

D(1,3)
k yDonk y

C(4)
k yFk

]ᵀ
.

Since the bifurcation node can be eliminated as proposed in Fig. 6, (4) is no longer needed.548

5.3.2. Estimator549

The comparison between the optimal estimated states given by the MHE and the real states550

obtained in simulation are depicted in Figure 8. At each time instant, the MHE is fed with the551

corresponding sequence of N input-measurement pairs, which are used to compute the optimal552

sequence of states.553

In general, the values provided by the estimator match the real states with no significant error.554

In addition, the real states are noisier than the estimated states. This behavior is in line with555

the nature of the observer, which acts as a filter, smoothing the predictions. Furthermore, the556
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Figure 8: State estimates (blue solid lines) and computed states (dash-dot gray lines)

constraints on the state bounds are satisfied. Such bounds are not even depicted in Fig. 8 for the557

benefit of a better visualization of the results, as the states are far from the bounds.558

In order to ensure a quantitative comparison between the real and the estimated states, the559

similarity of both signals is quantified by means of the correlation coefficient. Given a pair of560

signals (mt, nt) with M observations each, the correlation coefficient is defined as561

ρm,n =
1

M − 1

M∑
i=1

(
mi − µm
σm

)(
ni − µn
σn

)
, (30)

where µm and σm are the mean and standard deviation of mt, respectively, and µn and σn are562

the mean and standard deviation of nt. This coefficient is bounded between 1 and -1: the closer563

this coefficient is to 1 (respectively -1), the stronger the positive (respectively negative) correlation564

between the pair of signals is. The correlation coefficients between the real and the estimated states565

are summarized in Table 3.566

Table 3: Correlation coefficients

D (1,2) C (1,2) D (1,3) Don C (4) F

0.8389 0.8856 0.8841 0.9276 0.9654 0.9403

It can be stated that the performance of the MHE is satisfactory, since all the correlation567

coefficients are very close to 1, which indicates a strong, positive correlation. Indeed, the main goal568
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of the estimator is that of reconstructing an accurate state sequence that is not directly measurable.569

This procedure is used to achieve the final goal of this work, which consists in fulfilling the control570

objectives, so that the desired system performance is attained. Therefore, state estimation is571

regarded as a tool employed by the controller in pursuit of the final goal.572

5.3.3. Controller573

The estimated states are used by the controller in order to compute the sequence of future574

optimal inputs, applying only its first component. It must be recalled that the real system mea-575

surements are not available in this work, and thus they must be obtained using the output equation.576

Based on the control objectives defined in Section 4.1.1, two main results are looked at: the577

water levels and the control signals, depicted in Figs. 9 and 10, respectively.578
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Figure 9: Water levels (blue solid lines), NNL (black dashed lines), and LNL and HNL (red dashed lines)

The modeling simplification introduced in Section 5.1 led to considering three reaches, where579

their upstream and downstream water levels are arranged by columns in Fig. 9. The flow diversion580

is considered to take place downstream of the gate of Douai, and thus the water levels in Douai for581

reaches (1,2) and (1,3) might be different. Recall also that y
C(1,2)
k is not measured, but computed582

from the state estimates.583

Regarding the control objectives linked to the water levels, it can be stated that the MPC is584

able to keep the levels very close to the setpoints despite of the disturbances. To quantify the585
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performance of the controller, consider the indices given by586

TP = 1− 1

Hp

√√√√√ Hp∑
k=1

 yk − yr
1
2

(
yr − y

r

)
2

. (31)

Equation (31) was introduced in [17] as a modification of the standard root relative squared587

error. These tracking performance indices are defined as the relative error between the predicted588

levels yk and the setpoints yr (NNL values). The denominator, given by 1
2

(
yr − y

r

)
, equals the589

semi-amplitude of the symmetric [LNL, HNL] interval, which is the maximum allowed variation590

from yr. The squaring emphasizes larger differences, which is of interest in this case, since it591

focuses on the water levels yk that are far from the setpoints yr.592

The numerical values of the indices for each water level are summarized in Table 4. Note593

that TP is bounded between 0 and 1, where 1 corresponds to the perfect tracking performance.594

Therefore, it can be stated that the MPC provides satisfactory results in terms of keeping the595

water levels close to the setpoints.596

Table 4: Tracking performances

D (1,2) C (1,2) D (1,3) Don C (4) F

0.9930 0.9877 0.9904 0.9907 0.9693 0.9717

Furthermore, Fig. 9 shows that the water levels are never outside of the navigation rectangle,597

and therefore the penalty on this behavior, represented by αααk in (23), equals 0.598

On the other hand, the control objectives (21) and (22) are linked to the control signals, depicted599

in Fig. 10.600
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Figure 10: Gate openings (blue solid lines) and physical limits (dash-dot red lines)

The undershot gates in Douai and Fontinettes work at their maximum capacity for a maximal601

gate opening, whereas the weirs work at their maximum capacity when the sill elevation is zero.602

This can be realized by the minus sign in the linearized weir equations. When the water levels603

reach the setpoints, the flows delivered by the actuators should be minimum, i.e., minimum gate604

openings and maximum sill elevations. However, rejecting disturbances results in continuously605

operating the actuators, as these disturbances go against the control objectives. Therefore, it can606

be seen how the actuators work close to their maximum capacity only during short periods of time,607

and always within the equipment design range. During most of the simulation, the inputs are far608

from the physical limits of the actuators, thus taking into account the cost reduction objective609

(21).610

Regarding the smoothness of the control signals given by the operational goal (22), the control611

actions present some peaks. However, there are no large variations between consecutive control612

actions, especially compared with the design range of the actuators. This behavior should result613

in a long lifespan of the equipment. Although the weight of this objective could be increased, this614

would probably interfere with the rest of objectives.615
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6. Conclusions616

This work regarded the design of state estimation and control techniques in the framework617

of inland waterways, often characterized by negligible bottom slopes and large time delays. To618

this end, the MHE and MPC approaches were considered, respectively. This choice obeys to the619

appropriateness of these optimization techniques to solve the considered problem. In addition,620

the existing duality between both can also be exploited. Even though this work targets inland621

waterways as the field of application, for which the time-delay structure comes directly from the622

control-oriented modeling formulation, the general methodology can be applied to any kind of623

system characterized by the transportation of mass, energy or information.624

The main objective of this work was that of fulfilling a set of operational goals, each of them625

linked to an aspect of the system performance. This task was taken care of by the MPC, which626

requires the knowledge of the states in order to determine the optimal predictive control law.627

However, as the states are not directly measurable in this problem, the MHE was used for this628

purpose. Both techniques were synchronized, using the previously derived control-oriented model629

formulation. Finally, the inland waterways in the north of France were used to build a realistic630

example in order to demonstrate the performance of the methodology. Although the simulation631

results are deemed satisfactory, the centralized architecture employed in this work can encounter632

implementation problems due to the large dimensionality of the network. Thus, non-centralized633

implementation approaches might be considered in the future to deal with this limitation, possibly634

continuing the first steps carried out in [42].635

From the proposed approach, it has been shown that the MPC is able to reject the disturbances636

that are caused by the lock operations. These disturbances are assumed to be known in this work,637

but this seldom happens in real applications. Thus, strategies to estimate the effect of unknown638

disturbances, such as the unknown input observer (UIO), might be considered in the future. This639

class of observers assumes no a priori knowledge about such inputs, which is an interesting feature to640

be exploited for fault diagnosis purposes. Moreover, combining fault diagnosis and non-centralized641

control and state estimation could lead to implementable reconfiguration strategies, aiming at642

guaranteeing that the system exhibits an acceptable performance even in the presence of faults.643

Both MPC and MHE use a dynamic model of the process. In this work, the IDZ model was644

used as the starting point to build a control-oriented model. The IDZ is a physical model, and is645
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originally formulated for a canal with two inputs and two outputs. This formulation was extended646

to consider larger portions of inland waterways that comprise more than one canal. To do so,647

the original model was manipulated, yielding a more convenient state-space representation, which648

also allows to handle the delays in the system in a more suitable manner. This work tackled the649

particular case in which the lengths of all the reaches are approximately equivalent, leading to650

only one delay in the network. In addition, this work considers only one operating point during651

the whole simulation. Although this is sufficient when the setpoints do not change during the652

simulation, this assumption is rather limited in the case of large operating ranges. In this regard,653

LPV models and Takagi-Sugeno fuzzy models could be considered.654
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Appendix663

All the numerical values used in this work are presented here for the purpose of reproducibility.664

A. Numerical model665

The final state-space matrices are:666
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A =



1 0 0 0 0 0

0 0.9989 0 0 0 0

0 0 1 0 0 0

0 0 0 0.9989 0 0

0 0.0011 0 0 1 0

0 0 0 0 0 1


; An = 10−5 ·



0 −112.5 0 0 0 0

0 0 0 0 0 0

0 0 0 −115.5 0 0

0 0 0 0 0 0

0 0 0 0 0 −4.3

0 112.5 0 0 0 0



Bu = 104·



1.6533 0 0 0

0 0.2223 0 0

1.6533 0 0 0

0 0 0.2223 0

0 −0.2223 0 0

0 0 0 −3.1083


; Bun = 104·



0 0.2223 0 0

1.6533 0 0 0

0 0 0.2223 0

1.6533 0 0 0

0 0 0 −3.1083

0 −0.2223 0 0



Bd =



600 0 0 0

0 −1200 0 0

600 0 0 0

0 0 −1200 0

0 1200 0 0

0 0 0 −1200


; Bdn =



0 −1200 0 0

600 0 0 0

0 0 −1200 0

600 0 0 0

0 0 0 −1200

0 1200 0 0



C = 10−6 ·



0.5061 0 0 0 0 0

0 0 0.5197 0 0 0

0 0 0 0.5197 0 0

0 1.3519 · 10−9 0 0 0.4579 0

0 0 0 0 0 0.4579


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Cn = 10−14 ·



0 −0.2064 0 0 0 0

0 0 0 −0.2178 0 0

0 0 0 0 0 0

0 0 0 0 0 −0.0072

0 0.1863 0 0 0 0



Du = 10−7·



0.2196 0 0 0

0 0.0295 0 0

0.2255 0 0 0

0 0 0.0303 0

0 −0.0267 0 0

0 0 0 −0.3736


; Dun = 10−7·



0 0.0408 0 0

0.3034 0 0 0

0 0 0.0419 0

0.3118 0 0 0

0 0 0 −0.5147

0 −0.0368 0 0



Dd = 10−8·



0.0797 0 0 0

0 −0.1594 0 0

0.0818 0 0 0

0 0 −0.1637 0

0 0.1442 0 0

0 0 0 −0.1442


; Ddn = 10−8·



0 −0.2202 0 0

0.1101 0 0 0

0 0 −0.2263 0

0.1131 0 0 0

0 0 0 −0.1987

0 0.1987 0 0


Remark: The delay of the system is equal to 6 samples, as stated in Section 5.2.667

B. Equations of the gates and weirs668

B1. Nonlinear equations669

The nonlinear equations that describe the dynamics of the gates and the weirs in the considered670

case study are:671
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Undershot gate: q = CdgLgu
√

2gy1 (32a)

Weir: q = Cdw
√

2g (y1 − u)3/2 (32b)

672

where q is the discharge through the structures; Cdg and Cdw, the discharge coefficients, equal to R3.15673

0.6 and 0.4, respectively; Lg, the gate width; u, the gate opening or elevation; g, the acceleration674

of gravity; and y1, the upstream water level.675

B2. Linearized equations676

Using the NNL and QS values in Table 1, the linearized versions of (32) are:677

Douai: qDk = 27.5553uDk (33a)

Cuinchy: qCk = 1.8524y
C(1,2)
k − 1.8524uCk = 1.32 · 10−6x

C(1,2)
k − 1.8524uCk (33b)

Don: qDonk = 1.8524yDonk − 1.8524uDonk = 1.32 · 10−6xDonk − 1.8524uDonk (33c)

Fontinettes: qFk = 0.0791yFk + 25.9037uFk = 5.63 · 10−8xFk + 25.9037uFk (33d)

C. Weighting values for the MPC problem678

β1 = 20 ; β2 = 2 ; β3 = 5 ; β4 = 1.679

D. Weighting values for the MHE problem680

P−1 = Inx = I6 ; Q−1 = Iny−1 = I5 ; R−1 = Inx = I6.681
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[41] P. Segovia, J. Blesa, K. Horváth, L. Rajaoarisoa, F. Nejjari, V. Puig, E. Duviella, Modeling and fault diagnosis768

of flat inland navigation canals, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of769

Systems and Control Engineering 232 (6) (2018) 761–771.770

[42] P. Segovia, L. Rajaoarisoa, F. Nejjari, E. Duviella, V. Puig, Distributed Input-Delay Model Predictive Control771

of Inland Waterways, in: G. La Loggia, G. Freni, V. Puleo, M. De Marchis (Eds.), HIC 2018. 13th International772

Conference on Hydroinformatics, Vol. 3 of EPiC Series in Engineering, EasyChair, 2018, pp. 1893–1901.773

39




