
HAL Id: hal-03314808
https://hal.science/hal-03314808v1

Preprint submitted on 5 Aug 2021 (v1), last revised 6 Oct 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Handling Inconsistencies in Tables with Nulls and
Functional Dependencies

Dominique Laurent, Nicolas Spyratos

To cite this version:
Dominique Laurent, Nicolas Spyratos. Handling Inconsistencies in Tables with Nulls and Functional
Dependencies. 2021. �hal-03314808v1�

https://hal.science/hal-03314808v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Handling Inconsistencies in Tables with Nulls and
Functional Dependencies

Dominique Laurent · Nicolas Spyratos

Received: date / Accepted: date

Abstract In this paper we address the problem of handling inconsistencies in
tables with missing values (or nulls) and functional dependencies. Although the
traditional view is that table instances must respect all functional dependencies
imposed on them, it is nevertheless relevant to develop theories about how to
handle instances that violate some dependencies.

The usual approach to alleviate the impact of inconsistent data on the answers
to a query is to introduce the notion of repair: a repair is a minimally different
consistent instance and an answer is consistent if it is present in every repair.

Our approach is fundamentally different: we use set theoretic semantics for
tuples and functional dependencies that allow us to associate each tuple with a
truth value among the following: true, false, inconsistent or unknown. The users of
the table can then query the set of true tuples as usual. Regarding missing values,
we make no assumptions on their existence: a missing value exists only if it is
inferred from the functional dependencies of the table.

The main contributions of the paper are the following: (a) we introduce a new
approach to handle inconsistencies in a table with nulls and functional dependen-
cies, (b) we give algorithms for computing all true, inconsistent and false tuples,
(c) we discuss how our approach relates to Belnap’s four valued logic, (d) we de-
scribe how our approach can be applied to the consolidation of two or more tables
and (e) we discuss the relationship between our approach and that of table repairs.

Keywords Database semantics . Inconsistent database . Functional depen-
dency . Data Integration . Null value . Four-valued logic

Dominique Laurent
ETIS Laboratory - ENSEA, CY Cergy Paris University, CNRS
F-95000 Cergy-Pontoise, France
dominique.laurent@u-cergy.fr

Nicolas Spyratos
LISN Laboratory - University Paris-Saclay, CNRS
F-91405 Orsay, France
nicolas.spyratos@lri.fr

Acknowledgment: Work conducted while the second author was visiting at FORTH
Institute of Computer Science, Crete, Greece (https://www.ics.forth.gr/)

1 Introduction

In several applications today we are confronted with tables which contain missing
values and which have to satisfy functional dependencies. Such tables are often the
result of merging two or more ‘source’ tables. For example, think of two groups
of researchers studying the objects found in an archaeological site. Each object
has a numerical identifier and the researchers record data regarding the following
attributes of each object:

− Identifier (an integer in our example)
− Kind (such as statue, weapon, . . .)
− Material from which the object is made (such as iron, bronze, marble, . . .)
− Century in which the object is believed to have been made.

At the end of their work each group submits their findings to the site coordinator
in the form of a table in which each row (or tuple) contains the data recorded for
a single object. For example, a tuple (1, statue,marble, 1.AD) means that object
1 is a statue made of marble and believed to have been made in the first century
before our era. Similarly a tuple (2, statue, , 2.AD) means that object 2 is a statue
of unknown material, believed to have been made during the second century before
our era. Note that, in this tuple, there is no value for material meaning that the
material from which object 2 is made has not been determined. In the relational
model of databases such blanks are referred to as ‘null values’ or simply as ‘nulls’.

D1 Id K M C
1 k m c
1 m′

2 k′ m′ c
2 k′ m′′

D2 Id K M C
1 k c
2 k′ c′

2 k′ m′′

D Id K M C
1 k m c
1 m′

2 k′ m′ c
2 k′ c′

2 k′ m′′

Fig. 1 The tables prepared by the individual groups and the merged table

Figure 1 shows an example of two tables D1 and D2 containing the results
from two different groups of researchers about two objects, 1 and 2, where k, k′

represent values of Kind (K); m, m′, m′′ values of Material (M); and c, c′ values
of Century (C). Both tables also contain nulls.

Now, the data contained in the two tables can be merged into a single table
D containing all tuples from the two tables, as shown in Figure 1. In doing this
merging we may have discrepancies between tuples of D. For example, object 1
appears in D as being made from two different materials; and object 2 appears
as made from two different materials and in two different centuries. This kind of
discrepancies may lead to ‘inconsistencies’ that should be identified by the site
coordinator and resolved in cooperation with the researchers of the two groups.

2

It should be obvious from this example that the merging of two or more tables
into a single table more often than not results in inconsistencies ? even if the
individual tables are each consistent. For example, tables D1 and D2 each satisfies
the functional dependencies Id → K and Id → C, whereas the merged table D
does not satisfy Id→ C. A similar situation arises in data warehouses where one
tries to merge views of the underlying sources into a single materialized view to
be stored in the data warehouse.

As a last example, in a relational database, although each table satisfies its
functional dependencies, the database as a whole may be inconsistent. To deter-
mine whether the database is consistent one merges all tables into a single table
D (under certain assumptions discussed in [22]) and applies all functional depen-
dencies on D through the well known chase algorithm [11,21]. If the algorithm
terminates successfully (i.e., no inconsistency is detected) then the database is
consistent; otherwise the algorithm stops and the database is inconsistent.

So in general the question is: what should we do when a table is inconsistent?
There are roughly three approaches: (a) reject the table, (b) try to correct or
‘repair’ it so that to make it consistent (and therefore be able to work with the
repaired table) and (c) keep the table as is but make sure you know which part is
consistent and which is not.

The first approach is that followed by logicians who generally apply the princi-
ple of explosion (Ex Contradictione Non Sequitur Quodlibet, ‘from contradiction
anything [follows]’ (see [9]); it is also followed by database theorists: when the
chase algorithm reveals inconsistency then the database is declared inconsistent.
This approach is clearly not acceptable in practice.

The second approach is always difficult to implement as, in principle, it requires
the generation of all repairs. This approach, also referred to as ‘consistent query
answering’ has motivated important research efforts during the past two decades
and is still the subject of current research. The reader is referred to Section 5.4
for a brief overview as well as a comparison with our approach.

In our work we follow the third approach that is we keep inconsistencies in the
table but we determine which part of the table is consistent and which is not. More
specifically, we use set theoretic semantics for tuples and functional dependencies
that allow us to associate each tuple of he table with one truth value among the
following: true, false, inconsistent or unknown. Users can then query the set of true
tuples of the table as usual. Regarding missing values, we make no assumptions
on their existence: a null value exists only if it is inferred from the functional
dependencies of the table.

The main contributions of the paper can be summarized as follows:

1. We introduce a new approach to handle inconsistencies in a table with nulls
and functional dependencies; we do so by adapting the set theoretic seman-
tics of [19] to our context and by extending the chase algorithm so that all
inconsistencies are accounted for in the table.

2. We give algorithms for computing all true, inconsistent and false tuples in the
table.

3. We discuss how our approach relates to Belnap?s four-valued logic [5].
4. We describe how our approach can be applied to the consolidation of two or

more tables.
5. We discuss how our approach relates to consistent query answering.

3

The paper is organized as follows: In Section 2 we recall basic definitions and
notations regarding tables and we introduce the set theoretic semantics that we
use in our work. In Section 3 we give definitions and properties regarding the truth
values that we associate with tuples. Section 4 is devoted to computational aspects,
providing algorithms for computing the truth values of tuples. In Section 5 we first
discuss how our approach relates to Belnap?s four-valued logic (Sub-sections 5.1
and 5.2); how it can be applied to the consolidation of two or more tables (Sub-
section 5.3); and how it relates to consistent query answering (Sub-section 5.4).
Section 6 contains concluding remarks and suggestions for future research.

2 The Model

In this section we present the basic definitions regarding tuples and tables as well
as the set theoretic semantics that we use for tuples and functional dependencies.
Our approach builds upon earlier work on the partition model [19].

2.1 The Partition Model Revisited

Following [19], we consider a universe U = {A1, . . . , An} in which every attribute
Ai is associated with a set of atomic values called the domain of Ai and denoted
by dom(Ai). We call relation schema (or simply schema) any nonempty subset of
U and we denote it by the concatenation of its elements; for example {A1, A2} is
simply denoted by A1A2. Similarly, the union of schemas S1 and S2 is denoted as
S1S2 instead of S1 ∪ S2.

We define a tuple t to be a partial function from U to
⋃
A∈U dom(A) such that,

for every A in U , if t is defined over A then t(A) belongs to dom(A). The domain
of definition of t is called the schema of t, denoted by sch(t). We note that tuples
in our approach satisfy the First Normal Form [21] in the sense that each tuple
component is an atomic value from an attribute domain.

Regarding notation, we follow the usual convention that, whenever possible,
lower-case characters denote domain constants and upper-case characters denote
the corresponding attributes. Following this convention the schema of a tuple
t = ab is AB and more generally, we denote the schema of t as T .

Assuming that the schema of a tuple t is understood, t is denoted by the
concatenation of its values, that is: t = ai1 . . . aik means that for every j = 1, . . . , k,
t(Aij) = aij , aij is in dom(Aij), and sch(t) = Ai1 . . . Aik .

We assume that for any distinct attributes A and B, we have either dom(A) =
dom(B) or dom(A)∩dom(B) = ∅. However, this may lead to ambiguities when two
attributes have the same domain. Ambiguity can be avoided by prefixing each value
of an attribute domain with the attribute name. For example, if dom(A) = dom(B)
we can say ‘an A-value a’ to mean that a belongs to dom(A), and ‘a B-value a’
to mean that a belongs to dom(B). In order to keep the notation simple we shall
omit prefixes whenever no ambiguity is possible.

Given a tuple t, for every A in sch(t), t(A) is also denoted by t.A and more
generally, for every subset S of sch(t) the restriction of t to S, also called sub-tuple
of t, is denoted by t.S. In other words, t.S is the tuple such that sch(t.S) = S and
for every A in S, (t.S).A = t.A.

4

Denoting by T the set of all tuples that can be built up given a universe U ,
let v be the ‘sub-tuple’ relation, defined over T as follows: for any tuples t1 and
t2, t1 v t2 holds if t1 is a sub-tuple of t2.

The relation v is clearly a partial order over T . Given a set of tuples D, the
set of all sub-tuples of the tuples in D is called the lower closure of D and it is
defined by: LoCl(D) = {q ∈ T | (∃t ∈ D)(q v t)}.

The notion of T -mapping, as defined below, generalizes that of interpretation
defined in [19].

Definition 1 Let U be a universe. A T -mapping is a mapping µ defined from⋃
A∈U dom(A) to 2N. A T -mapping µ can be extended to the set T as follows: for

every t = ai1 . . . aik in T , µ(t) = µ(ai1) ∩ . . . ∩ µ(aik).
A T -mapping µ is an interpretation if µ satisfies the partition constraint stating

that for every A in U , and for distinct values a and a′ in dom(A), µ(a)∩µ(a′) = ∅.
We emphasize that in [19] interpretations provide the basic ingredient for defining
true tuples: a tuple t is said to be true in an interpretation µ if µ(t) is nonempty.

To see the intuition behind this definition consider a relational table D over U
and suppose that each tuple is associated with a unique identifier, say an integer.
Now, for every A in U and every a in dom(A), define µ(a) to be the set of all
identifiers of the tuples in D containing a. Then µ is an interpretation as it satisfies
the partition constraint. Indeed, due to the fact that, for every attribute A in U , a
tuple t can not have more than one A-value, it is then impossible that µ(a)∩µ(a′)
be nonempty for any distinct values a, a′ in dom(A).

Incidentally, if for every A in U we denote by dom∗(A) the set of all A-
values such that µ(a) 6= ∅, then the set {µ(a) | a ∈ dom∗(A)} is a partition of⋃
a∈dom∗(A) µ(a) (whence the name “partition model”). The following example

illustrates this important feature.

Example 1 Considering U = {A,B,C} and D = {ab, bc, ac, a′b′, b′c′, abc}, the
tuples in D can be respectively assigned the identifiers 1, 2, 3, 4 5 and 6. In
that case, we have µ(a) = {1, 3, 6}, µ(a′) = {4}, µ(b) = {1, 2, 6}, µ(b′) = {4, 5},
µ(c) = {2, 3, 6}, µ(c′) = {5}, and µ(α) = ∅ for any attribute value α different than
a, a′, b, b′, c and c′.

It is clear that the T -mapping µ is an interpretation and, since dom∗(A),
dom∗(B) and dom∗(C) are respectively equal to {a, a′}, {b, b′} and {c, c′}, it is easy
to see that {µ(α) | α ∈ dom∗(A)} is a partition of {1, 3, 4, 6}, {µ(β) | β ∈ dom∗(B)}
is a partition of {1, 2, 4, 5, 6}, and {µ(γ) | γ ∈ dom∗(C)} is a partition of {2, 3, 5, 6}.

Moreover, extending µ to non unary tuples yields the following regarding the
tuples in D: µ(ab) = {1, 6}, µ(bc) = {2, 6}, µ(ac) = {3, 6}, µ(a′b′) = {4}, µ(b′c′) =
{5}, and µ(abc) = {6}. 2

Summarizing our discussion, when dealing with consistent tables in [19], only
interpretations are relevant. In the present work, we follow the same idea, but
we also extend the work of [19] so that we can deal with inconsistencies. As we
shall see, non satisfaction of the partition constraint in Definition 1 is the key
criterion to characterize inconsistent tuples.

2.2 Functional Dependencies

The notion of functional dependency in our approach is defined as in [19].

5

Definition 2 Let U be a universe. A functional dependency is an expression of
the from X → Y where X and Y are nonempty sub-sets of U .

A T -mapping µ satisfies X → Y , denoted by µ |= X → Y , if for all tuples x
and y, respectively over X and Y such that µ(x) ∩ µ(y) 6= ∅, µ(x) ⊆ µ(y) holds.

Based on Definition 2, for all X and Y such that X ∩ Y = ∅, and for every
T -mapping µ, the following holds:

µ |= X → Y if and only if µ |= X → A for every A in Y .

Indeed, since for all sets E, E1 and E2, E ⊆ E1 ∩ E2 holds if and only if so does
(E ⊆ E1 and E ⊆ E2), it holds that for every x and y such that µ(x) ∩ µ(y) 6= ∅,
µ(x) ⊆ µ(y) holds if and only if for every constant a in y, µ(x) ⊆ µ(a) holds.

We thus assume without loss of generality that functional dependencies are of
the form X → A where A is an attribute not in X. Under this assumption, we
consider pairs ∆ = (D,FD) where D is a table over U and FD a set of functional
dependencies over U , and we say that a T -mapping µ satisfies ∆, denoted by
µ |= ∆, if (i) for every t in D, µ(t) 6= ∅, and (ii) µ satisfies every X → A in FD.

Relating our notion of functional dependency with the standard one in re-
lational databases [21], we first recall that a relation r over universe U satisfies
X → A if for all tuples t and t′ in r such that t.X = t′.X, we have t.A = t′.A.

In our approach, let ∆ = (D,FD) and consider two tuples t and t′ in D
such that t.X = t′.X = x. Then for every T -mapping µ such that µ |= ∆, µ(t)
and µ(t′) are nonempty, implying that µ(x) ∩ µ(t.A) and µ(x) ∩ µ(t′.A) are also
nonempty. By Definition 2, this implies that µ(x) is a sub-set of µ(t.A) and µ(t′.A).
As a consequence, assuming that t.A 6= t′.A (i.e., that X → A is not satisfied in
the sense of the relational model), means that µ(t.A) ∩ µ(t′.A) is nonempty, and
therefore µ can not be an interpretation.

Therefore if we restrict T -mappings to be interpretations then the notion of
functional dependency satisfaction in our approach is the same as that of relational
databases. As we shall see, this observation supports the notion of consistency for
∆, to be given later (in Definition 3).

Given ∆ = (D,FD) and tuples t, t′ and t′′, the following notations are exten-
sively used in the remainder of the paper.

− ∆ ` t, denotes that for every µ such that µ |= ∆, µ(t) 6= ∅.
− ∆ ` (t u t′), denotes that for every µ such that µ |= ∆, µ(t) ∩ µ(t′) 6= ∅.
− ∆ ` (t � t′) denotes that for every µ such that µ |= ∆, µ(t) ⊆ µ(t′).
− ∆ ` (t � t′u t′′) denotes that for every µ such that µ |= ∆, µ(t) ⊆ µ(t′)∩µ(t′′).

Given ∆ = (D,FD), we now build a particular T -mapping µ such that µ |= ∆ as
follows: Let (µi)i≥0 be the sequence defined by the steps below:

1. Associate each tuple t with an identifier, id(t), called the tuple identifier of t
(this can be an integer that identifies t uniquely).

2. For every domain constant a let µ0(a) = {id(t) | t ∈ D and a v t};
3. While there exists X → A in FD, x over X and a in dom(A) such that
µ(xa) 6= ∅ and µ(x) 6⊆ µ(a), define µi+1 by: µi+1(a) = µi(a) ∪ µi(x) and
µi+1(α) = µi(α) for any other symbol α.

Lemma 1 For every ∆ = (D,FD), the sequence (µi)i≥0 has a unique limit µ∗

that satisfies µ∗ |= ∆.

6

Moreover, µ∗ is such that for all constants α and β, ∆ ` (α u β) holds if and
only if µ∗(α) ∩ µ∗(β) 6= ∅ holds.

Proof See Appendix A. 2

Given ∆ = (D,FD), Lemma 1 shows the following two basic points:

1. There always exists a T -mapping µ such that µ |= ∆.
2. For every tuple t, ∆ ` t if and only if µ∗(t) 6= ∅.
We now characterize when ∆ ` (t � a) holds, inspired by the well known rela-
tional notion of closure of a relation scheme with respect to a set of functional
dependencies [21]. To this end, given ∆ = (D,FD) we define the closure of a tuple
t in ∆ (or closure of t for short, when ∆ is understood), denoted by t+, as the
output of Algorithm 1.

Algorithm 1 Closure of t

Input: ∆ = (D,FD) and a tuple t.
Output: A set t+ of constants a
1: t+ := {a | a v t}
2: while t+ changes do
3: for all X → A ∈ FD do
4: for all x such that for every b in x, b ∈ t+ and ∆ ` xa do
5: t+ := t+ ∪ {a}
6: return t+

The following lemma gives basic properties related to inclusions that hold
between tuples in a given table.

Lemma 2 Let ∆ = (D,FD). Then ∆ ` (t � a) holds if and only if a is in t+.

Proof See Appendix B. 2

The following example illustrates Lemma 1 and Lemma 2.

Example 2 Let U = {A,B,C} and ∆ = (D,FD) where D = {ab, bc, abc′} and
FD = {B → C}. Associating ab, bc and abc′ respectively with 1, 2 and 3, µ∗ is
obtained as follows:
• First, we have µ0(a) = {1, 3}, µ0(b) = {1, 2, 3}, µ0(c) = {2} and µ0(c′) = {3}
and µ0(α) = ∅ for any other domain constant α.
• Then, considering B → C, we have µ1(a) = {1, 3}, µ1(b) = µ1(c) = µ1(c′) =
{1, 2, 3} and µ∗(α) = ∅ for any other domain constant α.

Hence, µ∗ = µ1 and we remark that µ∗(c) ∩ µ∗(c′) 6= ∅, thus that µ∗ is not an
interpretation. Nevertheless, as stated by Lemma 1, it is easy to see that µ∗ |= ∆.
Computing (ab)+ according to Algorithm 1 yields the following:
• (ab)+ is first set to {a, b}
• Then, considering B → C, since b is in (ab)+, and since ∆ ` bc and ∆ ` bc′, c
and c′ are inserted in (ab)+.

As no further modifications are possible, we have (ab)+ = {a, b, c, c′}, showing
in particular that ∆ ` (ab � c) and ∆ ` (ab � c′), that is ∆ ` (ab � c u c′). 2

7

3 Semantics

In this section we provide basic definitions and properties regarding the truth value
associated with a tuple. It is important to keep in mind that, in doing so, we follow
the intuition of Belnap’s Four-valued logic of [5].

3.1 The Truth-Value of a Tuple

The following definition of consistency is borrowed from [19].

Definition 3 ∆ is said to be consistent if there exists an interpretation µ such
that µ |= ∆.

Since in our approach, inconsistent tables are not discarded, it is crucial to be able
to provide semantics to any ∆ = (D,FD), being it consistent or not. To this end,
inspired by Belnap’s Four-valued logic [5], we consider four possible truth values
for a given tuple t in ∆. The notations of truth values for tuples in our approach
and their intuitive meaning are as follows, for given a tuple t:

– Truth value true: t is true in ∆.
– Truth value false: t is false in ∆. This means that we do not follow the Closed

World Assumption (CWA), according to which any non true tuple is false [18].
– Truth value inc (i.e., inconsistent): t is true and false in ∆. This truth value

is necessary for ‘safely’ dealing with inconsistent tuples.
– Truth value unkn (i.e., unknown): t is not true, not false and not inconsistent

in ∆. This truth value is necessary for dealing with tuples not falling in one of
the above three categories.

We now emphasize the following intuitive remarks, that will be formalized in the
forthcoming Definition 4:

– ∆ ` t indicates that for every µ such that µ |= ∆, µ(t) 6= ∅. In this case, t is
said to be potentially true in ∆.

– ∆ ` (t � a u a′) for some distinct a and a′ in the same attribute domain,
denoted by ∆ |∼ t, indicates that for every µ such that µ |= ∆, µ(t) ⊆ µ(a) ∩
µ(a′) holds. In this case, t is said to be potentially false to reflect that µ(a) ∩
µ(a′) must be empty.

Consequently, when a tuple t is such that ∆ ` t and ∆ |∼ t, for µ to be an
interpretation, µ must associate t with a set expected to be empty and nonempty,
which is of course a case of inconsistency! This explains why, in our approach,
‘potentially true’ and ‘potentially false’, should respectively be understood as ‘true
or inconsistent’ and ‘false or inconsistent’.

Based on this intuition, each tuple is assigned one of the four truth values
according to the following definition.

Definition 4 Given ∆ = (D,FD) and a tuple t, the truth value of t in ∆, denoted
by v∆(t), is defined as follows:

− v∆(t) = true if ∆ ` t and ∆ 6|∼ t; t is said to be true in ∆.
− v∆(t) = false if ∆ 6` t and ∆ |∼ t; t is said to be false in ∆.
− v∆(t) = inc if ∆ ` t and ∆ |∼ t; t is said to be inconsistent in ∆.
− v∆(t) = unkn if ∆ 6` t and ∆ 6|∼ t; t is said to be unknown in ∆.

8

In Section 5, we investigate how our approach can be expressed in the context of
the Four-valued logic [5] and we show that the semantics of [13] allows to compute
the truth value of every tuple t as defined above. The following proposition shows
that our notion of inconsistent tuple complies with Definition 3.

Proposition 1 ∆ = (D,FD) is consistent if and only if there exist no tuple t
such that v∆(t) = inc.

Proof See Appendix C. 2

Regarding potentially false tuples, the following proposition gives a necessary con-
dition and several sufficient conditions for ∆ |∼ t to hold.

Proposition 2 Given ∆ = (D,FD) and t over schema T , the following holds:

1. If ∆ |∼ t then there exists X → A in FD such that X ⊆ T and ∆ ` t.X.
2. For every t′ such that t v t′, if ∆ |∼ t′ then ∆ |∼ t.
3. For every X → A in FD such that X ⊆ T , denoting t.X by x we have:

(a) if ∆ ` xa and ∆ ` xa′ where a and a′ are in dom(A), then ∆ |∼ t;
(b) if A ∈ T and ∆ ` xa for a in dom(A) distinct from t.A, then ∆ |∼ t.

Proof 1. By Lemma 2, as ∆ |∼ t, there exist A in U and a and a′ in dom(A)
such that a 6= a′ and a and a′ are in t+. Since a and a′ cannot both occur in t
as A-values, at least one of these values occurs in t+ due to the loop of line 2 in
Algorithm 1. The condition of the ‘if’ statement in this loop must thus succeed at
least once, which is the condition stated in the proposition.

2. Since ∆ |∼ t′, then ∆ ` t′ � a u a′, and as t v t′, then ∆ ` t′ � t. Thus
∆ ` t � a u a′.
3(a). The hypotheses imply that ∆ ` x � a u a′, thus that ∆ |∼ x. Since x v t,
the result follows from the previous item.
3(b). As above the hypotheses imply that ∆ ` x � a. Thus a is in x+, and as
x v t, a is in t+. As t.A is also in t+, the result follows. 2

Definition 4 and Proposition 2 allow for the following generic remarks concerning
the truth value of a tuple:

– By Lemma 1 the set of potentially true tuples is determined by µ∗. Since
D is finite, the number of potentially true tuples is finite even if domains are
infinite. As a consequence the numbers of true tuples and of inconsistent tuples
are finite as well, whatever the cardinalities of attribute domains.

– Proposition 2(1) shows that if FD = ∅ then no tuple can be potentially false.
As a consequence, in this case no tuple is inconsistent either, meaning that
tuples are either true or unknown.

– Proposition 2(1) also shows that potentially false tuples must have a schema
including the left-hand side X of a functional dependency of FD.

– Proposition 2(2) shows that every super-tuple of a potentially false tuple is
also potentially false. Therefore, the number of false tuples might be infinite.

– Proposition 2(3) implies that potentially true tuples and functional dependen-
cies generate potentially false tuples, in a possibly infinite number.

We illustrate Definition 4 and Proposition 2 through the following example.

9

Example 3 As in Example 2, let U = {A,B,C} and ∆ = (D,FD) where D =
{ab, bc, abc′} and FD = {B → C}. It can be seen that for every µ such that
µ |= D and µ |= B → C, the following holds:
− µ(abc) 6= ∅ and µ(abc′) 6= ∅
− µ(c) ∩ µ(c′) 6= ∅, µ(b) ⊆ µ(c), µ(b) ⊆ µ(c′).

It therefore follows that ∆ ` abc and ∆ ` abc′, that ∆ is inconsistent, and that
∆ |∼ b. As b v abc, ∆ ` b, and so, v∆(b) = inc, meaning that b is inconsistent in
∆. By Proposition 2(2), it follows that, for example, abc, abc′, bc and bc′ are also
inconsistent in ∆.

Now, let c′′ in dom(C) distinct from c and c′. Computing the truth value of
bc′′ in ∆, we first notice that µ(bc′′) ⊆ µ(c′′) holds for every µ. On the other hand
it also holds that µ(bc′′) ⊆ µ(c) for every µ such that µ |= ∆. Indeed:

– If µ(bc′′) = ∅, the inclusion trivially holds.
– If µ(bc′′) 6= ∅, then µ(b) ⊆ µ(c′′) because µ |= B → C. Hence µ(bc′′) = µ(b),

and as µ(b) ⊆ µ(c), µ(bc′′) ⊆ µ(c) holds.

Therefore ∆ |∼ bc′′ and since ∆ 6` bc′′ (because µ∗ as computed in Example 2 is
such that µ∗(bc′′) = ∅ and µ∗ |= ∆), it follows that v∆(bc′′) = false, and thus
that bc′′ and all its super-tuples are false in ∆.

As an example of unknown tuple in ∆, let a′ be in dom(A) such a′ 6= a, and
consider a′c. Since, as shown by Example 2, µ∗(a′c) = ∅, ∆ 6` a′c. On the other
hand, since (a′c)+ = {a′, c}, ∆ 6|∼ a′c, which shows that v∆(a′c) = unkn.

Now, for t = a′bc, Proposition 2 implies that ∆ |∼ t because ∆ |∼ bc and bc v t.
However, as ∆ 6` t, although bc is inconsistent in ∆, it can not be inferred that t
is inconsistent in ∆. It therefore turns out that t is false in ∆. 2

The following more sophisticated examples show that computing all inconsistent
tuples in ∆ is not an easy task.

Example 4 Let U = {A,B,C} and ∆ = (D,FD) where D = {ab, bc, ab′, b′c′} and
FD = {B → C,A→ C}. Although D contains no inconsistent tuples, it turns out
that ∆ is not consistent. To see this, let us compute µ∗ as defined in Lemma 1:
• First, to define µ0, we associate the tuples ab, bc, ab′ and b′c′ with the integers
1, 2, 3 and 4, respectively. Thus, µ0(a) = {1, 3}, µ0(b) = {1, 2}, µ0(b′) = {3, 4},
µ0(c) = {2}, µ0(c′) = {4} and µ0(α) = ∅ for any other domain constant α.
• The next steps modify µ0 so as to satisfy B → C and A→ C as follows:

1. µ1 is defined by: µ1(a) = {1, 3}, µ1(b) = {1, 2}, µ1(b′) = {3, 4}, µ1(c) = {1, 2}
and µ1(c′) = {2, 4};

2. µ2 is defined by: µ2(a) = {1, 3}, µ2(b) = {1, 2}, µ2(b′) = {3, 4}, µ2(c) =
{1, 2, 3} and µ2(c′) = {2, 3, 4}.

3. µ3 is defined by: µ3(a) = {1, 3}, µ3(b) = {1, 2}, µ3(b′) = {3, 4}, µ3(c) =
{1, 2, 3, 4} and µ3(c′) = {1, 2, 3, 4}.

As µ3 |= FD, we have µ∗ = µ3. Since µ∗(c)∩µ∗(c′) 6= ∅, µ∗ is not an interpretation,
meaning that ∆ is not consistent.

Moreover, since a+ = {a, c, c′}, b+ = {b, c, c′} and (b′)+ = {b′, c, c′}, a, b and
b′ are inconsistent in ∆. This implies that, for example, ac, bc′ and ab′c′ are also
inconsistent in ∆, because each of these tuples t is such that ∆ ` t (as µ∗(t) 6= ∅)
and ∆ |∼ t (by Proposition 2(2)). On the other hand it can be seen that c and c′

10

are not inconsistent because c+ = {c} and (c′)+ = {c′}. Since µ∗(c) and µ∗(c′)
are nonempty, these tuples are true in ∆. 2

Example 5 Let ∆ = (D,FD) be defined over U = {A,B,C} by D = {abc, ac′} and
FD = {A → B,B → C}. Here again, the tuples in D along with the functional
dependencies in FD show no inconsistency. However computing µ∗ yields the
following:
• To define µ0, we associate the tuples abc and ac′ with the integers 1 and 2,
respectively. It follows that µ0(a) = {1, 2}, µ0(b) = {1}, µ0(c) = {1}, µ0(c′) = {2}
and µ0(α) = ∅ for any other domain constant α.
• The next steps modify µ0 so as to satisfy A→ B and B → C as follows:

1. Due to A → B, µ1 is defined by: µ1(a) = {1, 2}, µ1(b) = {1, 2}, µ1(c) = {1}
and µ1(c′) = {2};

2. Due to B → C, µ2 is defined by: µ2(a) = {1, 2}, µ2(b) = {1, 2}, µ2(c) = {1, 2}
and µ2(c′) = {1, 2}.

As µ2 |= FD, µ∗ = µ2 and, since µ∗(c) ∩ µ∗(c′) is nonempty, we obtain as in
Example 2, that ∆ is not consistent.

Moreover, we have a+ = {a, b, c, c′} and b+ = {b, c, c′} showing that, by
Lemma 2, ∆ ` a � (c u c′) and ∆ ` (b � c u c′), thus that a and b are in-
consistent in ∆. It can then be seen that, for example, abc, bc′ and ac are also
inconsistent in ∆.

Now, let ∆′ = (D′,FD) such that D′ = {ac, ac′}. In this case, µ∗ is defined
by µ∗(a) = {1, 2}, µ∗(c) = {1}, µ∗(c′) = {2} and µ∗(α) = ∅ for any other domain
constant α. Therefore, a+ = {a}, showing that a is not inconsistent in ∆′. As a
consequence, ac, ac′ along with all their sub-tuples are true in ∆′ and all other
tuples are unknown in ∆′. 2

As shown by the previous examples, although it is possible to compute inconsis-
tent and true tuples based on Lemma 1 and Lemma 2, a systematic and efficient
computation is likely to be problematic; we address this issue next.

4 Computing the Semantics

In the context of standard two valued logic, computing the semantics of ∆ means
computing the set of all tuples true in ∆. In our approach, computing the semantics
is more involved because we have to compute the following three sets: the set of
all true tuples, the set of all inconsistent tuples and the set of all false tuples in
∆; and once this is done, the set of all unknown tuples is the complement of the
union of these three sets with respect to T .

However, as already seen, the set of potentially false tuples is infinite, thus
making it impossible to compute the set of all false tuples. We cope with this
difficulty as follows: we first give algorithms to compute all true tuples and all
inconsistent tuples, and then, we provide an algorithm for computing the truth
value of a given tuple, including when this tuple is false or unknown!

11

Algorithm 2 Chasing a table

Input: ∆ = (D,FD)
Output: The chased table ∆ch = (Dch,FD) and a set inc(FD) containing sets of tuples

associated with each X → A in FD
1: Dch := D
2: for all X → A in FD do
3: inc(X → A) := ∅
4: while Dch changes do
5: for all X → A ∈ FD do
6: for all t1 in Dch such that XA ⊆ sch(t1) do
7: for all t2 in Dch such that t1.X = t2.X do
8: if A 6∈ sch(t2) then
9: Dch := Dch ∪ {t2a1} where a1 = t1.A

10: if A ∈ sch(t2) and t1.A 6= t2.A then
11: Let yi = ti.(sch(ti) \A) and ai = ti.A, for i = 1, 2
12: Dch := Dch ∪ {y1a2, y2a1}
13: inc(X → A) := inc(X → A) ∪ {x} where x = t1.X = t2.X

// Normalization: keep in Dch only maximal tuples
14: for all t1 in Dch do
15: for all t2 in Dch do
16: if t2 v t1 and t1 6= t2 then
17: Dch := Dch \ {t2}
18: inc(FD) := {inc(X → A) | inc(X → A) 6= ∅}
19: return ∆ch = (Dch,FD) and inc(FD)

4.1 Computing True Tuples and Inconsistent Tuples

We first propose an effective algorithm for the computation of all potentially true
tuples in a given ∆. This algorithm is in fact inspired by the standard chase
algorithm [19,21], with the main difference that when a functional dependency
cannot be satisfied, our algorithm does not stop. Instead, our chasing algorithm
carries on the computation, returning a database ∆ch = (Dch,FD) and a set
inc(FD) based on which inconsistent and true tuples can be efficiently computed.

To prove this basic result, we first show the following lemma which states the
strong relationship between tuples in Dch and potentially true tuples.

Lemma 3 Algorithm 2 applied to ∆ = (D,FD) always terminates. Moreover, for
every tuple t, µ∗(t) 6= ∅ holds if and only if t is in LoCl(Dch).

Proof See Appendix D. 2

Comparing our chasing algorithm to the standard one [19,21], it is easily seen
that, if ∆ = (D,FD) is consistent, then Dch coincides with the standard chase
output. To compute the set of all inconsistent tuples in our approach, we introduce
Algorithm 3, which is shown to be correct by the following lemma.

Lemma 4 Given ∆ = (D,FD), a tuple t is inconsistent in ∆ if and only if
t ∈ Inc(∆).

Proof See Appendix E. 2

The following proposition characterizes inconsistent and true tuples in ∆ based on
Algorithm 2 and Algorithm 3.

12

Algorithm 3 Inconsistent tuples in ∆ = (D,FD)

Input: The output of Algorithm 2, that is ∆ch = (Dch,FD) and inc(FD).
Output: A set of tuples Inc(∆)
1: Inc(∆) := ∅
2: for all t in Dch do
3: for all X → A in FD such that XA ⊆ T do
4: if x = t.X is in inc(X → A) then
5: temp := {q | x v q v t}
6: while temp changes do
7: for all q in temp do
8: for all Y → B in FD such that Y B ⊆ Q \A and B ∈ X do
9: temp := temp ∪ {qB} where qB = q.(Q \B)

10: Inc(∆) := Inc(∆) ∪ temp
11: return Inc(∆)

Proposition 3 Given ∆ = (D,FD) and a tuple t:
1. t is inconsistent in ∆ if and only if t ∈ Inc(∆).
2. t is true in ∆ if and only if t ∈ LoCl(Dch) \ Inc(∆).

Proof Immediate consequence of Definition 4, Lemma 3 and Lemma 4. 2

The following examples illustrate Proposition 3.

Example 6 As in Example 2, let U = {A,B,C} and ∆ = (D,FD) where D =
{ab, bc, abc′} and FD = {B → C}. A tabular version of D is displayed on the left
below, whereas Dch is the table on the right.

D A B C
a b

b c
a b c′

Dch A B C
a b c
a b c′

Algorithm 2 applies to ∆ as follows. Because of B → C, the statement line 9
first inserts abc in Dch. Then, based on abc and abc′ in Dch and B → C, due
to line 13, b is added in inc(B → C) but no tuple is added in Dch. The main
loop terminates at this stage and, normalization is processed on line 14, removing
ab and bc from Dch. Hence, Algorithm 2 returns the table Dch shown above and
inc(FD) = {inc(B → C)} where inc(B → C) = {b}.

When running Algorithm 3 for abc in Dch, the tuples b, ab, bc and abc are first
inserted in temp on line 5, and on line 9 no tuple is inserted because no functional
dependency of the form Y → B as in the algorithm can be found in FD. A similar
computation is preformed with abc′ in Dch, adding bc′ and abc′ in temp.

Therefore, Algorithm 3 returns Inc(∆) = {abc, abc′, ab, bc, bc′, b}, which by
Proposition 3(1) is the set of all inconsistent tuples in ∆. As a consequence, by
Proposition 3(2), ac, ac′, a, c and c′ are the true tuples in ∆. 2

More sophisticated examples regarding the consequences of functional dependen-
cies when running Algorithm 2 follow.

Example 7 As in Example 5, let ∆ = (D,FD) over U = {A,B,C} where D =
{abc, ac′} and FD = {A→ B,B → C}. The tabular version of D is shown on the
left below, whereas Dch is shown on the right.

13

D A B C
a b c
a c′

Dch A B C
a b c
a b c′

Running Algorithm 2 first inserts abc′ in Dch by the statement line 9 due to
A → B, and the tuples abc and ac′. Then, b is inserted in inc(B → C) by the
statement line 13, due to B → C and the tuples abc and abc′. The table Dch and
the set inc(FD) output by Algorithm 2 are as in the previous example.

However, as in the two examples, the sets of functional dependencies are not
the same, the sets of inconsistent tuples are not equal. Indeed, when running
Algorithm 3 for abc in Dch, temp first contains b, ab, bc and abc, due to line 5.
On line 9, A → B satisfies the condition for q = ab because AB ⊆ sch(ab) and
B is the left-hand side of B → C. Thus, a and ac are inserted in temp. A similar
computation is preformed with abc′ in Dch, adding bc′, abc′ and ac′ in temp.

Hence, Algorithm 3 returns Inc(∆) = {abc, abc′, ab, ac, ac′, bc, bc′, a, b}, which
by Proposition 3(1) is the set of all inconsistent tuples in ∆. As a consequence, by
Proposition 3(2), c and c′ are the only true tuples in ∆.

Now, as in Example 5, referring to ∆′ = (D′,FD) with D′ = {ac, ac′}, it is
easy to see that D′ch = D′. This implies that ∆′ is consistent, and that ac, ac′, a,
c and c′ are true in ∆′. 2

Example 8 Let U = {A,B,C,D} and ∆ = (D,FD) where D is the table on the
left below, and FD = {A→ B,A→ C,BC → D}.

D A B C D
a b
a c d

b c d′

Dch A B C D
a b c d
a b c d′

Running Algorithm 2, by the statement line 9, the following tuples are inserted in
Dch: abcd, due to A → B, then abc, due to A → C, and then again abcd, due to
A→ B. Consequently, bcd and bcd′ are inserted in inc(BC → D) by the statement
line 13, due to abcd and bcd′.

Since no other tuple is added in Dch, the main loop stops, and after nor-
malization in line 14, Algorithm 2 returns Dch shown above on the right and
inc(FD) = {inc(BC → D)} where inc(BC → D) = {bc}. Running Algorithm 3
first inserts abcd, abc, bcd, abcd′, bcd′ and bc in temp on line 5, and the loop line 6
inserts successively the following tuples in temp through the statement line 9: first
acd, abd, ac, ab, acd′, abd′, and then ad, a, ad′. Therefore:

Inc(∆) = {abcd, abcd′, abc, abd, abd′, acd, acd′, bcd, bcd′, ac, ab, ad, ad′, bc, a}
and thus, bd, bd′, cd, cd′, b, c, d and d′ are the true tuples in ∆. 2

4.2 The Case of False Tuples

By Proposition 2, computing all tuples false in a given ∆ = (D,FD) is not feasible
in case of infinite attribute domains. We also emphasize in this respect that, even
in case of finite domains, the computation is likely to be non tractable in practice.

To cope with this problem, instead of computing the set of all tuples false in
∆, we propose an algorithm to compute the truth value of any given tuple t. In
this way, instead of being systematically identified, false tuples are identified on

14

Algorithm 4 Tuple truth value in ∆ = (D,FD)

Input: A tuple t, ∆ch = (Dch,FD) and Inc(∆)
Output: The truth value of t as one of the truth values true, false, inc or unkn
1: v := unkn
2: for all q in Dch do
3: if t v q then
4: v := true
5: if t ∈ Inc(∆) then
6: v := inc
7: if v = unkn then
8: closure := {a | a occurs in t}
9: while closure changes do

10: for all q in Dch do
11: for all X → A in FD such that XA ⊆ Q do
12: if every α in q.X is in closure then
13: closure := closure ∪ {q.A}
14: if closure contains a and a′ in the same attribute domain then
15: v := false
16: return v

demand. Assuming that ∆ch and Inc(∆) have been computed beforehand, given a
tuple t, Algorithm 4 returns a truth value that is shown to be equal to v∆(t) by
the following proposition.

Proposition 4 Given ∆ = (D,FD), and a tuple t and assuming that ∆ch =
(Dch,FD) and Inc(∆) have been computed, the truth value returned by Algorithm 4
is equal to v∆(t).

Proof The proposition is an immediate consequence of Proposition 3 when the
returned value is true or inc. Let us assume that Algorithm 4 returns false, then
since the loop line 9 reproduces the main loop of Algorithm 1, the value of the set
closure is equal to t+, and the result follows from Lemma 2. 2

The following example illustrates the algorithm.

Example 9 We recall that in our introductory example of an archaeological site
we defined ∆ = (D,FD) as the result of the integration of two data sources ∆1

and ∆2. In this setting, FD = {Id → A, Id → C} and the table D of Figure 1 is
shown in Figure 2.

D Id K M C
1 k m c
1 m′

2 k′ m′ c
2 k′ c′

2 k′ m′′

Dch Id K M C
1 k m c
1 k m′ c
2 k′ m′ c
2 k′ m′ c′

2 k′ m′′ c
2 k′ m′′ c′

Fig. 2 The integrated table from the introductory example and its chased version

Applying Algorithm 2 to D produces Dch as shown in Figure 2, and returns
inc(∆) = {inc(Id → C)} where inc(Id → C) = {2}. Then, by Algorithm 3, the
set Inc(∆) is defined by:

15

Inc(∆) = {t | 2 v t v (2, a′,m′, c)} ∪ {t | 2 v t v (2, a′,m′, c′)}
{t | 2 v t v (2, a′,m′′, c)} ∪ {t | 2 v t v (2, a′,m′′, c′)}

Hence, applying Algorithm 4, we have the following:

– v∆(1, a,m, c) = v∆(1, a,m′, c) = true, because as these tuples are in Dch but
not in Inc(∆), line 4 changes the value of v and line 6 does not.

– v∆(2) = v∆(2, c) = v∆(2, c′) = inc, because these tuples are in Inc(∆) and so,
line 4 and line 6 successively change the value of v, producing the value inc.

– v∆(1, a′) = v∆(1, c′) = false. Indeed, when running Algorithm 4 with (1, a′)
as input, lines 4 and 6 do not change the value of v (as (1, a′) does not occur
in Dch). Hence, the loop line 9 is run producing closure = {1, a′, a}, and thus
the value of v is set to false on line 15. The case of (1, c′) is similar and thus
not explained here.

– v∆(a′,m) = unkn. Indeed, as above, when running Algorithm 4 with (a′,m) as
input, lines 4 and 6 do not change the value of v (as (a′,m) does not occur in
Dch). Moreover, when running the loop line 9, closure = {a′,m} is produced,
thus the value of v is not changed, and unkn is returned. 2

4.3 Complexity Issues

We first argue that the computation of inconsistent and true tuples in ∆ =
(D,FD) is polynomial in the size of the table D and of the ‘number of inconsis-
tencies’ (to be defined in this section). To see this, denoting by |E| the cardinality
of a set E, we investigate the complexities of Algorithm 2 and of Algorithm 3.

Regarding Algorithm 2, we first notice that, contrary to the standard chase
algorithm [21], rows are added in the table during the computation, and some
others are then removed by the normalization statement of line 14. To assess the
size of the table Dch during the processing, we consider the following facts:

1. The table Dch is first set equal to D, and as long as no inconsistency is detected,
one tuple is added in Dch as the ‘join’ of two tuples in D. Therefore, the
cardinality of Dch remains in the same order as that of D. Notice in this
respect that, upon normalization, one ‘join’ tuple replaces two joined tuples in
D, which reduces the size of the table Dch output by the algorithm.

2. However, when inconsistent tuples occur, the statement line 13 shows that a
cross-product is performed, whose size has to be taken into account.

We now assess the maximal size of the cross-products mentioned above. For every
x in inc(FD), let X → A be the dependency in FD such that x belongs to
inc(X → A) during the computation. Denoting by N(x) the number of different
A-values such that xa is true in ∆, we define N(∆) as the maximal value of all
N(x) for all x in inc(FD); in other words N(∆) = max({N(x) | x ∈ inc(FD)}).

Thus, given x in inc(FD), during the computation, considering that Dch has
at most N(∆) tuples of the form yixai where i = 1, . . . , N(∆), the statement
line 13 generates N(∆)2 tuples of the form yixaj for i, j = 1, . . . , N(∆). We
therefore consider that the size of the table Dch when running Algorithm 2 is in
O
(
|D|+ |inc(FD))|.N(∆)2

)
, more simply written as O(D̃).

Assessing now the number λ of while-loops run by Algorithm 2, as in the
traditional chase algorithm, λ is bounded by the number of missing values in Dch

16

as it is at its first assignment on line 1. Therefore λ is in O
(
|U |.D̃

)
. Since each

while-loop is clearly quadratic in the size of Dch, we obtain that the computational

complexity is in O
(
|U |.D̃3

)
.

The last point to be mentioned regarding the complexity of Algorithm 2 is that
the normalization processing on line 14 is performed through a scan Dch whereby
for every t in Dch every sub-tuple of t is removed. Such a processing is clearly in

O
(
D̃2
)

. Consequently, considering that |U | � |Dch|, the overall computational

complexity of Algorithm 2, is in O
(
D̃3
)

, that is in

O
(
|D|3 + |inc(FD)|3.N(∆)6

)
(1)

As the computational complexity of Algorithm 3 is clearly linear with respect to
the size of Dch, the global complexity of the computation of inconsistent and true
tuples in ∆ is as stated just above.

Regarding the complexity of Algorithm 4, the only case to consider is when the
loop on line 9 is run. We notice in this respect that this loop is run at most as many
times as D contains distinct constants. Since D contains at most |U |.|D| distinct
constants and since each run of the loop is in O(|Dch|), we obtain a complexity in
O(|D|.|Dch|), which does not increase the overall complexity given by (1).

As expected, these results show that the efficiency of computing the semantics
is highly decreased when the number of inconsistent tuples increases. We mention
in this respect that in the the case of consolidating or merging of two or more
tables (see Sub-section 5.3), if we assume that the tables are all consistent, then
N(∆) is bounded by the number of tables being consolidated.

5 Discussion and Related Work

In this section, we successively discuss how our approach relates to Belnap?s Four-
valued logic (Sub-sections 5.1 and 5.2); how it can be applied to the consolidation
of two or more tables (Sub-section 5.3); and how it relates to consistent query
answering (Sub-section 5.4).

5.1 Basics of Four-Valued Logic

Four-valued logic was introduced by Belnap in [5], who argued that his formalism
is of interest when integrating data from various data sources. To this end, he
introduced four truth values denoted by t, b, n and f and read as true, both true
and false, neither true nor false and false, respectively. An important feature of
this Four-valued logic is that its truth values can be compared according to two
partial orderings, known as truth ordering and knowledge ordering, respectively
denoted by �t and �k and defined as follows:

n �k t �k b ; n �k f �k b and f �t n �t t ; f �t b �t t.

As a consequence, two new connectors were introduced, denoted by ⊕ and ⊗,
in addition to the standard connectors ∨ (disjunction) and ∧ (conjunction). The
corresponding truth tables, along with that for negation, are displayed in Figure 3
and show that ∨ and ⊕ correspond to the least upper bound (lub) with respect to

17

ϕ ¬ϕ
t f
b b
n n
f t

∨ t b n f

t t t t t
b t b t b
n t t n n
f t b n f

∧ t b n f

t t b n f
b b b f f
n n f n f
f f f f f

⊕ t b n f

t t b t b
b b b b b
n t b n f
f b b f f

⊗ t b n f

t t t n n
b t b n f
n n n n n
f n f n f

Fig. 3 Truth tables of basic connectors

�t and �k, respectively; whereas ∧ and ⊗, correspond to the geatest lower bound
(glb) with respect to �t and �k, respectively . It is also shown in [5,12] that
the set {t, b, n, f} equipped with the two orderings �t and �k has a distributive
bi-lattice structure.

Not surprisingly, some basic properties holding in standard logic do not hold
in this setting. For example, Figure 3 shows that formulas of the form Φ∨¬Φ are
not always true, independently of the truth value of Φ. The reader is referred to
the literature [3,5,12,13,20] for more on the properties of Four-valued logic.

Based on Four-valued logic, semantics to rule based languages have been pro-
posed in the literature [12,13]. In this work, we consider as in [13], conjunctive
rules of the form:

(∀ξ1, . . . , ξn)(head(ξi1, . . . , ξip)← body(ξ1, . . . , ξn))

where ξ1, . . . ξk are variables to be instantiated by integers, head(ξi1, . . . ξip) is a
literal and body(ξ1, . . . ξk) is a conjunction of literals. To simplify the notation,
universal quantifiers are omitted in the rules.

In this setting, the semantics is a set of pairs 〈ϕ, v〉 where ϕ is a ground atom
and v a truth value different than n. The intuition here is that, in such set, called
a v-set, the truth value of ϕ is v.

A database Π is a pair Π = (E,R) where E is a v-set and R a set of rules.
The semantic consequence operator associated with Π, denoted by ΣΠ , is defined
for every v-set S by the following steps:

(1) Define first ΓΠ(S) as follows:

ΓΠ(S) = E ∪ {〈h, t〉 | (∃ρ ∈ inst(E,R))(h = head(ρ) ∧ vS(body(ρ)) = t)}
∪ {〈h, b〉 | (∃ρ ∈ inst(E,R))(h = head(ρ) ∧ vS(body(ρ)) = b)}
∪ {〈h, f〉 | (∃ρ ∈ inst(E,R))(¬h = head(ρ) ∧ vS(body(ρ)) = t)}
∪ {〈h, b〉 | (∃ρ ∈ inst(E,R))(¬h = head(ρ) ∧ vS(body(ρ)) = b)}

(2) Then, ΣΠ(S) is defined by: ΣΠ(S) = {〈ϕ, v⊕(ϕ)〉 | ϕ occurs in ΓE∆ (S)} where
v⊕(ϕ) =

⊕
{v | 〈ϕ, v〉 ∈ ΓE∆ (S)}.

It has been shown in [13] that the sequence defined by Σ0 = E and Σn =
ΣΠ(Σn−1), for n ≥ 1, is monotonic with respect to �k and thus has a limit. This
limit, denoted by Σ(Π) is then referred to as the semantics of Π.

18

5.2 Partition Semantics and Four-valued Logic

To relate the set theoretic semantics as presented so far with Four-valued logic,
we make the assumption that every attribute domain contains a finite number of
constants. As will be seen next, this assumption is fundamental, so as to ensure
that we consider finite sets of rules.

Under this restriction, we express our model as a set of rules a la Datalog
[10], and we show (see Proposition 5) that the semantics of this set of rules, as
defined in [13], is ‘equivalent’ to tuple truth-value as defined in Definition 4. It is
important to note that, in doing so, our purpose is not to obtain a tractable set
of rules. Instead, our goal is to show that our partition semantics can be somehow
‘grounded’ in an appropriate logic.

To build the rules, we associate every tuple t in T with three unary predicates
denoted by ϕ+

t (.), ϕ−t (.) and ϕt(.). The intended meaning is that, for n ∈ N, the
truth value of ϕ+

t (n) is t when ∆ ` t holds, the truth value of ϕ−t (n) is t when
∆ |∼ t holds; moreover the truth value of ϕt(n) is meant to provide the truth value
of t in ∆, based on the previous two ones.

Moreover, for every tuple t and every attribute value a, we consider a unary
predicate, denoted by ψtα(.), meant to be true when α belongs to t+. In this way,
based on Lemma 2 and on Proposition 2, we state rules to express that∆ |∼ t holds.
Note that what our assumption implies is that the number of these predicates is
finite, although potentially huge.

Given ∆ = (D,FD), we build a database Π(∆) = (Φ,R) as described next.
The set Φ is the union of two sets of pairs ΦD and Φcl defined as follows:

1. As done when defining µ∗, every tuple t in D is associated with a unique
identifier, say idt. Then ΦD contains all pairs 〈ϕ+

t (idt), t〉 for every t in D. In
doing so, we mean that all tuples in D are meant to be true.

2. Second, Φcl is the set of all pairs 〈ψta(0), t〉, for every tuple t and every constant
a occurring in t. In this way, we ‘initiate’ the construction of t+ as done by
statement line 1 of Algorithm 1, that is by stating that every a in t belongs to
t+. Notice here that the constant 0 in ψta(0) is arbitrarily chosen.

The set of rules R contains four sets of rules, denoted R+, Rcl, R− and R±,
defined below. The first set, R+, contains the following rules, for every tuple t and
every X → A in FD

R+ : ϕ+
t (ξ)← ϕ+

ai1
(ξ), . . . , ϕ+

aik
(ξ) for t = ai1 . . . aik

ϕ+
aij

(ξ)← ϕ+
t (ξ), for every aij occurring in t

ϕ+
a (ξ)← ϕ+

xa(ζ), ϕ+
x (ξ), for every X → A in FD, every x over X and

every a in dom(A)

The set Rcl, meant to compute the closure of a tuple t, contains the following
rules for every tuple t, every X → A in FD, every x = ai1 . . . aip over X and every
a in dom(A):

Rcl : ψta(0)← ϕ+
xa(ξ), ψtai1

(0), . . . , ψtaip
(0)

For every tuple t, every Y → B in FD such that Y ⊆ sch(t), denoting t.Y by y,
the set R− contains the following rules where a and a′ are in the same attribute
domain dom(A):

R− : ϕ−t (ξ)← ϕ+
y (ξ), ψta(0), ψta′(0)

19

The following two rules, which constitute the set R±, combine for every t the truth
values of ϕ+

t (i) and ϕ−t (j) so as to compute a global truth value of t:

R± : ϕt(0)← ϕ+
t (ξ)

¬ϕt(0)← ϕ−t (ξ)

Denoting by Π(∆) the pair (Φ,R) the semantics of Π(∆) in the Four-valued logic
as defined in [13], denoted by Σ(∆), satisfies the following property.

Proposition 5 Given ∆ = (D,FD) and Π(∆) = (Φ,R), for every t in T the
following holds:

− v∆(t) = true if and only if 〈ϕt(0), t〉 ∈ Σ(∆)
− v∆(t) = false if and only if 〈ϕt(0), f〉 ∈ Σ(∆)
− v∆(t) = inc if and only if 〈ϕt(0), b〉 ∈ Σ(∆)
− v∆(t) = unkn if and only if Σ(∆) contains no pair involving ϕt(0)

Proof See Appendix F. 2

5.3 Consolidation of two or more Tables

Data consolidation consists in collecting data from multiple, possibly heteroge-
neous sources and putting them in a single destination. The data from each source
usually comes in the form of a CSV file, along with some hints on the data, referred
to as metadata [15,17]. During this process, different data sources are put together,
or consolidated, into a single data store. Data consolidation is also related to data
merging and to data integration.

When data comes from a broad range of sources, consolidation allows organi-
zations to more easily present data, while also facilitating effective data analysis.
Data consolidation techniques reduce inefficiencies, like data duplication, costs
related to reliance on multiple databases and multiple data management points.

In this section, we consider a simplified, relational scenario of n sources ∆1 =
(D1,FD1), . . . ,∆n = (Dn,FDn), where each source ∆i = (Di,FDi) consists of
a table Di possibly with nulls and functional dependencies FDi. We then explain
how to consolidate these sources in our approach under the following assumptions:

1. All source tables are over the same universe U .
2. Consolidation is done in the simplest possible way, namely (a) the consolidated

table is the union of the source tables and (b) the set of functional dependencies
of the consolidated table is the union of the sets of functional dependencies
of the source tables. That is, the sources are consolidated through the pair:
∆ = (D,FD), where D =

⋃i=n
i=1 Di and FD =

⋃i=n
i=1 FDi.

Relying on the close relationship between our approach and Belnap’s Four-valued
logic (as seen in the previous section), we investigate the relationship between the
truth values a tuple has in the source tables and the truth value the tuple has in
the consolidated table.

First, notice that Proposition 5 allows for a ‘natural’ one-to-one mapping h
from our set Four = {true, inc, unkn, false} to Belnap’s set FOUR = {t, b, n, f},
where h is defined by: h(true) = t, h(inc) = b, h(unkn) = n and h(false) = f.
Then, the connector ⊕ defined on FOUR induces a connector ⊕ over Four defined
by: v1⊕v2 = h−1(h(v1)⊕ h(v2)) for all v1 and v2.

20

Moreover, we can define a partial ordering on Four isomorphic to the knowledge
ordering of FOUR that allows us to compare truth values in Four. Denoting this
partial ordering by /, we have:

unkn / false / inc and unkn / true / inc

The following proposition shows that the truth value of a tuple t in the consolidated
table is always greater (with respect to /) than any of the truth values that t has
in the source tables in which it appears. In other words, when consolidating tables,
the knowledge about tuples always increases, compared to the knowledge we have
about tuples in the source tables.

Proposition 6 Let ∆i = (Di,FDi) (i = 1, . . . , n) be n data sources over the same
universe, and let ∆ = (D,FD) be defined by D =

⋃i=n
i=1 Di and FD =

⋃i=n
i=1 FDi.

For every tuple t the following holds:⊕ i=n
i=1 v∆i

(t) / v∆(t).

Proof For every i = 1, . . . , n, let ∆′i = (Di,FD). We first prove that for every tuple
t, v∆i

(t) / v∆′i(t) holds. Indeed, for every i = 1, . . . , n, let (Di)ch, respectively

(Di)
′
ch, the chased table of Di with respect to FDi, respectively FD. Since FDi ⊆

FD holds, it is easy to see that for every qi in (Di)
′
ch there exists q in (Di)ch

such that qi v q. Consequently, for every q in T , [q+]i ⊆ [q+]′i, where [q+]i,
respectively [q+]′i, denotes the closure of q in ∆i, respectively ∆′i. Therefore, if
∆i ` t, respectively ∆i |∼ t, then ∆′i ` t, respectively ∆′i |∼ t, and so, for every
i = 1, . . . , n, v∆i

(t) / v∆′i(t).

Considering ∆′i (i = 1, . . . , n) and ∆, it can be seen that for every i = 1, . . . , n
and every qi in (Di)

′
ch there exists q in Dch such that qi v q. Consequently, for

every i = 1, . . . , n, and every q in T , [q+]′i ⊆ q+, where q+ denotes the closure of q
in ∆. Therefore, if for some i, ∆′i ` t, respectively ∆′i |∼ t, then ∆ ` t, respectively
∆ |∼ t, and so, for every i = 1, . . . , n, v∆′i(t) / v∆(t). The proposition follows from
the transitivity of / and from the fact that ⊕ defines the least upper bound (lub)
with respect to /, in the same way as ⊕ defines the lub with respect to �k. 2

In what follows, we identify cases where the equality
⊕ i=n

i=1 v∆i
(t) = v∆(t) holds

and cases where it does not. To simplify, we assume that n = 2, and that the two
sources have the same functional dependencies.

First, if for i = 1 or i = 2, v∆i
(t) = inc, then the proposition implies that

v∆(t) = inc, because inc is maximal with respect to /. In this case, the equality
always holds. Another case where the equality holds is if v∆1

(t) = true and
v∆2

(t) = false. Indeed, in this case we have ∆ ` t and ∆ |∼ t, showing that
v∆(t) = inc. Therefore, v∆(t) = v∆1

(t)⊕ v∆2
(t).

To see cases where the equality v∆1
(t)⊕ v∆2

(t) = v∆(t) does not hold, let
U = {A,B,C}, FD = {B → C}, ∆1 = ({abc},FD) and ∆2 = ({bc′},FD). In
this case, ∆ = (D,FD) where D = {abc, bc′}, and so Dch = {abc, abc′}. Thus:
− v∆1

(b) = v∆2
(b) = true, but v∆(b) = inc.

− v∆1
(ac′) = v∆2

(ac′) = unkn, but v∆(ac′) = inc.

We further illustrate Proposition 6 in the following example.

Example 10 We recall that in our introductory example, we have two data sources
∆1 = (D1,FD) and ∆2 = (D2,FD), where FD = {ID → A, ID → C} and D1

and D2 are as shown in Figure 1. Applying Algorithm 2 to D1 and D2 produces
(D1)ch and (D2)ch as shown in Figure 4, and returns Inc(∆1) = Inc(∆2) = ∅.

21

(D1)ch Id K M C
1 k m c
1 k m′ c
2 k′ m′ c
2 k′ m′′ c

(D2)ch Id K M C
1 k c
2 k′ m′′ c′

Fig. 4 The chased source tables of our introductory example

Hence, as already mentioned,∆1 and∆2 are consistent. Referring to Example 9
and Figure 2, applying Proposition 6 entails the following:

– v∆1
(1, k,m, c) = true, v∆2

(1, k,m, c) = unkn and v∆(1, k,m, c) = true.
v∆1

(1, k,m′, c) = true, v∆2
(1, k,m′, c) = unkn and v∆(1, k,m′, c) = true.

These are cases of equality because true⊕ unkn = true.
– v∆1

(2, c) = true, v∆2
(2, c) = false and v∆(2, c) = inc.

This is another case of equality because true⊕ false = inc.
– v∆1

(2) = true, v∆2
(2) = true and v∆(2) = inc.

This is a case where equality does not hold because true⊕ true 6= inc. Notice
however that true / inc holds. 2

5.4 Query Answering

The problem of query answering in presence of inconsistencies has motivated im-
portant research efforts during the past two decades and is still the subject of
current research. As mentioned in the introductory section, the most popular ap-
proaches in the literature are based on the notion of ‘repair’, a repair of D being
intuitively a consistent database R ‘as close as possible’ to D.

However, it has been recognized that generating all repairs is difficult to imple-
ment - if not unfeasible. This is a well known problem in practice which explains,
for instance, why data cleansing is a very important but tedious task in the man-
agement of databases and data warehouses [16]. This issue has been thoroughly
investigated in [14], where it has been shown that computing repairs of a given
relational table in the presence of functional dependencies is either polynomial
or APX-complete1, depending on the form of the functional dependencies. The
reader is referred to [1] for theoretical results on the complexity of testing whether
R is a repair of D, when considering a more generic context than we do in this
work (more than one table and constraints other than functional dependencies).
A Prolog based approach for the generation of repairs can be found in [4].

Dealing with repairs without generating them is thus an important issue, also
known as Consistent Query Answering in Inconsistent Databases. One of the first
works in this area is [7] and the problem has since been addressed in the context
of various database models (mainly the relational model or deductive database
models) and under various types of constraints (first order constraints, key con-
straints, key foreign-key constraints). Seminal papers in this area are [2] and [24],
while an overview of works in this area can be found in [6].

1 Roughly, APX is the set of NP optimization problems that allow polynomial-time approx-
imation algorithms (source: Wikipedia).

22

The problem considered in all these works can be stated as follows: Given
a database D with integrity constraints IC, assume that D is inconsistent with
respect to IC. Under this assumption, given a query Q against D, what is the
consistent answer to Q? The usual approach to alleviate the impact of inconsistent
data on the answers to a query is to consider that an answer to Q is consistent if
it is present in every repair R of D.

Complexity results regarding the computation of the consistent answer have
been widely studied in [8]. For example one important case is when IC consists
in having one key constraint per database relation and Q is a conjunctive query
containing no self-join (i.e., no join of a relation with itself). In this case computing
the consistent answer is polynomial whereas if self-joins occur then the problem is
co-NP-complete.

Another important problem in considering repairs is that there are many ways
of defining the notion of repair. This is so because there are many ways of defining
a distance between two database instances, and there is no consensus as to the
‘best’ definition of distance. Although the distance based on symmetric difference
seems to be the most popular, other distances exist as well based for example
on sub-sets, on cardinality, on updates or on homomorphism [23]. Notice in this
respect that the results in [14] are set for two distances: one based on sub-sets and
one based on updates.

In our work we do not use any notion of repair, thus avoiding the above problem
of choosing among all possible ways of defining repairs. Instead, we use set theoretic
semantics for tuples and functional dependencies that allow us to associate each
tuple with one truth value among true, false, inconsistent or unknown. Users can
then query the table as usual by querying the set of its true tuples.

In what follows, we outline the issue of query answering in our approach, and
then compare it to the approaches based on repairs. Recalling that consistent
query answering refers to tuples in the answers to the query in every repair, we
transpose this intuition to our approach by considering that such tuples are those
that have truth value true in our model.

As usual when dealing with one table with nulls, a query Q is an SQL-like
expression of the following form:

Q : SELECT X [WHERE Condition]

where X is an attribute list and the optional WHERE clause specifies a selection
condition. Given ∆ = (D,FD), the answer to Q in ∆ is the set of the restrictions
to X of all tuples for which Condition, when present in Q, evaluates to true.

In this context, we call true answer to Q in ∆ the set of all tuples t in the
answer to Q such that v∆(t) = true.

To compute such answers, assuming that Dch and Inc(∆) have already been
computed, we first build the table D+ from Dch through the following two steps:

1. Replace each tuple t in Dch by the set of all its maximal sub-tuples (with
respect to v) that do not belong to Inc(∆). Let Dtrue be the resulting table.

2. Normalize Dtrue by removing every t such that Dtrue contains a super-tuple
of t. Let D+ be the resulting table.

Denoting by ∆+ the pair (D+,FD), the following proposition shows that ∆+ is
consistent and that all true tuples in ∆ can be computed based on ∆+.

Proposition 7 Given ∆ = (D,FD), let ∆+ = (D+,FD). The following holds:

23

1. The time complexity of the construction of D+ is quadratic in the size of Dch.
2. D+

ch = D+ and ∆+ is consistent.
3. For every tuple t in T , v∆(t) = true if and only if v∆+(t) = true.

Proof See Appendix G. 2

Proposition 7 shows that, if Dch and Inc(∆) have been computed beforehand, the
cost of computing true answers involves no significant additional cost, as compared
with the cost of computing the answer to Q, assuming that D is consistent. We
notice moreover in this respect that (i) we have shown that these computations
are polynomial, thus expected to be tractable, and (ii) that these computations,
including that of D+, should be seen as pre-computations performed once for all,
provided that D has not been modified.

This important feature of our approach represents a major advantage over stan-
dard approaches to consistent query answering, in which query answering complex-
ity is the major issue. The following example illustrates how queries are answered
in our approach and in approaches based on repairs.

Example 11 We recall that in our introductory example of an archaeological site,
we defined ∆ = (D,FD) as the result of the integration of two source tables ∆1

and ∆2. In this setting, FD = {Id → A, Id → C} and the consolidated table D
is displayed in Figure 1, whereas its chased version, shown in Figure 2, is recalled
in Figure 5 for the sake of readability.

Dch Id K M C
1 k m c
1 k m′ c
2 k′ m′ c
2 k′ m′ c′

2 k′ m′′ c
2 k′ m′′ c′

D+ Id K M C
1 k m c
1 k m′ c

k′ m′ c
k′ m′ c′

k′ m′′ c
k′ m′′ c′

Fig. 5 The chased consolidated table from the introductory example and its ‘true tuple’
version

As seen in Example 10, Inc(∆) is the set of all tuples t such that 2 v t v q,
where q is one of the last four tuples in Dch. Therefore, computing D+ in this case
amounts to inserting the first two tuples of Dch and replacing each of the last four
tuples q with its restriction to the schema KM C, omitting the Id-value.

Consider now the following queries:

Q1 : SELECT Id, K, C Q2 : SELECT Id
Q3 : SELECT K, C Q4 : SELECT M , C WHERE K = k′

Based on the table D+ shown in Figure 5, it is easy to see that the true answers
to queries Q1, . . . , Q4 are respectively:

Q1 : {(1, k, c)} ; Q2 : {1} ; Q3 : {(k, c), (k′, c), (k′, c′)} ;
Q4 : {(m, c), (m, c′), (m′′, c); (m′′, c′)}.

Considering now the approaches based on repairs, given Dch we have two repairs,
R1 and R2, as shown in Figure 6.

24

R1 Id K M C
1 k m c
1 k m′ c
2 k′ m′ c
2 k′ m′′ c

R2 Id K M C
1 k m c
1 k m′ c
2 k′ m′ c′

2 k′ m′′ c′

Fig. 6 The two repairs of Dch

Thus answering to queries Q1, . . . , Q4 in the repair based approaches yields
the following sets of tuples:

Q1 : {(1, k, c)} ; Q2 : {1, 2} ; Q3 : {(k, c)} ; Q4 : ∅.

This example shows clearly that the two approaches are hardly comparable. In-
deed, the answers to Q1 are equal in the two approaches, the consistent answers
to Q2 and Q4 in the repair based approaches are larger than the true answers in
our approach, and the inverse is true for Q3.

However, one main difference between the two approaches is the following: as
Id → C is violated by object 2, this object is inconsistent in our approach, and
this implies that no tuple involving identifier 2 can occur in true answers.

On the other hand, in repair based approaches, object 2 occurs in every repair,
associated with only one of the C-values responsible for the functional dependency
violation, namely c and c′. Consequently, 2 may occur in the consistent answers
to queries, as is the case for Q2.

This is an important difference between the two semantics. We believe that our
semantics is justified by the fact that object 2 is in an inconsistent state because
it is concerned by a dependency violation. Therefore, intuitively, it is ‘fair’ to
consider that 2 cannot occur in any consistent answer! 2

6 Concluding Remarks

In this paper we have introduced a novel approach to handle inconsistencies in
a table with nulls and functional dependencies. Our approach uses set theoretic
semantics and relies on an extended version of the well known chase procedure
to associate every possible tuple with one of the four truth values true, false,
inconsistent and unknown. Moreover, we have seen that the truth values of tuples
can be computed in time polynomial in the size of the input table.

We have also seen that our approach is tightly connected to Belnap’s four
valued logic and we have seen how it can be applied to the consolidation of two
or more tables. Finally, we have discussed the relationship of our approach to
consistent query answering based on repairs.

Building upon these results, we currently pursue four lines of research: (1)
extending the query language to be able to query the table based on tuple truth
values; (2) applying our approach to the particular but important case of key-
foreign key constraints in the context of a star schema or a snow-flake schema; (3)
designing incremental algorithms to improve performance in case of updates, and
(4) extending our approach to account for the presence of tuples declared as false.

25

Declarations

Author contributions: The two authors contributed to the study, conception
and design. Both read and approved the submitted manuscript.

Funding: No funds, grants, or other support was received for conducting this
study.

Financial interests: The authors declare they have no financial interests.

Non-financial interests: The second author is a member of the editorial board
of the journal.

Data availability: Data sharing is not applicable to this article as no datasets
were generated or analysed during the current study.

References

1. Foto N. Afrati and Phokion G. Kolaitis. Repair checking in inconsistent databases: al-
gorithms and complexity. In Ronald Fagin, editor, Database Theory - ICDT 2009, 12th
International Conference,Proceedings, volume 361 of ACM International Conference Pro-
ceeding Series, pages 31–41. ACM, 2009.

2. Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query answers in
inconsistent databases. In Victor Vianu and Christos H. Papadimitriou, editors, Proceed-
ings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, Pennsylvania, USA, pages 68–79. ACM Press, 1999.

3. Ofer Arieli and Arnon Avron. The value of the four values. Artif. Intell., 102(1):97–141,
1998.

4. Ofer Arieli, Marc Denecker, Bert Van Nuffelen, and Maurice Bruynooghe. Computational
methods for database repair by signed formulae. Ann. Math. Artif. Intell., 46(1-2):4–37,
2006.

5. Nuel D. Belnap. A useful four-valued logic. In J. Michael Dunn and George Epstein,
editors, Modern Uses of Multiple-Valued Logic, pages 5–37”, isbn=”978–94–010–1161–7,
Dordrecht, 1977. Springer Netherlands.

6. Leopoldo E. Bertossi. Database Repairing and Consistent Query Answering. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2011.

7. François Bry. Query answering in information systems with integrity constraints. In
Sushil Jajodia, William List, Graeme W. McGregor, and Leon Strous, editors, Integrity
and Internal Control in Information Systems, volume 109 of IFIP Conference Proceedings,
pages 113–130. Chapman Hall, 1997.

8. Andrea Cal̀ı, Domenico Lembo, and Riccardo Rosati. On the decidability and complex-
ity of query answering over inconsistent and incomplete databases. In Frank Neven,
Catriel Beeri, and Tova Milo, editors, Proceedings of the Twenty-Second ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, June 9-12, 2003, San
Diego, CA, USA, pages 260–271. ACM, 2003.

9. Walter Alexandre Carnielli and João Marcos. Ex contradictione non sequitur quodlibet.
Bulletin of Advanced Reasoning and Knowledge, 1:89–109, 2001.

10. S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Surveys in Com-
puter Science, Springer Verlag, 1990.

11. Ronald Fagin, Alberto O. Mendelzon, and Jeffrey D. Ullman. A simplified universal rela-
tion assumption and its properties. ACM Trans. Database Syst., 7(3):343–360, 1982.

12. Melvin Fitting. Bilattices and the semantics of logic programming. J. Log. Program.,
11(1&2):91–116, 1991.

13. Dominique Laurent. 4-valued semantics under the OWA: A deductive database ap-
proach. In Giorgos Flouris, Dominique Laurent, Dimitris Plexousakis, Nicolas Spyratos,
and Yuzuru Tanaka, editors, Information Search, Integration, and Personalization - 13th
International Workshop, ISIP, Revised Selected Papers, volume 1197 of Communications
in Computer and Information Science, pages 101–116. Springer, 2019.

14. Ester Livshits, Benny Kimelfeld, and Sudeepa Roy. Computing optimal repairs for func-
tional dependencies. ACM Trans. Database Syst., 45(1):4:1–4:46, 2020.

26

15. Cedrine Madera and Anne Laurent. The next information architecture evolution: The
data lake wave. In Proceedings of the 8th International Conference on Management of
Digital EcoSystems, MEDES, pages 174–180, New York, NY, USA, 2016. ACM.

16. Erhard Rahm and Hong Hai Do. Data cleaning: Problems and current approaches. IEEE
Data Eng. Bull., 23(4):3–13, 2000.

17. Franck Ravat and Yan Zhao. Data lakes: Trends and perspectives. In Sven Hartmann, Josef
Küng, Sharma Chakravarthy, Gabriele Anderst-Kotsis, A Min Tjoa, and Ismail Khalil, ed-
itors, Database and Expert Systems Applications - 30th International Conference, DEXA,
Proceedings, Part I, volume 11706 of Lecture Notes in Computer Science, pages 304–313.
Springer, 2019.

18. Raymond Reiter. On closed world data bases. In Hervé Gallaire and Jack Minker, edi-
tors, Logic and Data Bases, Symposium on Logic and Data Bases, Centre d’études et de
recherches de Toulouse, France, 1977, Advances in Data Base Theory, pages 55–76, New
York, 1977. Plemum Press.

19. Nicolas Spyratos. The partition model: A deductive database model. ACM Trans.
Database Syst., 12(1):1–37, 1987.

20. Alexis Tsoukiàs. A first order, four-valued, weakly paraconsistent logic and its relation
with rough sets semantics. Foundations of Computing and Decision Sciences, 27(2):77–96,
2002.

21. Jeffrey D. Ullman. Principles of Databases and Knowledge-Base Systems, volume 1-2.
Computer Science Press, 1988.

22. Moshe Y. Vardi. The universal-relation data model for logical independence. IEEE Softw.,
5(2):80–85, 1988.

23. Jef Wijsen. Database repairing using updates. ACM Trans. Database Syst., 30(3):722–768,
2005.

24. Jef Wijsen. On the consistent rewriting of conjunctive queries under primary key con-
straints. Inf. Syst., 34(7):578–601, 2009.

A Proof of Lemma 1

Lemma 1. For every ∆ = (D,FD), the sequence (µi)i≥0 has a unique limit µ∗ that satisfies

that µ∗ |= ∆.
Moreover, µ∗ is such that for all constants α and β, ∆ ` (α u β) holds if and only if

µ∗(α) ∩ µ∗(β) 6= ∅ holds.

Proof We recall that the sequence (µi)i≥0 is defined by the following steps:

1. For every t in D, assign a ‘fresh’ integer id(t) to t;
2. For every domain constant a let µ0(a) = {id(t) | t ∈ S and a v t};
3. While there exists X → A in FD, x over X and a in dom(A) such that µ(xa) 6= ∅ and

µ(x) 6⊆ µ(a), define µi+1 by: µi+1(a) = µi(a) ∪ µi(x) and µi+1(α) = µi(α) for any other
symbol α.

The sequence (µi)i≥0 is increasing in the sense that for every α, µi(α) ⊆ µi+1(α), and bounded

in the sense that for every α, µi(α) ⊆ {id(t) | t ∈ ∆)}. Hence the sequence has a unique
limit. Moreover, for every t in D, µ∗(t) 6= ∅ holds because id(t) always belongs to µ∗(t), and
µ∗ |= FD, because otherwise µ∗ would not be the limit of the sequence. Therefore µ∗ |= ∆,
which shows the first part of the proposition.

Regarding the second part of the lemma, since µ∗ |= ∆, ∆ ` (αuβ) obviously implies that
µ∗(α) ∩ µ∗(β) 6= ∅. Conversely, assuming that µ∗(α) ∩ µ∗(β) 6= ∅, we show that ∆ ` (α u β),
that is, for every µ such that µ |= ∆, µ(α) ∩ µ(β) 6= ∅. The proof is by induction on the steps
of the construction of µ∗. The result first holds for i = 0. Indeed, if µ0(α) ∩ µ0(β) 6= ∅ then
there exists u in D such that α v u and β v u. Hence for every µ such that µ |= ∆, we have
µ(u) 6= ∅ and µ(u) ⊆ µ(α) ∩ µ(β), implying that µ(α) ∩ µ(β) 6= ∅ holds.

Now, let i0 such that µi0 (α) ∩ µi0 (β) = ∅ and µi0+1(α) ∩ µi0+1(β)(t) 6= ∅, and assume
that for all ζ and η such that µi0 (ζ)∩µi0 (η) 6= ∅, we have that µ(ζ)∩µ(η) 6= ∅ for every µ such
that µ |= ∆. In this case, by definition of the sequence, there exists X → A in FD, x over X
and a in dom(A) such that µi0 (x)∩ µi0 (a) 6= ∅ but µi0 (x) 6⊆ µi0 (a). As µi0+1 changes µi0 (a)
into µi0 (a)∪µi0 (x), either α or β is equal to a, and if for instance α = a, µi0 (β)∩µi0 (x) 6= ∅.
Therefore, by our induction hypothesis, for µ such that µ |= ∆, µ(x) ∩ µ(α) and µ(β) ∩ µ(x)
are nonempty. Since µ(x) ⊆ µ(a) holds, µ(α) ∩ µ(β) 6= ∅. Therefore, the proof is complete. 2

27

B Proof of Lemma 2

Lemma 2. Let ∆ = (D,FD). Then ∆ ` (t � a) holds if and only if a is in t+.

Proof We first prove that if a 6∈ t+ then there exists µ′ such that µ′ |= ∆ and µ′(t) 6⊆ µ′(a),
showing that ∆ ` (t � a) does not hold.

Let µ∗ be as earlier defined and let k be an integer not occurring in any µ∗(α) for any
domain constant α. We define µ′ for every α as follows: If α is in t+, then µ′(α) = µ∗(α)∪{k};
otherwise, µ′(α) = µ∗(α).

By Algorithm 1, every α in t is in t+, and so, k belongs to µ′(t). On the other hand, since
a 6∈ t+, k 6∈ µ′(a), showing that µ′(t) ⊆ µ′(a) does not hold.

To prove that µ′ |= ∆, we first note that for every tuple q in D, µ′(q) 6= ∅, because
µ∗(q) 6= ∅ and µ∗(q) ⊆ µ′(q) hold. Regarding functional dependencies, let Y → B in FD such
that µ′ 6|= Y → B. Then there exist y over Y and b in dom(B) such that µ′(y) ∩ µ′(b) 6= ∅
and µ′(y) 6⊆ µ′(b). As µ∗ |= ∆, either (i) µ∗(y) ∩ µ∗(b) = ∅ or (ii) µ∗(y) ∩ µ∗(b) 6= ∅ and
µ∗(y) ⊆ µ∗(b).
(i) If µ∗(y) ∩ µ∗(b) = ∅, then µ′(y) ∩ µ′(b) = {k}, and thus, every α in y and b is in t+. By
Algorithm 1, the fact that b is in t+ implies that all symbols in y are in t+ and that ∆ ` yb.
This is not possible because ∆ ` yb entails that µ∗(y) ∩ µ∗(b) 6= ∅.
(ii) If µ∗(y)∩µ∗(b) 6= ∅, then we have µ∗(y) ⊆ µ∗(b) and µ′(y) 6⊆ µ′(b). Thus k is in µ′(y) but
not in µ′(b) and so, every α in y is in t+ and b is not in t+. By Lemma 1, µ∗(y) ∩ µ∗(b) 6= ∅
implies that ∆ ` yb holds, and so, the condition in the loop line 4 in Algorithm 1 is satisfied,
showing that b is in t+. We thus obtain a contradiction showing that µ′ |= Y → B, and thus
that if a 6∈ t+ then ∆ 6` (t � a).

Conversely, by Algorithm 1, it is easy to see that at each iteration step, we always have
µ(t) ⊆ µ(a) for every a added in t+. Indeed, it holds that for every a in t, every µ satisfies
µ(t) ⊆ µ(a). Now, assuming that up to step j in the main loop, µ(t) ⊆ µ(b) holds for every
b in the current value of t+, let a be coming in t+ at step j + 1. In this case, according to
the condition in line 4 of Algorithm 1, FD contains X → A such that there exist x and a
such that ∆ ` xa and for every b in x, b ∈ t+. Thus for every µ such that µ |= ∆, we have
µ(x) ∩ µ(a) 6= ∅ and µ(t) ⊆ µ(b) for every b in x. Hence µ(t) ⊆ µ(x) and µ(x) ⊆ µ(a) hold,
thus implying that µ(t) ⊆ µ(a). As a consequence ∆ ` (t � a) and the proof is complete. 2

C Proof of Proposition 1

Proposition 1. ∆ = (D,FD) is consistent if and only if there exist no tuple t such that
v∆(t) = inc.

Proof We first note that if there exists a tuple t such that v∆(t) = inc, then ∆ ` t and ∆ |∼ t.
Hence there exist a and a′ in the same attribute domain dom(A) such that ∆ ` t � a u a′.
Thus every T -mapping µ such that µ |= ∆ is not an interpretation. Consequently, if ∆ is not
consistent.

Conversely, assuming that there is no tuple t such that such that ∆ ` t and ∆ |∼ t, we
prove that there exists an interpretation µ such that µ |= ∆. Indeed, given µ such that µ |= ∆,
if a and a′ are two constants in the same attribute domain A such that µ(a)∩ µ(a′) 6= ∅, then
we define µ′ so as µ′(a) ∩ µ′(a′) = ∅ and µ′ |= ∆.

To this end, we define µ′(a) and µ′(a′) by µ′(a) = µ(a) \ µ(a′) and µ′(a′) = µ(a′) \ µ(a),
and we set µ′(α) = µ(α) for every α different from a and a′.
• We first prove that for every t in D, µ′(t) 6= ∅. Indeed, as µ(t) 6= ∅, µ′(t) = ∅ implies that
µ(t) ⊆ µ(a) ∩ µ(a′). However, since ∆ has no inconsistent tuple, this cannot hold for every µ
such that µ |= ∆. We can thus assume that µ is such that µ(t) 6⊆ µ(a) ∩ µ(a′), which implies
that µ′(t) 6= ∅.
• To show that µ′ |= FD, let Y → B in FD such that µ′ 6|= Y → B. There exist y over Y and b
in dom(B) such that µ′(y)∩µ′(b) 6= ∅ but µ′(y) 6⊆ µ′(b). Then, since µ′(y) ⊆ µ(y) and µ′(b) ⊆
µ(b), we have that µ(y)∩µ(b) 6= ∅, implying that µ(y) ⊆ µ(b) holds. As µ′(y) 6⊆ µ′(b), we have
µ(y) 6= µ′(y) and µ(b) = µ′(b). In this case, µ(a)∩µ(a′)∩µ(y) 6= ∅ and µ(a)∩µ(a′)∩µ(b) = ∅
must hold. This is however not possible because µ(y) ⊆ µ(b), and we obtain that µ′ |= Y → B,
thus that µ′ |= ∆, which completes the proof. 2

28

D Proof of Lemma 3

Lemma 3. Algorithm 2 applied to ∆ = (D,FD) always terminates. Moreover, for every
tuple t, µ∗(t) 6= ∅ holds if and only if t is in LoCl(Dch).

Proof Algorithm 2 terminates because this algorithm only inserts tuples into Dch and the
inserted tuples are in finite number as they are built up using only constants occurring in ∆.

The proof that for every t in LoCl(Dch), µ∗(t) 6= ∅ holds is by induction on the steps of
Algorithm 2. If (Dk)k≥0 denotes the sequence of the states of Dch during the execution, we
first note that since D0 = D, for every t in LoCl(D0), µ0(t) 6= ∅, thus implying that µ∗(t) 6= ∅.

Assuming now that for i > 0, for every t in LoCl(Di), µ∗(t) 6= ∅, we prove the result
for every t in LoCl(Di+1). Indeed, let t′ in Di+1 such that t v t′. If t′ is in Di, the proof
is immediate; we thus now assume that t′ is not in Di, that is that t′ occurs in Di+1 when
running Algorithm 2, that is, according to line 9 of Algorithm 2, there exists X → A in FD,
t1 and t2 in Di such that t1.X = t2.X and t′ = t2a where a = t1.A. Thus t1, t2 and t′

can be respectively written as t′1xa, t′2x and t′2xa, and by induction, µ∗(t1) and µ∗(t2) are
nonempty. Thus µ∗(x) ∩ µ∗(a) 6= ∅, which implies that µ∗(x) ⊆ µ∗(a), because µ∗ |= FD.
Since µ∗(t′) = µ∗(t′2) ∩ µ∗(x) ∩ µ∗(a), it follows that µ∗(t′) = µ∗(t′2) ∩ µ∗(x), thus that
µ∗(t′) = µ∗(t2). Hence µ∗(t′) 6= ∅. A similar reasoning holds in the case of statement line 12.

Conversely, we show that for every t, if µ∗(t) 6= ∅ then t is in LoCl(Dch). The proof is done
by induction on the construction of µ∗. By definition of µ0, it is clear that if µ0(t) 6= ∅ then
t is in LoCl(D) and thus in LoCl(Dch). Now, if we assume that for every i > 0 and every t, if
µi(t) 6= ∅ then t belongs to LoCl(Dch), we prove that this result holds for µi+1.

Indeed, let t such that µi(t) = ∅ and µi+1(t) 6= ∅. By definition of µi+1, there exists
X → A in FD, and x and a respectively over X and A such that µi(x) ∩ µi(a) 6= ∅, µi(x) 6⊆
µi(a) and µi+1(x) ⊆ µi+1(a). Thus, the only possibility for µi+1(t) to be nonempty is that

µi(t)∩ µi(a) = ∅ and µi(t)∩ µi(x) 6= ∅. Consequently, there exist t1 and t2 in LoCl(D+
ch) such

that xa v t1 and tx v t2. Then, by one of the statements line 9 or line 12 of Algorithm 2, the
tuple txa is added in Dch, showing that t is in LoCl(Dch). The proof is therefore complete. 2

E Proof of Lemma 4

Lemma 4. Given ∆ = (D,FD), a tuple t is inconsistent in ∆ if and only if t ∈ Inc(∆).

Proof We first prove that if t belongs to Inc(∆) then t is inconsistent in ∆. We note in this
respect that for every x in inc(X → A) we have k (k ≥ 2) constants in dom(A) a1, . . . , ak
such that for every i = 1, . . . , k, xai ∈ LoCl(Dch), thus such that ∆ ` xai. Therefore, for every
i = 1, . . . , k, ai belongs to x+, meaning that, by Lemma 2, ∆ ` (x � a1 u . . . u ak), thus that
x is inconsistent in ∆.

Then, as already noticed, for every t such that ∆ ` t and x v t, t is inconsistent in ∆.
Therefore every tuple in D that belongs to temp due to the statement line 5 in Algorithm 3
is inconsistent in ∆. Moreover, the tuples q inserted in temp during the execution of the
loop line 6 in Algorithm 3 are all such that there exists q′ in temp such that q′ = qb and
∆ ` (q � q′). Thus (q′)+ ⊆ q+ showing that, since q′ is assumed to be inconsistent in ∆, then
so is q. Therefore every tuple in Inc(∆) is inconsistent in ∆.

Conversely, we first show an intermediate result whose statement requires the following
additional notation: for every t, T+

t denotes the set of all attributes B such that there exists
b in dom(B) and b in t+. Then we show the following:

For every t such that ∆ ` t, there exists q in Dch such that t v q and T+
t ⊆ sch(q).

The proof is by induction on the construction of t+ according to Algorithm 1.
• At the first step, all symbols in D are inserted in t+, and so, T 0

t = T . As ∆ ` t, Dch contains
q such that q v t, and T 0

t ⊆ sch(q).
• At step i of the computation of t+, we denote by ti the current value of t+ and by T it the
set of all attributes B such that there exists b in dom(B) such that b is in ti. We assume that
Dch contains qi such that t v qi and T it ⊆ sch(qi).

Let a in ti+1 and not in ti. By Algorithm 1 there exists X → A in FD, x over X and a in
dom(A) such that ∆ ` xa and every b in x is in ti. By our induction hypothesis, there exists
qi in Dch such that t v qi, X ⊆ T it ⊆ sch(qi). Thus, we have x v qi, and so, by Algorithm 2,

29

Dch contains qi+1 such that qi v qi+1, A ∈ sch(qi+1) and qi+1.A = a. Thus, t v qi+1 and

T i+1
t ⊆ sch(qi+1). This part of the proof is therefore complete.

Now, assuming that t is inconsistent in ∆ implies by Definition 4, that ∆ ` t and there
exist A in U and a and a′ in dom(A) such that ∆ ` (t � a u a′).

By the result shown just above, there exist q and q′ in Dch such that t v q, t v q′,
T+
t ⊆ sch(q) and T+

t ⊆ sch(q′). Moreover as a and a′ are in t+ we have that A is in T+
t .

According to Algorithm 1, this implies that FD contains X → A such that ∆ ` xa, ∆ ` xa′
and every constant α in x is in t+. As a consequence, q and q′ can be written respectively as
yxa and y′xa′, and by the statement on line 13 in Algorithm 2, the tuples yxa′ and y′xa are
in Dch and x belongs to inc(X → A).

Hence, by the statement on line 5 in Algorithm 3, tx belongs to temp. Thus if x v t, t
belongs to temp, thus to Inc(∆). Otherwise, if x v t does not hold, we know that every symbol
b in x not in t is in t+, and so, by the statement on line 9 in Algorithm 3, all these symbols
are removed one by one from tx to generate tuples that belong to temp. Thus t is inserted in
temp when the tuple processed in the loop line 6 in Algorithm 3 is equal to t, and so, t belongs
to Inc(∆), and the proof is complete. 2

F Proof of Proposition 5

Proposition 5. Given ∆ = (D,FD) and Π(∆) = (Φ,R), for every t in T the following
holds:

− v∆(t) = true if and only if 〈ϕt(0), t〉 ∈ Σ(∆)
− v∆(t) = false if and only if 〈ϕt(0), f〉 ∈ Σ(∆)
− v∆(t) = inc if and only if 〈ϕt(0), b〉 ∈ Σ(∆)
− v∆(t) = unkn if and only if Σ(∆) contains no pair involving ϕt(0)

Proof It should first be noticed that R can be stratified into the following four strata: R+,
Rcl, R−, and R± among which the first three ones define positive programs. Their semantics
is then equal to standard logic program semantics. Moreover, in the framework of the present
approach, these strata allow the following computations:
(1) The pairs in ΦD and the rule in R+ allow to compute all pairs of the form 〈ϕ+

t (n), t〉
that identify all tuples t such that ∆ ` t holds. This is so because the rules in R+ express the
construction of µ∗, in the sense that 〈ϕ+

t (n), t〉 is in the output if and only if µ∗(t) 6= ∅. Then
the result is a consequence of Lemma 1.
(2) Based on this result we now argue that the pairs in Φcl along with rules in Rcl allow for
the computation of the closure t+ of every tuple t. Indeed, by the structure of Algorithm 1, it
is clear that for every t, Φcl corresponds to the result of statement line 1, and then, the rules
in Rcl are the transcription of the statements in the loop line 2, in particular of the test in
line 4, given that all tuples t such that ∆ ` t are known from the previous step. Therefore
〈ψta(0), t〉 is output at this stage if and only if a is in t+.
(3) In this stratum, the rules in R− are the transcription of Proposition 2(1), and thus, by

Lemma 2, given that the previous two strata have been shown correct, all pairs 〈ϕ−t (n), t〉
output at this stage are exactly those such that ∆ |∼ t holds.

(4) The output of this stratum combines the truth values of ϕ+
t (i) and of ϕ−t (j) so as to

produce the truth value of ϕt(0) as the least upper bound of according to the connector ⊕,
which reflects the four cases in Definition 4. Therefore the proof is complete. 2

G Proof of Proposition 7

Proposition 7. Given ∆ = (D,FD), let ∆+ = (D+,FD). The following holds:

1. The time complexity of the construction of D+ is quadratic in the size of Dch.
2. D+

ch = D+ and ∆+ is consistent.
3. For every tuple t in T , v∆(t) = true if and only if v∆+ (t) = true.

Proof 1. Step 1 of the construction of D+ is clearly in O(|Dch|×|Inc(∆)|), that is in O(|Dch|2).
The result follows from the fact that, as already noticed regarding Algorithm 2, the normal-
ization step 2 of the construction of D+ is also in O(|Dch|2).

30

2. Assuming that applying Algorithm 2 to D+ generates changes, implies that D+ contains
two rows for which the conditions in lines 9 or 12 apply. Thus FD contains X → A and D+

contains two rows of the form y1x and y2xa in the case of condition line 9, or of the form
y1xa1 and y2xa2 in the case of condition line 12. The latter case is not possible because it
would imply that rows y1xa1 and y2xa2 are in Dch and thus that these tuples are in Inc(∆).
Hence, the former case holds, and by construction of D+, this implies that Dch contains two
rows, each being a super-tuple of y1x and y2xa, respectively. Therefore, the rows in Dch are
of the form y1z1xa′ and y2z2xa, where a′ occurs due to Algorithm 2.

If a 6= a′ then x is in Inc(∆), and thus, x cannot occur in D+, which is a contradiction.
We therefore have that a = a′ and that y1xa and y2xa are true in ∆, thus implying that y1xa
appears in D+, contrary to our hypothesis. We thus obtain that D+

ch = D+.

Assume that ∆+ is not consistent, by Proposition 1, there exists a tuple t which is incon-
sistent in ∆+. In this case t occurs in a row of D+ and there exists A in U and a and a′ in
dom(A) such that ∆+ ` (t � a u a′). As, by construction of D+, all potentially true tuples in
∆+ are also potentially true in ∆, ∆ ` (t � au a′) holds. As t is in LoCl(Dch) we obtain that
t is Inc(∆), which is a contradiction with the fact that t occurs in a row of D+.

3. By Proposition 4, v∆(t) = true if and only if t belongs to LoCl(Dch)\Inc(∆). By construction
of D+, it follows that t belongs to LoCl(D+), and since ∆+ is consistent, Inc(∆+) = ∅, which
implies that v∆+ (t) = true. The proof is therefore complete. 2

31

