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Abstract In this paper, we introduce a novel approach to deductive databases
meant to take into account the needs of current applications in the area of data
integration. To this end, we extend the formalism of standard deductive databases
to the context of Four-valued logic so as to account for unknown, inconsistent,
true or false information under the open world assumption. In our approach, a
database is a pair (E,R) where E is the extension and R the set of rules. The
extension is a set of pairs of the form 〈ϕ, v〉 where ϕ is a fact and v is a value
that can be true, inconsistent or false - but not unknown (that is, unknown facts
are not stored in the database). The rules follow the form of standard Datalogneg

rules but, contrary to standard rules, their head may be a negative atom.
Our main contributions are as follows: (i) we give an expression of first-degree
entailment in terms of other connectors and exhibit a functionally complete set of
basic connectors not involving first-degree entailment, (ii) we define a new operator
for handling our new type of rules and show that this operator is monotonic and
continuous, thus providing an effective way for defining and computing database
semantics, and (iii) we argue that our framework allows for the definition of a new
type of updates that can be used in most standard data integration applications.
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1 Introduction

In this paper, we present a novel approach meant to take into account the needs
of many current applications, specifically in the domain of data integration. Our
purpose is to extend the concept of deductive databases [1,2] to the context of
Four-valued logic [3], a formalism known to be suitable for data integration, as
it allows to deal with unknown, inconsistent, true or false information. We begin
by illustrating our approach through an example used as our running example
throughout the paper.

Running Example. Our example concerns the storage of bags of rice grains,
considering two important factors that (among others) influence the design and
development of optimum storage, namely color and humidity of the rice grains [4].

We assume that each bag is tested for the color and humidity of its rice grains
in two different sites, first just before leaving the rice farm and then just before
entering the warehouse. The outcomes of these tests can be: humid or not humid
(with respect to a humidity threshold); and white or not white (with respect to a
color threshold). Based on these outputs, the following actions are taken:

– If the grains are not humid and white then store the bags in the warehouse.
– If the grains are humid then do not store the bags but cure the grains.
– If the grains are not white then do not store the bags but analyze further.

We assume that the tests are conducted by sensors: two sensors at the rice farm,
one for humidity, denoted H1, and one for color denoted W1; and two sensors at
the warehouse denoted H2 and W2. We also assume that, during a test, if the
sensor is functioning then it returns a Boolean value (true or false), otherwise it
returns no value. Under these assumptions, one of the following cases can appear
for the sensors testing humidity (and similarly for the sensors testing color):

1. The two sensors return the same value.
2. The two sensors return different values.
3. Only one of the two sensors returns a value.
4. Neither of the two sensors returns a value.

In this setting, let Humid(ID), denote the humidity state or ‘value’ of a bag with
identifier ID. Then the question is: what value should we assign to Humid(ID)
in each of the four cases above? In our formalism, we answer this question by
‘integrating’ the outputs of H1 and H2 as follows (and similarly for the outputs of
W1 and W2):

1. Humid(ID) is set to the common value returned by the sensors.
2. Humid(ID) is set to inconsistent, to mean that the sensors returned different

values.
3. Humid(ID) is set to the value returned by the sensor which returned a value.
4. Humid(ID) is set to unknown, to mean that neither of the two sensors returned

a value.

As our example shows, we clearly need more than the standard truth values True

and False, to express the cases 2 and 4 above. It will be seen that the Four-valued
logic introduced in [3] provides the right formalism as it provides the additional
truth values needed and also appropriate connectors to work with these additional
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truth values. For instance, using a connector denoted by ⊕ we can express all four
cases above in a single expression: Humid(ID) = H1(ID)⊕H2(ID).

The database is a pair (E,R) where E collects the sensor outputs and where
R is a set of rules describing how to integrate these outputs and how to treat the
bags based on the integrated values. Formally, the elements of E are pairs of the
form 〈ϕ, v〉 to represent the output of one sensor about a bag recognized by its
identifier. In such pair ϕ is a fact regarding the humidity or the color of a bag and
v is its associated truth value. The rules expressing the integration of the sensor
outputs and the conditions regarding the storage of the bags are as follows:

ρ1 : Humid(x)← H1(x)⊕H2(x) ρ5 : Cure(x)← Humid(x)
ρ2 : White(x)←W1(x)⊕W2(x) ρ6 : ¬Store(x)← ¬White(x)
ρ3 : Store(x)← ¬Humid, (x) ∧White(x) ρ7 : New test(x)← ¬White(x)
ρ4 : ¬Store(x)← Humid(x)

Although the rules above roughly look like standard Datalog rules with negation,
the following basic differences have to be noticed:

1. The body of a rule is not restricted to be a conjunction of literals; in fact we
allow all available connectors to occur in the body of a rule.

2. The head of a rule is not restricted to be an atom: negative literals are allowed,
at the cost of generating contradictory facts.

3. Contradictions are allowed in database semantics and treated as such, in the
context of the Four-valued semantics introduced in [3].

To illustrate how our approach deals with such rules, we first give a rough overview
of the basic notions used in our approach. First, in Four-valued logic, four truth
values are considered, namely t, b, n and f, standing respectively for true, incon-
sistent, unknown1 and false.

In this context the pieces of information to be stored in the database extension
are pairs of the form 〈ϕ, v〉 where ϕ is a fact (i.e. an atom with no variable) and
v is one of the four truth values just mentioned. By such a pair, which we call
valuated pair or v-pair for short, we mean that ‘ϕ has truth value v’. Moreover,
we make the intuitively appealing convention that unknown facts are not stored,
meaning that the database extension can not contain a v-pair of the form 〈ϕ, n〉.
We emphasize that, contrary to most database approaches in which only true
pieces of information are stored, our approach allows to store true, false or even
inconsistent pieces of information.

Continuing with our example, assume there are three rice bags with identifiers
101, 202 and 303 for which the following sensor outputs and corresponding v-pairs
are stored in the database:

Regarding bag 101: H1 and H2 both return False; this results in storing the two
v-pairs 〈H1(101), f〉 and 〈H2(101), f〉 in the database extension. W1 returns
True but W2 returns no value; this results in storing the pair 〈W1(101), t〉 in
the database extension.

Regarding bag 202: H2 returns True and H1 returns no value; this results in
storing the v-pair 〈H2(202), t〉 in the database extension. W1 returns False

while W2 returns true; this results in storing the two pairs 〈W1(202), f〉 and
〈W2(202), t〉 in the database extension.

1 The intuition explaining the notation b and n will be clarified later in this paper.
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Regarding bag 303: H1 and H2 both return no value, W1 returns False and W2

returns no value; this results in storing the pair 〈W1(303), f〉 in the database
extension.

Roughly speaking, given a set S of v-pairs, applying a rule ρ is achieved as follows:
for every instantiation of ρ denoted inst(ρ), the truth value of the body of inst(ρ)
is computed against S, and if this truth value is t or b then this truth value is
assigned to the head of the inst(ρ). Moreover, as more than one rule head may
involve the same fact, in case of conflicting assignment, we apply the integration
statements as done for the sensors. We illustrate this processing below.

1. At the first step, the only rules that apply are ρ1 and ρ2.
– Based on the v-pairs 〈H1(101), f〉 and 〈H2(101), f〉, ρ1 generates the v-pair
〈Humid(101), f〉 stating that the grains in bag 101 are not humid.
As for identifier 202, since the output of H1 is missing, we consider the
(non-stored) v-pair 〈H1(202), n〉, which combined by ⊕ with the stored v-
pair 〈H2(202), t〉 generates 〈Humid(202), t〉 stating that the grains in bag
202 are humid.
As for identifier 303, since both H1 and H2 no value, ρ1 generates no v-pair
involving Humid(303), meaning that the humidity of the grains in the bag
303 is unknown.

– As for White(101), since W2 returns no value, ρ2 generates the v-pair
〈White(101), t〉 stating that the grains in bag 101 are white.
As for White(202), we notice that W1 and W2 disagree. In this case, ρ2
generates the v-pair 〈White(202), b〉, meaning that the fact White(202) is
inconsistent, thus that the color of the grains in bag 202 cannot be decided.
As for White(303), since W2 returns no value, ρ2 generates the v-pair
〈White(303), f〉, meaning that the grains in bag 303 cannot be considered
white.

2. The next step is based on the v-pairs earlier generated, namely: 〈Humid(101), f〉,
〈Humid(202), t〉, 〈White(101), t〉, 〈White(202), b〉 and 〈White(303), f〉. The
rules ρ3 . . . ρ7 apply as follows:
– Based on 〈Humid(101), f〉 and 〈White(101), t〉, ρ3 generates the v-pair
〈Store(101), t〉. Considering 〈Humid(202), t〉 and 〈White(202), b〉, since
the conjunction of the body is false, ρ3 does not apply. Since Humid(303)
is unknown and White(303) is false, the conjunction of the body is false,
entailing that ρ3 does not apply.

– Since Humid(101) is not true, ρ4 does not apply. Since Humid(202) is true,
ρ4 generates 〈Store(202), f〉. Since Humid(303) is unknown, ρ4 does not
apply.

– As above, since Humid(101) is not true, ρ5 does not apply, but ρ5 generates
〈Cure(202), t〉 because Humid(202) is true.

– Similarly, since White(101) is not false, ρ6 and ρ7 do not apply. Since
White(202) is inconsistent, ρ6 and ρ7 generate respectively 〈Store(202), b〉
and 〈New test(202), b〉. Moreover, since White(303) is false, ρ6 and ρ7
generate respectively 〈Store(303), f〉 and 〈New test(303), t〉.

After applying the rules, conflicting v-pairs involving Store(202) appear, be-
cause Store(202) has been found false by ρ4 and inconsistent by ρ6. In this case,
we integrate these different truth values in much the same way as we did for
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the sensor outputs, stating that Store(202) should be inconsistent. Therefore,
the v-pair 〈Store(202), f〉 is removed from the result of this step.

3. As no further v-pair can be generated by the rules based on the v-pairs gener-
ated in the previous steps, the processing stops and returns the set of all these
v-pairs, which added to the database extension constitutes what we call the
database semantics.

The obtained database semantics is therefore the set of the following v-pairs:

〈H1(101), f〉, 〈H2(101), f〉, 〈H2(202), t〉,
〈W1(101), t〉, 〈W1(202), f〉, 〈W2(202), t〉, 〈W1(303), f〉,
〈Humid(101), f〉, 〈Humid(202), t〉,
〈White(101), t〉, 〈White(202), b〉, 〈White(303), f〉,
〈Store(101), t〉, 〈Store(202), b〉, 〈Store(303), f〉,
〈Cure(202), t〉, 〈New test(202), b〉, 〈New test(303), t〉.

It is shown in this paper that the computation just described in an informal way is
sound and its relationship with other related approaches is investigated. Moreover,
some basic properties of the underlying Four-valued logic are stated, and among
them this example raises the following question: could the rules ρ4 and ρ6 be
replaced by the single rule ρ46 : ¬Store(x) ← Humid(x) ∨ ¬White(x)? Whereas
this question is answered positively in standard approaches to Datalog databases
([1,2]) and in the Four-valued approach of [5], we argue that this replacement
raises some issues. 2

This work is an extension of that in [6] where rule bodies are restricted to be
conjunctions. The main contributions of this paper are as follows:

1. We show that FDE (First Degree Entailment) implication, one of the stan-
dard implications in Four-valued logic, can be expressed in terms of the usual
connectors.

2. We exhibit a functionally complete set of basic connectors not involving FDE
implication, contrary to the results in [7].

3. We generalize the rules by allowing negative literals in their heads and connec-
tors other than negation, conjunction and disjunction in their bodies.

4. We define a new immediate consequence operator for handling such rules, and
we show that this operator is monotonic and continuous, thus providing an
effective way for defining and computing database semantics.

5. We argue that our context allows for the definition of a new type of updates
that can be used in data integration applications. Notice that to the best of our
knowledge, the problem of database updating in a Four-valued logic framework
has never been addressed in the literature.

The paper is organized as follows: In Section 2 we review the formalism related to
Four-valued logic and we address the first two issues mentioned above. Section 3
is devoted to the definitions of the syntax and the semantics of databases in the
context of Four-valued logic. In Section 4, we define two types of updates, one
standard and another one related to data integration. Then, in Section 5 we review
some of the approaches related to our work that can be found in the literature.
Section 6 provides an overview of our approach and suggests research issues that
we are currently investigating or that we intend to investigate in the next future.
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2 Background: Four-Valued Logic

2.1 Basics of Four-Valued Logic

Four-valued logic was introduced by Belnap in [3], who argued that this formalism
could be of interest when integrating data from various data sources. To this end,
denoting by t, b, n and f the four truth values, the usual connectives ¬, ∨ and ∧
have been defined as shown in Figure 1. An important feature of this Four-valued
logic is that it allows to compare truth values according to two partial orderings,
known as truth ordering and knowledge ordering, respectively denoted by �t and
�k and defined by:

n �k t �k b ; n �k f �k b and f �t n �t t ; f �t b �t t.

To explain the choice of b and n as notation for inconsistent and unknown, let
V = {True, False} be the set of the usual truth values. The four truth values in
Four-valued logic can then be thought of as corresponding to the elements in the
power set of V, by associating respectively ∅, {False}, {True}, {True, False} with
n, f, t, b. Then the notation n and b can be read respectively as none and both.
Notice also that, under this association, the ordering �k, the connectors ⊕ and ⊗
are respectively nothing but the restriction to the power set of V of set theoretic
inclusion, union and intersection.

As in standard two-valued logic, conjunction (respectively disjunction) corre-
sponds to minimum (respectively maximum) truth value, when considering the
truth ordering. It has also been shown in [3,5] that the set {t, b, n, f} equipped
with these two orderings has a distributive bi-lattice structure, where the minimum
and maximum with respect to �k are denoted by ⊗ and ⊕, respectively.

Not surprisingly, it should be emphasized that in this Four-valued logic some
basic properties holding in standard logic do not hold. For example, Figure 1
shows that formulas of the form Φ ∨ ¬Φ are not always true, independently from
the truth value of Φ. More importantly, it has been argued in [7–9] that defining
the implication Φ1 ⇒ Φ2 by ¬Φ1 ∨ Φ2, is problematic.

To see this, we consider as in [3,7–9], that t and b are the two designated
truth values, because as mentioned above, these truth values are the only ones
corresponding to sets containing True. As a consequence, a formula Φ is said to
be valid if its truth value is designated, i.e., either t or b.

As argued in [7–9], ⇒ does not satisfy the deduction theorem, because the
formula Φ defined by (Φ1 ∧ (Φ1 ⇒ Φ2)) ⇒ Φ2 is not valid for every truth value
assignment. Indeed based on Figure 2, for every assignment v such that v(Φ1) = n

and v(Φ2) = f, we have v(Φ1 ⇒ Φ2) = n and thus, v(Φ) = n. As a consequence,
we discard ⇒ as the implication providing semantics to our rules.

Among the various implications introduced in the literature, First Degree En-
tailment implication, or FDE implication, denoted hereafter by → ([7,8]) is the
most popular. We also mention another implication introduced in [9] and denoted
hereafter by ↪→. Each of these implications is associated with another implication,

denoted by
∗→ and

∗
↪→ whose role is explained next. The truth tables of all these

implications are shown in Figure 2.
Recall from [7] (Corollary 9) that→, is defined ‘from scratch’ in the sense that

it cannot be expressed using the other standard connectives ¬, ∨ and ∧. As we
shall see shortly we can provide an expression of→ involving standard connectors
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ϕ ¬ϕ
t f
b b
n n
f t

ϕ 6∼ ϕ
t b
b t
n f
f n

ϕ ∼ ϕ
t f
b n
n b
f t

∨ t b n f

t t t t t
b t b t b
n t t n n
f t b n f

∧ t b n f

t t b n f
b b b f f
n n f n f
f f f f f

⊕ t b n f

t t b t b
b b b b b
n t b n f
f b b f f

⊗ t b n f

t t t n n
b t b n f
n n n n n
f n f n f

Fig. 1 Truth tables of basic connectors

in the formalism of [9]. It is also important to notice that as shown in [9], Φ1 ↪→ Φ2

is defined by ∼ Φ1 ∨ Φ2, where ∼ is a complement operator whose truth table is
shown in Figure 1.

Moreover, since Φ1 → Φ2 and ¬Φ2 → ¬Φ1 are not equivalent, the implication
Φ1

∗→ Φ2 is introduced in [7,8] as a shorthand for (Φ1 → Φ2) ∧ (¬Φ2 → ¬Φ1).

As a similar situation holds regarding ↪→, Φ1
∗
↪→ Φ2 is defined in [9] as (Φ1 ↪→

Φ2) ∧ (¬Φ2 ↪→ ¬Φ1).
In an attempt to compare these implications, we notice that, contrary to ⇒,

the formula Φ defined by (Φ1 ∧ (Φ1 ; Φ2)) ; Φ2 is valid when replacing ; with

one of the implications →, ↪→,
∗→ or

∗
↪→. It is also interesting to see that when

merging the truth values t and b (respectively f and n) into a single value, say
TRUE (respectively FALSE), the corresponding truth tables of → and ↪→ are that of

the standard implication, while this is not the case for⇒,
∗→ and

∗
↪→. This explains

why we discard these three implications. However, the choice between → and ↪→
is not easy for the following reasons:

– In [7,8], it is argued that, similarly to two-valued implication, → satisfies the
property that v(Φ1 → Φ2) = v(Φ2) whenever v(Φ1) is designated. However, →
does not satisfy the properties of ↪→ given below.

– Although ↪→ does not satisfy the above property, it is argued in [9] that, simi-
larly to two-valued implication, ↪→ satisfies the property that v(Φ1) �t v(Φ2)
if and only if v(Φ1 ↪→ Φ2) = t.

We draw attention on that none of these two implications satisfies all intuitively
appealing properties that standard two-valued implication satisfies, among which
contraposition is an example.

Looking at the truth tables of the two implications → and ↪→, when the left
hand side is valid in S, it is necessary that the right hand side be also valid in
order to make the implication valid. More precisely, if Φ1 is valid, the implications
Φ1 → Φ2 and Φ1 ↪→ Φ2 are valid in S for any truth assignment v such that:
− v(Φ1) = t and v(Φ2) = t or v(Φ2) = b,
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⇒ t b n f

t t b n f
b t b t b
n t t n n
f t t t t

→ t b n f

t t b n f
b t b n f
n t t t t
f t t t t

↪→ t b n f

t t b n f
b t t n n
n t b t b
f t t t t

∗→ t b n f

t t f n f
b t b n f
n t n t n
f t t t t

∗
↪→ t b n f

t t f f f
b t t f f
n t f t f
f t t t t

Fig. 2 Truth tables of implications

φ Tφ
t t
b f
n f
f f

φ Bφ
t f
b t
n f
f f

φ Nφ
t f
b f
n t
f f

φ Fφ
t f
b f
n f
f t

φ ◦φ
t f
b f
n t
f t

Fig. 3 More truth tables

− v(Φ1) = b and v(Φ2) = t or v(Φ2) = b.

As a consequence, if it happens that Φ1 is valid while Φ2 is not, the implication
can be made valid by changing the truth value of Φ2 in two ways: making it either
true or inconsistent. As will be seen later, we choose to set vS(Φ2) as equal to
vS(Φ1). This choice is motivated by the fact that it is the only one satisfying
v(Φ1) �k v(Φ2) and v(Φ1) �t v(Φ2).

To see how to express FDE implication → in terms of the basic connectors ¬,
∨, ∧, 6∼, ⊕ and ⊗ of [9], we recall that ∼ is defined for every formula φ by:

∼ φ = ¬ 6∼ ¬ 6∼ φ = 6∼ ¬ 6∼ ¬φ.

Moreover, the additional connectors T, B, N and F, whose truth tables are shown
in Figure 3, allow to ‘characterize’ each truth value in terms of only the standard
ones, namely t and f. Roughly speaking, given a truth value v, the corresponding
connector which we denote by V, is defined for every formula φ by the fact that
Vφ is true if φ has the truth value v and false otherwise.

In what follows, equivalent formulas φ1 and φ2 are defined as formulas having
the same truth tables, which is denoted by φ1 ≡ φ2. Using this notation, it is
shown in [9] that for each of these connectors, the following equivalences hold:

Tφ ≡ φ∧ ∼ ¬φ ; Bφ ≡6∼ φ∧ 6∼ ¬φ ; Nφ ≡∼6∼ φ ∧ ¬ 6∼ φ ; Fφ ≡∼ φ ∧ ¬φ.

We now consider an additional connector denoted by ◦, and defined as follows:

◦φ = N(φ) ∨ F(φ).

This new connector ‘characterizes’ the non validity of a formula φ in terms of the
truth values t and f. In other words, as shown in Figure 3, ◦φ is true if φ is not
valid and false otherwise.

An important point is that this new connector allows for an intuitively appeal-
ing expression of the FDE implication ([7,8]) →. It is indeed easy to show based
on the truth tables of Figure 2 and Figure 3, that for all formulas φ1 and φ2, the
following equivalence holds:
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φ1 → φ2 ≡ ◦φ1 ∨ φ2.

Since ◦φ can be read as true if φ is not valid and false otherwise, the equivalence
above suggests that φ1 → φ2 can be read as either φ1 is not valid or φ2 is valid.
We emphasize that this is pretty much like implication in standard FOL that is
read as either not φ1 is true or φ2 is true.

Based on these remarks and on truth tables in Figures 1–3, the following propo-
sition holds. The first item in this proposition is the subject of some comments in
the next section.

Proposition 1 Given formulas φ1, φ2 and φ3, the following equivalences hold:

− (φ1 ∨ φ2)→ φ3 ≡ (φ1 ⊕ φ2)→ φ3 ≡ (φ1 → φ3) ∧ (φ2 → φ3)
− (φ1 ∧ φ2)→ φ3 ≡ (φ1 ⊗ φ2)→ φ3 ≡ (φ1 → φ3) ∨ (φ2 → φ3).

2.2 About Functional Completeness

Functional completeness in our context can be stated as follows: Given a func-
tion W from {t, b, n, f}k to {t, b, n, f} where k is a positive integer, can W be
‘expressed’ as a formula ΦW (P1, P2, . . . , Pk) involving k propositional variables
P1, P2, . . . , Pk? More formally, given W , the problem is to prove that there exists
a formula ΦW such that for V = (v1, v2, . . . , vk) in {t, b, n, f}k, if v is a valuation
such that for i = 1, 2, . . . , k, v(Pi) = vi, then v(ΦW (v1, v2, . . . , vk)) = W (V).

This question has been answered positively in [7] where the proposed formula
ΦW involves the connectors ¬, ∧ and → and the constants b and n. The authors
give also some other variants of this result by proposing various sets of connectors,
all of which containing the implication →.

Given that φ1 → φ2 can be expressed as ◦φ1∨φ2, functional completeness can
also be shown based on the connectors introduced in [9], that is ¬, 6∼, ∨, ∧, ⊕ and
⊗, but not →. We prove this result in two ways: one based on [7], and one more
direct, using the connectors defined in [9].

Proof based on [7]. In [7], it is shown that the language L∗ = {¬,∧,→, n, b} is
functionally complete, meaning that for every k ≥ 0 and every function W from
{t, b, n, f}k to {t, b, n, f} there exists a formula Φ∗W in L∗ involving k propositional
variables P1, P2, . . . , Pk such that, for V = (v1, v2, . . . , vk) in {t, b, n, f}k, if v is a
valuation such that for i = 1, 2, . . . , k, v(Pi) = vi, then v(Φ∗W (v1, v2, . . . , vk)) =
W (V).

Thus, given W from {t, b, n, f}k to {t, b, n, f}, by replacing in Φ∗W every occur-
rence of φ1 → φ2 by ◦φ1∨φ2 we obtain a formula Φ◦W that, using the definitions of
◦ and of the connectors N and F, can be expressed by using the basic connectors
¬, ∧, ∨, ⊕, ⊗, 6∼ and the four truth values.

Direct proof based on [9]. Based on the connectors T, B, N and F intro-
duced in [9], every V = (v1, v2, . . . , vk) in {t, b, n, f}k is associated with a formula
φV(P1, P2, . . . , Pk) defined as follows:

φV(P1, P2, . . . , Pk) =
∧i=k
i=1 φi(Pi)

where, for i = 1, 2, . . . , k, φi(Pi) = TPi if vi = t, φi(Pi) = BPi if vi = b,
φi(Pi) = NPi if vi = n and φi(Pi) = FPi if vi = f.

It is thus easy to see that v(φV(P1, P2, . . . , Pk)) = t if for i = 1, 2, . . . , k,
v(Pi) = vi and v(φV(P1, P2, . . . , Pk)) = f otherwise.
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Now, given a function W from {t, b, n, f}k to {t, b, n, f}, we consider the
partition induced by W on {t, b, n, f}k, defined by {W−1(t), W−1(b), W−1(n),
W−1(f)}. For every truth value v in {t, b, n, f}, the corresponding element W−1(v)
of this partition, which is a subset of {t, b, n, f}k, is associated with a formula Φv

defined by:

Φv =
∨

V∈W−1(v) φV.

It can be seen that for every v in {t, b, n, f}, v(Φv) = t if (v(P1), v(P2), . . . , v(Pk))
is in W−1(v), and v(Φv) = f otherwise. The targetted formula ΦW is defined by:

ΦW = ((Φt ∨ ¬Φf)⊗ ∼6∼ Φn)⊕ 6∼ Φb.

The proof that ΦW is indeed the expected formula is done by successively consid-
ering the four possible truth values. For V = (v1, v2, . . . , vk), consider the following
cases:

– V ∈ W−1(t) : In this case, we have that W (V) = t. On the other hand, if v is
such that for i = 1, 2, . . . , k, v(Pi) = vi, v(Φt) = t, v(Φb) = f, v(Φn) = f and
v(Φf) = f, v(ΦW ) evaluates as v(ΦW ) = ((t ∨ ¬f)⊗ ∼6∼ f)⊕ 6∼ f = t. Thus,
W (V) = v(ΦW ) = t.

– V ∈ W−1(b) : In this case, we have that W (V) = b. On the other hand, if v is
such that for i = 1, 2, . . . , k, v(Pi) = vi, v(Φt) = f, v(Φb) = t, v(Φn) = f and
v(Φf) = f, v(ΦW ) evaluates as v(ΦW ) = ((f ∨ ¬f)⊗ ∼6∼ f)⊕ 6∼ t = b. Thus,
W (V) = v(ΦW ) = b.

– V ∈ W−1(n) : In this case, we have that W (V) = n. On the other hand, if v is
such that for i = 1, 2, . . . , k, v(Pi) = vi, v(Φt) = f, v(Φb) = f, v(Φn) = t and
v(Φf) = f, v(ΦW ) evaluates as v(ΦW ) = ((f ∨ ¬f)⊗ ∼6∼ t)⊕ 6∼ f = n. Thus,
W (V) = v(ΦW ) = n.

– V ∈ W−1(f) : In this case, we have that W (V) = f. On the other hand, if v is
such that for i = 1, 2, . . . , k, v(Pi) = vi, v(Φt) = f, v(Φb) = f, v(Φn) = f and
v(Φf) = t, v(ΦW ) evaluates as v(ΦW ) = ((f ∨ ¬t)⊗ ∼6∼ f)⊕ 6∼ f = f. Thus,
W (V) = v(ΦW ) = f.

As a consequence, we obtain that W (V) = v(ΦW ) thus that the formula ΦW has
the same truth values as the truth values defined by the function W .

3 Four-Valued Logic and Databases

3.1 Database Syntax

As usual when dealing with deductive databases, the considered alphabet is made
of constants, variables and predicate symbols with a fixed arity. We thus assume a
fixed set of contants, called universe and denoted by U . It should be noticed that
U may be infinite.

As in traditional approaches, a term t is either a constant from U or a variable,
an atomic formula or an atom is a formula of the form P (t1, t2, . . . , tk) where P
is a k-ary predicate and for every i = 1, 2, . . . , k, ti is a term. A formula is said to
be ground if it contains no variables. A fact is a ground atom, that is an atom in
which all terms are constants. Moreover, a literal is either an atom or the negation
of an atom. In the former case the literal is said to be positive and in the latter
case it is said to be negative. The Herbrand Base associated with U is the set of
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all facts that can be built up using the constants in U and the predicates. Clearly,
if U is infinite, then so is HB.

In the traditional two-valued setting under the CWA (Closed World Assump-
tion [10]), the database extension and the database semantics are sets of facts,
meant to be true, and the facts not in the database semantics are set to be false.
In our context of Four-valued logic under the OWA (Open World Assumption),
the database extension and the database semantics may contain facts that are
either true, inconsistent or false, assuming that non stored facts are unknown. To
account for this situation, we consider sets of pairs of the form 〈ϕ, v〉 where ϕ is
a fact in HB and where v is one of the values t, b or f, while facts whose truth
value is n are not stored. Moreover, such a set S is said to be consistent if for all
distinct pairs 〈ϕ1, v1〉 and 〈ϕ2, v2〉 in S, ϕ1 6= ϕ2. Consequently a consistent set S
is seen as a valuation vS defined for every ϕ in U by:

vS(ϕ) = v, if S contains a pair 〈ϕ, v〉 ; vS(ϕ) = n, otherwise.

Consistent sets of pairs are called v-sets, standing for valuated sets.
Given a v-set S and a ground formula Φ, Φ is said to be valid in S if vS(Φ)

is designated. For example, P (a) → Q(b) is valid in S1 = {〈P (a), t〉, 〈Q(b), b〉}
because vS1

(P (a)→ Q(b)) = b, but P (a)→ Q(b) is not valid in S2 = {〈P (a), t〉}
because vS2

(P (a)→ Q(b)) = n.
The two orderings �k and �t are extended to v-sets over the same base HB

in a point-wise manner as follows.

Definition 1 For all v-sets S1 and S2 over U , S1 �k S2, respectively S1 �t S2,
holds if for every ϕ in U , vS1

(ϕ) �k vS2
(ϕ), respectively vS1

(ϕ) �t vS2
(ϕ), holds.

For example for HB = {P (a), P (b), P (c)}, S1 = {〈P (a), t〉} and S2 = {〈P (a), b〉,
〈P (b), f〉}, we have vS1

(P (b)) = vS1
(P (c)) = vS2

(P (c)) = n. Thus:

– vS1
(P (a)) �k vS2

(P (a)), vS1
(P (b)) �k vS2

(P (b)) and vS1
(P (c)) �k vS2

(P (c)),
implying that S1 �k S2 holds.

– vS2
(P (a)) �t vS1

(P (a)), vS2
(P (b)) �t vS1

(P (b)) and vS2
(P (c)) �t vS1

(P (c)),
implying that S2 �t S1 holds.

– ∅ �k S2, because for every ϕ, v∅(ϕ) = n, the least value with respect to �k.
– ∅ and S2 are not comparable with respect to �t, because v∅(P (a)) = n and
vS2

(P (a)) = b are not comparable with respect to �t.
The extension of �k generalizes set inclusion in the sense that if S1 ⊆ S2, then we
have S1 �k S2. Notice that, as the last item above shows, the truth ordering �t
does not satisfy this property, because ∅ ⊆ S2 holds while ∅ �t S2 does not.

In our context, as in approaches to Datalog databases ([1,11]), a database
consists of an extension and a set of rules, formally defined as follows.

Definition 2 A database ∆ is a pair ∆ = (E,R) where E and R are respectively
called the extension and the rule set of ∆. If ∆ = (E,R), then:

– E is a v-set.
– R is a set of rules of the form ρ : h(X) ← B(X,Y ) where the variables in X

are free in h(X) and B(X,Y ) and the variables in Y are free in B(X,Y ), and
1. B(X,Y ) is a well formed formula involving the connectors ¬, ∨, ∧, ⊕ and
⊗. B(X,Y ) is called the body of ρ, denoted by body(ρ).

2. h(X) is a positive or negative literal, called the head of ρ, denoted by
head(ρ).

11



It should be clear that the rules as defined above generalize standard Datalogneg

rules ([11]). On the other hand, the definition above also generalizes rules as defined
in [6] where the bodies of the rules are restricted to be conjunctions only. Moreover,
in our approach and contrary to [5,11], rules may generate contradictory facts. It
is important to notice that our approach is closely related to the generalized rules
as introduced in [5], with the following notable differences:

1. In our approach, negative literals are allowed in the rule heads, which is not
the case in [5].

2. In our approach, several rules may have the same predicate involved in their
head, which is not the case in [5]. This important point will be discussed later.

3. In our approach, quantifiers are not allowed, whereas in [5] four quantifiers are
allowed (∀ and ∃ associated with �t and Π and Σ associated with �k).

3.2 Database Semantics

As usual, rules are seen as implications, either → or ↪→ that must be valid in the
database semantics. Notice in this respect that Figure 2 shows that for all formulas
φ1 and φ2, φ1 → φ2 is valid if and only if so is φ1 ↪→ φ2. This explains why in [6],
our approach has been shown to be ‘compatible’ with either implication. Here, we
focus on FDE implication →, thus forgetting the implication ↪→ of [9].

Similarly to the standard Datalog approach, a model of a database ∆ = (E,R)
could be defined as a v-set M containing E and in which all rules in R are valid.
However, such a definition would raise important problems:

1. A database might have no model. To see this, consider ∆ = (E,R) where
R = {Q(b)← P (a)} and where E = {〈P (a), t〉, 〈Q(b), f〉}. Then in any model
M , vM (P (a)→ Q(b)) = f because M must contain the two pairs of E. Notice
that this cannot happen in standard Datalog since the storage of false facts is
not allowed.

2. A database might have more than one minimal model, with respect to set in-
clusion. This case is illustrated above where S′1 = {〈P (a), t〉, 〈Q(b), t〉} are
S′2 = {〈P (a), t〉, 〈Q(b), b〉} two minimal v-sets containing {〈P (a), t〉} in which
Q(b) ← P (a) is valid. This situation does not happen in standard Datalog
because the minimal model is known to be unique.

Whereas the second issue raised above will be further investigated later, the first
issue is solved in our approach by giving the priority to the database extension
over the rules. To do so, we prevent from applying a rule in R when it leads to
some conflict with a v-pair in E.

In order to implement this policy, given a database ∆ = (E,R) over universe
U , we denote by inst(E,R) the set of all instantiations ρ of rules in R such that
head(ρ) does not occur in E. Moreover, given a rule ρ : head(ρ) ← body(ρ) we
denote by ρ→ the formula body(ρ)→ head(ρ). The definition of a model of ∆ then
follows.

Definition 3 Let ∆ = (E,R) be a database. A v-set M is a model of ∆ if the
following holds:

1. E ⊆M , i.e., M must contain the database extension, and
2. every ρ of inst(E,R) is valid in M , that is, vM (ρ→) is designated.
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To illustrate Definition 3, consider the following simple examples:

– ∆ = (E,R) with E = {〈P (a), t〉, 〈Q(b), f〉} and R = {Q(b) ← P (a)}. E is
a model of ∆ as inst(E,R) = ∅. It is easy to see that E is the only minimal
model with respect to set inclusion.

– ∆ = (E,R) with E = {〈P (a), t〉} and R = {Q(b) ← P (a)} S1 = {〈P (a), t〉,
〈Q(b), t〉} and S2 = {〈P (a), t〉, 〈Q(b), b〉} are two models of ∆. Moreover, it
can be seen that these two models are minimal with respect to set inclusion.

Given a database ∆, an immediate consequence operator is defined below. It will
then be seen that this allows for computing a particular model of ∆, which we call
the semantics of ∆.

Definition 4 Let ∆ = (E,R) be a database. The semantic immediate conse-
quence operator associated with ∆, denoted by Σ∆, is defined for every v-set S by
the following steps:

1. Define first ΓE∆ (S) as follows:

ΓE∆ (S) = S ∪ {〈h, t〉 | (∃ρ ∈ inst(E,R))(h = head(ρ) ∧ vS(body(ρ)) = t)}
∪ {〈h, b〉 | (∃ρ ∈ inst(E,R))(h = head(ρ) ∧ vS(body(ρ)) = b)}
∪ {〈h, f〉 | (∃ρ ∈ inst(E,R))(¬h = head(ρ) ∧ vS(body(ρ)) = t)}
∪ {〈h, b〉 | (∃ρ ∈ inst(E,R))(¬h = head(ρ) ∧ vS(body(ρ)) = b)}

2. Then, define Σ∆(S) by: Σ∆(S) = {〈ϕ, v⊕(ϕ)〉 | ϕ occurs in ΓE∆ (S)}, where
v⊕(ϕ) =

⊕
{v | 〈ϕ, v〉 ∈ ΓE∆ (S)}.

Definition 4 should be seen as fitting our view on rule semantics based of FDE
implication, whose validity has been expressed earlier as φ1 → φ2 is valid if and
only if whenever φ1 is valid, so is φ2. This point of view is similar to that in
Datalog databases (where ‘valid’ means ‘true’), but different from the one in [5],
where the truth value of the head of the rule is equated to that of the body,
whatever the truth value of the body, even when it is f. The following lemma shows
basic properties of the operator Σ∆.

Lemma 1 For every database ∆ = (E,R), Σ∆ is monotonic and continuous with
respect to �k.

Proof We first notice that the connectors involved in rule bodies are monotonic,
that is, for all formulas φ1 and φ2 involving ¬, ∨, ∧, ⊕ or ⊗, if S1 and S2 are two
v-sets such that S1 �k S2 then vS1

(φ1) �k vS2
(φ2) (this can be checked for each

operator based on the truth tables in Figure 1).
For every ϕ in HB and every i = 1, 2, let D+

i (ϕ) (respectively D−i (ϕ)) denote
the set of all rules ρ in inst(E,R) such that vSi(body(ρ)) is distinguished in Si
and head(ρ) = ϕ (respectively head(ρ) = ¬ϕ). Then, vΣ∆(Si)(ϕ) can be defined
as follows:

vΣ∆(Si)(ϕ) = vSi(ϕ)⊕
⊕

ρ∈D+
i (ϕ)

vSi(body(ρ))⊕
⊕

ρ∈D−
i (ϕ)

¬vSi(body(ρ))

By monotonicity of ⊕ and ¬, we obtain that , if S1 �k S2, then for every ϕ in HB,
vΣ∆(S1)(ϕ) �k vΣ∆(S2)(ϕ), thus entailing the monotonicity of Σ∆ with respect to
�k. The proof that Σ∆ is continuous with respect to �k, is as in [5] (see the proof
of Theorem 16) and thus omitted here.
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As a consequence of Lemma 1, given ∆ = (E,R), let
(
Σi
)
i≥0

the sequence defined

by

Σ0 = E, and for every n ≥ 1, Σn = Σ∆(Σn−1)

has a limit which is the unique least-fixed point of Σ∆ that is reached for some
ordinal at most ω. This limit, denoted by Σ∗∆, is called the semantics of ∆ and
the valuation vΣ∗

∆
is denoted by v∆.

Example 1 We illustrate the computation of the semantics in the context of our
running example, where ∆ = (E,R) is defined by:

− E = {〈H1(101), f〉, 〈H2(101), f〉, 〈W1(101), t〉, 〈H2(202), t〉, 〈W1(202), f〉,
〈W2(202), t〉, 〈W1(303), f〉}

− R = {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7}, where
ρ1 : Humid(x)← H1(x)⊕H2(x) ρ5 : Cure(x)← Humid(x)
ρ2 : White(x)←W1(x)⊕W2(x) ρ6 : ¬Store(x)← ¬White(x)
ρ3 : Store(x)← ¬Humid(x) ∧White(x) ρ7 : New test(x)← ¬White(x)
ρ4 : ¬Store(x)← Humid(x)

We first note that in case, inst(E,R) = R because no predicate occurring in E
appears in the heads of the rules of R. On the other hand, variables have only
three possible instantiations, namely 101, 202 and 303. The computation of Σ∗∆ is
as follows, starting with Σ0 = E:

1. Σ1 = Σ∆(Σ0). The rule ρ1 generates 〈Humid(101), f〉 and 〈Humid(202), t〉,
and ρ2 generates 〈White(101), t〉, 〈White(202), b〉, and 〈White(303), f〉.
SinceΣ∆(Σ0) = ΓE∆ (Σ0) we obtain thatΣ1 = E∪{〈Humid(101), f〉, 〈Humid(202), t〉,
〈White(101), t〉, 〈White(202), b〉, 〈White(303), f〉}.

2. Σ2 = Σ∆(Σ1). The computation involves the 5 rules ρ3 . . . ρ7 as follows:
− ρ3 generates 〈Store(101), t〉, because ¬Humid(101)∧White(101) has truth
value t. The other instances of ρ3 do not apply because the body is not valid.
− ρ4 and ρ5 generate respectively 〈Store(202), f〉 and 〈Cure(202), t〉 because
Humid(202) has truth value t. The other instances of ρ4 and of ρ5 do not
apply because the body is not valid.
− ρ6 and ρ7 generate respectively 〈Store(202), b〉 and 〈New test(202), b〉 since
White(202) has truth value b, remembering that ¬b = b.
− ρ6 and ρ7 generate respectively 〈Store(303), f〉 and 〈New test(303), t〉 since
White(303) has truth value t.
− As ΓE∆ (Σ1) contains 〈Store(202), b〉 and 〈Store(202), t〉, the computation
of Σ2 consists in integrating these v-pairs into 〈Store(202), b〉, remembering
that b⊕ t = b. We thus obtain that
Σ2 = Σ1 ∪ {〈Store(101), t〉, 〈Store(202), b〉, 〈Store(303), f〉, 〈Cure(202), t〉,

〈New test(202), b〉, 〈New test(303), t〉}.
3. Since no rule applies on Σ2 to produce new v-pairs, the computation stops

returning Σ∗∆ = Σ2.

We draw attention on that Σ∗∆ is a model of ∆ because E ⊆ Σ∗∆ and all instanti-
ations of the rules in R are valid. For example the instantiation of x in ρ4 and ρ6
by 202 is valid in Σ∗∆ because:

− v∆(ρ→4 ) = b, since v∆(Humid(202)) = t and
v∆(Store(202)) = v∆(¬Store(202)) = b

− v∆(ρ→6 ) = b, since v∆(¬White(202)) = v∆(¬Store(202)) = b. 2
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The following proposition, shows that Σ∗∆ is a model of ∆.

Proposition 2 Given a database ∆ = (E,R), Σ∗∆ is a minimal model of ∆, with
respect to set inclusion.

Proof We show that Σ∗∆ is a model of ∆ by contraposition, assuming that Σ∗∆
is not a model of ∆. First, we have E ⊆ Σ0 and then, as E �k Σ∗∆ holds by
monotonicity and as no instantiated rule can change the truth value of the facts
involved in E, we have E ⊆ Σ∗∆. Thus, assuming that Σ∗∆ is not a model of ∆
implies that at least one rule ρ of inst(E,R) is not valid inΣ∗∆. In this case, head(ρ)
is not valid, while body(ρ) is valid. Then, denoting head(ρ) by ϕ (respectively ¬ϕ),
we have v∆(ϕ) = n or v∆(ϕ) = f (respectively v∆(ϕ) = t) along with v∆(body(ρ))
equal to t or b. Consequently Σ∆(Σ∗∆) 6= Σ∗∆, which is not possible by Definition 4.
This part of the proof is thus complete.

To show the minimality of Σ∗∆, we show that for every nonempty subset σ of
Σ∗∆, S = Σ∗∆ \σ cannot be a model of ∆. To this end, assuming that S is a model
of ∆, let k be the least integer such that Σk−1 ∩σ = ∅ and Σk ∩σ 6= ∅. We notice
that k exists such that k > 0 because, since S is a model of ∆, it holds that E ⊆ S
and so, since Σ0 = E, we have Σ0 ∩ σ = ∅.

Let 〈ϕ, v〉 be in Σk ∩ σ but not in Σk−1. In this case, vS(ϕ) = n and as
above, there exists one rule ρ in inst(E,R) such that head(ρ) is either ϕ or ¬ϕ
and in Σk−1, head(ρ) is not valid, while body(ρ) is valid. Since Σk−1 ⊆ S, we
have Σk−1 �k S and so, by monotonicity of the connectors involved in body(ρ),
vΣk−1(body(ρ)) �k vS(body(ρ)). As body(ρ) is valid in Σk−1, so is it in S. Since
head(ρ) is not valid in S, ρ is not valid in S either. S being assumed to be a model
of ρ, we obtain a contradiction, which completes the proof.

It has been shown in [6] that, even with conjunctive rules, Σ∗∆ is not the only
minimal model with respect to set inclusion, nor is it a minimal or a maximal
model, with respect to any of the orderings �k and �t. However, we also recall
from [6] that, with conjunctive rules whose heads are positive literals (i.e., for
Dalatogneg rules) all minimal models with respect to set inclusion share the same
false facts and the same valid facts.

At this point, we would like to come back to Proposition 1, and make an
important observation regarding the two closely related notions of implication
and rule. We recall that the first item in that proposition is the following:

− (φ1 ∨ φ2)→ φ3 ≡ (φ1 ⊕ φ2)→ φ3 ≡ (φ1 → φ3) ∧ (φ2 → φ3).

Now, consider the three implications as sets of instantiated rules:

R1 = {ϕ← φ1 ∨ φ2}, R2 = {ϕ← φ1 ⊕ φ2} and R3 = {ϕ← φ1, ϕ← φ2}
The important observation here is that when computing the corresponding seman-
tics the results are different. In other words, the three sets of rules lead to different
semantics, although the associated implications are equivalent.

We illustrate this important observation through the following example, in
which we also compare our approach with that in [5].

Example 2 Let ∆v1,v2
1 = (Ev1,v2 , R1), ∆v1,v2

2 = (Ev1,v2 , R2), ∆v1,v2
3 = (Ev1,v2 , R3)

be three families of databases where v1 and v2 are truth values in {t, b, n, f},
Ev1,v2 is either {〈P (a), v1〉, 〈Q(a), v2〉} when v1 6= n and v1 6= n, or {〈P (a), v1〉}
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∆v1,v2
1 t b n f

t t t t t
b t b t b
n t t n n
f t b n n

∆v1,v2
2 t b n f

t t b t b
b b b b b
n t b n n
f b b n n

∆v1,v2
3 t b n f

t t b t t
b b b b b
n t b n n
f t b n n

Fig. 4 Computing the truth values of S(a)

when v1 6= n and v2 = n, or {〈Q(a), v2〉} when v1 = n and v2 6= n, or ∅ when
v1 = v2 = n, and

− R1 = {S(a)← P (a) ∨Q(a)},
− R2 = {S(a)← P (a)⊕Q(a)},
− R3 = {S(a)← P (a), S(a)← Q(a)}.

We are thus considering 3 × 16 = 48 databases whose semantics are defined by
Ev1,v2 ∪ {〈S(a), v12i 〉} where for i = 1, 2, 3, v12i is the truth value obtained by
applying Σ∆v1,v2

i
to the rule(s) in Ri and the v-pairs in Ev1,v2 . The arrays displayed

in Figure 4 show these truth values based on v1 (the rows of the arrays) and v2
(the columns of the arrays). From left to right, the arrays correspond respectively
to the three sets of rules R1, R2 and R3.

For example, the value t in row ‘b’ and column ‘n’ of the array labelled ∆v1,v2
1 in

Figure 4, means that 〈S(a), t〉 belongs to the semantics of ∆b,n
1 = ({〈P (a), b〉}, R1),

where Q(a) has truth value n.

It should be stressed that since all these arrays are pairwise distinct, all three
sets R1, R2 and R3 produce different semantics in some cases. As examples it can
be seen from Figure 4 that:

− for v1 = t and v2 = b, S(a) is true in ∆t,b
1 and in ∆t,b

3 , but false in ∆t,b
2 ,

− for v1 = b and v2 = n, S(a) is true in ∆b,n
1 and false in ∆b,n

2 and in ∆b,n
3 .

As a consequence, this implies that contrary to standard Datalog approaches, re-
placing the rule in R1 by the two rules in R3 has an impact on the database
semantics in certain cases, although R1 and R3 yield the equivalent formulas as
shown in Proposition 1. Therefore, the claim in [5] whereby ‘There is a standard
way in Prolog to combine two program clauses for the same relation symbol, using
equality. Similar ideas carry over to languages based on a wide variety of bilat-
tices. . . ’ does not hold in our approach. This also shows that rule based semantics
do not always exactly ‘coincide’ with the semantics of implication. Consequently,
the claim above is debatable even in the approach of [5], because no comparison
is possible, as it makes no sense in [5] that more than one rule head involves the
same predicate.

Referring to our running example, the previous statements show that replacing
the rules ρ4 : ¬Store(x) ← Humid(x) and ρ6 : ¬Store(x) ← ¬White(x) by the
rule ρ46 : ¬Store(x)← Humid(x)∨¬White(x) would lead to different semantics.
Indeed, when considering ρ4 and ρ6, the fact that Humid(202) and White(202)
have respective truth values t and b, implies that Store(202) has truth value b. On
the other hand, Figure 4 shows that when considering ρ46, the same truth values
for Humid(202) and White(202) imply that Store(202) has truth value f. 2
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3.3 Safe Rules

An important issue in rule based databases is that a database can have infinite
semantics when HB is infinite. This point is indeed problematic because in such
cases, answers to some queries can be infinite, which is not acceptable in practice.

As a simple case, consider ∆ = (E,R) where E = {〈S(a), t〉} and R =
{P (x, y)← Q(x, y) ∨ S(x)}. Based on the truth table of ∨ shown in Figure 1, for
all α and β in U , Q(α, β) ∨ S(α) is true if so is S(α). Hence, Σ∗∆ = {〈S(a), t〉} ∪
{〈P (a, β), t〉 | β ∈ U}, which is infinite when U is infinite.

To cope with this difficulty, we define the notion of safe rules, inspired by the
case of Datalogneg databases. To see how the approaches are related regarding
this issue, let D = ({S(a)}, {P (x, y)← ¬Q(x, y) ∧ S(x)}) be a Datalogneg, whose
semantics is {S(a)} ∪ {P (a, β) | β ∈ U}. This result is somehow similar to that
for ∆ above, and the rule in D is clearly not safe since the variable y in ¬Q(x, y)
occurs in no positive literal in the body of the rule.

To formalize and characterize safe rules in our context, we need some prelim-
inaries as detailed next. First, we adapt the notion of active domain in relational
databases [2] to our approach as follows. Given a universe U , its associated Her-
brand base HB and a database ∆ = (E,R) over HB, we call the active domain of
∆, denoted by A(∆), the subset of U containing all the constants occurring in ∆.
Then the active Herbrand base of ∆, denoted by AB(∆) is the set of all facts in
HB that only involve constants in A(∆). Notice that A(∆) and AB(∆) are finite
sets, even if U is infinite, because E and R are assumed to be finite. The notion
of safe rule is defined as follows.

Definition 5 Given a Herbrand base HB, a rule ρ is said to be safe if for every
database ∆ = (E, {ρ}) where E is an arbitrary finite v-set involving facts in HB,
Σ∗∆ is a subset of AB(∆).

We first notice that, according to Definition 5, allowing variables in the head of a
rule not occurring in the body would generate non safe rules, and this explains why
in Definition 2, we have restricted all variables occurring in the heads of the rules to
also occur in the bodies. Indeed, let ρ : P (x, y)← Q(x) and ∆ = ({〈Q(a), t〉}, {ρ}).
Then, we haveAB(∆) = {P (a, a), Q(a)} andΣ∗∆ = {〈Q(a), t〉}∪{〈P (a, β), t〉 | β ∈
U}, showing that ρ is not safe according to Definition 5. Other examples not
relaxing the restriction in Definition 2 are presented next.

Example 3 The rule ρ : P (x)← P1(x)⊕P2(x, y) is safe, according to Definition 5.
Indeed, if inst is an instantiation of x and y such that inst(body(ρ)) is valid in
E, then at least one of the instantiated atoms P1(α1) or P2(α2, β2) is valid in E.
Hence, these atoms can not generate a v-pair P (γ) where γ is different than α1

and α2.
Notice that the above reasoning does not hold for ρ′ : P ′(x, y) ← P1(x) ∨

P2(x, y) because for ∆ = ({〈P1(a), t〉}, {ρ′}), we have
Σ∗∆ = {〈P1(a), t〉} ∪ {〈P ′(a, β), t〉 | β ∈ U},

showing that ρ is not safe according to Definition 5. 2

In order to syntactically characterize safe rules, we adapt the usual notion of
disjunctive normal form of a formula to the context of Four-valued logic. To this
end, we recall from [5,9] the following standard properties of the connectors of the
Four-valued logic:
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− ¬(φ1 ∨ φ2) ≡ ¬φ1 ∧ ¬φ2 ; ¬(φ1 ∧ φ2) ≡ ¬φ1 ∨ ¬φ2

− ¬(φ1 ⊕ φ2) ≡ ¬φ1 ⊕ ¬φ2 ; ¬(φ1 ⊗ φ2) ≡ ¬φ1 ⊗ ¬φ2

− Distributivity: for all distinct binary connectors ? and • in {∨,∧,⊕,⊗}
φ1 ? (φ2 • φ3) ≡ (φ1 ? φ2) • (φ1 ? φ3).

Using these properties, any quantifier free formula Φ can be transformed into its
equivalent ∨⊕-normal form according to the following steps:

1. ∨-transformation: Φ ≡ Φ1 ∨Φ2 ∨ . . .∨Φn where for every i in {1, 2, . . . , n}, Φi
does not involve the connector ∨.

2. ⊕-tranformation: For every i in {1, 2, . . . , n}, Φi is transformed into its equiv-
alent ⊕-normal form φ1

i ⊕ φ2
i ⊕ . . .⊕ φpii where for j in {1, 2, . . . , pi}, φji does

not involve the connector ⊕.
3. ∨⊕-transformation: Combining these previous two steps, we obtain:
Φ ≡ (φ1

1 ⊕ φ2
1 ⊕ . . .⊕ φp11 )∨ (φ1

2 ⊕ φ2
2 ⊕ . . .⊕ φp22 )∨ . . .∨ (φ1

n ⊕ φ2
n ⊕ . . .⊕ φpnn ),

where for every i in {1, 2, . . . , n} and every j in {1, 2, . . . , pi}, ∨ and ⊕ do not
occcur in φji .

4. ∧⊗-transformation: As for every i in {1, 2, . . . , n} and every j in {1, 2, . . . , pi},
the only connectors occurring in φji are ¬, ∧ and ⊗, the following equivalent

form of φji can be computed by applying transformations similar to those above:

φji ≡ (λ11 ⊗ λ21 ⊗ . . .⊗ λr11 ) ∧ (λ12 ⊗ λ22 ⊗ . . .⊗ λr22 ) ∧ . . . ∧ (λ1q ⊗ λ2q ⊗ . . .⊗ λ
rq
q ),

where for every i in {1, 2, . . . , q} and every j in {1, 2, . . . , ri}, λji is a literal,
that is of the form ϕ or ¬ϕ where ϕ is in HB.

Combining these transformations yields a formula equivalent to Φ, called the ∨⊕-
normal form of Φ. Based on the truth tables of Figure 1, given a formula Φ in-
volving no variable, for every v-set S, Φ is valid in S if and only if there exist i0
in {1, 2, . . . , n} and j0 in {1, 2, . . . , pi0} such that φj0i0 is valid in S. Furthermore,

assuming that φj0i0 is written as shown in the last item above, φj0i0 is valid in S if

and only if every literal λ occurring in the ∧⊗-transformation of φj0i0 is valid in S,
that is vS(λ) is t or b if λ = ϕ, and vS(λ) is f or b if λ = ¬ϕ.

As a consequence, Φ is valid in S if and only in the ∨⊕-normal of Φ, there
exists a ∨- and ⊕-free sub-formula φj0i0 for which all involved literals are valid in
S, and thus occur in S with an appropriate truth value. Based on this important
remark, the following proposition can be stated.

Proposition 3 Let ρ : h(X)← B(X,Y ) be a rule such that B(X,Y ) is written in
its ∨⊕-normal form using the same notation as above. ρ is safe if and only if for
every i in {1, 2, . . . , n} and every j in {1, 2, . . . , pi}, the sub-formula φji involves
at least all variables in X.

Proof Assume first that there exist i0 in {1, 2, . . . , n} and j0 in {1, 2, . . . , pi0} such
that φj0i0 does not involve all variables in X. We write X as X1X2 to mean that

the variables in X1 occur in φj0i0 whereas those in X2 do not. Let inst be an
instantiation of the variables in X1 and ∆ = (E, {ρ}) where E is the set of all
v-pairs 〈ϕ, b〉 such that ϕ occurs in inst(φj0i0 ). Then inst(φj0i0 ) is valid in E and so,
for every extension inst∗ of inst to the variables in X2 or in Y , inst∗(body(ρ)) is
valid in E. Hence, inst∗(h(X1X2)) belongs to the semantics of ∆, meaning that ρ
is not safe.

Conversely, if for every i in {1, 2, . . . , n} and every j in {1, 2, . . . , pi}, the sub-
formula φji involves at least all variables in X, whatever the valid sub-formula
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φj0i0 in B(X,Y ), the instantiation of the variables in φj0i0 assigns a value to every
variable in X implying that the fact involved in inst(h(X)) is in AB(∆). Thus, ρ
is safe, and the proof is complete.

4 Updates

We first would like to emphasize that our approach to updates follows the same
policy as in our previous work on database updating [12,13], whereby priority
is given to the latest updates with respect to the current database semantics.
This means that updates are always taken into account and that their effect can
not be overridden when computing the semantics. In this approach, such update
persistency holds because instantiated rules whose heads involve a fact occurring
in E, are not applied. This is made possible by restricting instantiated rules to
belong to inst(E,R).

4.1 Standard Update Semantics

Notice that, contrary to the traditional 2-valued models, in our approach, facts are
stored associated with a truth value. We emphasize in this respect that, in standard
2-valued approaches under CWA, inserting (respectively deleting) ϕ should be
understood as take into account that ϕ becomes true (respectively false) in the
database. On the other hand, in our Four-valued approach, an update should rather
be seen as a change in the truth value of a given fact. Formally, updates are defined
as follows.

Definition 6 Let ∆ = (E,R) be a database and ν = 〈ϕ, v〉 a v-pair. The result
of the update defined by ν in ∆ is the database ∆ν = (Eν , R) where Eν is defined
as follows:

− If ν = 〈ϕ, n〉 then Eν = E \ {〈ϕ, vE(ϕ)〉}
− Otherwise, Eν = (E \ {〈ϕ, vE(ϕ)〉}) ∪ {ν}.

In terms of truth value, an intuitive way to state Definition 6 is the following:

– If v = n, the update requires to set the truth value of ϕ to unknown, which
amounts to remove from E any v-pair involving ϕ, if any. This corresponds to
deletions in standard approaches.

– Otherwise, if v 6= n, the update consists in replacing the v-pair in E involving
ϕ, if any, by the v-pair involved in the update, that is ν.

Example 4 In the context of our running example, due to 〈Store(202), b〉 in the
database semantics, it is likely that the bag has to be tested again. Assuming
that in this case the sensors output the following: 〈H1(202), t〉, 〈H2(202), t〉 and
〈W1(202), t〉, these new v-pairs are inserted and the conflicting ones are deleted,
thus resulting in the following updated database extension:

E′ = {〈H1(101), f〉, 〈H2(101), f〉, 〈W1(101), t〉, 〈H1(202), t〉, 〈H2(202), t〉,
〈W1(202), t〉, 〈W2(202), t〉, 〈W1(303), f〉}. 2
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4.2 Other Possible Update Semantics

In the context of data integration, traditional updates are not always appropriate.
Indeed, suppose that 〈ϕ, t〉 has to be integrated in a given database ∆ = (E,R)
according to the following policy:

– If E contains no v-pair involving ϕ (i.e., ϕ is unknown in ∆), then the inte-
gration of 〈ϕ, t〉 is processed by inserting the v-pair in E.

– If E contains the v-pair 〈ϕ, t〉, then the integration of 〈ϕ, t〉 requires no change.
– If E contains the v-pair 〈ϕ, f〉, then the integration of 〈ϕ, t〉 implies that ϕ

becomes inconsistent in ∆, meaning that 〈ϕ, t〉 should be changed to 〈ϕ, b〉.
– If E contains the v-pair 〈ϕ, b〉, then the integration of 〈ϕ, t〉 implies that ϕ

remains inconsistent in ∆, meaning that no change is required.

The last two cases do not correspond to standard updates, because in the updated
database, the truth value of ϕ is not the one specified in the update. In fact, the
truth value of ϕ in the updated database is defined by vE(ϕ) ⊕ t. Generalizing
this remark, we define integrative updates as follows.

Definition 7 Let ∆ = (E,R) be a database, ν = 〈ϕ, v〉 a v-pair and � a well
formed binary expression involving the connectors ¬, ∨, ∧, ⊕ or ⊗. The integrative
update on ∆ defined by (ν, �) results in the database ∆′ = (E′, R) where E′ is
defined by:

− If (v � vE(ϕ)) = n, E′ = E \ {〈ϕ, vE(ϕ)〉}
− Otherwise, E′ = (E \ {〈ϕ, vE(ϕ)〉}) ∪ {〈ϕ, (v � vE(ϕ))〉}

We illustrate and comment Definition 7 below.

1. As suggested earlier, standard data integration is expressed by defining � as
ϕ1 � ϕ2 = ϕ1 ⊕ ϕ2.

2. Considering the connector ⊗ instead of ⊕ suggests another kind of data in-
tegration: instead of cumulating the knowledge as done with ⊕, the result
of integration can be seen as the ‘common knowledge’. For example, when it
comes to integrate 〈ϕ, t〉 in the presence of 〈ϕ, f〉, the result is 〈ϕ, n〉, meaning
that ϕ becomes unknown. Moreover, the integration of 〈ϕ, t〉 in the presence
of 〈ϕ, b〉, results in keeping the former v-pair while eliminating the latter. This
way of integrating can be seen as a mean to eliminate cases of inconsistency.

3. However, it could not be suitable to eliminate inconsistency, but on the con-
trary to preserve it. Namely, in the case above, i.e., when integrating 〈ϕ, t〉
in the presence of 〈ϕ, b〉, it might be expected that 〈ϕ, b〉 be kept. As shown
in the right most table of Figure 5, our approach allows to take this case into
account by defining a connector � as follows:

ϕ1 � ϕ2 = (ϕ1 ⊗ ϕ2)⊕ (ϕ1 ⊗ ¬ϕ1)⊕ (ϕ2 ⊗ ¬ϕ2).

It should be emphasized from Definition 7 that it is unlikely that any expression
� makes sense for defining an integration policy. We however notice that the last
item above shows that some sophisticated expressions might be relevant.

Example 5 In the context of our running example, we assume that the sensor H2

has been replaced with a new one of another type that allows for the additional
answer b when the degree of humidity has not been determined properly. Notice
that this type of output should be distinguished from the absence of answer that
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ϕ1 ⊗ ϕ2 t b n f

t t t n n
b t b n f
n n n n n
f n f n f

⊕ ϕ1 ⊗ ¬ϕ1

t n
b b
n n
f n

⊕ ϕ2 ⊗ ¬ϕ2

t n
b b
n n
f n

ϕ1 � ϕ2 t b n f

t t b n n
b b b b b
n n b n n
f n b n f

Fig. 5 Computing the truth table of the expression �

is understood as a failure. However, since the sensor is new, its output has to be
carefully taken into account. This can be modeled by integrating the output of the
new sensor with the current content of the database (i.e., the output from the old
sensor).

As explained above this integration can be done in many different ways, some
of which being illustrated below, starting form the database extension E′ of Ex-
ample 4, containing the v-pairs 〈H2(101), f〉 and 〈H2(202), t〉. We also assume
that the values returned by the new sensor are: 〈H2(101), f〉, 〈H2(202), b〉 and
〈H2(303), t〉.

Integrating the new values with the existing ones in the standard way using
⊕ would yield: 〈H2(101), f〉, 〈H2(202), b〉 and 〈H2(303), t〉, meaning that the new
values replace the current ones. However, a more conservative way of integrating
the new values is to consider the connector ⊗ instead of ⊕, which would yield the
following: 〈H2(101), f〉 and 〈H2(202), t〉, meaning that the inconsistency returned
by the new sensor is not taken into account and that H2(303) remains unknown.

Although this result could be seen as more ‘conservative’ than the first one in
case of disagreement, it might seem counter-intuitive that the inconsistency is not
taken into account. Considering the operator � would produce 〈H2(101), f〉 and
〈H2(202), b〉, meaning that the inconsistency is now taken into account and that
H2(303) remains unknown. 2

We argue that integrative updates generalize standard updates, because any stan-
dard update can be expressed as an integrative update. Indeed, given a database
∆ and a fact ϕ, the following holds:

− The update defined by 〈ϕ, t〉 is expressed by the integrative update (〈ϕ, t〉,∨).
− The update defined by 〈ϕ, b〉 is expressed by the integrative update (〈ϕ, b〉,⊕).
− The update defined by 〈ϕ, n〉 is expressed by the integrative update (〈ϕ, n〉,⊗).
− The update defined by 〈ϕ, f〉 is expressed by the integrative update (〈ϕ, f〉,∧).

5 Related Work

Comparing our approach with all related work in the literature is simply not
possible due to the huge amount of papers on these topics that have been published
during the past four or five decades... In what follows, we mainly focus on the most
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related approaches dealing with (i) logic and databases, (ii) inconsistent databases,
(iii) multi-valued logic.

Logic and Databases. We first refer to [1,2,14] for surveys of standard ap-
proaches to Datalog databases, while in [11] the problem of negation is overviewed
in more details. It is important to recall that in all these work, CWA is assumed,
thus leading to difficulties in handling falsity, a problem that does not arise in our
framework, which assumes OWA instead of CWA.

Changing from CWA to OWA is not new [15] and the need has appeared due to
the emergence of data integration on the web. This is so because in this framework,
when a piece of information has not been retrieved in the answer to a query, this
cannot be seen as that this piece of information is false, but rather that this piece
of information has not been searched properly. It is thus more appropriate that
this piece of information be assigned the truth value unknown.

On the other hand, the examples in this paper suggest that when integrating
information from several sources, contradictions may occur, thus motivating for
the introduction of inconsistent as a truth value. This point of view has also been
considered in [16] but in a logical framework that differs from ours. Indeed, in
[16], the underlying four valued logic is not the one in [3], although the consid-
ered implication looks similar to FDE implication. Morevover, in [16] the authors
consider two negations in the context of CWA and propose an alternating strat-
egy for computing the database semantics, inspired from the strategy in [17] with
well-founded semantics.

The work in [5] is much closer to our approach than that in [16] because
the underlying logic in [5] is that in [3]. However, the reader is referred to the
previous sections regarding some main differences between the approach in [5] and
ours. Among these differences, we mention the form of the rules and the semantic
operator that in [5] makes rule heads false when so is the body, whereas in our
approach, the truth value is not changed. Related work following this policy of
head assignment to false can be found in [18,19] where, in the context of relational
databases, reasoning with four truth values is modeled as reasoning twice under two
truth values: once to deduce true information and once to deduce false information
(inconsistency being information obtained in the two ways of reasoning). However,
the context of the work in [18,19] differs from ours and that in [5] because in [18,19],
implications express equality-generating or tuple-generating-constraints instead of
rules.

It is also important to recall that the issue of deductive database updating was
first addressed in [20], and then by many other authors among which we cite [13],
which was the first approach suggesting to store false facts and to give priority to
most recent updates. The present work builds upon these basic ideas in a much
wider context.

Inconsistent Databases. Regarding related work on inconsistent databases, we
propose a radically different approach. Indeed, the purpose of previous work deal-
ing with contradictions in databases, is either to define and investigate ‘repairs’
so as to make the database consistent ([21,22]), and/or to identify a set of queries
whose answer is independent from any contradiction ([23]). Instead, we propose
an approach in which inconsistent information can be stored or deduced through
rules, and our purpose is not to eliminate or avoid contradictions.
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Indeed, our semantics allows for handling inconsistent information as such, thus
reflecting real world applications in which true, false, inconsistent and unknown
information have to be dealt with, as is the case when data integration is involved.
In doing so, we follow the position in [24], in that inconsistent information should
not be avoided, but treated as such by taking appropriate actions when necessary.
The issue of taking actions lies beyond the scope of this paper, because our rules
cannot express an information such as ‘If ϕ is inconsistent then φ’. Indeed in our
formalism such a rule would be expressed as φ ← Bϕ, which is not allowed, but
which is the subject of our current research.

The approach in [25] addresses the issue of data inconsistency due to data
integration according to a specific scenario. In [25], the authors consider that the
information consists of facts that a central server collects from autonomous sources
and then tries to combine, using rules that follow the syntax and the semantics
of [5], and a set of hypotheses H, representing the server’s own estimates. In this
setting, the authors show how to compute what they call the support of H, defined
as the maximal part of H that does not contradict the facts in the database
semantics. This notion of support has then been shown to provide hypothesis-based
semantics for the class of programs defined in [5], and in the case of Datalogneg

programs, these semantics have been shown to extend well-founded semantics of
[17] and Kripke Kleen semantics of [26].

Multi-valued Logic. The Four-valued logic that we consider in this work has
been introduced in [3] and then has motivated many research efforts in the com-
munity of research in non standard logic. Again, our aim is not to review all these
work, and we refer to [27] for a nice review of this topic. Here, we focus on those
work that are the most closely related to ours and that have already been cited
in many places. In [7] the issue of the functional completeness has been addressed
among others and their result has of course inspired our concern on this issue,
related to FDE implication. On the other hand, the bi-lattice structure of this
logic has been widely studied in [5], where the concept of logic programs in this
framework was first introduced. We recall that the semantics of the rules in [5] is
different from ours in that in [5], the head is set to false when the body is false,
whereas in our approach, the truth value of the head is not changed in this case.
We argue in this respect that our approach follows standard approaches in that
implications whose body is not valid are valid, implying that truth values of the
head have not to be changed.

More recently, in [9], an implication slightly different than FDE implication
(that we have formerly denoted by ↪→) has ben proposed, and a strong relationship
between this logic and rough set theory has been established. We recall that it has
been shown in [6] that our approach works with this implication as well, although
FDE implication has been chosen in the present paper.

6 Conclusion

In this paper we have introduced a novel approach to deductive databases dealing
with contradictory information. We stress again that this work is motivated by the
facts that (i) many contradictions occur in the real world and these contradictions
must be dealt with as such, and (ii) data integration is a field where such contra-
dictions are common. To cope with this issue we consider a deductive database
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approach based on the Four-valued logic initially introduced in [3]. Our database
semantics follows FDE implication and has been shown slightly different from that
of [5]. We also recall that in this paper, rules whose head is a negative literal are
allowed and we have shown that contradicting rules could be safely taken into
account in our context. Another important contribution of this work is to propose
a new kind of update that allows to ‘combine’ the expected truth value of a fact
with its current truth value in the database. This updating policy is of particular
interest when it comes to integrate new pieces of information in a given database.

Based on the results reported in this paper, we are investigating the following
issues. First, as rules can contradict each other (a situation which frequently hap-
pens in real life), it is important to characterize the exact situations when these
contradictions happen and if so, which actions have to be taken, as suggested in
[24]. We are investigating this important issue by extending the form of the rules to
allow in their body additional connectors introduced [9] (such as connector B re-
called in Section 2). Another important extension of this work is the investigation
of an algebraic language that would allow for the definition of a generic framework
and the expression of constraints on data such as functional dependencies or tuple
generating dependencies. Last but not least, based on such an algebra, we strongly
believe that the Four-valued framework provides an elegant and efficient tool for
defining a new query language devoted to data integration rather than to data
querying or updating. The notion of integrative updates as defined in Section 4,
will be the starting point of this future work.
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