I2BC: Club BGBS - June 15th 2020

RNA-based drugs: discovery and design

From aptamers to oligonucleotides: a perspective for *in silico* approaches

Fabrice Leclerc

Institute for Integrative Biology of the Cell (I2BC) CNRS-CEA-Univ. Paris Saclay

team: RNA sequence structure function, Dept. Genome Biology

Outline

- Introduction to RNA Therapy and Strategies: Target/Drug
 - RNA as a target (e.g. ribosome, other folded RNAs, mRNAs, ...)
 - RNA as a drug: silencing, interference, editing, binding, etc
- Approaches & Technologies: RNA(DNA) as a drug/tool
 - from aptamers to SOMAmers (drug target: protein, or RNA, etc)
 - from antisense oligonucleotides (ASO) to gapmers (drug target: RNA)
- Between pseudo-aptamers and ASOs: in silico design of short oligonucleotides against protein targets

RNA as a drug target structure-dependent approaches

RNAs as targets: from cellular machineries to folded RNAs

- ribosome as translation machinery
 - ribosome biogenesis
- ribosome assembly ...

Poehlsgaard & Douthwaite, 2005

- aminoglycosides bound to 16S rRNA
- other RNA targets:
 - viral RNAs, riboswitch, ribozyme, etc
- Off-target effects (OTEs) & toxicity:
 - mitochondrial rRNA

Becker & Cooper, 2012

Ligand-Drug Design against RNA targets

structure-based screening, design, optimization of ligands (experimental & in silico)

RNA as a drug sequence-dependent approaches

- hybridisation-dependent approaches: ASOs, siRNA, miR, CRISPR, splice modifying oligos, etc
- hybridisation-independent approaches: aptamers, immunostimulatory (CpG) oligos, mRNA, etc

RNAs as drugs: using intracellular mechanisms

Kaczmarek et al., 2017

RNAs as drugs/tools: using in vitro generated aptamers (1)

Purified-protein-based SELEX

RNAs as drugs/tools: using in vitro generated aptamers (2)

Zhou & Rossi, 2017

RNAs as drugs/tools: using in vitro generated aptamers (3)

Live-animal-based SELEX

Zhou & Rossi, 2017

RNA as a drug & carrier sequence-dependent & sequence-independent approaches

Chimeric aptamers with miRNA, siRNA, etc

RNA as a drug Approaches & Technologies

Aptamers in Therapeutics

Name	Form	Target	Condition	Phase	
Pegaptanib sodium (Macugen)	27-nt RNA	VEGF (Vascular Endothelial Growth Factor)	Age-related macular degeneration	Approved	
E10030	29-nt DNA	PDGF (Platelet-Derived Growth Factor)	Age-related macular degeneration	Phase III	FDA 2004
REG1 (RB006 and RB007)	37-nt RNA	Coagulation factor IXa	Coronary artery disease	Phase III	
ARC1905	38-nt RNA	C5 (Complement component 5)	Age-related macular degeneration	Phase III	
AS1411	26-nt DNA	Nucleolin	Acute myeloid leukemia	Phase II	
ARC1779	39-nt DNA	A1 domain of von Willebrand factor	Von Willebrand disease/thrombotic thrombocytopenic/purpura	Phase II	
NOX-E36	40-nt RNA	CCL2 (Chemokine C-C motif Ligand 2)	Chronic inflammatory diseases/type 2 diabetes mellitus/systemic lupus erythematous	Phase II	
NOX-A12	45-nt RNA	CXCL12 (Chemokine C-X-C motif Ligand 12)	Multiple myeloma and non-Hodgkin lymphoma/autologous or hematopoietic stem cell transplantation	Phase II	
NU172	26-nt DNA	Thrombin	Heart disease	Phase II	
NOX-H94	44-nt RNA	Hepcidin peptide hormone	Anemia/end-stage renal disease/inflammation	Phase II	
ARC19499	32-nt RNA	TFPI (Tissue Factor Pathway Inhibitor)	Hemophilia	Phase I	-

Zhuo et al., 2017

Pegaptanib (macugen): anti-VEGF aptamer

N: 2'O-Me

SOMAmers: <u>Slow Off-rate Modified Aptamers</u>

Gelinas et al., 2014

SOMAscan: SOMAmer applied technology in proteomic

detection of 1300 human proteins

ASOs and gapmers

Nakamori, 2018

Design of ASOs-gapmers using *in silico* methods

Yoshida et al., 2019

Limitations of "RNA as a drug"based approaches

- general limitations:
 - safety, toxicity (immunogenicity), uptake, delivery, etc
- specific to RNAs: sequence & hybridisation dependent
 - activity/sequence match (structure, accessibility, etc)
 - uptake, toxicity
- specific to RNAs: sequence & hybridisation independent
 - inflammation (CpG motifs and TLR9 activation)
 - modification-related toxicities

Optimizations via chemical modifications

Hybridisation-dependent & independent OTEs

5' -GCAAUGGUACGGUACUUCCGUCAUCAGCUUGUGAUGUGGAUGCGAACUGCAAAAGUGCACGCUACUUUGCUAA- 3'

How to avoid hybridisationdependent OTEs ?

In silico design of modified oligonucleotides

- selection of a protein target with a known 3D structure and a binding region
- fragment-based approach to identify single nucleotide binding sites (fragments: mapping, clustering, ranking)
- (re)construction of short oligonucleotides (selection of fragments, search for connectivity, building and optimisation, ranking)

Drug design/discovery

Success stories in FBD

0.3 mM

"SAR by NMR"

Shuker et al., 1996

Metalloproteinases (MMP-3) (arthritis and tumor metastasis)

Fragment-Based Design of Oligonucleotides

Fragment-based approach applied to RNAs: proof of concept

Preliminary results on three RBPs testcases

 General objective: validation by reproducing known ssRNA-protein interactions

• Specific objectives:

- sequence constraints modeling: predict binding mode
- sequence constraints free modeling: predict binding mode and sequence specificity
- Perspectives in molecular design

RBPs: optimal/sub-optimal binding sites

RRM (2xnr) 5'-UCU-3'

KH (5wwx) 5'-AGA-3'

Zn-CCCH (5elh) 5'-UUA-3'

native poses identified (RMSD \leq 2.0Å)

Preliminary results on RBPs 2 & 3-mers oligonucleotides

Preliminary results on RBPs 3-mers oligonucleotides

Code PDB	Nombre de poses sélectionnées			ses	Séquence	Nombre de	Chaîne native (≤ 2 Å) de meilleure énergie d'interaction	
	Α	С	G	U	recherchée	identifiées	Rang global	RMSD (Å)
2XNR	/	155	/	155	UCU	13 782	1	1,48
5ELH	490	/	/	490	UUA	1 584 619	ND	ND
5WWX	691	/	691	/	AGA	2 433 270	ND	ND

Chevrollier's Thesis, 2019

What about "sequence-free constraints" modeling ?

Back to the basics ...

high resolution, non-redundant, etc

³⁴ Chevrollier & Leclerc, (bioRXiv preprint), 2019

MCSS Performance on nucleotide-binding sites

³⁵ Chevrollier & Leclerc, (bioRXiv preprint), 2019

Docking, Scoring Functions and Solvent Models

- empirical scoring function: Vinardo (Vina), etc
- force-field based scoring function: CHARMM (MCSS) & implicit solvent model(s)

MCSS Performance with implicit/explicit solvent

scal: no water / scalw, stdw, full: waters 100R Raw 80 Top1 60 MCSS Predictions (%) **45%** 40 20 0 Top-100 Top-50 Top-5 Top-1 Top-10 100 С **Clustered** 80 **Top10** 60 70% (+10%) 40 20 0 scalw scalw scalw scalw scalw fullw fullw fullw fullw fullw stdw stdw stdw stdw stdw scal scal scal scal scal 310 110 210 410 010

Chevrollier, González-Alemán et al.,

MCSS Performance with implicit/explicit solvent

Chevrollier, González-Alemán et al.,

Unspecific/specific (A/C/G/U): Hard/Soft predictions

scal=implicit solvent stdw=implicit+explicit solvent

Chevrollier, González-Alemán et al.,

Unspecific/specific (A/C/G/U): Hard/Soft predictions

Top100

- **Optimal:** hard predictions
- Good: soft predictions
- Poor: predictions with score over the 2kcal/mol cutoff value from top1 score
- No-prediction

Chevrollier, González-Alemán et al.,

Soft prediction cases (SCAL)

40

Soft prediction cases

in preparation

Learning from the analysis of soft predictions

U native

Learning from the analysis of soft predictions

Learning from the analysis of soft predictions

D

X-ray/minimized

Conclusions

- fragment-based approach applied to single nucleotide binding
- explicit solvent improve predictions of nucleotide binding
 - performance: Top1: 45%; Top5: 60%; Top10: 70%
 - discrimination of **native/non-native** nucleotide
- pitfalls:
 - flexibility of protein binding site, binding thermodynamics, binding kinetics, etc

Acknowledgments

- Roy González-Alemán, Ph.D. student (2019-)
- Nicolas Chevrollier, Ph.D. (2019)
- Coralie Rohmer, MSc (2017).
- Manuel Simoes
- Martin Karplus

UNIVERSITÉ DE STRASBOURG

Useful Links

• RNA Collaborative Seminar Series (Univ. Michigan) - youtube channel

• The RNA Institute

HMS Initiative for RNA Medicine Virtual Seminar June 16 @ 3:00 pm - 4:00 pm "Epitranscriptome: The Role of RNA Methylation in Stress and Viral Defense"

• iRNA COSI: Integrative RNA Biology

Next journal club June 23 @11:00am EDT Johannes Linder, Georg Seelig's group, University of Washington: "Engineering Alternative Polyadenylation with Deep Generative Neural Networks"

- OTS: Oligonucleotide Therapeutics Society: webinars & Journal Club
- GDR RNA: RNA as a tool and a target for medicinal chemistry and chemical biology

