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ABSTRACT

Context. Pressure maxima are regions in protoplanetary disks in which pebbles can be trapped because the regions have no local
pressure gradient. These regions could be ideal places in which planetesimals might be formed or to isotopic reservoirs might be
isolated. Observations of protoplanetary disks show that dusty ring structures are common, and pressure maxima are sometimes
invoked as a possible explanation. In our Solar System, pressure bumps have been suggested as a possible mechanism for separating
reservoirs with different nucleosynthetic compositions that are identified among chondrites and iron meteorites. In this paper, we detail
a mechanism by which pressure maxima form just inward of the snow line in stratified disks (with a dead zone and an active layer).
This mechanism does not require the presence of a planet.
Aims. We investigate the conditions for the formation of pressure maxima using a vertically averaged α viscosity model and release
of water vapor at the snow line.
Methods. We considered a 1D α disk model. Using a combination of analytical and numerical investigations, we explored the range
of conditions for a pressure maximum to form inside the dead zone and just inward of the snow line.
Results. When the vertically averaged α is a decreasing function of the surface density, then the release of water vapor at the snow
line decreases the sound velocity, and a pressure bump appears in turn. This requires a constant inflow of icy pebbles with a ratio of
the pebble influx to gas influx >0.6 for a power-law disk with a 1% ice-to-gas ratio, and >1.8 for a disk with an ice-to-gas ratio ∼0.3%.
If these conditions are met, then a pressure maximum appears just inward of the snow line due to a process that couples the dead and
active layers at the evaporation front. The pressure bump survives as long as the icy pebble flux is high enough. The formation of the
pressure bump is triggered by the decrease in sound velocity inward of the snow line through the release of water vapor.
Conclusions. This mechanism is promising for isolating early reservoirs carrying different isotopic signatures in the Solar System and
for promoting dry planetesimal formation inward of the snow line, provided the vertically averaged description of a dead zone is valid.

Key words. protoplanetary disks

1. Introduction

Formation of pressure maxima in protoplanetary disks is an
active topic of research because these maxima are seen as ideal
places in which pebbles might accumulate efficiently and sub-
sequently form planetesimals through the so-called streaming
instability process, for example (Johansen et al. 2007; Pinilla
et al. 2012; Drążkowska & Dullemond 2014; Drążkowska &
Alibert 2017; Charnoz et al. 2019). Pressure bumps might also
act as dynamical barriers at which the radial drift of parti-
cles with a Stokes number (St) that deviates from zero would
be slowed down, stopped, or even reversed because the disk
becomes super-Keplerian for a positive pressure gradient. Dust
and pebbles experience gas drag. Their drift velocity (relative to
the gas) is (Weidenschilling 1977)

Vdrift =
St

2Ωρg(1 + St2)
dP
dr
, (1)

where Ω is the local Keplerian frequency, ρg is the gas density,
and P the gas pressure. Because the direction of migration (rela-
tive to the gas) is dictated by ∂P/∂r, a pressure bump is defined
as a pressure maximum, so that on either side, drifting peb-
bles move toward the local pressure maximum. Conversely, for
a pressure minimum, drifting pebbles will move away from the
minimum.

For these reasons, a pressure maximum is also invoked as
a possible dynamical barrier that could be at the origin of a
major isotopic heterogeneity observed in Solar System mete-
orites: Meteorites can be divided into two broad groups because
the variations in their stable isotopes do not depend on mass
(Trinquier et al. 2008; Kruijer et al. 2017, 2020; Kleine et al.
2020). These are the carbonaceous chondrite (CC) group and
the non-carbonaceous chondrite (NC) group. Based on their iso-
topic anomalies, iron meteorites can also be divided into the CC
and NC groups. Accretion timescales modeled from Hf/W ages
of metal silicate differentiation in parent bodies of iron mete-
orites belonging to the NC and CC groups show that NC bodies
accreted earlier than CC bodies, but with an overlap at about
'1.4 Myr after CAIs. The accretion ages of the parent bodies of
chondrites and iron meteorites show that the NC and CC reser-
voirs were isolated very early in the disk (<0.4 Myr after CAIs
for the NC group) and during nearly 2 Myr (Kruijer et al. 2017;
Kleine et al. 2020).

Jupiter is often proposed (Kruijer et al. 2017; Kleine et al.
2020) as responsible for separating the two reservoirs, but it has
recently been argued that Jupiter may have formed too late for
the isolation process to be efficient enough (Brasser & Mojzsis
2020). In the same study, it was proposed that the isolation may
result from the presence of a pressure maximum that appeared in
a few 100 Kyr after CAIs, but without detailing how this pressure
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bump could have formed. In addition, the very early model age
for the accretion of the parent bodies of NC iron meteorites
(<0.4 Myr after CAIs, Kruijer et al. 2017) shows that the sepa-
rated NC and CC reservoirs probably existed in the disk before
the formation of Jupiter.

Pressure maxima might also be interesting mechanisms
explaining other observed disk features such as dusty ringed
structures in transition disks (see, e.g., Pinilla et al. 2012; van
der Marel et al. 2018) or as means to concentrate dust to form
water-poor planetesimals if their formation occurred inward of
the snow line (Ida & Guillot 2016; Ida et al. 2021; Charnoz et al.
2019; Hyodo et al. 2019, 2021a).

How a pressure bump might form in the absence of a planet
is still unclear. Our study is an attempt to answer this question.
Charnoz et al. (2019) reported the formation of a long-lasting
pressure bump just inward of the snow-line and the subsequent
runaway accumulation of dust at the bump when a stratified
accretion disk with a dead zone is considered. However, the
mechanism triggering this bump was not thoroughly investi-
gated, but was clearly associated with the release of water vapor
inward of the snow-line. Here we try to understand how a bump
might form inward of a snow-line using the popular α disk
description (which is not devoid of problems itself, see, e.g.,
Turner et al. 2014 for a critical review).

In Sect. 2, we introduce a simple parameterization of α to
capture the effect of a dead zone in a protoplanetary disk. We
detail with simple analytical arguments how the release of water
vapor will trigger the formation of a pressure bump. In Sect. 3,
we demonstrate the existence of this process with numerical sim-
ulations and investigate the space of free parameters. In Sect. 4,
we investigate at which epoch a pressure bump might form dur-
ing the disk evolution. Our results are discussed in Sect. 5 with
a special emphasis on the separation of isotopic reservoirs as
observed in our Solar System.

2. 1D analytical study of a disk in which a ααα
decreases with surface density

2.1. Vertically averaged α

Protoplanetary disks are thought to have a vertically stratified
structure because of nonideal MHD (Magneto Hydro Dynamics)
effects. The disk midplane may have a low turbulence and low
accretion rate because of ohmic diffusion that prevents the onset
of magnetorotational instability (Turner et al. 2014). This results
in a quiet (i.e. non turbulent) ‘dead’ midplane with equivalent α
(called αd) in the range 10−5 to 10−3 depending on local hydrody-
namic turbulence (Bai & Stone 2013; Turner et al. 2014; Gressel
et al. 2015; Kadam et al. 2019). It is topped by an active layer with
a high accretion rate but low column density (Σa) in the range
100–1000 kg m−2 (Turner et al. 2014), and it may have a low level
of turbulence (Béthune et al. 2017) despite the high accretion
rate. In the active layer the effective value of α is designated by
αa. The very upper layer may be occupied by disk winds, a region
in which ambipolar diffusion is active that torques the two pre-
vious layers and where low-density winds breeze outward. The
transition between the dead and active layers (in terms of column
density) may be very sharp (Turner & Sano 2008; Bai & Stone
2013; Turner et al. 2014). In 1D models it is useful to introduce
the vertically averaged α:

〈α〉 =
1
Σ

∫ +∞

−∞

ρ(z)α(z)dz, (2)

Fig. 1. p as a function of Σ for 〈α〉 as defined in Eq. (3). p is defined in
Eq. (4).

where ρ(z) and α(z) are the values of the gas density and α at
altitude z, respectively. As the transition of the active to the dead
layer is very sharp, it is possible to use a parameterization of 〈α〉
assuming that the disk is made of two layers: an active layer with
constant column density Σa (100–1000 kg m−2, largely indepen-
dent of the distance to the star (Turner & Sano 2008; Turner et al.
2014), and constant α = αa, and a dead midplane layer with sur-
face density Σd = Σ−Σa and constant α = αd (see the appendix).
Thus we obtain (Terquem 2008; Zhu et al. 2010; Bai & Stone
2013; Charnoz et al. 2019; Kadam et al. 2019){

if Σ ≥ Σa: 〈α〉 (Σ) =
Σaαa+(Σ−Σa)αd

Σ
if Σ < Σa: 〈α〉 (Σ) = αa

. (3)

Following Kadam et al. (2019), we used αa = 10−2 and αd =
10−5. In the following, we use a simpler parameterization of 〈α〉
for clarity so that 〈α〉 ∝ Σ−p. It is therefore useful to introduce p,
the exponent of the power law locally approximating 〈α〉 (Σ). It
is

p =
−Σ

〈α〉

∂ 〈α〉

∂Σ
. (4)

Inserting Eq. (3) into Eq. (4), we find that p ranges from 0 to
(αa − αd)/αa. Because αa � αd, p can approach very closely 1.
p is plotted in Fig. 1. For Σ < Σa, p = 0 because 〈α〉 is a constant
equal to αa. For Σ > Σa and Σ < Σaαa/αd, p decreases from ∼1
to 0. For Σ > Σaαa/αd, p is almost equal to 0.

2.2. Small amplitude perturbation

For illustrative purposes, we start by considering the case of a
small sound velocity perturbation to emphasize the strong effect
it has on the disk pressure profile. The disk is described through
the standard α disk formalism, in which the gas surface density
Σ evolution obeys

∂Σ

∂t
=

3
r
∂

∂r

(
r1/2 ∂

∂r
(νΣr1/2)

)
, (5)

where ν and r are the local viscosity and distance to the star.
Steady states are those solutions for which ∂Σ/∂t = 0, implying
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νΣ = cst. Noting that the mass flux Ṁ = 3πνΣ, we obtain Σ = Ṁ
3πν

at steady state, which is well known. The effective viscosity is
ν = 〈α〉C2

s /Ω, where Cs is the local sound velocity. We assume
that 〈α〉 can be written as

〈α〉 = AΣ−p, (6)

where A is a constant and p is a positive real number ≤1. For
every value of Σ, there is a different value of p.

We replaced Eq. (6) into the expression of the steady-state
surface density: Ṁ = 3πνΣ. After solving for Σ, we obtained the
surface density in the midplane at steady state Σss inside a dead
zone and for a fixed value of p and Σ,

Σss =

(
ṀΩ

3πAC2
s

) 1
1−p

. (7)

It is obvious from Eq. (7) that Σss has no steady-state solution
for p = 1, and for p < 1, a minimum of sound velocity induces
a maximum of surface density. In Eq. (7), p is fixed (given by
Eq. (4)). For locally isothermal pressure P = ΣΩCs/(2π)1/2, we
obtain for the local pressure at steady state Pss

Pss =
Ω

2−p
1−p

(2π)1/2

(
Ṁ

3πA

) 1
1−p

C
−(1+p)

1−p
s . (8)

We now quantify the effect of a sound velocity perturbation
(δCs) on the pressure profile at steady state. This sound velocity
perturbation may result from a local variation of the gas mean
molecular weight because water vapor is released at the snow-
line. By calculating a first-order expansion of Pss as a function
of Cs we obtain δPss, the pressure perturbation at steady state, as
a function of the sound velocity perturbation δCs,

δPss = −
1 + p
1 − p

Pss
δCs

Cs
. (9)

Again, the amplitude of the pressure perturbation diverges
when p → 1, and δPss has a sign opposite to the sound-velocity
perturbation. We now determine how strong δCs must be to
induce a pressure bump by taking the derivative of Eq. (8)
and setting that for a pressure bump ∂Pss/∂r ≥ 0. We write
Ω = Br−3/2 (with B a constant), and we obtain the condition for
a pressure bump to appear by deriving Eq. (8) with respect to r,

−
3a
2r
−

b
Cs

∂Cs

∂r
≥ 0, (10)

with a = (2 − p)/(1 − p) and b = (1 + p)/(1 − p) (two positive
constants). Thus a pressure bump appears if the local deriva-
tive of Cs fulfills ∂Cs/∂r ≤ −3a/2br, which is a negative sound
velocity perturbation.

Assuming that the disk is radiatively heated by the star, the
unperturbed sound velocity profiles behave like Cr = Dr−1/4,
with D standing for a positive constant. We computed the
amplitude of the sound velocity perturbation δC, above the
unperturbed radiative profile, Cr, to trigger a pressure bump. We
write Cs = Cr + δC and introduce it in Eq. (10). We derive the
amplitude of the sound velocity perturbation to induce a pressure
bump,

∂δC
∂r
≤ −

Cr

r
(11 − 7p)
4(1 + p)

, (11)

for p close to but smaller than 1, we obtain − ∂δC
∂r ≥

1
2

Cr
r . This

shows that the possibility of forming a pressure bump depends
both on the amplitude of the sound perturbation (δC) and on
its width (δr) by approximating ∂δC

∂r ' δC/δr. We are interested
here in sound–velocity perturbations induced by the release of
water vapor just inward of the snow-line, which modify the
mean molecular weight of the gas at constant temperature. As
the isothermal sound velocity is C = (RT/µ)1/2, we obtain δC =
−1/2Cδµ/µ. Equation (11) is therefore rewritten as

δµ

µ
≥
δr
r

(11 − 7p)
2(1 + p)

. (12)

H2O has the molecular weight µH2O = 18 g mol−1, and the
average gas of solar composition has µg = 2.3 g mol−1. The mean
molecular weight is 1/µ = f /µH2O + (1 − f )/µg (Schoonenberg
& Ormel 2017). Noting f the water mass fraction, we obtain
δµ/µ = δ fµ(1/µg − 1/µH2O) ' 0.87δ f . The previous equation is
accordingly rewritten in term of the water mass fraction,

δ f ≥
δr
r

2(11 − 7p)
3.5(1 + p)

. (13)

Here, δr is the radial spatial scale of the variation of the
water-vapor content, typically the physical width of the snow-
line controlled by the saturating vapor. δr is derived in Hyodo
et al. (2021a), and δr is about ∼0.2 au (their Eq. (54)) with
the model settings used in Schoonenberg & Ormel (2017). δ f is
the amplitude of the variation of the water-vapor mass fraction.
Before the inflow of water ice coming from beyond the snow-
line f ' 0.01, this is the average water mass fraction in a disk
of solar composition. Equation (13) provides a condition for the
apparition of a pressure bump in the presence of increasing water
vapor at the snow-lines. It states that a pressure bump will appear
if δ f ≥ 0.28 for p = 0.5 or δ f ≥ 0.14 for p = 1. To test this
criterion, we performed some simple tests with an α disk model
solving Eq. (5) for gas and computing the viscosity using Eq. (6),
so that p can be fixed. The initial water mass fraction, f , and δr,
was set by hand using a Gaussian profile with standard deviation
0.1 au (Hyodo et al. 2021a). When Eq. (13) is satisfied, a pressure
bump forms with this toy model. A pressure maximum appears
for δ f ' 0.2 in Fig. 2. The surface density profiles also changes
slightly according to Eq. (7). For p close to 1, we therefore kept
the criterion for pressure bump formation as δ f > 0.2.

2.3. Large amplitude perturbation

We so far considered for illustrative purposes only a small per-
turbation of the sound velocity, and thus a small amount of
water vapor. It has been found, however, that the sound veloc-
ity perturbation necessary to induce a bump is not so small
(because − ∂δC

∂r ≥
1
2

Cr
r ). To continue our demonstration, we there-

fore abandoned our first-order development and returned to the
original equations. We first computed the steady-state surface
density by inserting Eq. (3) into the steady-state flux Ṁ = 3πνΣ.
As it is common to parameterize the disk evolution using the
accretion rate, Ṁ, we computed for different Ṁ the steady-state
disk surface density assuming the dead-zone prescription for 〈α〉
(Eq. (3)) combined with the steady-state relation Ṁ = 3πνΣ.
After a little algebra, we obtained the steady-state surface density
Σss: if Ṁ ≥ ṀDZ: Σss = ṀΩ

αd3πC2
s

+ Σa

(
1 − αa

αd

)
if Ṁ < ṀDZ: Σss = ṀΩ

αd3πC2
s

, (14)
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Fig. 2. Pressure vs. distance in disks at steady states with different
water-vapor mass fraction ( f ) enhancement at the snow-line (located
at 3 au here). Here, Ṁ = 10−9 M� yr−1 and p = 0.1 (top), p = 0.5 (mid-
dle), and p = 0.9 (bottom). The width of the water-vapor-rich region is
arbitrarily set to 0.1 au (numerically and analytically derived in Hyodo
et al. 2021a). For the same mass fraction of water vapor, the pressure
bump amplitude increases for larger p.

where ṀDZ is the critical accretion rate beyond which a region is
embedded in a dead zone, ṀDZ = Σaαa3πC2

s /Ω.
Assuming Ṁ > ṀDZ, the pressure in the dead zone at steady

state is then

P =
1

(2π)1/2

(
ṀΩ2

αd3πCs
+ ΩCsΣa(1 − αa/αd)

)
. (15)

Then, we determined the condition for which ∂P/∂r ≥ 0 in
the DZ (Dead Zone). We obtain

∂Cs

∂r
≤
−3Cs

r

(
A1 − A2/2
A1 + A2

)
, (16)

with the coefficients

A1 =
ṀΩ2

αd3πCs
(17)

A2 = ΩCsΣa(αa/αd − 1). (18)

We now reformulate the above criterion in terms of water mass
fraction enhancement at the snow-line. Because Cs = (RT/µ)1/2,
then dCs = 1/2CsdT/T − 1/2Csdµ/µ. In the region at the snow-
line in which water vapor is released, we assume that dµ/µ �
dT/T so dCs ' −1/2dµ/µ. Because δµ/µ ' 0.87δ f , the bump
formation criterion (Eq. (16)) is rewritten in terms of water-vapor
mass fraction (δ f ) is

δ f > 7
δr

r

(
A1 − A2/2
A1 + A2

)
. (19)

This equation gives a much better criterion for forming a
pressure bump even in the case of strong sound velocity per-
turbation. The water-vapor enhancement necessary for forming
a pressure bump δ f as a function of Ṁ is plotted in Fig. 3 for
δr/r ' 0.1. At high surface densities and high accretion rate,
δ f ' 0.7 (equivalent to A2 � A1 in Eq. (19)). A low accretion
rate, δ f ' 0.7, in agreement with estimates of the previous sec-
tion. It is interesting that as the accretion rate decreases, it is
increasingly easy for the disk to develop a pressure bump (as δ f
drops from 0.7 to 0.2). When the disk has lost most of its mass,
and when the snow-line is no longer inside the dead zone, it is
no longer possible to develop a pressure bump.

For the high accretion rates that are relevant for young disks,
we keep for simplicity the criterion

δ f > 7
δr

r
. (20)

2.4. Criterion in terms of the mass flux of icy pebbles

The criterion derived in Eq. (12) does not allow predicting the
range of pebble and gas flux for which a pressure bump may form
inside a dead zone. We therefore propose the following order of
magnitude estimates: The vaporization region (the region around
the snow-line in which icy pebbles evaporate) is located at a
distance r and has a width δr. The water mass contained in
this region is Mw. It is fed by the incoming flux of icy pebbles
Fi = 2πrviΣi with an ice surface density Σi and an icy pebble
velocity vi. Water vapor leaves this region with the same veloc-
ity as the gas vg, so that the water-vapor flux leaving the region
is Fv = 2πrvgΣw. After a transient phase, the surface density of
water vapor will reach a steady state, with a surface density at
steady state Σw,ss = Σivi/vg. For a pressure bump to appear, we
must have Σw,ss/Σ > δ f . In this way, we define another (equiva-
lent) condition for a pressure bump to form, as a function of gas
velocity and ice surface density,

vi

vg
> 7

Σ

Σi

δr
r
, (21)

for δr ' 0.2 au (Hyodo et al. 2021a) and r ' 2 au, and for
Σi/Σ ' 0.01 (as typical values), we obtain vi/vg > 70 for a
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Fig. 3. Water-vapor fraction at the snow-line that is required to induce
a pressure bump as a function of the accretion rate (Ṁ), at 2 au. The
solid red line shows δ f for Σa = 100 kg m−2, and the solid blue line
shows Σa = 1000 kg m−2. The dashed red and blue lines display ṀDZ,
the accretion rate for which the 2 au region would be in a dead zone.

pressure bump to appear. Equivalently, Eq. (21) can be formu-
lated in terms of pebble-gas flux,

Fi

Fg
> 7

δr
r
, (22)

and with these values, we obtain Fi/Fg > 0.7.
The conditions for a pressure bump to appear at the snow-line

are summarized below:
– The snow-line must be embedded within the dead zone

(and not necessarily close to its edge);
– The ice flux required for forming a pressure bump depends

on the surface density at the snow-line. The higher the surface
density (for young disks with high accretion rates), the higher the
required flux. Conversely, as the surface density decreases, the
accretion rate decreases also, and the lower the ice flux required
for forming a pressure bump;

– For a disk with a high surface density, which corresponds
to a high accretion rate (> 10−7 M� yr−1), assuming the Σi/Σ '
0.01, a pressure bump will form at the snow-line if vi/vg > 70, or
equivalently, if Fi/Fg > 0.7 for an ice-to-gas ratio of 1%. This
corresponds to p close to 0. This shows that a high pebble flux is
needed in dense disks to form a pressure bump;

– For a disk with a low surface density (and an accretion
rate in the range ' 10−9 M� yr−1), assuming the Σi/Σ ' 0.01,
a pressure bump will form at the snow-line if vi/vg > 20, or
equivalently, if Fi/Fg > 0.2 for an ice-to-gas ratio of 1%. This
corresponds to the case with p close to 1, so that it is easier in
low surface density dead zones to form a pressure bump.

These above calculations assume that the surface density of
the disk has reached a steady state (i.e., the accretion rate is con-
stant everywhere). However, simulations of disks that include a
dead zone (Zhu et al. 2010; Hasegawa & Takeuchi 2015; Charnoz
et al. 2019) show that in general, no steady state is reached, and
that the disk shows episodic phases of high and low accretion
rates. In the next section, we therefore numerically study the
formation of a pressure bump for a disk that is not in a steady
state.

3. Comparison with time-evolving simulations

We ran 12 disk evolution simulations in order to verify the valid-
ity of the criteria established in the previous section, which
assume accretion at steady state so that the surface density fol-
lows Eq. (14). Here, we assumed a power-law surface density
disk, so that is not at steady state, but corresponds to a more real-
istic case than in the previous section. We implemented a simple
time-evolving alpha disk model very similar to the one described
in Schoonenberg & Ormel (2017) and Hyodo et al. (2019) to
treat gas, pebbles, and water vapor through diffusion and advec-
tion. The influx of icy pebbles was kept constant, as was the
Stokes number of pebbles during their drift. The temperature
profile was also constant and decreased like r−1/2. Evaporation of
water vapor was treated as in Schoonenberg & Ormel (2017) and
resulted in a change of the local sound velocity that changed the
effective viscosity ν through the relation ν = 〈α〉C2

s /Ω. The ini-
tial surface density of gas followed Σ(r) = 104(r/1 au)−1 kg m−2

, and the temperature profile was T (r) = 150 K(r/2 au)−1/2. The
only difference to Schoonenberg & Ormel (2017) was the com-
putation of α, for which we used the dead-zone prescription
(Eq. (3)) with αd = 10−5 and αa = 10−2. From one simulation
to the next, the Stokes number was varied from 0.01 to 0.1. The
accretion rate was close to 10−7Ṁ� yr−1, so that the theoreti-
cal criterion for forming a pressure bump was that the ice flux
must be >0.6–0.7 times the gas flux. In the first set of simula-
tions (Table 1), Σa was set to 100 kg m−2 so that the outer edge of
the dead zone was located at 100 au, whereas the snow-line was
initially located around 2 au. We present in Fig. 4 the case with
St = 0.1. In this configuration, the ratio vi/vg = 822.1. A pres-
sure bumps forms at about 6 Kyr (Table 1). The pressure bump
never disappears and shifts inward by about 1 au as water vapor
accumulates and increases the sublimation temperature. Like in
Schoonenberg & Ormel (2017), the water-vapor mass fraction
( f ) does not evolve toward an asymptotic steady state in which
the water-vapor mass fraction tends to decrease monotonically
with distance. However, even after 1 Myr evolution, this steady
state is still not reached here because the effective viscosity of
the gas in the disk midplane is low. This represents a substan-
tial fraction of the disk lifetime. Material tends to pile up at the
snow-line with increasing efficiency as the viscosity drops with
incoming water vapor, resulting in a sharper pressure bump with
time.

In all simulations we were able to perform for the case
Σa = 100 kg m−2, a pressure bump forms because all our runs
satisfy the criterion of Eq. (21), with vi/vg > 84 for a Stokes
number as small as 0.01. Because of the expansive simulation
time, we were unable to investigate lower values of vi/vg for this
type of run. In a second set of runs, we set Σa = 1000 kg m−2,
and a pressure bump formed down to a pebble Stokes num-
ber = 0.075 (Table 2) and vi/vg = 66.4 and Fi/Fg = 0.6. For
lower values of the Stokes number and for vi/vg < 66, no pressure
bump formed up to 8.5 Myr evolution of the disk. The simple
reasoning described above therefore gives a very reasonable esti-
mate of the threshold. In the remainder of our discussion, we
therefore adopt vi/vg > 60 as the criterion for pressure bump for-
mation for simplicity (and equivalently, Fi/Fg > 0.6, assuming
a water-to-gas ratio of 1%). We emphasize that in these simula-
tions gas diffusion, which is included in the calculation, indeed
acts against the piling up of gas to radially smooth the surface
density peak. However, because α is a decreasing function of the
surface density (Eq. (3)), diffusion is increasingly less efficient
as the surface density increases. As a result, the surface density
peaks are enhanced.
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Table 1. Summary of the results obtained for six simulations with Σa = 100 kg m−2.

Σa = 100 kg m−2 St = 0.01 St = 0.02 St = 0.05 St = 0.075 St = 0.1 St = 0.2

vi −0.80 m s−1 −1.60 m s−1 −3.96 m s−1 −5.92 m s−1 −7.85 m s−1 −15.3 m s−1

vg −0.0095 m s−1 −0.0095 m s−1 −0.0095 m s−1 −0.0095 m s−1 −0.0095 m s−1 −0.0095 m s−1

vi/vg 84.6 167.4 415. 619.7 822.1 1595.1
Fi/Fg 0.8 1.6 4.1 6.2 8.2 15.9
Pressure bump? YES YES YES YES YES YES
Time PB formation 1.45 Myr 300 Kyr 25 Kyr 21 Kyr 6 Kyr 2.7 Kyr

Notes. “Time of PB formation” is the time at which the pressure maximum appears. All these simulations lead to the formation of a pressure bump,
but at different times.

Table 2. Summary of the results obtained for six simulations with Σa = 1000 kg m−2.

Σa = 1000 kg m−2 St = 0.01 St = 0.02 St = 0.05 St = 0.075 St = 0.1 St = 0.2

vi −0.95 m s−1 −1.74 m s−1 −4.11 m s−1 −6.06 m s−1 −8.0 m s−1 −15.3 m s−1

vg −0.091 m s−1 −0.091 m s−1 −0.091 m s−1 −0.091 m s−1 −0.091 m s−1 −0.091 m s−1

vi/vg 10.42 19.1 44.9 66.3 87.5 168.5
Fi/Fg 0.1 0.2 0.45 0.67 0.88 1.6
Pressure bump? NO NO NO YES YES YES
Time PB formation 290 Kyr 114 Kyr 21 Kyr

Notes. Only simulations with a pebble Stokes number >0.075 lead to formation of a pressure bump. Simulations with St < 0.075 do not lead to a
pressure bump formation up to 8.5 Myr of evolution time. “Time of PB formation” is the time at which the pressure maximum appears.

Fig. 4. Evolution of a disk with constant inflow of gas and pebbles. Here
Σa = 100 kg m−2, and the pebble Stokes number is 0.1. (top) Pressures
in the disk midplane vs. distance at different times, and (bottom) water-
vapor mass fraction vs. distance for different times. See Table 1.

The simulations presented in Fig. 4 and in Tables 1 and 2
are useful because they are simple, with a constant Stokes num-
ber, temperature, gas, and pebble influx at the outer edge of the
disk. They are useful to isolate the key mechanisms. However,

in real disks, the influx of icy pebbles cannot be constant or last
forever because the ice reservoir is finite and particles grow with
time. It is therefore interesting to determine whether the pressure
bump may form in a more realistic time-evolving disk including
key processes such as viscous spreading, nonconstant pebbles
flux, dust and gas transport, dust sublimation and condensation,
dust growth, and radiative and viscous heating. We ran a time-
dependent simulation similar to that of Drążkowska & Alibert
(2017), which included the processes mentioned above (the code
is described in Pignatale et al. 2018; Charnoz et al. 2019). We
also used a temperature-dependent opacity table to compute the
temperature in the midplane. The particle growth was computed
with the model of Birnstiel et al. (2012). Additional details are
given in Charnoz et al. (2019).

Our initial disk has a mass of 2% M� and Σ(r) ∝ r−1. We
used 〈α〉 as defined in Eq. (3) with parameters Σa = 1000 kg m−2,
αa = 10−2, and αd = 10−5. In this disk, the outer edge of the
dead zone lies at about 10 au, which is well beyond the snow-
line (at about 2 au). With these parameters, the gas accretion rate
is about 10−8Ṁ yr−1. The results are displayed in Fig. 5 (it is
essentially the same simulation as presented in Fig. 3 of Charnoz
et al. 2019). At the snow-line (around 2 au), a surface density
maximum forms in about 10 Kyr, when the sound velocity also
decreases (dotted line in Fig. 5). At this time, the pebble Stokes
number has grown to about 0.1–0.2 just beyond the snow-line
(Fig. 3 of Charnoz et al. 2019). The gas surface density maximum
is accompanied by silicate-rich dust accumulation just inward of
the snow-line that is ice-free (red line). Just beyond the snow-
line, ice-rich dust also accumulates (solid blue line), promoted by
water-vapor recondensation and a traffic-jam effect (as described
in Drążkowska & Dullemond 2014; Schoonenberg & Ormel
2017; Drążkowska & Alibert 2017; Charnoz et al. 2019; Hyodo
et al. 2019, 2021a). On timescales >100 Kyr, the pressure bump
disappears because the icy material reservoir beyond the snow-
line empties. When the icy pebble flux ends, the pressure bump
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Fig. 5. Simulation of a full protoplanetary disk using 〈α〉 given by Eq. (3) and running the code of Charnoz et al. (2019). Only the region around
the snow-line is displayed. Solid lines in black, blue, and red represent the gas, water ice, and silicate dust surface densities (respectively), and the
dashed blue line shows the water vapor. The black dots display the local sound velocity in m s−1 (right scale).

disappears. The water-vapor surface density profile (dashed blue
line) ends close to steady state and forms a plateau, which is
consistent with Schoonenberg & Ormel (2017) and Hyodo et al.
(2019). The wavy structures in the silicate dust density profiles
inside 1 au are due to small opacity jumps between 300 K and
800 K in our opacity table (see Charnoz et al. 2019, Fig. 1) that
change the midplane temperature, and thus the local viscosity.
Because planetesimal formation is not considered in this simula-
tion, nothing can save pebbles from ultimately being lost to the
star when the bump disappears. If planetesimal formation were
considered, they should form rapidly at the location of the bump
because of the high surface density and high Stokes number. This
will be investigated in a future study.

4. Summary and discussion

4.1. Summary

We have detailed a process by which a pressure bump can form
in a stratified protoplanetary disk, including a central layer that
is dead to turbulence, and an actively accreting upper layer with
a surface density Σa. Considering that the vertically averaged
α is a decreasing function of surface density (〈α〉 ∝ Σ−p), we
have shown that when the local sound velocity decreases (due

to the release of vapor inward of the snow-line), a maximum
in the local pressure appears whose magnitude increases with
p. A physical explanation of this process, implying an interplay
between the dead and active layer, is provided in Appendix A.
This effect is especially efficient when p is close to 1, in other
words, when the surface density at the snow-line is lower than
ten times the active layer column density (which does not nec-
essarily imply that the snow-line is located close to the outer
edge of the dead zone). For a minimum mass solar nebula pro-
file with Σ(r) = 1.7 × 104(r/1 au)−1.5 , we have p > 0.9 in the
terrestrial planet region for Σa > 100 kg m−2 (check on Fig. 1),
that is, already a very favorable situation for forming a pressure
bump. The outer edge of the dead zone for the same nebula is
located far beyond 10 au (when Σ = Σa).

The conditions for the pressure-bump to form are summa-
rized as follows. First the disk must be stratified, with a dead
zone containing the snow-line. Second, the influx of icy pebbles
must be high: for a young disk with Ṁ > 10−7M� yr−1 the condi-
tion is Fi/Fg > 0.6. For an old disk, Ṁ < 10−8M� yr−1, we find
Fi/Fg > 0.2 is enough (where Fi and Fg are the icy-pebbles flux
and gas-flux respectively). These numbers are for disk containing
1% of ice by mass. Note that, for our Solar System, 1% is approx-
imately the mass fraction of all condensible material. The water
mass fraction for our Solar System may instead be in the range
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∼0.3% (e.g., Bitsch & Johansen 2016), so the previous flux ratios
must be multiplied by ∼3. In this case, Fi/Fg > 1.8 is required
(for Ṁ > 10−7 M⊕ yr−1). A flux as high is easily reached in a
disk with Σa = 100 kg m−2 and containing pebbles with Stokes
number >0.03. Conversely, in a disk with Σa = 1000 kg m−2, a
Stokes number >0.3 is required. The gas surface density at the
snow line, Σ, must be in the range Σa < Σ < αa/αd × Σa (i.e.,
a few 103 to a few 104 kg m−2) in order to create the pressure
bump.

The mechanism described here has the following important
properties:

– The formation of a pressure bump just inward of the snow-
line as long as the icy pebble flux is maintained and is high
enough;

– The accumulation of ice-free pebbles at the pressure bump,
which may result in the formation of water-free planetesimals at
the bump location;

– Pebbles accumulating at the pressure bump are inherited
from beyond the snow-line due to the inward drift of icy peb-
bles. They would not cross the bump, however, because the bump
acts as a dynamical barrier and because they are progressively
incorporated into larger planetesimals;

– In addition to this process, beyond the snow-line, planetesi-
mal formation can still occur at any time, following the processes
described in Drążkowska & Alibert (2017) (e.g., the traffic-jam
effect or recondensation of water vapor beyond the snow-line).

We emphasize again that this mechanism does not necessar-
ily occur close to the outer edge of the dead zone. There is no
need for a coincidence between the location of the snow-line
and the outer edge of the dead zone (defined as Σ = Σa). For
example, for p > 0.7 (a condition very favorable for the forma-
tion of the bump), the surface density at the snow-line must be
higher than 1000Σa (Fig. 1). For a minimum mass solar nebula,
with a snow-line at about 2 au, the outer edge of the dead zone
would be at about >10 and >100 au for Σa = 1000 kg m−2 and
Σa = 100 kg m−2, respectively.

The formation of the pressure bump may lead to a strong
enhancement of the dust-to-gas ratio in the disk midplane, which
is required to trigger the streaming-instability, and thus, plan-
etesimal formation. In Fig. 5, which is our most realistic disk
simulation of our paper, the ratio of dust to gas surface den-
sity at the bump increases to about Σd/Σd ' 0.1. At this place,
the pebble Stokes number is about 0.3 (Charnoz et al. 2019).
We can therefore estimate the dust-to-gas ratio of volumetric
densities in the midplane. We assume that the pebbles are in
a vertical steady state where turbulent diffusion acts against
sedimentation, then the dust scale height Hd ' Hg

√
α/(α + St)

Drążkowska & Dullemond (2014), where α is αd here. The ratio
of the volumetric densities of dust and gas in the midplane
is also equal to ρd/ρg = (ΣdHg)/(ΣgHd). We therefore obtain
ρd/ρg = (Σd/Σg)

√
(α + St)/α ' 17, which much larger that 1. It

is very possible, accordingly, that planetesimals can form in the
pressure bump that is visible in Fig. 5. However, we recall that
other instabilities may develop that may or may not act against a
concentration of dust. Hasegawa & Takeuchi (2015) investigated
a viscous instability process using a new parameterization of α
depending on the local magnetic field, and this is a generaliza-
tion of the parameterization of α we use here. They showed that
at the outer edge of the dead zone, the effective α may become
negative, leading to a viscously unstable situation where den-
sity maxima can grow without bounds because of a negative
effective diffusion coefficient. This instability may occur at the
outer edge of the dead zone, when the surface density becomes

comparable to Σa. This shows that the pressure bump forma-
tion process may occur in addition to the instability described in
Hasegawa & Takeuchi (2015). However, we emphasize here that
whereas the instability process of Hasegawa & Takeuchi (2015)
occurs at the outer edge of the dead zone, the pressure bump
formation process we describe here occurs well inside the dead
zone, at the snow-line. Large-scale hydrodynamical instabilities
are also known to develop, such as the Rossby wave instability,
in the presence of a large viscosity gradient (that may occur at
the outer edge of the dead zone) or in the presence of a strong
pressure or density bump (as in our case) (Regály et al. 2012;
Mohanty et al. 2013). This may imply that a large-scale vortex
may potentially form at the pressure bump (this physics is not
included in our simple 1D model) that might concentrate peb-
bles, and might lead to the formation of large planetesimals. In
conclusion, the evolution of dust in such a bump, which might be
subject to different types of hydrodynamical instabilities, should
be investigated with 3D simulations in the future.

4.2. Implications

4.2.1. Isolation of isotopic reservoirs

Recent works (Kruijer et al. 2017; Nanne et al. 2019; Kleine et al.
2020) have proposed a qualitative time line for forming and iso-
lating the NC and CC groups, invoking a first a phase of CAI
formation close to the star, in a disk that is initially dominated
by CC isotopic composition. It is proposed than within the first
million years, the infalling cloud changes composition and feeds
the terrestrial planet region of the disk. At about 1 Myr, the for-
mation of Jupiter occurs at about 5 au and splits the disk into
two reservoirs that follow isolated evolutions, where first the iron
bodies and then the chondritic bodies are formed. The innermost
reservoir, the NC, progressively stops its accretional evolution at
about 1.5–2 Myr because no more material is accreted beyond
the barrier that Jupiter forms. Finally, at about 5 Myr, Jupiter
reaches its final mass and scatters the planetesimals inward, lead-
ing to a radial mixing of the two groups. This model was recently
critically reviewed by Brasser & Mojzsis (2020), who argued
that the formation of Jupiter as late as 1 Myr at 5 au would not
prevent enough isolation of the CC and NC groups because peb-
bles would fast be delivered into the region of terrestrial planets.
This delivery would lead to the isotopic contamination of the
inner (NC) reservoir by material coming from the CC reservoir.
It would also lead to a martian embryo that would be too large
compared to its actual mass. The authors then suggested that the
isolation of the reservoirs must have occurred before 1 Myr in
order to achieve both well-separated isotopic groups and slow
down the growth of Mars. In addition, recent work (Bitsch et al.
2015; Pirani et al. 2019; Öberg & Wordsworth 2019) suggested
that Jupiter may have formed beyond 15 au and reached its final
location only by the end of the disk lifetime, at around 3 Myr,
well after the differentiation of the NC and CC iron bodies.

The pressure bump formation mechanism presented here
may be an ideal alternative to the Jupiter hypothesis. The time
line of events proposed in Kruijer et al. (2017), Nanne et al.
(2019), and Kleine et al. (2020) might qualitatively be revisited
as follows (see Fig. 6). First, at time = 0, the disk is dominated by
CC isotopic composition and CAIs are formed and transported
outward during the viscous expansion of the disk (Pignatale et al.
2018; Nanne et al. 2019). As the disk is still massive and pebbles
are small (with stokes numbers < 0.01), the pressure bump can-
not form. In the first few 100 Kyr, the material infalling from the
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Fig. 6. Schematic of the disk and NC and CC populations evolution. Green shows the gas disk. The pressure bump is symbolized by a darker green
zone, just inward of the snow-line. The dashed ellipse shows the dead zone. Blue and red arrows show the molecular cloud gas infall. Dots with a
dark circle are the parent bodies of CC and NC bodies. Dots with a white circle show the iron and chondritic populations. This figure is inspired
and modified from Kleine et al. (2020).

cloud changes composition to NC and feeds the disk inner region
inward of the snow-line. Before the pressure bump is established,
pebbles can cross the snow-line. As the disk empties, the surface
density at the snow-line then decreases < αa/αd ×Σa, which may
occur in only a few 100 Kyr and leads to the spatial separation of
the NC and CC groups. This situation lasts for a few million years
as long as the pebble flux is maintained. During this period, NC
and CC group bodies separately accrete inward and beyond the
snow-line, respectively. Because the NC population is no longer
fed with pebbles (which are blocked at the pressure bump), it
may stop growing at about 2 Myr. At the end of the gas-disk life,
when Σ < Σa at the snow-line, the pressure bump disappears, but
planetesimals are already formed and do not migrate because of
the gas drag. At approximately the same epoch, Jupiter should
appear, migrating inward from the outer Solar System. It may
scatter embryos and planetesimals, leading to substantial radial
mixing of the two populations. Figure 6 shows the snow-line as
fixed, but this is not mandatory. It is very possible that the snow-
line may have migrated outward during the disk infall, and then
inward during the disk evolution (Pignatale et al. 2018; Baillié
et al. 2019).

4.2.2. Forming planetesimals

This mechanism might also explain how dust can accumulate
efficiently inward of the snow-line and form water-free planetes-
imals. This has challenged models in recent years (Drążkowska

& Dullemond 2014; Drążkowska & Alibert 2017; Ida & Guillot
2016; Hyodo et al. 2019, 2021a; Ida et al. 2021), showing that
planetesimals may form rather beyond the snow-line (due to
water-vapor recondensation, the traffic-jam effect, and dust-gas
back-reaction) and so should always be mostly water rich, which
is a problem when the petrology of ordinary chondrites is to be
explained that only show little water alteration (Ida & Guillot
2016; Ida et al. 2021; Hyodo et al. 2021a).

We have neglected the effects of the back-reaction. We note
that including the back-reaction with a dead-zone structure can
develop the so-called no-drift runaway pile-up mode of pebbles
at a certain heliocentric distance, forming planetesimals, before
pebbles reach the snow-line (Hyodo et al. 2021b).

Forming planetesimals in dead zones at the snow-line is not
in itself a new idea. It has been proposed in particular in Brauer
et al. (2008). However, our work is different because Brauer
et al. (2008) investigated the effect of ice accumulation beyond
the snow-line and showed that the increase in dust-to-gas ratio
may locally modify α and trigger a pressure maximum. The pro-
cess investigated here does not rely on this effect, but rather on
an accumulation of gas at locations of low sound velocities, for
instance, just inward of the snow-line.

4.3. Making pressure traps at condensation fronts

The mechanism for forming a pressure bump detailed here
might work at every condensation front, provided the flux of
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heavy evaporating species is strong enough and that an evapo-
rating front is embedded in the dead zone. Observations of the
TW-Hydra disk potentially reveal efficient trapping of CO or
N2 dust >10 au at their evaporation front (Bosman & Banzatti
2019; McClure et al. 2020). However, we only focused on water
evaporation. The viability of such a process at the CO or N2
condensation fronts must be quantified in a future study.

5. Limitations

Several limitations and uncertainties may limit the validity of
our work. This simple model is based upon the assumption of an
idealized α disk model with two layers (one dead, one active),
the validity of which is still a matter of debate; see Turner et al.
(2014) for a critical review. It should in the future be compared to
nonideal MHD simulations, including dust, gas, and evaporation,
for confirmation.

In addition, for the pressure bump to survive, it must be
constantly replenished by incoming water vapor. However, the
water-ice reservoir is limited, and its emptying timescale Te is
short: it is about Te = mMd/(ṀFi/Fg), where m is the disk
metallicity and Md is the disk mass. For Md = 0.02 M�, Fi/Fg =

0.6 , Ṁ = 10−8M� yr−1, and m = 0.01, we obtain Te ' 17 Kyr.
Te is much shorter than the disk lifetime, and shorter than the
accretion time of the CC chondrite group, but large uncertainties
exist on all parameters: the disk mass, as well as Fi/Fg and Ṁ,
which evolve with time.

A speculative solution for the short timescale of water inflow
may be the following: Manara et al. (2019) proposed that the disk
may be continuously replenished during most of its lifetime by
material infalling from the molecular cloud in order to explain
the discrepancy between the measured dust content of disks in
millimetric observations and the mass distribution of exoplan-
ets. Feeding the disk with ISM material at the stellar ratio of
the oxygen abundance would allow maintaining the inflow of icy
pebbles, which in turn would allow the long-term existence of
pressure maxima. This would be a major change in the paradigm
of protoplanetary disk evolution, but it is still controversial. This
is worth considering because simulations of star formation (start-
ing from the molecular cloud) show that the infall phase could
last up to a few million years (Padoan et al. 2014). While spec-
ulative, this possibility would be worth considering in future
studies.
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Appendix A: Physical explanation for the viscous
instability in a stratified disk

We give here a physical explanation for the origin of the pressure
bump mechanism described in the paper. We emphasize the key
role played by the layered accretion structure. We tracked the
surface density Σ evolution of a stratified disk with two layers.
The midplane layer (low turbulence) has a surface density Σd
and α = αd, and the active layer (high turbulence) has a column
density Σa and α = αa, with αa � αd. The local total surface
density is Σ = Σa + Σd. There are two key ingredients that cause
the instability : first, The active layer has a fixed surface density
Σa, second, there is a minimum of the sound velocity somewhere
(e.g., at the snow-line due to the release of water vapor).

We assume that at location r0, there is a minimum of the
sound velocity so that

∂C2

∂r
< 0 at r < r0 (A.1)

∂C2

∂r
> 0 at r > r0. (A.2)

The question now is how the mass is transported in the disk
at r0. The total mass flux F (i.e., the local accretion rate) can be
split into two contributions: F = Fd + Fa (Fd is the mass flux in
the DZ, and Fa is the mass flux in the active layer). It is useful
to rewrite the surface density equation in terms of divergence of
mass flux. The surface density evolution is

∂Σ

∂t
=

3
r
∂

∂r

(
r1/2 ∂

∂r
(νΣr1/2)

)
. (A.3)

We introduce F as the local mass flux. Then the variation in
density is always opposite to the divergence of the material
flux,

∂Σ

∂t
=
−1
2πr

∂

∂r
(F) , (A.4)

with

F = −6πr1/2 ∂

∂r

(
αC2

Ω
Σr1/2

)
. (A.5)

We write Ω = Br−3/2. Considering the dead-zone and the active
layers as two layers with constant α and developing the deriva-
tive, we have

Fd =
−6παdr1/2

B

(
2rC2Σd + r2C2 ∂Σd

∂r
+ r2Σd

∂C2

∂r

)
. (A.6)

This is the flux in the DZ. When an overdensity of Σd in the
dead zone (the second term) is strong enough, Fd is opposite to
the density perturbation, and the viscous evolution will erase the

Fig. A.1. Sketch of the two layers in the disk with their respective mass
fluxes.

density perturbation. This is the classical view of viscous dif-
fusion where the material flux is opposite to density variations.
When we repeat the same calculation for the active layer and
recall that the surface density of the active layer is constant = Σa,
we obtain for the radial flux in the active layer

Fa =
−6παar1/2

B

(
2rC2Σa + r2Σa

∂C2

∂r

)
. (A.7)

If in the active layer ∂C2/∂r is strong enough (in absolute
value), the flux is always directed toward the minima of the
sound velocity (Fa is positive when C2 decreases). This means
that more material will be brought toward the sound velocity
minima. Because no more than Σa of the column density can
be in the active layer, the incoming material is transferred down
to the dead zone (which can accept it without limit), so that Σd
increases. In other terms, the active layer will feed the dead zone
with new material at places of low sound velocity (at r = r0 with
our notations). The net result is that Σ increases at r0.

Equation (A.6) shows that when Σd is very high at r0, so the
∂Σd/∂r term becomes very strong at some points and compen-
sates for other terms, and eventually, Fd is directed away from
the maxima of the surface density. This means that Σd cannot
diverge to infinity. Rather, there is a transient phase with a strong
increase in the surface density and a pressure bump is created, as
described above.

This is a simplified two-layer model. The key idea is, how-
ever, that the column density of the active layer is almost constant
it does not “feel” the density maxima in the DZ. As the gas
accretes, the material is therefore transported and stored in the
dead zone with low viscosity. In total, this creates a situation in
which the vertically averaged diffusion coefficient ν decreases
with increasing Σ, which is typical of a viscous instability pro-
cess, which favors an enhancement of regions with high surface
density.
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