Viroids \& the RNA World: from genomic scale (RNA) to atomic scale (ribozyme)

Fabrice Leclerc

To cite this version:

Fabrice Leclerc. Viroids \& the RNA World: from genomic scale (RNA) to atomic scale (ribozyme).
Master. BGA Biochimie et Génétique des ARN, Paris, France. 2020. hal-03313809

HAL Id: hal-03313809

https://hal.science/hal-03313809

Submitted on 6 Aug 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Public Domain

Viroids

the RNA World

Fabrice Leclerc

Institute for Integrative Biology of the Cell (I2BC)
CNRS-CEA-Univ. Paris Saclay fabrice.leclerc@i2bc.paris-saclay.fr

Viroids

\&

the RNA World

from genomic scale (RNA)

Introduction

- evolution (RNA world) \& genomics
- RNA biology \& RNomics (molecular and cellular functions)
- structural biology \& structural bioinformatics (structural basis for functions)
- enzymology \& computational enzymology (catalysis)

Prebiotic \& RNA Worlds

Virus World \&

 RNA World

 RNA World}

viroids

Archaea with plasmids, group I introns

Bacteria with plasmids, retrons, group I \& II introns

dsDNA and RCR viruses, plasmids
retrons, group II introns
positivestrand, ds RNA viruses
«The ancient Virus World and evolution of cells»

Koonin et al., Biol. Direct, 2006

Viroids: « survivors from

 the RNA World»

Holmes, J. Virol., 2011

- small size
functions
- error-prone replication
- high GC
- circRNA
- periodicity
- no proteincoding
- ribozyme features
- replication
- replication fidelity
- genome assembly
- ribosomefree

Viroids: Plant Parasites

$\%$ ASBVd

2) Replication

Ding \& Itaya, Mol Plant Microbe Interact, 2007.

Viroids: Replication

Rz: hammerhead ribozyme

10 Ding \& Itaya, Mol Plant Microbe Interact, 2007.

Viroids: Pospiviroids

Hammann \& Steger, RNA Biol., 2012.

Viroids: Avsunviroids

Viroids \& RNA silencing

ASBVd: 2D Structures

(-) ASBVd

Ding \& Itaya, Mol Plant Microbe Interact, 2007.

ASBVd(-): 2D Structures

Flores et al., Adv, Virus Res., 2000.

HHR motifs in life forms

A prototype for RNA

Catalysis

"Minimum" Hammerhead Ribozyme

Self-cleaving Sell-Splicing

SN2(P) reaction

3'-5'-exonuclease

Catalytic Metal Ions: One/

5^{\prime} \vdots \square N_{i} YWO X-ray (active)

O^{2}

experimental: Pontius et al., 1997; Lott et al, 1998 theoretical: Boero et al., JCTC, 2005

Contribution of Metals to

 Catalysis

HHR: reaction mechanism

Folding Metal Ions Models

Metal Binding Sites in the Hammerhead Ribozyme?

Chartrand et al., RNA, 1997

Hansen et al., RNA, 2008

Minimum/Full-Length HHR

Wang et al., Biochem., 1999
de la Peña et al., EMBO J., 2003

Khvorova et al., Nat. Struct. Biol., 2003
Canny et al., JACS, 2004

Variations in HHR motifs

Perreault et al., PLoS Comput. Biol., 2011

Loop-Loop interactions in HHR folding

Penedo et al., RNA, 2004.

Loop-Loop interactions in HHR catalysis

Minimum HHR, Tertiary

Contact and Catalysis

(a) $\quad 45-\mathrm{NT}$

 Core

$$
\begin{aligned}
& { }^{15,3} \mathrm{C}-\mathrm{G}^{16,3} \\
& { }^{15.4} \mathrm{C}-\mathrm{G}^{16.4} \\
& { }^{15.5} \mathrm{~A}-\mathrm{U}_{5^{16,5}} \\
& { }_{1}^{4}
\end{aligned}
$$

O’Rourke et al., JMB, 2015
(b)

Stem III

Stem I

HHR morphing

Highly active form

A Nucleobase

Catalyst

Metal Catalysts in the

 2 'OH activation?

Metal Catalysts in the

 Hammerhead Ribozymes?

Osborne et al., Biochem., 2009

Cooperative Models in

Self-Cleaving?

Cooperative Models in

Self-Cleaving?

Metal Ions back in the Hammerhead Catalysis

Ward \& DeRose, RNA, 2011

HHR: Active Conformation and Metal Ions

A

B

Mir et al., Biochem., 2015

HHR: Metal Ions and Catalysis

A

Mir \& Golden, Biochem., 2015

ASBVd(-)/HHR(-): SANS

Study

HHR(-)

$\left(0_{0}\right) \mathrm{du} \boldsymbol{D}_{\perp}$

Leclerc et al., Sci. Rep., 2016.

HHR(-) dimerization/

catalysis

$\mathrm{E}_{\mathrm{a}} \sim 8 \mathrm{kcal} / \mathrm{mol}$	$\mathrm{E}_{\mathrm{a}} \sim 20 \mathrm{kcal} / \mathrm{mol}$
$\mathrm{E}_{\mathrm{a}} \sim 6 \mathrm{kcal} / \mathrm{mol}$	$\mathrm{E}_{\mathrm{a}} \sim 30 \mathrm{kcal} / \mathrm{mol}$

Leclerc et al., Sci. Rep., 2016.

HHR(-): 2D structures

3D Modeling of HHR(-)

loops HI-HII

HHR folding

HHR morphing

Highly active form

O'Rourke et al., JMB, 2015
$\mathbf{R}_{\mathrm{g}}(\mathrm{I}) /(\mathrm{F}) \sim 1.1$
ASBVd: $\mathbf{R}_{\mathrm{g}}(\mathrm{I}) /(\mathrm{F}) \sim 1.2$

Modeling/SANS

monomer 1 HI
HII
HIII
monomer 2

HHR (-): dimerization

monomer 1 HI HII monomer 2 \quad 30b

HHR(-)

 dimer

HHR(-): monomer 1

HHR(-): monomer seeds

HHR(-) monomers

HHR: Monomer \& Dimer

C

Rg \& self-association

MD setup for HHR dimer

- 300000 atoms
- $\mathrm{K}^{+} \& \mathrm{Cl}^{-}(0.15 \mathrm{M})$
- T = (283K, 313K)
- NAMD

Dynamics of HHR(-) dimer

HHR dimer: MD trajectory

ASBVd(-): self-association

monomer 1

ASBVd(-): self-association

ASBVd(-): self-association

What did we learn?

- for RNA and ribozymes: «too short» may be bad
- don't forget about dynamics
- SANS \& modeling approaches to infer selfassociation modes
- theoretical approaches to explore reaction mechanisms and pathways

Viroids: Plant Parasites

Genus Pospiviroids: PSTVd (potato spindle tuber)

Genus Hostuviroids: HSVd (hop stunt)

Genus Cocadviroids
CCCVd (coconut cadang-cadang)

Genus Apscaviroids:
ASSVd (apple scar skin)

Genus Coleviroids:
CbVd 1 (coleus blumei 1)

Genus Avsunviroids: ASBVd (avocado sunblotch)

Genus Pelamoviroids:
PLMVd (peach latent mosaic)

Viroid \& HDV: Hepatitis D

Acknowledgments

- Zdenek Chval (University of South Bohemia, CK)
- Daniela Chvalová (University of South Bohemia, CK)
- Xavier Lopez (Euskal Herriko Unibertsitatea, SP)
- Annick Dejaegere (ESBS Strasbourg)
- Darrin M. York (Rutgers University, USA)
- Martin Karplus (Harvard University, USA)
- Giuseppe Zaccai (IBS, Grenoble)
- Jacques Vergne (MNHN, Paris)
- Anne Martel (ILL, Grenoble)
- Martina Rihova (Institute of Physics, Prague, CK)
- Marie-Christine Maurel (MNHN, Paris)
- William G. Scott (UCSC, Santa-Cruz, USA)

相沮
TW

NITA SAHAI and HUSSEIN KADDOUR, Guest Editors

Fabrice Leclerc, Ph.D.

 I2BC / Dept. de Biologie des Génomes, < Séquence Structure Fonction des ARN » SSFA (D. Gautheret) fabrice.leclerc@u-psud.fr
Assembling the RNA World

Prebiotic chemical synthesis

- How can nucleotides be synthesized in appreciable quantities?
- How can nucleotides be polymerized into strands long enough to be functional?

b

Finding functional ribozymes

- How small is the fraction of random sequences that can act as functional ribozymes, and how long do functional sequences have to be?
- Are there ribozymes that can make accurate copies of themselves by any mechanism?
c

Evolutionary theory and modelling

- Is it easier to begin life with an autocatalytic set or a single polymerase?
- What is the error threshold for cooperative trans-acting replicators in a spatially structured model?

Viroids: Phylogeny

REPLICATION
 ASYMMETRIC
 PATHWAY

SYMMETRIC
PATHWAY

FAMILY

Avsunviroidae

SUBFAMILY

Pospiviroinae

Coleviroinae

GENUS


```
Hostuviroids
```

```
Hostuviroids
```


Coleviroids

Avsunviroids

Pelamoviroids

SPECIES

Potato spindle tuber (PSTVd)
Mexican papita (MPVd)
Tomato planta macho (TPMVd)
Chrysanthemum stunt (CSVd)
Citrus exocortis (CEVd)
Tomato apical stunt (TASVd)
Iresine 1 (IrVd 1)
Columnealatent (CLVd)

Hop stunt (HSVd)

Coconut cadang-cadang (CCCVd)
Coconuttinangaja (CTiVd)
Hop latent (HLV)
CitrusIV (CVd-IV)

```
Apple scar skin (ASSVd)
Citrus III (CVd-III)
Apple dimple fruid (ADFVd)
Grapevine yellow speckle 1 (GYSVd 1)
Grapevine yellow speckle 2 (GYSVd 2)
Citrus bent leaf (CBLVd)
Pearblister canker (PBCVd)
Australian grapevine (AGVd)
```

Coleus blumei 1 (CbVd 1)
Coleus blumei 2 (CbVd2)
Coleus blumei 3 (CbVd 3)

Avocado sunblotch (ASBVd)

Peach latent mosaic (PLMVd)
Chrysanthemum chlorotic mottle (CChMVd)

Modeling RNA-RNA Interactions

- $10 \quad 30 \quad 60 \quad 120$
B.

HHR motifs

Type II prokarotes

Type ||| $\begin{aligned} & \text { Prokaryotes } \\ & \text { Plants }\end{aligned}$

HHR (-): symmetric dimerization

ASBVd(-): symmetric self-association

ASBVd(-): symmetric self-association

ASBVd(-): symmetric self-association

HHR design \& engineering

Glms ribozyme

Viroid Pathogenicity \& Localization

Viroid\& RNA silencing

Viroid disease symptoms

Potato spindle tuber viroid

Apple viroid disease

chrysanthemum stunt viroid

Avocado Sunblotch Viroid

