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The variational phase-field method is an attractive non-local approach of modeling fracture in heterogeneous materials.

However, these materials usually require a fine mesh to resolve the fracture process zone. Consequently, the standard

finite element solver becomes cumbersome due to the large number of elements in applications with highly heterogeneous

materials. Motivated by this limitation, an algorithm based on FFT methods has been introduced in this paper to solve the phase-

field model of brittle fracture. Relying on a staggered update scheme, the proposed algorithm solves the fracture problem and

mechanical problem separately, both using the FFT technique. It inherits the advantages of classical FFT methods in terms of

simplicity of mesh generation and parallel implementation. Introduced within a FFT-based code “AMITEX”, it takes the

advantage of massively parallel capabilities associated with a distributed memory implementation. The characteristics of the

proposed method are analyzed in a single edge notched specimen benchmark. Representative numerical examples demonstrate

that the proposed FFT solver is capable of predicting different crack modes and complex crack configuration, such as crack

interaction, branching and coalescence. Finally, a model of an idealized continuous fiber composite with void involving over 32

million voxels is solved, illustrating the potential of the FFT solver in large-scale problems.

Keywords: Phase-field model; FFT method; Brittle fracture; Fixed-point algorithm

1. Introduction

It is a challenging issue to simulate crack initiation and propagation within highly heterogeneous materials.

Continuum damage models provide a powerful and easy-to-implement solution for this purpose, yet they face a

well-known problem of mesh dependency. To address this issue, non-local damage models are usually employed

with various regularization techniques [1], such as spatially averaging state variables (integral-type, e.g. [2,3]), or

constructing the local constitutive relations with the addition of gradient-dependent terms (gradient-type, e.g. [4,5]).

Another non-local damage model that must be mentioned is the thick level set approach [6], which deals with crack

initiation and propagation with a level set function whose driving force is associated with the released fracture energy

that is calculated from the integral over a transition zone between the undamaged and fully damaged zones.
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The variational phase-field method is also included in the category of gradient-type models, and is drawing more

and more attention, see e.g. [7–9]. This approach is established based on the variational framework of [10] with a

classical viewpoint of Griffith’s theory. The variational approach uses a Mumford–Shah function [11] as the energy

potential to be minimized, and the sharp crack surface is smeared using a Γ -convergent approximation, where a

characteristic length is involved, see e.g. [12,13]. In such crack regularization, a state variable is interpreted as a

phase field that indicates the damage state of the solid body. A thermodynamically consistent framework has been

later outlined by [14], providing a compact formulation of phase-field model. The descriptive and comprehensive

formulation of [14] promoted the application of variational phase-field models in the engineering community. Such

damage models have proven capable of simulating crack initiation and propagation without any prescription of the

crack geometry or any ad-hoc numerical treatment [15–17]. They exhibit also a low mesh dependency and can handle

very complex fracture processes, such as crack interaction, branching and coalescence. The efficiency of variational

phase-field models has been demonstrated by various applications reported in the literature e.g. [18–21]. More

recently, contributions have been made to extend this approach by considering anisotropic fracture properties [22,23]

and interface layers between constitutive materials [24,25]. All the aforementioned models have been solved using

standard finite element method (FEM) solvers.

Although phase-field models are known as relatively mesh independent, a condition on element size must be

ensured, i.e. the element size of the fractured zone needs to be smaller than the half of the characteristic length [14].

This condition is problematic to some extent in the application of damage modeling of highly heterogeneous

materials. In fact, the characteristic lengths of the constituents are usually much smaller than the size of the

material heterogeneities embedded in the RVE (representative volume element) under investigation, which must

be large enough to account for the statistical fluctuations of the microstructure. In addition, the microstructures of

heterogeneous materials are usually quite complex, which makes it difficult or even impossible to anticipate the

fractured zones even under simple loading conditions. Whilst adaptive meshing is an interesting way to reduce the

problem size [26], a uniform refinement of the FE mesh is usually employed [18,27]. In this context, especially for

3D simulations, the use of standard FEM solvers for the damage phase-field modeling becomes very cumbersome and

requires an efficient parallel implementation in order to overcome the computational limits. An example of parallel

implementation based on MATLAB routines has been reported in [28], where the largest simulation involving about

30 million elements was parallelized over 8 processors on a single workstation and completed within 357 h. This

example demonstrates the need to use massively parallel solvers involving a distributed memory implementation in

order to perform large-scale simulations in reasonable computation time.

As an alternative to standard FEM solvers, FFT based methods (e.g. [29–32]) consist of matrix-free iterative

algorithms for solving Partial Differential Equations with periodic boundary conditions: the problem is solved with

no need to assemble the FE-type sparse matrix. The methods are well suited for parallelism and can be implemented

quite easily in a distributed memory context. Moreover, a regular structured grid is used in FFT methods, so segmented

digital images can be directly used as an input of the simulation without any meshing procedure. By virtue of this,

FFT methods are quite convenient for image-based modeling, with virtual images or experimental images acquired

from 3D Micro-Computed Tomography (µCT) for example or from any other 3D reconstruction technique. This

aspect has been demonstrated by a recent work on ceramic matrix composites [33], where the model was built

from a synchrotron X-ray µCT image, involving several billions of elements. Furthermore, FFT methods have been

successfully applied to various nonlinear constitutive material behaviors, such as hyper-elasticity [34], plasticity [35],

and visco-plasticity [36]. Continuum damage models have also been solved using the FFT technique, see [37] for an

application under a multiscale framework combined with finite element method, and [38] for an anisotropic damage

model dedicated to textile composites. Although the FFT technique has been widely used in phase-field modeling for

microstructural evolution problems (see [39–43] among others), to the knowledge of the authors, its application to

fracture phase-field model has never been reported.

In this paper, the phase-field model presented in [14] is implemented to demonstrate how a FFT solver can be used

to solve phase-field models for brittle fracture. The staggered scheme of [15] allows the solution of the mechanical

and phase-field problems separately, both using the FFT technique. The paper is organized as follows. First, the

phase-field model of Miehe et al. [14] is reviewed. This phase-field model will be then reformulated and solved within

a FFT framework. This single edge notched specimen under tension will be selected as a benchmark to study the

characteristics of the proposed method. Then, results of several representative numerical examples will be discussed.

The capacity of the FFT solver in predicting different crack modes, as well as crack branching, coalescence and

interaction, will be demonstrated. Finally, a simulation involving over 32 million voxels will be conducted to illustrate

the efficiency of the method in solving large-scale problems.
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2. Review of Miehe’s phase-field model

The starting point of Miehe’s phase-field model [14] is from smearing the sharp topology of a crack into a diffuse

one with an exponential function i.e. d (x) = exp(− |x | / lc). This diffuse regularization introduces a characteristic

length lc and leads to a crack surface density γ expressed by the damage variable d and its spatial gradient ∇d:

γ (d,∇d) =
1

2lc

d2 +
lc

2
|∇d|2 (1)

The diffuse crack topology can be determined by minimization of the crack surface Γl :

d (x, t) = Arg{ inf
d∈WΓ

Γl} with Γl =

∫

Ω

γ (d,∇d)dV (2)

subject to the Dirichlet-type constraints WΓ = {d|d (x, t) = 1 at x ∈ Γ (t)}, where Γ (t) represents the crack surface

with sharp topology at the instance t , which can be recovered from

Γ = lim
lc→0

Γl (3)

This description of crack topology is then incorporated into the variational framework of [10] to deduce the

equations governing the evolutions of both damage and displacement fields. The variational approach introduces

an energy functional for a cracked body:

Π (u, d) = E (ε (u) , d)+ D(d) (4)

where D(d) is the energy dissipated by the created cracks, and it is defined using the diffuse crack topology based on

Griffith’s theory:

D (d) :=

∫

Ω

gcγ (d,∇d)dV (5)

where gc represents the critical energy released by the creation of a unit crack surface.

E(ε (u) , d) in Eq. (4) represents the elastic energy stored in the cracked body, and is considered to be degraded by

the fracture evolution:

E (ε (u) , d) =

∫

Ω

[

g (d) · ψ+
0 (ε(u))+ ψ−

0 (ε (u))
]

dV with g (d) = (1 − d)2 + k (6)

where k is a small positive parameter for stabilizing the numerical algorithm. Here, in order to take into account the

unilateral condition, the strain energy density ψ0(ε(u)) of the unbroken body has been split into positive ψ+
0 (ε) and

negative ψ−
0 (ε) parts corresponding to the contributions of tension and compression, respectively. The two parts are

calculated for isotropic solids by

ψ±
0 =

λ

2
⟨tr (ε)⟩2

± + µ(ε± : ε±) (7)

where λ and µ are Lamé coefficients, ⟨x⟩± = (x ± |x |)/2, and ε± represents the spectral decomposition of the strain

tensor ε± =
∑3

i=1

⟨

εi
⟩

±
ni

⨂

ni , with εi and ni being the eigenvalues and eigenvectors of the strain tensor. The

strain decomposition is completed using two projection tensors. The demonstration of deducing an explicit form of

the projection tensors is given in Appendix A.

The multi-field problem can be solved by minimizing the energy functional (Eq. (4)), leading to the local governing

equations:

(a) :
gc

lc

[

d − l2
c∆d

]

= 2(1 − d)H(ε)

(b) :

⎧

⎪

⎨

⎪

⎩

div (σ (u, d)) = 0

σ = g (d)
[

λ ⟨tr (ε)⟩+ I + 2µε+

]

+
[

λ ⟨tr (ε)⟩− I + 2µε−

]

ε = (∇u + ∇T u)/2

(8)

where σ (u, d) is the local stress, which follows a material constitutive law depending on the displacement u (x) (or

strain ε(x)) field and fracture phase d(x) field. I denotes identity matrix. H(ε) represents the so-called history field of

maximum positive elastic energy:

H (ε (x, t)) : = max
τ∈[0,t]

ψ+
0 (ε(x, t)) (9)
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Table 1

Staggered scheme for solving multi-field problem using FFT method.

Initialization The strain field ε0(x), history field H
0(x) and phase field d0(x) are known

Loop while tn+1 ≤ T , given εtn (x), Htn (x) and d tn (x)

1. Solve the phase-field problem (Eq. (8).a or (10)) ⇒ d tn+1 (x)

2. Solve the mechanical problem (Eq. (8).b) ⇒ εtn+1 (x)

3. Update the history field (Eq. (9)) ⇒ H
tn+1 (x)

Additionally, in order to improve the stability of the numerical solution, a viscous regularization can also be

implemented as proposed in [15] by adding a viscous term in Eq. (8).a:

gc

lc

[

d − l2
c∆d

]

+ ηḋ = 2(1 − d)H(ε) (10)

where η is viscous parameter. It should be noted that this parameter has a physical unit of Pa s, which is the same as

the dynamic viscosity in fluid mechanics. As a consequence, the order of magnitude of this viscous parameter must

be chosen with respect to the physical units used in practical implementations.

As mentioned in the introduction, differently from FE implementations where matrix assembly is usually required,

the FFT method iteratively solves the governing equations (Eqs. (8) and (10)) in a local fashion, in either real or Fourier

space. The present work uses an existing FFT iterative procedure for the mechanical problem, while it proposes a new

procedure to solve the phase-field equation.

3. Phase-field model under FFT framework

In this work the staggered scheme of [15] is employed to solve the phase-field (Eq. (8).a or Eq. (10)) and mechanical

(Eq. (8).b) problems separately, both using the FFT technique. The staggered scheme consists of solving the phase-

field problem by considering the mechanical field (strain, stress) to be known at a given time step, and vice-versa for

the next time step. An overview of the staggered scheme is given in Table 1. FFT-based solvers are employed in both

steps 1 and 2, respectively corresponding to the phase-field and mechanical problems.

3.1. Solution of the mechanical problem

The unknown in the mechanical problem (Eq. (8).b) is strain instead of displacement. Periodic boundary conditions

(Eq. (11).a) are prescribed to the unit cell Ω subjected to overall strain or stress load (Eq. (11).b):

(a) : ε
(

x + L p

)

= ε (x) ; x ∈ Ω
∞

(b) : ⟨ε (x)⟩ = E; x ∈ Ω
(11)

where L p stands for the three periodicity vectors, Ω∞ denotes an infinite medium in which the unit cell Ω is

periodically repeated. ⟨∗⟩ represents the spatial mean over the unit cell Ω , and E is the prescribed overall strain tensor.

Considering the damage field as “frozen” (constant) at a given time step, the mechanical problem (Eq. (8).b)

becomes an elastic problem whose solution can be achieved by iteratively solving the Lippmann–Schwinger equation:

ε (x) = −Γ0 ∗ τ (x)+ E with τ (x) = σ (x)− C0 : ε(x) (12)

where τ (x) is called the polarization field, and Γ0 is the fourth order Green operator for strain that is calculated

in Fourier space as a function of the elastic constants of the chosen reference material C0. The stress field σ (x)

is computed in real space using the constitutive equation in Eq. (8).b, hence the effects of fracture evolution and

unilateral condition are taken into account.

Various FFT formulations are readily available for solving the mechanical problem, hence the implementation

of this part is not presented in this paper. Readers are referred to the original papers, see e.g. [29,44–46]. In this

work, the mechanical problem is chosen to be solved using a fixed-point algorithm as proposed in the basic scheme

of [29] combined with a modified discrete Green operator [46]. As demonstrated in [47], the use of this discrete

Green operator is strictly equivalent to the use of hexahedral finite elements with reduced integration (i.e. 8 nodes and

one Gauss point in the middle of the element) in a standard FEM code. In addition to this, a convergence acceleration

procedure (see [33]) is also employed to improve the performance of the fixed-point algorithm in mechanical solution.

Even though these two improvements significantly reduce the dependence of convergence rate on the choice of
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the reference material C0, we still choose to follow the suggestion of [29], i.e. λ0 = (min (λ) + max (λ))/2 and

µ0 = (min (µ)+ max (µ))/2, to achieve an optimal convergence rate of the mechanical solution.

In practice, instead of a strain-driven method as in Eq. (12), where the applied load is the average strain, it is usually

more convenient to apply mixed loading conditions, i.e. average stress for some components and average strain for

the others. This is made possible in the code AMITEX through a slightly modified algorithm, similar to that reported

in [48]. This consists of re-evaluating the complete average strain at each fixed-point iterate, so that the average stress

conditions are fulfilled at convergence.

3.2. Fixed-point algorithm for the phase-field problem

Now we introduce a fixed-point iterative algorithm nested in the staggered scheme to solve the phase-field problem

using the FFT technique (step 1 in Table 1). The non-viscous form can be recovered by setting η = 0, hence only the

solution of the viscous form (Eq. (10)) is presented in the following.

The objective of the fixed-point iteration is to find the phase field d tn+1(x) at the time step tn+1 based on the history

field H
tn (x) and the damage field d tn (x) that are known at the previous time step tn . For the sake of simplicity, the

superscript ∗tn+1 will be hereafter omitted, i.e. d (x) := d tn+1 (x). In order to keep the formulation as the most generic

possible, we consider that all the parameters (gc, lc, η) involved in Eq. (10) can vary from one point to another if the

unit cell is heterogeneous. In other words, they are functions of the coordinates x. Replacing ḋ by d−d tn

δt
, with δt the

time step of the simulation, Eq. (10) can be rewritten as
(

1

l2
c (x)

+
2Htn (x)

gc (x) lc (x)
+

η(x)

δtgc (x) lc (x)

)

d (x)− ∆d(x) =
2Htn (x)

gc (x) lc(x)
+

η(x)

δtgc (x) lc(x)
d tn (x) (13)

and simplified into the following form:

Atn (x)d (x)− ∆d(x) = B tn (x) (14)

with

Atn (x) =
1

l2
c (x)

+
2Htn (x)

gc (x) lc(x)
+

η(x)

δtgc (x) lc(x)
; B tn (x) =

2Htn (x)

gc (x) lc(x)
+

η(x)

δtgc (x) lc(x)
d tn (x) (15)

These two field variables are calculated for each time step tn . By introducing a homogeneous parameter An
0 ,

Eq. (14) becomes

A
tn
0 d (x)− ∆d(x) = χ (x) (16)

with χ (x) hereafter called polarization field for phase-field problem:

χ (x) = B tn (x) −
(

Atn (x)− A
tn
0

)

d(x) (17)

The fixed-point algorithm is now employed to solve Eq. (16) in order to find a new damage field dk+1(x),

by assuming the polarization fieldχ k(x) as known at the previous iteration step k. The Laplacian operator is

computationally expensive in real space, yet in Fourier space it can be easily computed by local multiplication with

wave (frequency) vector ξ

F (∆d(x)) = −(ξ · ξ ) · F (d(x)) (18)

where F(∗) represents the Fourier transform of a function ∗, and hereafter will be denoted by the symbol ∗̂. Thus, the

solution of Eq. (16) can be expressed in Fourier space as:

d̂k+1(ξ ) =
χ̂ k(ξ )

An
0 + ξ · ξ

(19)

Table 2 outlines the proposed algorithm that needs to be executed at each time step of the overall staggered scheme.

We distinguish here the two superscripts ∗k and ∗tn : the former represents the index of fixed-point iteration step, while

the latter is the index of time step. Indeed, this fixed-point loop is undertaken at each time step tn+1 to reach a converged

phase field dk+1(x). However, the fields of Atn (x), B tn (x) and d tn (x) remain known and unchanged during the fixed-

point loop. The loop is stopped once the convergence criterion is reached, i.e. the residual of the governing equation

(Eq. (16)) is smaller than the predefined tolerance ϵtol . In practice, we calculate the residual using the polarization
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Table 2

Fixed-point algorithm for solving the phase-field problem at a time step tn+1.

Initialization Initialize the fracture phase field dk (x) = d tn (x)

Compute the polarization field χ k (x) (Eq. (17))

Loop while ϵ > ϵtol , Atn (x) , B tn (x) , A
tn
0 , d tn (x) being known and unchanged

1. FFT: χ k (x) → χ̂ (ξ )

2. Compute a new fracture phase field d̂(ξ ) in Fourier space (Eq. (19))

3. Inverse FFT: d̂k+1(ξ ) → dk+1(x)

4. Update the polarization field χ k+1(x) (Eqs. (17))

5. Convergence test:

Compute the residual ϵ of the governing equation (Eq. (20)).

fields of two sequential iterations:

ϵ =



χ k+1 (x)− χ k (x)




2


χ k+1 (x)




2

(20)

where ∥∗∥2 represents the L-2 norm over the unit cell. The tolerance is set to ϵtol = 10−6 in the present

implementation.

Remarks. As mentioned in Section 3.1, a modified discrete Green operator is used for the mechanical problem.

The operator is built on the definition of discrete derivatives in real space. In practice, we use the finite-difference

based definition that is reported in [46] (the so-called ‘rotated scheme’) and in [47] (the linear hexahedral FE with

reduced integration in the Appendix of the reference). Moving from the classical discrete Green operator [29] to

the modified Green operator [46,47] is simple: replacing the frequency vectors that define the Fourier space by the

modified frequency vectors when applying the discrete Green operator. In the present work, the same finite-difference

based definition and consequently the same modified frequency vectors are used for solving both the mechanical

problem and the phase-field problem (Eq. (19)). It is useful to mention that for the mechanical problem, the modified

discrete Green operator, compared to the classical one, drastically reduces spurious oscillations and allows for solving

problems with infinite elastic contrasts.

A
tn
0 in Eq. (16) has a great importance for the proposed fixed-point algorithm, because the choice of this parameter

can significantly affect the convergence rate. By analogy to the basic scheme of [29] for the mechanical problem, the

mean of the maximum and minimum values of Atn (x) (Eq. (21)) has been chosen in the present work, providing a

relatively fast convergence rate.

A
tn
0 =

min
(

Atn (x)
)

+ max
(

Atn (x)
)

2
(21)

A detailed flowchart of the overall algorithm is given in Appendix B to provide a global view of the proposed

FFT solver. Two fixed-point loops are nested within the staggered scheme, solving the mechanical and phase-field

problems, respectively. Since fixed-point algorithms do not require computation of the tangent stiffness matrix,

compared to tangent-based algorithms like Newton–Raphson’s method, it will be easier to extend the FFT solver

proposed herein to other models, such as damage with anisotropy [22,23], or damage with plasticity [49,50].

3.3. Parallel implementation

In this FFT-based solver of the phase-field problem every step involves local operations only, except the FFT

and inverse FFT. In addition, open sources of powerful FFT packages are available to complete the FFT and its

inverse in a parallel fashion. Therefore, the proposed algorithm inherits the simplicity in parallel implementation of

the classical FFT methods. The present implementation of the phase field problem has been introduced in a FFT-based

code “AMITEX” solving mechanical problems at small and finite-strains in a massively parallel context. The code

relies on the 2DECOMP&FFT library [51] for the distributed memory implementation and readers interested in this

aspect are invited to consult the documentation found on [52] and some practical aspects such as the loading conditions

and convergence criteria, can be found in [53].
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Fig. 1. Geometry of the unit cell used in the single edge notched tensile test.

3.4. Convergence acceleration

A convergence acceleration technique has been incorporated in both phase-field and mechanical problems to speed

up the convergence of the fixed-point loops. This technique has readily been implemented in AMITEX [52]. The main

idea is to propose a better (or accelerated) solution of the strain or damage field, according to the four solutions and

corresponding residuals obtained at previous steps. This “acceleration” procedure is applied every three steps of the

fixed-point loop. A more detailed description is given in [33].

4. Numerical examples

The proposed algorithm has been implemented for general 3D boundary value problems. The unit cells of the

following “2D” examples (Sections 4.1–4.5) consist of a slab of one voxel thickness in the third dimension. Due to

periodic boundary conditions, the out-of-plane strain components are equal in the whole slab, which is equivalent to a

generalized plane strain condition. In Section 4.1, a single edge notched specimen is used as a benchmark to study the

effects of different parameters. Similar specimens with inhomogeneous lc or gc are tested in Section 4.2. Then, mode

II and mode III shear cracks are simulated in Section 4.3. Symmetric and asymmetric double edge notched specimens

are studied in Section 4.4 to assess the capacity of predicting crack interaction. In Section 4.5, crack branching and

coalescence are simulated within a notched bi-material specimen. Finally, a 3D example is given in Section 4.6 to

demonstrate the potential of the proposed algorithm in large-scale simulations.

In order to conduct tests under tensile or shear loads, mixed loading conditions (see e.g. [53]) are employed.

For example, a tensile test in X-axis is simulated by incrementally increasing the average strain component εxx and

keeping the average stress components σyy, σzz, σxy, σxz, σyz equal to zero. The stability parameter k (see Eq. (6)) is

set to 10−6 for all the representative examples presented in the paper.

4.1. Benchmark study: single edge notched specimen under tension

The single edge notched specimen under tension is selected as a benchmark in order to examine the influences of

various parameters. Fig. 1 depicts the geometry of the unit cell. To avoid the influence of periodic boundary conditions

on the damage evolution, margins with null elastic properties are added to the two sides. Both the crack and margin

voxels are defined as void, with elastic constants equal to zeros and lcrk
c = 0.015 mm, gcrk

c = 2.7 · 10−3 kN/mm.

Elastic constants of the solid material are λ = 121.15 kN/mm2 and µ = 80.77 kN/mm2 and fracture energy is

gc = 2.7 · 10−3 kN/mm. In the following macroscopic stress–strain curves, the macroscopic stress is evaluated as the

average of the stresses in the solid voxels, i.e. notch voxels and margin voxels are excluded from this calculation.

4.1.1. Comparison with FEM solution

Using this benchmark specimen, the result from the FFT solver is compared with that published in [15]. The

characteristic length is chosen as lc = 0.015 mm, which is the same as in the reference. In our simulations, a unit
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Fig. 2. Macroscopic stress–strain curve of the single edge notched tensile test, compared with that from [15] and the result obtained using the

ABAQUS implementation of [54] . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

cell with voxel size of h = 0.005 mm is subjected to uniaxial tension in the Y-axis up to εyy = 0.005 with initially a

relatively large increment of ∆εyy = 5 · 10−5 and then the strain increment is refined to ∆εyy = 5 · 10−7 until the final

failure. Note that Miehe’s result was obtained from a 2D implementation. Therefore, in our simulation the unit cell is

subjected to an equivalent loading condition, i.e. incrementally increasing εyy , keeping σxx , εzz, σxy, εxz, εyz = 0.

According to the results shown in Fig. 2, the strain to failure of both simulations is quite consistent. However, the

slope of the FFT solution (black solid curve) is different from the reference one [15] (red solid curve). This difference

appears from the very beginning (even in the elastic regime). Therefore, it should not be due to an error in the solution

of the phase-field model, but is more likely related to some other difference(s), for instance in the mesh configuration

between the FFT and FEM solutions. In fact, in the FFT solution the notch has been considered as void voxels with

a thickness of one voxel (0.005 mm), whereas it had no thickness in the FEM solution of [15]. To check this point, a

FEM simulation with a notch of thickness of 0.005 mm has been conducted using the FEM implementation of [54] in

ABAQUS/UEL. 4-node bilinear reduced integration with hourglass control elements of the size of h = 0.005 mm has

been used in this simulation. The result is depicted by the blue dashed curve, whose slope agrees well with the FFT

solution. To sum up, these two comparisons demonstrate the accuracy of the proposed method.

4.1.2. Convergence acceleration and viscous regularization

The efficiency of the convergence acceleration technique in solving the phase-field problem is examined for the

same unit cell (h = 0.005 mm) as in Section 4.1.1. The macroscopic loading condition is applied by keeping

σxx , σzz, σxy, σxz, σyz equal to zero and incrementally increasing εyy up to εyy = 0.005 with a relatively large

increment of ∆εyy = 5 · 10−5 and then the strain increment is refined to ∆εyy = 5 · 10−7 until the final failure.

The viscous parameter η is set to zero. The characteristic length is lc = 0.015 mm. Two simulations are conducted,

with and without the convergence acceleration technique. As shown in Fig. 3, the stress–strain curves are identical

for both simulations, while the convergence acceleration technique reduces the maximum number of iterations for the

phase-field solution by a magnitude of 10 (from ∼2300 to ∼250). This demonstrates that the convergence acceleration

technique can significantly improve the convergence rate of the fixed-point algorithm that is proposed in the present

paper for the phase-field problem.

Using the same unit cell, material parameters and loading conditions, another simulation has also been conducted

with the convergence acceleration disabled for the mechanical problem. The number of iterations for the mechanical

solution becomes very large (larger than several thousands) even from the early stage of the load, making the

computation time too long, hence the computation was interrupted before its completion. This confirms the efficiency

of the technique for accelerating the fixed-point algorithm that is commonly used for the mechanical problem.

Next, the effect of the viscous regularization is investigated. Two simulations are performed using different viscous

parameters, i.e. η = 0 and 109 Pa s. Other parameters (∆εyy, lc, h) are the same as in the previous study. The

convergence acceleration technique is disabled in the phase-field problem in this study. Fig. 4 shows that the viscous

regularization with η = 109 Pa s slightly retards the aggressive crack growth in the post critical regime, as already

presented in [15]. On the other hand, the viscous regularization helps to reduce the number of iterations for the
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Fig. 3. Efficiency analysis of the convergence acceleration technique: stress–strain curves together with the numbers of iterations used for phase-

field solution for the simulations with and without convergence acceleration technique.

Fig. 4. Viscous regularization effect for phase-field solution with different values of η: stress–strain curves together with the number of iterations.

Fig. 5. Effect of the viscous parameter η on macroscopic stress–strain curves.

phase-field solution from the early stage of loading (compared to the convergence acceleration technique, see Fig. 3),

and the maximum number of iterations is reduced from ∼2300 to ∼600 by virtue of the viscous regularization. More

simulations using different values of the viscous parameter η have also been tested and the stress–strain curves are

gathered in Fig. 5. The retarding effect of the viscous regularization on the aggressive crack growth becomes more

and more obvious as η increases. However, a too high value of η (e.g. 1012 Pa s) can lead to unrealistic prediction of

the critical stress, hence the viscous parameter must be chosen carefully.

We choose to conduct the further numerical tests only with the convergence acceleration technique, but with the

viscous regularization disabled, i.e. η = 0 Pa s.

4.1.3. Load increment, characteristic length and voxel size

Due to the specificities of FFT method compared to standard FE method (e.g. loading and boundary conditions)

and in order to convince the readers who are more familiar with standard FE implementations, we check how various
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Fig. 6. Effect of stain increment ∆εyy on macroscopic stress–strain curves.

parameters of the phase field model influence the prediction of material fracture in the FFT implementation. In this

section, the effects of strain increment ∆ε, characteristic length lc and voxel size of the unit cell h will be discussed.

Simulation results similar to those from FE solutions will be obtained.

In order to assess the influence of strain increment on the solution, the unit cell is loaded in the tensile Y -axis (εyy)

with a rate of ∆εyy = 5 · 10−5 up to εyy = 0.005, and then the strain increment is refined with different values of

∆εyy . The other stress components (σxx , σzz, σxy, σxz, σyz) are kept equal to zero. The unit cell has a voxel size of

h = 0.005 mm and the characteristic length is chosen as lc = 0.015 mm. Fig. 6 shows the stress–strain graphs of

these simulations. A large strain increment retards the aggressive softening behavior, and even affects the prediction of

critical stress (e.g. ∆εyy > 5 ·10−6 in the present case). This effect is similar to the effect of the viscous regularization

(Fig. 5) and has also been reported in [54,55]. Therefore, the strain increment must be chosen with care, keeping

in mind the fact that a too small increment makes the computation slow, while a too large one results in unrealistic

prediction.

The effect of the characteristic length lc is analyzed in a unit cell with voxel size of h = 0.005 mm. For this set of

simulations, the increment of ∆εyy = 5 · 10−7 is fixed for the second loading stage. According to Fig. 7.a, a smaller

characteristic length leads to a higher strength but a smaller strain to failure. This confirms that the characteristic

length should be considered as a material parameter instead of an algorithmic one, as also mentioned in [55]. Note

that a continuous softening of the stress–strain curve is observed for each simulation and the phenomenon becomes

more obvious as lc increases. This is attributed to the evolution of the damage parameter over a large area, even quite

far from the crack tip (see the light blue color on the right side of each damage field, Fig. 7.b). Close to the final

rupture, a small jump is observed on the curves. This could be attributed to the spurious oscillations of the damage

field observed around the crack tip (see Fig. 7.b). However, the effect of this oscillation becomes negligible when the

crack starts to propagate. This issue would possibly be eliminated in the future by considering a regularization of the

predefined crack notch.

Fig. 8 illustrates the effect of the voxel size h. Unit cells with different resolutions are tested using the same

characteristic length lc = 0.015 mm and the same strain increment ∆εyy = 5 · 10−7 for the second loading stage. The

stress–strain curves are almost identical for the different simulations, except that with h = 0.01mm. This demonstrates

that the phase-field model is independent on the grid resolution if the condition of h ≤ lc/2 is satisfied.

Furthermore, the numbers of iterations and computation time for the simulations with unit cells of different

resolutions are collected in Table 3. The time per iteration for either phase-field or mechanical problem increases

with the number of voxels in a quasi-linear trend, as shown in Fig. 9. This is a promising property of the FFT solver

compared to standard FEM solvers. Unfortunately, the numbers of iterations also increase as the grid is refined, making

the total computation time increase with the problem size by an order slightly higher than one. In addition, it is useful

to mention that the time per iteration is shorter (about 10 times) for the phase field problem, which is not surprising

since the number of unknowns is 6 (strain components) for the mechanical problem and only one for the phase-field.

On the other hand, the number of iterations is larger (2∼3 times) for phase-field problem than for mechanical problem.

Overall, more time is spent for solving the mechanical problem than for solving the phase-field problem.
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Fig. 7. Effect of the characteristic length lc: (a) stress–strain curves of the simulations with different values of lc; (b) damage field at the three load

levels marked on the stress–strain curve for the simulation with lc = 0.060 mm.

Fig. 8. Voxel size h effect on macroscopic stress–strain curves.

Fig. 9. Time per iteration for either the phase-field or mechanical problem as a function of number of voxels involved in the simulation.
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Table 3

Computation time used for the single edge notch simulations with unit cells of different resolutions. All the simulations were

undertaken using 8 processors.

h (mm) Number of

voxels

Total time

(minutes)

Number of

iterations for

PF problem

Number of

iterations for

mechanical

problem

Approximate time

per iteration for

PF problem

(second)

Approximate time

per iteration for

mechanical

problem (second)

0.0050 44 823 6 55 656 18 897 0.0015 0.015

0.0033 100 233 13 64 169 26 947 0.0019 0.024

0.0025 177 643 41 68 688 32 320 0.0059 0.064

0.0020 277 053 71 73 025 36 213 0.0090 0.099

4.2. Single edge notched tensile specimen with inhomogeneous lc or gc

In the phase-field model, the fracture behavior is primarily determined by two parameters: the characteristic

length lc and the fracture energy gc. Now, we check the capability of the proposed method for solving different

cases with inhomogeneous fracture properties. Single edge notched specimens are used for this purpose. Fig. 10.a

depicts the geometry, which is similar to the one used in previous simulations (Fig. 1). The two parts of the solid

body have identical elastic constants (λ = 121.15 kN/mm2, µ = 80.77 kN/mm2), but different characteristic

lengths (lci ) or fracture energies (gci ). The predefined crack and margin voxels have zero elastic constants with

lcrk
c = 0.02 mm, gcrk

c = 2.7·10−3 kN/mm. The voxel size of the unit cell is h = 0.01mm. The loading condition is the

same as that in Section 4.1.2. Fig. 10.b shows the macroscopic stress–strain curves of the simulations with different

configurations on lc and gc, together with the corresponding crack patterns shown in Fig. 10.c–f.

The characteristic length lc clearly controls the diffuse crack topology as shown in Fig. 10.c and d. A greater lc

produces a higher regularization of crack surface, hence a more diffuse crack topology. As for the tests with different

gc, when the crack grows from high gc to low gc material phase, the smeared zone becomes larger, which is unexpected

and the reason of this is unclear yet. When the crack enters into the phase with higher gc from a lower gc, its growth

rate decreases, which explains the second peak of the red dash curve in Fig. 10.b.

4.3. Cracked body under shear loads

In order to check the prediction of mode II and mode III cracks, the unit cell of a body with periodically distributed

cracks is used as depicted in Fig. 11.a. No void margins are added, so the periodicity is kept in all directions. As a

result, the crack can be located at any arbitrary position within the unit-cell as shown in Fig. 11.b. This configuration

illustrates the specificity of FFT method, i.e. periodic boundary conditions are intrinsically applied to the unit cell.

The voxel size is h = 0.005 mm. The crack voxels are given null elastic properties with lcrk
c = 0.015 mm, gcrk

c =
2.7 · 10−3 kN/mm. The solid material parameters are λ = 121.15 kN/mm2, µ = 80.77 kN/mm2, lc = 0.015 m and

gc = 2.7 · 10−3 kN/mm. The macroscopic mode II (mode III resp.) shear load is applied by incrementally increasing

the strain component εxy (εyz resp.) and keeping the stress components σxx , σyy, σzz, σxz, σyz(σxy resp.) equal to zero.

Once again, using a one voxel thick slab, these 3D simulations are equivalent to 2D simulations with generalized

plane strains (with constant out of plane strain components). At the first loading stage, the shear strain is increased up

to εxy = 0.008 (εyz = 0.015 resp.) with a load increment of ∆εxy = ∆εyz = 5 · 10−5. Then at the second loading

stage, the load increment is reduced to ∆εxy = 5 · 10−6 (∆εyz = 5 · 10−6 resp.).

As shown in Fig. 12.a, two cracks appear due to periodic boundary conditions. The mode II crack path first follows

a straight line with an angle of 45◦ with respect to the plane of the predefined notch. Then their orientations change

as they approach the boundaries. This is explained by the increasing interaction between the periodic cracks. On the

other hand, two mode III cracks also periodically nucleate at the ends of the predefined notch, and they grow in the

plane of the notch (Fig. 12.b).

4.4. Symmetric and asymmetric double edge notched tensile specimens

In this section, crack interaction is tested in double edge notched tensile specimens. Both specimens with different

relative positions of edge notches, as depicted in Fig. 13, are studied.
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Fig. 10. Crack patterns in the single edge notched tensile specimen with inhomogeneous fracture energy or characteristic length: (a) geometry of

the unit cell; (b) macroscopic stress–strain curves; (c–f) crack patterns for unit cells with different configurations of lc and gc .

The same material parameters for both specimens are kept: λ = 121.15 kN/mm2, µ = 80.77 kN/mm2, lc =

0.2 mm, gc = 2.7 · 10−3 kN/mm. The margin and crack voxels are given elastic constants of zero and lcrk
c =

0.2 mm, gcrk
c = 2.7 · 10−3 kN/mm. The two unit cells have a voxel size of h = 0.1 mm. The same loading rate

is applied in both simulations: ∆εyy = 8 · 10−6 for the first stage with 100 increments and then ∆εyy = 5 · 10−7 for

the second loading until final failure, with the other stress components (σxx , σzz, σxy, σxz, σyz) equal to zero.

The macroscopic stress–strain curves are shown in Fig. 14 for both specimens. They are almost identical before

the final stage (point C). At the final stage, the symmetric specimen reaches its total failure, which corresponds to
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Fig. 11. (a) Geometry of the unit cell used for shear tests. (b) A solid medium with periodic cracks: the red square indicates the unit cell chosen in

the present study and it is equivalent to any choice with the same dimensions, e.g. the black square . (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

the connection of the two coplanar cracks (see Fig. 15.a). In contrast, the asymmetric specimen continues to sustain a

small value of tension because the two non-coplanar cracks avoid their connection (Fig. 15.b). As shown in Fig. 15,

when the two cracks are relatively far from each other, there is no obvious difference in crack interaction between the

two specimens, so the macroscopic responses are identical. However, when the two cracks approach each other, their

path depends on their relative position, leading to the difference in macroscopic behavior of the two specimens. The

crack patterns of both specimens are in excellent agreement with the literature [54,56].

4.5. Crack branching and coalescence: notched bi-material specimen under tension

We examine here the capability of the proposed algorithm for predicting crack branching and coalescence. The

geometry of the unit cell and the material parameters for the two solid parts used in this test are depicted in Fig. 16.a.

The elastic constants of margin and crack voxels are set to zero with lcrk
c = 0.3 mm, gcrk

c = 1 · 10−3 kN/mm. The

upper part is 10 times stiffer and tougher than the lower part. Macroscopic tension in the X -axis is applied up to

εxx = 0.002 with an increment of ∆εxx = 2 · 10−5 and then the increment is refined to ∆εxx = 5 · 10−6 until failure.

The other stress components (σyy, σzz, σxy, σxz, σyz) are kept equal to zero.

Fig. 16.c shows that the simulation captures both crack branching and coalescence. A crack initiates from the notch

(Fig. 16.c-1), corresponding to the slope change at point 1 on the stress–strain curve. Then at point 2, it bifurcates

into two branches (Fig. 16.c-2) when it is close to the interface of the two solid parts. This bifurcation does not

induce an obvious change of slope on the stress–strain curve. Finally, as the load continues to increase, the two

branches penetrate into the upper part and then join each other (Fig. 16.c-3–4, crack coalescence), leading to the final

failure.

4.6. 3D example: Continuous fiber reinforced composite with void

To check the capability of the FFT solver for large-scale simulations, we conduct a numerical test on a unit

cell of a continuous fiber composite. Being periodic in three axes, the idealistic geometrical model consists of

a unidirectional composite with periodically distributed fibers oriented at 45◦ as shown in Fig. 17. The volume

fraction of fibers has been chosen as 20%, with fiber diameter of 15 µm. An initial defect, represented by a penny-

shaped void, is inserted between the fibers. The unit cell has dimensions of 401 × 401 × 201 voxels (32 321 001

voxels in total) with a voxel size of h = 0.25 µm. The elastic constants of the defect are set to zero with

lcrk
c = 2 µm, gcrk

c = 1 · 10−4 kN/mm. The characteristic lengths and fracture energies of fiber and of matrix are

chosen as l
f iber

c = lmatri x
c = 2 µm, g

f iber
c = 60 · 10−3 kN/mm, gmatri x

c = 1 · 10−4 kN/mm. The unit cell is loaded

in tension along the X -axis up to εxx = 0.035 with rate of ∆εxx = 10−4 and then the increment is refined to

∆εxx = 5 · 10−6 until the final failure, with other stress components (σyy, σzz, σxy, σxz, σyz) being zero.
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Fig. 12. Crack patterns under (a) mode II (in-plane shear) and (b) mode III (anti-plane shear) loads, together with the corresponding macroscopic

stress–strain curves.

The macroscopic stress–strain curve is shown in Fig. 18, together with the numbers of iterations for solving

either the phase-field or the mechanical problem at each load increment. Both the phase-field and mechanical

solutions require more iterations when the material failure occurs. This trend is similar to that observed previously
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Fig. 13. Geometries of double edge notched tensile specimens: (a) with symmetric crack-like notches, (b) with asymmetric crack-like notches.

Fig. 14. Macroscopic stress–strain curves of the symmetric and asymmetric double edge notched specimens under tension. The letters (A–D)

indicate the loading levels at which the crack patterns are given in Fig. 15.

in Section 4.1.2 (Figs. 3 and 4). After the material failure (εxx > 0.0412), the unit cell is still able to withstand

load. More particularly, the slope of the last part of the stress–strain curve remains constant, and its extension passes

through the axis origin. This suggests that no damage evolution occurs at this last loading stage, which can be further

confirmed by the crack patterns shown in Fig. 19, i.e. no crack growth is observed between the loading levels 5 and 6.

As a consequence, the numbers of iterations required at this loading stage decrease drastically. It should be noted that

this last stiffening stage is due to the fact that the fibers have a much higher fracture energy making them undamaged

within the unit cell. The growth of crack topology is shown in Fig. 19. The simulation captured the crack initiation

and the influence of fibers on the crack propagation.

This simulation with over 32 million voxels has been repeated three times on a cluster using one, four or eight

nodes (28 cores per node). In other words, the simulation has been parallelized over 28, 112 and 224 cores. Each

node consists of two Intel Xeon 6132 processors (14 cores per processor, 2.6 GHz, Slylake R⃝ technology). An intel

OmniPath 100 network is used for inter-node communications. The code has been compiled with the intel 15 compiler

together with the intel MPI library, version 5.

The computation time (wall time) and efficiency are summarized in Table 4, the efficiency being defined as

E(N ) = T1/(N TN ), with T1 and TN the wall time on 1 node and N nodes respectively. According to Table 4, even if

parallelized on 28 cores (1 node), the computation time is still high (36 h), making more nodes necessary. By virtue of

a distributed memory parallel implementation, using 4 nodes and 8 nodes has reduced the computation time to 11.5 h

(3 times less) and 7 h (5 times less), respectively. Indeed, the efficiency is quite satisfactory when using 4 nodes (0.78)

and still acceptable on 8 nodes (0.65). It must be mentioned that the decrease of the efficiency is related not only to the

increasing time spent during the communication between processors, but also to the increasing number of iterations.

16



Fig. 15. Crack patterns of symmetric (a) and asymmetric (b) double edge notched specimens at different loading levels. The letters (A–D) refer

the loading levels shown in Fig. 14.

Table 4

Computation time and efficiency for simulations conducted on 1, 4 and 8 nodes (i.e. 28,

112 and 224 cores).

Number of nodes (Number of cores) 1 (28) 4 (112) 8 (224)

Wall time 36 h 11.5 h 7 h

Efficiency 1 0.78 0.65

For instance, the number of iterations for the mechanical problem has increased from 40008 on one node to 47667 on

eight nodes. This increase has been essentially observed during the stress jump due to the unstable propagation of the

crack. The reason for this increase is still under investigation. One idea is that during the instable crack propagation,

the algorithm is more sensitive to numerical errors, and furthermore, the amount of numerical errors is more important

in a parallel implementation.

To conclude, even if it cannot be really called as a “large-scale” simulation, this “medium-scale” simulation

demonstrates the ability of AMITEX to use distributed memory architectures, and to take advantage of High

Performance Computing to run massively parallel simulations as reported in [33] with a problem of more than 7

billion voxels.
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Fig. 16. Crack branching test: (a) geometry of the unit cell used in the simulation; (b) stress–strain curve; (c) crack patterns at different loading

levels showing crack propagation in soft material, crack branching, crack coalescence and final failure.

5. Conclusions

A FFT solver of a variational phase-field model for brittle fracture has been proposed in this paper. Relying on

the staggered update scheme of [15], the phase-field and elastic problems have been separately solved both using

the FFT method with fixed-point algorithm together with a convergence acceleration procedure. Benefitting from the

FFT technique, the proposed method is easy to parallelize and convenient for image-based modeling. A convergence

acceleration technique has been added to the fixed-point algorithms to improve the computational performance. The

influences of this technique, as well as other parameters involved in the phase-field model, have been analyzed using

a single edge notched specimen.

Numerical examples have demonstrated that the proposed algorithm is stable and convergent for predicting not

only simple mode I, II and III cracks, but also complex cases such as crack interaction, branching and coalescence.

Introduced in the AMITEX code and taking advantage of its distributed memory parallel implementation, a simulation

with over 32 million voxels has demonstrated the attractive potential of the solver for large-scale simulations. As a

conclusion, the FFT solver proposed in this paper is an efficient alternative to standard FEM solvers of phase-field

models for brittle fracture, especially in the context of image-based modeling where a large number of voxels are

usually involved.
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Fig. 17. 3D visualization of the unit-cell microstructure of the continuous fiber composite with void. Matrix is hidden for the sake of clarity.

Fig. 18. (a) Macroscopic stress–strain curves of the tensile test on the unit cell of continuous fiber composite, with the red straight line being

the extension of the last part (ε > 0.0412) of the stress–strain curve. (b) Numbers of iterations for phase-field and mechanical solutions; the

macroscopic stress–strain curve is also plotted to provide a reference of loading level.
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Fig. 19. Crack patterns of the continuous fiber composite under tension in the X -axis at different loading levels (indicated by the numbers on the

macroscopic stress–strain curve in Fig. 18.a). For the sake of clarity the matrix is hidden and only the voxels with damage variable greater than 0.9

are shown.
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Appendix A. Projection tensor for strain decomposition

In our implementation, the projection tensors for strain decomposition are constructed as follows. The definition

of ε+ can be written into matrix form:

ε+ = Qt · ⟨ε̃⟩+ · Q with ε̃ = Q · ε · Qt (A.1)

where ε̃ is the strain tensor in the principal coordinates. The rotation matrix Q is computed from the eigenvectors

(v1, v2, v3) of the strain tensor, and it is orthogonal, so

Q Qt = I with Q =
(

v1, v2, v3

)t
(A.2)

Now we replace ⟨x⟩+ = (x + |x |)/2 by a sign matrix s:

⟨ε̃⟩+ = s · ( Q · ε · Qt ) (A.3)

The sign matrix s is defined by the eigenvalues (λ1, λ2, λ3) of the strain tensor:

s =

⎛

⎝

s1 0 0

0 s2 0

0 0 s3

⎞

⎠ with si =

{

1, if λi > 0

0, otherwise
(A.4)
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Substituting Eqs. (A.2)–(A.3) into Eq. (A.1), and applying the associativity, it becomes

ε+ = ( Qt · s · Q) · ε (A.5)

Thus, the projection tensors P+,P− are constructed by

P+ = Qt · s · Q; P− = I − P+ (A.6)

where I is unitary 3 × 3 matrix. The explicit expression of the projection tensor P+ is:

P+ =

⎛

⎜

⎜

⎝

s1q11q11 + s2q21q21 + s3q31q31 s1q11q12 + s2q21q22 + s3q31q32 s1q11q13 + s2q21q23 + s3q31q33

s1q11q12 + s2q21q22 + s3q31q32 s1q12q12 + s2q22q22 + s3q32q32 s1q12q13 + s2q22q23 + s3q32q33

s1q11q13 + s2q21q23 + s3q31q33 s1q12q13 + s2q22q23 + s3q32q33 s1q13q13 + s2q23q23 + s3q33q33

⎞

⎟

⎟

⎠

(A.7)

where qi j is the component of Q. In practice, strains are not stored in the form of tensor but of vector:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ε1 = ε11

ε2 = ε22

ε3 = ε33

ε4 = 2ε12

ε5 = 2ε13

ε6 = 2ε23

(A.8)

Therefore, the projection tensor must also be adjusted:

P+ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

p11 0 0
p12

2

p13

2
0

0 p22 0
p21

2
0

p23

2

0 0 p33 0
p31

2

p32

2

p21 p12 0
p11 + p22

2

p23

2

p13

2

p31 0 p13

p32

2

p11 + p33

2

p12

2

0 p32 p23

p31

2

p21

2

p22 + p33

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(A.9)

where pi j is the component of P+. The negative projection tensor is calculated by P− = I − P+, where I is unitary

6 × 6 matrix.

Thus, the strain vector can be decomposed into positive and negative parts by multiplying with the projection

tensors:
⎧

⎨

⎩

ε± = P± · ε in the form of tensor

ε± = P± · ε in the form of vector
(A.10)

Appendix B. Flowchart of the overall algorithm

See Fig. B.1.
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Fig. B.1. Flowchart of the overall algorithm: two fixed-point loops are nested in the staggered scheme, solving the mechanical and the phase-field

problems, respectively. CV. check: convergence check for either the mechanical problem or the phase-field problem; ACV: convergence acceleration

procedure.
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[45] J. Zeman, T.W.J. de Geus, J. Vondřejc, R.H.J. Peerlings, M.G.D. Geers, A finite element perspective on nonlinear FFT-based micromechanical

simulations, Int. J. Numer. Methods Eng. 111 (2017) 903–926, http://dx.doi.org/10.1002/nme.5481.

[46] F. Willot, Fourier-based schemes for computing the mechanical response of composites with accurate local fields, C. R. - Mec. 343 (2015)

232–245, http://dx.doi.org/10.1016/j.crme.2014.12.005.

[47] M. Schneider, D. Merkert, M. Kabel, Fft-based homogenization for microstructures discretized by linear hexahedral elements, Int. J. Numer.

Methods Eng. 109 (2017) 1461–1489.

[48] M. Kabel, S. Fliegener, M. Schneider, Mixed boundary conditions for FFT-based homogenization at finite strains, Comput. Mech. 57 (2016)

193–210, http://dx.doi.org/10.1007/s00466-015-1227-1.

[49] C. Miehe, F. Aldakheel, A. Raina, Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage

theory, Int. J. Plast. 84 (2016) 1–32, http://dx.doi.org/10.1016/j.ijplas.2016.04.011.

[50] R. Alessi, J.J. Marigo, C. Maurini, S. Vidoli, Coupling damage and plasticity for a phase-field regularisation of brittle, cohesive and ductile

fracture: One-dimensional examples, Int. J. Mech. Sci. 000 (2017) 1–18, http://dx.doi.org/10.1016/j.ijmecsci.2017.05.047.

[51] N. Li, S. Laizet, 2DECOMP & FFT-A Highly Scalable 2D Decomposition Library and FFT Interface, Cray User Gr. 2010 Conf. (2010) 1–13.

http://dx.doi.org.10.1029/2007GC001778/full.

[52] AMITEX_FFTP, http://www.maisondelasimulation.fr/projects/amitex/html/.

[53] L. Gélébart, R. Mondon-Cancel, Non-linear extension of FFT-based methods accelerated by conjugate gradients to evaluate the mechanical

behavior of composite materials, Comput. Mater. Sci. 77 (2013) 430–439, http://dx.doi.org/10.1016/j.commatsci.2013.04.046.

[54] G. Molnár, A. Gravouil, 2D and 3D Abaqus Implementation of a robust staggered phase-field solution for modeling brittle fracture, Finite

Elem. Anal. Des. 130 (2017) 27–38, http://dx.doi.org/10.1016/j.finel.2017.03.002.

[55] T.T. Nguyen, J. Yvonnet, M. Bornert, C. Chateau, K. Sab, R. Romani, R. Le Roy, On the choice of parameters in the phase field method for

simulating crack initiation with experimental validation, Int. J. Fract. 197 (2016) 213–226, http://dx.doi.org/10.1007/s10704-016-0082-1.

[56] S. Melin, Why do cracks avoid each other?, Int. J. Fract. 23 (1983) 37–45, http://dx.doi.org/10.1007/BF00020156.

24

http://dx.doi.org/10.1016/j.cma.2014.12.007
http://dx.doi.org/10.1016/j.cma.2016.03.001
http://dx.doi.org/10.1016/j.cma.2016.03.001
http://dx.doi.org/10.1016/j.cma.2016.03.001
http://dx.doi.org/10.1016/j.commatsci.2010.06.009
http://dx.doi.org/10.1002/nme.5481
http://dx.doi.org/10.1016/j.crme.2014.12.005
http://refhub.elsevier.com/S0045-7825(19)30088-X/sb47
http://refhub.elsevier.com/S0045-7825(19)30088-X/sb47
http://refhub.elsevier.com/S0045-7825(19)30088-X/sb47
http://dx.doi.org/10.1007/s00466-015-1227-1
http://dx.doi.org/10.1016/j.ijplas.2016.04.011
http://dx.doi.org/10.1016/j.ijmecsci.2017.05.047
http://dx.doi.org/http://dx.doi.org.10.1029/2007GC001778/full
http://www.maisondelasimulation.fr/projects/amitex/html/
http://dx.doi.org/10.1016/j.commatsci.2013.04.046
http://dx.doi.org/10.1016/j.finel.2017.03.002
http://dx.doi.org/10.1007/s10704-016-0082-1
http://dx.doi.org/10.1007/BF00020156

	A FFT solver for variational phase-field modeling of brittle fracture
	Introduction
	Review of Miehe's phase-field model
	Phase-field model under FFT framework
	Solution of the mechanical problem
	Fixed-point algorithm for the phase-field problem
	Parallel implementation
	Convergence acceleration

	Numerical examples
	Benchmark study: single edge notched specimen under tension
	Comparison with FEM solution
	Convergence acceleration and viscous regularization
	Load increment, characteristic length and voxel size

	Single edge notched tensile specimen with inhomogeneous lc or gc
	Cracked body under shear loads
	Symmetric and asymmetric double edge notched tensile specimens
	Crack branching and coalescence: notched bi-material specimen under tension
	3D example: Continuous fiber reinforced composite with void

	Conclusions
	Acknowledgment
	Appendix A Projection tensor for strain decomposition
	Appendix B Flowchart of the overall algorithm
	References


