Dominique Laurent
email: dominique.laurent@u-cergy.fr

Nicolas Spyratos
email: nicolas.spyratos@lri.fr

Handling Inconsistencies in Tables with Nulls and Functional Dependencies

Keywords: Inconsistent database, Functional dependency, Null value, Consistent query answering

In this paper we address the problem of handling inconsistencies in tables with missing values (also called nulls) and functional dependencies. Although the traditional view is that table instances must respect all functional dependencies imposed on them, it is nevertheless relevant to develop theories about how to handle instances that violate some dependencies. Regarding missing values, we make no assumptions on their existence: a missing value exists only if it is inferred from the functional dependencies of the table.

We propose a formal framework in which each tuple of a table is associated with a truth value among the following: true, false, inconsistent or unknown; and we show that our framework can be used to study important problems such as consistent query answering or data quality measures -to mention just two. In this paper, however, we focus mainly on consistent query answering, a problem that has received considerable attention during the last decades.

The main contributions of the paper are the following: (a) we introduce a new approach to handle inconsistencies in a table with nulls and functional dependencies, (b) we give algorithms for computing all true, inconsistent and false tuples, and (c) we give a novel solution to the consistent query answering problem and compare our solution to that of table repairs.

Introduction

In several applications today we encounter tables with missing values and functional dependencies. Such a table is often the result of merging two or more other tables coming from different sources. Typical examples include recording the results of collaborative work, merging of tables during data staging in data warehouses or checking the consistency of a relational database.

As an example of collaborative work consider two groups of researchers each studying three objects found in an archaeological site. The researchers of each group record in a table data regarding the following attributes of each object:

-Identifier (here of the form i n where n is a natural number, distinct objects being associated with distinct identifiers) -Kind (such as statue, weapon, . . .) -Material from which the object is made (such as iron, bronze, marble, . . .) -Century in which the object is believed to have been made.

At the end of their work each group submits their findings to the site coordinator in the form of a table as shown in Figure 1 (tables D 1 and D 2). Each row of a table contains data recorded for a single object. For example, the row (i 1 , statue, marble, 1.BC) means that object i 1 is a statue made of marble and believed to have been made in the first century before Christ. Similarly the row (i 2 , statue, , 2.BC) means that object i 2 is a statue of unknown material, believed to have been made during the second century before Christ. Note that, in this tuple, there is a missing value, meaning that the material from which object i 2 is made could not be determined.

D 1 Id K M C i 1 k m c i 1 m i 2 k m c i 2 k m i 3 m D 2 Id K M C i 1 k c i 2 k c i 2 k m i 3 k D Id K M C i 1 k m c i 1 m i 1 k c i 2 k m c i 2 k m i 2 k c i 3 m i 3 k
Fig. 1 The tables prepared by the two groups and the merged table

Now, the data contained in the two tables can be merged into a single table D containing all tuples from the two tables, without duplicates, as shown in Figure 1 (table D). In doing this merging, we may have discrepancies between tuples of D. For example, object i 1 appears in D as being made from two different materials; and object i 2 appears as made from two different materials and in two different centuries. This kind of discrepancies may lead to 'inconsistencies' that should be identified by the site coordinator and resolved in cooperation with the researchers of the two groups.

It should be obvious from this example that the merging of two or more tables into a single table more often than not results in inconsistencies even if the individual tables are each consistent. For example, although each of the tables D 1 and D 2 shown in Figure 1 satisfies the functional dependencies Id → K and Id → C, the merged table D does not satisfy Id → C.

A similar situation arises in data warehouses where one tries to merge views of the underlying sources into a single materialized view to be stored in the data warehouse.

As a last example, in a relational database, although each table may satisfy its functional dependencies, the database as a whole may violate some dependencies. To determine whether the database is consistent with its dependencies, one proceeds as follows: all tables are merged by placing their tuples into a single universal table D possibly with missing values (under certain assumptions discussed in [START_REF] Vardi | The universal-relation data model for logical independence[END_REF]); then all functional dependencies are applied on D through the well known chase algorithm [START_REF] Fagin | A simplified universal relation assumption and its properties[END_REF][START_REF] Ullman | Principles of Databases and Knowledge-Base Systems[END_REF]. If the algorithm terminates successfully (i.e., no inconsistency is detected) then the database is consistent; otherwise the algorithm stops when a first inconsistency is detected and the database is declared inconsistent.

So in general the question is: what should we do when a table is inconsistent? There are roughly three approaches: (a) reject the table, (b) try to correct or 'repair' it so that to make it consistent (and therefore be able to work with the repaired table) and (c) keep the table as is but make sure you know which part is consistent and which is not.

The first approach is followed by database theorists when checking database consistency, as explained above. This approach is clearly not acceptable in practice as the universal table might contain a consistent set of tuples that can be useful to users (e.g., users can still query the consistent part of the table).

The second approach tries to alleviate the impact of inconsistent data on the answers to a query by introducing the notion of repair: a repair is a minimally different consistent instance of the table and an answer is consistent if it is present in every repair. This approach, referred to as 'consistent query answering', has motivated important research efforts during the past two decades and is still the subject of current research. The reader is referred to Section 5 for a brief overview of the related literature. However, this approach is always difficult to implement due to important issues related to computational complexity and/or to semantics (there is still no consensus regarding the definition of 'consistent answer').

In our work we follow the third approach that is, we keep inconsistencies in the table but we determine which part of the table is consistent and which is not. More specifically, we use set-theoretic semantics for tuples and functional dependencies that allow us to associate each tuple with one truth value among the following: true, false, inconsistent or unknown. By doing so we can study a number of important problems including in particular the problem of consistent query answering, and the definition of data quality measures.

Regarding consistent query answering, our model offers a fundamentally different and direct solution to the problem: the consistent answer is obtained by simply retrieving true tuples that fit the query requirements.

Moreover our approach offers the possibility of defining meaningful data quality measures. For example if a table contains a hundred tuples of which only five are true while the remaining ones are inconsistent, then the quality of data contained in the table is five percent. Since we have polynomial algorithms for computing all true or inconsistent tuples, we can define several quality measures of the data contained in a table, inspired by the work in [START_REF] Parisi | Inconsistency measures for relational databases[END_REF]. We can then use such measures to accompany query answers so that users are informed of the quality of the answer they receive (e.g., getting an answer from a table with ninety five per cent of true tuples is more reliable than if the table contained only five per cent of true tuples). However, defining and studying such measures lies outside the goals of the present paper. In this paper we focus on one important application of our approach, namely consistent query answering. A complete account of data quality measures will be reported in a future paper.

The main contributions of the present paper can be summarized as follows:

1. We introduce a new approach to handle inconsistencies in a table with nulls and functional dependencies; we do so by adapting the set-theoretic semantics of [START_REF] Spyratos | The partition model: A deductive database model[END_REF] to our context and by extending the chase algorithm so that all inconsistencies are accounted for in the table. 2. We give polynomial algorithms in the size of the table for computing all true and all inconsistent tuples in the table. 3. We propose a novel approach for consistent query answering and we investigate how our approach relates to existing approaches.

The paper is organized as follows: In Section 2 we recall basic definitions and notations regarding tables and we introduce the set-theoretic semantics that we use in our work. In Section 3 we give definitions and properties regarding the truth values that we associate with tuples. In Section 4 we study computational issues and give algorithms for computing the truth values of tuples. In Section 5 we present a novel solution to the problem of consistent query answering and compare it to existing approaches. Section 6 contains concluding remarks and suggestions for further research.

The Model

In this section we present the basic definitions regarding tuples and tables as well as the set-theoretic semantics that we use for tuples and functional dependencies.

Our approach builds upon earlier work on the partition model [START_REF] Spyratos | The partition model: A deductive database model[END_REF].

The Partition Model Revisited

Following [START_REF] Spyratos | The partition model: A deductive database model[END_REF], we consider a universe U = {A 1 , . . . , A n } in which every attribute A i is associated with a set of atomic values called the domain of A i and denoted by dom(A i). An element of A∈U dom(A) is called a domain constant or a constant. We call relation schema (or simply schema) any nonempty subset of U and we denote it by the concatenation of its elements; for example {A 1 , A 2 } is simply denoted by A 1 A 2 . Similarly, the union of schemas S 1 and S 2 is denoted as

S 1 S 2 instead of S 1 ∪ S 2 .
We define a tuple t to be a partial function from U to A∈U dom(A) such that, for every A in U , if t is defined over A then t(A) belongs to dom(A). The domain of definition of t is called the schema of t, denoted by sch(t). We note that tuples in our approach satisfy the First Normal Form [START_REF] Ullman | Principles of Databases and Knowledge-Base Systems[END_REF] in the sense that each tuple component is an atomic value from an attribute domain.

Regarding notation, we follow the usual convention that, whenever possible, lower-case characters denote domain constants and upper-case characters denote the corresponding attributes. Following this convention the schema of a tuple t = ab is AB and more generally, we denote the schema of t as T .

Assuming that the schema of a tuple t is understood, t is denoted by the concatenation of its values, that is: t = a i 1 . . . a i k means that for every j = 1, . . . , k, t(A i j) = a i j , a i j is in dom(A i j), and sch(t

) = A i 1 . . . A i k .
We assume that for any distinct attributes A and B, we have either dom(A) = dom(B) or dom(A) ∩ dom(B) = ∅. However, this may lead to ambiguity when two attributes have the same domain. Ambiguity can be avoided by prefixing each value of an attribute domain with the attribute name. For example, if dom(A) = dom(B) we can say 'an A-value a' to mean that a belongs to dom(A), and 'a B-value a' to mean that a belongs to dom(B). In order to keep the notation simple we shall omit prefixes whenever no ambiguity is possible.

Denoting by T the set of all tuples that can be built up given a universe U and the corresponding attribute domains, a table D is a finite sub-set of T where duplicates are not allowed.

Given a tuple t, for every A in sch(t), t(A) is also denoted by t.A and more generally, for every subset S of sch(t) the restriction of t to S, also called sub-tuple of t, is denoted by t.S. In other words, if S ⊆ sch(t), t.S is the tuple such that sch(t.S) = S and for every A in S, (t.S).A = t.A.

Moreover, denotes the 'sub-tuple' relation, defined over T as follows: for any tuples t 1 and t 2 , t 1 t 2 holds if t 1 is a sub-tuple of t 2 . It is thus important to keep in mind that whenever t 1 t 2 holds, it is understood that sch(t 1) ⊆ sch(t 2) also holds.

The relation is clearly a partial order over T . Given a table D, the set of all sub-tuples of the tuples in D is called the lower closure of D and it is defined by: LoCl(D) = {q ∈ T | (∃t ∈ D)(q t)}. We shall call a table reduced if it contains only maximal tuples (i.e., if no tuple in the set is sub-tuple of some other tuple in the set).

The notion of T -mapping, as defined below, generalizes that of interpretation defined in [START_REF] Spyratos | The partition model: A deductive database model[END_REF].

Definition 1 Let U be a universe. A T -mapping is a mapping µ defined from A∈U dom(A) to 2 N , where N is the set of natural numbers. A T -mapping µ is extended to the set T as follows: for every t = a

i 1 . . . a i k in T , µ(t) = µ(a i 1) ∩ . . . ∩ µ(a i k).
A T -mapping µ is an interpretation if µ satisfies the partition constraint stating that for every A in U , and for all distinct a and a in dom(A), µ(a) ∩ µ(a) = ∅.

We emphasize that in [START_REF] Spyratos | The partition model: A deductive database model[END_REF] interpretations provide the basic tool for defining true tuples: a tuple t is said to be true in an interpretation µ if µ(t) is nonempty.

To see the intuition behind this definition consider a relational table D over U and suppose that each tuple is associated with a unique identifier, say a natural number. Now, for every A in U and every a in dom(A), define µ(a) to be the set of all identifiers of the tuples in D containing a. Then µ is an interpretation as it satisfies the partition constraint. Indeed, due to the fact that, for every attribute A in U , a tuple t can not have more than one A-value, it is then impossible that µ(a) ∩ µ(a) be nonempty for any distinct values a, a in dom(A).

Incidentally, if for every A in U we denote by dom * (A) the set of all Avalues such that µ(a) = ∅, then the set {µ(a) | a ∈ dom * (A)} is a partition of a∈dom * (A) µ(a) (whence the name "partition model"). The following example illustrates this important feature. Summarizing our discussion, when dealing with consistent tables in [START_REF] Spyratos | The partition model: A deductive database model[END_REF], only interpretations are relevant. In the present work, we follow the same idea, but we also extend the work of [START_REF] Spyratos | The partition model: A deductive database model[END_REF] so that we can deal with inconsistencies. As we shall see, non satisfaction of the partition constraint in Definition 1 is the key criterion to characterize inconsistent tuples.

Functional Dependencies

The notion of functional dependency in our approach is defined as in [START_REF] Spyratos | The partition model: A deductive database model[END_REF].

Definition 2 Let U be a universe. A functional dependency is an expression of the form X → Y where X and Y are nonempty sub-sets of U .

A T -mapping µ satisfies X → Y , denoted by µ |= X → Y , if for all tuples x and y, respectively over X and Y , the following holds: if µ(x) ∩ µ(y) = ∅ then µ(x) ⊆ µ(y).

Based on Definition 2, for all X and Y such that X ∩ Y = ∅, and for every T -mapping µ, the following holds:

µ |= X → Y if and only if µ |= X → A for every A in Y . This is so because, for every x and y, µ(x) ∩ µ(y) = ∅ and µ(x) ⊆ µ(y) hold if and only if µ(x) ∩ µ(a) = ∅ and µ(x) ⊆ µ(a) hold for every constant a in y.

Therefore without loss of generality we can assume that all functional dependencies are of the form X → A where A is an attribute not in X. Under this assumption, the basic notions of databases and of database satisfaction for a Tmapping are defined as follows.

Definition 3 Given universe U , a database is a pair ∆ = (D, F D) where D is a table over U and FD a set of functional dependencies over U whose right hand-side is a single attribute.

A T -mapping µ is said to satisfy ∆, denoted by µ |= ∆, if (i) for every t in D, µ(t) = ∅, and (ii) µ satisfies every X → A in F D.

To see how our notion of functional dependency relates to the standard one in relational databases [START_REF] Ullman | Principles of Databases and Knowledge-Base Systems[END_REF], recall first that a relation r over universe U satisfies X → A if for all tuples t and t in r such that t.X = t .X, we have t.A = t .A.

In our approach, let ∆ = (D, FD) and consider two tuples t and t in D such that XA is a subset of sch(t) and of sch(t) and let t.X = t .X = x. Then for every T -mapping µ such that µ |= ∆, µ(t) and µ(t) are nonempty, implying that µ(x) ∩ µ(t.A) and µ(x) ∩ µ(t .A) are also nonempty. By Definition 2, this implies that µ(x) is a sub-set of µ(t.A) and of µ(t .A). As a consequence, assuming that t.A = t .A (i.e., that X → A is not satisfied in the sense of the relational model), means that µ(t.A) ∩ µ(t .A) is nonempty, which implies that µ can not be an interpretation.

Therefore if we restrict T -mappings to be interpretations then the notion of functional dependency satisfaction in our approach is the same as that of relational databases. As we shall see, this observation supports the notion of consistency for ∆, to be given later (in Definition 5).

Given ∆ = (D, FD) and tuples t, t , t , the following notations are extensively used in the remainder of the paper.

-∆ t, denotes that if µ |= ∆ then µ(t) = ∅. -∆ (t t), denotes that if µ |= ∆ then µ(t) ∩ µ(t) = ∅. -∆ (t t) denotes that if µ |= ∆ then µ(t) ⊆ µ(t). -∆ (t t t) denotes that if µ |= ∆ then µ(t) ⊆ µ(t) ∩ µ(t).
Given ∆ = (D, FD), we now build a particular T -mapping µ such that µ |= ∆ as follows: Let (µ i) i≥0 be the sequence defined by the steps below:

1. Associate each tuple t in D with an identifier, id(t), called the tuple identifier of t. id(t) is a natural number that identifies t uniquely. 2. Let µ 0 be the mapping defined for every domain constant a by:

µ 0 (a) = {id(t) | t ∈ D and a t}. 3. Starting with µ i = µ 0 , while µ i changes define µ i+1 as follows:

-For every constant a, let M (a) be the union of all µ i (x) for which there exists

X → A in FD such that sch(x) = X, a is in dom(A), µ i (xa) = ∅ and µ i (x) ⊆ µ i (a). -If M (a) = ∅, µ i+1 (a) = µ i (a) ∪ M (a); otherwise, µ i+1 (a) = µ i (a).
We notice that computing µ i+1 based on µ i is finite even if attribute domains are infinite. This is so because if M (a) is nonempty then so are µ i (a) and all µ i (x) that have to be tested. Therefore, the computation has to be processed only against tuples t such that µ i (t) = ∅, which are in finite number since the set D is finite.

The following lemma shows that the sequence (µ i) i≥0 has a limit, which plays a central role in our approach, as will be seen later.

Lemma 1 For every ∆ = (D, FD), the sequence (µ i) i≥0 has a unique limit µ * such that µ * |= ∆. Moreover:

1. For all a 1 and a 2 in the same attribute domain dom(A), if µ * (a 1) ∩ µ * (a 2) = ∅ then there exist X → A in FD and x over X such that µ * (x) = ∅ and µ * (x) ⊆ µ * (a 1) ∩ µ * (a 2). 2. For all α and β, ∆ (α β) holds if and only if µ * (α) ∩ µ * (β) = ∅ holds.

Proof See Appendix A.

Given ∆ = (D, FD), Lemma 1 shows the following:

1. There always exists a T -mapping µ such that µ |= ∆.

2. When two constants from the same domain have common identifiers with respect to µ * then this is due to a functional dependency. 3. For every tuple t, ∆ t if and only if µ * (t) = ∅.

It is important to note that the T -mapping µ * as defined in Lemma 1 is not necessarily an interpretation as the following example shows.

Example 2 Let U = {A, B, C} and ∆ = (D, F D) where D = {ab, bc, abc } and FD = {B → C}. Associating ab, bc and abc respectively with 1, 2 and 3, µ * is obtained as follows:

• First, we have µ 0 (a) = {1, 3}, µ 0 (b) = {1, 2, 3}, µ 0 (c) = {2} and µ 0 (c) = {3} and µ 0 (α) = ∅ for any other domain constant α.

• Then, considering B → C, we have M (c) = µ 0 (b) (because µ 0 (bc) = {2} but µ 0 (b) ⊆ µ 0 (c)) and M (c) = µ 0 (b) (because µ 0 (bc) = {3} but µ 0 (b) ⊆ µ 0 (c)). Thus µ 1 is defined by µ 1 (a) = {1, 3}, µ 1 (b) = µ 1 (c) = µ 1 (c) = {1, 2, 3} and µ 1 (α) = ∅ for any other domain constant α.
Hence, µ * = µ 1 and we remark that µ * (c) ∩ µ * (c) = ∅, thus that µ * is not an interpretation. Nevertheless, as stated by Lemma 1, it is easy to see that µ * |= ∆.

Notice that the authors of [START_REF] Spyratos | Incorporating functional dependencies in deductive query answering[END_REF] use a construction similar to that of Lemma 1 to define a minimal model of ∆, called 'query model', assuming that D is consistent with FD. Now, in order to characterize when ∆ (t a) holds, we introduce the notion of closure of a tuple t in ∆ inspired by the well known relational notion of closure of a relation scheme with respect to a set of functional dependencies [START_REF] Ullman | Principles of Databases and Knowledge-Base Systems[END_REF].

Definition 4 Given a database ∆ = (D, F D) and a tuple t, the closure of t in ∆ (or closure of t for short, when ∆ is understood), denoted by t + , is the set of all domain constants a such that ∆ (t a) holds.

We notice that, based on Definition 4, for every constant a occurring in a tuple t (i.e., if a t holds) then a is in t + , because, in this case, µ(t) ⊆ µ(a) holds for every T -mapping µ. However constants not occurring in t may also appear in t + due to functional dependencies, as shown in the following example. Clearly computing the closure directly from its definition is inefficient. Algorithm 1 gives a method for computing the closure, and the following lemma states that the algorithm computes the closure correctly.

However, based on Lemma 1, in order to effectively implement Algorithm 1, the test line 5 requires to compute the T -mapping µ * t associated with ∆ t , as explained earlier before stating the lemma. for all x such that for every b in x, b ∈ t + and ∆t xa do 6:

t

+ := t + ∪ {a} 7: return t + Proof See Appendix B.
We draw attention on the fact that the database involved in Algorithm 1 is not ∆ but the database ∆ t that can be seen as ∆ in which the tuple t has been added.

It should however be noticed that in case ∆ t, this distinction is not necessary because in this case, for every tuple q, ∆ q holds if and only if ∆ t q holds. This is a consequence of the fact that, as seen in Appendix B, if ∆ t then for every T -mapping µ, µ |= ∆ holds if and only if µ |= ∆ t .

On the other hand, the following example shows that when ∆ t, the introduction of ∆ t instead of ∆ is necessary for correctly computing t + . It is easy to see that when numbering the tuples in D by 1 for ac and 2 for b, the T -mapping µ * for ∆ is defined by: µ

* (a) = µ * (c) = {1}, µ * (b) = {2} and µ * (α) = ∅ for any other constant α.
For t = ab, we argue that c is in t + , that is, for every µ such that µ |= ∆, µ(ab) ⊆ µ(c) holds. Indeed, this trivially holds if µ(ab) = ∅ (as is the case with µ *), and otherwise the following proof can be done:

• As µ(ab) = ∅, A → B implies that µ(a) ⊆ µ(b). • As µ(ac) = ∅, µ(a) ⊆ µ(b) implies µ(bc) = ∅. Thus, µ(b) ⊆ µ(c), due to B → C.
• Therefore, µ(a) ⊆ µ(c), and since µ(ab) ⊆ µ(a), we have µ(ab) ⊆ µ(c).

On the other hand, computing (ab) + using a modified version of Algorithm 1 where ∆ t is replaced by ∆ would only output a and b in the closure. It should also be noticed that computing (ab) + using Algorithm 1 is as follows: by the statement on line 2, a and b are inserted into the closure, and then, since for t = ab, ∆ t ab the above reasoning shows that ∆ t bc as well. Therefore, c is inserted into the closure because the test line 5 succeeds.

The following example shows a case where the tuple t of which the closure is computed, is such that ∆ t.

Example 5 As seen in Example 2, if U = {A, B, C} and ∆ = (D, F D) where D = {ab, bc, abc } and FD = {B → C}, µ * is defined by: µ * (a) = {1, 3}, µ * (b) = µ 1 (c) = µ * (c) = {1, 2, 3} and µ * (α) = ∅ for any other domain constant α.
In this case, the computation of (ab) + according to Algorithm 1 is as follows: As no further step is processed, (ab) + = {a, b, c, c }, as seen in Example 3. Thus ∆ (ab c) and ∆ (ab c) hold, implying ∆ (ab c c).

• As ab is in D, ∆ t = ∆. We thus run Algorithm 1 with ∆ instead of ∆ t . • (ab) + is first set to {a, b}. • Considering B → C, since b is in (ab) + ,

Semantics

In this section we provide basic definitions and properties regarding the truth value associated with a tuple. The following definition is borrowed from [START_REF] Spyratos | The partition model: A deductive database model[END_REF].

Definition 5 ∆ is said to be consistent if there exists an interpretation µ such that µ |= ∆.

Since in our approach, inconsistent tables are not discarded, it is crucial to be able to provide semantics to any ∆ = (D, FD), being it consistent or not. To this end, inspired by Belnap's Four-valued logic [START_REF] Nuel | A useful four-valued logic[END_REF], we consider four possible truth values for a given tuple t in T , namely true, false, inc (i.e., inconsistent) and unkn (i.e., unknown).

In order to formalize the exact meaning of these truth values in our approach, we introduce the following terminology and notation:

-If ∆ t holds, t is said to be potentially true in ∆. Notice here that by Lemma 1, t is potentially true if and only if µ * (t) = ∅. -If ∆ (t a a) holds for some distinct a and a in the same attribute domain, then we use the notation ∆ | ∼ t, and in this case, t is said to be potentially false to reflect that µ(a) ∩ µ(a) must be empty for µ to be an interpretation. By Definition 4, ∆ | ∼ t holds if and only if there exist a and a in the same attribute domain such that a and a are in t + .

Consequently, if a tuple t is such that ∆ t and ∆ | ∼ t, then for µ to be an interpretation, µ must associate t with a set expected to be empty and nonempty, which is of course a case of inconsistency! This explains why, in our approach, 'potentially true' and 'potentially false', should respectively be understood as 'true or inconsistent' and 'false or inconsistent'. More precisely, each tuple is assigned one of the four truth values according to the following definition.

Definition 6 Given ∆ = (D, FD) and a tuple t, the truth value of t in ∆, denoted by v ∆ (t), is defined as follows:

-v ∆ (t) = true if ∆ t and ∆ | ∼ t; t is said to be true in ∆. -v ∆ (t) = false if ∆ t and ∆ | ∼ t; t is said to be false in ∆. -v ∆ (t) = inc if ∆ t and ∆ | ∼ t; t is said to be inconsistent in ∆. -v ∆ (t) = unkn if ∆ t and ∆ | ∼ t; t is said to be unknown in ∆.
We point out that the four truth values as defined above correspond exactly to the four truth values defined in the Four-valued logic [START_REF] Nuel | A useful four-valued logic[END_REF]. Intuitively speaking, Definition 6 implies the following:

-Tuples whose truth value is inc are those tuples that are potentially true and potentially false, which fits the intuition that inconsistent information are somehow true and false at the same time. -Tuples whose truth value is true are those tuples occurring in D or that are derived based on functional dependencies, but that are not inconsistent.

-Tuples whose truth value is false are those that can not be true, in the sense that, otherwise they would generate an inconsistency. -Tuples whose truth value is unk are all other tuples, namely all tuples that do not fall in one of the previous three categories.

Another important consequence of Definition 6 is that our approach does not follow the Closed World Assumption (CWA), according to which any non true tuple is false [START_REF] Reiter | On closed world data bases[END_REF]. We illustrate Definition 6 through the following example. Moreover, it is easy to see from Example 2 that µ * (ab) = ∅, implying that ∆ ab holds as well. As a consequence, by Definition 6, v ∆ (ab) = inc, meaning that ab is inconsistent in ∆. We notice that similar arguments hold for abc, abc , bc, bc and b, showing that these tuples are also inconsistent in ∆.

Moreover, based on Definition 5, we also argue that ∆ is not consistent, because every µ such that µ |= ∆ cannot be an interpretation. This is so because µ * (c) ∩ µ * (c) = ∅ and Lemma 1 imply that for µ such that µ |= ∆, µ(c) ∩ µ(c) = ∅. Now, consider the tuple bc where c is a constant in dom(C) distinct from c and c . To compute (bc) + using Algorithm 1, the database ∆ t = (D t , F D) where D t = {ab, bc, abc , bc } is defined and then, the closure is first set to {b, c }. Then in subsequent computations, based on B → C and the fact that ∆ t bc and ∆ t bc , c and c are inserted in the closure of bc .

It therefore follows that (bc

) + = {b, c , c, c }, thus that ∆ | ∼ bc holds. Since ∆ bc (because µ * (bc) = ∅ and µ * |= ∆), it follows that v ∆ (bc) = false.
Hence bc and all its super-tuples are false in ∆.

As an example of unknown tuple in ∆, let a be in dom(A) such a = a, and consider a c. Since µ * (a c) = ∅, ∆ a c. On the other hand, it can be seen that (a c) + = {a , c}, because when running Algorithm 1, D ∪ {a c} does not allow for any specific tuple derivation using B → C. Hence, ∆ | ∼ a c, which shows that v ∆ (a c) = unkn.

Computing true tuples and inconsistent tuples in ∆ is addressed in the next section, whereas computing false tuples is still an open issue that is not addressed in the present paper. Nevertheless, the following example shows that computing all inconsistent tuples is not an easy task. Here again, the tuples in D along with the functional dependencies in F D show no explicit inconsistency. However computing µ * yields the following: • To define µ 0 , we associate the tuples abc and ac with the natural numbers 1 and 2, respectively. It follows that µ 0 (a) = {1, 2}, µ 0 (b) = {1}, µ 0 (c) = {1}, µ 0 (c) = {2} and µ 0 (α) = ∅ for any other domain constant α.

• The next steps modify µ 0 so as to satisfy A → B and B → C as follows: The following proposition shows that our notion of inconsistent tuple complies with Definition 5.

1. Due to A → B, µ 1 is defined by: µ 1 (a) = {1, 2}, µ 1 (b) = {1, 2}, µ 1 (c) = {1} and µ 1 (c) = {2}; 2. Due to B → C, µ 2 is defined by: µ 2 (a) = {1, 2}, µ 2 (b) = {1, 2}, µ 2 (c) = {1,
Proposition 1 ∆ = (D, FD) is consistent if and only if there exists no tuple t such that v ∆ (t) = inc.

Proof We first note that if there exists a tuple t such that v ∆ (t) = inc, then ∆ t and ∆ | ∼ t. Hence there exist a and a in the same attribute domain dom(A) such that ∆ (t a a). Thus every T -mapping µ such that µ |= ∆ satisfies that µ(t) = ∅ and µ(t) ⊆ µ(a) ∩ µ(a), implying that µ(a) ∩ µ(a) = ∅. Hence, µ is not an interpretation, showing that, by Definition 5, ∆ is not consistent.

Conversely, assuming that there is no tuple t such that v ∆ (t) = inc, that is such that ∆ t and ∆ | ∼ t, we prove that µ * is an interpretation of ∆. Indeed, if a 1 and a 2 are two constants in the same attribute domain A such that µ * (a 1)∩µ * (a 2) = ∅, then by Lemma 1(1), there exist X → A in F D and x over X such that µ * (x) = ∅ and µ * (x) ⊆ µ * (a 1) ∩ µ * (a 2). Thus by Lemma 1(2), for every µ such that µ |= ∆, µ(x) ⊆ µ(a 1) ∩ µ(a 2) and µ(x) = ∅. We therefore obtain that ∆ | ∼ x and ∆ x, thus that v ∆ (x) = inc, which is a contradiction. Therefore µ * is an interpretation, and the proof is complete.

To end the section, based on Definition 6, we stress the following important remarks about potentially true and potentially false tuples in a given ∆:

-Let t be a potentially true tuple. Since ∆ t holds, as a consequence of Lemma 1, we have that µ * (t) = ∅. Therefore true or inconsistent tuples are those tuples that are associated with a nonempty set by every T -mapping µ such that µ |= ∆. This implies that potentially true tuples in ∆ are built up with constants occurring in D, and thus are in finite number. We provide in this paper effective algorithms for computing the sets of true tuples and inconsistent tuples.

-As potentially false tuples t are such that ∆ | ∼ t, they may not satisfy ∆ t.

Hence, Lemma 1 cannot be used to characterize them. Moreover, if ∆ | ∼ t, then every tuple t such that t t also satisfies ∆ | ∼ t . This is so because in this case, if ∆ (t a a), then ∆ (t a a) holds as well. Thus, the number of potentially false tuples may be infinite in case some of the attribute domains are infinite.

-Since every false tuple t is potentially false and does not satisfy ∆ t, it follows that the number of false tuples may be infinite in case some of the attribute domains are infinite. Moreover, contrary to true and inconsistent tuples, characterizing false tuples other than through Definition 6 is currently unknown to the authors. This issue will be the subject of future work.

Algorithm 2 Chasing a table

Input: ∆ = (D, F D) Output: ∆ * = (D * , F D) and a set inc(F D) containing sets of tuples associated with each

X → A in F D 1: D * := D 2: for all X → A in F D do 3: inc(X → A) := ∅ 4: while D * changes do 5:
for all X → A ∈ F D do 6:

for all t 1 in D * such that XA ⊆ sch(t 1) do 7:

for all t 2 in D * such that X ⊆ sch(t 2) and t 1 .X = t 2 .X do 8:

if A ∈ sch(t 2) then 9:

D * := D * ∪ {t 2 a 1 }
D * := D * \ {t 2 } 18: inc(F D) := {inc(X → A) | inc(X → A) = ∅} 19: return ∆ * = (D * , F D) and inc(F D)

Computing the Semantics

Similarly to standard two valued logic, where computing the semantics of ∆ means computing the set of all tuples true in ∆, in our approach, computing the semantics amounts to compute all true, inconsistent or false tuples, knowing that unknown tuples are the remaining ones.

However, as mentioned above, the set of false tuples may be infinite, making it impossible to compute them all. In this work, we do not address this issue, we rather concentrate on potentially true tuples, with the goal of investigating consistent query answering in our approach (see Section 5).

The Chase Procedure in our Approach

We first propose an effective algorithm for the computation of all potentially true tuples in a given ∆. This algorithm, referred to as Algorithm 2, is in fact inspired by the standard chase algorithm [START_REF] Spyratos | The partition model: A deductive database model[END_REF][START_REF] Ullman | Principles of Databases and Knowledge-Base Systems[END_REF], with the main difference that when a functional dependency cannot be satisfied, our algorithm does not stop.

Instead, our chasing algorithm carries on the computation, returning a database ∆ * = (D * , FD), where ∆ * and D * are respectively referred to as the chased database and the chased table. The algorithm also returns a set inc(F D), based on which inconsistent and true tuples are shown to be efficiently computed. We illustrate Algorithm 2 in the context of our introductory example.

Example 8 Running Algorithm 2 with the table D shown in Figure 1, and recalled in Figure 2, produces the table D * shown in the right of Figure 2, along with • With these new tuples at hand, the loop on line 4 proceeds further, generating (i 1 , k, m , c) by the statement on line 9. No new tuple is generated at this stage.

D Id K M C i 1 k m c i 1 m i 1 k c i 2 k m c i 2 k m i 2 k c i 3 m i 3 k D * Id K M C i 1 k m c i 1 k m c i 2 k m c i 2 k m c i 2 k m c i 2 k m c i 3 k m
• The loop on line 4 is processed once again, producing no new tuple. When running the reduction step against the current state of D * , the following tuples are removed:

(i 1 , m), (i 1 , k, m), (i 1 , m , c), (i 1 , k, c), (i 2 , k , m), (i 2 , k , c), (i 2 , k , c), (i 3 , m) and (i 3 , k).
It is important to notice that, although tuples have been added in D * during the processing, the final number of tuples in D * is less than that in D. Although this particular result cannot be proven in general, it will be shown that in the worst case, the size of D * remains polynomial in the size of D.

We emphasize that some nulls present in D have been replaced by actual values in D * , thanks to the functional dependencies in F D. For example the second tuple in D with two nulls has been 'completed' into a total tuple in D * . However, such a completion has not been possible for every tuple in D * . Namely, the C-value in the last tuple of D * is left as null.

Keeping in line with our statement that 'a missing value exists only if it is inferred from the functional dependencies', this indicates that the C-value of this tuple could not be determined based on the content of D and F D, and no other conclusion can be drawn regarding this null.

To see why the two insertions mentioned in the statement on line 12 are needed, we first recall from [START_REF] Ullman | Principles of Databases and Knowledge-Base Systems[END_REF] that, in the traditional case, the chased table characterizes the semantics of the input table, in case no inconsistency has been detected 1 . In this work our goal is similar, but has to be adapted to our context. Namely, we expect that the chased table D * can provide a syntactical characterization of all possibly true tuples in ∆, that is of all tuples t such that ∆ t holds.

In the context of our example, if we assume that (i 2 , k , m , c) is not inserted during the processing then Algorithm 2 would not fit our semantics. Indeed, for every T -mapping µ such that µ |= ∆, µ(i 2) ⊆ µ(c) holds because of Id → C applied to the seventh row in D. Thus, µ(i 2 , k , m , c) = µ(k , m , c), and since µ(k , m , c) is nonempty (due to the fifth row in D), ∆ (i 2 , k , m , c). Hence (i 2 , k , m , c) must appear in D * to fulfill our expectation.

Adding such 'new' tuples when chasing a table is one of the main features of our approach, as compared with traditional chase. This step should be seen as a 'by-product' of carrying on the computation even after encountering a violation of a functional dependency.

The following lemma shows that Algorithm 2 provides an operational means to characterize the tuples t such that µ * (t) = ∅.

Lemma 3 Algorithm 2 applied to ∆ = (D, F D) always terminates. Moreover, for every tuple t, µ * (t) = ∅ holds if and only if t is in LoCl(D *).

Proof See Appendix C.

Recalling that LoCl(D *) denotes the Lower Closure of D * , that is the set of all sub-tuples of tuples in D * , Lemma 3 shows that D * is a 'tabular' version of the set of all tuples t such that µ * (t) = ∅, that is, by Lemma 1, a 'tabular' version of the set of all tuples t such that ∆ t. Therefore, D * provides a syntactical characterization of the set of all tuples t such that ∆ t, as expected in the previous example.

Computing True Tuples and Inconsistent Tuples

As mentioned just above, Lemma 1 and Lemma 3 show that, given ∆ = (D, F D), a tuple t is in LoCl(D *) if and only if ∆ t holds, that is, if and only if t is potentially true in ∆, that is if and only if t is either true or inconsistent in ∆.

To see how to compute the set of all inconsistent tuples, we first recall the notion of closure of a relation scheme as defined in relational database theory [START_REF] Ullman | Principles of Databases and Knowledge-Base Systems[END_REF].

Given a set FD of functional dependencies and a relation scheme X, the closure of X with respect to FD, or more simply the closure of X, denoted by X + , is the set of all attributes A in U such that every table D satisfying F D in the sense of relational tables, also satisfies X → A.

It is well-known that X + is computed through the following two steps that are quite similar to the steps of Algorithm 1:

X + := X while X + changes do for all Y → B in F D such that Y ⊆ X + do X + := X + ∪ {B} return X +
The following proposition shows a strong relationship between the closure of a relation scheme as recalled above and the closure of a tuple as stated in Definition 4.

Proposition 2 Let ∆ = (D, FD) and t be such that ∆ t. For every tuple q and every a in dom(A) such that q t and a t, a belongs to q + if and only if A belongs to Q + . Proof See Appendix D.

Using the notion of relation scheme closure, we introduce Algorithm 3 which computes the set of inconsistent tuples in ∆. The correctness of this algorithm is shown in Lemma 4.

for all X → A in F D such that XA ⊆ T do 4: if x = t.X is in inc(X → A) then 5:
for all q such that q t do 6:

if X ⊆ Q + then 7:

Inc(∆) := Inc(∆) ∪ {t.Q} 8: return Inc(∆) Lemma 4 Given ∆ = (D, FD), a tuple t is inconsistent in ∆ if and only if t ∈ Inc(∆).
Proof See Appendix E.

The following proposition characterizes inconsistent and true tuples in ∆ based on Algorithm 2 and Algorithm 3.

Proposition 3 Given ∆ = (D, FD) and a tuple t:

1. t is inconsistent in ∆ if and only if t ∈ Inc(∆). 2. t is true in ∆ if and only if t ∈ LoCl(D *) \ Inc(∆).
Proof Immediate consequence of Definition 6, Lemma 3 and Lemma 4.

The following example illustrates Algorithm 3 and Proposition 3. Moreover, for q = a, due to A → B, we have A + = ABC and thus, B ⊆ A + holds, showing that a is inserted in Inc(∆) on line 7. A similar reasoning holds for q = ac because B ∈ (AC) + . Thus, ac is also inserted in Inc(∆) on line 7. The only remaining possibility is q = c, and does not modify Inc(∆) because B ⊆ C + . A similar computation is performed with abc in D * , adding bc , abc and ac in Inc(∆). As no other tuple can be inserted in Inc(∆), Algorithm 3 returns Inc(∆) = {abc, abc , ab, ac, ac , bc, bc , a, b}, which, by Proposition 3(1), is the set of all inconsistent tuples in ∆. As a consequence, by Proposition 3(2), c and c are the only true tuples in ∆. Now, as in Example 7, referring to ∆ 1 = (D 1 , F D) with D 1 = {ac, ac }, it is easy to see that D * 1 = D 1 . This implies that ∆ 1 is consistent, and that ac, ac , a, c and c are true in ∆ 1 .

Complexity Issues

We argue that the computation of inconsistent and true tuples in ∆ = (D, F D) is polynomial in the size of the table D and in the order of the 'number of conflicts with respect to functional dependencies' (to be defined shortly). To see this, denoting by |E| the cardinality of a set E, we investigate the complexities of Algorithm 2 and of Algorithm 3.

Regarding Algorithm 2, we first notice that, contrary to the standard chase algorithm [START_REF] Ullman | Principles of Databases and Knowledge-Base Systems[END_REF], rows are added in the table during the computation, and some others are then removed by the reduction statement of line 14. To assess the size of the table D * during the processing, we point out the following:

-If no inconsistency is found during the processing of the while-loop on line 4, at most one tuple is added in D * as the 'join' of two tuples in D by statement line 9. Therefore, the cardinality of D * remains in the same order as that of D. Notice in this respect that, upon reduction, one 'join' tuple replaces two tuples in D, which reduces the size of the table D * output by the algorithm. -However, when inconsistent tuples occur, the statement line 9 adds more than one tuple and statement line 12 inserts tuples resulting from a cross-product.

To find an upper bound of the size of D * , for every X → A in F D, let N (x) be the number of different A-values a such that ∆ xa and x belongs to inc(X → A).

We denote by δ the maximal value of all N (x) for all x in inc(F D); in other words δ = max({N (x) | x ∈ inc(FD)}). δ is precisely what was earlier referred to as the 'number of conflicts with respect to functional dependencies'. Given a tuple in D and a functional dependency X → A in F D, each of the statements line 9 and line 12 generates at most δ tuples. Since several functional dependencies may apply to t, at most δ |F D| tuples are generated for the given tuple t. Hence, the number of tuples generated by the statements lines 9 and 12 is in O |D|.δ |F D| . We therefore obtain that the size of the table

D * when running Algorithm 2 is in O |D|. 1 + δ |F D| , that is in O |D|.δ |F D| .
Since the number of runs of the while-loop on line 4 is at most equal to the number of tuples added into D * , this number is in O |D|.δ |F D| . Since moreover one run of the while-loop is quadratic in the size of D * , the computational complexity of this while-loop is in O |D| 3 .δ 3.|F D| .

The last point to be mentioned here is that the reduction processing on line 14 is performed through a scan D * whereby for every t in D * every sub-tuple of t is removed. Such a processing being quadratic in the size of D * , the overall computational complexity of Algorithm 2 is in O |D| 3 .δ 3.|F D| .

As the computational complexity of Algorithm 3 is clearly linear in the size of D * , the global complexity of the computation of inconsistent and true tuples in ∆ is as stated just above, and therefore polynomial in the size of D. We draw attention on the following important points regarding this complexity result:

1. When the database is consistent, δ is equal to 1, thus yielding a complexity in O(|D| 3). This result can be shown independently from the above computations as follows: The results in [START_REF] Cosmadakis | Partition semantics for relations[END_REF] are likely to be useful for such a more thorough study of this complexity.

5 Consistent Query Answering

Related Work

The problem of query answering in presence of inconsistencies has motivated important research efforts during the past two decades and is still the subject of current research. As mentioned in the introductory section, the most popular approaches in the literature are based on the notion of 'repair', a repair of D being intuitively a consistent database R 'as close as possible' to D; and an answer to a query Q is consistent if it is present in every repair R of D. However, it has been recognized that generating all repairs is difficult to implement -if not unfeasible. This is a well known problem in practice which explains, for instance, why data cleansing is a very important but tedious task in the management of databases and data warehouses [START_REF] Rahm | Data cleaning: Problems and current approaches[END_REF]. This issue has been thoroughly investigated in [START_REF] Livshits | Computing optimal repairs for functional dependencies[END_REF], where it has been shown that computing repairs of a given relational table in the presence of functional dependencies is either polynomial or APX-complete2 , depending on the form of the functional dependencies. The reader is referred to [START_REF] Foto | Repair checking in inconsistent databases: algorithms and complexity[END_REF] for theoretical results on the complexity of testing whether R is a repair of D, when considering a more generic context than we do in this work (more than one table and constraints other than functional dependencies). A Prolog based approach for the generation of repairs can be found in [START_REF] Arieli | Computational methods for database repair by signed formulae[END_REF].

Dealing with repairs without generating them is thus an important issue, also known as Consistent Query Answering in Inconsistent Databases. One of the first works in this area is [START_REF] Bry | Query answering in information systems with integrity constraints[END_REF] and the problem has since been addressed in the context of various database models (mainly the relational model or deductive database models) and under various types of constraints (first order constraints, key constraints, key foreign-key constraints). Seminal papers in this area are [2] and [START_REF] Koutris | Consistent query answering for self-join-free conjunctive queries under primary key constraints[END_REF][START_REF] Wijsen | On the consistent rewriting of conjunctive queries under primary key constraints[END_REF], while an overview of works in this area can be found in [START_REF] Bertossi | Database Repairing and Consistent Query Answering[END_REF].

The problem considered in all these works can be stated as follows: Given a database D with integrity constraints IC, assume that D is inconsistent with respect to IC. Under this assumption, given a query Q against D, what is the consistent answer to Q? The usual approach to alleviate the impact of inconsistent data on the answers to a query is to consider that an answer to Q is consistent if it is present in every repair R of D.

Complexity results regarding the computation of the consistent answer have been widely studied in [START_REF] Calì | On the decidability and complexity of query answering over inconsistent and incomplete databases[END_REF]. For example one important case is when IC consists in having one key constraint per database relation and Q is a conjunctive query containing no self-join (i.e., no join of a relation with itself). In this case computing the consistent answer is polynomial whereas if self-joins occur then the problem is co-NP-complete.

Another important problem in considering repairs is that there are many ways of defining the notion of repair. This is so because there are many ways of defining a distance between two database instances, and there is no consensus as to the 'best' definition of distance. Although the distance based on symmetric difference seems to be the most popular, other distances exist as well based for example on sub-sets, on cardinality, on updates or on homomorphism [START_REF] Wijsen | Database repairing using updates[END_REF]. Notice in this respect that the results in [START_REF] Livshits | Computing optimal repairs for functional dependencies[END_REF] are set for two distances: one based on sub-sets and one based on updates.

Consistent Query Answering in our Approach

In our work we do not use any notion of repair, thus we avoid the above problem of choosing among all possible ways of defining repairs. Instead, we use set-theoretic semantics for tuples and functional dependencies that allow us to associate each tuple with one truth value among true, false, inconsistent or unknown.

In what follows, we outline the process of consistent query answering in our approach, and then compare it to the approaches based on repairs. In doing so we follow the intuition of the repairs-approach where an answer to a query is consistent if it is present in every repair; and we transpose it in our approach by considering that a tuple is in the consistent answer to the query if its truth value is true in the sense of our model.

As usual when dealing with a single table with nulls, a query Q is an SQL-like expression of one of the following two forms:

Q : SELECT X or Q : SELECT X WHERE Γ
In either of these forms, X is an attribute list seen as a relation schema, and in the second form, the WHERE clause specifies a selection condition Γ . It should thus be clear that, as in SQL, the where clause in a query is optional. The generic form of a query Q is denoted by

Q : SELECT X [WHERE Γ].
A selection condition Γ is a well formed formula involving the usual connectors ¬, ∨ and ∧ and built up from atomic boolean comparisons of one of the forms A θ a or A θ A , where θ is a comparison predicate, A and A are attributes in U whose domain elements are comparable through θ, and a is in dom(A).

Moreover, a tuple t satisfies A θ a if A is in sch(t) and if t.A θ a holds, and t satisfies A θ A if A and A are in sch(t) and if t.A θ t.A holds. Based on this, determining whether t satisfies Γ done as in [START_REF] Atzeni | Efficient optimization of simple chase join expressions[END_REF], that is:

-If sch(t) contains all attributes involved in Γ then determining whether t satisfies Γ follows the rules usual in First Order Logic regarding connectors. -Otherwise t does not satisfy Γ .

For instance, referring to our introductory example, the tuple t = (k, m) such that sch(t) = KM satisfies the condition (K = k) but not the condition (M = m ∨ C = c) because C is not in sch(t). Notice also that t does not satisfy the condition (M = K), assuming that m and k are comparable but distinct constants.

Given ∆ = (D, FD), the answer to Q in ∆ is the set of the restrictions to X of all tuples t in D * such that X ⊆ sch(t) and such that t satisfies Γ , when present in Q. It follows that answers to queries contain only tuples without nulls. Now, roughly speaking, the consistent answer to Q is the set of all true tuples defined over X that satisfy the condition in Q. However, as the following example shows, this rough definition should be carefully stated in particular with regard to the functional dependencies to be taken into account for tuple truth value.

F D) = {inc(Id → K), inc(Id → C)} where inc(Id → K) = ∅ and inc(Id → C) = {i 2 }. D * Id K M C i 1 k m c i 1 k m c i 2 k m c i 2 k m c i 2 k m c i 2 k m c i 3 k m
It therefore follows from Algorithm 3 that Inc(∆) is defined by:

Inc(∆) = {q | i 2 q (i 2 , k , m , c)} ∪ {q | i 2 q (i 2 , k , m , c)} ∪ {q | i 2 q (i 2 , k , m , c)} ∪ {q | i 2 q (i 2 , k , m , c)}
Let Q 1 and Q 2 be two queries (without conditions) as defined below:

Q 1 : SELECT Id, K, C and Q 2 : SELECT Id, K, M
Projecting the tuples in D * over the attributes Id, K, C for Q 1 and over Id, K, M for Q 2 produces the tables D * 1 and D * 2 shown below.

D * 1 Id K C i 1 k c i 2 k c i 2 k c D * 2 Id K M i 1 k m i 1 k m i 2 k m i 2 k m i 3 k m
Since in these two tables, the tuples whose Id-value is i 2 , are inconsistent in ∆, it seems justified to exclude them from any consistent answer. In other words, according to this intuition, the expected consistent answers to Q 1 and Q 2 are respectively {(i 1 , k, c)} and {(i 1 , k, m), (i 1 , k, m), (i 3 , k , m)}.

We explain below why it makes sense to exclude the two tuples in the case of Q 1 , whereas the removal in the case of Q 2 is debatable.

1. Regarding Q 1 , the tuples (i 2 , k , c) and (i 2 , k , c) in D * 1 clearly violate Id → C from FD, and thus can not occur in the consistent answer to Q 1 . 2. Regarding Q 2 however, no functional dependency is violated by the tuples in D * 2 , and thus, there is no reason for removing any of them when producing the consistent answer to Q 2 .

Another way of explaining this situation is to notice that, in D * , the only non satisfied functional dependency is Id → C and that 1. attributes Id and C occur in the SELECT clause of Q 1 , making it necessary to check functional dependency satisfaction; 2. attribute C does not occur in the SELECT clause of Q 2 , implying that checking functional dependency satisfaction makes no sense.

Another important point to take into account is the impact of selection conditions on tuple truth value in the answer to a query. To illustrate this point, first notice that, when considering the query Q 1 the only functional dependency to be checked is Id → C, with respect to which the table D * 1 shows inconsistencies regarding i 2 . However, let now Q 1 be the query defined by:

Q 1 : SELECT Id, K, C WHERE C = c
Only the fifth and sixth tuples in D * satisfy the selection condition and thus, the only possible tuple in the consistent answer to Q 1 is (i 2 , k , c), which alone, trivially satisfies the functional dependency Id → C.

However, the consistency of the answer to Q 1 may seem counter-intuitive, since the tuple (i 2 , k , c) is seen as inconsistent in the answer to Q 1 , where the same attributes are involved. To cope with this counter-intuitive situation, we rather consider that the consistent answer of Q 1 is empty, i.e., that consistency has to be checked independently from selection conditions, based only on the functional dependencies involving only attributes from the SELECT clause in the query.

In what follows, we provide the formalism and the definitions to account for these remarks.

Given a table D over U , a subset X of U and a selection condition Γ , we denote by σ Γ (D), π X (D) and π X (FD) the following sets:

σ Γ (D) is the set of all tuples t in D such that t satisfies Γ .

π X (D) is the set of the restrictions to X of all tuples in D whose schema contains X; that is π X (D) = {t | (∃q ∈ D)(X ⊆ sch(q), t = q.X)}. π X (FD) is the set of all functional dependencies that involve attributes in X only; that is π

X (FD) = {(Y → B) ∈ FD | Y B ⊆ X}.
These notation are used in the following definition where the notion of consistent answer to a query is introduced.

Definition 7 Given ∆ = (D, FD) and Q : SELECT X [WHERE Γ], let ∆ X be defined by ∆ X = (π X (D *), π X (FD)
).

The answer to Q in ∆, denoted by ans ∆ (Q), is the set π X (σ Γ (D *)). Moreover, for every tuple x in ans ∆ (Q), the truth value of x in ans ∆ (Q) is defined by v ∆ X (x).

Algorithm 4 Consistent answer ans + ∆ (Q)

Input: A query Q : SELECT X [WHERE Γ], ∆ * = (D * , F D) and inc(F D) Output: The set ans + ∆ (Q) 1: ans + ∆ (Q) := ∅ 2: for all t in D * do 3:
if sch(t) contains all attributes in X then 4:

if for every Y → B in π X (F D), t.Y is not in inc(Y → B) then 5:
if t satisfies Γ then 6:

// This test always succeeds if Q involves no selection condition 7:

ans + ∆ (Q) := ans + ∆ (Q) ∪ {t.X} 8: return ans + ∆ (Q)
The consistent answer to Q in ∆, denoted by ans + ∆ (Q), is the set of all tuples

x in ans ∆ (Q) such that v ∆ X (x) = true.
It should be noticed that selection conditions are evaluated against the table D * before the projection over X, thus avoiding problematic evaluation of conditions involving attributes not in X. On the other hand we recall that selection conditions are evaluated as usual in standard two-valued logic as earlier explained.

It is also important to notice that, according to Definition 7, given ∆ and Q, two distinct truth values may be given to a tuple t, namely, its truth value in ∆, i.e., v ∆ (t), and its truth value in ∆ X , i.e., v ∆ X (t). Since these truth values are not determined using the same set of functional dependencies, they might be distinct.

Referring to Example 10, based on the notation introduced in Definition 7, for

X 1 = Id K C, π X 1 (FD) = FD, and so, ∆ X 1 = (D * 1 , F D). In this case, for every tuple x over X 1 , v ∆ X 1 (x) = v ∆ (x). On the other hand, for X 2 = Id K M , π X 2 (FD) = {Id → K}, and so, ∆ X 2 = (D * 2 , {Id → K}). Since D * 2 satisfies Id → K, for x = (i 2 , k , m), v ∆ X 2 (x) = true. However, as x is a super-tuple of i 2 , we have v ∆ (x) = inc, showing that v ∆ X 2 (x) = v ∆ (x).
The following proposition shows that ans + ∆ (Q) is computed from D * and inc(FD), using Algorithm 4. Proof In this proof, denoting by ans the output of Algorithm 4, we prove that ans = ans + ∆ (Q). To prove that ans ⊆ ans + ∆ (Q), we notice that, by Algorithm 4, every tuple x in ans is the projection over X of a tuple t in D * satisfying Γ . Thus, x belongs to π X (σ Γ (D *)), that is to ans ∆ (Q). Moreover, since for every t in D * such that t.X is in ans and every Y → B in π X (F D), t.Y is not in inc(Y → B), it holds that v ∆ X (x) = true. It thus follows that x is in ans + ∆ (Q). Conversely, assuming that x is in ans + ∆ (Q) implies that x is in ans ∆ (Q). Hence, D * contains a tuple t that satisfies Γ and t.X = x, meaning that sch(t) contains X and that t satisfies the if-condition on line 5 in Algorithm 4. Moreover, since we also have v ∆ X (x) = true, for every Y → B in π X (F D), t.Y cannot be in inc(Y → B). This shows that the if-condition on line 4 in Algorithm 4 is satisfied, and thus that x belongs to ans, which completes the proof.

Regarding complexity, Proposition 4 shows that, assuming that D * has been computed, the computation of the consistent answer is linear in the size of D * .

If we assume moreover that Inc(∆) has also been computed, labelling each tuple in ans + ∆ (Q) by its truth value in ∆ is a relevant option, because it has been seen that the truth value of a tuple t in ∆ may be different than the truth value of t in ans ∆ (Q).

Indeed, knowing that a tuple in the consistent answer, thus having truth value true in ans + ∆ (Q), has truth value inc in the database ∆ it comes from, is relevant to a user interested in data quality, as is the case when dealing with data lakes [START_REF] Madera | The next information architecture evolution: The data lake wave[END_REF]. Investigating further issues related to query answering in our approach, including issues related to data quality is the subject of future work.

Example 11 Running Algorithm 4 with the queries Q 1 , Q 1 and Q 2 as in Example 10, returns ans

+ ∆ (Q 1) = {(i 1 , k, c)}, ans + ∆ (Q 1) = ∅ and ans + ∆ (Q 2) = {(i 1 , k, m), (i 1 , k, m), (i 2 , k , m), (i 2 , k , m), (i 3 , k , m)},
as expected in this previous example.

As earlier noticed regarding ans + ∆ (Q 2), for x = (i 2 , k , m) or x = (i 2 , k , m), we have v ∆ (x) = v ∆ X 2 (x). In this case, smart users could find it relevant to be informed of this situation, which can be done by labelling the two tuples (i 2 , k , m) and (i 2 , k , m) by inc, that is, their truth value in ∆. We notice that this piece of information cannot be provided by any of the existing approaches.

Considering now the query Q 3 : SELECT M, C WHERE K = k , Algorithm 4 discards the first two tuples of D * (because their K-value is not equal to k), and also the last tuple of D * (as this tuple has no C-value). When processing the remaining four tuples in D * , no functional dependency has to be taken care of, and so, we obtain ans + ∆ (Q 3) = {(m , c), (m , c), (m , c), (m , c)}.

Comparison with Repair-Based Approaches

Since we are not aware of any work from the literature addressing the issue of consistent query answering in the presence of null values, we propose to compare our approach with existing approaches to consistent query answering in the following context:

-We consider a database ∆ = (D, FD) where D is a relation (i.e., a set of tuples defined over U , with no nulls), and FD is a set of functional dependencies. -Using our notation, we assume that ∆ * = ∆, where ∆ * = (D * , F D). In other words, for every X → A in FD and all t = qxa and t = q xa in D, t 1 = q xa and t 1 = qxa are also in D. -The repairs are defined based on set-theoretic inclusion as stated in Definition 8. We note in this respect that a more thorough study of repairs relying on various criteria, including for instance updates as in [START_REF] Livshits | Computing optimal repairs for functional dependencies[END_REF][START_REF] Wijsen | Database repairing using updates[END_REF], lies outside the scope of this paper.

(Q) = R∈Rep(∆) π X (σ Γ (R)).
According to Definition 8, ans rep ∆ (Q) is obtained by evaluating Q against each repair and by taking the intersection of all these answers. This is precisely the usual way consistent query answering is defined in repair-based approaches using set-theoretic inclusion [START_REF] Koutris | Consistent query answering for self-join-free conjunctive queries under primary key constraints[END_REF][START_REF] Wijsen | On the consistent rewriting of conjunctive queries under primary key constraints[END_REF]. The following example illustrates Definition 8 in the context of our introductory example.

Example 12

In order deal with an example satisfying the context as stated above, we consider ∆ 1 = (D 1 , FD) where D 1 is shown below and where F D = {Id → K, Id → C} as in our previous examples. It should be clear that ∆ 1 satisfies the conditions stated above, that is D 1 contains no nulls and ∆ * = ∆. In this case, we have two repairs R 1 and R 2 as shown below.

D 1 Id K M C i 1 k m c i 1 k m c i 2 k m c i 2 k m c i 2 k m c i 2 k m c R 1 Id K M C i 1 k m c i 1 k m c i 2 k m c i 2 k m c R 2 Id K M C i 1 k m c i 1 k m c i 2 k m c i 2 k m c
Recalling that the queries Q 1 , Q 1 , Q 2 and Q 3 of Example 10 are defined by

Q 1 : SELECT Id, K, C ; Q 1 : SELECT Id, K, C WHERE C = c Q 2 : SELECT Id, K, M ; Q 3 : SELECT M, C WHERE K = k ,
we obtain the following answers based on these repairs:

-ans rep ∆ 1 (Q 1) = {(i 1 , k, c)}; -ans rep ∆ 1 (Q 1) = ∅; -ans rep ∆ 1 (Q 2) = {(i 1 , k, m), (i 1 , k, m), (i 2 , k , m), (i 2 , k , m)}; -ans rep ∆ 1 (Q 3) = ∅.
As seen earlier, computing consistent answers based on repairs as stated in Definition 8, raises important computational difficulties. Moreover, we show that these answers are 'smaller' with respect to set-theoretic inclusion, than the answers as defined in Definition 7. Before stating this result, we show the following lemma.

Lemma 5 Given a database ∆ = (D, FD) satisfying the conditions set at the beginning of the section, for every q in D there exists R in Rep(∆) such that q belongs to R.

Proof It should be clear that the relation {q} is a subset of D and satisfies F D. Since D is a finite set of tuples, there exists at least one nonempty sub-set R of D, satisfying FD, maximal with respect to set-theoretic inclusion and such that {q} ⊆ R. Since such a set R satisfies the conditions (1), (2) and (3) of Definition 8, it belongs to Rep(∆), and the proof is complete.

We are now ready to state the following proposition comparing ans rep ∆ (Q) and ans + ∆ (Q), showing that the former is always a sub-set of the latter. Proposition 5 Let ∆ = (D, FD) be a database satisfying the conditions set at the beginning of the section. For every query Q : SELECT X [WHERE Γ], the following holds:

ans rep ∆ (Q) ⊆ ans + ∆ (Q).
Proof Given t in ans rep ∆ (Q), by definition of ans rep ∆ (Q), every R in Rep(∆) contains a tuple q such that q satisfies Γ and q.X = t. Moreover, as Rep(∆) ⊆ D holds, q belongs to D thus to D * , as D = D * is assumed.

On the other hand, if we assume that t is not in ans + ∆ (Q), then, by Algorithm 4, for every q in D * , one of the if-conditions lines 3, 4 or 5 fails. Since, D contains no nulls, so does D * , and so, q satisfies the first condition. As q satisfies Γ , the test line 5 succeeds and so, the test line 4 fails. Hence, there exists Y → B in π X (FD) such that Y B ⊆ X and q.Y ∈ inc(Y → B). Therefore, for every tuple q in D * satisfying Γ and such that q.X = t, D * also contains a tuple q such that q.Y = q .Y = t.Y and q.B = q .B. Since B is in X, it also follows that q .X = t.

As D = D * , q and q are in D, and so, by Lemma 5, Rep(∆) contains a repair R containing q, and a repair R containing q . As R satisfies Y → B, B is in X, q.B = q .B, and q.X = t, it is not possible that R contains q such that q .X = t. Thus, t is not in the answer to Q in R . We therefore obtain a contradiction with the fact that t is in ans rep ∆ (Q), and the proof is complete.

The following example illustrates Proposition 5 and the fact that the reverse inclusion does not hold in general.

Example 13 Considering ∆ 1 as defined in Example 12, the consistent answers to the queries Q 1 , Q 1 , Q 2 and Q 3 in ∆ 1 are the following:

-ans + ∆ 1 (Q 1) = {(i 1 , k, c)}; -ans + ∆ 1 (Q 1) = ∅; -ans + ∆ 1 (Q 2) = {(i 1 , k, m), (i 1 , k, m), (i 2 , k , m), (i 2 , k , m)}; -ans + ∆ 1 (Q 3) = {(m , c), (m , c
), (m , c), (m , c)}. We therefore obtain the following equalities or strict inclusions:

ans rep ∆ 1 (Q 1) = ans + ∆ (Q 1) ; ans rep ∆ 1 (Q 1) = ans + ∆ (Q 1) ans rep ∆ 1 (Q 2) = ans + ∆ (Q 2) ; ans rep ∆ 1 (Q 3) ⊂ ans + ∆ (Q 3)
Moreover, we recall that when providing consistent answers, our approach additionally allows for pointing to the user possible problematic tuples, namely those tuples that are inconsistent in ∆, although producing consistent tuples in the answer.

Concluding Remarks

In this paper we have introduced a novel approach to handle inconsistencies in a table with nulls and functional dependencies. Our approach uses set-theoretic semantics and relies on an extended version of the well known chase procedure to associate every possible tuple with one of the four truth values true, false, inconsistent and unknown. Moreover, we have seen that true and inconsistent tuples can be computed in time polynomial in the size of the input table. We have also seen that our approach applies to consistent query answering and we have shown that it provides larger answers than in the repair-based approaches.

Building upon these results, we currently pursue the following lines of research: (1) applying our approach to the particular but important case of key-foreign key constraints in the context of a star schema or a snow-flake schema; (2) extending our approach to constraints other than functional dependencies, such as inclusion dependencies as done in [START_REF] Bravo | Semantically correct query answers in the presence of null values[END_REF], (3) investigating the issue of data quality in the framework of our approach; (4) further investigating the computation of false tuples, while extending our approach to the presence of tuples declared as false; and (5) last but not least, we plan to address an important issue not addressed in this paper: as our algorithms have to be re-run after every change either in the table or in the set of functional dependencies, we plan to design incremental algorithms for query evaluation.

Declarations

Author contributions: The two authors contributed to the study, conception and design. Both read and approved the submitted manuscript.

Funding: No funds, grants, or other support was received for conducting this study.

Financial interests: The authors declare they have no financial interests.

Non-financial interests:

The second author is a member of the editorial board of the journal.

Data availability: Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

(i) If µ i 0 (α) ∩ M (β) = ∅, there exist Y → B in F D and y over Y such that µ i 0 (α) ∩ µ i 0 (y) = ∅ and µ i 0 (β) ∩ µ i 0 (y) = ∅. By our induction hypothesis, for every µ such that µ |= ∆, we have µ(α) ∩ µ(y) = ∅ and µ(y) ⊆ µ(β), which implies that µ(α) ∩ µ(β) = ∅.

(ii) If µ i 0 (β) ∩ M (α) = ∅, the case is similar to (i) above. The proof is omitted.

(iii) If M (α) ∩ M (β) = ∅, there exist X → A and Y → B in F D, x over X and y over Y , such that µ i 0 (x) ∩ µ i 0 (y) = ∅, µ i 0 (α) ∩ µ i 0 (x) = ∅ and µ i 0 (β) ∩ µ i 0 (y) = ∅. By our induction hypothesis, for every µ such that µ |= ∆, we have µ(x) ∩ µ(y) = ∅, µ(x) ⊆ µ(α) and µ(y) ⊆ µ(β). Hence, µ(α) ∩ µ(β) = ∅ also holds in this case, and the proof is complete.

B Proof of Lemma 2

Lemma 2. Let ∆ = (D, F D) and t a tuple. Then Algorithm 1 computes correctly the closure t + of t.

Proof In this proof, we denote by cl(t) the output of Algorithm 1, and we show that cl(t) = t + , that is that cl(t) ⊆ t + and t + ⊆ cl(t) both hold. Before proceeding to these proofs, we draw attention on that for every T -mapping µ such that µ(t) = ∅, µ |= ∆ if and only if µ |= ∆t, where ∆t is defined by the statement line 1 in Algorithm 1. Indeed: • If µ |= ∆t then for every q ∈ Dt µ(q) = ∅ and µ |= F D. Since D ⊂ Dt, µ(q) = ∅ for every q ∈ D, implying that µ |= ∆ holds.

• Conversely, if µ |= ∆ then as µ(t) is supposed to be nonempty, µ(q) = ∅ for every q in Dt. Since µ |= F D holds, µ |= ∆t also holds.

To first prove that cl(t) ⊆ t + , we consider a T -mapping µ such that µ |= ∆, and we prove that µ(t) ⊆ µ(a) for every a in cl(t). We first observe that if µ(t) = ∅ then µ(t) ⊆ µ(α) holds for every constant α. Therefore, µ(t) ⊆ µ(a) holds. Now, if µ(t) = ∅ then µ |= ∆t, as shown above. The proof that µ(t) ⊆ µ(a) is done by induction on the steps of the execution of Algorithm 1. Denoting by cl 0 , cl 1 , . . . the sequence of the assignments of cl(t) during execution, the following holds for every a in cl(t).

• If a is in cl 0 as computed on line 2, a occurs in t. It is thus clear that µ(t) ⊆ µ(a).

• We now assume that, for j ≥ 0, every α in cl j is such that µ(t) ⊆ µ(α) and we show that this holds for a in cl j+1 but not in cl j . In this case, according to the condition in line 5 of Algorithm 1, there exist X → A in F D and x over X such that ∆t xa and for every b in x, b ∈ cl j . Thus µ(x) ∩ µ(a) = ∅ (because µ |= ∆t) and µ(t) ⊆ µ(b) for every b in x (by our induction hypothesis, because b is in cl j). Hence µ(t) ⊆ µ(x) and µ(x) ⊆ µ(a) hold, thus implying that µ(t) ⊆ µ(a).

As a consequence, we have shown that for every µ such that µ |= ∆, for every a in cl(t), µ(t) ⊆ µ(a). Therefore, by Definition 4, cl(t) ⊆ t + holds. Conversely, t + ⊆ cl(t) is shown by contraposition: assuming that a ∈ cl(t), we prove that a ∈ t + . To this end, we exhibit a T -mapping µt such that µt |= ∆ and µt(t) ⊆ µt(a).

We denote by µ * t the T -mapping built up as µ * , but starting from ∆t as defined line 1 in Algorithm 1. Thus, µ * t |= ∆t, and since µ * t (t) = ∅, it has been seen above that µ * t |= ∆. Thus, if µ * t (t) ⊆ µ * t (a) then µ * t is the T -mapping we are looking for, and thus, we set µt = µ * t . Assuming that µ * (t) ⊆ µ * (a), let k be a natural number not in µ * t (α) for any α occurring in ∆t, and let µt be the T -mapping defined for every constant α by: -µt(α) = µ * t (α) ∪ {k}, if α ∈ cl(t) -µt(α) = µ * t (α), otherwise. We show that µt satisfies that: (1) µt(t) ⊆ µt(a) and (2) µt |= ∆.

(1) Since every α in t is in cl(t), k is in µt(t) and since a is not in cl(t), k is not in cl(a). It thus follows that µt(t) ⊆ µt(a).

(2) Since for every constant α, µ * t (α) ⊆ µt(α) holds, for every q in D, it holds that µ * t (q) ⊆ µt(q), which implies µt(q) = ∅, because µ * t (q) = ∅ holds as a consequence of µ * t |= ∆. . . βp, this implies that every β i (i = 1, . . . , p), and b are in cl(t). Then, as we know that cl(t) ⊆ t + holds, all these we have that µ i (t 1)∩ k=p k=1 µ i (y k) = ∅. Thus by our induction hypothesis, LoCl(D *) contains a tuple of the form q 1 t 1 y 1 . . . yp and p tuples of the form q k y k β k (k = 1, . . . , p). Now, given k = 1, . . . , p, if q 1 t 1 y 1 . . . yp is not defined over B k , q 1 t 1 y 1 . . . ypβ k appears in D * due to the statement line 9 of Algorithm 2. Assume now that q 1 t 1 y 1 . . . yp is defined over B k but with a value different than β k , say β k .

By construction of t 1 and t 2 , B k is not in sch(t 1), and so, B k is either in sch(q 1) or in Y i for some i = 1, . . . , p. In any case, denoting sch(q 1 y 1 . . . yp) by Q, we write q 1 t 1 y 1 . . . yp as r k t 1 b k where r k = (q 1 y 1 . . . yp).(Q \ B k). Considering that r k t 1 b k and q k y k β k have the same Y k -value y k , the statement line 12 of Algorithm 2 applies and r k t 1 β k is inserted in D * . During the subsequent iterations, a similar argument shows that D * contains a tuple of the form rt 1 β 1 . . . βp, that is rt 1 t 2 or rt. It thus follows that t is in LoCl(D *).

• If α t M (α) = ∅, the same reasoning as above applies considering that t 1 is empty and t 2 = t. After the iterations, D * contains a tuple of the form rβ 1 . . . βp, that is rt. Thus, in this case again, t is in LoCl(D *), and the proof is complete.

D Proof of Proposition 2

Proposition 2. Let ∆ = (D, F D) and t be such that ∆ t. For every tuple q and every a in dom(A) such that q t and a t, a belongs to q + if and only if A belongs to Q + .

Proof Assuming first a in q + , we show by induction on the steps of Algorithm 1 that A is in Q + . It is important to notice that since q t and ∆ t, ∆ q holds. Hence when running Algorithm 1 with ∆ and q as input, as shown in the proof of Lemma 2, µ |= ∆ holds if and only if µ |= ∆q holds. Thus, for every tuple τ , ∆ τ holds if and only if ∆q τ holds.

If a is in q + because of line 2 in Algorithm 1, then A is in Q, showing that A is in Q + . If a is inserted in q + because of line 5, then there exist X → A in F D and x over X such that every b in x belongs to q + and ∆q xa, that is ∆ xa. Assuming that the proposition holds for every b in x implies that every B in X is in Q + . Thus, X ⊆ Q + holds, and so A is in Q + .

Conversely, let A be in Q + . If A is in Q, then q.A = a, and so, a is in q + . Let us now assume that A is not in Q, and let us show by induction on the execution of the loop computing Q + that a belongs to q + . Indeed, denoting by Q the current value of Q + when A is inserted in Q + , there exists X → A in F D such that X ⊆ Q . Thus, by our induction hypothesis, every α in q.X is in q + . Moreover, since ∆ t and xa = t.XA, ∆ xa. Hence, ∆q xa, and by the statement line 5 of Algorithm 1, a belongs to q + . The proof is therefore complete.

E Proof of Lemma 4

Lemma 4. Given ∆ = (D, F D), a tuple t is inconsistent in ∆ if and only if t ∈ Inc(∆).

Proof We note first that for every x in inc(X → A) there exist a 1 , . . . , a k (k ≥ 2) in dom(A) such that for every i = 1, . . . , k, xa i ∈ LoCl(D *), thus such that ∆ xa i . Therefore, for every i = 1, . . . , k, a i belongs to x + , and so, ∆ (x a 1 . . . a k) holds, showing that x is inconsistent in ∆.

We now prove that if q belongs to Inc(∆) then q is inconsistent in ∆. Indeed, by Algorithm 3, there exist t in D * , X → A in F D, such that Q ⊆ T , t.Q = q, t.X ∈ inc(X → A), and X ⊆ Q + . Since ∆ t, Proposition 2 applies, showing that for every α in x, α belongs to q + , where q = t.Q. Hence, every a i in x + is also in q + , and thus for every i = 1, . . . , k, ∆ (q a i), implying that q is inconsistent in ∆.

Conversely, if q is inconsistent in ∆, then ∆ q and ∆ | ∼ q. Thus, there exist A in U and a and a in dom(A) such that ∆ (q a a), implying that ∆ qa and ∆ qa . By Lemma 3, D * contains two rows t and t such that qa t and qa t . This implies that A can not be in Q because otherwise, we would for instance have qa = q and thus qa = qaa , which does not define a tuple. Since, by Definition 4, ∆ (q a a) implies that a and a are in q + , by Proposition 2, A is in Q + . Since A is not in Q, F D contains X → A such that X ⊆ Q + . It follows that A is in X + , t.XA = xa and t .XA = xa . Therefore x belongs to inc(X → A).

Summing up, we have found a tuple t in D * and X → A in F D such that t.X belongs to inc(X → A), q t and X ⊆ Q + . It thus follows from line 7 of Algorithm 3 that q belongs to Inc(∆), which completes the proof.

Example 1

 1 Considering U = {A, B, C} and D = {ab, bc, ac, a b , b c , abc}, the tuples in D can be respectively assigned the identifiers 1, 2, 3, 4, 5 and 6. In that case, we have µ(a) = {1, 3, 6}, µ(a) = {4}, µ(b) = {1, 2, 6}, µ(b) = {4, 5}, µ(c) = {2, 3, 6}, µ(c) = {5}, and µ(α) = ∅ for any constant α different than a, a , b, b , c and c . It is clear that the T -mapping µ is an interpretation and, since dom * (A), dom * (B) and dom * (C) are respectively equal to {a, a }, {b, b } and {c, c }, it is easy to see that {µ(α) | α ∈ dom * (A)} is a partition of {1, 3, 4, 6}, {µ(β) | β ∈ dom * (B)} is a partition of {1, 2, 4, 5, 6}, and {µ(γ) | γ ∈ dom * (C)} is a partition of {2, 3, 5, 6}. Moreover, extending µ to non unary tuples yields the following regarding the tuples in D: µ(ab) = {1, 6}, µ(bc) = {2, 6}, µ(ac) = {3, 6}, µ(a b) = {4}, µ(b c) = {5}, and µ(abc) = {6}.

Example 3

 3 Continuing Example 2 where U = {A, B, C} and ∆ = (D, F D) with D = {ab, bc, abc } and FD = {B → C}, we show that c belongs to (ab) + . Indeed, for every µ such that µ |= ∆, we have µ(ab) ⊆ µ(b) (since b ab) and µ(b) ⊆ µ(c) (due to B → C and the fact that µ(b) ∩ µ(c) = ∅ must hold). Hence, by transitivity, µ(ab) ⊆ µ(c) holds, implying that ∆ (ab c) holds, which by Definition 4, means that c belongs to (ab) + . It should also be noticed that a similar argument shows that c also belongs to (ab) + .

Lemma 2 Algorithm 1

 21 Let ∆ = (D, FD) and t a tuple. Then Algorithm 1 computes correctly the closure t + of t. Closure of t Input: ∆ = (D, F D) and a tuple t. Output: The closure t + of t 1: ∆t := (Dt, F D) where Dt = D ∪ {t} 2: t + := {a | a t} 3: while t + changes do 4: for all X → A ∈ F D do 5:

Example 4

 4 Let U = {A, B, C} and ∆ = (D, F D) where D = {ac, b} and F D = {A → B, B → C}.

 and since ∆ bc and ∆ bc (this holds because µ * (c) and µ * (c) are nonempty), c and c are inserted in (ab) + .

Example 6

 6 As in Example 2, let U = {A, B, C} and ∆ = (D, F D) where D = {ab, bc, abc } and FD = {B → C}. It has been seen in Example 5 that (ab) + = {a, b, c, c }. Thus ∆ | ∼ ab holds.

Example 7

 7 Let ∆ = (D, FD) be defined over U = {A, B, C} by D = {abc, ac } and FD = {A → B, B → C}.

2} and µ 2

 2 (c) = {1, 2}. As µ 2 |= FD, µ * = µ 2 . Moreover, we have a + = {a, b, c, c } and b + = {b, c, c } showing that, by Lemma 2, ∆ (a c c) and ∆ (b c c), thus that a and b are inconsistent in ∆. It can then be seen that, for example, abc, bc and ac are also inconsistent in ∆. Now, let ∆ 1 = (D 1 , FD) such that D 1 = {ac, ac }. In this case, µ * is defined by µ * (a) = {1, 2}, µ * (c) = {1}, µ * (c) = {2} and µ * (α) = ∅ for any other domain constant α. Therefore, a + = {a}, showing that a is not inconsistent in ∆ 1 . As a consequence, ac, ac along with all their sub-tuples are true in ∆ 1 and all other tuples are unknown in ∆ 1 .

Fig. 2

 2 Fig.2The table D and its chased version D *

Algorithm 3 1 :

 31 Inconsistent tuples in ∆ = (D, F D) Input: The output of Algorithm 2, that is ∆ * = (D * , F D) and inc(F D). Output: The set Inc(∆) Inc(∆) := ∅ 2: for all t in D * do 3:

Example 9

 9 As in Example 7, let ∆ = (D, F D) over U = {A, B, C} where D = {abc, ac } and FD = {A → B, B → C}. The tabular version of D is shown on the left below, whereas D * is shown on the right. Running Algorithm 2, D * is first set to D and abc is inserted in D * by the statement line 9 due to A → B. Then, b is inserted in inc(B → C) by the statement line 13, due to the tuples abc and abc . Thus, the table D * output by Algorithm 2 is as shown above and inc(FD) = {inc(A → B), inc(B → C)} where inc(A → B) = ∅ and inc(B → C) = {b}.When running Algorithm 3 for abc in D * , since b is in inc(B → C), b, ab, bc and abc are inserted into Inc(∆), due to the statement on line 7. This is so because the schema Q of each of these tuples contains B, and so, satisfies B ⊆ Q + .

Example 10

 10 In the context of our introductory example, let ∆ = (D, F D) where FD = {Id → K, Id → C} and where D is displayed in Figure 1. As seen in Example 8, Algorithm 2 returns D * as shown below and inc(

Proposition 4

 4 Given ∆ = (D, FD) and Q : SELECT X [WHERE Γ], Algorithm 4 correctly computes ans + ∆ (Q).

Definition 8

 8 Given ∆ = (D, FD) over universe U and satisfying the conditions set above, a repair of ∆ is a relation R over U such that: (1) R ⊆ D, (2) R satisfies FD, and (3) R is maximal among the relations satisfying (1) and (2). The set of all repairs of ∆ is denoted by Rep(∆).Given a query Q : SELECT X [WHERE Γ], the repair-based consistent answer to Q, denoted by ans rep ∆ (Q), is defined by: ans rep ∆

 To prove that µt |= Y → B for every Y → B in F D, let y over Y and b in dom(B) such µt(y) ∩ µt(b) = ∅. To show that µt(y) ⊆ µt(b), we consider the two cases according to which µ * t (y) ∩ µ * t (b) is or not empty. • If µ * t (y) ∩ µ * t (b) = ∅, then by definition of µt, for µt(y) ∩ µt(b) to be nonempty, it must be that µt(y) = µ * t (y) ∪ {k} and µt(b) = µ * t (b) ∪ {k}. Writing y as β 1 .

 where a 1 = t 1 .A 10: if A ∈ sch(t 2) and t 1 .A = t 2 .A then 11: Let y i = t i .(sch(t i) \ A) and a i = t i .A, for i = 1, 2 12: D * := D * ∪ {y 2 a 1 } // y 1 a 2 is inserted into D * when processing t 2 in place of t 1 // and t 1 in place of t 2 13: inc(X → A) := inc(X → A) ∪ {x} where x = t 1 .X = t 2 .X // Reduction: keep in D * only maximal tuples 14: for all t 1 in D * do 15: for all t 2 in D * do 16: if t 2 t 1 and t 1 = t 2 then 17:

 In the case of traditional chase the maximum of nulls in D being bounded by |U |.|D], the number or iterations when running the algorithm is also bounded by |U |.|D|. Since the run of one iteration is in |D| 2 , the overall complexity is in O(|U |.|D| 3), or in O(|D| 3), as |U | is independent from |D|. 2. The above complexity study can be seen as a data complexity study as it relies on an estimation of the size of the chased table D * . Thus, this study should be further investigated in order to provide more accurate results regarding the estimation of the number of actual tests necessary to the computation of D

* .

In traditional chase, the semantics of a table D containing nulls is the set of all tuples true in every instance of D, i.e., in every relation R over U with no nulls, that satisfies the functional dependencies and such that for every t in D, there exists r in R such that r.T = t.

Roughly, APX is the set of NP optimization problems that allow polynomial-time approximation algorithms (source: Wikipedia).

Acknowledgement

The authors wish to sincerely thank the reviewers for their helpful comments and suggestions that helped us improving significantly previous versions of the paper.

1. Associate each tuple t in D with an identifier, id(t), called the tuple identifier of t. id(t) is a natural number that identifies t uniquely. 2. Let µ 0 be the mapping defined for every domain constant a by:

µ 0 (a) = {id(t) | t ∈ D and a t}. 3. Starting with µ i = µ 0 , while µ i changes define µ i+1 as follows:

-For every constant a, let M (a) be the union of all µ i (x) for which there exists X → A in F D such that sch(x) = X, a is in dom(A), µ i (xa) = ∅ and µ i (x) ⊆ µ i (a). -If M (a) = ∅, µ i+1 (a) = µ i (a) ∪ M (a); otherwise, µ i+1 (a) = µ i (a).

The sequence (µ i) i≥0 is increasing in the sense that for every α, µ i (α) ⊆ µ i+1 (α), and bounded in the sense that for every α, µ i (α) ⊆ {id(t) | t ∈ D}. Hence the sequence has a unique limit. Moreover, for every t in D, µ * (t) = ∅ holds because id(t) always belongs to µ * (t), and µ * |= F D, because otherwise µ * would not be the limit of the sequence. Therefore µ * |= ∆, which shows the first part of the lemma.

(1) Regarding the first item in the second part of the lemma, we first notice that by definition of µ 0 , we have µ 0 (a 1) ∩ µ 0 (a 2) = ∅, because it is not possible that a tuple in D has two distinct values over an attribute.

Since we assume that µ * (a 1) ∩ µ * (a 2) = ∅, there exists i 0 ≥ 0 such that

)) Since µ i 0 +1 (a 1)∩µ i 0 +1 (a 2) = ∅, at least one of the four terms of the above union is not empty. But since µ i 0 (a 1) ∩ µ i 0 (a 2) = ∅, only the last three cases are investigated below.

It follows that, when computing µ i 0 +2 , we obtain the additional inclusions µ i 0 +2 (x 1) ⊆ µ i 0 +2 (a 2) and µ i 0 +2 (x 2) ⊆ µ i 0 +2 (a 1), which implies that for j = 1, 2, µ * (x j) ⊆ µ * (a 1) ∩ µ * (a 2) holds. This part of the proof is thus complete.

(2) Regarding the second item in the second part of the lemma, assume first that ∆ (α β). Since µ * |= ∆, we obviously have that µ * (α) ∩ µ * (β) = ∅.

Conversely, assuming that µ * (α) ∩ µ * (β) = ∅, we show that ∆ (α β), that is, for every µ such that µ |= ∆, µ(α) ∩ µ(β) = ∅. The proof is by induction on the steps of the construction of µ * , assuming α in dom(A) and β in dom(B). • The result holds for i = 0. Indeed, if µ 0 (α) ∩ µ 0 (β) = ∅ then there exists u in D such that α u and β u. Hence for every µ such that µ |= ∆, we have µ(u) = ∅ and µ(u) ⊆ µ(α)∩µ(β), implying that µ(α) ∩ µ(β) = ∅ holds.

• For i 0 > 0, assuming that µ i 0 satisfies that for all ζ and η such that µ i 0 (ζ) ∩ µ i 0 (η) = ∅, we have µ(ζ) ∩ µ(η) = ∅ for every µ such that µ |= ∆, we show that the result holds for µ i 0 +1 . Indeed, let i 0 such that µ i 0 (α) ∩ µ i 0 (β) = ∅ and µ i 0 +1 (α) ∩ µ i 0 +1 (β) = ∅. By definition of the sequence (µ i) i≥0 , and as in (1) just above, Proof The tuples inserted into D * when running the while-loop line 4 of Algorithm 2 are built up using only constants occurring in ∆. Thus, the number of these tuples is finite, and so, Algorithm 2 terminates.

The proof that for every t in LoCl(D *), µ * (t) = ∅ holds is conducted by induction on the steps of Algorithm 2. If (D k) k≥0 denotes the sequence of the states of D * during the execution, we first note that since D 0 = D, for every t in LoCl(D 0), µ * (t) = ∅ holds.

Assuming now that for i > 0, for every t in LoCl(D i), µ * (t) = ∅, we prove the result for every t in LoCl(D i+1). Indeed, let t in D i+1 such that t t . If t is in D i , the proof is immediate; we thus now assume that t is not in D i , that is that t occurs in D i+1 when running Algorithm 2, that is, there exist X → A in F D, t 1 and t 2 in D i such that t 1 .X = t 2 .X = x, t 1 .A = a and either (i) t 2 .A is not defined or (ii) t 2 .A is defined but not equal to t 1 .A. Writing t 1 as t 1 xa, we have the following: (i) If t 2 .A is not defined, then t 2 is written as t 2 x and, according to the statement line 9, t is of the form t 2 xa. By our induction hypothesis, µ * (t 1) and µ * (t 2) are nonempty, and thus µ * (x) ∩ µ * (a) = ∅. Hence, µ * (x) ⊆ µ * (a) (because µ * |= X → A), and so, µ

. Hence µ * (t) = ∅, and so, µ * (t) = ∅ also holds, since µ * (t) ⊆ µ * (t). (ii) If t 2 .A is defined but t 1 .A = t 2 .A. for i = 1, 2, t i is written as t i xa i where a i = t i .A. According to statement line 12, t is one of the tuples t 1 xa 2 or t 2 xa 1 , and each of these cases can be treated as (i) above.

We therefore have shown that if t is in LoCl(D *) as computed by the main loop line 4 of Algorithm 2, then µ * (t) = ∅. Since the last loop line 14 does not change this set LoCl(D *), this part of the proof is complete.

Conversely, we show that for every t, if µ * (t) = ∅ then t is in LoCl(D *). The proof is done by induction on the construction of µ * . By definition of µ 0 , it is clear that if µ 0 (t) = ∅ then t is in LoCl(D) and thus in LoCl(D *). Now, if we assume that for every i > 0 and every t, if µ i (t) = ∅ then t belongs to LoCl(D *), we prove that this result holds for µ i+1 .

Let t be such that µ i (t) = ∅ and µ i+1 (t) = ∅. For every α, writing µ i+1 (α) as µ i (α)∪M (α), where M (α) is the union of all µ i (x) such that x is a tuple over X, where X → A ∈ F D, α ∈ dom(A), µ i (x) ∩ µ i (α) = ∅, and µ i (x) ⊆ µ i (α), we have the following:

Equality (2) above is obtained from (1) by applying the distributivity of intersection over union with the convention that t = t 1 t 2 refers to any split of t into two tuples t 1 and t 2 . Assuming µ i (t) = ∅ and µ i+1 (t) = ∅ implies that in Equality (2) either the second or the last term of the union is nonempty.

• If t=t 1 t 2 µ i (t 1) ∩ β t 2 M (β) = ∅, there exist t 1 and t 2 such that t = t 1 t 2 and µ i (t 1) ∩ β t 2 M (β) = ∅. Given such a split of t, writing t 2 as β 1 . . . βp implies that, for k = 1, . . . , p, M (β k) contains y k such that Y k → B k is in F D and µ i (y k)∩µ i (β k) = ∅. Moreover,