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Salih Güneş . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4 Nonlinear Optimization 131
Nonlinear regression analysis of optimal conditions for a physics-chemical process

Vyacheslav Rusanov, Sergey Agafonov, Alexey Daneev, Dmitry Sharpinskiy, Timofey Udilov 132
H∞ optimal model reduction of complex systems using particle swarm optimization

Maamar Bettayeb, Reem Salim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
H2 optimal model reduction of dynamic systems with time-delay using particle swarm

optimization
Reem Salim, Maamar Bettayeb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Optimization algorithm for combined economic and emission dispatch with security con-
straints
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Memristor: 37 years later

Leon O. Chua

University of California, N.O.E.L Berkeley
USA
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Coupled mixed-mode dynamics and associated
propagations

Jean-Pierre Françoise

UMR 7598, Université P.-M. Curie, Paris6
France
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Complex systems in pathologic processes

Jacques Demongeot

TIMC-IMAG, Grenoble
France

The phenotypic symptoms in many pathologies result from the interactions between various ele-
ments of an organism at numerous levels - genetic disorders due to mutations or translocations, cell
dedifferentiation, vascular neogenesis,... - and these emerging properties are giving medical signs
at certain opportune times, the ”kairos” (in the terminology proposed by Herophilus). We discuss
possible mathematical models of pathologic processes underlying infectious and oncologenetic dis-
eases, in which disorders are visible after a certain evolution and we suggest some measurements
for accelerating the diagnostic phase.
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Reduction of complexity of dynamical systems:
applications to fishery modelling

Pierre Auger

Académie des Sciences, Paris
France

Population and community models are complex in the sense that they usually take into account
many variables and parameters. We present methods allowing the reduction of the system which
may become, in this way, mathematically more tractable. The reduction of the proposed system is
undertaken with the help of aggregation methods which aim at studying the relationships between
a large class of complex systems, in which many variables are involved, and their corresponding
reduced or aggregated systems, governed by a few variables. The kind of aggregation methods
that we consider is based on time scale separation methods. In order to illustrate the methods in
population and community dynamics, I present an application of these aggregation methods in the
context of fishery modelling. We present a spatial stock-fishing effort model with several fishing
sites. We study the effects of fast price variation as a result of demand and supply on the global
dynamics of the fishery.

ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France 5



Evolution theory and the place of man

Otto Rossler

University of Tübingen
Germany

Max Scheler invented the phrase ”The place of man in the cosmos” in 1928. Physicist-biologist
Teilhard de Chardin was still young at the time. The question is important because of the great risk
that the human species presents to the planet since the 20th century, with the almost atomic-war in
the 1960s, and the current century’s first decade with the almost-risk of Armageddon in the LHC.
Is man a biological creature alone, despite his jump out of biology? The brain equation allows
to pinpoint the biological place of man (and of all other non-plantlike intelligences and the brain
in the genome, the doubtlessly highest intelligence). But all these intelligences are good-natured.
They are like the angels of traditional Aquinean philosophy - without responsibility. The jump-
out, by the human toddler, is a jump into the lap of point Omega. It can be deadly, because for
the first (and perhaps last) time, a species has on the level of the individual assumed personal
responsibility for other indivisuals (and species and ecosystems and planets). Schopenhauer would
call it ”pity”, Lévinas ”exteriority”. What it really is is an appreciation of benevolence being shown
towards oneself (and a reciprocating by one’s showing benevolence). Only a creator of a higher-level
world can fully appreciate this. Is science ready to deal with the mechanism without missing (by
overlooking it) the implicit infinite light?
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Multi-Scale Dynamics Reconstruction

Paul Bourgine

CREA & RNSC, Paris
France
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Understanding complex systems: a survey of
phenomenological, physical and structural approaches

Michel Cotsaftis

ECE, Paris
France

Modern Technology advance and much more accurate observations from highly improved sensors
have been unravelling recently the existence of a huge class of systems in almost all domains of
research exhibiting properties outside classical Science main stream, from non strict causality to
emergence phenomenon capturing today the attention. In order to understand these unexpected
occurrences, some of which having huge impact on industrial and human activity on the Earth,
different ways of approach have been started, mainly in the line of previous methods already in
use at the places where the study was undertaken, and borrowed by other new places entering the
subject. Very contrasted results have been obtained to date with sometimes confusion as concerns
their interpretation, often due to a lack of agreement on the very definition of the object “complex
system”.

To help for its understanding, it is proposed in the survey to review the various methods
presently in use which are shown to belong to three main streams inherited from the past. Keys
will be given for locating their potential in the big landscape picture already available from collected
information, principally by balancing the result they can access to with the nature of the information
they are working with. It will mainly be shown that if the three lines may have their own merit,
some targets are completely out of reach in a specific line. To facilitate a common understanding,
the presentation will be starting from very fundamental and elementary concept, out of which the
split in the approaches is more easily understandable. The conclusion will aim at providing some
possible directions for future developments, as well as a new global picture of the Universe emerging
today from the addition of discussed complex effects.
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Cascades of period doublings galore

James A Yorke

Institute for Physical Sciences and Technology
University of Maryland

College Park, MD 20742
USA

A Period Doubling Cascade is something many people know about, especially in view 
of Feigenbaum's scaling law. But there is much more to know. For example little has 
been written on why they exist. When you see a bifurcation diagram, you see a cascade 
in  each  window as  a  parameter  is  varied.  Here is  a  key fact:  There  are  an  infinite 
number of cascades when there is one. In work with Evelyn Sander, we find that the 
amount of chaos in the system as the parameter approaches infinity determines which 
cascades  exist.  Here  there  is  potential  to  characterize  the  chaos  as  the  parameter 
approaches infinity for various systems. That will explain its pattern of cascades. We 
have proved there is an invariance, namely that large local perturbations cannot destroy 
Cascades. The perturbations simply shift the position of the cascade.
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Swarm Intelligence, Swarm-bots and Swarmanoids

Marco Dorigo

IRIDIA, Free University of Brussels
Belgium

Swarm intelligence is the discipline that deals with natural and artificial sys- tems composed of
many individuals that coordinate using decentralized control and self-organization. In particular,
it focuses on the collective behaviors that result from the local interactions of the individuals with
each other and with their environment. The characterizing property of a swarm intelligence sys-
tem is its ability to act in a coordinated way without the presence of a coordi- nator or of an
external controller.

Swarm robotics could be defined as the application of swarm intelligence princi- ples to the
control of groups of robots.

In this talk I will discuss results of Swarm-bots, an experiment in swarm robo- tics. A swarm-
bot is an artifact composed of a swarm of assembled s-bots. The s-bots are mobile robots capable
of connecting to, and disconnecting from, other s-bots. In the swarm-bot form, the s-bots are
attached to each other and, when needed, become a single robotic system that can move and
change its shape. S-bots have relatively simple sensors and motors and limited computational
capa- bilities. A swarm-bot can solve problems that cannot be solved by s-bots alone. In the talk,
I will shortly describe the s-bots hardware and the methodology we followed to develop algorithms
for their control. Then I will focus on the capa- bilities of the swarm-bot robotic system by showing
video recordings of some of the many experiments we performed to study coordinated movement,
path formation, self-assembly, collective transport, shape formation, and other collective beha-
viors.

I will conclude presenting initial results of the Swarmanoid experiment, an ex- tension of swarm-
bot to 3-dimensional environments.
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Synchronization and complex networks: are such
theories useful for Earth sciences?

Jürgen Kurths, J. Donges, N. Marwan, Y. Zou

University of Postdam
Germany

Synchronization phenomena are abundant in nature, science, engineering and social life, such
as in organ pipes, fireflies and even in the mechanics of bridges. But synchronization was first
recognized by Christiaan Huygens in 1665 for coupled pendulum clocks; this was the beginning of
nonlinear sciences. In the last two decades, this concept has been successfully extended to more
complex systems, as identification of teleconnections in the climate system.

Complex networks were firstly studied by Leonhard Euler in 1736 when he solved the Königs-
berger Brückenproblem. Recent research has revealed a rich and complicated network topology in
various model systems as well as in several fields of applications, such as transportation and social
networks, or the WWW. It will be discussed whether this approach can lead to useful new insights
into rather large complex systems or whether it is fashionable only to interpret various phenomena
from this viewpoint and publish papers on that.

Many promising approaches have already lead to useful applications, e.g. immunization prob-
lems (spreading of diseases), functioning of biological/physiological processes as protein networks,
brain dynamics, or functioning of social networks as network of vehicle traffic in a region or air
traffic.

A challenging task is to understand the implications of such network structures on the functional
organization of the system Earth. We show especially that the climate system can be interpreted
as a highly dynamic network. This approach gives new insights into the vulnerability of the system
Earth.

References Pikovsky, A., M. Rosenblum, and J. Kurths, Synchronization – A Universal Concept
in Nonlinear Sciences, Cambridge University Press 2001. Maraun, D., and J. Kurths, Geophys.
Res. Lett. 2005, 32, L15709. Osipov, G.V., J. Kurths, and C. Zhou, Synchronization in Oscillatory
Networks, Springer Complexity, Berlin 2007. Arenas, A., A. Diaz-Guilera, J. Kurths, Y. Moreno,
and C. Zhou, Phys. Reports 2008, 469, 93. Donges, J., Y. Zou, N. Marwan, and J. Kurths, Europ.
Phys. J. ST 2009 (in press).
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Collective motion: from minimal models to starling
flocks

Hugues Chaté

CEA, Saclay
France

The collective properties of self-propelled particles trying to align are often striking, even in the
simplest setting where the fluid in which they evolve is neglected and no interaction keeps them
together. I will first describe these remarkable emerging properties of minimal models for collective
motion, stressing their genericity and universality. In a second part, I will introduce a cohesion
force in an effort to get closer, always with minimal ingredients, to the case of flocks of starlings,
as observed recently within the Starflag project.
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Applications of Subpositive Definite Matrices 
for Stability of General Non-Linear Systems  

Feng Liu , Guodong Shi,  Zhiqing Weng  

  
Abstract—Stability of general non-linear systems at positive 

equilibrium state is an important problem,many articles have 
rather thoroughly researched it, and some criterions have been 
established based on M matrix and positive definite matrix. In 
this paper,subpositive definite matrices are led into general 
non-linear systems, and some new criterions for general 
non-linear systems on overall stability are acquired. These results 
improve or expand some existing criterions. 
 

Index Terms—General non-linear systems, stability, 
subpositive definite matrix  
 

I. INTRODUCTION 

tability of systems at positive equilibrium state is an 
important problem, and many articles have established 

some criterions for Volterra systems, Gilpin-Ayala systems and 
general systems based on M matrix and positive definite matrix, 
see [1~8]. In this paper, Subpositive definite matrices are led 
into general non-linear systems, and some new criterions for 
general non-linear systems on overall stability at positive 
equilibrium position are acquired. For this reason, firstly the 
definition of subpositive (subnegative) definite matrix and the 
explaining of some signs are presented as follows: 

Definition[9]  Suppose A  is a  matrix,if 
,and always ,then 

ordern −
nRx ∈≠∀0 )0(0 <>= Axxf T A  is 

called Subpositive definite matrix(subnegative definite matrix)
（ A  is not always symmetry matrix）. 

I t  is  easy to prove that A  is  subposit ive definite 
matrix(subnegative definite matrix) if and only if TAA +  is 
symmetry positive definite matrix(negative definite matrix). 

Let              ； ),,,( 21 nxxxcolx L=

}~1,0,|{ nixRxxR i
nn =>∈=+  

),,,()( 21 nfffcolxf L= . 
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II. MAIN THEOREMS AND PROOF 
Consider the general non-linear systems [5,6]  

)~1)(,,,( 21 nixxxfx
dt
dx

nii
i == L           （1） 

where  continues in ,and suppose 

System（1） have positive equilibrium state , 

),,,( 21 ni xxxf L 0≥x
0* >= xx

namely, . )~1(0),,,( **
2

*
1 nixxxf ni ==L

Theorem 1 As for system(1)，if  is 

subnegative definite in ,then the positive equilibrium state 

 of System(1) is of overall stabilization in . 

)()( * xfxx T−
nR+

0* >= xx nR+

Proof  As for system（1）,make transform 

 ),,2,1(ln * ni
x
x

y
i

i
i L==  , 

then it can map  into 0>x nR  space,and with this 
transform，System (1) can be rewritten as  

),,2,1)(,,,( **
2

*
1

21 niexexexf
dt
dy

ny
n

yy
i

i LL ==        (2)                  

and then overall stability of the positive equilibrium state 
 of system(1) in  is equivalent to overall 

stability of the ordinary solution of system(2) in 

0* >= xx nR+
nR . 

As for system(2),make 

)1()(
1

* −−= ∑
=

i
y

n

i
i yexyV i , 

then we have 

）（ **
1

*

*

1

*

)2(

0)()(

)()(

)()1()(

xxifxfxx

xfxx

yfex
dt

ydV

T

i

n

i
ii

i
y

n

i
i

i

≠<−=

−=

−=

∑

∑

=

=

 

so that the ordinary solution of System(2) in nR  is of overall  
stabilization, thus, the positive equilibrium state  0* >= xx
of System (1) is of overall stabilization in . nR+

Theorem 2  As for system(1),if there exists subnegative 
definite matrix nnijgG ×= )(  in ,such that  nR+

S 

ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France 15



 

,
)(

constg
x

xf
ii
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i =≤
∂
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)~1,,(
)(

njijiconstg
x

xf
ij

j

i =≠=≤
∂

∂ , 

then the positive equilibrium state  of System (1) 0* >= xx
 is of overall stabilization in . nR+

Proof  Because   

⎟
⎠
⎞

⎜
⎝
⎛ −

∂
∂

== ))(()(,0)( ** xxxf
x

xf
d
dxf λλ
λ

, 

where , , ),,,( 21 nxxxcolx L= ),,,()( 21 nfffcolxf L=
thereby

)))(~(())()(()( **1

0
xxxf

x
xxdxf

x
xf −

∂
∂

=−
∂
∂

= ∫ λλ , 

 As for System(2),make ,since )1()(
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* −−= ∑
=

i
y

n

i
i yexyV i
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))(~()(
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1 1
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i
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−⋅⋅−
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= =
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∑

 

so that the ordinary solution of System (2) in nR  is of overall 
 stabilization, thereby the positive equilibrium state 
  of System (1) is of overall stabilization in . 0* >= xx nR+

Theorem 3  As for System(1),if there exists matrix 
 in  such that  nnijgG ×= )( nR+

,
)(

constg
x

xf
ii

i

i =≤
∂

∂
 

),,2,1,,(
)(

njijiconstg
x

xf
ij

j

i L=≠=≤
∂

∂
 , 

moreover  1)  2) There exists 

constants ,such that  

);,,2,1(0 nigii L=<

0)( >j
iξ ),,2,1,,( njiji L=≠

1
1

)( ≤∑
≠
=

n

ij
j

j
iξ  

 and  

0
2
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)(
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+
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i

jjiij

jiijii
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i

ggg
ggg

ξ
ξ

, ),,2,1,,( njiji L=≠ . 

Then the positive equilibrium state  of System (1) 
is of overall stabilization in . 

0* >= xx
nR+

Proof  Since   

0
2

2
)(
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>
+
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jjiij

jiijii
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ggg
ggg

ξ
ξ
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).)1(,,)1(,)1(( εεε −−−− nnndiag L  
Except the last item  

( ))1(,,)1(,)1(( εεε −−−− nnndiag L ) 
at the rightside of this inequations is negative definite,others  
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are half negative definite（ 10 <<< ε ）,but their sum is negative 
definite. Therefore, it can be deduced that  is negative  TGG +
definite,so that  is subnegative definite matrix, nnijgG ×= )(

from theorem 2,the positive equilibrium state  of  0* >= xx
System (1) is of overall stabilization in . nR+

Theorem 4  As for System(1),if there exists matrix 
 in  such that  nnijgG ×= )( nR+

,
)(

constg
x

xf
ii

i

i =≤
∂

∂
 

),,2,1,,(
)(

njijiconstg
x

xf
ij

j

i L=≠=≤
∂

∂
  

and  1)  );,,2,1(0 nigii L=<

2) ijnjigggg
n jiijjjii ≠=+>

−
,,,2,1,|,|

1
2

L , 

then the positive equilibrium state  of System (1) is 
of overall stabilization in . 

0* >= xx
nR+

Proof  According to the condition 2),to the arbitrary positive 
number βα , ,there always exists: 

αβ

αββα

⋅+>

−≥−−−

||

)1/(2)1/()(

jiij

jjiijjii

gg

nggngg
 

Thereby 
    αββα ⋅+−<−+ ||)1/()( jiijjjii ggngg         （3） 

So that for the arbitrary 0),,,( 21 ≠= nxxxcolx L ,there 
exists the following two complexions: 

(a)There is only one  in ，the 

rest is ,and then 

0
0

≠ix ),,2,1( nixi L=

)(0 0iixi ≠=

02
000

<= iii
T xgGxx . 

(b)There are two or more  in ,we 

might as well suppose there exists a  set of 

0≠ix )~1( nixi =
0,0 ≠≠ ji xx , 

according to（3）,there exists: 
||||)1/()( 22

ji
ji

jiij
ji

jjjiii xxggnxgxg ⋅+−<−+ ∑∑
<<

 

thereby  

ji
ji

jiijji
ji

jiij
i

iii xxggxxggxg ∑∑∑
<<

+−≤⋅+−< )(||||2 , 

namely 
0

,
<= ∑ jiij

ji

T xxgGxx . 

Sum up (a) and (b) above, it can be deduced that 
nnijgG ×= )(  

is subnegative definite matrix，from Theorem 2,it can be 
concluded that the positive equilibrium state  of 
System(1) is of overall stabilization in . 

0* >= xx
nR+

we consider three classes of non-linear ecosystems as 
follows [4,5,6]:

  

),,2,1)(,,,( 21 nixxxfx
dt
dx

nii
i LL ==          （4） 

where  continues in ,and suppose 

System（4） have positive equilibrium state , 
),,,( 21 ni xxxf L 0≥x

0* >= xx
namely, ; ),,2,1(0),,,( **

2
*
1 nixxxf ni LL ==

),,2,1(])()(1[
1

ni
k
x

a
k
x

xr
dt
dx n

ij
j j

j
ij

i

i
ii

i i L=−−= ∑
≠
=

θ     （5） 

where ,0>ir ),,2,1(0 niki L=> ;   

),,2,1(])(1[
1

ni
k
x

exr
dt
dx in

j j

j
ijii

i L=−= ∑
=

θ

           （6） 

where ，0>ir ijiii ee ,1,0 =>θ  is constant and 

0≥ije ),,,2,1,( jinji ≠= L . 

Theorem 5  As for System(4),if there exists matrix 

nnijgG ×= )(  in  such that  nR+

,
)(

constg
x

xf
ii

i

i =≤
∂

∂  

),,2,1,,(
)(

njijiconstg
x

xf
ij

j

i L=≠=≤
∂

∂
  

and  1) );,,2,1(0 nigii L=<  2)for arbitrary ji ≠ , 

))((4 jjiijjii gg Λ′+ΛΛ′+Λ> , 

where ∑∑
≠≠

=Λ′=Λ
ij

jii
ij

iji gg ||,|| . Then the positive 

equilibrium state  of System (4) is of overall 
stabilization in . 

0* >= xx
nR+

Proof  Let  

nnij
T bGGB ×=+= )(2/)( , 

from condition2),we have  
,~~

jijjiibb ΛΛ>  

where 
 ∑

≠

=Λ
ij

iji b ||~ . 

(a)If nib iii ,,2,1,~|| L=Λ> ，namely  is diagonally 

dominant symmetrical matrix and , 

B

),,2,1(0 nibii L=<
thereby  is negative definite matrix，so that G  is 
subnegative definite matrix. 

B

(b)If as for some  ,k ,~|| kkkb Λ≤ then as for arbitrary 

,ki ≠ there exists  such that d
1||/~~/|| ≥Λ>>Λ kkkiii bdb . 

Make  

nnij

iki

cBDC
kidddddiagD

×==
≠===

)(
),,1;|(

, 
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then 
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ij
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namely ,matrix  is strict diagonally dominant,thereby 
matrix  is generalized strict diagonally dominant and 

，so that G  is subnegative definite 
matrix.. 

C
B

),,2,1(0 nibii L=<

Sum up (a) and (b) above, it can be deduced that 
nnijgG ×= )(   

is subnegative definite matrix.  
As for system（4）, make transform  

),,2,1(ln * ni
x
x

y
i

i
i L==  , 

 then it can map  into 0>x nR  space,and with this 
transform,System (4) can be rewritten as   

 ),,2,1)(,,,( **
2

*
1

21 niexexexf
dt
dy

ny
n

yy
i

i LL ==         (7) 

and then overall stability of the positive equilibrium state  
0* >= xx  of system(1) in  is equivalent to overall stability  nR+

of the ordinary solution of system(7) in nR . 
As for System(7)，make 
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so that the ordinary solution of System (7) in nR  is of overall 
 stabilization, thereby the positive equilibrium state 
  of System (4) is of overall stabilization in . 0* >= xx nR+

Theorem 6  Suppose  System（5）has positive equilibrium 
state ,let 0* >= xx

,
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if ),,2,1(1 nii L=≥θ ,and  is subnegative  nnijB ×−= )( β
definite  matr ix, then the positive equilibrium state 
  of system (5) is of overall stabilization in . 0* >= xx nR+
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0* >= xx
of  System (5) is of overall stabilization in .                                             nR+

Theorem 7  Suppose  System（6） has positive equilibrium 
state ,if 0* >= xx nnijeE ×= )(  is subpositive definite 

matrix, then the positive equilibrium state  of 
System(6)  is of overall stabilization in . 

0* >= xx
nR+

Proof  Let  
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of System (10) is of overall stabilization in . Thus, the  nR+

positive equilibrium state of  System(6)  is of 0* >= xx
 overall stabilization in . nR+

 

III. CONCLUSION 
In this paper, subpositive definite matrices are led into 

general non-linear ecosystems, and some new criterions for 
general non-linear ecosystems on overall stability based on 
subpositive definite matrices are acquired. These results 
improve or expand some existing criterions. 
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Abstract—Generation of random or pseudorandom numbers, 

nowadays, is a key feature of industrial mathematics. 
Pseudorandom or chaotic numbers are used in many areas of 
contemporary technology such as modern communication systems 
and engineering applications. More and more European or US 
patents using discrete mappings for this purpose are obtained by 
researchers of discrete dynamical systems [1], [2]. Efficient 
Chaotic Pseudo Random Number Generators (CPRNG) have been 
recently introduced. They use the ultra weak multidimensional 
coupling of p 1-dimensional dynamical systems which preserve the 
chaotic properties of the continuous models in numerical 
experiments. Together with chaotic sampling and mixing 
processes, ultra weak coupling leads to families of (CPRNG) which 
are noteworthy [3], [4]. 

In this paper we improve again these families using a double 
threshold chaotic sampling instead of a single one. 

We analyze numerically the properties of these new families 
and underline their very high qualities and usefulness as CPRNG 
when very long series are computed. 
 

Index Terms—Chaos, Discrete time systems, Floating point 
arithmetic, Random number generation. 

I. INTRODUCTION 

Efficient Chaotic Pseudo Random Number Generators 
(CPRNG) have been recently introduced. The idea of applying 
discrete chaotic dynamical systems, intrinsically, exploits the 
property of extreme sensitivity of trajectories to small changes 
of initial conditions. They use the ultra weak multidimensional 
coupling of p 1-dimensional dynamical systems which preserve 
the chaotic properties of the continuous models in numerical 
experiments. The process of chaotic sampling and mixing of 
chaotic sequences, which is pivotal for these families, works 
perfectly in numerical simulation when floating point (or double 
precision) numbers are handled by a computer. 

It is noteworthy that these families of very weakly coupled 
maps are more powerful than the usual formulas used to 
generate chaotic sequences mainly because only additions and 
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1, France (corresponding author to provide phone: 04-93-53-75-08; 
e-mailrlozi@unice.fr).  

 

multiplications are used in the computation process; no division 
being required. Moreover the computations are done using 
floating point or double precision numbers, allowing the use of 
the powerful Floating Point Unit (FPU) of the modern 
microprocessors (built by both Intel and Advanced Micro 
Devices (AMD)). In addition, a large part of the computations 
can be parallelized taking advantage of the multicore 
microprocessors which appear on the market of laptop 
computers. 

In this paper we improve the properties of these families 
using a double threshold chaotic sampling instead of a single 
one. The genuine map f used as one-dimensional dynamical 
systems to generate them is henceforth perfectly hidden. 

II. ULTRA WEAK MULTIDIMENSIONAL COUPLING 

A. System of p-Coupled Symmetric Tent Map 

When a dynamical system is realized on a computer using 
floating point or double precision numbers, the computation is 
of a discretization, where finite machine arithmetic replaces 
continuum state space. For chaotic dynamical systems, the 
discretization often has collapsing effects to a fixed point or to 
short cycles [5], [6]. In order to preserve the chaotic properties 
of the continuous models in numerical experiments we have 
recently introduced an ultra weak multidimensional coupling of 
p one-dimensional dynamical systems which is noteworthy [7]. 

In this specific case we have chosen as an example the 
symmetric tent map defined by 

xaxfa −=1)(  (1) 

with the value a = 2, later denoted simply as f, even though 
others chaotic map of the interval (as the logistic map) can be 
used for the same purpose. The dynamical system associated to 
this one dimensional  map  is  defined  by  the  equation  on  the 
interval J = [-1, 1]⊂ ℝ  [8]. 

nn xax −=+ 11
 (2) 

 
The system of p-coupled dynamical systems is then: 

 
( ) ( ))( nn1n XfAXFX ⋅==+

 (3) 

with 

Chaotic Pseudo Random Number Generators via 
Ultra Weak Coupling of Chaotic Maps and 
Double Threshold Sampling Sequences. 
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F is a map of Jp into itself. 
 
Several combinations can be given for the relative values of the 

iε
, in this paper we choose 

1i εε i=   i = 2, …, p (6) 

The matrix A is always a stochastic matrix iff the coupling 
constants 

iε
 verify 

i

1
0 ε

1p
≤ ≤

−
 (7) 

When 
iε 0=  the maps are decoupled, when 

i

1
ε

1p
=

−
 they 

are fully cross coupled. Generally, researchers do not consider 
very small values of 

iε
 because it seems that the maps are quasi 

decoupled with those values and no special effect of the 
coupling is expected. In fact it is not the case and ultra small 
coupling constant (as small as 10-7 for floating point numbers or 
10-14 for double precision numbers), allows the construction of 
very long periodic orbits, leading to sterling chaotic generators. 

Moreover each component of these numbers belonging to 
p
ℝ  is equally distributed over the finite interval J ⊂ ℝ . 
Numerical computations show that this distribution is obtained 
with a very good approximation. They have also the property 
that the length of the periods of the numerically observed orbits 
is very large [7]. 

B. Chaotic Pseudo-Random Generators 

However chaotic numbers are not pseudo-random numbers 
because the plot of the couples of iterated points (xn, xn+1) in the 
phase plane reveals the map f used as one-dimensional 
dynamical systems to generate them. 

Nevertheless we have recently introduced a family of 
Enhanced Chaotic Pseudo Random Number Generators 
(CPRNG) in order to compute very fast long series of 
pseudorandom numbers with desktop computer [9]. This family 
is based on the previous ultra weak coupling which is enhanced 
in order to conceal the chaotic genuine function. 

In the aim of hiding f in the phase space ( )l
n

l
n xx 1, +

 two 

mechanisms are used. The pivotal idea of the first one 
mechanism is to sample chaotically the sequence 
( )…… ,,,,,, 1210

l
n

l
n

lll xxxxx +
 generated by the l-th component lx , 

selecting l
nx  every time the value m

nx  of the m-th component 
mx , is strictly greater than a threshold T ∈ J, 

 with l ≠ m, for 1 ≤ l, m ≤ p . 

A second mechanism can improve the unpredictability of the 
chaotic sequence generated as above, using synergistically all 
the components of the vector X, instead of two. This simple 
mechanism is based on the chaotic mixing of the p-1 sequences 
( )…… ,,,,,, 1

1
11

2
1
1

1
0 +nn xxxxx , ( )…… ,,,,,, 2

1
22

2
2
1

2
0 +nn xxxxx ,…,

( )…… ,,,,,, 1
1

11
2

1
1

1
0

−
+

−−−− p
n

p
n

ppp xxxxx  using the last one 

( )…… ,,,,,, 1210
p
n

p
n

ppp xxxxx +
 with respect to a given  partition T1, 

T2, …,  Tp-1 of J, to distribute the iterated points.  
 

C. Numerical Results 

As an example we explicit both mechanisms taking 
4-coupled equations for (3). The value of 4

nx  commands the 

chaotic sampling and the mixing processes as follows. 
Let us set three threshold values T1, T2 and T3 

-1 < T1 < T2 < T3 < 1  (8) 
 

we sample and mix together chaotically the sequences 
( )…… ,,,,,, 1

1
11

2
1
1

1
0 +nn xxxxx , ( )…… ,,,,,, 2

1
22

2
2
1

2
0 +nn xxxxx  and 

( )…… ,,,,,, 3
1
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3
1

3
0 +nn xxxxx  defining ( )⋯⋯ ,,,,,, 1210 +qq xxxxx  by 
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  (9) 

 
Numerical results about chaotic numbers produced by (3) - 

(9) show that they are equally distributed over the interval J. 
In order to compute numerically an approximation of the 

invariant measure also called the probability distribution 
function PN (x) linked to the 1-dimensional map f  we consider a 
regular partition of M small intervals (boxes) ri of J. 

 

J=
1

0

M

ir
−

∪  (10) 

ri = [si , si+1[  , i = 0, M – 2  (11) 

rM-1 = [sM-1 , 1]   (12) 

M

i
si

2
1+−=  i = 0, M  (13) 

the length of each box is  

M
ss ii

2
1 =−+

  (14) 

All iterates f (n)(x) belonging to these boxes are collected 
(after a transient regime of Q iterations decided a priori, i.e. the 
first Q iterates are neglected). Once the computation of N+ Q 
iterates is completed, the relative number of iterates with respect 
to N/M in each box ri represents the value PN (si). The 
approximated PN (x) defined in this article is then a step 
function, with M steps. As M may vary, we define 

( )iiNM r
N

M
sP #

2

1
)(, =   (15) 

where #ri is the number of iterates belonging to the interval ri 
and the constant 1/2 allows the normalisation of )(, xP NM

 on the 

interval J. 

iiNMNM rxsPxP ∈∀= )()( ,,
  (16) 
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In the case of coupled maps, we are more interested by the 
distribution of each component x1,  …, xp of X rather than the 
distribution of the variable X itself in Jp. We then consider the 
approximated probability distribution function PN(xj) associated 
to one among several components of F(X) defined by (3) which 
are one-dimensional maps. 

The discrepancies E1 (in norm L1) and E2 (in norm L2) 
between )(, xP

iterdisc NN
 and the Lebesgue measure which is the 

invariant measure associated to the symmetric tent map, are 
defined by 

1

5.0)(),( ,1 LNNiterdisc xPNNE
iterdisc

−=  (17) 

2
2 ,( , ) ( ) 0.5

disc iterdisc iter N N L
E N N P x= −  (18) 

In the same way an approximation of the correlation 
distribution function CN (x, y) is to obtained numerically 
building a regular partition of M 2 small squares (boxes) of J2 
imbedded in the phase subspace (xl, xm) 

 
ri,j = [si , si+1[ × [tj , tj+1[   ,  i, j = 0, M – 2  (19) 

 
rM-1,j = [sM-1 , 1] × [tj , tj+1[   ,  j = 0, M – 2  (20) 

 
ri,M-1 = [si , si+1[× [tM-1 , 1]   ,  i = 0, M – 2  (21) 

 
rM-1,M-1  = [sM-1 , 1] × [tM-1 , 1]   (22) 

 

M

i
si

2
1+−= ,

M

j
t j

2
1+−= , i, j = 0, M (23) 

 
the measure of the area of each box is  
 

( ) ( )
2

11

2







=−⋅− ++ M
ttss iiii

  (24) 

 
Once N + Q iterated points( )m

n
l
n xx ,  belonging to these boxes 

are collected the  relative  number  of iterates  with respect to 
N/M 2 in each box ri,j represents the value CN (si, tj). The 
approximated probability distribution function CN (x, y) defined 
here is then a 2-dimensional step function, with M 2 steps. As M 
can take several values in the next sections, we define 

( )jijiNM r
N

M
tsC ,

2

, #
4
1

),( =   (25) 

where #ri,j is the number of iterates belonging to the square ri,j 
and the constant 1/4 allows the normalisation of ),(, yxC NM

 on 

the square J2. 
 

jijiNMNM ryxtsCyxC ,,, ),(),(),( ∈∀=    (26) 

 

The discrepancies
1CE  in norm L1 between ),(, yxC

iterdisc NN
 

and the uniform distribution on the square is defined by 
 

1
1

,( , ) ( , ) 0.25
disc iterC disc iter N N L

E N N C x y= −   (27) 

 

Finally let ),(, yxAC NM
 be the autocorrelation distribution 

function which is the correlation function ),(, yxC NM
 of (26) 

defined in the phase space ( )l
n

l
n xx 1, +

 instead of the phase space 

(xl, xm). In order to control that the enhanced chaotic numbers 
( )⋯⋯ ,,,,,, 1210 +qq xxxxx  are uncorrelated, we plot them in the 

phase subspace ( )1, +nn xx  and we check if they are uniformly 

distributed in the square J2 and if f is concealed . 
Fig. 1 shows the values of ),(1 iterdiscAC NSamplNE  for a 

system  of   4-coupled  equations   when  the  three components 
x1 , x2 , x3 are mixed and sampled by x4 for  the  threshold  values   
T1 = 0.98,   T2 = 0.987,  T3 = 0.994  or T1 = 0.998, T2 = 0.9987, 
T3 = 0.9994.  

-4,5

-4

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

2 3 4 5 6 7 8 9 10 11

Log(NSampliter)

lo
g(

E
A

C
1)

Thresholds 0,98 ; 0,987; 0,994

Thresholds 0,998 ; 0,9987; 0,9994

 
Figure 1. Error of 

1
( , )AC disc iterE N NSampl  Ndisc=102×102, 

NSampliter= 103 to 1010,  εi = i.ε1, ε1=10-14. 
 

Niter NSampliter 

1
( , )AC disc iterE N NSampl  

4-coupled  
equation 

T1 = 0.998, 
 T2 = 0.9987,  T3 = 0.9994 

105 93 0.68924731 
106 1015 0.25881773 
107 10,139 0.086706776 
108 100,465 0.026815309 
109 1,000,549 0.0089111078 
1010 9,998,814 0.0027932033 
1011 100,001,892 0.00085967214 
1012 999,945,728 0.0002346851 
1013 10,000,046,137 0.000073234736 

 
Table 1. Error of 

1
( , )AC disc iterE N NSampl  for a system of 4 

coupled-equations when the three components x1 , x2 , x3 are 
mixed and sampled by  x4 for  the  threshold  values T1 = 0.998, 
T2 = 0.9987, T3 = 0.9994. 
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III.  DOUBLE TRHESHOLD CHAOTIC SAMPLING 

A. Improved CPRNG  

On can again improve the CPRG previously introduced with 
respect to the infinity norm instead of the L1 or L2 norms 
because the L∞

norm is more sensitive than the others to reveal 

the concealed f. For this aim, consider first that in the phase 

space ( )l
n

l
n xx 1, +  the graph of the chaotically sampled chaotic 

numbers is a mix of the graphs of all the f (r) (Fig. 2). 
It is obvious as showed on Fig. 3 that for r = 1 if M = 1 or 2, 

, ( , )M NAC x y  is constant and normalized on the square hence 

1 2( , ) ( , ) ( , ) 0AC AC ACE M N E M N E M N∞ = = = . 

The  autocorrelation function is different from zero  only if 
M > 2 (Fig. 4). 

 

 
Figure 2. Graphs of the symmetric tent map f, f (2) and f (3) on the 
interval [-1,1]. 

 
Figure 3. In shaded regions the autocorrelation distribution 

, ( , )M NAC x y  is constant for the symmetric tent map f on the 

interval [-1, 1] for M = 1 or 2. 
 

In the same way as displayed on Fig. 5, 6 and 7, 

1 2( , ) ( , ) ( , ) 0AC AC ACE M N E M N E M N∞ = = =  for f (i) iff M < 2i. 

Hence for a given M, if we cancel the contribution of all the f (i) 

for 2i < M, it is not possible to identify the genuine function f. 

 
Figure 4. Regions where the autocorrelation distribution 

, ( , )M NAC x y  is constant for the symmetric tent map f are shaded, 

for M = 4. (The square on the bottom left of the graph shows the 
size of the ri,j box). 

, ( , )M NAC x y  vanishes on the white regions. 

 

 
Figure 5. In shaded regions the autocorrelation distribution 

, ( , )M NAC x y  is constant for the symmetric tent map f (2) on the 

interval [-1, 1] for M = 1, 2 and 4. 

 
Figure 6. Regions where the autocorrelation distribution 

, ( , )M NAC x y  is constant for the symmetric tent map f (2) are 

shaded for M = 8. 
 

B. Algorithm and Numerical Results 

We describe again the algorithm of the double threshold chaotic 
sampling in the case of 4-coupled equations. 
Consider the sequence ( )⋯⋯ ,,,,,, 1210 +qq xxxxx  we want to mix 

and sample. For each q-1 there exists n(q-1) in the original 
sequence. We introduce a second threshold 'N ∈ℕ  and then 
we define: 

] [
[ [
[ [

1 4
1 2 ( 1)

2 4
2 3 ( 1)

3 4
3 ( 1)

, '

, '

,1 '

n n q

q n n q

n n q

x iff x T T and n n N

x x iff x T T and n n N

x iff x T and n n N

−

−

−

 ∈ − >
= ∈ − >
 ∈ − >

  (28) 
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Figure 7. Regions where the autocorrelation distribution 

, ( , )M NAC x y  is constant for the symmetric tent map f (3) are 

shaded for M = 16. 
 

As shown previously [9] the errors in L1 or L2 norms decrease 
with the number of chaotic points (as in the law of large 
numbers) and conversely increase with the number M of boxes 

used to define 
, ( , )M NAC x y . It is the same for the error in L∞  

norm. Fig. 8 shows that when M is greater than 25, the sequence 
defined by (28) behaves better than the one defined by (9). 

 
Figure 8. Error of ( , )AC disc iterE N NSampl∞

 Ndisc= 21 to 210, 

NSampliter = 109,   thresholds T = 0.9    and   N’ = 20,   εi = i.ε1,  
ε1 = 10-14. 
 

Fig. 9 shows that when the number of chaotic points increases 

the error L∞ decreases drastically. If N’ > 100, it is necessary to 

use a huge grid of 2100x2100 boxes splitting the square J2 in order 
to find a trace of the genuine function f. This is numerically 
impossible with double precision numbers. Then the chaotic 
numbers appear as random numbers. 

Others numerical results show the high-potency of theses new 
CPRNG. Due to limitation of this article, they will be published 
elsewhere.  

IV.  CONCLUSION 

Using a double threshold in order to sample a chaotic  
sequence, we have improved with respect to the infinity norm 
the CPRNG previously introduced. When the value of the 

second threshold N’ is greater than 100, it is impossible to find 
the genuine function used to generate the chaotic numbers. The 
new CPRNG family is robust versus the choice of the weak 
parameter of the system for 10-14 < ε < 10-5, allowing the use of 
this family in several applications as for example chaotic 
cryptography. 

 
Figure 9. Error of ( , )AC disc iterE N NSampl∞

 Ndisc= 21 to 210, 

NSampliter = 109 to 1011,    thresholds   T = 0.9   and   N’ = 20, 
 εi = i.ε1,  ε1 = 10-14. 
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Periodic solution for fourth-order discrete
Hamiltonian systems

Qiong Meng

Abstract—The existence of periodic solution are obtained for
fourth-order discrete Hamiltonian systems

44u(n− 2) +∇F (n, u(n)) = 0, ∀n ∈ Z

by using critical point theory.

Index Terms—fourth-order discrete Hamiltonian systems, pe-
riodic solution, critical point theory.

I. I NTRODUCTION

Consider the fourth-order discrete Hamiltonian systems

44u(n− 2) +∇F (n, u(n)) = 0, ∀n ∈ Z, (1)

where4u(n) = u(n + 1) − u(n), 42u(n) = 4(4u(n)),
F : Z × RN → R, F (n, x) is continuously differential in
x for every n ∈ Z and T− periodic in n for all x ∈ RN ,
∇F (n, u(n)) denotes the gradient ofF (n, x) in x. We define
that T is a positive integer,Z is the set of all integers and
Z[a, b] := Z ∩ [a, b] for every a, b ∈ Z with a ≤ b. we are
interesting in the existence of a periodic solution of (1).

In 2003, Guo and Yu [4] firstly studied the existence
of periodic solutions of a second-order nonlinear difference
equation by using critical point theory. Since that time, there
appear many papers about periodic solutions of difference
equations by using critical point theory (see [2-4, 6-8]). In this
paper, we obtain some sufficient conditions for the existence
of periodic solutions of (1) by using critical point theory.

Now we state our main results below.

Theorem 1. Suppose thatF (n, x) satisfies

(H1) There exists a positive integerT , such thatF (t+T, x) =
F (n, x) for all (n, x) ∈ Z ×RN ;

(H2) There exist constantsM1 > 0, M2 > 0, 0 ≤ α < 1,
such that

|∇F (n, u(n))| ≤ M1 | x |α +M2

for all (n, x) ∈ Z[1, T ]×RN ;

(H3) | x |−2α ΣT
n=1F (n, x) → +∞ as |x| → +∞, for all

n ∈ Z[1, T ].

Then (1) possess at least one periodic solution with periodT .

Theorem 2. Suppose thatF (n, x) satisfies(H1), (H2) and

Qiong Meng is with the School of Mathematics Sciences and Computing
Technology, Central South University, Changsha, Hunan 410083 and the
Department of Mathematics, Shanxi University, Taiyuan, Shanxi 030006, PR
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This project was supported by the Postdoctoral Science Foundation of
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(H4) | x |−2α ΣT
n=1F (n, x) → −∞ as |x| → ∞, for all

n ∈ Z[1, T ].

Then (1) possess at least one periodic solution with periodT .

Theorem 3. Suppose thatF (n, x) satisfies(H1) and

(H5) (∇F (n, x), x)− 2F (n, x) → +∞ as |x| → +∞ for all
n ∈ Z[1, T ];

(H6) | x |−2 F (n, x) → 0 as |x| → ∞, for all n ∈ Z[1, T ].

Then (1) possess at least one periodic solution with periodT .

Theorem 4. Suppose thatF (n, x) satisfies(H1) and the
following:

(H7) There exist constantsG > 0, 0 < β < 2 such that for
all (n, x) ∈ Z[1, T ]×RN and |x| ≥ G,

(∇F (n, x), x) ≥ βF (n, x);

(H8) F (n, x) → −∞ as |x| → ∞ for all n ∈ Z[1, T ].

Then (1) possess at least one periodic solution with periodT .

II. PRELIMINARY

First, we shall state some basic notations. For any given
positive integerT, HT is defined by:

HT = {u : Z → RN |u(n + T ) = u(n), n ∈ Z}.
HT can be equipped with the inner product

〈u, v〉 =
T∑

n=1

(u(n), v(n)), ∀ u, v ∈ HT ,

by which norm‖ · ‖HT
can be induced by:

‖u‖ =

(
T∑

n=1

|u(n)|2
) 1

2

, ∀ u ∈ HT ,

where (·, ·) and | · | denote the usual inner product and the
usual norm inRN . It is easy to see that(HT , 〈·, ·〉) is a finite
dimension Hilbert space and linear homeomorphic toRNT .
We can equipHT with another norm||u||r for any positive
numberr > 1, where

‖u‖r =

(
T∑

n=1

|u(n)|r
) 1

r

, ∀ u ∈ HT ,

Obviously, ‖u‖2 = ‖u‖HT
and (HT , ‖ · ‖) is equivalent to

(HT , ‖·‖r). Hence, there exist two positive constantsC1, C2

which are not in relation tor, such that, for allu ∈ HT ,

C1‖u‖r ≤ ‖u‖ ≤ C2‖u‖r. (2)
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On the other hand, we define
‖u‖∞ = supn∈Z[1,T ] |u(n)|, one can get that

‖u‖∞ ≤ ‖u‖r ≤ T
1
r ‖u‖∞ ≤ T‖u‖∞. (3)

Next, we will establish the variational framework of (1) and
transferring the existence of periodic solutions of (1) into the
existence of critical point of some functional. For anyu, v ∈
HT , By using the methods in [7], we have a useful equality

T∑
n=1

(∆4u(n− 2), v(n))

=
T∑

n=1

(∆2u(n− 1),∆2v(n− 1)). (4)

Now we define the functionalϕ defined onHT by

ϕ(u) =
1
2

T∑
n=1

|42u(n− 1)|2 +
T∑

n=1

F (n, u(n)). (5)

Since F (n, x) is continuously differential inx, ϕ ∈
C ′(HT , R). For anyv ∈ HT , one has

〈ϕ′(u), v〉 =
T∑

n=1

(∆2u(n− 1),∆2v(n− 1))

+
T∑

n=1

(∇F (n, u(n)), v(n)). (6)

Thenu ∈ HT is a critical point ofϕ if and only if

T∑
n=1

(∆2u(n− 1),∆2v(n− 1)) +
T∑

n=1

(∇F (n, u(n)), v(n))

= 0. (7)

It follows from (4) and (7) that

T∑
n=1

(∆4u(n− 2), v(n)) +
T∑

n=1

(∇F (n, u(n)), v(n)) = 0.

By the arbitrary ofv, we conclude that

∆4u(n− 2) +∇F (n, u(n)) = 0, ∀n ∈ Z.

Sinceu ∈ HT is T -periodic andF (n, x) is T -periodic inn,
henceu ∈ HT is a critical point ofϕ if and only if for any
n ∈ Z, ∆4u(n−2)+∇F (n, u(n)) = 0. Thus the problem of
finding theT -periodic solution for problem (1) is reducing to
the one of seeking the critical point of functionalϕ on HT .

In the final, we give lemmas which discuss the properties
of finite dimensional spaceHT by the operator theory.

Lemma 1.[7] As a subspace ofHT , Nk is defined by:

Nk := {u ∈ HT | − 42u(n− 1) = λku(n)},
whereλk = 2− 2coskω, ω = 2π/T, k ∈ Z[0, [T/2]],

[·] denotes the Gauss Function. Then we claim that:

(i) Nk⊥Nj , k 6= j, k, j,∈ Z[0, [T/2]].

(ii) HT =
⊕[T/2]

k=0 Nk.

It is easy to obtain by using the methods in [7].

Lemma 2. Hk :=
⊕k

j=0 Nj , H⊥
k :=

⊕[T/2]
j=k+1 Nj ,

k ∈ Z[0, [T/2]− 1], then one has:

(i) 0 ≤
T∑

n=1

| 4u2(n− 1) |2≤ λ2
k‖u‖2, ∀u ∈ Hk,

(ii) λ2
k+1‖u‖2 ≤

T∑
n=1

| 4u2(n− 1) |2≤ λ2
[T/2]‖u‖2,

∀u ∈ H⊥
k .

III. M AIN PROOFS

In this section, we will prove our four theorems.

Proof of Theorem 1. Let u = ū + ũ ∈ H0

⊕
H⊥

0 , where
H0 = N0, H⊥

0 :=
⊕[T/2]

j=1 Nj . By (H2), (2), (3) and Cauchy-
Schwartz inequality, we have∣∣∣∣∣

T∑
n=1

[F (n, u(n))− F (n, ū)]

∣∣∣∣∣
=

∣∣∣∣∣
T∑

n=1

∫ 1

0

(∇F (n, ū + sũ(n)), ũ(n))ds

∣∣∣∣∣
≤

T∑
n=1

∫ 1

0

(M1 | ū + sũ(n) |α +M2)|ũ(n)|ds

≤ 2M1

T∑
n=1

| ū |α |ũ(n)|+ 2M1

T∑
n=1

|ũ(n)|α+1

+M2

T∑
n=1

|ũ(n)|

≤ λ2
1

4
‖ũ‖2 +

4M2
1 T

λ2
1

| ū |2α +
2M1

Cα+1
1

‖ũ‖α+1

+M2T‖ũ‖.
From (5) and Lemma 2, we get

ϕ(u) =
1
2

T∑
n=1

|42u(n− 1)|2 +
T∑

n=1

F (n, u(n))

=
1
2

T∑
n=1

|42ũ(n− 1)|2 +
T∑

n=1

F (n, u(n))

≥ λ2
1

2
‖ũ‖2 +

T∑
n=1

[F (n, u(n))− F (n, ū)]

+
T∑

n=1

F (n, ū)

≥ λ2
1

4
‖ũ‖2 − 2M1

Cα+1
1

‖ũ‖α+1 −M2T‖ũ‖

+ | ū |2α

(
| ū |−2α F (n, ū)− 4M2

1 T

λ2
1

)
for all u ∈ HT . As ‖u‖ → ∞ if and only if ‖ũ‖+ |ū| → ∞,
the above inequality and(H3) imply

ϕ(u) → +∞, as ‖u‖ → ∞.
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That is ϕ(u) is coercive. Hence There exists a bounded
miniming sequence. SinceHT is finite, a bounded miniming
sequence has a convergent subsequence. Asϕ ∈ C ′(HT , R),
there exists at least one point whichϕ achieves its infimum,
that isϕ(u) has a critical point.

Proof of Theorem 2.First we prove thatϕ satisfies the(PS)
condition. Suppose that{uk} ⊂ HT is a consequence such
that−M3 ≤ ϕ(uk) ≤ M3, whereM3 > 0 andϕ′(uk) → 0 as
k →∞. Then for sufficiently largek and for anyu ∈ HT ,

−‖u‖ ≤ 〈ϕ′(uk), u〉 ≤ ‖u‖.
Let uk = ūk + ũk ∈ H0

⊕
H⊥

0 . In a way similar to the proof
of Theorem 1, we have

T∑
n=1

(∇F (n, uk(n)), ũk)

≤ λ2
1

4
‖ũk‖2 +

4M2
1 T

λ2
1

| ūk |2α

+
2M1

Cα+1
1

‖ũk‖α+1 + M2T‖ũk‖.

By (6), we get

T∑
n=1

(42uk(n− 1),42ũk(n− 1))

= 〈ϕ′(uk), ũk〉 −
T∑

n=1

(∇F (n, uk(n)), ũk)

≤ ‖ũk‖+
λ2

1

4
‖ũk‖2 +

4M2
1 T

λ2
1

| ūk |2α

+
2M1

Cα+1
1

‖ũk‖α+1 + M2T‖ũk‖.

On the other hand, we have

T∑
n=1

(42uk(n− 1),42ũk(n− 1))

=
T∑

n=1

(42ũk(n− 1),42ũk(n− 1)) ≥ λ2
1‖ũk‖2.

Thus we have

4M2
1 T

λ2
1

| ūk |2α

≥ 3
4
λ2

1‖ũk‖2 − 2M1

Cα+1
1

‖ũk‖α+1

−(1 + M2T )‖ũk‖
=

1
2
λ2

1‖ũk‖2 +
1
4
λ2

1‖ũk‖2

− 2M1

Cα+1
1

‖ũk‖α+1 − (1 + M2T )‖ũk‖

≥ 1
2
λ2

1‖ũk‖2 −M4,

whereM4 > 0. Hence we get for all largek

‖ũk‖ ≤ M5|ūk|α + M6, (8)

whereM5 > 0, M6 > 0.

It follows from the boundedness ofϕ(uk),

M3 ≤ ϕ(uk)

=
1
2
|42ũk(n− 1)|2 +

T∑
n=1

F (n, ū)

+
T∑

n=1

[F (n, uk(n))− F (n, ū)]

≤
3λ2

[T/2]

4
‖ũk‖2 +

4M2
1 T

λ2
[T/2]

| ūk |2α

+
2M1

Cα+1
1

‖ũk‖α+1 + M2T‖ũk‖+
T∑

n=1

F (n, ū)

≤ |ūk|2α[| uk |−2α ΣT
n=1F (n, ūk)

+M7 + M8(|ūk|)]
for sufficiently large k, where constantM7 > 0 and
M8(|ūk|) → 0 as |ūk| → ∞. The above inequality and(H4)
imply that{ūk} is bounded. Then it follows from (8) that{uk}
is bounded. SinceHT is a finite dimensional space, there exists
a subsequence of{uk} convergent inHT . Thus we conclude
that the(PS) condition is satisfied.

In order to use the saddle point theorem ([5, Theorem 4.6]),
we only need to verify the following

(I1) ϕ(x) → −∞ as |x| → ∞ in H0.
(I2) ϕ(u) → +∞ as‖u‖ → ∞ in H⊥

0 .
In fact, from (H4), for anyx ∈ H0, we have

ϕ(x) =
T∑

n=1

F (n, x) → −∞, as |x| → ∞.

Thus (I1) is easy to verify.
Next, by (H2), we have for alln ∈ Z[1, T ] andx ∈ RN ,

F (n, x) ≤ |F (n, x)− F (n, 0)|+ |F (n, 0)|
≤

∫ 1

0

|(∇F (n, sx), x)|ds + |F (n, 0)|

≤
∫ 1

0

|(M1|sx|α + M2)|x|ds + |F (n, 0)|
≤ M1|x|α+1 + M2|x|+ M9,

whereM9 > 0.
By (5) and the above inequality, for anyu ∈ H⊥

0 , we have

ϕ(u)

=
1
2
|42u(n− 1)|2 +

T∑
n=1

F (n, u(n))

≥ λ2
1

2
‖u‖2 −

T∑
n=1

(M1|u(n)|α+1 + M2|u(n)|+ M9)

≥ λ2
1

2
‖u‖2 − M1

Cα+1
1

‖u‖α+1 −M2T‖u‖ −M9T

Since0 ≤ α < 1, we can obtainϕ(u) → +∞ as ‖u‖ → ∞
in H⊥

0 . The proof of Theorem 2 is complete.

Proof of Theorem 3.First we prove thatϕ satisfies condition
(C) ([1]), that is for every sequence{uk} ⊂ HT , {uk} has a
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convergent subsequence ifϕ(uk) is bounded and‖ϕ′(uk)‖(1+
‖uk‖) → 0 ask →∞.

Let {uk} ⊂ HT be a sequence such that{ϕ(uk)} is
bounded and

‖ϕ′(uk)‖(1 + ‖uk‖) → 0 as k →∞.

Then there exists a constantC3, such that

|ϕ(uk)| ≤ C3, ‖ϕ′(uk)‖(1 + ‖uk‖) ≤ C3.

Thus, one has

3C3 ≥ 〈ϕ′(uk), uk〉 − 2ϕ(uk)

=
T∑

n=1

[(∇F (n, uk(n)), uk(n))− 2F (n, uk(n))].

From (H5), {uk} is bounded. So{uk} has a convergent
subsequence and condition (C) is verified.

Next, we show thatϕ satisfies (I1), (I2).
From (H6), we can get that for allε > 0, there is a constant

G1 > 0, such that

(∇F (n, x), x)− 2F (n, x) >
1
ε

for all |x| > G1. That is

(∇F (n, sx), sx)− 2F (n, sx) >
1
ε

for all |sx| > G1. Then we have

d

ds
(
F (n, sx)

s2
) =

s(∇F (n, sx), x)− 2F (n, sx)
s3

>
1

εs3
= − d

ds
(

1
2εs2

).

Let s > 1, ∫ s

1

d

ds
(
F (n, sx)

s2
) > −

∫ s

1

d

ds
(

1
2εs2

).

So we obtain

F (n, sx)
s2

− F (n, x) > − 1
2εs2

+
1
2ε

.

Let s → +∞ in the above inequality, we haveF (n, x) < − 1
2ε

for all |x| > G1. From the arbitrariness ofε, one can conclude
that F (n, x) → −∞ as |x| → ∞. Then it is similar to the
proof of (I1) in Theorem 2, we can get thatϕ(x) → −∞ as
|x| → ∞ in H0.

Take ε = 1
4λ2

1, by (H6), there exists a constantG2 > 0,
such that for all|x| > G2

|F (n, x)| ≤ 1
4
λ2

1|x|2. (9)

Then from Lemma 2 and (9), for anyu ∈ H⊥
0 , we have

ϕ(u) =
1
2
|42u(n− 1)|2 +

T∑
n=1

F (n, u(n))

≥ 1
2
λ2

1‖u‖2 − 1
4
λ2

1

T∑
n=1

|u(n)|2

=
1
2
λ2

1‖u‖2 − 1
4
λ2

1‖u‖2 =
1
4
λ2

1‖u‖2

thus we can conclude thatϕ(u) → +∞ as‖u‖ → ∞ in H⊥
0 .

It follows from the saddle point theorem that Theorem 3 hold.
The proof of Theorem 3 is complete.

Proof of Theorem 4. To proof Theorem 4, we only need to
specify thatF satisfying the conditions of Theorem 4 fulfil
the ones of Theorem 3. That is, we just need to show that
conditions (H7), (H8) imply (H5), (H6).

It follows from (H7), (H8) that for all n ∈ Z[1, T ],

(∇F (n, x), x)− 2F (n, x)
= [(∇F (n, x), x)− βF (n, x)] + (β − 2)F (n, x)
≥ (β − 2)F (n, x) → +∞

as |x| → ∞, which implies (H5).
By (H8), there exists a constantG3 > G, such that for

|x| > G3, −F (n, x) > 0. From (H7), we have

d

ds
(−

F (n, s x
|x| )

sβ
)

=
−s(∇F (n, s x

|x| ),
x
|x| ) + βF (n, s x

|x| )

sβ+1
≤ 0.

Integrate both sides of the above inequality fromG3 to |x|
and obtain

−F (n, x) ≤ M10|x|β ,

whereM10 > 0. For anyx ∈ RN , we have

0 < −F (n, x) ≤ M10|x|β + M11,

where M11 = max{−F (n, x) : |x| ≤ G3, n ∈ Z[1, T ]}.
Hence

0 ≤ −F (n, x)
|x|2 ≤ M10

|x|2−β
+

M11

|x|2 .

Since0 < β < 2, we conclude thatF (n,x)
|x|2 → 0, as |x| → ∞.

Thus we have got (H6). The proof of Theorem 4 is complete.
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1

Homoclinic orbits for a class of non-periodic
Hamiltonian systems

Jian Ding, Guizhen Feng, Weili Wu

Abstract—We study the existence of homoclinic orbits for the
second order Hamiltonian system ü + Vu(t, u) = f(t). Let f ∈
C(R,Rn) and V (t, u) = −K(t, u) + W (t, u) ∈ C1(R × Rn,R),
where K is a quadratic growth function and W is allowed to
be asymptotically quadratic in u at infinity besides the super
quadratic case. Since the system is neither autonomous nor
periodic, the (PS) condition is difficult to check when we use
the Mountain Pass theorem. Therefore, we approximate the
homoclinic orbits by virtue of the solutions of a sequence of
nil-boundary-value problems.

Index Terms—Hamiltonian systems, Homoclinic orbits,
Condition(C), Asymptotically quadratic, Mountain Pass theo-
rem, Arzela-Ascoli theorem.

I. INTRODUCTION AND THE MAIN RESULT

IN this paper, we consider the existence of homoclinic orbits
for the second order Hamiltonian system:

ü(t) + Vu(t, u(t)) = f(t) (I.1)

where f ∈ C(R,Rn) and V (t, u) = −K(t, u) + W (t, u) ∈
C1(R× Rn,R).

Let us recall that a solution u(t) of (I.1) is homoclinic(to
0) if u(t) → 0 and u̇(t) → 0 as t → ±∞. In addition, if
u(t) 6≡ 0 then u is called a nontrivial homoclinic orbit.

In recent years, the existence of homoclinic orbits for
(I.1) has been extensively studied by variational methods
(see[1] − [5]). Most of them assumed that the nonlinearity
W (t, u) satisfies the Ambrosetti-Rabinowitz condition, that is,
there exists µ > 2 such that

0 < µW (t, u) ≤ (Wu(t, u), u)

for all t ∈ R and u ∈ Rn \{0}. Using the critical point theory,
they obtained the existence of homoclinic orbits. Later some
papers studied (I.1) under some weaker super quadratic as-
sumptions than the (A-R) condition ( see [6], [7]). There were
also some papers considered the sub-quadratic case([8],[9])
and the asymptotically quadratic case ([10], [11]).

It is well known that the major difficulty is to prove the
(PS) condition when one applies the Mountain Pass theorem.
If V (t, u) is periodic in t, the problem is a little simple and
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there are many results. In [7] and [12], the authors considered
(I.1). When V (t, u) = − 1

2 (L(t)u, u)+W (t, u) is independent
of t, i.e., the system (I.1) is autonomous, they obtained one
homoclinic orbit as a limit of solutions of a certain sequence
of periodic systems. By this method, [13] considered the case
that L(t) and W (t, u) are periodic in t. It also assumed that
L(t) was positive definite and symmetric, W (t, u) satisfied the
(A-R) condition. [14] replaced 1

2 (L(t)u, u) by K(t, u) which
satisfied the following so-called pinching condition,

b1|u|2 ≤ K(t, u) ≤ b2|u|2

for some positive constants b1 and b2; If V is neither au-
tonomous nor periodic in t, the problem is quite different from
the ones’ just described for lack of compactness of the Sobolev
embedding. [12] imposed a coercivity condition on L, that is,
the smallest eigenvalue of L(t) tends to +∞ as |t| → ∞.
Using a variant of the Mountain Pass theorem, it obtained
one homoclinic orbit of (I.1). In [4], the authors removed the
technical coercivity in the case where L(t) and W (t, u) are
even in t(see also [5],[15]). They approximated the homoclinic
orbits by the solutions of nil-boundary-value problems.

In this paper, we also consider the homoclinic orbits for
(I.1) by the method in [4] and [14]. But here we make no
any periodicity, coercivity or even assumptions. Moreover, we
consider some new growth condition being different from [4]
and [14]. Precisely, we assume W (t, u) may be asymptotically
quadratic at infinity besides the super quadratic case. In
addition, K(t, u) may not satisfy the pinching condition.

We make some assumptions as follows:
(A1) V (t, u) = −K(t, u) + W (t, u) ∈ C1(R × Rn), and
Vu(t, u) → 0 as |u| → 0 uniformly in t ∈ R;
(A2) there exist constants d1 > 0, γ ≥ 2 such that W (t, u) ≤
d1|u|γ for all (t, u) ∈ R× Rn;
(A3) there exist constants d2 > 0 and γ ≥ µ > γ − 1 and
β ∈ L1(R, [0,∞)) such that

(Wu(t, u), u)− 2W (t, u) ≥ d2|u|µ − β(t)

for all (t, u) ∈ R× Rn;
(A4) there exist positive constants T > 0, R > 1 and ρ0 ≤ 1
such that for t ∈ [−T, T ], W (t, u) ≤ 0 as |u| ≤ ρ0 and
W (t, u) ≥ 2π2

T 2 |u|2 as |u| > R;
(A5) K(t, 0) = 0, 0 < b := inf{t∈[−T,T ],|ξ|=1}K(t, ξ) ≤
b := sup{t∈[−T,T ],|ξ|=1}K(t, ξ) ≤ π2

2T 2 , and 0 ≤
(u,Ku(t, u)) ≤ 2K(t, u) for all (t, u) ∈ R× Rn.

By Sobolev embedding theorem, H1(R) is continuously
embedded into L∞(R). There exists a constant C∞ > 0 such
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that
|u|L∞ ≤ C∞‖u‖H1 for all u ∈ H1.

Additionally, we make the following assumption:
(A6) f ∈ C(R), f(t) 6≡ 0, f(t) = 0 for |t| ≥ T and
maxt∈[−T,T ] |f(t)| ≤ C0 := min{ 1

2 , b} ρ0

2
√

2TC∞
.

Our main result is the following theorem:
Theorem 1.1: If the assumptions (A1)− (A6) are satisfied,

then the system (1.1) possesses a nontrivial homoclinic orbit.

Remark 1.1: From (A2) and (A4) we can easily see that W
may be asymptotically quadratic in u at infinity; In addition,
f(t) 6≡ 0 ensures that u(t) ≡ 0 can’t be a solution of (I.1).

Remark 1.2: There are functions satisfy the assumptions
above. For example, one can easily check that if

K(t, x) =


(
1 + 1

1+t2

)
x2 x ≥ 0,(

1 + 2
1+t2

)
x2 x < 0

and

W (t, x) = −2x2 + x3 (the super quadratic case)

or

W (t, x) = x2 − 2x
3
2 (the asymptotically quadratic case)

where t, x ∈ R, then V (t, x) = −K(t, x) + W (t, x) satis-
fies (A1) − (A5) while W doesn’t satisfy the Amebrosetti-
Rabinowitz condition.

II. PROOF OF THE MAIN RESULT

We shall obtain the solution of (I.1) as the limit as k →∞
of the solutions of

ü(t) + Vu(t, u(t)) = f(t) for t ∈ (−kT, kT ),
u(−kT ) = u(kT ) = 0.

(II.1)

For each k ∈ N and p ∈ [2,∞), denote

Lp
k :=

{
u : [−kT, kT ] → Rn||u|Lp

k
<∞

}
,

where |u|Lp
k

:=
(∫ kT

−kT

|u(t)|p
) 1

p

.

Let

L∞k :=
{
u : [−kT, kT ] → Rn||u|L∞2k

:=

ess sup{|u(t)|} <∞
}
.

Set

Ek := {u : [−kT, kT ] → Rn|u is absolutely continuous,
u(−kT ) = u(kT ) = 0},

equipped with the norm

‖u‖k =
(∫ kT

−kT

(|u̇|2 + |u|2)dt) 1
2
.

By zero extensions, we can see Ek ⊂ Ek+1 ⊂ H1 for all
k ∈ N. Therefore

|u|L∞k ≤ C∞‖u‖k for all u ∈ Ek.

We using variational methods to study (II.1) and define

ϕk(u) =
∫ kT

−kT

[1
2
|u̇(t)|2 − V

(
t, u(t)

)
+
(
f(t), u(t)

)]
dt.

It is clear that ϕk ∈ C1(Ek,R) and

ϕ′k(u)v

=
∫ kT

−kT

[(
u̇(t), v̇(t)

)− (Vu(t, u(t)), v(t)
)

+
(
f(t), v(t)

)]
dt.

We all know that critical points of ϕk are classical solutions
of (II.1).

Lemma 2.1: Under (A1)−(A6), for each k ∈ N, the system
(II.1) possesses a nontrivial solution.

We will prove this result via the Mountain Pass theorem by
Rabinowitz in [11]. Instead of the (PS) condition, here we
use condition (C). Recall a function ϕ satisfies condition (C)
on E if any sequence {uj} ⊂ E such that {ϕ(uj)} is bounded
and (1 + ‖uj‖)‖ϕ′(uj)‖ → 0 has a convergent subsequence.
The Mountain Pass theorem still holds true under condition
(C)( see [16]).

Before the proof of Lemma 2.1, we need the following
proposition.

Proposition 2.1: Under (A5), for every t ∈ R, the follow-
ing inequalities hold:

K(t, u) ≥ b|u|2 if 0 < |u| ≤ 1,

K(t, u) ≤ b|u|2 if |u| ≥ 1.
(II.2)

Proof for each t ∈ R and u ∈ Rn, let f(ξ) = K(t, u
ξ )ξ2, ξ ∈

(0,+∞), then by (A5),

f ′(ξ) = Ku(t,
u

ξ
)ξ2(− u

ξ2
) +K(t,

u

ξ
)(2ξ)

=
(
2K(t,

u

ξ
)−Ku(t,

u

ξ
)
u

ξ

)
ξ

≥ 0.

So f(ξ) is nondecreasing. Hence we easily obtain (II.2). ¤

Proof of lemma 2.1 Under our assumptions, it is easy to
see that ϕk(0) = 0.
Step 1. ϕk satisfies condition (C).

Suppose {uj} ⊂ Ek, {ϕk(uj)} is bounded and (1 +
‖uj‖k)‖ϕ′k(uj)‖ → 0 as j → ∞. Then there is a constant
Mk > 0 such that

ϕk(uj) ≤Mk, (1 + ‖uj‖k)‖ϕ′k(uj)‖ ≤Mk (II.3)
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for all j ∈ N.
By (II.3), (A3), (A5) and (A6),

3Mk ≥ 2ϕk(uj)− ϕ′k(uj)uj

=
∫ kT

−kT

[
2K
(
t, uj(t)

)− (Ku

(
t, uj(t)

)
, uj(t)

)]
dt

+
∫ kT

−kT

[(
Wu

(
t, uj(t)

)
, uj(t)

)
− 2W

(
t, uj(t)

)]
dt

+
∫ kT

−kT

(
f(t), uj(t)

)
dt

≥ d2

∫ kT

−kT

|uj(t)|µ dt−
∫ kT

−kT

β(t) dt− C0

√
2T‖uj‖k

≥ d2

∫ kT

−kT

|uj(t)|µ dt− β0 − C0

√
2T‖uj‖k,

where β0 =
∫ ∞

−∞
β(t) dt.

Therefore,

∫ kT

−kT

|uj(t)|µ dt ≤ 1
d2

(
3Mk + β0 + C0

√
2T‖uj‖k

)
.

By (A5), (A6) and Proposition 2.1,

1
2
|u̇j |2L2

k
= ϕk(uj)−

∫ kT

−kT

K
(
t, uj(t)

)
dt

+
∫ kT

−kT

W
(
t, uj(t)

)
dt−

∫ kT

−kT

(
f(t), uj(t)

)
dt

≤Mk − b

∫
{t∈[−kT,kT ]||uj(t)|≤1}

|uj(t)|2 dt

+ d1

∫ kT

−kT

|uj(t)|γ dt+ C0

√
2T‖uj‖k.

Then one has

1
2
|u̇j |2L2

k
+ b

∫
{t∈[−kT,kT ]||uj(t)|≤1}

|uj(t)|2 dt

≤Mk + d1

∫ kT

−kT

|uj(t)|γ dt+ C0

√
2T‖uj‖k.

Therefore,

min{1
2
, b}‖uj‖2k

≤Mk + b

∫
{t∈[−kT,kT ]||uj(t)|>1}

|uj(t)|2 dt

+ d1

∫ kT

−kT

|uj(t)|γ dt+ C0

√
2T‖uj‖k

≤Mk + b

∫ kT

−kT

|uj(t)|γ dt

+ d1

∫ kT

−kT

|uj(t)|γ dt+ C0

√
2T‖uj‖k

≤Mk + (b+ d1)|uj |γ−µ
L∞k

∫ kT

−kT

|uj(t)|µ dt

+ C0

√
2T‖uj‖k

≤Mk + (b+ d1)Cγ−µ
∞ ‖uj‖γ−µ

k

∫ kT

−kT

|uj(t)|µ dt

+ C0

√
2T‖uj‖k

≤Mk +
1
d2

(b+ d1)Cγ−µ
∞ ‖uj‖γ−µ

k (3Mk + β0

+ C0

√
2T‖uj‖k) + C0

√
2T‖uj‖k.

Since γ − µ < 1, we get {‖uj‖k} is bounded. Going if
necessary to a subsequence, we can assume that there exists
u ∈ Ek such that uj ⇀ u in Ek as j → +∞ , which implies
uj → u uniformly on [−kT, kT ].

Therefore,

(
ϕ′k(uj)− ϕ′k(u)

)
(uj − u) → 0,

|uj − u|L2
k
→ 0

and

∫ kT

−kT

(
Vu

(
t, uj(t)

)− Vu

(
t, u(t)

)
, uj(t)− u(t)

)
dt→ 0

as j → +∞.
By an easy computation, we can see that

(
ϕ′k(uj)− ϕ′k(u)

)
(uj − u) = |u̇j − u̇|2L2

k

−
∫ kT

−kT

(
Vu

(
t, uj(t)

)− Vu

(
t, u(t)

)
, uj(t)− u(t)

)
dt.

Hence we have |u̇j − u̇|2
L2

k
→ 0, and so we get uj → u in

Ek.
Step 2. There are constants ρ > 0 and α > 0 independent of
k, such that ϕk|Sρ ≥ α, where Sρ = {u ∈ Ek|‖u‖k = ρ}.

Choose ρ = ρ0
C∞

, then for u ∈ Sρ we have |u|L∞k ≤ ρ0.
Therefore, |u| ≤ ρ0 ≤ 1 for all t ∈ [−kT, kT ], and then by
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(A4), W (t, u) ≤ 0. Together with (II.2), we obtain

ϕk(u) =
∫ kT

−kT

[1
2
|u̇(t)|2 +K

(
t, u(t)

)−W
(
t, u(t)

)]
dt

+
∫ kT

−kT

(
f(t), u(t)

)
dt

≥ 1
2

∫ kT

−kT

|u̇(t)|2 dt+ b

∫ kT

−kT

|u(t)|2 dt

− C0

√
2T‖u(t)‖k

≥ min{1
2
, b}‖u(t)‖2k − C0

√
2T‖u‖k

= min{1
2
, b}ρ2 − C0

√
2Tρ

= min{1
2
, b} ρ0

2

2C∞2

, α.

Step 3. For the ρ defined as above, there exists ek ∈ Ek such
that ‖ek‖k > ρ,ϕk(ek) ≤ 0.

By (A4),
W (t, u)
|u|2 ≥ 2π2

T 2

for all |u| > R and t ∈ [−T, T ].
Let δ = max{t∈[−T,T ],|u|≤R} |W (t, u)|, we obtain

W (t, u) ≥ 2π2

T 2 (|u|2 −R2)− δ (II.4)

for all u ∈ Rn, t ∈ [−T, T ].
Set

ek(t) =
{
s sin(ωt)e, t ∈ [−T, T ]
0, t ∈ [−kT, kT ]\[−T, T ] (II.5)

where ω = π
T , e = (1, 0, · · · , 0). Obviously, ek ∈ Ek, and

‖ek‖k → ∞ as s → ∞. We can assume s is large enough
such that ‖ek‖k ≥ max{1, ρ}. With (II.2) and (II.4), by an
easy computation, we can obtain

ϕk

(
ek(t)

)
=
∫ kT

−kT

[1
2
|ėk(t)|2 +K

(
t, ek(t)

)−W
(
t, ek(t)

)
+
(
f(t), ek(t)

)]
dt

≤
∫ T

−T

1
2
|ėk(t)|2dt+ b̄

∫ T

−T

|ek(t)|2dt− 2π2

T 2

∫ T

−T

|ek(t)|2dt

+
(2π2R2

T 2
+ δ
)
2T + C0

√
2T
(∫ T

−T

|ek(t)|2 dt
) 1

2

≤ 1
2
s2ω2

∫ T

−T

| cos(ωt)|2 dt

+
(
b̄s2 − 2π2s2

T 2

)∫ T

−T

| sin(ωt)|2 dt

+ C0

√
2Ts

(∫ T

−T

| sin(ωt)|2 dt
) 1

2
+ 2T

(
δ +

2π2R2

T 2

)
=
(1

2
ω2 + b̄− 2π2

T 2

)
s2T + C0

√
2TsT

1
2 + 2T

(
δ +

2π2R2

T 2

)
≤ −π

2

T
s2 +

√
2C0Ts+ 2T

(
δ +

2π2R2

T 2

)
→ −∞

as s → ∞. So for all k ∈ N, we can choose a s large
enough such that ek defined as above satisfies ‖ek‖k > ρ
and ϕk(ek) ≤ 0.

Therefore, by the Mountain Pass theorem, for each k ∈ N,
ϕk possesses a critical point uk ∈ Ek with value ck =
ϕk(uk) ≥ α, which means uk is a nontrivial solution of (II.1).
Moreover,

ck = inf
g∈Γk

max
s∈[0,1]

ϕk(g(s))

where

Γk = {g ∈ C([0, 1], Ek) : g(0) = 0, g(1) = ek}. ¤

By Lemma 2.1, we can obtain a sequence {uk} such that
for each k ∈ N,

ϕk(uk) = ck ≥ α, ϕ′k(uk) = 0.

In the following, we will show that there exists a subsequence
of {uk} which almost uniformly converges to a C2 function.

We denote Cp
loc(R,Rn)(p ∈ N ∪ {0}), the space of Cp

functions on R with values in Rn under the topology of almost
uniformly convergence of functions and all derivatives up to
the order p. We have the following result:

Lemma 2.2: Let {uk}k∈N be the sequence given as above.
Then it possesses a subsequence also denoted by {uk} and a
C2 function u : R→ Rn such that uk → u in C2

loc(R,Rn) as
k → +∞.

Proof We will prove this lemma by virtue of the Arzela-
Ascoli theorem. We first show that the sequence {ck}k∈N and
{‖uk‖k}k∈N are bounded.

For any m < n,Em ⊂ En. Hence the set of competing
paths in Γn is greater than Γm, which implies cn ≤ cm ≤ c1,
and then ck ≤ c1 for all k ∈ N.

Since
ϕk(uk) = ck ≤ c1

and
ϕ′k(uk) = 0,

just as proof of Step 1. in Lemma 2.1, it is easy to prove {uk}
is bounded uniformly in k. Therefore there exists a constant
M1 > 0 independent of k such that

‖uk‖k ≤M1 for all k ∈ N.
From

|uk(t1)− uk(t2)| ≤
∫ t2

t1

|u̇k(t)|dt

≤ (t2 − t1)
1
2

(∫ t2

t1

|u̇k(t)|2dt
) 1

2
,

we can see (un(t)) is equicontinuous on each [−Tn, Tn].
Hence by the Arzela-Ascoli Theorem, it has a uniformly
convergent subsequence on each [−Tn, Tn].

Let {u1
nk
} be a subsequence of {un} that converges on

[−T1, T1]. Then it is equicontinuous and uniformly bounded
on [−T2, T2]. So we can choose a subsequence {u2

nk
} of

{u1
nk
} that converges uniformly on [−T2, T2]. Repeat this

procedure for all n and take the diagonal sequence {uk
nk
}.
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It is obvious that {uk
nk
} is a subsequence of {ui

nk
} for any

i ≥ 1. Hence it converges uniformly to a function u(t) on any
bounded interval.

In the following, for simplicity, we denote the subsequence
{uj

kj
} also by {uk}.

Since uk satisfies

ük(t) + Vu(t, uk(t)) = f(t), (II.6)

we conclude that {ük} and then also {u̇k}, converges uni-
formly on any bounded interval.

It is easy to see

uk(t) =
∫ t

−kT

(t− s)ük(s)ds.

Then u ∈ C2 and ük → ü uniformly on any bounded interval.
¤

In order to prove Theorem 1.1, we need the following result
from [14].

Proposition 2.2: Let u : R→ Rn be a continuous mapping
such that u̇ ∈ L2

loc(R,Rn). Then for every t ∈ R the following
inequality holds:

|u(t)| ≤ √
2

(∫ t+ 1
2

t− 1
2

(|u(s)|2 + |u̇(s)|2) ds

) 1
2

(II.7)

Proof of the Theorem 1.1 We prove u is exactly our desired
homoclinic solution of (I.1).
Step 1. u satisfies (I.1).

Check the argument of Lemma 2.2, we can pass to the
limit in (II.6), and then u(t) satisfies (I.1). Since f 6≡ 0, u
is nontrivial.
Step 2. u(t) → 0 as |t| → ∞.

Obviously, for each i ∈ N there is ki ∈ N such that for all
k ≥ ki we have∫ iT

−iT

(|uk(t)|2 + |u̇k(t)|2) dt ≤ ‖uk‖2k ≤M2
1 .

Letting k → +∞, we obtain∫ iT

−iT

(|u(t)|2 + |u̇(t)|2) dt ≤M2
1 .

As i→∞, we have∫ +∞

−∞

(|u(t)|2 + |u̇(t)|2) dt ≤M2
1 .

Hence we get∫
|t|≥ρ

(|u(t)|2 + |u̇(t)|2) dt→ 0 (II.8)

as ρ→ +∞.
Combing (II.7) and (II.8), we conclude u(t) → 0 as |t| →

∞.
Step 3. u̇(t) → 0 as |t| → ∞.

Since u(s) → 0 and f(s) = 0 as |s| → ∞, by (A1), we
have ∫ t+ 1

2

t− 1
2

|ü(s)|2 ds

=
∫ t+ 1

2

t− 1
2

(|Vu(s, u(s))|2 + |f(s)|2) ds

− 2
∫ t+ 1

2

t− 1
2

(
Vu(s, u(s)), f(s)

)
ds→ 0

(II.9)

as |t| → ∞.
From Proposition 2.2, we get

|u̇(t)|2 ≤ 2
∫ t+ 1

2

t− 1
2

(|u(s)|2 + |u̇(s)|2) ds+ 2
∫ t+ 1

2

t− 1
2

|ü(s)|2 ds.

Together with (II.8) and (II.9), we obtain u̇(t) → 0 as
|t| → ∞. ¤
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Abstract— Analysis of the synchronization of oscillations is often
modelled using differential equations which describe the
structure of the system. The constraints which control the
solution are condensed in a system of equations, of which the
resolution is often very difficult. We present an alternative
approach by separation of the constraints. We consider here the
impact of the only constraint of the congruence of the
frequencies. It induces forms which are the much attractive for
the families of solutions. These forms are deployed in a space of
evolution, which we define. We analyze singularities of
congruence of order 1.
In the evolution space, we propose a scenario for series of
bifurcations. This proposal is connected to an experimental
example, based on an oscillator of Van der Pol.

Index Terms:—Bifurcations, congruence, synchronisation,
geometric constraints, Van Der Pol.

I. INTRODCUTION

HE synchronization of oscillations is used in a great
number of applications. This phenomenon known since

Huygens [1] [2], is accompanied sometimes by series of
bifurcations of which it is very difficult to clarify the general
law [3][4]. On this topic, we propose an original point of view:
the separation of the constraints.

Each one in our speciality, when we build the model of a
class of systems, we neglect the physical phenomena which
intervene little. Seldom that calls into question its credibility,
the more so as the taking into account of these mechanisms
will complicate its equations largely. Thus, we select certain
constraints, essential, and we let us be unaware of others of
them. This practice is not new.

We propose an opposite step here. Rather than to group the
constraints which interact in a class of systems, in the form of
a differential equation, we let us analyze only one constraint,
the constraint of congruence in the interaction of the
oscillations. This unicity generalizes the remarks exposed in
our article to a very vast class of systems, in fact with all the
systems able to couple two oscillations, some is their nature.

The goal is to distinguish the consequences induced by the
constraint from congruence of those dictated by the physical
laws, whose common point is energy.

II.  PRESENTATION OF  CONGRUENCE SINGULARITY

A. Model and definition of congruence singularity

To model the constraint of congruence and by reasons of
simplicity, we will consider only oscillations of sinusoidal

                                                          
1 The author is with Conservatoire National des Arts et Métiers, Paris,

France  and  work in team ECS of ENSEA, Cergy Pontoise, France

form. This choice can be considered as the prolongation of the
analysis to the first harmonic, used by the pioneers of the
nonlinear automatic. For the same reason we will limit
ourselves to superimpose as two oscillations. Consequently
our
model is simple:

         ( ) sin( ) sin( ) (1)a a b bv t A t B tω φ ω φ= + + +
To reduce the writing, we can used the report/ratio of the

amplitudes K, and to describe the difference of the phases by
only one variable ϕ, then:

                 ( ) sin( ) sin( ) (2)a bv t K t tω ϕ ω= + +
We denote:

* 2 2
, avec  ; , ; (3)b

a a b
a b

n
n q

n q T T

ω π πω η ω ω
η

= = ∈ Ν = =
+

we set the congruence
( )b a cycle a bnT n q T T ω ω= + = ⇔ >

It guaranteed the periodicity of v(t). Indeed, as long as
( )b anT n q T= + , with n and n+q in *

ℕ , we will have:

  2 2
0 0sin( ) sin( ( ))bT Tb b
t t nTπ π= +

Similarly:

                  2 2
0 0.sin( ) .sin( ( ( ) ))aT Ta a

K t K t n q Tπ π= + +

So:

0 0 0( ) ( ) ( ( ) )b av t v t nT v t n q T= + = + +

In addition, n and n+q in  imply Qη ∈ . Naturally, only the

cases for q>0 are relevant. The phases space is the surface of
the torus T² .

Because of the constraint of congruence, all the solutions
are closed trajectories. To facilitate their description on a
plane figure, we will consider a cross-section of the torus,
normal to its large ray. The totality of the trajectory will be
thus projected on the co-ordinates (v, dv), which point out the
space of the phases of a simple oscillator. For K very large,
v(t) is slightly modulated by sin( )ωbt . For K<<1, v(t) is
close to sin( )ωbT  . These two cases have not interest, but for

K≈1, the two sinusoids are in phase opposition and the
existence of singular points become possible.

When the two sinusoids are in phase opposition, v(t) can
become null, but its derivative also. It is thus relevant to
observe the evolution of v(t) and dv(t) according to the ratio K

For example, let us consider the case q=1 and n odd (fig. 1).
As long as ϕ=0, we will have, for topp =Tc/2

( )2 2
2 2 2

( ) . ( ) ( )c a b

a b

T nT n q T

T T
v K Sin Sinπ π += +

This equation is verified for all  n.

Frequency bifurcation by singularities of
congruence

Roger TAULIEGNE1

T
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2

( ) . (( 1) ) ( ) 0cTv K Sin n Sin nπ π= + + =
At topp, the derivative is :

. .
2

( ) (( 1) ) ( )T b
bdv K Cos n Cos n

ω π ω π
η

= + +

The signs of the circular functions are necessarily opposed,
it exists a K0 value of K which cancels this derivative:

0 0

.cos( )
(4)

cos(( 1) )

n n
K K

n n q

η π
π

−= ⇒ =
+ +

For this value of K, v=dv=0, the trajectory passes by the
origin and draws a cusp (fig. 2). We will call this singularity a
congruence singularity.

n term of parametric functions, this singularity is a point of
graining of first species.

B.  Evolution space and  deploymen

Each value of K defines a periodic solution. For K>K0, a
inner loop is formed, centred on the singularity. To observe
the deployment of this form, it is necessary to trace on the
same graph, a succession of solutions ordered by the values of
K. One uses the reference mark (v, dv, K) in which one can
follow the evolution of the orbits according to K.
Consequently, we will call reference mark (v, dv, K) the space
of evolution, following K One then observes the deployment
of a cone whose top is the singularity of congruence (fig. 3).
We will name that the deployment of a singularity of
congruence. Each solution is established with K as constant.
Remark: For n=2 the shape of the cone of deployment is
reversed. This inversion follows that of the parity of n.

C.  Main results

So that a parametric function E(t) presents a turn back point
of first species, it is necessary that its first non null derivative
is of order pair and that the following one is odd. In our case,
E(t) is written as:

                                        
( )

( )
'( )

v t
E t

v t
=

and the condition of turn back  point of first species is:
'( ) 0 ; "( ) 0 et  "'( ) 0E t E t E t= ≠ ≠ .

Let t0 and K0 such that 0 0 0'( ) 0  et  "( ) 0 '( ) 0v t v t E t= = ⇒ = ,

then:

   0
0 0 0 03

"'( ) cos( ) cos( ) "( ) "'( ) 0
K t

v t t v t v t
η η
−= − ≠ ⇒ ≠

Consequently: 0 0"( ) 0 et  "'( ) 0E t E t≠ ≠ . In our case, the

conditions of existence of turn back point of first species are
reduced to:

0
2 2

0

cos( ) cos( ) 0

sin( ) sin( ) 0
a a R b b R

a a R b b R

K t t

K t t

ω ω ω ω
ω ω ω ω

+ =
− + =

We set 1bω =  and from the congruence constraint, we write:

                          
0 0

0

0 0
02

cos( ) cos( ) 0

sin( ) sin( ) 0

K t
t

K t
t

η η

η η

+ =

− − =

To avoid rational arguments, we will pose 0 /t n x= , from this

we have:
Proposition 1:All the congruence singularities satisfy the two

following conditions:

                  
0

0
2

cos(( ) ) cos( ) 0 (5)

sin(( ) ) sin( ) 0 (6)

K
n q x nx

K
n q x nx

η

η

+ + =

− + − =

Each solution of this system determines a couple (K0 ,t0 ) to
which corresponds a congruence singularity in the space of
evolution. From this proposal, we deduce the following
corollary:
Corollary 1:All the singularities occur for dv=0.

Corollary 1 is the condition consequence of (5).
Proposition 2 :No singularity exists in t0=0.

Proof: The condition (5) requires that the value of each
circular function is of opposite sign. For x=0 this condition is
not satisfied. As 0 0/ 0 0t n x x t= ⇒ = ⇒ = .

A similar proof is possible with the relation (6).

v(t)

t0

Tcycle

topp

Fig. 1. Opposition phases, example for n=3, q=1. This opposition
produces a congruence singylarity.

v(t)
(1v/div)

dv/dt(1v/s/div)

Fig. 2.The  opposition phases produces a cups in the space of phases
(q=1, n=1, K=0,5). It is a singularity of congruence.

K

K

v(t)
(1v/div)

dv/dt(1v/s/div)

 Fig. 3. Congruence singularities growing in space evolution ( q=1, n=1,
Kmin=0,5,Kmin=0,8) .
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Theorem 1: The number of singularities of congruence is

equal to q.

Proof: Condition (5) may be rewritten as :

                         
cos(( ) )

sin( )

n q x

nx K

η+ = −

The term cos(( ) )n q x+  is developed in a polynomial of order

n+q, and the term cos( )nx results in a polynomial of order n.

So the condition (5) can then be written in the form:

                  
1 2

0 1 1

1 2
0 1 1

...

...

n q
n q

n
n

a a u a u a u

b b u b u b u K

η+
++ + + +

= −
+ + + +

From the euclidianne division, we have:

              1 2
0 1 1 ... 0 (7)q

qc c u c u c u
K

η + + + + + =

Considering the D’Alambert theorem this equation has q roots,
that is to say as many singularities of congruencies. Notice
that the condition (6) by the same method leads to the same
result

For Example: With q=3 and n=2,

5 3
3

2

cos((3 2) ) 16 20 5
(8 6 )

cos(3 ) 2 1

x u u u
u u u

x K u

η+ − += − ⇒ = − +
−

with u=cos(x). That leads to an equation of order 3, which
with the obviousness has two symmetrical roots.

                               2(8 5) 0u u
K

η− + =

Now, we have just to defer the values of the roots in the
relation (6) for define the values of K0. It is thus almost always
judicious to resort to the numerical approximation, for the
determination of these values.

Note that the condition (6) by the same method leads to the
same result.
Definition: Each q value defines a class of singularities of

congruence. This value will be to name the order of the

singularities of congruence.

Theorem 2, (Symetry theorem) If ϕ=0, each curve in the plan

(v, dv) is symmetrical with axis dv.

Proof:

1) . .( ( ) ) ( ) ( ( ) ) ( )
K K

Cos x n q Cos nx Cos x n q Cos nxϕ ϕ
η η

+ + + ≠ − + + + −

As cos( ( ) ) cos( ( ) )x n q x n qϕ ϕ+ + ≠ − + +  for ϕ not equal to 0,

then  ( ) (- )dv x dv x x= ∀ .

2)   ( ( ) ) ( ) ( ( ) ) ( )
K K

Sin x n q Sin nx Sin x n q Sin nxϕ ϕ
η η

− + + − ≠ − + + + −

As ( ( ) ) ( ( ) )Sin x n q Sin x n qϕ ϕ− + + ≠ − + +  for ϕ not equal to 0,

then  ( ) (- )v x v x x= − ∀ .

If ϕ=0, v(x) is an odd function and dv(x) is an even
function, from where this symmetry� .

This property remains true in the space of evolution.

D. Trajectories

Considering corollary 1, in the space of evolution, each
singularity is localised in the plan (v,K) by the couple (v0, K0).
As we have shown K0 on n (i.e. (4)), and although in the
particular case q=n=1, v0 are always null, in general v0 also
depends on n. Therefore, for q=cte, the incrementing of n
modifies the couple (v0, K0).
Each new value of n defines a new of the same singularity
order. It is noted that the continuation of singularity which
results from it draws in the plan (v,K) a succession of aligned
points. We will call trajectory this broken line. From theorem
1, for the congruence singularities of order q, we will have q
distinct trajectories.

Définition: We will call family of singularities the whole of

the singularities of congruence having a common trajectory.

This multiplicity of the singularities of congruence required
the definition of a system of notation.

E.  Notation of  congruence singularities

It is necessary to be able to distinctly indicate all the
topological singularities in the space of evolution. The
characteristic of these singularities being the congruence of
the oscillations, it seems natural to indicate them in a generic
way by the letter C.

Theorem 1 indicates that there is q singularities of
congruence for the same value of η. The number q will be
called the order of the singularity and will be noted in index.
In addition, for q>1, we will have two families of singularities,
it is thus necessary to identify each family by a value of index,
noted f.  Because of the symmetry of singularities (Th. 2) it is
relevant to sign this index of the same sign as the value of v(t)
corresponding to the singularity. Thus all the families of
singularities to v(t)<0 will have a negative index. The value of

f will be a relative entirety such that [ ]0, / 2f q∈ .  For the

singularities located on the axis K, f=0. On both sides of this
axis the value of f will be increasing according to the order of
appearance of the singularity. In the event of superimposed
singularity, the higher cusp will have the weakest index.

Lastly, in each family a third index will number by order
ascending each singularity, of or the format of the notation.

                    ( ) ( ( ), ( ))ordre qC famille f numéro n±
One second quantity characterizes each singularity of

congruence, the value of K which corresponds to its origin.

v

K

n=∝

n=1

10

n=1

f=1

f=-1

f=2

f=0

f=3

f=-2

f=-3

v

K

n=∝

n=1

10

n=1

f=1

f=-1

f=2

f=3

f=-2

f=-3
q=7 q=6

Fig. 4. Trajectories examples of the singularities of congruence, in plan
(v, K).
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We will use the same indices for this second value, that is to
say ( , )qK f n± .

Thus for the family of the singularities of order 1, we will
write: 1 1(0, ) ; (0, )C n K n

III.  ORDER 1 CONGRUENCE SINGULARITIES

As we showed, the moment to which occurs the
singularities of order 1 is Tcycle/2. At this moment the value of
K must be:

1(0, )
1

n
K n

n
=

+
Thus various values of K are possible the table below gives

some examples:

When n increases the interval between two origins of
singularities decrease (see fig 1 and fig. 5). This remark is
probably an answer to the question: why do one more
frequently observe of   frequency bifurcations of a weak
nature than of order high?

A.  Cone of deployment

As figure 3 suggests it, the deployment of the singularity is
not a cone with the direction strict, but only with the
topological direction. However, there is a place of the similar
singularity to a generator is easily identifiable, because he
corresponds to  Tcycle/2. Knowing this moment, it is easy to
define the amplitude, according to the evolution of K, i.e.
during the deployment of this singularity.

( 1). .b a cylcen T n T T+ = =
( 1).

)
2

( / 2) ( (( 1) ) 2.
n Ta

cycle av T v V n avec Tπ π+
== + =

( 1)
1

(( 1) ) sin(( 1) ) sin( ) 0n n

n
v n K n ππ π +

++ = + + =
This expression is always null, which shows that the point

of the curve that one considers is in the plan (dv, K). At the
moment Tcycle/2, dv has for expression:

(( 1) ) cos(( 1) ) cos( )
1

n
dv n K n n

n
π π π+ = + +

+
The parameters n and q being fixed, this value of amplitude

is a linear function of K. Because of symmetry (Th. 2), it
represents a significant measurement of the ray of the cone of
deployment of the singularity. It defines a generator of this
cone corresponding to its intersection with the plan (v,K), but
its derivative compared to K has a constant value.

))1cos((
))1(( π

∂
π∂ +=+

n
K

ndv

That shows that this generator is a line. Its slope in the plan
(dv, K) is constant modulates some, therefore whatever the

value of N the slope is equal to 1, in module. All the cones of
this family of singularities have even angle in the center.
According to the parity of n, the sign of the slope is positive or
negative. It is then possible to illustrate the overlap of the
deployments of a family of singularities (fig. 5).

    Thus, the constraint of congruence defines a continuation of
form in the space of evolution, forms which dictate a part of
the behaviours of oscillating systems physique.

IV.  SCENARIOS OF FREQUENCY BIFURCATION

A.  Situation

The congruence of the pulsations, necessary to all
synchronization, is a condition likely to lead to credible
justification of the frequency bifurcation, to see to play a part
of tool of design of system.

The goal is to go beyond a criterion of junction of a
solution, towards a tool, near to the physical phenomena,
which will clarify the total mechanism of the bifurcations,
according to the structure of the system.

B.  Bifurcation’s assumption

In a general way this modelling of congruence cannot
describe the junctions which are born from limitations of
physical nature, although coupled with the constraint of
congruence. But in order to outline a scenario of junctions in
frequency, we will suppose:

1) That the physical constraints limit the size of the
secondary loop to a fixed value, noted Eseuil.

2)When this limit is reached, by increase in K, the
report/ratio of congruence changes.

For example, N is incremented, which authorizes the
respect of congruence in spite of the growth of K

In measurement or one identifies axis v with a physical size,
such as distance, tension, running, etc... and dv with derived
from this size, any ray in plan (v, dv) is homogeneous with a
value of energy. The threshold of bifurcation which is of
energy nature, can be clarified in the plan (v, dv). By simple
graphic facility, we choose a value of dv like description of
the energy threshold.

The two stated conditions are enough to model the junctions
according to the growth of K (fig.6). Indeed, beyond the
energy limit, the constraint of congruence is not respected any
more, but our model shows that there exists, for this same
value of Klim another solution which restores congruence.

It is realistic to assert that, like any oscillating system, the

0

dv

v

0,5 1 K

C1(0,1)

C1(0,2)

C1(0,3)

C1(0,4)

Fig. 5. Simplified representation of congruence singularities and their
expansion in the evolution space.

TABLE 1
SOME  K1(0,N) VALUE.

n K1(1,n)
1 0,5
2 0,6666
3 0,75
4 0,8
5 0,8333
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system will tend to maximize the energy which it stores in its
structure and which the periodic solution will preferably
satisfy this constraint with other solutions, which they would
dissipate more energy.  Singularity of congruence

V. EXPERIMENTAL EXAMPLE

We propose like example an oscillator of Van Der Pol.
(VDP) [3] forced by a generator of sinusoidal current (fig. 7)
[5] [6].

2 1 1
0 1 1

² ( )
( ) ( ) (8)

²

Id v g v dv
v t Cos t

dt C dt C

ωω ω θ+ + = +

The value of Eth is mainly given by discontinuities of the
non linear conductance (NLC), noted g(v) (fig. 8). These
limits being tensions, they correspond to axis v.

    The space of the phases is the T² torus, of which we will
observe a section (v, dv). The order of the systems is the
vector (I1,ω1), to which tries to synchronize the assembly of
VDP. The energy threshold Eseuil is translated in the space of
evolution like a plan parallel with (dv, K), this at first
approximation. In any rigour, it is not a question of a plan but
of a surface which has a variable curve locally.

For our analysis, we set f1=14KHz (ω1=2π f1). The proper

frequency of the VDP is f0=10,7KHz (ω0=2π f0), what leads to
a ratio of frequencies:

10,7
0,764

14

KHz

KHz
=

We are in an intermediate situation between n= 3 and n=4,
q=1.

0

1

3 4
0,75 0,764 0,8

1 4 5

fn

n f
= = < = < =

+
In accord with the constraint of congruence, one notes a

singularity C1(0,3), whose shift compared to the origin is the
consequence of a value of ϕ≠0 (fig. 9).

The increase of I1, therefore the energy of one of the swing,
unfolds singularity in the zone with negative conductance.

This generator of current of VDP produces a synchronous
pumping of swing, of or one fork by doubling of cycle.

From the energetic argument, a very weak variation of the
value of I1 causes this junction. More precisely, this very weak
variation induces increases appreciably larger in the energy
injected by the NLC, defines by:

2 2

1 1

( ) ( )
2

( ) ( )

( ). ( ). ( ).
s s

v t v t

inj d d d

v t v t

E v t i t dt g v t dt−= =∫ ∫

The analysis of this energy, developed in [7], shows that
according to their initial conditions (θ,dVs), the segments of
the trajectory which traverse the negative zone of the CNL,
inject :
1)   Very little energy (zone B, fig.11)
2)  Definitely more in zone A, which besides presents much
more a saddle node
3)   But for certain segment which with L limiting of these two
zones form a borderline of energy.

v(t)
(1v/div)

dv/dt(40v/ms/div
)

Fig. 9. Trajectory in the evolution space for K fixed. The small loop, in
the zone with negative conductance, grows when I1 augments, she leads then
to an important increase of energy in the system.

v(t)
(1v/div)

dv/dt(40v/ms/div
)

Fig. 10. Bifurcation by increasing  value of I1. The increase of injected
energy causes a doubling of cycle.

dv

v

K0 10,5

Bifurcation

Threshold

C1(0,1)

C1(0,2)

C1(0,3)

C1(0,4)

Fig. 6. Bifurcation scenarios due to  K growing. Growth of K drives the
trajectory on the cone of deployment of the singularity of congruence. It is
geometric pressure. Arrived at the energy of threshold, resolution loses its
stability, there is bifurcation.

g +
g -

VV T

I d

-V s a t

-V S

V s a t

+ V S

0

Fig. 8. Characteristic (Id,Vd) of Non Linear Conductance (NLC).

Id

Fig. 7.  Schemas of experimental circuit, with : L=10mH, C=22nF,
R=1250Ω, VT=0,4, g+=0.2mS,g-=-4.2mS.

38 ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France



This strong energy gradient causes the instability of the
solutions passing by its coordinates. That justifies the concept
of energy threshold evoked in our scenario of bifurcation.

In zone A, point a indicates the initial conditions of the
segment pertaining to C1(0,3). After the bifurcation, this
segment is duplicated (point b and b'), and their difference in
energy characterises the pumping effect.

The continuation of the increase in I1, causes the crossing of
the borderline of energy of the points b and b', which
amalgamates again. This new bifurcation leads to a division
by 4 of f1 (fig. 12).

We checks on this figure the decentring of the inner loop,
which corresponds to the role of ϕ, in the adjustment of the
constraints.

VI.  CONCLUSION

The constraint of congruence imposes in the space of
evolution of the geometrical forms, which we clarified. In the
case of the electric circuits, the choice of an assembly imposes
its topography, and thus the advance of energy. The choice of
the type of each dipole (resistance, coil, capacity), then of their
values defines how energy will circulate, as well as the speed
of the exchanges. These choices are as many superimposed
constraints, to obtain the desired function.

Obtaining an oscillation imposes an energy balance no one
on a cycle. The choice of the value of the components of an
assembly determines the quantities of energy being able to be
stored and/or dissipated. In the space of the phases, these
constraints prohibited certain trajectories, and others select
some.

The synchronization of two oscillations imposes the

constraint of congruence. The respect of the whole of the
constraints is appreciably easier if there is an additional degree
of freedom.

Thus, to satisfy the energy constraint and the constraint of
congruence, the difference of phase between oscillations is
this degree of freedom. We showed that for ϕ≠0, the geometry
of the singularities of congruence changes, but their topology
remains.

The bifurcation scenario proposed, built an explanation of
the reduction in the interval between two junctions when K
increases. The detailed analysis of the oscillator of Van Der
Pol., in forced mode, testifies for this physical example to the
validity to this approach. A nearly constant energy threshold
starts, by an identical mechanism, a continuation of
bifurcation according to K. It seems to also explain why
lowest congruence, appear more frequently than divisions of
frequency of a very high nature.

From the point of view of the ordering of such a system, it
is plausible to choose the order of the singularity of
congruence and to determine the vector of order (K,ωa) which
will control the second oscillator.

It appears that the separation of the constraints offers
another reading of the mechanisms of junction and their
scheduling. It is an alternative to the approaches of the
differential geometry, probably nearer to physics, which could
facilitate its use.

Finally, it seems obvious to us that the study of the
singularities of congruence of a nature higher than 1 should
assemble the richness of the forms induce by this constraint.
The duality synchronization bifurcation seems to justify the
export of some of these results to the chaotic behaviour. Very
generic properties will be can be exhibit, at least such is the
objective of our next article.
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Fig. 11.  Energy borderline. Injected energy by the NLC.

Fig. 12.  Frequency bifurcation by 4.
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1

Calculation of the largest Lyapunov exponent for a
particular hybrid dynamical systems class

Céline Quémard

Index Terms—Chaos, hybrid dynamical systems, Lyapunov
exponent, switchings, thermal application.

Extended abstract
Lyapunov exponents measure the exponential convergence

or divergence rate of two trajectories with nearby initial con-
ditions. A system of dimension N , N ≥ 1, has N Lyapunov
exponents and each measures the convergence or divergence
rate according to one of system axes [1], [2], [3], [8].

Calculation of the largest Lyapunov exponent is the most
interesting to realize. Indeed, a strictly positive value for this
quantity generally implies chaos existence [1], [4], [9].

In this paper, we study a particular class of hybrid dynamical
systems with autonomous switchings, these switchings being
generated by a hysteresis phenomenon [5]. This class analysis
presents an interest insofar as it admits a large number of
industrial applications (in thermal, electronics, automotive...)
and in any dimension. Moreover, despite its relatively sim-
ple mathematical model, complex behaviors can appear like
period-doubling bifurcations [6], [7] and chaotic behaviors
from dimension three systems.

It is to illustrate existence of chaotic behaviors that we will
calculate the largest Lyapunov exponent considering a thermal
application : a thermostat with an anticipative resistance con-
trolling a convector located in the same room. The difficulty of
this calculation occurs because of the existence of switchings
that cause discontinuities in the system to solve.

In [3], a comparison of three methods :
• time series method using suites of points obtained by

experimental measurements,
• difference method calculating two trajectories by numer-

ical integration,
• variational method taking into account a small perturba-

tion for an initial trajectory
is given and concludes that the variational method is the most
suited to systems with discontinuities.

That is why, in this paper, first, we present this method
giving the Müller [4] algorithm which permits calculate the
largest Lyapunov exponent. Then, we apply all theoretical
results to the thermostat with an anticipative resistance system
and we give some numerical simulations to illustrate this study.
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Forced synchronization of coupled hyperchaotic
oscillators: Application to an authentication process

Laurent Laval

Abstract—This paper investigates the forced synchronization
of a ring network of (controlled) hyperchaotic oscillators, to
set up an authentication process for secure communication or
filtered access purposes. In particular, we consider a set of
three continuous-time, hyperchaotic circuits of Matsumoto-Chua-
Kobayashi [1], with unidirectional, partial-state coupling1 for syn-
chronization purpose. Regarding to this context, one hyperchaotic
(sub)system represents the “claimed identity” to be authenticated,
while the two others can be viewed as locking/unlocking devices.
The proposed authentication protocol then consists in performing
a kind of tripartite handshaking procedure2, by means of syn-
chronizing some state trajectories of interest (the authentication
being validated if the synchronization is achieved). Thus,after
briefly describing the authentication process, this paper focuses
on transmitted states between each pair of nodes, with regard
to confidentiality preserving criteria and the synchronization
objective. Then we address the (forced) synchronization problem,
by considering both sliding mode controllers and endogenous
control laws to drive each hyperchaotic subsystem. Finally, the
proposed authentication process is illustrated through examples
with right and wrong ”claimed identity”.

Index Terms—Chaos synchronization, Hyperchaos, Chaotic
networks, Authentication.

I. I NTRODUCTION

Since the seminal paper of Nijmeijer and Mareels [2],
synchronization of chaotic systems with regard to a control
theory viewpoint, has received an increasing interest (see,
for instance, [3][4][5][6] and references therein). Such an
attention was indeed motivated by potential applications of
chaos synchronization to many fields (e.g. [7][8]), with a
particular interest in (secure) communication (e.g. [9][10])
and cryptography (e.g. [11][12][13]). Following a somewhat
different purpose, this paper investigates the use of controlled
synchronization of hyperchaotic systems as an authentication
process. More precisely, we propose to consider the parameters
and the mathematical structure of a hyperchaotic system as the
signature of a “claimed identity” to be authenticated by means
of an appropriate checking process. In this purpose, as sug-
gested in [14], we investigate a kind of tripartitehandshaking
procedurebased on the (controlled) synchronization properties
of a ring network of unidirectionally coupled, hyperchaotic
subsystems, including the claimed identity as one network
node. With respect to such a context (involving some chosen
state coupling conditions), the authentication is then validated
if some selected state trajectories synchronize.

Manuscript received April 6, 2009; revised May 19, 2009.
L. Laval is with the Laboratoire ECS-ENSEA, Cergy-Pontoise, France.
1i.e. restricted to only one or two transmitted state(s) per network node,

while the M-C-K circuit is a fourth-order system.
2As in the context of secure communication protocols.

Such a controlled synchronization is nevertheless difficult to
achieve due to:

• the hyperchaotic nature of each subsystem (as the high
sensitivity of hyperchaotic systems to external signals
intricate the control and, therefore, the forced synchro-
nization),

• the selected (partial-state) coupling between each pair of
nodes (as this selection mainly comes from confidentiality
preserving criteria rather than facilities for synchroniza-
tion),

and,
• the fact that each control law (within each network node)

may induce, through the coupling, some destabilizing
effects on the following connected node.

According to that, this paper is organized as follows. Section
II briefly describes the authentication process. Section III in-
troduces, from a control theory viewpoint, the synchronization
problem intrinsic to that process. Section IV focuses on the
network configuration, including the choice of transmitted
states between each pair of nodes. Then, section V states
the main results of this paper, in relation with the forced
synchronization of the network. Finally, in section VI, thepro-
posed authentication process is illustrated through examples
with right and wrong ”claimed identity”, before to conclude
in section VII.

II. A UTHENTICATION PROCESS DESCRIPTION

First, let us recall that this paper considers the parameters
and the intrinsic structure of a hyperchaotic system as the
signature of a claimed identity to be authenticated. To perform
such an authentication, we then propose to deal with the
(controlled) synchronization properties of a ring networkof
hyperchaotic subsystems, including the “identity claimer” as
one network node (see Figure 1).

Private area

Public area

locking/unlocking signal

Nodes

Transmitted signal(s)

1

2

3

χ1,2

χ3,1

χ2,3

Fig. 1. Ring network of (controlled) hyperchaotic subsystems

This network is then composed of three nodes, where node 2
represents the “identity claimer”, while the two others (nodes 3
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and 1) can be viewed as playing the role of locking/unlocking
devices. Each node is composed of a continuous-time, hy-
perchaotic circuit whose behavior is driven by means of
appropriate control laws acting with respect to received input
and/or endogenous signals (see Figure 2).

Input signal(s)
from coupling

Transmitted
output
signal(s)

Hyperchaotic

Control laws

(sub)system

Σi

yi

xi ζi

zi−1,i

zi,i+1

Fig. 2. Internal structure of a nodeNi (i = 1..3)

For the authentication procedure, the three nodes are cou-
pled, one-to-one, by chosen signals to perform a kind of tripar-
tite ”handshaking” (in the sense of a secure handshake protocol
between communicating computers or electronic devices). The
claimed identity is then validated if some state trajectories
of interest synchronize. Contrarily, the authentication fails if
theses trajectories do not synchronize, as this implies that
the system parameters and/or the intrinsic structure of node
2 hyperchaotic oscillator are/is wrong.

Remark 1: The consideration of a ring network (including
the identity claimer) instead of only two nodes, is motivated
by the objective of avoiding bidirectional communicationsand
intricating the synchronization (to enhance, in a sense, the
confidentiality and security features against possible eaves-
dropper).

III. PROBLEM STATEMENT

A. System description

From a control theory viewpoint, each free (i.e. uncon-
trolled) hyperchaotic subsystemΣi can be defined as an
autonomous nonlinear system of the general form:

Σi

{
ẋi = fi(xi) xi(t0) = xi0

yi = hi(xi)
(1)

wherexi ∈ Xi ⊆ Rn (for time t ∈ (t0,∞)), xi0 ∈ Rn is the
initial state, andt0 ∈ R is the initial time. fi : Rn → Rn

is a smooth vector field,yi ∈ Rp is the output vector, andhi

(with hi : Rn → Rp ) is a column vector ofp scalar-valued
smooth functions.

Remark 2: As we deal with continuous-time, hyperchaotic
systems, we assume thatdim(xi) = n > 3.

According to (1) and Figure 2, each nodeNi can then be
defined by:

Ni


Σi


ẋi = fi(xi) + gi(xi)ui (yi, zi−1,i)︸ ︷︷ ︸

Ui

yi = hi(xi)
xi(t0) = xi0

zi,i+1 = ζi(xi)
zi−1,i = ζi−1(xi−1)

(2)

where zi,i+1 ∈ Rmo (resp. zi−1,i ∈ Rme) is the vector of
transmitted signals for coupling between nodesNi andNi+1

(resp.Ni−1 andNi), ζi (resp.ζi−1) is a column vector ofmo

(resp.me) scalar-valued smooth functions.gi(xi) (with gi :
Rq → Rn ) is a smooth vector field, andui (yi, zi−1,i) ∈ Rq

is a column vector of control laws based on output vectoryi

and received signals vectorzi−1,i.
Remark 3: Here, as we consider partial-state coupling

between consecutive nodes, thus:

dim(zi,i+1) = mo < n (3)

dim(zi−1,i) = me < n. (4)

with, possibly,me 6= mo.
Remark 4: As we consider a ring network ofk nodes

Ni=1···k, the subscripti is defined according to the following
rules:

if i = 1 then i− 1 = k
if i = k then i+ 1 = 1 (5)

Moreover, for convenience but without loss of generality,
we consider, in this paper, the following assumptions:

Assumption A – 3.1:yi = Cixi with Ci ∈ Rp×n (i.e. a
linear state-to-output mapping).

Assumption A – 3.2:fi(•), in (1), is globally Lipschitz and
bounded.

Assumption A – 3.3:zi−1,i = Γixi with Γi ∈ Rme×n.

B. General problem statement

With respect to the connexion rules (5), we can define
the synchronization error between two coupled nodesNi and
Ni−1, by:

ei,i−1 = xi − xi−1 (6)

The full-state synchronization can then be expressed as:
1) Case of exponential or asymptotical convergence:

limt→∞ ‖xi − xi−1‖ = 0 (7)

2) Case of finite-time convergence:

limt→T ‖xi − xi−1‖ = 0 with time T ∈ (t0,∞)
‖xi − xi−1‖ = 0 ∀t > T (8)

where‖•‖ stands for the Euclidean norm.

In the sequel, we will also referred to as partial-state syn-
chronization if, at least, one state of nodeNi is synchronized
with the corresponding state of nodeNi−1 and, only if, at
least, one of the states does not synchronize.

Now, according to (2) and (6), we can define the synchro-
nization error dynamics by:

Σe
i,i−1


ėi,i−1 = fi(xi)− fi−1(xi−1) + gi(xi)ui (yi, zi−1,i)︸ ︷︷ ︸

Ui

− gi−1(xi−1)ui−1 (yi−1, zi−2,i−1)︸ ︷︷ ︸
∆i

(9)
where the subscripti− 2 follows the connexion rules given

by (5).
Remark 5: With regard to (2), it is clear that transmitted

signals vectorzi−1,i (from nodeNi−1 to Ni) may directly or
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indirectly contain some control components related toui−1(•).
In other words, each control law (within each network node)
may induce, through the coupling, some destabilizing effects on
the following connected node. Moreover, regarding to (9), the
forced synchronization of nodesNi−1 withNi−2 does intricate
the synchronization of nodesNi andNi−1. Thus, the design
of Ui has to result from a trade-off between acting forΣi and
possible consequences onΣi+1. Moreover, control lawUi has
to be robust enough to deal with∆i (coming from nodeNi−1)
as an external disturbance to be tackled.

Remark 6: As zi−1,i is directly related toxi−1, then, by
considering the synchronization error (6), control termUi can
be rewritten as:

Ui ≡ ḡi(ei,i−1)ūi (yi, zi−1,i) + ḡi(xi)ūi (yi, zi−1,i) (10)

with ḡi(•) and ūi(•) of appropriate dimensions.

Regarding to (2), (6), (9), and connexion rules3 (5), the
problem can be summarized by the following questions:

1) Is the systemΣe
i,i−1 controllable in a neighboorhood of

an equilibrium pointeo
i,i−1, with, possibly,eo

i,i−1 ≡ 0 ?
2) In such a case, how to defineUi while considering

remark 5 ?

Next sections investigate such questions, when dealing with
the circuit of Matsumoto–Chua–Kobayashi [1] as subsystem
Σi=1..3 (see Eq. (1)).

IV. N ETWORK CONFIGURATION

A. The hyperchaotic system

As previously mentionned, this paper focuses on the fourth-
order electronic circuit of Matsumoto–Chua–Kobayashi [1]
(see Figure 3), as free hyperchaotic subsystemΣi=1..3 (see
relation (1)).

−R
Nonlinear
diode

C2 C1L2 L1

i2

v2 v1

i1

Fig. 3. The hyperchaotic circuit of Matsumoto–Chua–Kobayashi

This circuit can be defined by the following set of equations:

Σ



dv1
dt

=
1
C1

(F (v)− i1)

dv2
dt

=
1
C2

(−F (v)− i2)

di1
dt

=
1
L1

(v1 +Ri1)

di2
dt

=
1
L2
v2

(11)

3for subscripti.

wherev1 andv2 represent the voltage across capacitorsC1 and
C2 respectively.i1 andi2 are the current through inductorsL1

andL2 respectively.F (v) is a piece-wise continuous function
related to the (nonlinear) diode characteristics, and suchthat:

F (v) = m0v + 0.5(m1 −m0) (|v + 1| − |v − 1|) (12)

with v = v2 − v1.
By considering the following system parameters (see [1]):

C1 = 0.5, C2 = 0.05, L1 = 1 and L2 = 2/3, R = 1,
m0 = 3 and m1 = −0.2, this circuit then exhibits a
typical hyperchaotic behavior, emphasized by computing the
Lyapunov exponents (two of them are positive [1]).

Now, by posingα = 1
C1

, β = 1
C2

, γ = 1
L1

, andλ = 1
L2

,
system (11) under control can be expressed as:

Σ


v̇1 = α (F (v2 − v1)− i1) + Uv1

v̇2 = β (−F (v2 − v1)− i2) + Uv2

i̇1 = γ (v1 +Ri1) + U i1

i̇2 = λv2 + U i2

(13)

whereU =
[
Uv1 Uv2 U i1 U i2

]T
is defined according to (2).

B. Transmitted signals

Now, let us deal with the coupling between two consecutive
nodes (Ni−1 andNi), that we will referred to as transmitter
and receiver respectively. Then, let us remain that when the
transmitted signal (or vector) contains the nonlinear dynamics
of the transmitter, this one is then globally weakly observable
[15]. In such a case, there exists many possible observer
design approaches which enable reconstructing the state of
the transmitter. Therefore, the transmitted signals from node
1 to node 2 have to be chosen so as to disable or, at least, to
seriously intricate the reconstruction of node 1 states (aspart of
the locking/unlocking device) by an unauthorized node 2 (such
as an eavesdropper). Similarly, the transmitted signals from
node 2 to node 3 have to be chosen carefully to intricate the
reconstruction of node 2 states (that is the identity claimer) by
a wrong authentication device (that is a falsified node 3). With
regard to (13), such confidentiality preserving criteria then
restrict the consideration toi1 and/ori2 state(s) as transmitted
signal(s) for synchronization purposes (to avoid the direct
transmission ofF (v2 − v1)).

Thus, the question is: Is there a possible way to achieve a
controlled (i.e. forced) synchronization of the ring network of
hyperchaotic systems (13), with such a partial-state coupling
?

As an answer, we give some results in the next section.

V. M AIN RESULTS

First, let us start by considering a free hyperchaotic system
(11) coupled with a controlled one (13), by means of trans-
mitted signals restricted to currentsi1 and i2 (coming from
the free system).

Proposition 5.1: If two coupled systemsΣi andΣj , defined
respectively by (13) and (11), share the same (key) parameters
αi = αj = α, βi = βj = β, γi = γj = γ, λi = λj = λ,
andRi = Rj = R, then, with a coupling vector restricted to

ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France 43



statesi1 and i2, and for any initial conditionsxi0 and xj0,
these systems fully synchronize by means of:

External driven sliding-mode control laws:

U i1 = K1sign(ei1
i,j)

U i2 = K2sign(ei2
i,j)

(14)

and endogenous control laws:

Uv1 = K3 ×
(
ėi1

i,j − U i1 −Rei1
i,j

)
+ αei1

i,j

Uv2 = K4 ×
(
ėi2

i,j − U i2
)

+ βei2
i,j

(15)

with K1,K2,K3,K4 ∈ R− − {0}, ei1 = i1Σi
− i1Σj

and
ei2 = i1Σi

− i2Σj
.

Proof: First, for readability, let us use the following no-
tation:x = v1, y = v2, z = i1 w = i2, andf̃i,i−1(xi, xi−1) ≡
fi(xi)−fi−1(xi−1), and replace the subscriptj in Proposition
(5.1) by i − 1. Moreover, let us assume that the subsystems
Σi and Σi−1 have the same parameters:αi = αi−1 = α,
βi = βi−1 = β, γi = γi−1 = γ, λi = λi−1 = λ, and
Ri = Ri−1 = R.

Then, according to (9), (11) and (13), the synchronization
error dynamics can be expressed as,

ėx
i,i−1 = αf̃i,i−1(xi, xi−1)− αez

i,i−1 + Ux (16)

ėy
i,i−1 = −βf̃i,i−1(xi, xi−1)− βew

i,i−1 + Uy (17)

ėz
i,i−1 = γex

i,i−1 + γRez
i,i−1 + Uz (18)

ėw
i,i−1 = λey

i,i−1 + Uw (19)

Regarding to (18) and (19), we can note that the synchro-
nization errorsex

i,i−1 and ey
i,i−1 can be estimated from the

(known) errorsez
i,i−1 andew

i,i−1, their time-derivativeṡez
i,i−1

and ėw
i,i−1, and control lawsUz andUw respectively.

Now, consider a Lyapunov function,

V =
1
2
(ex

i,i−1)
2︸ ︷︷ ︸

V1

+
1
2
(ey

i,i−1)
2︸ ︷︷ ︸

V2

+
1
2
(ez

i,i−1)
2︸ ︷︷ ︸

V3

+
1
2
(ew

i,i−1)
2︸ ︷︷ ︸

V4

> 0

(20)
Its time-derivative is given by:

V̇ = ėx
i,i−1e

x
i,i−1︸ ︷︷ ︸

V̇1

+ ėy
i,i−1e

y
i,i−1︸ ︷︷ ︸

V̇2

+ ėz
i,i−1e

z
i,i−1︸ ︷︷ ︸

V̇3

+ ėw
i,i−1e

w
i,i−1︸ ︷︷ ︸

V̇4

(21)
with, explicitly,

V̇1 =
[
αf̃i,i−1(xi, xi−1)− αez

i,i−1 + Ux
]
ex

i,i−1 (22)

V̇2 =
[
−βf̃i,i−1(xi, xi−1)− βew

i,i−1 + Uy
]
ey

i,i−1 (23)

V̇3 =
[
γex

i,i−1 + γRez
i,i−1 + Uz

]
ez

i,i−1 (24)

V̇4 =
[
λey

i,i−1 + Uw
]
ew

i,i−1 (25)

Recalling that, from (14),

Uz = K1sign(ez
i,i−1)

Uw = K2sign(ew
i,i−1)

(26)

and assuming that, during a sufficient time,ex
i,i−1 and ey

i,i−1

remain bounded by known upper bounds, then we can find
some control gainsK1 ∈ R−∗ and K2 ∈ R−∗, such

that V̇3 and V̇4 are negative. Therefore, from sliding-mode
control theory (e.g. [16][17]), the synchronization errorsez

i,i−1

and ew
i,i−1 converge towards zero in finite-timeTz and Tw

respectively.
Now, let us note that, after a finite-timeT ≥ max(Tz , Tw),

(22) and (23) reduce respectively to:

V̇1 =
[
αf̃i,i−1(xi, xi−1) + Ux

]
ex

i,i−1 (27)

V̇2 =
[
−βf̃i,i−1(xi, xi−1) + Uy

]
ey

i,i−1 (28)

Moreover, asfi(•) and fi−1(•) are globally Lipschitz (from
assumption A–3.2) and assumed to be identical (in case of
right claimed identity), thus,∀xi ∈ Xi ⊆ Rn, ∀xi−1 ∈
Xi−1 ⊆ Rn

‖fi(xi)− fi−1(xi−1)‖ ≤ ψ ‖xi − xi−1‖ , ψ ≥ 0 (29)

meaning thatf̃i,i−1(xi, xi−1) is also globally Lipschitz.
Thus, assuming a known upper bound of

‖fi(xi)− fi−1(xi−1)‖ and regarding to (15), we can
find some control gainsK3 ∈ R−∗ andK4 ∈ R−∗ such that
V̇1 and V̇2, in (27) and (28), are negative. Therefore,ex

i,i−1

andey
i,i−1 asymptotically converge towards0.

Proposition 5.2: With respect to proposition 5.1, the ring
network of nodesNi=1..3, sharing the same hyperchaotic
systems parameters, synchronize.

Sketch of proof When considering the ring network of con-
trolled hyperchaotic systems, then, for two consecutive nodes,
(16) (17) (18) and (19) become:

V̇1 =
[
αf̃i,i−1(xi, xi−1)− αez

i,i−1 −∆x + Ux
]
ex

i,i−1

V̇2 =
[
−βf̃i,i−1(xi, xi−1)− βew

i,i−1 −∆y + Uy
]
ey

i,i−1

V̇3 =
[
γex

i,i−1 + γRez
i,i−1 −∆z + Uz

]
ez

i,i−1

V̇4 =
[
λey

i,i−1 −∆w + Uw
]
ew

i,i−1

Assuming that‖∆x‖, ‖∆y‖, ‖∆z‖, and ‖∆w‖ (related to
control laws (14)) and (15) remain bounded with known
upper bounds, therefore, by considering such terms∆• as
disturbances, we can always find some control gainsKj=1..4

so that control laws (14) and (15) are robust enough to
tackle these disturbances. In such a case, each nodeNi can
synchronize with its connected nodeNi−1, leading finally the
whole network to be synchronized. �

Remark 7: Regarding to Proposition 5.1, if node2 parame-
ters or/and mathematical structure differs from those of nodes
1 and3, then the global synchronization will fail, meaning that
the claimed identity is a wrong one. Otherwise, the achieved
synchronization can be viewed as a validated authentication.

VI. SIMULATION RESULTS

First, let us focus on a configuration restricted to two
identical hyperchaotic subsystemsΣ1 and Σ2, with different
initial conditions:x10 = [0.2 − 0.1 − 0.01 − 0.1]T , x20 =
[0.3− 0.15− 0.015−0.15]T. Moreover, regarding to (14) and
(15), let us consider the following control gains:K1 = −2,

44 ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France



K2 = −2, K3 = −10 andK4 = −10. We then obtain the
simulation results of Figures 4 and 5,
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Fig. 4. Zoom on state trajectories of the two coupled, hyperchaotic systems
under control
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Fig. 5. Synchronization errors of the two coupled, hyperchaotic systems
under control

According to Proposition 5.1, theses figures then show a
finite-convergence towards zero of the synchronization errors
ei1 andei2 , due to sliding mode control (14). Moreover, due to
the endogenous control laws (15), the synchronization errors
ev1 andev2 asymptotically converge towards zero.

Now, by considering the whole network with partial-state
coupling restricted to currentsi1 and i2, then with initial
conditionsx10 = [0.4 − 0.2 − 0.02 − 0.2]T , x20 = [0.2 −
0.1 0.02 − 0.1]T andx30 = [0.3 − 0.15 − 0.015 − 0.15]T ,
and control gains:

Σ1 Σ2 Σ3

K1 -0.2 -1 -0.2
K2 -0.6 -1.4 -0.2
K3 -3.2 -4 -4
K4 -3.2 -4 -4

we obtain the simulation results of Figures 6–8, in case of a
right claimed identity (corresponding to identical systems Σ2,
Σ3 andΣ1).
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Fig. 6. Synchronization errors related toΣ3 andΣ2
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Fig. 7. Synchronization errors related toΣ1 andΣ3

According to Proposition 5.2 (and 5.1), theses figures then
show the finite-convergence or asymptotical convergence to-
wards zero of all synchronization errors, meaning that node
2 can be viewed as a right claimed identity (by, for instance,
simply inspection of synchronization errors betweenN1 and
N3). Now, by slightly changing one node2 parameter, that
is to consider1/C1 (of Σ2) = 0.6 instead of0.5, then the
synchronization fails as shown through Figures 9–10, meaning
that node2 can be considered as a wrong claimed identity.
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Fig. 8. Synchronization errors related toΣ2 andΣ1
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Fig. 9. Some synchronization errors (in case of wrong claimed identity)
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Fig. 10. Example of synchronization errors in case of wrong identity claimer
(Σ2)

VII. C ONCLUSION

This paper has investigated an authentication process which
considers the parameters and the mathematical structure ofa
hyperchaotic system as the signature of a claimed identity.
With regard to this context, we have considered an authenti-
cation procedure based on the synchronization properties of a
ring network of hyperchaotic systems (including the claimed
identity as one network node). In particular, we have addressed
the problem of designing appropriate control laws to achieve
the full synchronization of the whole network, in case of right
signature (and such that the synchronization fails in case of
wrong signature). Future works will focus on enhancing the
robustness and the convergence temporal properties of the
whole set of synchronization errors, with regard to sliding-
mode control theory.
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France

Abstract—In some engineering applications, such as chaotic
encryption, chaotic maps have to exhibit required statistical and
spectral properties close to those of random signals. However,
most of the papers dealing with synchronization and observer
synthesis consider maps exhibiting poor statistical and spectral
properties. Moreover, most of the time these properties, however
essential for the chaotic encryption, are simply neglected. Unlike
these papers, in our work we present the analysis of a new ultra
weakly coupled maps system introduced by Lozi. The model is
a deterministic one, but exhibits spectral properties (spectrum,
correlation and autocorrelation) close to those of random signals,
and successfully passed all the statistical tests for closeness
to random signals (NIST). Two different observers have been
designed. The convergence rate has been discussed in the case
of affine maps, and the conditions to decrease the convergence
rate by a factor of 16 have been presented, based on the locally
linear behaviour of the weakly coupled map.

I. I NTRODUCTION

CHAOS has recently received a growing interest in various
fields of science and engineering, and in particular, in

secure communications. Pecora and Carroll were the first
who synchronised chaotic systems [1]. Several chaotic crypto-
graphic schemes have been proposed since [2], [3] and can be
classified in three main categories : chaotic masking, chaotic
modulation and chaotic shift keying.

In the cryptographic application, the chaotic generator must
exhibit appropriate features close to those of the pseudo-
random generators. These adapted properties have been stud-
ied more precisely in [4], [5], [6].

Further researchers have then looked for finding appropriate
systems testing different architectures : traditional chaotic
maps (for example, the logistic map, the Hénon map, the
generalised H́enon map) [7] [8], piece-wise linear map, cas-
caded map [9] or coupled map lattice. In order to evaluate the
features of the system, statistical tests developed for random
number generators (RNG) can also be applied to chaotic
maps, in order to gather evidence that the map generates
”good” chaotic signals, i.e. having a considerable degree
of randomness. To address this particular problem, different
statistical tests for the systematic evaluation of the randomness
of cryptographic random number generators can be applied,
among which the most popular NIST (National Institute of
Standards and Technology) tests.

It appears that most of the maps classically used for chaotic
encryption do not pass successfully these tests, and don’t

exhibit the required features. However, most of the papers
dealing with synchronisation and observer synthesis consider
precisely these kinds of maps, highly inefficient in the context
of chaotic encryption.

Unlike these models, Lozi [10] introduced in 2008 a new
ultra weakly coupled maps system to generate pseudo-random
signals which exhibits very good statistical properties. To use
this system for secure communication, it must exhibit good
spectral features and have to be observable. So the aim of this
paper is to identify and to design an observer for the weakly
coupled map system.

This paper is organised as follow : after briefly presenting
the system under investigation, sections three and four present
the issues on parameter identifiability and system observabil-
ity. Sections five and six propose and compare two different
observers. Finally, a concluding section ends the paper.

II. SYSTEM DEFINITION

The N-th order functionF can be written as :

X(n + 1) = F (X(n))

with X(n) = (x1(n), x2(n), . . . , xN (n))

X(n + 1) = F (X(n)) = A Λ(X(n))

whereA is a NxN matrix defined by:

A =


1− (N − 1)ǫ1 ǫ1 . . . ǫ1

ǫ2 1− (N − 1)ǫ2 . . . ǫ2
...

...
. . .

...
ǫN ǫN . . . 1− (N − 1)ǫN


andΛ is the tent function applied to every the components

of X ∈ [−1; 1]N :

Λ(X(n)) =


Λ(x1(n))
Λ(x2(n))

...
Λ(xN (n))


Since the function is piece-wise linear, it can be rewritten

under a matrix form, by rewriting the tent function :

Λ(x) =
{

2x + 1 if x < 0
−2x + 1 else
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or using the generic form :

Λ(x) = sx + 1

with :

s =
{

2 if x < 0
−2 else

For the second order, the general systemF is then governed
by : (

x1(n + 1)
x2(n + 1)

)
= An

(
x1(n)
x2(n)

)
+

(
1
1

)
whereAn is :

An =
(

(1− ǫ1)s10 ǫ1s20

ǫ2s10 (1− ǫ2)s20

)
The rest of the paper only consider the second order system.

III. I DENTIFIABILITY

The purpose of this section is to determine if the coder can
generate two identical outputs from two different encryption
keys. In terms of system theory, it means that the system
generates two identical outputs for two different parameter
combinations. If this is the case, the base of the varying
parameters has to be modified, and the parameter redundancies
removed. To do so, the two outputs have to be equalized and
their impact on the parameters has to be investigated.

The presented study concerns the second order system
without the scaling. Let consider two second order systems
systems governed by the same law : x1(n + 1) = (1− ǫ1)Λ(x1(n)) + ǫ1Λ(x2(n))

x2(n + 1) = (1− ǫ2)Λ(x2(n)) + ǫ2Λ(x1(n))
y(n) = x1(n) x̂1(n + 1) = (1− ǫ̂1)Λ(x̂1(n)) + ǫ̂1Λ(x̂2(n))

x̂2(n + 1) = (1− ǫ̂2)Λ(x̂2(n)) + ǫ̂2Λ(x̂1(n))
ŷ(n) = x̂1(n)

Considering the same outputs :(ŷ(n))n = (y(n))n, is it
possible that the parameters would be different? The systemis
piece-wise linear, so letsij ∈ {−2; 2} be defined byΛ(xi(n+
j)) = 1 + sij .

sij =
{ −2 if xi(n + j) > 0

2 else

ŷ(n) = y(n) ⇒ x̂1(n) = x1(n){
ŷ(n) = y(n)

ŷ(n + 1) = y(n + 1)
⇒ (ǫ̂1 − ǫ1)Λ(x1(n)) = ǫ̂1Λ(x̂2(n))− ǫ1Λ(x2(n)) ŷ(n) = y(n)

ŷ(n + 1) = y(n + 1)
ŷ(n + 2) = y(n + 2)

⇒
[(ǫ̂1 − ǫ1)(1− ǫ1)s11 − ǫ̂1ǫ̂2ŝ21 + ǫ1ǫ2s21

−(ǫ̂1 − ǫ1)(1− ǫ̂2)ŝ21]Λ(x1(n))
= ǫ1[−(ǫ̂1 − ǫ1)s11 − (1− ǫ2)s21

+ (1− ǫ̂2)ŝ21]Λ(x2(n))

Both x1 andx2 appear in the last. But{x1;x2} is the state
of the chaotic system, which has the property to visit the whole
state space[−1; 1]2. In other words, to a given parameter
combination{ǫ1, ǫ2, ǫ̂1, ǫ̂2, s10, s20, s11, s21, ŝ10, ŝ20, ŝ11, ŝ21}
can be associated an infinity of states{x1;x2}. One can
consider then the independent variablesΛ(x1(n)) etΛ(x2(n)).
In this case, one obtains the following system of equations : (ǫ̂1 − ǫ1)(1− ǫ1)s11 − ǫ̂1ǫ̂2ŝ21 + ǫ1ǫ2s21

− (ǫ̂1 − ǫ1)(1− ǫ̂2)ŝ21 = 0
ǫ1[−(ǫ̂1 − ǫ1)s11 − (1− ǫ2)s21 + (1− ǫ̂2)ŝ21] = 0

One solution of the second equation is :ǫ1 = 0. ǫ1 is one
of the system parameters, and this solution corresponds to
a decoupled system. Therefore, this particular case is to be
excluded. One obtains then the new system of equations : (ǫ̂1 − ǫ1)(1− ǫ1)s11 − ǫ̂1ǫ̂2ŝ21 + ǫ1ǫ2s21

− (ǫ̂1 − ǫ1)(1− ǫ̂2)ŝ21 = 0
−(ǫ̂1 − ǫ1)s11 − (1− ǫ2)s21 + (1− ǫ̂2)ŝ21 = 0

The resolution leads to the following result:

∀(s11, s21, ŝ21) ∈ {−2; 2}3, s21 = ŝ21 ⇒ {ǫ̂1, ǫ̂2} = {ǫ1, ǫ2}
s11 = s21 = −ŝ21 ⇒ ǫ1 = 0 et ǫ̂2 + ǫ2 − ǫ̂1 = 0

−s11 = s21 = −ŝ21 ⇒ ǫ1 = 0 et ǫ̂2 + ǫ2 + ǫ̂1 = 0

Knowing that the solutionǫ1 = 0 is impossible, then the
following conclusion can be drawn :

ŷ(n) = y(n)
ŷ(n + 1) = y(n + 1)
ŷ(n + 2) = y(n + 2)

ǫ1 6= 0

⇒ {ǫ̂1, ǫ̂2} = {ǫ1, ǫ2}

Finally, there are no redundant parameters and the whole set
of parameter combinations can be used as a set of encryption
keys of the coder, there are no parameters different from the
one used for the encryption which could allow to decrypt the
message.

IV. OBSERVABILITY

An affine system can be written as :{
x(n + 1) = F (x(n)) = A.x(n) + B
y(n) = Cx(n)

A second order affine system is observable if its observability
matrix is a full-rank one :

O =
(

C
CA

)
Here, the system is piece-wise affine, therefore the observabil-
ity matrix shall be different according to the region to which
belong the system state. It is equal to :

O =
(

1 0
2(1− ǫ1)s10 2ǫ1s10

)
which is full-rank sinceǫ1 > 0. Therefore, the system is
observable.
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V. L INEAR LUENBERGEROBSERVER

The system is piece-wise affine. Considering it as such, the
present section identifies a piece-wise linear observer. The
second order system can be rewritten using the affine form
on the four domains where it is defined :{

x(n + 1) = F (x(n)) = A.x(n) + B
y(n) = Cx(n)

 x(n + 1) =
(

(1− ǫ1)s10 ǫ1s20

ǫ2s10 (1− ǫ2)s20

)
x(n) +

(
1
1

)
y(n) =

(
1 0

)
x(n)

The associated Luenberger system is :

x̂(n + 1) = Âx̂(n) + B + K(Cx̂(n)− y(n))

K is a predefined gain such that the errore(n) tends to zero.
Let considerx̂(n) andx(n) in the same region of definition.
In this case,Â = A and therefore,

e(n + 1) = (A + KC)e(n)

One can identify the values of the gainK which cancel the
eigenvalues of the matrix(A + KC) as a function of the
affine system model. In this case, since the matrix is of second
order, (A + KC)2 = 0 therefore if the system statesx and
its estimatex̂ belong to the same region of the state space
twice consecutively, then the estimate shall synchronise with
the original system.

Zero eigenvalues lead to the following solutions for the
gain :

K =



(
2(ǫ1 + ǫ2 − 2)

2
ǫ1

(2ǫ2 − ǫ22− ǫ1ǫ2 − 1)

)
if x̂(n) ∈ [−1; 0]2(

2(ǫ2 − ǫ1)
2
ǫ1

(2ǫ2 − ǫ22 + ǫ1ǫ2 − 1)

)
if x̂(n) ∈ [0; 1]× [−1; 0]( −2(ǫ2 − ǫ1)

− 2
ǫ1

(2ǫ2 − ǫ22 + ǫ1ǫ2 − 1)

)
if x̂(n) ∈ [−1; 0]× [0; 1]( −2(ǫ1 + ǫ2 − 2)

− 2
ǫ1

(2ǫ2 − ǫ22− ǫ1ǫ2 − 1)

)
if x̂(n) ∈ [0; 1]2

The zero eigenvalues assure the convergence in two itera-
tions of the affine system if the system states remain in the
same region of definition. Then the synchronisation may not
take place for any states evolution.

The error of the linear system evolves following the equa-
tion :

e(n + 1) = (A + KC)e(n)

Since the matrix(A + KC) is nilpotent, if the system
remains in the same domain of definition,

e(n + 2) = (A + KC)2e(n) = 0

In reality, the system states have a probability of 1/4 to fall
twice consecutively in the same domain of definition. Consid-
ering that both systems (the original one, and the observer)
start from the same region, then statistically three iterations
are necessary before the trajectories converge. When the
system falls consecutively into two different configurations,
the equation which governs the error becomes :

e(n + 2) = (A1 + K1C)(A2 + K2C)e(n)

Let P1, P2 be two transformation matrices which triangularise
respectively the matrices(A1 + K1C) and (A2 + K2C), and
let D1, D2 be the two triangularised matrices. It comes :

e(n + 2) = P1D1P
−1
1 P2D2P

−1
2 e(n)

As soon asP1 6= P2, the errore does not cancel in two
iterations.

Now, the proper bases of the matrices(A + KC) are the
same for the domains of definition̂x(n) ∈ [−1; 0]2 and
x̂(n) ∈ [0; 1]2. On the other hand, the bases are the same
for the domains of definition̂x(n) ∈ [0; 1] × [−1; 0] and
x̂(n) ∈ [−1; 0] × [0; 1]. In the exemple, since the matrices
D1 andD2 have zero eigenvalues, ifP1 = P2,

e(n + 2) = P1D1D2P
−1
2 e(n) = 0

Finally, considering that the two systems are in the same
domains of definition, they have one chance out of two to
synchronise.

Now, if one considers that the transition evolution of the
two systems is independent in the domain of definition until
they synchronise, they have statistically one chance out of
sixteen to fall twice consecutively in the same domains of
definition, which decreases the probability to synchroniseat a
given instant to 1/32.

Finally, two synchronisation strategies are possible : the
classical one considers that the master system starts from
any initial condition and follows the same law during the
synchronisation. In this case, the slave system will synchronise
- in average - after 32 iterations and it is governed by the
equation :

x̂(n + 1) = F (x̂(n)) + B + K(Cx̂(n)− y(n))

On the other hand, one can consider that the observer
consists of several systems following different laws, each
following its own law whatever the value of its state at the
next iterates. A system can then be governed by the law :

S1 : x̂(n + 1) = Â1x̂(n) + B + K1(Cx̂(n)− y(n))

whereA1 et K1 are derived from the definition of the systems
related to the desired domain of definition,x̂(n) ∈ [−1; 0]2 for
instance. The observer systems have to cover the whole set of
possible combinations of the state evolutions which allow to
synchronise, i.e. four observers for a second order system.
The advantage to use these systems lies in the fact that the
probability that one of the forth systems synchronises withthe
original systems rises up to 1/2. Once synchronised, a classical
observer can allow to follow the trajectory of the states of the
original system.
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If the classical use of a second order system leads to a
synchronisation in 32 iterations in average, when the system
order is increased, the synchronisation time increases expo-
nentialy. The simultaneous use of several observers allowsto
divide the time for synchronisation by 16 for a second order
system. The drawback is that several observer systems have
to run simultaneously.

VI. D EAD BIT OBSERVER

A second observer can be designed based on the inverse
lag. It allows to identify the current states by consideringthe
inverse function. For the second order system, the autonomous
system is : x1(n + 1) = (1− ǫ1)Λ(x1(n)) + ǫ1Λ(x2(n))

x2(n + 1) = (1− ǫ2)Λ(x2(n)) + ǫ2Λ(x1(n))
y(n) = x1(n)

With two measurements at the outputy, it is possible to
reconstruct the signal :


χ(n + 1) = y(n)
ẑ1(n) = y(n)
ẑ2(n) = 1−ǫ2

ǫ1
y(n) + (ǫ2 − (1−ǫ2)(1−ǫ1)

ǫ1
)Λ(χ(n))

Finally, this reconstructor can identify the original state for
all values, which is not the case of the first observer. However,
this method can hardly be applied to greater order systems.

VII. C ONCLUSION

Most of the papers devoted to observer synthesis considered
maps with poor statistical and spectral properties. We present
here the synthesis of efficient observers for the system of
weakly coupled map which satisfied all statistical (NIST)
and spectral analysis tests. Two different observers have been
designed. The convergence rate has been discussed in the case
of affine maps, and the conditions to decrease the convergence
rate by a factor of 16 have been presented, based on the locally
linear behaviour of the weakly coupled map. The design and
analysis of higher order map observers is currently under
investigation.
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Abstract�It is shown that the vector field of a multidimensional periodic autonomous dynamical 
systems confers to the trajectories some geometrical properties according to their location in the 
phase space. Different patterns can be identified, in relation with the Liapunov exponents of an 
associated periodic parameters linear equation (APPLE) defined at each point of the phase 
space, such as funneling, parametric resonance, period doubling, sensitivity to initial conditions. 
A method to compute the Liapunov exponents without integration is used. Then an associated 
constant coefficient equivalent system (ACCES) is defined and used to carry out the equation of 
an invariant manifold periodically crossed by the solutions. 

The method is applied to bidimensional and tridimensional Chua equations with periodic 
coefficients. 
 

 
I. PERIODIC AUTONOMOUS DYNAMICAL 

SYSTEMS 
 

Consider the periodic autonomous 
dynamical system (PADS) defined in  ��: 

 ����� 	 
�����, ��    (1) 
 
where � is a n-dimensional vector of �� and the 
mapping 
�����, �� � ��  � � ��, ��, �� � 
 
is continuous and derivable with respect to �  
and to each component of �. The explicit time 
depending part of 
�����, �� is T-periodic with 
respect to � : 
  
��, � � ��� 	 
��, �� �� � � and � � �.  (2) 
  

The mapping 
�����, �� is supposed to be 
uniformly lipshitzian, �� � � and � ���� � �� , 
with respect to each of the components of ���� 
so that a solution related to any Cauchy 
condition ����� 	 �� exist and is unique. 

II.  ASSOCIATED PERIODIC PARAMETRIC 

LINEAR EQUATION 
 

Let ����� be spatial variations around ����. 
The locally associated periodic parametric linear 
equation (APPLE) is defined as  
 ��� 	 ����� ��    (3) 
 

where �����: ��   � � ��� , ��, �� � ����� is 
the Jacobian matrix of the PADS in ��� : 
 

 ����, �� 	 � �!    (4) 

 ����, �� is as well T-periodic with respect to t. 
 
A. Liapunov’s theory 

 
According to the Liapunov theorem, the 

solution of APPLE is a linear combination of n 
modes: 
 

ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France 51



����� 	 "#$�%&��� � "#��%'��� � ( �
 "#)�%����        (5) 
 
where *+ � ,, 1 . / . � , are the Liapunov 
exponents and %+��� : � � ��, � � %+��� are 
T-periodic mappings, continuous and derivable 
with respect to t. Of course, *+ and %+��� 
depend on �, the location of the phase space. 
The Liapunov coefficients are worked out using 
an algorithm which exponentially converges [5]. 
It is supposed in this work that, in some domain 
D of the phase space, *0, … , *� have a negative 
real part. Then, the corresponding modes 
vanishes and the APPLE has a bimodal solution 
related to  *& and *'. Different patterns of the 
PADS can be identified, in relation with  *& and *', such as funneling, parametric resonance, 
period doubling, sensitivity to initial conditions. 
 
B. Proposition 1: Liapunov exponents as 

eigenvalues of the Jacobian matrix defined 
on some time �� . 

 
Let ����� such a bimodal solution of 

APPLE related to the Liapunov exponent  *& 
and *' : 

 ����� 	 "#$�%&��� � "#��%'��� (6) 
 

For any point ��, �� of the phase plane, we 
consider the time ��, if it exists, such as the 
periodic part of the corresponding solutions 
follow the initial conditions 
 %&� ���� 	 0  and  %'� ���� 	 0  (7) 
 
Then each *+ , 1 . / . 2,  is an eigenvalue of  ��4��� and the related eigenvector is 

 %+���� 	 %+��� � ���    (8) 
 
In other words, the initial conditions of each %+��� can be adjusted so as the following 
relationship holds 
 ��4  %+���� 	 *+ %+���� , 1 . / . 2 (9) 

Note that a necessary, but not sufficient, 
condition to satisfy the two conditions (9) is for  
�����, �� and then  ����� to have at least two 
variable coefficients. They can be adjusted from 
the characteristic equation 
 det8*+ 9 � ��4: 	 0   (10) 

 
Proof. The derivative of the bimodal solution of 

APPLE can be written as 
 ��� ��� 	 *&"#$�%&��� � *'"#��%'��� � "#$�%&� ���� "#��%'� ��� 
 
Introducing these values in (3) and (6): 
 *&"#$�%&��� � *'"#��%'��� � "#$�%&� ���� "#��%'� ���	 ��"#$�%&��� � ��  "#��%'��� 
 
When  � 	 ��, from the hypothesis (7), this 
relationship can be written as : 
 "#$�4 ;��4  %&���� � *& %&����<� "#��4 ;��4 %'���� � *' %'����<	 0 
 
This equation holds if and only if each *+ , 1 . / . 2,  is an eigenvalue of ��4 and %+���� 

the related eigenvector. 
 
 
III.  ASSOCIATED CONSTANT COEFFICIENT 

EQUIVALENT SYSTEM 
 

Let �� be the time value, if it exists, for 
which *+ are eigenvalues of ��4, 1 . / . 2. 

Consider the non linear associated constant 
coefficients system (ACCES) where the time 
depending part of 
 is fixed by  � 	 ��: 
 

 =� ��� 	 
�=���, ���   (11) 
 
Some results concerning these dynamical 
systems are useful in this work, especially those 
concerning the invariant manifolds. 
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A. Invariant manifold of the ACCES 
 

There are different ways to compute the 
invariant manifold >�=� 	 0 of such an 
autonomous dynamical system with constant 
coefficients. According [4], it can be worked out 
from a linear combination of the eigenvectors %&���� and %'����, which are tangent to the 
manifold. According the differential geometry 
method [1] [2], the invariant manifold is given 
by the equation 
 ?"� @A = � B A=C  BA =D B … E 	 0   (12) 

  
B. Proposition 2: trajectories envelop. 

 
Let D be a domain of the phase space in 

which the Liapunov exponents  *0, … , *� have a 
negative real part. Assume that there exists �� 
such that the relationship (9) holds. Then the 
manifold >��� 	 0 is the envelop of the 
trajectories. 
 

Proof. When � 	 ��, the initial PADS �� ��� 	
�����, �� and the ACCES =� ��� 	 
�=���, ��� 
have the same velocity. Then, from the 
hypothesis, the trajectories of PADS are 
located on the manifold >��� 	 0. There, the 
solution tends towards two modes of the 
APPLE. From (6), the time derivative ����� includes terms multiplying %&��� and %'���, which are parts of the velocity 
component on the manifold, and terms 
containing  %�&��� and %�'���, that define the 
transversal component. On >��� 	 0, from 
(7), the transversal one is null. Then the 
trajectories are tangent to the manifold with a 
maximal or minimal amplitude. 
 
A. Proposition 3: the manifold crossing 

problem. 
 

Let �� be a value of the time defined in the 
propositions 1 and 2 corresponding to a maximal 
amplitude of the solutions, and ��F  the time 
corresponding to the following minimum. For 

any time �&, with  �� G �& G ��F  , there are H+, I+ 
such that  

 ��$I+ 	 H+ I+, 1 . / . �  (13) 

 
Let us suppose that  � belongs to the domain D 
of the phase space as defined in § II A in which *0, … , *� have a negative real part. Let H+ be the 
eigenvalue that tends to *+ when t tends to �� 
and I+���� the associated eigenvector, 1 . / .2. Let J��� 	 0 be the equation of the manifold 
constructed from the eigenvectors I&���� and I'���� in the same way that >��� 	 0 is 
constructed from %&���� and %'����. 

Then the trajectories cross the manifold J��� 	 0 at times  �& � ��. 
 
 

 
 
Fig.1. For a two-dimensional model, this drawing shows in 
some domain of the phase plane the envelop made of two 

curves:  >8�����: tangent to the maxima,  >8����F �: 

tangent to the minima, and the manifold J����&�� 
periodically crossed by the trajectories. 

 
 
Proof.  From the existence and uniqueness 
theorem, the manifold defined in this proposition 
is located between the layers of the manifold >��� 	 0. 
 
 
IV.  MONOMODAL CASES 
 

In the case where *', … , *� have a negative 
real part then the corresponding modes vanishes 
and the APPLE has a monomodal solution 
related to  *&. The theory is the same and 
simpler [6]. 

yHXHt1LL

fHXHt0LL

fHXHt0
' LL
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V. APPLICATION TO THE CHUA SYSTEM 

 
A. Second order parametric Chua’s system 

 
Consider the periodic autonomous 

dynamical system defined in �': 
 K �� 	 L��, �� � ��� 	 0.9 � �      A  

 
where  
 

L��, �� 	 OP1 � Q&cos �U��V �, if |�| . 1           P�3 � Q&cos �U��V � � 4, if � \ 1   P�3 � Q&cos �U��V � � 4, if � G �1A 
 
For Q& 	 0, the dynamical system with constant 
coefficients has an unstable focus in P0.9, 0V and 
a stable periodic solution. For Q& ] 0, the 
Jacobian matrix intervening in the APPLE is: 
 �� 	 ^_ � Q&cos �U�� �1�1                       0 ` 
 
with _ 	 1 if |�| . 1 and _ 	 �3 if |�| \ 1. 
 

 
 
Fig.2. When U 	 1.25664, Q& 	 8, the Liapunov 
exponents are : for |�| \ 1,  *& 	 �0.0166557 �i 0.628319, *' 	 �2.98334 � i 0.628319 and for |�| . 1,  *& 	 1.62692 � i 0.628319, *' 	�0.626917 � i 0.628319. The imaginary part of the 

Liapunov exponent is exactly equal to  
e'  (parametric 

resonance). The manifold (blue) is periodically crossed 
by the solution (red). 

   
 
Fig.3. When U 	 6.34377, Q& 	 6, the Liapunov 
exponents are : for |�| \ 1,  *& 	 �2.37471, *' 	�0.625293  (stable zone) and for |�| . 1,  *& 	 0.5 �i  1.1631, *' 	 �0.626917 � i i  1.1631 (unstable 
zone). This picture shows a eight period solution on the 

route towards chaos (red) and L ;�, f'< �green�. 
 
 
B. Third order parametric Chua system 

 
Consider the Chua system defined in �0: 
 

O �� 	 j���P� � � � L���V�� 	 � � � � k                  k� 	 �l����                         A 
 
with 
 L��� 	 m� � 12 �Q � m��|� � 1| � |� � 1|� 

 
and j���, l��� �  � � �, � � j��� and  l���, 
are T-periodic. It is assumed that these variable 
coefficients have Fourier series development.. 
The Jacobian matrix is: 
 

�� 	 n�j����?L���?� � 1�   j         01                  �1        10                  �l��� 0o  
 ?L���?� 	 K Q if |x| . 1m if |x| \ 1 A 
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q"�8��4: 	 �j���� l���� r?L���?� � 1s	 *& *'  *0 
 �t8��4: 	 �j���� r?L���?� � 1s � 1	  *& �  *'  � *0 

 

 

 
 
Fig.4. Third order Chua system with Q 	 � uv, m 	 � wv, j 	 16.6 and l��� 	 52P1 � .901060001 yz{�2|��V.  
The Liapunov exponents are *& 	 �3.4518, *' 	�0.133916 and *0 	 4.81767. The monomodal solution 
(red)  periodically crosses the manifold. 
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Network Synchronization of Unified Chaotic
Systems in Master-Slave Coupling

Cruz-Hernández C., López-Gutiérrez R. M., Inzunza-González E., and Cardoza-Avendaño L.

Abstract—In this paper, we use Generalized Hamiltonian forms
to synchronize two unified chaotic systems. Synchronization is
obtained in master-slave configuration with the slave being given
by a state observer. In addition, this approach is applied to
synchronize a complex dynamical network with chaotic nodes
connected in chain via output signals. An illustrative example is
given with a network with three chaotic unified systems, tha is
a single master node with two slaves (state observers).

Index Terms—Synchronization, Complex Dynamical Networks,
Chaotic Systems, Observers, Generalized Hamiltonian Systems

I. INTRODUCTION

SYNCHRONIZATION of two coupled chaotic systems has
received great attention from mathematicians, physicists,

biologists, control engineers, etc. during the last decades, see
e.g. [1]-[10]. This interest has been greatly motivated by the
possibility of encrypted information transmission by using a
chaotic carrier, see e.g. [11]-[19].

On the other hand, a complex dynamical network can
be defined as a set interconnected of nodes, each node is
considered like basic element with behavior depending of
the nature of the network. This class of structures, has been
observed in physics, biology, computer sciences, economy,
chemistry, engineering, social sciences, see e.g. [20]-[23].

Recently synchronization in complex dynamical networks
have received a great deal of attention from the scientific
community. Particularly interesting is the case where the con-
nected nodes have chaotic dynamics. Network synchronization
is supposed to have interesting applications in different fields,
see e.g. [24]-[30].

The aim of this paper is to study synchronization of two
unified chaotic systems [31]. This objective is achieved by
synchronizing the unified chaotic systems via Generalized
Hamiltonian forms and observer design [5].In addition, we
show that the proposed approach is indeed suitable to syn-
chronize complex dynamical networks composed by coupled
chaotic nodes (unified systems) in master-slave architecture.

The remainder of this paper is organized as follows: In
Section II, synchronization via Generalized Hamiltonian forms
and observer design is provided. In Section III, the model of
the unified chaotic system is described. Section IV presents
the synchronization of two unified chaotic systems. In Section
V, analytical conditions for chaos synchronization are given.
While, synchronization in a chain of multiple unified chaotic

Cruz-Hernández C. is with Electronic and Telecomunications Department,
Scientific Research and Advanced Studies of Ensenada (CICESE), Ensenada
B.C, . 22860 México, e-mail: ccruz@cicese.mx

López Gutiérrez R.M., Inzunza-González E., Cardoza-Avendaño L. are with
Engineering Faculty, Baja California Autonomous University, México

systems in master-slave topology is shown. In particular,
synchronization is achieved among a single master node and
two slave nodes. The paper is concluded with some remarks
in Section VII.

II. SYNCHRONIZATION VIA GENERALIZED HAMILTONIAN
FORMS AND OBSERVERS

Consider the following dynamical system

ẋ = f(x), (1)

where x(t) ∈ Rn is the state vector, f : Rn→Rn is a nonlinear
function.

In [5] is reported how the dynamical system (1) can be
written in the following Generalized Hamiltonian canonical
form,

ẋ = J (x) ∂H
∂x

+ S (x) ∂H
∂x

+ F (x) , x ∈ Rn, (2)

H(x) denotes a smooth energy function which is globally
positive definite in Rn. The gradient vector of H, denoted by
∂H/∂x, is assumed to exist everywhere. We use quadratic en-
ergy function H(x) = (1/2)xTMx with M being a constant,
symmetric positive definite matrix. In such case, ∂H/∂x =
Mx. The matrices, J (x) and S(x) satisfy, for all x ∈ Rn,
the properties: J (x) + J T (x) = 0 and S(x) = ST (x).
The vector field J (x)∂H/∂x exhibits the conservative part
of the system and it is also referred to as the workless part,
or work-less forces of the system; and S(x) depicting the
working or nonconservative part of the system. For certain
systems, S(x) is negative definite or negative semidefinite.
Thus, the vector field is considered as the dissipative part of the
system. If, on the other hand, S(x) is positive definite, positive
semidefinite, or indefinite, it clearly represents, respectively,
the global, semi-global, and local destabilizing part of the
system. In the last case, we can always (although nonuniquely)
descompose such an indefinite symmetric matrix into the
sum of a symmetric negative semidefinite matrix R(x) and
a symmetric positive semidefinite matrix N (x). Finally, F(x)
represents a locally destabilizing vector field.

In the context of observer design, we consider a special
class of Generalized Hamiltonian forms with linear output map
y(t), given by

ẋ = J (y) ∂H
∂x

+ (I + S) ∂H
∂x

+ F (y) , x ∈ Rn, (3)

y = C ∂H
∂x

, y ∈ Rm,
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where S is a constant symmetric matrix, not necessarily of
definite sign. The matrix I is a constant skew symmetric
matrix, and C is a constant matrix.

We denote the estimate of the state x(t) by ξ(t), and
consider the Hamiltonian energy function H(ξ) to be the
particularization of H in terms of ξ(t). Similarly, we denote by
η(t) the estimated output, computed in terms of the estimated
state ξ(t). The gradient vector ∂H(ξ)/∂ξ is, naturally, of
the form Mξ with M being a, constant, symmetric positive
definite matrix.

A nonlinear state observer for the special class of Gener-
alized Hamiltonian form (3) is given by

ξ̇ = J (y) ∂H
∂ξ

+ (I + S) ∂H
∂ξ

+ F (y) +K(y − η), (4)

η = C ∂H
∂ξ

, η ∈ Rm,

with ξ ∈ Rn and K is the observer gain.
The state estimation error, defined as e(t) = x(t)−ξ(t) and

the output estimation error, defined as ey(t) = y(t)−η(t), are
governed by

ė = J (y) ∂H
∂e

+ (I + S −KC) ∂H
∂e

, e ∈ Rn, (5)

ey = C ∂H
∂e

, ey ∈ Rm,

where the vector ∂H/∂e actually stands, with some abuse
of notation, for the gradient vector of the modified energy
function, ∂H(e)/∂e = ∂H/∂x−∂H/∂ξ =M(x−ξ) =Me.
We set, when needed, I + S =W .
Definition 1 (Chaotic synchronization) [10] The slave system
(4) (nonlinear state observer) synchronizes with the chaotic
master system in the special class of Generalized Hamiltonian
form (3), if

lim
t→∞

kx(t)− ξ(t)k = 0, (6)

no matter which initial conditions x(0) and ξ(0) have. Where
the state estimation error e(t) = x(t) − ξ(t) represents the
synchronization error.
Theorem 1 [5] The state x(t) of the nonlinear system (3)
can be globally, exponentially, asymptotically estimated by the
state ξ(t) of an observer of the form (4), if the pair of matrices
(C,W), or the pair (C,S), is either observable or, at least,
detectable.

A necessary and sufficient condition for global asymptotic
stability to zero of the estimation error (5) is given by the
following theorem.
Theorem 2 [5] The state x(t) of the nonlinear system (3)
can be globally, exponentially, asymptotically estimated, by
the state ξ(t) of the observer (4) if and only if, there exists a
constant matrix K such that the symmetric matrix

[W −KC] + [W −KC]T = [S −KC] + [S −KC]T

= 2

∙
S − 1

2
(KC + CTKT )

¸
is negative definite.
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Fig. 1. Lorenz attractor projected onto the (x1, x2, x3)-space.
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Fig. 2. Chen attractor projected onto the (x1, x2, x3)-space.

III. UNIFIED CHAOTIC SYSTEM

Consider the unified chaotic system [31], described by

ẋ1 = (25α+ 10) (x2 − x1) , (7)
ẋ2 = (28− 35α)x1 − x1x3 + (29α− 1)x2,

ẋ3 = x1x2 −
µ
α+ 8

3

¶
x3,

where the parameter α ∈ [0, 1], for the whole interval the
unified system is always chaotic. Obviously, when α = 0 the
system (7) is the original Lorenz system [32]. While for α = 1
the system (7) is the original Chen system [33]. For α = 4/5
the system (7) corresponds to the critical (Lü) system [34]. In
fact, the system (7) bridges the gap between the Lorenz and
Chen systems [31].

By using the initial conditions x(0) = (0.1, 0.1, 0.01), Figs.
1, 2, and 3 show the chaotic attractors of Lorenz, Chen, and
Lü projected onto (x1, x2, x3)-space.

IV. SYNCHRONIZATION OF TWO UNIFIED SYSTEMS

In this section, we synchronize two chaotic unified systems
(7) in master-slave configuration (see Fig. 4(a)), via General-
ized Hamiltonian forms and observer design proposed in [5].
Firstly, we rewrite the unified system (7) in Hamiltonian form
as the master system and design a state observer for (7) like
the slave system according to Fig. 4(b), as follows. Taking as
Hamiltonian energy function to

H (x) =
1

2

¡
x21 + x22 + x23

¢
(8)
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Fig. 3. Lü attractor projected onto the (x1, x2, x3)-space.

Fig. 4. Master-slave synchronization scheme.

and gradient vector as

∂H

∂x
=

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦⎡⎣ x1
x2
x3

⎤⎦ =
⎡⎣ x1

x2
x3

⎤⎦ . (9)

The unified system (7) in Hamiltonian form according to Eq.
(3) (as master system) is given by

⎡⎣ ẋ1
ẋ2
ẋ3

⎤⎦ =
⎡⎣ 0 30α− 9 0
−(30α− 9) 0 −x1

0 x1 0

⎤⎦ ∂H

∂x
(10)

+

⎡⎣ −(25α+ 10) −5α+ 19 0
−5α+ 19 29α− 1 0

0 0 − (α+8)3

⎤⎦ ∂H

∂x
.

The output signal to be transmitted to slave system is y =
[1 0 0]∂H/∂x = x1. The matrices C, S and I, are given by

C =
£
1 0 0

¤
,

S =

⎡⎣ −(25α+ 10) −5α+ 19 0
−5α+ 19 29α− 1 0

0 0 − (α+8)3

⎤⎦ ,
I =

⎡⎣ 0 30α− 9 0
−(30α− 9) 0 0

0 0 0

⎤⎦ .

The pair of matrices (C,S) constitutes a pair detectable,
but non observable. Even though the addition of the matrix
I to S does not improve the lack of observability, the pair
(C,W) = (C,S + I) remains detectable. Then, according to
Theorem 1, it is possible to design an observer for system (7).
The nonlinear state observer (as slave system) according to
Eq. (4) is designed as⎡⎢⎢⎣

·
ξ1
·
ξ2
·
ξ3

⎤⎥⎥⎦ =

⎡⎣ 0 30α− 9 0
−(30α− 9) 0 −y

0 y 0

⎤⎦ ∂H

∂ξ
(11)

+

⎡⎣ −(25α+ 10) −5α+ 19 0
−5α+ 19 29α− 1 0

0 0 − (α+8)3

⎤⎦ ∂H

∂ξ

+

⎡⎣ k1
k2
k3

⎤⎦ e1,
η = ξ1,

where the synchronization error is defined as e1(t) = y(t)−
η(t). From (10) and (11) the synchronization error dynamics
is governed by⎡⎢⎣

·
e1
·
e2
·
e3

⎤⎥⎦ =

⎡⎣ 0 30α− 9 0
−(30α− 9) 0 −y

0 y 0

⎤⎦ ∂H

∂e
(12)

+

⎡⎣ −(25α+ 10) −5α+ 19 0
−5α+ 19 29α− 1 0

0 0 (α+8)
3

⎤⎦ ∂H

∂e
.

V. STABILITY CONDITIONS
In this section, we examine the stability of the synchroniza-

tion error (12) between master (10) and slave (11) systems.
Invoking Theorem 2, which guarantees global asymptotic
stability to zero of e(t). In particular, for the synchronization
of two unified systems, the matrix 2[S − (12)(KC − C

T KT )]
is given by⎡⎣ −50α− 20− 2k1 −10α+ 38− k2 −k3
−10α+ 38− k2 58α− 2 0

−k3 0 − (2α+16)3

⎤⎦ (13)

by applying the Sylvester’s criterion -which provides a test
for negative definite of a matrix- thus, we have that the matrix
(13) will be a negative definite matrix, if we choose k1, k2,
and k3 such that the following conditions are satisfied:

k1 > −25α− 10, (14)
a < 0,

k23 >

¡−2α−16
3

¢
(58α− 2) b− c

(58α− 2) ,

where a = k22 − 76k2 + 3000α2 + 500α + 1484 +
116αk1 + 4k1, b = (−50α− 20− 2k1) (58α− 2), and c =
(−10α+ 38− k2)

2. We have selected k1 = 11, k2 = 50,
and k3 = 32 and initial conditions x(0) = (0.1, 0.1, 0.1) and
ξ(0) = (0, 0, 0). Fig. 5 shows the synchronization between
master (10) and slave (11) systems.
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Fig. 5. Synchronization between master (10) and slave (11) systems.

Fig. 6. Chain of nodes in master-slave coupling configuration.

VI. SYNCHRONIZATION OF UNIFIED SYSTEMS IN A
NETWORK WITH CHAIN TOPOLOGY

Now, we show multiple synchronization of unified chaotic
systems (7) like coupled nodes through output signal, by
constituting a dynamical network with chain topology. In
particular, for simplicity and illustration purpose only, we
consider a dynamical network with three nodes in master-slave
coupling configuration (see Fig. 6(a)); a single master node
with two slave unified nodes (7), via Generalized Hamiltonian
forms and observer design (see Fig. 6(b)). Firstly, we rewrite
the unified system (7) for the master node and we design two
observers connected in chain as slaves 1 and 2 in the following.

Consider the same master system (10) and two slaves 1 and
2 given by⎡⎢⎢⎣

·
ξ11
·
ξ12
·
ξ13

⎤⎥⎥⎦=
⎡⎣ 0 30α− 9 0
−(30α− 9) 0 −y

0 y 0

⎤⎦ ∂H

∂ξ1
(15)

+

⎡⎣ −(25α+ 10) −5α+ 19 0
−5α+ 19 29α− 1 0

0 0 − (α+8)3

⎤⎦ ∂H

∂ξ1

+

⎡⎣ k1
k2
k3

⎤⎦ e11,
η1 = ξ11,
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Fig. 7. Synchronization error trajectories for Lorenz system.
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Fig. 8. Synchronization error trajectories for Chen system.

and the second observer (slave 2) as⎡⎢⎢⎣
·

ξ21
·
ξ22
·
ξ23

⎤⎥⎥⎦ =

⎡⎣ 0 30α− 9 0
−(30α− 9) 0 −y

0 y 0

⎤⎦ ∂H

∂ξ2
(16)

+

⎡⎣ −(25α+ 10) −5α+ 19 0
−5α+ 19 29α− 1 0

0 0 − (α+8)3

⎤⎦ ∂H

∂ξ2

+

⎡⎣ k1
k2
k3

⎤⎦ e21,
η2 = ξ21.

where ξ1 = (ξ11, ξ12, ξ13) and ξ2 = (ξ21, ξ22, ξ23) are the
state vectors of two slave chaotic nodes, respectively; and
e11 = y − η1 and e21 = η1 − η2. In the following numerical
simulations, we have selected the initial conditions: x(0) =
(0.1, 0.1, 0.1), ξ1 = (0, 0, 0), and ξ2 = (0.01, 0.01, 0.01) and
observer gains K1 = K2 = (11, 50, 32). Fig. 7 shows the
synchronization error trajectories among master node (10),
slave node 1 (15), and slave node 2 (16), when Lorenz system
(α = 0) is considered like node (7). While Figs. 8 and 7
illustrate similar cases for Chen (α = 1) and Lü (α = 4/5),
respectively.

VII. CONCLUSION

In this paper, we have firstly presented, synchronization
between two coupled unified chaotic systems in master-slave
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Fig. 9. Synchronization error trajectories for Lü system.

topology. Chaotic synchronization was achieved by using Gen-
eralized Hamiltonian forms and observer design proposed in
[5]. Subsequently, this methodology was used to synchronize
a chian of three coupled unified systems, that is a single
master node coupled with two slave nodes via output signals
and being given by two state observers. Nevertheless, this
approach can be easily extended to network synchronization
of N chaotic nodes (unified systems) coupled in master-slave
configuration.

This result is particularly interesting given its potential
application in communication network systems, where this
connection is required. In addition, the approach can be
implemented on experimental set-up [18], [19], [30].
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Abstract— This works aims to present a new ap-
proach recently developed in a book [12] and called
Flow Curvature Method that applies Differential Ge-
ometry to Dynamical Systems. Hence, for a trajec-
tory curve, an integral of any n-dimensional dynami-
cal system as a curve in Euclidean n-space, the cur-
vature of the trajectory - or the flow - may be analyti-
cally computed. Then, the location of the points where
the curvature of the flow vanishes defines a manifold
called flow curvature manifold. Such a manifold be-
ing defined from the time derivatives of the velocity
vector field, contains information about the dynam-
ics of the system, hence identifying the main features
of the system such as fixed points and their stability,
local bifurcations of codimension one, center mani-
fold equation, normal forms, linear invariant mani-
folds (straight lines, planes, hyperplanes).
In the case of singularly perturbed systems or slow-
fast dynamical systems, the flow curvature manifold
directly provides the slow invariant manifold analyti-
cal equation associated with such systems. Also, start-
ing from the flow curvature manifold, the correspond-
ing dynamical system may be found again and thus,
the inverse problem is solved.
Flow Curvature Method may be applied to any n-
dimensional dynamical system autonomous or non-
autonomous such as Van der Pol Model; FitzHugh-
Nagumo Model; Pikovskii-Rabinovich-Trakhtengerts
Model; Rikitake Model; Chua’s Model; Lorenz
Model. This article aims to present application of
this method to the determination of the slow invari-
ant manifold of a non-autonomous dynamical system:
the forced Van der Pol model.

I. INTRODUCTION

Dynamical systems consisting of nonlinear differ-
ential equations are generally not integrable. In his
famous memoirs: Sur les courbes définies par une
équation différentielle, Poincaré [19], [22] faced to

this problem proposed to study trajectory curves prop-
erties in the phase space.

“. . . any differential equation can be written as:

dx1

dt
= X1,

dx2

dt
= X2, . . . ,

dxn

dt
= Xn

where X are integer polynomials.
If t is considered as the time, these equations will

define the motion of a variable point in a space of di-
mension n.”

– Poincaré (1885, p. 168) –

Let’s consider the following system of differential
equations defined in a compact E included in R as:

d ~X

dt
=
−→= ( ~X) (1)

with

~X = [x1, x2, ..., xn]t ∈ E ⊂ Rn

and

−→= ( ~X) =
[
f1( ~X), f2( ~X), ..., fn( ~X)

]t ∈ E ⊂ Rn

The vector
−→= ( ~X) defines a velocity vector field in

E whose components fi which are supposed to be con-
tinuous and infinitely differentiable with respect to all
xi and t, i.e. are C∞ functions in E and with values
included in R, satisfy the assumptions of the Cauchy-
Lipschitz theorem. For more details, see for example
[2]. A solution of this system is a trajectory curve
~X (t) tangent1 to

−→= whose values define the states of
the dynamical system described by the Eq. (1).

1Except at the fixed points.
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Thus, trajectory curves integral of dynamical sys-
tems (1) regarded as n-dimensional curves, possess
local metrics properties, namely curvatures which can
be analytically2 deduced from the so-called Frénet
formulas [9]. For low dimensions two and three the
concept of curvatures may be simply exemplified. A
three-dimensional3 curve for example has two curva-
tures: curvature and torsion which are also known as
first and second curvature. Curvature4 measures, so
to speak, the deviation of the curve from a straight line
in the neighborhood of any of its points. While the tor-
sion5 measures, roughly speaking, the magnitude and
sense of deviation of the curve from the osculating
plane6 in the neighborhood of the corresponding point
of the curve, or, in other words, the rate of change of
the osculating plane. Physically, a three-dimensional
curve may be obtained from a straight line by bend-
ing (curvature) and twisting (torsion). For high di-
mensions greater than three, say n, a n-dimensional
curve has (n− 1) curvatures which may be computed
while using the Gram-Schmidt orthogonalization pro-
cess [13] and provides the Frénet formulas [9] for a
n-dimensional curve.

In [10] it has been established that the location of
the point where the curvature of the flow, i.e. the cur-
vature of the trajectory curves integral of any slow-
fast dynamical systems of low dimensions two and
three vanishes directly provides the slow invariant
manifold analytical equation associated to such dy-
namical systems. So, in this work the new approach
proposed by Ginoux et al. [10] is generalized to high-
dimensional dynamical systems.

In a book recently published [12] efficiency of the
Flow Curvature Method has been extensively exem-
plified. One of the main applications of the Flow
Curvature Method presented in the next section es-
tablishes that curvature of the flow, i.e. curvature
of trajectory curves of any n-dimensional dynamical
system directly provides its slow manifold analytical
equation the invariance of which is proved according
to Darboux Theorem.

2Since only time derivatives of the trajectory curves are in-
volved in the curvature formulas.

3A two-dimensional curve, i.e. a plane curve has a torsion van-
ishing identically.

4The notion of curvature of a plane curve first appears in the
work of Apollonius of Perga.

5The name torsion is due to L.I. Valle, Trait de Gomtrie De-
scriptive.

6The osculating plane is defined as the plane spanned by the
instantaneous velocity and acceleration vectors.

II. SLOW INVARIANT MANIFOLD ANALYTICAL

EQUATION

The concept of invariant manifolds plays a very im-
portant role in the stability and structure of dynam-
ical systems and especially for slow-fast dynamical
systems or singularly perturbed systems. Since the
beginning of the twentieth century it has been sub-
ject to a wide range of seminal research. The clas-
sical geometric theory developed originally by An-
dronov [1], Tikhonov [25] and Levinson [15] stated
that singularly perturbed systems possess invariant
manifolds on which trajectories evolve slowly and to-
ward which nearby orbits contract exponentially in
time (either forward and backward) in the normal di-
rections. These manifolds have been called asymp-
totically stable (or unstable) slow manifolds. Then,
Fenichel [5], [8] theory for the persistence of nor-
mally hyperbolic invariant manifolds enabled to es-
tablish the local invariance of slow manifolds that pos-
sess both expanding and contracting directions and
which were labeled slow invariant manifolds.
Thus, various methods have been developed in or-
der to determine the slow invariant manifold analyt-
ical equation associated to singularly perturbed sys-
tems. The essential works of Wasow [26], Cole [3],
O’Malley [17], [18] and Fenichel [5], [8] to name
but a few, gave rise to the so-called Geometric Singu-
lar Perturbation Theory and the problem for finding
the slow invariant manifold analytical equation turned
into a regular perturbation problem in which one gen-
erally expected, according to O’Malley (1974 p. 78,
1991 p. 21) the asymptotic validity of such expansion
to breakdown.
So, the main result of this work established in the
next section is that curvature of the flow, i.e. cur-
vature of trajectory curves of any n-dimensional dy-
namical system directly provides its slow manifold
analytical equation the invariance of which is estab-
lished according to Darboux Theorem. Since it uses
neither eigenvectors nor asymptotic expansions but
simply involves time derivatives of the velocity vec-
tor field, it constitutes a general method simplifying
and improving the slow invariant manifold analytical
equation determination of high-dimensional dynami-
cal systems.

A. Slow manifold of high-dimensional dynamical sys-
tems

In the framework of Differential Geometry trajec-
tory curves ~X (t) integral of n-dimensional dynam-
ical systems (1) satisfying the assumptions of the
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Cauchy-Lipschitz theorem may be regarded as n-
dimensional smooth curves, i.e. smooth curves in Eu-
clidean n−space parametrized in terms of time.

Proposition II.1: The location of the points where
the curvature of the flow, i.e. the curvature of the tra-
jectory curves of any n-dimensional dynamical system
vanishes directly provides its (n− 1)-dimensional
slow invariant manifold analytical equation which
reads:

φ( ~X) = ~̇X ·
(
~̈X ∧

...
~X ∧ . . . ∧

(n)

~X

)
(2)

= det

(
~̇X, ~̈X,

...
~X, . . . ,

(n)

~X

)
= 0

where
(n)

~X represents the time derivatives of ~X .

Proof: Cf. Ginoux et al. [11] ; Ginoux [12]

B. Darboux invariance theorem

According to Schlomiuk [23], [24] and Llibre et
al. [16] it seems that in his memoir entitled: Sur
les équations différentielles algébriques du premier
ordre et du premier degré, Gaston Darboux (1878,
p. 71) has been the first to define the concept of in-
variant manifold. Let’s consider a n-dimensional dy-
namical system (1) describing “the motion of a vari-
able point in a space of dimension n.” Let ~X =
[x1, x2, . . . , xn]t be the coordinates of this point and−→
V = [ẋ1, ẋ2, . . . , ẋn]t its velocity vector.

Proposition II.2: Consider the manifold defined by
φ( ~X) = 0 where φ is a C1 in an open set U is in-
variant with respect to the flow of (1) if there exists a
C1 function denotedK( ~X) and called cofactor which
satisfies:

L−→
V
φ( ~X) = K( ~X)φ( ~X) (3)

for all ~X ∈ U and with the Lie derivative operator
defined as:

L−→
V
φ =

−→
V · −→∇φ =

n∑
i=1

∂φ

∂xi
ẋi =

dφ

dt
.

In the following invariance of the slow manifold
will be established according to what will be referred
as Darboux Invariance Theorem.

Proof: Cf. Ginoux et al. [11] ; Ginoux [12]

III. FORCED VAN DER POL MODEL

In this section it will be shown that Flow Curva-
ture Method may applied to non-autonomous dynam-
ical systems. As an example let’s consider the forced
Van der Pol model [14] which may be written as:

~V

εẋẏ
ż

 = ~=
f (x, y, z)
g (x, y, z)
h (x, y, z)

 =

 x+ y − x3

3
−x+ aSin (2πz)

ω


A suitable variable changes may transform this

non-autonomous system into a slow-fast autonomous
one which reads:

~V


ẋ1

ẋ2

ẋ3

ẋ4

 = ~=


f1 (x1, x2, x3, x4)

f2 (x1, x2, x3, x4)

f3 (x1, x2, x3, x4)

f4 (x1, x2, x3, x4)

 (4)

=


1
ε

(
x1 + x2 − x3

2
3

)
−x1 + ax3

Ωx4

−Ωx3


where ε = 0.002, a = 1.8, ω = 1.342043 and

Ω = 2πω. Although this transformation increases the
dimension of the system the Flow Curvature Method
enables, according to Prop. II.1, to directly compute
the slow manifold analytical equation associated with
system (4) the equation of which reads:

φ( ~X) = ~V · (~γ ∧ ~̇γ ∧ ~̈γ ∧
...
~γ ) = 0 (5)

Then, it may be stated that in the vicinity of the
flow curvature manifold both flow curvature manifold
and its Lie derivative are merged. Thus, according to
Darboux Invariance Theorem and Prop. II.2 the slow
manifold of forced Van der Pol model is locally in-
variant (Cf. Fig. 1).

IV. DISCUSSION

In this work a new approach which consists in ap-
plying Differential Geometry to Dynamical Systems
and called Flow Curvature Method has been partially
presented. By considering the trajectory curve, in-
tegral of any n-dimensional dynamical system, as a
curve in Euclidean n-space, the curvature of the tra-
jectory curve, i.e. curvature of the flow has been an-
alytically computed enabling thus to define a mani-
fold called: flow curvature manifold. Since such man-
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Fig. 1. Forced Van der Pol model slow invariant manifold
in (x1, x2, x3) phase space

ifold only involves the time derivatives of the veloc-
ity vector field and so, contains information about the
dynamics of the system, it enables to find again the
main features of the dynamical system studied. Thus,
Flow Curvature Method enables to analytically com-
pute: fixed points stability, invariant sets, center man-
ifold approximation, normal forms, local bifurcations,
slow invariant manifold and integrability of any n-
dimensional dynamical systems but also to “detect”
linear invariant manifolds of any n-dimensional dy-
namical systems which may be used to build first in-
tegrals of these systems.

Then, according to [12] Flow Curvature Method
may be applied to any n-dimensional autonomous
dynamical systems singularly perturbed or non-
singularly perturbed, i.e. slow-fast autonomous dy-
namical systems such as Lorenz, Rikitake, (PRT)
models, . . . , or any n-dimensional non-autonomous
dynamical systems singularly perturbed or non-
singularly perturbed such as forced Van der Pol model
as exemplified in this work.
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High gain observer based synchronization for a
class of time-delay chaotic systems. Application to

secure communications.
Estelle Cherrier, Mohammed M’Saad

Abstract—This work investigates high gain observer design to
synchronize a time-delay chaotic system. It is shown that the
underlying class of nonlinear systems can be put into the
canonical observable form, and thus high gain observer design
framework can be extended to chaotic synchronization problem.
Our approach is motivated by its simplicity of implementation:
the observer gain synthesis relies on the explicit resolution
of a time-invariant algebraic Lyapunov equation, which leads
to a single parameter design. The proposed synchronization
scheme is validated in a real-time experimental setup, based on
Analog/Digital dSpace electronic device. At the end of the paper
an information transmission process is provided, based on the
previous synchronization scheme.

Index Terms—Chaos synchronization, high-gain observer, time-
delay system

I. INTRODUCTION

If state estimation of linear systems has been widely treated
through the last four decades, the nonlinear case, which
concerns most of physical processes, remains however an
open and very active research field. Among the recent
applications of nonlinear state estimation theory, chaotic
synchronization represents a pregnant issue, even if the words
”chaos” and ”synchronization” themselves have seemed
incompatible for a long time. Indeed, on the one hand, the
word ”synchronization” come from the Greek roots συγ (syn),
which means ”with”, and χρoνoς(chronos), which means
”time”. Hence we can give a first definition of synchronization
notion: it characterizes two systems having the same behavior
at the same time. In fact, synchronization effects have
been observed since the XVIIth century, when the Dutch
mathematician Huygens noticed the synchronization of two
pendulum clocks placed against the same wall. Consequently,
synchronization was reserved to periodic systems (two signals
were said synchronized if their periods were identical). On
the other hand, among nonlinear systems, chaotic systems
are characterized by a very complex behavior, asymptotically
aperiodic. A priori, the nature of chaotic systems would
seem to challenge the notion of synchronization. No further
attention was paid to this issue, until 1983, and the work
of Yamada and Fujisaka [1]. They noticed that, by coupling
oscillators which on their own evolved chaotically, it was
possible under certain hypotheses to force them to evolve
in an identical manner. This happened even if the two

The authors are with GREYC UMR 6072 CNRS, Boulevard du Maréchal
Juin, 14050 Caen France.

E-mail: estelle.cherrier@greyc.ensicaen.fr

systems did not start with the same initial conditions. Despite
this breakthrough, the subject of chaotic synchronization
seemed to have no obvious applications until 1990. In their
pioneering paper [2], Pecora and Carroll gave necessary
and sufficient conditions under which two chaotic systems
would synchronize. They also indicated that by using chaotic
synchronization it might be possible to communicate in a
secure way, by using the chaotic signal as a mask, used
to hide the information-bearing message. This promising
application gave rise to a huge number of papers concerned
with chaotic synchronization. For general surveys on this
subject, the reader is referred to the references [3], [4], [5].
Then synchronization has become a state estimation issue.
The papers [6], [7] have shown that it is possible to estimate
chaotic systems states, using nonlinear control theory.
Indeed, the chaotic transmitter belongs to the wide class of
nonlinear dynamical systems, whereas the receiver can be
viewed as a nonlinear observer of the transmitter system.
Furthermore, nonlinear estimation theory can be used to
design a receiver which synchronizes with the driving system.
This nonlinear control point of view brings many approaches
to the receiver conception problem, and the underlying
synchronization analysis problem. Among the huge amount
of references on this subject, we can quote [8], which builds
an observer-based synchronization scheme, guaranteeing an
exponential synchronization. A generalization to a larger class
of nonlinearities is proposed in [9]. [10] details a particular
observer design, whose gain can be expressed in function
of the desired convergence speed. But other approaches can
also be found in the tremendous literature. For instance, the
synchronization problem is addressed as a chaos suppression
issue in [11]. [12] has established a synchronization criterion
based on a linear feedback control, applied to Chua’s
circuit. [13] deals with a reduced-order observer-based
exponential synchronization scheme, while [14] considers
synchronization as a control problem. A comparison between
different synchronization schemes, applied to well-known
chaotic systems is performed in [15]. Sliding mode observers
theory and an integral observer are used for synchronization
purposes, respectively in [16] and [17]. [18] deals with
synchronization of a class of time-delay chaotic systems,
and proposes a phase-modulation based transmission scheme.
More recently, a new family of chaotic systems has been
exhibited, relying on the multimodel framework, and a
dedicated synchronization process is detailed in [19]. Some
adaptive unknown input observer have been proposed, for
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example in [20] or [21]. The former develops an adaptive
unknown input observer for a chaotic transmitter whose
linear part is affected by a time-delay, while the latter is also
concerned with a robust approach to cope with parametric
uncertainties and external disturbances. A new transmitter
is dealt with in [22], called unified chaotic system: when
a parameter is varied, the chaotic attractor is topologically
equivalent to a Lorenz attractor, or a Chen or a Lü one. Most
of the mentioned papers address a chaotic synchronization
problem and propose an application to secure transmissions,
but rarely with a security analysis or a precise exhibition of
what the secret key is. This point will be discussed at the end
of our paper.

In many papers that can be read in the literature, as in several
aforementioned papers, the observer gain design relies on
the resolution of a Linear Matricial Inequality (LMI), thanks
to numerical convex optimization algorithms, provided that
conservative assumptions are fulfilled. What we propose in
this paper is a chaotic synchronization scheme using high-gain
observer framework, extending our recent results detailed in
[23]. In this latter paper, a high gain observer was proposed in
the presence of one (or more) variable and known delay. The
exponential convergence of the observer relies on the resulting
solution of an algebraic Lyapunov equation and leads to an
explicit expression of the observer gain.
The layout of this paper is as follows. Section II presents
high gain observer design for a class of nonlinear time-
delay chaotic systems with a synchronization purpose. The
obtained results are applied in section III to information
transmission, and tested both in simulation and through
real-time experimental setup, based on Analog/Digital dSpace
electronic device.

Notations: throughout this paper, xτ (t) stands for x(t− τ).

II. HIGH-GAIN OBSERVER BASED SYNCHRONIZATION

This section presents a new observer based synchronization
scheme, relying on high gain design framework, for a class
of nonlinear time-delay systems.

A. Time-delay chaotic transmitter

It is claimed in some papers dealing with cryptanalysis (see
[24] for example) that hyperchaotic systems are well suited
for security purpose when used in synchronization and com-
munication schemes. Besides, the presence of a delay in the
dynamics of a nonlinear systems leads to an hyperchaotic
behavior, this has been detailed in ref. [25]. Therefore we
consider the following class of time-delay chaotic systems:

ẋ(t) = Ax(t) + F (x(t)) +H (xτ (t)) (1)

with

A =

 −α α 0
1 −1 1
0 −β −γ

 (2)

F (x(t)) =

 −αδ tanh(x1(t))
0
0

 (3)

H(xτ (t)) =

 0
0

ε sin(σx1(t− τ))

 (4)

Fig. 1 shows the bifurcation diagram of system (1) when the
parameter σ is varied. The reader is referred to ref. [18] for a
thorough study of this chaotic transmitter. Once the transmitter
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Fig. 1. Bifurcation diagram

has been chosen, we address in next subsection the dedicated
receiver design, using high gain observer framework.

B. High gain observer synthesis

Since the pioneering paper of Gauthier et al. [26], which
presents a high gain observer for a class of nonlinear
systems called uniformly observable for all inputs, the
general high gain framework has been extended to larger
classes of nonlinear systems [27] (MIMO systems), [23]
(time-delay systems), as well as larger problems (including
state estimation), such as adaptive observers [28], to mention
just a few.
We present in this paper an extension of the results established
in reference [23] about high gain observer design in the
presence of one (or more) variable and known delay. This
class of high gain observers has, to the authors knowledge,
not yet been applied to time-delay chaotic synchronization.
The advantage of this approach principally remains in its
simplicity of implementation, in the sense that the observer
gain is obtained from the resolution of an algebraic Lyapunov
equation, and can be given explicitly.

The main results of reference [23] are now briefly summed
up.
Consider the following class of nonlinear systems [23]:{

ẋ(t) = Ax(t) + g(u(t), uτ (t), x(t), xτ (t))
y(t) = Cx(t) (5)
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where x ∈ Rn, y ∈ R, u ∈ Rm, are respectively the state, the
(scalar) output and the input of system (5).
A is the anti-shift matrix:

A =



0 1 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . 0

...
. . . 1

0 . . . . . . . . . 0


(6)

and the matrix C is defined by:

C =
(

1 0 . . . 0
)

(7)

The components of the nonlinear function g: Rm+2n → Rn

are noted gi, i = 1, n and each one of them has a triangular
structure w.r.t. x and xτ , i.e. :

gi(u, uτ , x, xτ ) = gi(u, uτ , x1, . . . , xi, xτ,1, . . . , xτ,i) (8)

We introduce two matrices ∆θ and S, which belong to the
general high gain framework, as follows :

∆θ = diag

[
1

1
θ

. . .
1

θn−1

]
(9)

where θ is a strictly positive real number ;
S is the unique solution of the algebraic Lyapunov equation
below:

S +ATS + SA− CTC = 0 (10)

As in most of works dealing with high gain synthesis, we
make the following assumption (cf. [27]) :

• (H1) The function g is global Lipschitz w.r.t. x and xτ ,
uniformly in u.

Consider the following candidate observer:{ ˙̂x(t) = Ax̂(t) + g(u(t), uτ (t), x̂(t), x̂τ (t))
−θ∆−1S−1CTC(x̂(t)− x(t))

(11)

We give the main theorem of ref. [23] ensuring the conver-
gence of observer (11):
Theorem 1:
Under hypothesis (H1), there exists θ0 > 0 such that for all
θ > θ0, system (11) is an exponential observer for system (5).

Now we will show how the chaotic transmitter (1) can be put
into the canonical form (5)-(9) by an appropriate coordinate
change:{

ż(t) = Az(t) + g(u(t), uτ (t), z(t), zτ (t))
y(t) = Cz(t) (12)

with A and C respectively defined by (6) and (7), and g of
the form (8).
The appropriate coordinate change is given by [26]:

z(t) = φ(x(t)) =

 x1(t)
Lgx1(t)
L2

gx1(t)

 (13)

where Lgf stands for the Lie derivative operator. If we note
φi, i = 1, 3 the three components of φ, we obtain:

φ1(x(t)) = x1(t)
φ2(x(t)) = −αx1(t) + αx2(t)− αδ tanh(x1(t)
φ3(x(t)) = α(α+ 1)x1(t) + α2δ(1 + δ) tanh(x1(t))

+α2δ tanh(x1(t))2(−x1(t) + x2(t))
−α2δ2 tanh(x1(t))3

−α(α+ 1 + αδ)x2(t) + αx3(t)
(14)

Then following the results of [23], one can explicitly compute
the observer gain for the canonical system (12):

Kz = θ∆θS
−1CT

Once this is achieved, one has to find the expression of
the observer gain in the original coordinates, which can be
expressed as:

K =
(
∂φ

∂x

)−1

Kz

where
(
∂φ

∂x

)
stands for the Jacobian matrix of function φ.

It has been shown in [27] that only the diagonal terms of
this Jacobian matrix are necessary, the other terms being
controlled. It is also worth noticing the property below [26]:

S−1CT =
(
C1

n C2
n . . . Cn

n

)
where Cp

n =
n!

p!(n− p)!
.

To conclude this section, we have proposed a new synchroniza-
tion scheme, based on high gain observer framework, which
has been recalled, for a time-delay chaotic transmitter.

III. REAL-TIME APPLICATION AND SECURE
TRANSMISSION

The aim of this section is twofold. First we illustrate the
effectiveness of the proposed synchronization scheme in sim-
ulations using Matlab, then in real-time experimental setup,
based on Analog/Digital dSpace electronic device. Finally
this synchronization process will be included in a complete
communication system.

A. Real-time synchronization

We recall the model of the chosen transmitter, and the numer-
ical values of its parameters: ẋ1(t) = −αx1(t) + αx2(t)− αδ tanh(x1(t))

ẋ2(t) = x1(t)− x2(t) + x3(t)
ẋ3(t) = −βx2(t)− γx3(t) + ε sin(σx1τ (t))

(15)

with

α β γ δ ε σ τ
9 14 5 −1 10 102 0.1

TABLE I
PARAMETERS OF SYSTEM (15)
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For the simulation, we choose a fourth-order Runge-Kutta
integration solver, with a constant step fixed to 1 ms.
The following initial conditions have been fixed for the trans-
mitter and the receiver: x(t) = x̂(t) = (0 0 0)T for t ∈ [−τ, 0[

x(0) = (0.1 0.1 0.1)T

x̂(0) = (−0.1 − 0.1 − 0.1)T
(16)

The value of the tuning parameter θ has been set to 10.
A comparison between the transmitter states and the receiver
state is depicted in figure 2 and shows that identical synchro-
nization is achieved after a few seconds. This synchronization
time can be shortened by using larger values for θ. However
this tuning must be made carefully, since the larger θ is, the
less robust (to additive noise on the transmitted signal y(t))
the observer is.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

1

1.5

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

0

0.2

0.4

0.6

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1

0

1

Time (s)

 

 
x3

x̂3

x2

x̂2

x1

x̂1

Fig. 2. Synchronization of the transmitter states and the receiver states

Now experimental results are performed on two calcula-
tors (Transmitter / Receiver) communicating through Ana-
log/Digital dSpace electronic devices. At the first calculator,
the Matlab-Simulink software simulates the chaotic model
and transmits the output signal y(t) through the dspace card
( using a coaxial cable ) to the receiver. At the receiver, the
second calculator uses the proposed high gain observer based
approach for synchronization. Fig. 3 shows the experimental
results. It can be noticed that experimenting real transmission
conditions inevitably lead to some degradations of the per-
formances: while the first state x1 seems exactly recovered,
some unaccuracies appear during the synchronization of the
second and the third states. These problems have been taken
into account and are under study.

B. Application to information transmission

One proposes to integrate the previous high gain observer
based synchronization scheme into a complete communication
process. The information transmission is performed using the
two-channel principle, as in [18]: a first signal (corresponding
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Fig. 3. Real-time synchronization

to y(t) defined in (5)) is sent to the receiver, for synchroniza-
tion purpose only. No information about the message is con-
tained in this signal. Then, once synchronization is achieved
at the receiver end, a second signal y2(t) containing the
information (corresponding to an encryption of the message)
is sent. To be able to decrypt the information, the receiver
must possess the secret key, given by the transmitter. This
point has been discussed in [18], where it has been shown
that the parameter σ of the transmitter (5) can play the role of
the secret key. In this case, we are dealing with a symmetric
cryptosystem, since the same key is used to encrypt and
decrypt the information. For lack of place, the security of the
proposed communication scheme will not be longer discussed
here, it would deserve an entire paper.
We give now the expression of the second signal y2(t) which
is used to conceal the information, noted u(t):

y2(t) = x3(t− Tuu(t)) (17)

where we suppose without restriction that u(t) ∈ [0, 1] and Tu

is chosen equal to the fixed integration step.
Then the decryption formula is given by (see [18] for a detailed
proof):

û(t) =
x̂3(t)− y2(t)
Tu

˙̂x3(t)
(18)

where û(t) stands for the deciphered message.
Fig. 4 shows the effectiveness of the proposed cryptosystem
when the following message is chosen: u(t) = 0.5(1 +
sin(2πfot)) with fo = 0.2Hz.
Since the obtained results within the experimental setup were
not totally satisfying, we decide not to make a real-time
transmission trial. We prefer to perform a deeper study of
high gain observer based synchronization. This paper is the
first step in our approach.

IV. CONCLUSION

In this paper we addressed a chaotic synchronization problem.
We propose a specific solution for a class of time-delay
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hyperchaotic transmitters, by designing a high-gain observer
as a receiver. We first showed that the considered transmitter
belongs to the class of uniformly observable nonlinear systems
which is dealt with in the high gain framework. Then we
detailed the conception of the receiver, whose efficiency has
been tested not only in simulation using Matlab, but also in
real-time experiment, using dSpace Analog/Digital device. At
the end of the paper, the proposed synchronization scheme has
been used to design a two-channel communication scheme
based on chaotic phase modulation. This paper represents a
first step in using high gain techniques for chaotic synchro-
nization purpose. Further real-time experimentations of chaotic
cryptosystems are under study.
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Observer based approach for synchronization  
in complex dynamical networks. 
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Abstract: 
In this note, we investigate a state observer based 
approach for synchronization in complex dynamical 
networks. The later are in the general form with multi-
dimentional links. Synchronization in the dynamical 
network is expressed in terms of asymptotic stability 
conditions deduced from the contraction theory. We 
show, thanks to the differential mean value theorem, 
that design and computation of the observer’s gain 
may be performed through Linear Matrix Inequalities 
(convex problem).  
 
Introduction 

During the last decade, tremendous research 
activities were devoted to study complex dynamical 
networks which were introduced to model many 
aspects of real-world systems. Indeed, interesting 
mathematical models such as small-world models or 
scale-free models [1]-[2]-[4]-[11] were introduced 
recently to describe various dynamical systems in 
different area; without being exhaustive let us mention 
some of them, such as: Biological, Internet or 
Electrical Power network systems. The problem of 
synchronization become, therefore, a central question 
in particular to characterize behaviours of the 
dynamical networks. For doing so, several research 
works were recently devoted to analyze 
synchronization in complex network systems in 
different configurations such as connected neural 
networks with or without delays, synchronization of 
uncertain dynamical networks using robust impulsive 
techniques or synchronization in switching dynamical 
networks [5]-[6]-[7]-[8]-[12]-[13]-[17]-[18]. It should 
be noticed that most of the obtained results assume the 
complete knowledge of the state vector of each node, 
unfortunately, this condition is rarely satisfied. To 
overcome this obstacle, an interesting strategy consists 
in employing state observers based approach to assure 
synchronization when only one-dimensional links or 
few state components are available.   

In the case of two chaotic master-slave systems, 
observers based approach for synchronization was 
largely investigated during the last two decades [3]-
[9]-[10] with extensions to unknown input recovery 
[20]-[21]-[22]. Unfortunately, very few works were 
developed to deal with synchronization in complex 
dynamical networks. In [19], Jiang et all. have 
proposed a simple and useful observer based approach 
for synchronization in complex dynamical networks 
when only one dimensional links.     

In this contribution we consider the problem of 
synchronization in complex dynamical networks from 
a state observer point of view. The systems considered 
here are in the general form with multi-dimentional 

links not necessarily with the same measurement 
matrix. The stability analysis is investigated through 
the contraction theory [14]-[15]-[16] where the 
synthesis of the observer’s gain may be deduced from 
a non conservative Linear Matrix Inequality (LMI) 
condition [24].  

 
1 - Problem formulation and existing results 

In this section we provide first some definitions 
and contributions to assure synchronization for a class 
of complex dynamical networks, after, we introduce a 
recent result on observers based approach for 
synchronization [19]. We should notice that we 
consider, here, systems that are described by a general 
form where the connections are not symmetric, in the 
sense that the information sent from node i to node j is 
multi-dimensional and may not be the same.  

A - Definition 
Consider a real world complex network with N 

nodes [4]-[5]-[6]-[7]-[8] : 

€ 

˙ x i (t) = f (xi (t)) + cij Ax j (t)
j=1

N

∑    1 

where 

€ 

xi (t) ∈ Rn ,  cij and A ∈ Rn.n  represent the state 
vector of node i, the coupling strength between node i 
and node j and, a constant inner coupling matrix 
between nodes respectively.  
 
The coupling configuration matrix of the network C = 
(cij)N.N is defined as follows : 

€ 

cij ≠ 0    If there is a connection 
between node i and node j    2 

€ 

cij = 0   Otherwise  3 

with 

€ 

cii = − cij
j=1
j≠ i

N

∑     4 

based on this configuration we may write: 

 

€ 

˙ s (t) = f (s(t)) =

€ 

f (s(t))+ cij As(t)
j=1

N

∑  5 

which allows to deduce : 

€ 

˙ s (t) − ˙ x i (t) = f (s(t))− f (xi (t)) + cij A(s(t) − x j (t))
j=1

N

∑  6 

Now let us introduce a general definition of network 
synchronization []. 
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Definition-1: Let 

€ 

xi (t, t0, x0)  denotes a solution for 
the differential equation: 

€ 

˙ x i (t) = f (xi (t)) + gi (x(t))  i = 1,…, N  7 
with 

€ 

x0 = x1
0, ..., xN

0( )  and 

€ 

x(t) = x1(t), ..., xN (t)( ) 
 
assume that f(.) and g(.)  are continuously 
differentiable on an open subset D and there exists a 
nonempty D0 ⊆ D with 

€ 

xi
0 ∈ D0 such that xi(t) ∈ D0 

and : 

€ 

lim
t→∞

xi (t, t0, x0) − x j (t, t0, x0 = 0  for all i, j 8 

therefore (8) is said to realize synchronization. 
 
Now, let us go back to the system (7) with the 
notation:

€ 

ε i (t) = s(t) − xi (t) , we deduce (using (5)) 
that: 

€ 

˙ ε i (t) = f (s(t))− f (s(t) −ε i (t)) + cij Aε i (t)
j=1

N

∑  9 

or 

€ 

˙ ε (t) = F (t,s(t),ε(t)),   ε(t) = ε1(t) ... εN (t)( )      10 
using the fact that the coupling configuration matrix C 
has interesting properties (and assumed to be 
irreductible with real eigenvalues λ k [23]) i.e. : 
 λ1 = 0 > λ 2 ≥ … ≥ λ N                11 
we obtain, through a linear and non singular 
transformation, an equivalent system (locally around 
the trajectory s(t)): 
 

€ 

˙ δ (t) = Df (s(t)) + λk A( )δ (t),  λk = 2,...,N   12 
where Df(s(t)) is the Jacobien matrix of f(s(t)) arround 
the trajectory s(t). We notice that, as l1 = 0, x1(t) = s(t) 
is considered as the reference trajectory. 
 
We can state now the main result for exponential 
synchronization [8] : 
Lemma 1: Assume that the Jacobian matrix DF(t,x(t)) 
is bounded and Lipschitz (Locally) on an open subset 
Ω, uniformly in t, and C is diagonalized; then if 
(A+AT) is a positive semi definite matrix and the 
measure of matrix µ(Df(s(t))+λ2A) < α < 0 then the 
dynamical complex network is exponentially stable 
(synchronized).  
 
The proof is straightforward if we take a Lyapunov 
function as: 

V(t) = ½ δT(t). δ(t)               13 
 
With

€ 

˙ V (t) = δT (t)
Df (s(t)) + λ2A( )T

+ Df (s(t)) + λ2A( )
2

 

 
 
 

 

 
 
 δ (t)

 

€ 

+ (λk − λ2)δ
T (t) A

T + A
2

 

 
 

 

 
 δ (t)  

≤ 

€ 

δT (t)
Df (s(t)) + λ2A( )T + Df (s(t))+ λ2A( )

2

 

 
 
 

 

 
 
 δ (t)  for 

all k                                            14 
 
 
 B - Observers based approach for 
synchronization 

To our knowledge there are very few results on 
state observers for synchronization, hereafter we 
summarize the main idea of a recent result on this 
subject. Indeed, instead of the complete knowledge of 
the coupling state vector xj in the dynamical model 
(1), the latter is into the form : 

  

€ 

˙ x i (t) = f (xi (t)) + cijLy j (t)
j=1

N

∑             15 

where yj(t) is the output of node j with: 
 

€ 

y j (t) = Hx j                16 
 H is a row vector ∈ R1.n 
The problem is therefore how to determine the gain 
vector so that synchronization of the dynamical 
network is assured. Based on the Lemma 1 and the 
fact that L.H is a constant matrix (which may 
represent the matrix A in (1)), the authors deduced an 
LMI condition to determine L for synchronization. 
 
 C – Problem formulation 
     In this note we consider a more general class of 
dynamical complex network where the connection 
between node i and node j is a multi-dimensional link, 
each node j provides only a part of the state vector xj  
i.e. 

€ 

y j (t) = H j x j ,    H j ∈ RPj .n  with pj ≤ n. The 
dynamical model becomes: 

   

€ 

˙ x i (t) = f (xi (t)) + cijL j y j (t)
j=1

N

∑              17 

     Since the matrices LjHj for j = 1, …, N are not 
necessarily the same, the obtained results in [19] for 
synchronization can not be applied. To deal with 
problem, there are two options :  
 
- The first one consists in determining matrices Lj 
under the constraint LjHj = LiHi for all i, j. so that 
synchronization is assured. 
- The second solution is more general and consists in 
determining matrices Lj in the sense of definition 1 i.e. 

€ 

lim
t→∞

x j (t) − xi (t)  = 0 and not necessarily 

€ 

lim
t→∞

x j (t) − s(t)  = 0                           18 

 
In this note we focus on the first option using simple 
and useful tools such as contraction theory for the 
stability analysis and the differential mean value 
theorem to determine matrices Lj through an LMI 
condition.    
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2 - Main results 
 A – Preliminary transformations 
First of all, let us provide a general solution to the 
constraints LjHj = LiHi which will be introduced into 
the global stability condition. Indeed, we may write : 
 LjHj = LiHi  for i, j = 1, …, N           19 
Into the equivalent form: 
 

€ 

−H1
T H2

T 0 . 0
0 -H2

T H3
T 0 0

. . . . .
0 . 0 −HN−1

T HN
T

 

 

 
 
 
 

 

 

 
 
 
 

L1
T

L2
T

L3
T

.
LN
T

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

=

0
0
.
0

 

 

 
 
 
 

 

 

 
 
 
 

      20 

or  H.L = 0 
with   

H=

€ 

−H1
T H2

T 0 . 0
0 -H2

T H3
T 0 0

. . . . .
0 . 0 −HN−1

T HN
T

 

 

 
 
 
 

 

 

 
 
 
 

, L = 

€ 

L1
T

L2
T

L3
T

.
LN
T

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

 

solutions of the system may be parameterized as 
follows: 

  

€ 

L = H +H − I p( )Z , 

€ 

p = pi
1

N

∑         21 

where H+ is the pseudo-inverse matrix of H (HH+H = 
H and H+HH+ = H+) and Z is an arbitrary matrix of 
dimension p.n that parameterizes all solutions of the 
system. Indeed, it is obvious that : H.L = 0 for all 
matrices Z. 
The solution (21) is therefore introduced into the 
stability condition to assure synchronization of the 
complex network. 
Under the equality constraint, the state error vector of 
the complex network with respect to the arbitrary 
matrix Z may be written into the following form [19]: 
 

€ 

˙ ε 1(t) .. ˙ ε N (t)( ) = Df (s(t)) ε1(t) .. εN (t)( )
 

€ 

+ Z H ε1(t) .. εN (t)( )CT                       22 

with 

€ 

Z = ZT ,  H = H T H +T − I p( )
H1

.
HN

 

 

 
 
 

 

 

 
 
 
  and

 

€ 

CT =

c11 .. cN1
. .. .
c1N .. cNN

 

 

 
 
 

 

 

 
 
 

                      23 

 
or equivalently, through a non singular transformation 
: 
 

€ 

˙ ε 1(t) .. ˙ ε N (t)( )Φ = Df (s(t)) ε1(t) .. εN (t)( )Φ
 

€ 

+ Z H ε1(t) .. εN (t)( )CTΦ                   24 
with 

€ 

CTΦ =ΦΓ ,   Γ = diag(λ1,  λ2,  ..,  λN )  

 
Therefore we obtain a decoupled dynamical complex 
network in the same form as in [19]: 
 

€ 

˙ δ i(t) = Df (s(t)) + λiZ H ( )δi(t)  

and  

€ 

δ1(t) .. δN (t)( ) = ε1(t) .. εN (t)( )Φ  
for i = 2, …, N            25 
 
where 

€ 

Z  should be determined so that 
synchronization is assured. 

 
B - Stability analysis 

In the following, we investigate convergence of 

€ 

δi(t)  
to zero with the goal to introduce non conservative 
conditions. Indeed, let us provide first a general 
stability condition, based on the contraction theory 
approach [16]-[25]. 
 
Theorem 1: 
Consider the system (25), if there exist a matrix Z and 
a contraction metric M(x) (i.e. an n.n symmetric 
matrix that is uniformly positive definite) such that the 
symmetric matrix 

€ 

Df (s(t))+ λ iZ H ( )T
M (x) + M (x) Df (s(t)) + λ iZ H ( )    

€ 

+ ˙ M (x)  
is uniformly negative definite for all    i=2, …, N then 
all trajectories 

€ 

δi(t)  goes to zero. 
 
The proof is straightforward (for details see [16]). 
 
It should be noticed that the contraction metric M(x) 
may be constructed using sum of squares (SOS) 
programming. In [25], the authors show how to obtain 
less conservative stability conditions for polynomial 
metrics M(x).  
 
In the following we will provide an LMI condition to 
deduce the arbitrary matrix Z so that 

€ 

Df (s(t))+ λ iZ H ( )T
M (x) + M (x) Df (s(t)) + λ iZ H ( )   

€ 

+ ˙ M (x)  is uniformly negative definite when M(x) is a 
constant positive definite matrix M.  
 
Theorem 2: 
Under the assumption that the Jacobian matrix 

€ 

Df (s(t)) is a bounded matrix (i.e. each component has 
a lower and upper bound 

€ 

sij  and sij  respectively), if 

there exist matrices 

€ 

P = PT > 0  and R of appropriate 
dimensions such that the following LMIs’ are 
satisfied: 
 

€ 

FT (sij ,sij )P + PF (sij ,sij ) + λk H T RT + RH ( ) < 0
 for all k = 2, …, N  26 
then the state error vector 

€ 

δi(t)  goes asymptotically to 
zero.  
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On the other hand, when (26) is feasible the gain 
matrix is given by 

€ 

Z = P−1R  and 

€ 

L = H +H − I p( )Z T    
 
For the lack of space here, the proof is omitted here 
but may be deduced along the recent work in [24].  
 
We may also show that the asymptotic stability 
condition (26) is non conservative in the sense that 
(26) allows very large Lipschitz constant and in the 
same time we didn’t need that the Jacobian matrix to 
be into the form 

€ 

Df (s(t)) = A + g(s(t))  where 

€ 

A,  H ( )  
is observable (comparisons with standard results are 
given in [24]) 
 
Conclusion 
In this work we provide a constructive approach to 
assure synchronization of complex dynamical 
networks. The latter is in the general form using multi-
dimensional links and not necessarily with the same 
measurement matrix. In order to cope with matrix 
inequalities under equality constraints, we provide 
first a preliminary transformation to parameterize all 
solutions of the equality constraints. After, thanks to 
the differential mean value theorem, a non 
conservative LMI condition is provided to assure 
synchronization of the dynamical network.    
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LPV Approach for the Stabilization of a Class of
Dynamical Systems

Ali ZEMOUCHE and Mohamed BOUTAYEB

Abstract— In this note, we investigate the problem of H∞
observer-based state feedback controllers for a class of Lipschitz
nonlinear systems. A simple systematic and useful synthesis
method is proposed. Thanks to the use of the Differential Mean
Value Theorem (DMVT), separation results are obtained. The
synthesis conditions are given in term of Linear Matrix Inequal-
ities (LMIs), easily tractable by convex optimization algorithms.
Based on some mathematical tools such as Barbalat’s lemma and
convergence of series, an asymptotic convergence towards zero is
provided in the H∞ free context. A numerical example is given
in order to show the performances of the proposed approach.

Index Terms— Nonlinear observers, observer-based control,
H∞ analysis, LMI approach, the Differential Mean Value The-
orem (DMVT).

I. INTRODUCTION

Tremendous research activities on the problem of
implementation and observers based control for linear and
nonlinear dynamic systems show a growing interest in control
theory area during the last decade. Thus, compliance with
specific performances requires a careful choice of controller.
To do this, the ideal strategy would be to have completely
states and inputs of the system. However, for intrinsic reasons
to the system or for high costs of the sensors implementation,
the measurement of the state is often only partial. Moreover,
the measurements may be affected by noises. That is why
the controllers proposed in the literature are often based on
state observers. Indeed, the observers incorporate a filter that
estimates the entire state vector, or the unmeasured part only.
It is one of the main reasons for which the observers design
problem is extensively investigated in the recent literature [1],
[2], [3], [4], [5], [6]. However, very less approaches concern
the observer-based control problem for nonlinear systems. In
the linear case, the problem is easy to investigate thanks to
the separation principle. Nevertheless, the main difficulty for
nonlinear systems lies in the fact that the separation principle
is not always true.
Consequently, obtaining synthesis conditions in term of LMIs
is a difficult task because of bilinear couplings between
certain variables resulting from the stability analysis. To
overcome this obstacle, LMI conditions under an equality
constraint for a class of nonlinear discrete time systems are
established [7]. But, this equality constraint is difficult to be
solved for certain systems, in particular those with a single
input.
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CRAN UMR 7039 CNRS, Nancy-Universit, 54400 Cosnes et Romain, France,
(e-mail: Ali.Zemouche@iut-longwy.uhp-nancy.fr)
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Till now, the problem of observer-based state feedback
controllers for nonlinear systems remains an open research
subject. Obtaining a systematic observer-based control
method for nonlinear systems under LMI conditions becomes
a difficult challenge.
It is worth to notice that several research activities have
been paid toward the study of the problem of observer-based
control for linear systems and many applications are provided
for the nonlinear case. We refer the reader to [8], [9],
[10], [11], [12], just to mention some works. Note also
that separation results are proposed in [13] and [14] for a
class of nonlinear systems using a sufficiently fast high-gain
observer. An extension, by the same authors, is given in [15],
where their proposed state feedback controller renders a
certain compact set positively invariant and asymptotically
attractive. On the other hand, for all these works recent
advances on stability analysis, using contraction theory, may
be investigated [16], [17].
This paper deals with the problem of H∞ observer-based
state feedback controllers for a class of Lipschitz nonlinear
systems. A simple systematic synthesis method is proposed.
Thanks to the use of the DMVT, we obtain separation results
for a class of nonlinear systems. The synthesis conditions are
given in term of linear matrix inequalities, easily tractable
by convex optimization algorithms. It should be noticed that
this work concerns the continuous-time and the discrete-time
systems. Indeed, the main contribution of this work may be
summarized into two points. The first one lies in the fact that
a unified observer based control approach is established for
both continuous and discrete time systems. The second point
concerns the stability conditions which are expressed in terms
of LMIs with H∞ performances.
This note is arranged as follows. In section II, we state
the problem formulation that we consider in this study.
In section III, we introduce some separation results and
sufficient synthesis conditions. A numerical example is given
in section IV for the discrete-time case, in order to illustrate
the results. We end this note by a conclusion in section V.

Notations : The following notations will be used throughout
this paper.

• ‖.‖ is the usual Euclidean norm;
• (?) is used for the blocks induced by symmetry;
• AT represents the transposed matrix of A;
• Ir represents the identity matrix of dimension r;
• for a square matrix S, S > 0 (S < 0) means that this

matrix is positive definite (negative definite);
• the set Co(x, y) = {λx + (1 − λ)y, 0 ≤ λ ≤ 1} is the
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convex hull of {x, y};

• es(i) =
(
0, ..., 0,

i th︷︸︸︷
1 , 0, ..., 0︸ ︷︷ ︸

s components

)T ∈ Rs, s ≥ 1 is a vector

of the canonical basis of Rs;

• The notation ‖x‖Ls
2

=
( ∫∞

0
‖x(s)‖2ds

) 1
2

represents the
Ls

2 norm of x(t) ∈ Rs. Also, the `2 norm of x(k) is

defined by ‖x‖`s
2

=
(∑∞

k=0 ‖x(k)‖2
) 1

2
. Note that ‖.‖Ls

2

is used for the continuous-time case and ‖.‖`s
2

is used for
the discrete-time case. The sets Ls

2 and `s2 are defined as

Ls
2 =

{
x ∈ Rs | ‖x‖Ls

2
< +∞

}
,

`s2 =
{
x ∈ Rs | ‖x‖`s

2
< +∞

}
.

II. PROBLEM FORMULATION

In this section, we introduce the class of nonlinear systems
investigated in this paper. Since, we propose a unified method
for both the continuous-time case and the discrete-time case,
then we consider the class of systems described under the
following unified form :

σx = Axx+Auu+Bf(x) + Eωω (1a)
y = Cx+Dωω (1b)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector
and y ∈ Rp is the output of the system. ω ∈ Ls

2 (or ω ∈ `s2)
is the vector of disturbances. The matrices Ax ∈ Rn×n, Au ∈
Rn×m, B ∈ Rn×q and C ∈ Rp×n are constant.
The notation σx is defined as follows :

σx(t) =
{

ẋ(t), t ∈ R+ for the continuous-time case
x(t+ 1), t ∈ N for the discrete-time case

(2)
Assume that the function f satisfies the following condition :

aij ≤ ∂fi

∂xj
(z) ≤ bij , ∀ z ∈ Rn (3)

Without loss of generality, we assume also that f(0) = 0.

Remark 2.1: Note that condition (3) means that the differ-
entiable function f is globally Lipschitz. In addition, (3) is
not restrictive. Indeed, many nonlinearities can be regarded as
Lipschitz, at least locally. For instance, the sinusoidal functions
usually encountered in many physical processes are globally
Lipschitz. On the other hand, even functions like x3 (or
all polynomial terms on x) can be considered as Lipschitz,
provided that the state x is bounded (which is the case of many
physical systems). Indeed, if the nonlinearity of the system is
not globally Lipschitz on the whole Rs, then if the state x is
bounded, there exists always a positively invariant set Ω for the
system. Hence, it suffices to extend the nonlinear term of the
dynamics of the system from Ω to a globally Lipschitz function
on Rs, such that the trajectories of the system and those of
the extending system starting from Ω are identical [18].

A structure of the dynamic observer-based control for the
system (1) is given as follows :

σx̂ = Axx̂+Auu+Bf(x̂) + L(y − Cx̂) (4a)
u = −Kx̂ (4b)

where x̂ is the estimation of x. L ∈ Rn×p is the observer gain
and K ∈ Rm×n is the control gain.
The objective is to determine the matrices K and L such that
the system (1) becomes globally robustly asymptotically stable
under the action of the observer-based linear static feedback

u = −Kx̂.
Using (4), we obtain the following dynamics :

σx =
(
Ax −AuK

)
x+Bf(x) +AuKε+ Eωω (5a)

σε =
(
Ax − LC

)
ε+B

(
f(x)− f(x̂)

)
+
(
Eω − LDω

)
ω

(5b)

where ε = x − x̂ is the estimation error. The system (5) can
be rewritten under the unified form :

σ[xT εT ]T =

(Ax −AuK
)

AuK

0
(
Ax − LC

)[x
ε

]

+
[
B 0
0 B

] [
f(x)

f(x)− f(x̂)

]
+
[

Eω

Eω − LDω

]
ω.

(6)

Applying the DMVT [4], we have the existence of zi ∈
Co(0, x) and z̄i ∈ Co(x, x̂), for i = 1, ..., q, such that :

f(x) =

 q,n∑
i,j=1

Hij
∂fi

∂xj
(zi)

x (7)

and

f(x)− f(x̂) =

 q,n∑
i,j=1

Hij
∂fi

∂xj
(z̄i)

 ε (8)

where
Hij = eq(i)eT

n (j).

For simplicity of the presentation, we introduce some defini-
tions as follows :
First, define the function

h : Rqn → Rq×n

ζ 7→ h(ζ) =
(
hij(ζi)

)
ij

(9)

where

hij(ζi) =
∂fi

∂xj
(ζi), ζ =

ζ1...
ζq

 , ζi ∈ Rn

Define also the affine matrix function

A
(
h(ζ)

)
= Ax +B

q,n∑
i,j=1

Hijhij(ζi) (10)
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According to (7), (8), (9), (10), the dynamics (6) can be
rewritten under the form :

σξ =

[A(h(z))−AuK
]

AuK

0
[
A
(
h(z̄
)
− LC

] ξ
+
[

Eω

Eω − LDω

]
ω

(11)

where

z =

z1...
zq

 , z̄ =

z̄1...
z̄q

 , ξ =
[
x
ε

]

Condition (3) implies that the parameter vector h(.) belongs
to the following convex bounded set :

Hq,n =
{
h(η) ∈ Rq×n : aij ≤ hij(ηi) ≤ bij ,

∀ η =

η1...
ηq

 ∈ Rqn, ηi ∈ Rn
}

(12)

of which the set of vertices is given by :

VHq,n =
{

Φ ∈ Rq×n : Φij ∈ {aij , bij}
}
. (13)

III. SYNTHESIS METHOD : SEPARATION RESULTS

We establish, in this section, some separation results for
the class of nonlinear systems (1). The goal is to find con-
ditions which ensure the robust asymptotic stability of the
system (11) under the action of the observer-based linear static
feedback (4b). On the other word, the problem consists to
design the matrices L and K so that

‖ξ‖L2n
2
≤ λ‖ω‖Ls

2
, for ξ(0) = 0. (14)

where λ is the disturbance attenuation level to be determined.
In the discrete-time case, we make `2 instead of L2. The
objective is to develop sufficient conditions which give the
gains L and K separately. To do this, we propose, first, to
study the H∞ asymptotic stability of the estimation error ε.
This latter is then used to show the H∞ asymptotic stability
of the state x around zero. Indeed, the system (11) may be
decomposed as follows :

σx =
[
A
(
h(z)

)
−AuK

]
+ [Au Eω] ω̄ (15a)

σε =
[
A
(
h(z̄)

)
− LC

]
+ (Eω − LDω)ω (15b)

where
ω̄ =

[
Kε
ω

]
Instead of (14), we propose to show independently the follow-
ing :

‖ε‖L2n
2
≤ λ1‖ω‖Ls

2
, for ε(0) = 0 (16)

and
‖x‖L2n

2
≤ λ2‖ω̄‖Lm+s

2
, for x(0) = 0 (17)

which lead to (14) with

λ =
√
λ2

1 + λ2
2

(
1 + λ2

1λmax(KTK)
)

where λmax(KTK) represents the maximum eigenvalue of the
square matrix KTK.

Remark 3.1: Here, we give some remarks on the definition
of ω̄ and the H∞ criteria (14).

• In (15a), we have ω̄ ∈ Ls+m
2 . Indeed, from (16) we have

ε ∈ Ln
2 which leads to Kε ∈ Lm

2 , hence ω̄ ∈ Ls+m
2 .

• When ξ(0) 6= 0, the H∞ criteria (14) must be replaced
by the following one :

‖ξ‖L2n
2
≤
√
λ2‖ω‖2Ls

2
+ γ‖ξ(0)‖2 (18)

where γ is a positive constant to be determined.

Note that the H∞ problem (16)-(17) may be reduced to find
Lyapunov functions V and W so that (see [4] for more details)

V̇ + εT ε− λ2
1ω

Tω < 0 (19)

and
Ẇ + xTx− λ2

2ω̄
T ω̄ < 0 (20)

For the discrete-time case, we must use ∆V = Vk+1 − Vk

and ∆W = Wk+1 −Wk instead of V̇ and Ẇ , respectively.
The following theorem provides some LMI conditions under
which (19)-(20) hold.

Theorem 3.2: The H∞ criteria (14) is fulfilled under the
action of the observer-based linear static feedback (4b) if
there exist two positive scalar µ, ν and matrices P = PT > 0,
S = ST > 0, X and Y of adequate dimensions so that the
following LMI conditions are feasible :

• The continuous-time case : ∀ Φ ∈ VHq,n

1) min(µ) subject to[
M
(
P, Y,Φ

)
PEω − Y TDω

(?) −µIs

]
< 0 (21)

where

M
(
P, Y,Φ

)
= AT (Φ)P − CTY

+ PA(Φ)− Y TC + In

2) min(ν) subject toN
(
S,X,Φ

)
[Au Eω] S

(?) −νIm+s 0
(?) (?) −In

 < 0 (22)

where

N
(
S,X,Φ

)
= SAT (Φ)−XAT

u +A(Φ)S−AuX
T

• The discrete-time case : ∀ Φ ∈ VHq,n
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1) min(µ) subject to−P + In 0 AT (Φ)P − CTY
(?) −µIs ET

ωP −DT
ωY

(?) (?) −P

 < 0

(23)

2) min(ν) subject to
−S 0 L

(
S,X,Φ

)
S

(?) −νIm+s [Au Eω]T 0
(?) (?) −S 0
(?) (?) (?) −In

 < 0 (24)

where

L
(
S,X,Φ

)
= SAT (Φ)−XAT

u

The controller and the observer gains are computed, respec-
tively by :

K = XTS−1 and L = P−1Y T (25)

and the disturbance attenuation level that we obtain by our
approach is

λ∗ =
√
µ∗ + ν∗

(
1 + µ∗λmax(KTK)

)
(26)

where
µ∗ = min(µ), ν∗ = min(ν)

Proof: For the lack of space, we give only the proof in
the continuous-time case. We can use the same methodology
to show the result for the discrete-time case.
Now, consider the Lyapunov function candidate V = εTPε
for the system (15b) and W = xTS−1x for (15a). After
computing V̇ and Ẇ , we obtain

Vω = εT
( [
A
(
h(z̄)

)
− LC

]T
P+

P
[
A
(
h(z̄)

)
− LC

]
+ In

)
ε

+ 2εTP
(
Eω − LDω

)
ω − µωTω

(27)

and

Wω̄ = xT
( [
A
(
h(z)

)
−AuK

]T
S−1+

S−1
[
A
(
h(z)

)
−AuK

]
+ In

)
x

+ 2xTS−1
[
Au Eω

]
ω̄ − νω̄T ω̄

(28)

where
Vω , V̇ + εT ε− µωTω

Wω̄ , Ẇ + xTx− νω̄T ω̄

and
µ = λ2

1, ν = λ2
2

Using the notation Y = LTP , we deduce that

Vω =
[
ε
ω

]T
[
M
(
P, Y, h(z̄)

)
PEω − Y TDω

(?) −µIs

] [
ε
ω

]
(29)

From (21), the convexity principle leads to[
M
(
P, Y, h(z̄)

)
PEω − Y TDω

(?) −µIs

]
< 0

which means that Vω < 0. From (28), we have Wω̄ < 0 if[
AT (h)S−1 + S−1A(h) + In S−1

[
Au Eω

]
(?) −νIs

]
< 0

where
A(h) = A

(
h(z)

)
−AuK.

By pre- and post multiplying the last inequality by
[
S 0
0 Is

]
,

we deduce that Wω̄ < 0 if[
SAT (h) + A(h)S + S2

[
Au Eω

]
(?) −νIs

]
< 0 (30)

Using the Schur lemma and the notation X = SKT , (30) is
equivalent toN

(
S,X, h(z)

)
[Au Eω] S

(?) −νIs 0
(?) (?) −In+s

 < 0 (31)

Hence, from (22) the convexity principle leads to (31), which
means that Wω̄ < 0. Finally, to obtain best values of µ and ν,
the convex optimization problems 1) − 2) are required. This
ends the proof of Theorem 3.2. The proof for the discrete-time
case may be obtained using similar manipulations.

IV. A NUMERICAL EXAMPLE

Hereafter, we provide a numerical example in order to show
performances of the results. Consider the discrete-time model
of the chaotic system of Lorenz. Using Euler discretization and
adding an input in the dynamics as in [19], the system can be
written under the form (1) with the following parameters :

Ax =

1− 10T 10T 0
28T 1− T 0
0 0 1− 8

3T

 , B = T

 0 0
−1 0
0 1

 ,
C =

[
1 0 0

]
, Au = T

30
28
10


and

f(x) =
[
x1x3 x1x2

]T
where T = 0.001s is the sampling period. Note that the
Lorenz’s system exhibits a chaotic behavior with to bounded
trajectories, which means, according to the Remark 2.1, that
the condition (3) holds. Thus, our approach is applicable.
Assume that the output signal is affected, in a finite time
interval, by a Gaussian distributed random signal with mean
zero and standard deviation σ = 0.05. Using Theorem 3.2, we
obtain, after solving the convex optimization problem 23-24
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by Matlab LMI toolbox, the following solutions :

KT =

 2.7842
27.0817
2.0446

 , L =

0.9959
0.6224
0.0056

 and λ∗ = 2.1062

The simulation results are shown in figures 1 and 2. The initial
values used for numerical simulations are

x0 =
[
1 1 1

]T
, x̂0 =

[−1 −1 −1
]T
.
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Fig. 1. Behaviors of the state variables without disturbances

V. CONCLUSION

In this paper, we presented a simple and systematic method
to solve the problem of H∞ observer-based control for a class
of nonlinear systems. The main advantage of this approach lies
in the fact that the synthesis of the controller and the observer
gains is reduced to solve two independent nonrestrictive LMIs
without any equality constraint. Indeed, this latter, which is the
obstacle of many observer-based control methods established
in literature, is difficult to be solved for certain nonlinear
systems with single input as shown in [7]. The asymptotic
convergence of the state and the estimation error towards zero
is also established using some mathematical tools such as the
Barbalat’s lemma and the convergence of series. Finally, the
proposed approach is validated successfully by a numerical
example.
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Fig. 2. The controlled state variables with σ = 0.05
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Mathematical study for a tuberculosis model with
two differential infectivity and n classes of latent

Samuel Bowong, Yves Emvudu, Dany Pascal Moualeu and Jean Jules Tewa

Abstract—We consider a very general tuberculosis model with
two differential infectivity, n classes of latent individuals and
mass action incidence. This general system exhibits the traditional
threshold behavior. There is always a globally asymptotically
stable equilibrium state. Depending on the value of the basic
reproduction ratio R0, this state can be either endemic (R0 > 1),
or infection-free (R0 ≤ 1). The global stability of this model
is derived through the use of Lyapunov stability theory and
LaSalle’s invariant set theorem. Computer simulations are given
to illustrate analytical results.

Index Terms—Nonlinear dynamical systems, Epidemiological
models, Tuberculosis models, Global stability.

I. INTRODUCTION

Tuberculosis (TB) is primarily a disease of the respiratory
system with variable degrees of infectiousness. It can follows
infection with the airborne bacteria germ Mycobacterium
tuberculosis. Bacilli only live in the air for approximately
2 hours so individuals who have intense contact with TB
bacilli in poorly ventilated areas are the most likely to become
infected. Thus, TB morbidity and mortality rates are strongly
affected by living conditions. Infectiousness of the source
case, duration and frequently of exposure and characteristics
of shared environments, all contribute to the overall risk of
transmission [1-10]. It is also known that factors such as
endogenous reactivation, emergence of multi-drug resistant
TB, and increase in HIV incidence in the recent years call
for improved control strategies for TB. Another issue that
is essential to the epidemiology of TB is the exogenous re-
infection, where a latently-infected individual acquires a new
infection from another infectious individual (see [11-13] and
references therein).

Many mathematical models for tuberculosis differentiate
between individuals according to their history of infection.
In particular, the population under investigation is subdivided
into four epidemiological classes: susceptible individuals, la-
tently infected individuals (those who are infected but not
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infectious), infectious and the recovered or cured individuals
[3,17]. Some researchers, however, model tuberculosis taking
into consideration three of the four epidemiological classes
(excluding the recovered class) [1,9,18], with the assumption
that recovered individuals revert back to the latent class.
These models, irrespective of the number of epidemiological
classes, have given rise to interesting results both qualitatively
and quantitatively. However, the division of a population
into various compartments give rise to compartmental models
(whose complexity increases with increasing compartments,
interactions compartments, interactions and specific population
characteristics such as age, periodicity, susceptibility, infectiv-
ity, etc..).

On the other hand, it is well known that the duration of
latency varies greatly from case to case [14]. It is possible
for a tuberculosis infection to become active within a few
months of infection. It is also possible that activation may
occur several years or decades after exposure has taken
place. Until such time, the individual suffers no ill-effects
of the disease, and cannot transmit the disease to others
[14,15]. Also, the risk of activation seems to decrease over
time [11,12]. One way in which this can be modeled is
by including a sequence of several latent classes through
which latently infected individuals can pass before entering
the infectious class. Each latent class can be assigned its
own activation rate. Thus, TB infected individuals, generally
classified as “infective”, play a major role in the transmission
of TB. In this work, we divided the infective class into two
subgroups with different properties: infectious and loss of
slight. Indeed, in Sub-Saharan Africa, some infectious that
begun their effective therapy in the hospital never return to the
hospital for the sputum examinations for many reasons such
as negligence, lack of information about TB, long duration
of treatment regimen, poverty, mentality, etc... In this case,
the health personal don’t know their epidemiological status,
i.e., if they are died, recovered or still infectious. We call
these infective individuals loss of slight. It should be pointed
out that according to the Direct Observation Therapy Strategy
(DOTS) applied in most developed countries, a patient of
pulmonary tuberculosis must make three sputum examinations
during his treatment and will be considered cured when the
last result of the examination of sputum is negative. According
to the National Comity of Fight against Tuberculosis of
Cameroon [38], about 10% of infectious that begun their
therapy treatment never return to the hospital for the sputum
examinations and then become loss of slight. Thus, this lack of
epidemiological status of some patients can has some effects
on the spread of TB. Indeed, what is happening with the
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loss of slight? How are these affect the dynamics of TB?
Therefore, this epidemiological fact cannot be neglected in the
mathematical modeling of TB. Unfortunately, a frequent focus
in qualitative mathematical epidemiology is to determine the
long-term dynamics exhibited by a given model. Global results
of stability for the disease free equilibrium as well as the
endemic equilibrium for epidemic models are not so common
[3]. In recent years, Lyapunov methods have been used (see
[19-28] and references therein). A Volterra-like function has
been used in [22] to prove the global stability of the endemic
equilibrium for SEIR models. For higher-dimensional systems,
the most promising method may be that of Lyapunov methods.
Nevertheless, in mathematical epidemiology, applications of
Lyapunov’s method tend to be for low-dimensional [22] or for
systems with comparatively simple interactions between the
different dimensions. As a consequence, the global stability of
epidemiological models with different infectivity, many classes
of latent and mass action incidence is an important issue.

In this paper, to explore the role of the lack of epidemio-
logical status of some patients in the hospital on the dynamics
of tuberculosis, we formulate a mathematical model taking
into cognisance of variability of the duration of latency and
that certain loss of slight can still infectious. We introduce
a direct transfer from the class of susceptible toward the
compartment of infectious. The reason is the co-infection with
HIV infection. We address the global dynamics of the gener-
alized tuberculosis model with two differential infectivity and
n latent classes. To the best of authors knowledge, the global
analysis of tuberculosis models with differential infectivity is
not well discussed in the literature. The global dynamics of
the model is resolved through the use of Lyapunov functions.
We use the same Lyapunov functions as those used recently
in Refs. [19-28] to demonstrate the global stability of the
endemic equilibrium of SEIR, SEIS, and SIR models. The
results in this paper are notable in that very few restrictions
are placed on the compartmental structure of the model,
except that the susceptible and recovered populations can
each be represented by a scalar variable. However, this class
of TB epidemiological models can be extend to many class
of infective individuals. Numerical studies are presented to
validate analytical results.

II. THE MODEL

We consider a finite population of N people. We assume that
latently infected individuals (inactive TB) becomes infectious
(active TB) after a variable (typically long) latency period.
At any given time, an individual is in one of the following
states: susceptible, latently infected with n stage (i.e., exposed
to TB but are not infectious), infectious (i.e., have active TB),
recovered (i.e., not suffer of disease) and loss of slight (i.e.,
the health personal don’t know their epidemiological status).
We will denote these states by S, E, I , L and R, respectively.
All recruitment is into the susceptible class, and occurs at a
constant rate Λ. Transmission of M. tuberculosis occurs fol-
lowing adequate contact between a susceptible and infectious
individual or loss sight who continue to suffer of disease. We
use the standard mass balance incidence expressions β1SI and

β2SL to indicate successful transmission of M. tuberculosis
due to nonlinear contact dynamics in the population. On
adequate contact with infectious or loss of slight who continue
to suffer of disease, a susceptible individual becomes infected
but yet infectious. This individual remains in the latently
infected class for a certain latent period through n stages
(E1, . . . , En) before infectious. Once latently infected with
M. Tuberculosis, an individual will remain so for life unless
reactivation occurs. To account for treatment, we define riEi

as the fraction of latently infected individuals receiving effec-
tive chemoprophylaxis. We assume that chemoprophylaxis of
latently infected individuals Ei reduces their reactivation at a
constant rate ri. Thus, a fraction 1 − ri of latently infected
individuals who does not received effective chemoprophylaxis
progress to the next stage of latently infected class with a
rate constant ki. We assume that latently infected individuals
leave the subclass Ei to the infectious class I at rate αi. After
receiving an effective therapy, infectious can spontaneously
recover from the disease with a constant rate r, entering
the recovered class R. Recovered individuals still have the
bacterium in their body and can undergo a reactivation of the
disease with rate γ. We also assume that among the fraction
1−r of infectious who does not recovered, some of them who
begun their treatment will not return to the hospital for the
examination of sputum at a rate φ and enters the class of loss
of slight L. After some time, some of them will continue to
suffer of the disease and will return to the hospital at a constant
rate δ. Because of natural recover and traditional medicine
(practiced in Sub-Saharan Africa), a fraction 1− δ of loss of
slight who doest not continue to have disease can recover at
a constant rate ε and enters the recovered class R. The rate
constant for non-disease related death is µ, thus 1/µ is the
average lifetime. Latently infected, infectious and loss sight
have addition death rates due to infection and disease with
rates constant di, dI and dL, respectively.

Thus, the corresponding transfer diagram is

Fig. 1. A transfer diagram for a general TB model with two differential infectivity
and n latent classes.
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The corresponding equations are

Ṡ = Λ− S(β1I + β2L)− µS,

Ė1 = S(β1I + β2L)− [µ+ d1 + α1 + k1(1− r1)]E1,

...
Ėi = ki−1(1− ri−1)Ei−1 − [µ+ di + αi + ki(1− ri)]Ii,

i = 2, . . . , n− 1,

...
Ėn = kn−1(1− rn−1)En−1 − (µ+ dn + αn)En,

İ =
n∑

i=1

αiEi + γR+ δL− [µ+ dI + r + φ(1− r)]I,

L̇ = φ(1− r)I − [µ+ dL + δ + ε(1− δ)]L,

Ṙ = rI + ε(1− δ)L− (µ+ γ)R.
(1)

III. MATHEMATICAL ANALYSIS OF THE MODEL

The system (1) can be written in the following compact
form:  ẋ = ϕ(x)− x〈β | y〉,

ẏ = x〈β | y〉B +Ay,
(2)

where x = S ∈ R≥0 is a state representing the com-
partment of non transmitting individuals (susceptible), y =
(E1, · · · , En, I, L,R)T = (y1, · · · , yn, yn+1, yn+2, yn+3)T ∈
Rn+3
≥0 is the vector representing the state compartment of

different infected individuals (latently infected, infectious, loss
of slight and recovered individuals), ϕ(x) = Λ − µx is a
function that depends on x, β = (0, · · · , 0, β1, β2, 0) ∈ Rn+3

and B = (1, 0, · · · , 0)T ∈ Rn+3, 〈. | .〉 is the usual scalar
product in Rn+3

+ and A is a (n+3)× (n+3) constant matrix
defined as

A =



−a1 . . . 0 0 0 0
k1(1− r1) . . . 0 0 0 0

0 . . . 0 0 0 0
... . . . . . .

...
...

...
0 . . . −an 0 0 0
α1 . . . αn −aI δ γ
0 . . . 0 φ(1− r) −aL 0
0 . . . 0 r ε(1− δ) −aR


,

with

ai = µ+ di + αi + ki(1− ri), i = 1, · · · , n− 1,

an = µ+ dn + αn, aI = µ+ dI + r + φ(1− r),

aL = µ+ dL + δ + ε(1− δ) and aR = µ+ γ.

It should be pointed out that A is a Metzler matrix, that is, a
matrix with off-diagonal entries nonnegative [29,30].

With respect to system (2), we made the following hypoth-
esis:
Hypothesis: For the system

ẋ = ϕ(x),

there exists a unique point x0 > 0 such that

ϕ(x0) = 0, ϕ(x) > 0 for 0 ≤ x < x0,

and ϕ(x) < 0 for x > x0.
(3)

A. Positive invariance of the nonegative orthant

We have the following result:
Proposition 1: The nonnegative orthant Rn+4

≥0 is positively
invariant for the system (2).
Proof: The system (2) may be rewritten as ẋ = ϕ(x)− x〈β | y〉,

ẏ =
(
xB βT +A

)
y,

(4)

where
(
xB βT +A

)
is a Metzler matrix since x ≥ 0. With the

hypothesis (3), ϕ(0) > 0 and the half line R≥0 is positively
invariant by ẋ = ϕ(x) − x 〈β | y〉 since a linear Metzler
system let invariant the nonnegative orthant [29,30]. This
proves the positive invariance of the nonnegative orthant Rn+4

≥0

for the system (2) and this concludes the proof.
2

B. Boundedness and dissipativity of the trajectories

The trajectories of the model (1) are bounded and dissipa-
tive. Indeed, adding all equations of the model (1), one has

Ṅ(t) = Λ−µ
(
S +

n∑
i=1

Ei + I + L+R

)
(t)−

n∑
i=1

diEi(t)−
d1 I(t) − d2 L(t). Thus, one can deduce that Ṅ(t) ≤ Λ −
µN(t). It then follows that lim

t→+∞N(t) =
Λ
µ

.

It is straightforward to prove that for ρ ≥ 0 the simplex:

Ωρ =
{

(S,Ei, I, R, L) ∈ Rn+4
≥0 , N(t) ≤ Λ

µ
+ ρ

}
, (5)

is a compact forward invariant set for the system (1) and that
for ρ > 0 this set is absorbing. So, we limit our study to this
simplex for ρ > 0.

C. Basic reproduction number

Global behavior for this model crucially depends on the
basic reproduction number, that is, an average number of
secondary cases produced by a single infective individual
which is introduced into an entirely susceptible population.
The system (2) has an evident equilibrium P0 = (x0, 0)
with x0 = Λ/µ when there is no disease. This equilibrium
point is the disease free equilibrium. We calculate the basic
reproduction ratio, R0, using the next generation approach,
developed in van den Driessche and Watmough [32]. Using
the techniques reported in Refs. [31-34], the next generation
matrix is given by M = x0〈β | (−A−1)B〉 and the basic
reproduction ratio R0 is the spectral radius of the matrix M .
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Since M is a rank one matrix, the only nonzero eigenvalue is
given by

R0 = x0〈β | (−A−1)B〉. (6)

We use the expression (−A−1) to put the emphasis on the
fact that (−A−1) ≥ 0 because the matrix A is Metzler stable.
Using the expressions of β and B defined as in Eq. (2) and
after the computation of (−A−1), the basic reproduction ratio
(6) may be rewritten as

R0 =
a1aRR1

0[β1 aL + β2 φ(1− r)]x0

φ(1− r)R2
0 + aL [(µ+ γ)(µ+ dI) + µ r]

, (7)

where

R1
0 =

n∑
i=1

αi

i−1∏
l=1

kl(1−rl)

i∏
j=2

aj

 and

R2
0 = µ[µ+ dL + ε(1− δ)] + γ(µ+ dL).

Now, let us determine, using the threshold quantity R0,
whether or not loss of slight can influence the propagation
of tuberculosis in the considered population. Suppose that
there is no loss of slight in the considered population, that
is, φ = δ = ε = 0. In this case the basic reproduction ratio
(7) becomes

R∗0 =
β1 a1aRR1

0x0

(µ+ γ)(µ+ dI) + µ r
. (8)

From Eqs. (7) and (8), one has

R∗0 < R0, (9)

which implies that the parameters φ, δ and ε influence the
propagation of the disease in the host population. This means
that the lost of sight play an important role in the propagation
of TB. Also, it is evident from (7) that

lim
φ→∞

R0 =
β2a1aRR1

0x0

R2
0

> 0. (10)

Thus, a sufficiently effective TB treatment program can lead to
effective disease control if it results in making the right-hand
side of (10) less than unity.

Further sensitivity analysis on the rate at which infectious
become loss of slight is carried out by computing the partial
derivatives of R0 with respect to the parameter φ giving

∂R0

∂φ
=
a1aRaLR1

0x0[β2 [(µ+ γ)(µ+ dI) + µ r]− β1R2
0]

[φ(1− r)R2
0 + aL [(µ+ γ)(µ+ dI) + µ r]]2

.

(11)

It then comes from the above equation that
∂R0

∂φ
< 0 if

β2 < ∆ =
β1R2

0

(µ+ γ)(µ+ dI) + µ r
. (12)

Thus, the rate at which infectious become loss of slight will
have positive impact in reducing the propagation of TB only if
β2 < ∆. Such a rate at which infectious become loss of slight
will fail to reduce TB propagation if β2 = ∆, and will have
detrimental impact in the considered population (increase R0)
if β2 > ∆. This result is summarized below:

Lemma 1: The rate at which infectious become loss of
slight φ will have positive impact if β2 < ∆, no impact if
β2 = ∆ and will have detrimental impact if β2 > ∆ on the
propagation of TB in the considered population.

It is worth emphasizing that the quantity ∆ decreases when
the treatment parameter of infectious r increases. So, this
quantity can be make as small as possible by increasing the
treatment parameter of infectious. Note that if the condition
(12) does not hold (in this case the treatment parameter
of infectious is small), then the use of the corresponding
treatment strategy would increase TB propagation in the
considered population (since R0 > 1). That is, the use of
drug will increase the disease propagation if it fails to reduce
the infectiousness of those treated below a certain threshold
(β2 < ∆). So, in order to better control the disease, we have
to take care of all the infectious individuals in the center of
health to avoid loss of slight and to have a hight value of
the treatment parameter. This is, not the case in developing
countries where the organization of heath centers is practically
non existent.

D. Equilibria

The system (1) has a trivial equilibrium when there is no
disease. This equilibrium is called the disease free equilibrium
and is given by P0 = (x0, 0) = (S0, 0, · · · , 0), where S0 =

x0 =
Λ
µ

. The disease free equilibrium exists and is locally

asymptotically stable when R0 ≤ 1. But this equilibrium is
unstable when R0 > 1. A new equilibrium different from the
P0 exists when the disease persists. This equilibrium is called
the endemic equilibrium.

Let P ∗ = (x∗, y∗) be the positive endemic equilibrium of
model (2). Then, the positive endemic equilibrium (steady state
with y∗ > 0) can be obtained by setting the right hand side
of all equations in the model (2) equal to zero, that is, ϕ(x∗)− x∗〈β | y∗〉 = 0,

x∗〈β | y∗〉B +Ay∗ = 0.
(13)

From the second equation of (13), one has y∗ =
x∗(−A−1)B〈β | y∗〉, and replacing in 〈β | y∗〉 yields

〈β | y∗〉 = x∗〈β | (−A−1)B〉〈β | y∗〉.
The case 〈β | y∗〉 = 0 implies that ϕ(x∗) = 0 and −Ay∗ = 0.
Since A is nonsingular, this gives the disease free equilibrium
P0. For the other case, simplifying by 〈β | y∗〉 gives

x∗ =
1

〈β | (−A−1)B〉 =
x0

R0
> 0.

With R0 > 1, one has x∗ < x0, ϕ(x∗) > 0 and

y∗ = (−A−1)B ϕ(x∗).

Hence, the model (2) has a unique endemic equilibrium P ∗ =
(x∗, y∗) where x∗ and y∗ are given by

x∗ =
1

〈β | (−A−1)B〉 and y∗ = (−A−1)B ϕ(x∗).

(14)
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Now, using the expressions of β and B defined as in Eq. (2)
and the expression of (−A−1) obtained after a calculation, the
endemic equilibrium of the model (1) is given by



S∗ =
x0

R0
=

Λ
µR0

,

E∗1 =
Λ(R0 − 1)
a1R0

,

E∗i =

i−1∏
l=1

kl(1− rl)

i∏
j=2

aj

Λ(R0 − 1)
a1R0

, for i = 2, 3, · · · , n,

I∗ =
aLµ(R0 − 1)

β1 aL + β2 φ(1− r)
,

L∗ =
φ(1− r)µ(R0 − 1)
β1 aL + β2 φ(1− r)

,

R∗ =
µ[r aL + ε(1− δ)φ(1− r)](R0 − 1)

aR [β1 aL + β2 φ(1− r)]
.

(15)
Thus, we have established the following result.

Lemma 2: When R0 > 1, then the system (1) has a unique
endemic equilibrium defined as in Eq. (15).

E. Global stability of the disease free equilibrium

We have the following result about the global stability of
the disease free equilibrium P0.

Theorem 1: If R0 ≤ 1, then the system (1) has no positive
equilibrium states and the disease free equilibrium P0 is
globally asymptotically stable in Ωρ. This implies the global
asymptotic stability of the disease free equilibrium P0 on
the nonnegative orthant Rn+4

≥0 . This means that the disease
naturally dies out.

Proof: Let us consider the following LaSalle-Lyapunov can-
didate function:

V (x, y) =
1
x0

(x−x0 ln x)+βT (−A−1) y− 1
x0

(x0−x0 ln x0)
(16)

It is easy to see that at the disease free equilibrium P0,
the fonction V (x, y) reaches its global minimum in Ωρ, and
hence V (x, y) is a Lyapunov fonction since we know that
βT (−A−1) > 0. Its time derivative along the trajectories of

(2) satisfies

V̇ (x, y) =
1
x0

[
ϕ(x)− x〈β | y〉 − x0

x
ϕ(x) + x0〈β | y〉

]
+ βT (−A−1)x〈β | y〉B − βT y,

=
1
x0

[
(x− x0)

x
ϕ(x)− xβT y + x0 β

T y

]
+ xβT y βT (−A−1)B − βT y,

=
(x− x0)
x0 x

ϕ(x) +
xβT y

x0
[x0β

T (−A−1)B − 1],

=
(x− x0)
x0 x

ϕ(x) +
xβT y

x0
(R0 − 1).

(17)
Recalling that at the disease free equilibrium Λ = µx0 so that
ϕ(x) = µ(x0 − x). In this case, Eq. (17) becomes

V̇ (x, y) =
−µ(x− x0)2

x0 x
+

x

x0
(β1 I + β2 L)(R0 − 1).

(18)
Thus, R0 ≤ 1 ensures that V̇ (x, y) ≤ 0 for all x, y ≥ 0, and
that V̇ (x, y) = 0 holds when R0 = 1 for x = x0. It is easy
to verify that the disease free equilibrium state P0 is the only
fixed point of the system in the space x = x0, and hence the
system has no equilibria in Ωρ apart from P0. Then, by the
Lyapunov-LaSalle’s asymptotic stability theorem [35-37], the
equilibrium state P0 is globally asymptotically stable in Ωρ.
This proves the global asymptotic stability on Ωρ and then in
the nonnegative orthant Rn+4

≥0 (see [37], Theorem 3.7.11, page
346). This achieves the proof.

2

F. Global stability of the endemic equilibrium

The global stability of the endemic equilibrium is given by
Theorem 2, stated below.

Theorem 2: If R0 > 1, then the positive endemic equi-
librium state P ∗ of the model (1) is globally asymptotically
stable on the set Ωρ when

L∗

L
≤ R∗

R
≤ I∗

I
≤ 1 and

E∗i+1

Ei+1
≤ I∗

I
≤ E∗i
Ei

≤ 1,

i = 1, . . . , n− 1.

(19)

Proof: Consider the following Lyapunov function:

U(S,Ei, L,R) = (S − S∗ lnS) +
n∑

i=1

Ai(Ei − E∗i lnEi)

+B(I − I∗ ln I) + C(L− L∗ lnL) +D(R−R∗ lnR),
(20)

where Ai, B, C and D are positive constants to be determined

ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France 83



later. Differentiating this function with respect to time yields

U̇ =
(

1− S∗

S

)
Ṡ +

n∑
k=1

Ai

(
1− E∗i

Ei

)
Ėi

+ B

(
1− I∗

I

)
İ + C

(
1− L∗

L

)
L̇

+ D

(
1− R∗

R

)
Ṙ

=
(

1− S∗

S

)
(Λ− β1SI − β2SL− µS)

+ A1

(
1− E∗1

E1

)
(β1SI + β2SL− a1E1)

+
n∑

i=2

Ai

(
1− E∗i

Ei

)
[ki−1(1− ri−1)Ei−1 − aiEi]

+ B

(
1− I∗

I

)[
n∑

i=1

αiEi + γR+ δL− aII

]

+ C

(
1− L∗

L

)
[φ(1− δ)I − aLL]

+ D

(
1− R∗

R

)
[rI + ε(1− δ)L− aRR]

=
(

1− S∗

S

)
(Λ− β1SI − β2SL− µS)

+ A1β1SI +A1β2SL−A1a1E1

− A1β1SI
E∗1
E1

−A1β2SL
E∗1
E1

+A1a1E
∗
1

+
n∑

i=2

Aiki−1(1− ri−1)Ei−1 −
n∑

i=2

AiaiEi

−
n∑

i=2

Aiki−1(1− ri−1)Ei−1
E∗i
Ei

+
n∑

i=2

AiaiE
∗
i

+ B
n∑

i=1

αiEi +BγR+BδL−BaII

− B
n∑

i=1

αiEi
I∗

I
−BγR

I∗

I
−BδL

I∗

I

+ BaII
∗ + Cφ(1− r)I − CaLL

− Cφ(1− r)I
L∗

L
+ CaLL

∗ +DrI

+ Dε(1− δ)L−DaRR−DrI
R∗

R

− Dε(1− δ)L
R∗

R
+DaRR

∗,
(21)

where ai, aI , aL and aR are defined as in Eq. (2). By
considering Eq. (1) at the positive endemic equilibrium P ∗ =
(S∗, E∗i , I

∗, L∗, R∗), one has



Λ = β1S
∗I∗ + β2S

∗L∗ + µS∗,

a1E
∗
1 = β1S

∗I + β2S
∗L∗,

...
aiE

∗
i = ki−1(1− ri−1)E∗i−1, i = 2, . . . , n,

aII
∗ =

n∑
i=1

αiE
∗
i + γR∗ + δL∗,

aLL
∗ = φ(1− r)I∗,

aRR
∗ = rI∗ + ε(1− δ)L∗.

(22)
After plugging Eq. (22) into Eq. (21), one obtains

U̇ = −µ (S − S∗)2

S
+ (A1 − 1)(β1SI + β2SL)

+
(

1− S∗

S

)
(β1S

∗I∗ + β2S
∗L∗)

+ A1β1S
∗I∗

(
1− S

S∗
I

I∗
E∗1
E1

)

+ A1β2S
∗L∗

(
1− S

S∗
L

L∗
E∗1
E1

)

+
n∑

i=2

Aiki−1(1− ri−1)E∗i−1

(
1− Ei−1

E∗i−1

E∗i
Ei

)

+ B
n∑

i=1

αiE
∗
i

(
1− Ei

E∗i

I∗

I

)
+BγR∗

(
1− R

R∗
I∗

I

)

+ BδL∗
(

1− L

L∗
I∗

I

)
+ Cφ(1− r)I∗

(
1− I

I∗
L∗

L

)

+ DrI∗
(

1− I

I∗
R∗

R

)
+Dε(1− δ)L∗

(
1− L

L∗
R∗

R

)
+ (−DaR +Bγ)R+ [β1S

∗ −BaI + Cφ(1− r) +Dr]I

+ [β2S
∗ − CaL +Dε(1− δ) +Bδ]L

+
n∑

i=2

Aiki−1(1− ri−1)Ei−1 − anAnEn

+ B
n∑

i=1

αiEi −
n∑

i=1

aiAiEi.

(23)

Now, let (u1, u2, u3, u4, vi) =
(
S∗

S
,
I∗

I
,
L∗

L
,
R∗

R
,
E∗i
Ei

)
. Re-
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marking that
n∑

i=2

Aiki−1(1− ri−1)Ei−1 =
n−1∑
i=1

Ai+1ki(1− ri)Ei,

then, Eq. (23) becomes

U̇ = −µ (S − S∗)2

S
+ (A1 − 1)(β1SI + β2SL)

+ (1− u1) (β1S
∗I∗ + β2S

∗L∗)

+ A1β1S
∗I∗

(
1− v1

u1u2

)

+ A1β2S
∗L∗

(
1− v1

u1u3

)

+ A2k1(1− r1)E∗1

(
1− v2

v1

)

+
n−1∑
i=2

Ai+1ki(1− ri)E∗i

(
1− vi+1

vi

)

+ B
n∑

i=1

αiE
∗
i

(
1− u2

vi

)
+BγR∗

(
1− u2

u4

)

+ BδL∗
(

1− u2

u3

)
+ Cφ(1− r)I∗

(
1− u3

u2

)

+ DrI∗
(

1− u4

u2

)
+Dε(1− δ)L∗

(
1− u4

u3

)
+ [β1S

∗ −BaI + Cφ(1− r) +Dr]I

+ [β2S
∗ − CaL +Dε(1− δ) +Bδ]L

+ (−DaR +Bγ)R

+
n−1∑
i=1

[−aiAi +Bαi +Ai+1ki(1− ri)]Ei

+ (−anAn +Bαn)En.
(24)

The coefficients Ai, B, C and D are chosen such that the
coefficients of I , L, R and Ei are equal to zero, that is,

A1 − 1 = 0,

β1S
∗ −BaI + Cφ(1− r) +Dr = 0,

β2S
∗ − CaL +Dε(1− δ) +Bδ = 0,

−DaR +Bγ = 0,

−aiAi +Bαi +Ai+1ki(1− ri) = 0,

i = 1, 2, . . . , n− 1,

−Anan +Bαn = 0.

(25)

At this point, it is important to mention that when the second
equation of (25) is satisfied, then all equations of (25) are also
satisfied. Indeed, multiplying the second equation of (25) by
I∗ and using the expression of aII

∗ defined as in Eq. (22)
yields

β1S
∗I∗ −BaII

∗ + Cφ(1− r)I∗ +DrI∗ = −B
n∑

i=1

αiE
∗
i

−BγR∗ −BδL∗ + β1S
∗I∗ + Cφ(1− r)I∗ +DrI∗.

(26)
On the other hand, from Eq. (22), one has

a1A1E
∗
1 −A1β1S

∗I −A1β2S
∗L∗ +

n∑
i=2

aiAiE
∗
i

−
n∑

i=2

Aiki−1(1− ri−1)E∗i−1 + CaLL
∗ − Cφ(1− r)I∗

+DaRR
∗ −DrI∗ −Dε(1− δ)L∗ = 0.

(27)
Adding Eq. (27) in the right rang side of Eq. (26) and noting
that

a1A1E
∗
1 +

n∑
i=2

aiAiE
∗
i −

n∑
i=2

Aiki−1(1− ri−1)E∗i−1 =

n−1∑
i=1

[aiAi −Ai+1ki(1− ri)]E∗i + anAnE
∗
n,

gives

β1S
∗I∗ −BaII

∗ + Cφ(1− r)I∗ +DrI∗ =

(1−A1)(β1I
∗ + β2L

∗)S∗ + (−Bγ +DaR)R∗

+[−β2S
∗ −Bδ −Dε(1− δ) + CaL]L∗

+
n−1∑
i=1

[−Bαi + aiAi −Ai+1ki(1− ri)]E∗i

+(−Bαn + anAn)E∗n = 0.

(28)

Therefore, we only consider the following system of equations:

A1 − 1 = 0,

β2S
∗ − CaL +Dε(1− δ) +Bδ = 0,

−DaR +Bγ = 0,

−aiAi +Bαi +Ai+1ki(1− ri) = 0,
i = 1, . . . , n− 1,

−Anan +Bαn = 0.

(29)

Using the fourth equation of (29), one can easily prove that

Ai =
i−1∏
j=1

aj

kj(1− rj)
−
(

i−1∑
l=1

αl

kl(1− rl)

i−1∏
k=l+1

ak

kk(1− rk)

)
B,

i = 2, . . . , n.
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Now using the expression of An obtained thought the above
equation and plugging it in the last equation of (29), one
obtains

B =
an

n−1∏
j=1

aj

kj(1− rj)

αn +
n−1∑
l=1

αl

kl(1− rl)

n−1∏
k=l+1

ak

kk(1− rk)

.

Thus, the solutions of the system of equations (29) are given
by

A1 = 1, B =
an

n−1∏
j=1

aj

kj(1− rj)

αn +
n−1∑
l=1

αl

kl(1− rl)

n−1∏
k=l+1

ak

kk(1− rk)

,

Ai =
i−1∏
j=1

aj

kj(1− rj)

−
(

i−1∑
l=1

αl

kl(1− rl)

i−1∏
k=l+1

ak

kk(1− rk)

)
B,

i = 2, . . . , n,

D =
γ

aR
B and

C =
1
aL

[
β2S

∗ +
(
δ +

εγ(1− δ)
aR

)
B

]
.

(30)
Replacing the expressions of Ai, B, C and D given in Eq.
(30) into Eq. (24), one obtains

U̇ = −µ (S − S∗)2

S
+ β1S

∗I∗
(

2− u1 − v1
u1u2

)

+ β2S
∗L∗

(
2− u1 − v1

u1u3

)

+
n−1∑
i=1

Ai+1ki(1− ri)E∗i

(
1− vi+1

vi

)

+ B
n∑

i=1

αiE
∗
i

(
1− u2

vi

)

+ BγR∗
(

1− u2

u4

)
+BδL∗

(
1− u1

u3

)

+ Cφ(1− r)I∗
(

1− u3

u2

)

+ DrI∗
(

1− u4

u2

)

+ Dε(1− δ)L∗
(

1− u4

u3

)
.

(31)

Now, multiplying the second, third, fourth and fifth equations
of (29) by L∗, R∗, E∗i , i = 1, . . . , n−1 and E∗n, respectively,
one has



β2S
∗L∗ − CaLL

∗ +Dε(1− δ)L∗ +BδL∗ = 0,

−DaRR
∗ +BγR∗ = 0,

−aiAiE
∗
i +BαiE

∗
i +Ai+1ki(1− ri)E∗i = 0,

i = 1, . . . , n− 1,

−AnanE
∗
n +BαnE

∗
n = 0

(32)

Using the expressions of aLL
∗, aRR

∗, AiE
∗
i , AnE

∗
n defined

as in Eq. (22), the above equation becomes



β2S
∗L∗ − Cφ(1− r)I∗ +Dε(1− δ)L∗ +BδL∗ = 0,

−DrI∗ −Dε(1− δ)L∗ +BγR∗ = 0,

−β1S
∗I∗ − β2S

∗L∗ +Bα1E
∗
1 +A2k1(1− r1)E∗1 = 0,

−Aiki−1(1− ri−1)E∗i−1 +BαiE
∗
i +Ai+1ki(1− ri)E∗i = 0,

i = 2, . . . , n− 1,

−Ankn−1(1− rn−1)E∗n−1 +BαnE
∗
n = 0.

(33)
Let F1(u), F2(u), F3(u) and Gi(u), i = 1, . . . , n where
u = (u1, u2, u3, vi)T be n + 3 functions to be determined
later. Then, multiplying the first, second, third, fourth and
fifth equations of (33) by F1(u), F2(u), F3(u), G1(u), Gi(u)
(i = 2, . . . , n− 1) and Gn(u), respectively, one has



β2S
∗L∗F1(u)− Cφ(1− r)I∗F1(u) +Dε(1− δ)L∗F1(u)

+BδL∗F1(u) = 0,

−DrI∗F2(u)−Dε(1− δ)L∗F2(u) +BγR∗F2(u) = 0,

−β1S
∗I∗G1(u)− β2S

∗L∗G1(u) +Bα1E
∗
1G1(u)

+A2k1(1− r1)E∗1G1(u) = 0,

−Aiki−1(1− ri−1)E∗i−1Gi(u) +BαiE
∗
i Gi(u)

+Ai+1ki(1− ri)E∗i Gi(u) = 0, i = 2, . . . , n− 1,

−Ankn−1(1− rn−1)E∗n−1Gn(u) +BαnE
∗
nGn(u) = 0.

(34)
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Now, adding the three last equations of (34), one has

−β1S
∗I∗G1(u)− β2S

∗L∗G1(u) +Bα1E
∗
1G1(u)

+A2k1(1− r1)E∗1G1(u)−
n−1∑
i=2

Aiki−1(1− ri−1)E∗i−1Gi(u)

+B
n−1∑
i=2

αiE
∗
i Gi(u) +

n−1∑
i=2

Ai+1ki(1− ri)E∗i Gi(u)

−Ankn−1(1− rn−1)E∗n−1Gn(u) +BαnE
∗
nGn(u) =

−β1S
∗I∗G1(u)− β2S

∗L∗G1(u)

+
n−1∑
i=1

Ai+1ki(1− ri)E∗i [Gi(u)−Gi+1(u)]

+
n∑

i=1

αiE
∗
i Gi(u) = 0.

In this case, Eq. (34) may be rewritten as follows:



β2S
∗L∗F1(u)− Cφ(1− r)I∗F1(u)

+Dε(1− δ)L∗F1(u) +BδL∗F1(u) = 0,

−DrI∗F2(u)−Dε(1− δ)L∗F2(u) +BγR∗F2(u) = 0,

−β1S
∗I∗G1(u)− β2S

∗L∗G1(u)

+
n−1∑
i=1

Ai+1ki(1− ri)E∗i [Gi(u)−Gi+1(u)]

+
n∑

i=1

αiE
∗
i Gi(u) = 0.

(35)

Adding Eq. (35) to the right hand side of Eq. (31) yields

U̇ = −µ (S − S∗)2

S
+ β1S

∗I∗
(

2− u1 − v1
u1u2

−G1

)

+ β2S
∗L∗

(
2− u1 − v1

u1u3
−G1 + F1

)

+
n−1∑
i=1

Ai+1ki(1− ri)E∗i

(
1− vi+1

vi
+Gi −Gi+1

)

+ B
n∑

i=1

αiE
∗
i

(
1− u2

vi
+Gi

)

+ BγR∗
(

1− u2

u4
+ F2

)

+ BδL∗
(

1− u2

u3
+ F1

)

+ Cφ(1− r)I∗
(

1− u3

u2
− F1

)

+ DrI∗
(

1− u4

u2
− F2

)

+ Dε(1− δ)L∗
(

1− u4

u3
+ F1 − F2

)
.

(36)
Now, we shall choose the functions F1(u), F2(u), F3(u) and
Gi(u), which make U̇ non positive. To to so, the functions
F1(u), F2(u), F3(u) and Gi(u) are chosen such that the
coefficients of Cφ(1 − r)I∗, DrI∗ and αiE

∗
i are equal to

zero, that is,

F1 = 1− u3

u2
, F2 = 1− u4

u2
and

Gi = −1 +
u2

vi
(i = 1, . . . , n).

(37)

Replacing the expressions of F1(u), F2(u), F3(u) and Gi(u)
given as in Eq. (37) into Eq. (36), one obtains

U̇ = −µ (S − S∗)2

S
+ β1S

∗I∗
(

3− u1 − v1
u1u2

− u2

v1

)

+ β2S
∗L∗

(
4− u1 − v1

u1u3
− u2

v1
− u3

u2

)

+
n−1∑
i=1

Ai+1ki(1− ri)E∗i

(
1− vi+1

vi
+
u2

vi
− u2

vi+1

)

+ BγR∗
(

2− u2

u4
− u4

u2

)
+BδL∗

(
2− u2

u3
− u3

u2

)

+ Dε(1− δ)L∗
(

1− u4

u3
− u3

u2
+
u4

u2

)
.

(38)
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Now let

F = 1 +
u4

u2
− u4

u3
− u3

u2
and

Hi = 1 +
u2

vi
− vi+1

vi
− u2

vi+1
, i = 1, . . . , n− 1.

(39)

The next step is to show that the functions F and Hi are
non-positive for all u1, u2, u3, vi ∈ R≥0.

By using lemma 4 in Appendix A with w = 2, y1 = u3,
y2 = u4 and Y = u2, when u3 ≤ u4 ≤ u2 ≤ 1 one has
1 +

u4

u2
− u4

u3
− u3

u2
≤ 0, i.e., F ≤ 0. Also, using the same

lemma with w = 2, y1 = vi+1, y2 = u2 and Y = vi, then if
vi+1 ≤ u2 ≤ vi ≤ 1 one has 1+

u2

vi
− vi+1

vi
− u2

vi+1
≤ 0, i.e.,

Hi ≤ 0. Thus U̇ ≤ 0 and Eq. (38) implies that U̇ is less than or
equal to zero with equality only if S = S∗. Therefore, U̇ ≤ 0
for all S,Ei, I, L,R ≥ 0, provided that S∗, E∗i , I

∗, L∗, R∗ are
positive, where the equality U̇ = 0 holds only on the straight
line S = S∗, E∗i /Ei = I∗/I = L∗/L = R∗/R. It is easy to
see that for the system (1), P ∗ is the only equilibrium state on
this line. Therefore, by Lyapunov-LaSalle asymptotic stability
theorem [35-37], the positive equilibrium state P ∗ is globally
asymptotically stable in the positive region Ωρ ⊂ Rn+4

≥0 , except
on the S-axis which is the stable manifold for the fixed point
P0. This achieves the proof.

2

Remark 1: It is possible for inequality (19) to fail, in which
case the global stability of P ∗ has not been established. The
local stability result and numerical simulations, however, seem
to support the idea that P ∗ is still global asymptotically stable
even in this case.

IV. NUMERICAL STUDIES

To illustrate the various theoretical results contained in this
paper, the model (1) is simulated with two latent classes (n =
2) and using the parameter value/range of Cameroon in the
following table.

Table: Description and estimation of parameters
Parameters Description Estimated

value/range

Λ Recruitment rate of susceptible individuals
into the community 2 (year)−1

β1 Transmission coefficient
of infectious variable

β2 Transmission coefficient
of loss of slight who continue

to have disease variable
µ Naturally death rate 0.01012

k1 Rate of progression from
the first latent class to
the second latent class 0.51

r1 Rate of effective chemoprophylaxis
of individuals of the first latent class 03

α1 Rate of progression from the first latent
class to infectious 0.003

α2 Rate of progression from the second
latent class to infectious 0.005

r Rate of effective therapy of infectious 0.81823

φ Rate of progression from infectious
to loss of slight 0.23

δ Rate at which loss of slight return
to the hospital 0.1

γ Relapse rate of recovered individuals 0.002
ε Recovered rate of loss of slight 0.001
dI Death rate of infectious 0.0227223

dL Death rate of loss of slight 0.0203

d1 Additional death rate of latently infected
individuals of the first latent class 0.001

d2 Additional death rate of latently infected
individuals of the second latent class 0.002

Note. Sources of estimates:
1World Heath Organization
2Ministry of Administration and Decentralization, Cameroon
3National Comity of Fight against Tuberculosis, Cameroon [38].
Numerical results for the model (1) are depicted in Figs. 2-4.
Figure 2 presents the basic reproduction ratio R0 as a function

of the parameter at which infectious become loss of slight φ. In this
figure the line blue stands for β2 < ∆ and the line red for β2 > ∆.
As predicted by Lemma 1, when the parameter φ increases, one can
see that for β2 < ∆ the basic reproduction ratio decreases while for
β2 > ∆, the basic reproduction ratio increases.

Figure 3 presents the trajectory plot when R0 ≤ 1. From this
figure, one can see that the trajectory of model (1) converges to the
disease free equilibrium. This means that the disease disappears in
the host population. Figure 4 gives the trajectory plot when R0 > 1.
One can observe that the trajectory converge to the unique endemic
equilibrium point. Thus, when R0 > 1, the disease persists in the
host population as shown in Theorem 2.

V. CONCLUSION

In this paper, we have give a complete analysis of a tuberculosis
model with two differential infectivity, n classes of latently infected
individuals and mass balance incidence. By analyzing this model, we
found that it is globally asymptotically stable and possesses the only
globally stable equilibrium state. Depending on the basic reproduction
ratio, this steady state is either the endemic or the disease-free. The
global stability of the infection-free equilibrium state implies that for
any initial level of infection the disease will eventually fade out from
the population when the condition for this stability, namely R0 ≤ 1,
holds. The condition R0 > 1 implies that the disease will persist in a
population. Numerical results are presented to illustrate the analytical
results.

88 ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France



0 5 10 15 20 25 30 35 40 45 50
400

450

500

550

600

650

700

750

800

850

φ

B
as

ic
 r

ep
ro

du
ct

io
n 

ra
tio

β
2
>∆

β
2
<∆ 

β
2
=∆ 

(a)

Fig. 2. Basic reproduction ratio as a function of φ.

APPENDIX A
USEFUL INEQUALITIES

In this appendix, we give inequalities which are necessary to
demonstrate that the time derivative of the Lyapunov function
U(S, Ei, I, L, R) is non-positive. A key tool is the Arithmetic-
Geometric Means Inequality, which we state here.

Lemma 3: (Arithmetic-Geometric Means Inequality): Let
z1, . . . , zw be positive real numbers. Then,

w
√

z1 . . . zw ≤ z1 + . . . + zw

w
. (40)

Furthermore, exact equality only occur if z1 = . . . = zw.
An immediate consequence of the Arithmetic-Geometric Means

Inequality follows.
Lemma 4: [16]: Let y1 ≤ . . . ≤ yw ≤ Y be positive real numbers.

Then

yw

Y
+ (w − 1)−

(
y1

Y
+

y2

y1
+ . . . +

yw

yw−1

)
≤ 0. (41)
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la santé,” 2001.

90 ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France



1

Complex dynamics of cellular automata emerging in
chaotic rules

Genaro J. Martı́nez1, Andrew Adamatzky1 and Ramon Alonso-Sanz2

Abstract—We show novel techniques of analysing complex
dynamics of cellular automata (CA) with chaotic behaviour. CA
are well known computational substrates for studying emergent
collective behaviour, complexity, randomness and interaction
between order and disorder. A number of attempts have been
made to classify CA functions on their spatio-temporal dynamics
and to predict behaviour of any given function. Examples
include mechanical computation, λ and Z-parameters, mean field
theory, differential equations and number conserving features.
We propose to classify CA based on their behaviour when
they act in a historical mode, i.e. as CA with memory. We
demonstrate that cell-state transition rules enriched with memory
quickly transform a chaotic system converging to a complex
global behaviour from almost any initial condition. Thus just
in few steps we can select chaotic rules without exhaustive com-
putational experiments or recurring to additional parameters.
We provide analysis of well-known chaotic functions in one-
dimensional CA, and decompose dynamics of the automata using
majority memory.

Index Terms—Cellular automata, memory, complex dynamics,
chaos, self-organization and filter

I. INTRODUCTION

IN this paper we will introduce a simple tool to extract com-
plex systems from a family of chaotic discrete dynamical

system. We will employ a technique — memory based rule
analysis [4] of using past history of a system to construct its
present state and to predict its future.

We focus on one-dimensional cellular automata (CA). CA
are well know computational substrates for studying emergent
collective behaviour, complexity, randomness and interaction
between order and disorder. A number of efforts have been
made to classify CA functions on their spatio-temporal dynam-
ics and to predict behaviour of any given function. Examples
include mechanical computation, λ and Z-parameters, mean
field theory, differential equations and number conserving
features. We propose to classify CA based on their behaviour
when they act in a historical mode, i.e. as CA with memory.

Particularity we study elementary CA (ECA) where each
function evaluates a central cell with their two neighborhoods
(left and right) and every cell takes a value of its binary
alphabet. ECA were introduced by Wolfram and extensively
studied [28]. In ECA there is a set of functions determin-
ing global chaotic behavior where global configurations are
disordered, many configurations have many ancestors, and
attractors are dense [27].

1Bristol Institute Technology, University of the West of England, Bristol,
United Kingdom. Email: {genaro.martinez, andrew.adamatzky}@uwe.ac.uk

2ETSI Agrónomos, Polytechnic University of Madrid, Madrid, Spain.
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ECA is a one-dimensional array of finite automata, each
automaton takes two states and updates its state in discrete
time depending on its own state and states of its two closest
neighbours, all cells update their state synchronously. A gen-
eral classification of ECA was introduced in [29] as follow:

class I. CA evolving to a homogeneous state.
class II. CA evolving periodically.
class III. CA evolving chaotically.
class IV. Include all previous cases, as well
known as class of complex rules.

In this classification class IV is of particular interest because
the rules of the class exhibit non-trivial behaviour with rich
diversity of patterns emerging and non-trivial interactions
between travelling localisations, or gliders, e.g. ECA Rule
54 [16].

In present paper we aim to transform a chaotic evolution
rule to a complex system by using memory

chaotic ECA
memory−−−−−−→ complex ECA

and derive a new class of CA functions with historic evolution.
We believe that by employing historic evolution we are able

to explore hidden properties of chaotic systems, and select
chaotic rules with ordered dynamics.

II. BASIC NOTATION

A. One-dimensional cellular automata

One-dimensional CA is represented by an array of cells xi
where i ∈ Z (integer set) and each x takes a value from a finite
alphabet Σ. Thus, a sequence of cells {xi} of finite length n
represents a string or global configuration c on Σ. This way,
the set of finite configurations will be represented as Σn. An
evolution is represented by a sequence of configurations {ci}
given by the mapping Φ : Σn → Σn; thus their global relation
is following

Φ(ct)→ ct+1 (1)

where t is time steps and every global state of c is defined by
a sequence of cell states. Also the cell states in configuration
ct are updated at the next configuration ct+1 simultaneously
by a local function ϕ as follow

ϕ(xti−r, . . . , x
t
i, . . . , x

t
i+r)→ xt+1

i . (2)

Wolfram represents one-dimensional CA with two parame-
ters (k, r). Where k = |Σ| is the number of states, and r is ra-
dius of neighboourhood. ECA are defined by parameters (2, 1).
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There are Σn different neighborhoods (where n = 2r+1) and
kk

n

different evolution rules.
In computer experiments we are using automata with peri-

odic boundary conditions.

B. Cellular automata with memory

Conventional cellular automata are ahistoric (memoryless):
i.e., the new state of a cell depends on the neighborhood
configuration solely at the preceding time step of ϕ (e.q. 2).

CA with memory can be considered as an extension of the
standard framework of CA where every cell xi is allowed to
remember some period of its previous evolution.

Thus to implement a memory we design a memory function
φ, as follow:

φ(xt−τi , . . . , xt−1
i , xti)→ si (3)

such that τ < t determines the degree of memory backwards
and each cell si ∈ Σ being a state function of the series of
states of the cell xi with memory up to time-step. Finally to
execute the evolution we apply the original rule as follows:

ϕ(. . . , sti−1, s
t
i, s

t
i+1, . . .)→ xt+1

i .

Thus in CA with memory, while the mapping ϕ remains
unaltered, historic memory of all past iterations is retained by
featuring each cell as a summary of its past states from φ.
Therefore cells canalize memory to the map ϕ.

As an example, we can consider memory function φ as a
majority memory:

φmaj → si (4)

where in case of a tie given by Σ1 = Σ0 from φ then we will
take the last value xi. So φmaj function represents the classic
majority function [21] on the cells (xt−τi , . . . , xt−1

i , xti) and
define a temporal ring before to get finally the next global
configuration c.

Note that memory is a simple function as CA self and as
well its global behavior Φ produced is totally unpredictable
from its local function φ and ϕ.

III. CLASSES OF ECA BY POLYNOMIALS

A. Mean filed approximation

Mean field theory is a proven technique for discovering
statistical properties of CA without analyzing evolution spaces
of individual rules [19].

The method assumes that elements of the set of states Σ
are independent, uncorrelated between each other in the rule’s
evolution space ϕ. Therefore we can study probabilities of
states in neighborhood in terms of probability of a single state
(the state in which the neighborhood evolves), thus probability
of a neighborhood is the product of the probabilities of each
cell in the neighborhood.

In this way, it was proposed to explain Wolfram’s classes
by a mixture of probability theory and de Bruijn diagrams in
[20], resulting in a classification based on mean field theory
curve:

• class I: monotonic, entirely on one side of diagonal;
• class II: horizontal tangency, never reaches diagonal;
• class III: no tangencies, curve crosses diagonal.
• class IV: horizontal plus diagonal tangency, no crossing;
Thus for one dimension all their neighborhoods must be

considered as follow:

pt+1 =
k2r+1−1∑
j=0

ϕj(X)pvt (1− pt)n−v (5)

such that j is a number of relations from their neighborhoods
and X the combination of cells xi−r, . . . , xi, . . . , xi+r. n
represents the number of cells in neighborhood, v indicates
how often state one occurs in Moore’s neighborhood, n − v
shows how often state zero occurs in the neighborhood, pt is
a probability of cell being in state one, qt is a probability of
cell being in state zero (therefore q = 1− p).

IV. COMPLEX DYNAMICS EMERGING FROM CHAOTIC ECA

A. Chaotic ECA

Let us consider two cases of classic ECA with chaotic
behavior to demonstrate our results: the evolution rules 86
and 101.

We need to provide their mean filed approximation to
verify that both function have a chaotic global behavior before
selecting the memory.

The local rule ϕ corresponding to rule 86 is following:

ϕR86 =
{

1 if 110, 100, 010, 001
0 if 111, 101, 011, 000 .

Initially ϕR86 has produces states zero and one equiproba-
bly. There is an equilibrium of states in Φ. On the other hand,
ϕR86 determines a surjective correspondence and therefore all
the configuration has at least one ancestor and no Garden of
Eden configurations [1]. Also this rule is the reflexion of well-
known ECA rule 30 [27].

The local function for rule 101 is following:

ϕR101 =
{

1 if 110, 101, 010, 000
0 if 111, 100, 011, 001 .

In this case, ϕR101 has the same probability as ϕR86 to
produce states one and zero. However ϕR101 is not a surjective
rule and therefore has the Garden of Eden configurations, i.e.,
not all configurations have ancestors.

To classify global behavior properly of ϕR86 and ϕR101

we should calculate their mean field polynomials. Mean field
polynomial to ϕR86 is:

pt+1 = 3ptq2t + p2
t qt (6)

and for ϕR101 we have:

pt+1 = 2p2
t qt + ptq

2
t + q3t . (7)

Quickly the polynomial for ϕR86 satisfies the mean field
classification (section III.A). Where rules in CA class III
do not have tangencies and therefore the curve crosses the

92 ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France



identity. Consequently, ϕR86 evolves with a chaotic global
behavior (see fig. 1(a)).

This mean field polynomial has an stable fixed point when
e.q. 6 is f = 0.5. This value relate the existence of densities
where the population of cells in state one is preserved with few
changes. Also such fixed point confirm its initial probability
since ϕR86. Of course, if there are extreme densities of zeros
and ones then then next time Φ will be filled of states zeros
only.

(a)

(b)

ϕR101

ϕR86

Fig. 1. Mean field curves for (a) ϕR86 and (b) ϕR101 respectively.

Mean field curve for ϕR101 (see fig. 1(b)) presents another
characteristic. Again the curve does not cross the identity and
its global behavior Φ should then be chaotic. Its stable fixed
point f = 0.5 relates to the initial probability estimated since
ϕR101. The curve displays what would happen if some initial
configuration c0 is dominated by state one, at the next step Φ
will be dominated by states zero and therefore this behavior
should repeat periodically. Such phenomenon also is balanced
with its 50% of density to each step.

Finally fig. 2 displays two evolutions with typical chaotic
behavior in ECA. First evolution (a) displays the chaotic
global evolution of ϕR86 since a random initial condition with
a 50% of density. That confirm an evolution without some
order or pattern defined. Second evolution (b) displays the

chaotic global behavior for ϕR101 with the same parameters.
Inclusively the same initial condition was used to calculate
both evolutions.

(a)

(b)

Fig. 2. Chaotic global behavior in ECA evolution rules (a) ϕR86 and (b)
ϕR101 evolving over an array of 294 cells in 296 generations. Both evolutions
start since a random initial density of 50%. Black cells represent the state one
and white cells the state zero.

Now we will select a kind of memory and discover hidden
information in those chaotic ECA’s.

B. Filtering evolutions

Filters selected in CA are an useful tool for understand
properties that at the first view they are hide. This tool was
amply utilized by Wuensche in [31] in the context of automatic
classification of CA. Filters were deduced form mechanical
computation paradigm [12] and frequencies by states [31].

Others derivations deducing filters relate to tiling, as used
for ECA rule 110 and rule 54 [23], [17]. In general, such filters
are not widely exploited in studying CA. We consider the tile
representation to identify filters as block of cells on one or two
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dimensions. We explain each tile filtering ϕR86 and ϕR101 in
the next section.

C. Complex dynamics emerging in ϕR86 and ϕR101 with
majority memory

Firstly we should consider a kind of memory, in this case
the majority memory φmaj (see eq. 4) and then a value for τ .
This value represent the number of cells backward to consider
in the memory. Therefore a way to represent functions with
memory and one ECA associated is proposed as follow:

φmRca:τ (8)

such that ca represents the decimal notation of an specific
ECA and m a kind of memory given. This way the majority
memory working in ECA rule 86 checking tree cells on its
history is denoted simply as φmajR86:3.

Implementing the majority memory φmaj we can select
some ECA and experimentally look what is the effect. Fig-
ures 3 and 4 shows the result of selecting memory τ in ϕR86

and ϕR101 respectively. The result is a new family of ECA
with majority memory, the rules: φmajR86:3, . . . , φmajR86:∞,
and φmajR101:3, . . . , φmajR101:∞.

As a characteristic while the memory is working on
φmajR86 and φmajR101 a periodic background was more
evident and it can be represented as a tile. But also these filters
work as well at the original rules ϕ as have been illustrated
the first evolutions at the figs. 3 and 4.

The memory effect produces an emergency of patterns
and some of them interacting quickly. In fact, φmajR86 and
some values of τ change dynamics dramatically. By previous
results in [15] we consider only even values that offer better
global dynamics. The new rule φmajR86:8 displays patterns
as particles traveling in different velocities and a periodic
background that avoid an space filled of patterns.

The second case φmajR101 displays more attractive result.
These three new evolution rules are able to support stationary
and mobile particles, traveling and colliding, some of them as
soliton reactions.

Also on all evolutions a filter was used to clarify the
evolutions and patterns.1 Filters really are useful to recognize
periodic dominant patterns of objects moving into such local
universes.

The first two-dimensional tile working in φmajR86 is repre-
sented as tR86 =

[
101
101

]
. Also this tile works at the original evo-

lution rule as show the fig. 3. The tile reported for φmajR101

is determined for the two-dimensional tile tR101 =

[
100
100

]
. So

this filter works on the original evolution rule as well as show
the fig. 4.

The effect of memory producing new evolution rules is
preserved in some way. Initially the existence of a filter that
can evolve on all different function, that is not rare because the
memory only read the history and process the new generation
with the original rule.

1All evolutions simulated to ECA and ECA with memory they are cal-
culated with OSXLCAU21 system, available from http://uncomp.uwe.ac.uk/
genaro/OSXCASystems.html

D. Coding particles

1) Self-organization by structure formation: Patterns as
particles and non-trivial behavior emerging in these new ECA
with memory φmajR86 and φmajR101, naturally conduce to
known problems as self-organization.

g5g4g3g2g1

Fig. 5. Set of particles G emerging and living in φmajR101:4.

Considering the evolution rule φmajR101:4, we have done
a classification of particles in this local universe (see fig. 5).
The universe is not bigger compared with other complex rules,
moreover is interesting how all particles in φmajR101:4 can
be produced from them self with binary collisions, i.e., a
self-organization by structure formation [14], given the next
relation of reactions:

gi → gj = gk

such that i 6= j 6= k and i, j, k ∈ GφmajR101:4 .

∅g1 g2 g3 g4 g5

Fig. 6. Self-organization by particle collisions to form the set GφmajR101:4 ,
evolution is filtered.

By coding such particles in φmajR101:4 then we can select
each particle from other different particles. Figure 6 presents
the set of reactions to get every particle including an annihi-
lation reaction. Thus a set of collisions to reproduce this list
is following:

1) g4 − b3 − g5 = g1
2) g1 − b2 − g4 = g2
3) g1 − b4 − g4 = g3
4) g1 − b6 − g5 = g4
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τ = 3 τ = 4 τ = 5

τ = 6 τ = 7 τ = 8 τ = 9

τ = 10 τ = 11 τ = 12 τ = 13

τ = 14 τ = 15 τ = 16 τ = 17

τ = 18 τ = 19 τ = 20 τ = 21

ϕR86

Fig. 3. Majority memory φmaj working in ϕR86 with τ values of 3 to 21, respectively. The first one is the original ECA Rule 86 evolution. All snapshots
evolve with the same random initial condition to 50% over an array of 287 cells to 228 generations, and also all evolutions are filtered.
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τ = 3 τ = 4 τ = 5

τ = 6 τ = 7 τ = 8 τ = 9

τ = 10 τ = 11 τ = 12 τ = 13

τ = 14 τ = 15 τ = 16 τ = 17

τ = 18 τ = 19 τ = 20 τ = 21

ϕR101

Fig. 4. Majority memory φmaj working in ϕR101 with τ values of 3 to 21, respectively. The first one is the original ECA Rule 101 evolution. All snapshots
evolve with the same random initial condition (the same initial condition for all cases in this and the previous figure) to 50% over an array of 287 cells to
228 generations, and also all evolutions are filtered.
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5) g3 − b3 − g4 = g5
6) g3 − b2 − g4 = ∅

Of course, they are not all possibilities to get every particle
and a organization of several particles could be produce
even more complex behavior with capacities for simulate
physics, biology, chemical or computational phenomena; as
wave propagation, reaction-diffusion, morphogenesis, particle
collision, fluid-dynamics, (tissue) grown, pattern formation,
self-reproduction, self-assembly, artificial life, synthetic con-
structions (engineering), tessellation, differential equations,
formal languages, or unconventional computing [3], [7], [18],
[22], [25].

Fig. 7. Stream of particles and fuse patterns emerging from a single cell in
φmajR86:8. These patterns exhibit unlimited growth.

2) Generator pattern: Figure 7 displays the evolution of a
single cell in state 1 with the evolution rule φmajR86:8. On
this evolution a fuse pattern is organized by stream of gliders
(left) emitted periodically every 62 steps and a fixed periodic
pattern (right) growing with a velocity of −1/4.

Finally both previous examples are just two simple cases
showing the memory effect on chaotic ECA. Another case
was developed for the ECA rule 30 in [15].

3) Implementing basic functions: Also we can use the
particles codification to represent solutions of some basic
functions. Of course, thinking how a complex systems could be
organized and controlled to get a construction, as computation
[3].

Let consider the new ECA rule φmajR86:8. Because we want
to implement a simple function as addToHead working on
two strings w1 = A1, . . . , An and w2 = B1, . . . , Bm, such
that, n,m ≥ 1. For example, if w1 = AAA, w2 = BBB
and w3 = w1w2 then the addToHead(|w2|) will yield: w3 =
w2w1. As the next diagram shows.

A     A     A     B     B     B

B     B     B     A     A     A

Fig. 8. Schematic diagram adding the string w2 to head of the list w3.

To implement such function on φmajR86:8 we must consider
represent every data as a particle. Thus g1 and g2 gliders to
φmajR86:8 are coded to reproduce a soliton reaction.2 The
second problem is to synchronize several gliders and obtain
the same result with multiple collisions.

The codification was not complicated to get. However a
systematic analysis by reactions is necessary. We known than a
periodic gap and one fixed phase between particles is sufficient
to reproduce the addToHead function for any string AnBm.

Figure 9 displays fragments of evolutions of φmajR86:8 from
an initial condition coded by gliders representing the string
AAAAAAAAAAAABBBBBBBBBBBB. So operating the
addToHead function to get the final string BBBBBBBBBBB-
BAAAAAAAAAAAA late of 6,888 generations. The first
snapshot displays its initial configuration and the first 400
steps, the middle snapshot mainly presents how the string
w1 across the string w2 preserving the information (soliton
reaction), and the third snapshot shows the final global con-
figuration so given the string w2w1 processed in parallel with
φmajR86:8.

V. DISCUSSION

We have demonstrated that memory in ECA offers a new
approach to discover complex dynamics based on particles and

2These gliders are a reflexion of ECA rule 30 with memory, because rule
86 is the reflexion of rule 30, and consequently their gliders can be coded in
a similar way [15].
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AAAAAAAAAAAAABBBBBBBBBBBB

BBBBBBBBBBBBAAAAAAAAAAAAA

Fig. 9. A simple substitution system processing the word A12B12 to B12A12 with ECA φmajR86:8. The final production is reached by 6,888 generations
with synchronization of soliton reactions.
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non-trivial reactions across them. This can be substantiated by
a number of different techniques, e.g. number-conservation [8],
[13], exhaustive search [11], tiling [23], [18], de Bruijn dia-
grams [17], Z-parameter [31], genetic algorithms [10], mean
field theory [20] or from a differential equations point view [9].
Thus the memory function φ offers a more easy way to get
similar and, in some cases, more strong results reporting new
complex rules in ECA with memory.

We have enriched some chaotic ECA rules with majority
memory and demonstrated that by applying certain filtering
procedures we can extract rich dynamics of travelling local-
izations, or particles.

Therefore, we can deduce a relation on chaotic systems
decomposed in complex dynamics as a self-contained set.
Generally a relation of sets of complex dynamics can be self-
contained describing Φ as attractors, as a cascade (fig. 10 [6]).

Fig. 10. Classes of global behavior.

This way, the most bigger set in fig. 10 ‘all orbits’ corre-
sponds to complex dynamics and the ‘unstable’ set represents
the chaotic systems. In fact there are a number of properties
between orbits and characteristics that cannot be inferred
directly. However the memory plays a role of a powerful tool
to discover such properties. Finally, the memory φ can be
applied to any CA or dynamical system.
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Bifurcations of a neuron oscillator
Nathalie Corson

Abstract—This work adresses the study of the three-
dimensional autonomous ordinary differential equations
Hindmarsh-Rose neuronal model. General bifurcation diagrams
are first given after a brief presentation of the model. Then,the
existence of a Hopf bifurcation according to a small parameter
which corresponds to the ratio of time scales between the fast
and the slow dynamics is proved. Using the Hassard method we
show that, under some conditions, a Hopf bifurcation occurs
for a critical value of this parameter. The direction, stability
and period of this bifurcation are also discussed. Numerical
simulations are done to observe this bifurcation and to illustrate
theoretical results.

Index Terms—Neuronal model, asymptotic dynamics, Hopf
bifurcation.

I. I NTRODUCTION

In 1952, a mathematical model that describes neuron
activity has been given by two neurophysiologists, A.L.
Hodgkin and A.F.Huxley, see [10]. Different neuron models
have been then developped and studied, see for example
[12], [13], [15] and references therein cited. In this paper,
we focus on one of them, the Hindmarsh-Rose model (HR),
which results from a simplification and a generalization of
the Hodgkin-Huxley model, see [8], [9]. As observed in
various biology systems, neuron activity presents different
time scales. This can be explicitly observed in HR, which is
a slow-fast autonomous three ordinary differential equations.
The two first equations control the fast dynamics while the
third one controls the slow one. Besides, periodic phenomena
or oscillations are observed as in many natural systems such
as neuron models. Those phenomena can be closely related
to Hopf bifurcation.

The HR model reads as follows,

(HR)


ẋ = y + ax2 − x3 − z + I
ẏ = 1− dx2 − y
ż = ǫ(b(x− cx)− z)

(1)

Parametersa, b andd are experimentally determined,cx is the
equilibrium x-coordinate of the two-dimensional system given
by the two first equations of (1) whenI = 0 and z = 0
and parameterI corresponds to the applied current. It is easy
to experimentaly change its value and it is therefore often
used as the bifurcation parameter. Indeed, in the next part,
bifrucation diagrams according toI are presented. Finally,
parameterǫ represents the ratio of time scales between fast and
slow fluxes accross the membrane of a neuron and, therefore,
plays a very special role in neuron activity. It is chosen, in

nathalie.corson@univ-lehavre.fr
Laboratoire de Mathématiques Appliquées du Havre, 25 ruePhilippe Lebon,

BP 540, 76058 Le Havre Cedex, France

this paper, as the bifurcation parameter, as in [2] or in [5],in
which numerical simulations are done, among other, to study
this system according to parameterǫ. In the last section of this
paper, parametersa, b, d andcx are fixed as follows,

a = 3, b = 4, d = 5, cx = −1
2
(1 +

√
5). (2)

Equilibria are given byẋ = ẏ = ż = 0, that is to say by,

x3 + (d− a)x2 + bx− bcx − I − 1 = 0 (3)

Let us denote,

x = ξ +
a− d

3
,

p = b− (a− d)2

3
q = −2(a− d)3

27
+

b(a− d)
3

− bcx − I − 1

(4)

Then, (3) reads as,ξ3 + pξ − q = 0. Solving this equation
gives the equilibria of system (1).

Proposition 1. With notations (4), if 4p3 + 27q2 > 0, then
system (1) has a unique equilibrium Se = (xe, ye, ze) given
by, 

xe =
(
− q

2
+

(q2

4
+

p3

27
) 1

2
) 1

3

+
(
− q

2
− (q2

4
+

p3

27
) 1

2
) 1

3

+
a− d

3
ye = 1− dxe

ze = b(xe − cx)

(5)

In the next section, a presentation of some bifurcation dia-
grams of the Hindmarsh-Rose model according to parameter
I and parameterǫ is done. Then the existence of a Hopf
bifurcation according to parameterǫ is studied. Indeed, even
if this HR model dates from 1984 and has been widely
numerically studied, see for example [1], [2], [4], [5], [11], no
theoretical proof has ever been published as far as we know.

II. B IFURCATION DIAGRAMS

A bifurcation diagram shows the evolution of the aysmptotic
behaviour of solutions according to one parameter.

ParameterI corresponds to the current which is injected
in the neuron. Thus, it can be controlled during experiments
and can then play the role of bifurcation parameter.
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(a) (b)

Figure 1. (a) Bifurcation diagram of theHR model for parameters (2) and
ǫ = 0.001. As the magnitude of injected currentI increases, the number of
branches on the diagram also increases. Biologicaly, the fast dynamics of the
neuron is evolving.(b) Enlargements of(a) for I ∈ [3.25; 3.3].

Figure 2(a) gives the bifurcation diagram with respect to
the control parameterǫ in the range[0, 0.05]. In order to
have a more accurate analysis of the dynamics of system
(1), we present in figure 2(b),(c),(d) enlargements of figure
2(a). Figure 2(b) shows, among other things, that there is
an ǫ1 ∈ [0.00041, 0.00049] for which the neuron behaviour
changes abruptly. Indeed,∀ǫ < ǫ1, the neuron exhibits a
tonic spiking motion and,∀ǫ > ǫ1, the neuron exhibits a
bursting motion. Moreover, this figure shows that system (1)
with parameters given in (2) andI = 3.25 does not exhibit
chaotic behaviour forǫ ∈ [ǫ1, 0.002].
The enlargement of figure 2(a) for ǫ ∈ [0.005, 0.015] shown in
figure 2(c) exhibits not only inverse period doubling cascades
starting with period3, period4 or period5 but also some dark
parts, which is a numerical sign of chaotic motion. Of course,
this argument is not sufficient to clame that this system is
chaotic for some given ranges of parameters. A more acurate
study is done, for example, in [2].
The enlargement of figure 2(c) for ǫ ∈ [0.0138, 0.0148] shown
in figure 2(d) also exhibits a chaotic behaviour of system (1).
The right part of figure 2(a) exhibits a reverse period doubling
cascade. Asǫ becomes larger, the number of spikes within
a burst decreases until the bursting motion of the neuron
disappears to let the spiking motion arises.
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Figure 2. Bifurcation diagrams in(ǫ, y) plane for system (1) with parameters
given in (2) and withI = 3.25. (a) An inverse period doubling cascade is
observed forǫ ∈ [0, 0.05]. (b) Enlargement of figure(a) for ǫ ∈ ]0; 0.002].
(c) Enlargement of figure(a) for ǫ ∈ [0.005; 0.015]. (d) Enlargement of
figure (c) for ǫ ∈ [0.0138; 0.0147].

III. E XISTENCE, DIRECTION, STABILITY AND PERIOD OF A

HOPF BIFURCATION ACCORDING TOǫ

In this section, the existence, direction, stability and period of
a Hopf bifurcation according toǫ is studied, see [3].
Under the coordinate transformation,x1 = x−xe, y1 = y−ye

andz1 = z − ze, system (1) becomes,
ẋ1 = (2axe − 3x2

e)x1 + y1 − z1

+F̂1(x1, y1, z1)
ẏ1 = −2dxex1 − y1 + F̂2(x1, y1, z1)
ż1 = ǫbx1 − ǫz1 + F̂3(x1, y1, z1)

(6)

whereF̂j(x1, y1, z1), j = 1, 2, 3 are the nonlinear terms.

The Poincaré-Andronov-Hopf theorem applied to system (1)
leads to the following proposition,

Proposition 2. With notations (12) and (13), if the two
following conditions hold,

4r3 + 27s2 > 0 (7)

2
3
(a− d) < xe < 0 (8)

then, when parameter ǫ passes the value ǫc, system (1)
undergoes a Hopf bifuration at the equilibrium Se, where,

ǫc =
− (

(1 −m11)2 −m11b
)

+ ∆
1
2

2(1−m11 + b)
(9)

and m11 = 2axe − 3x2
e , m21 = −2dxe and ∆ =

[(1−m11)2−m11b]2 +4(1−m11 +b)(m11 +m21)(1−m11).

Proof: The existence of a Hopf bifurcation point in
system (1) is studied using the linearized system (6) atSe.
First of all, its jacobian matrixM(ǫ) is,

M(ǫ) = (mij)1≤i,j≤3 (10)

The corresponding characteristic equation is,

f(λ(ǫ)) = λ3(ǫ) + P (ǫ)λ2(ǫ) + Q(ǫ)λ(ǫ) + R(ǫ) (11)

where,

P (ǫ) = 1−m11 + ǫ
Q(ǫ) = (1−m11 + b)ǫ−m11 −m21

R(ǫ) = ǫ(b−m11 −m21)
(12)

Setting,

λ(ǫ) = ν(ǫ)− P (ǫ)
3

r(ǫ) = Q(ǫ)− P 2(ǫ)
3

s(ǫ) =
2P 3(ǫ)

27
− P (ǫ)Q(ǫ)

3
+ R(ǫ)

(13)

equation (11) reads as,

ν3(ǫ) + r(ǫ)ν(ǫ) + s(ǫ) = 0,

which is the equation givingM(ǫ) eigenvalues.
The sign of 4r3(ǫ) + 27s2(ǫ) provides the number of
real and complex eigenvalues of this matrix. Indeed, if
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4r3(ǫ) + 27s2(ǫ) > 0, that is if condition (7) holds, then
M(ǫ) has two complex eigenvaluesλ1,2(ǫ) = α(ǫ) + iω(ǫ)
and one real,λ3(ǫ).

Now, let us study the existence of a critical valueǫc of
parameterǫ.
From (10), (11) and (12), polynomial rules lead to the exis-
tence of,

ǫc =
− (

(1−m11)2 −m11b
)±∆

1
2

2(1−m11 + b)
.

Algebraic computations show that under condition (8),ǫc > 0.

Moreover, sincexe < 0, it is obvious thatm11 < 0 and
thus,P (ǫc) > 0. Therefore,λ3(ǫ) < 0.

The derivative according toǫ of the characteristic equation
given in (11) is,

∂f(ǫ)
∂ǫ

= 3λ2(ǫ)
∂λ(ǫ)

∂ǫ
+

∂P (ǫ)
∂ǫ

λ2(ǫ)

+2P (ǫ)λ(ǫ)
∂λ(ǫ)

∂ǫ
+

∂Q(ǫ)
∂ǫ

λ(ǫ)

+Q(ǫ)
∂λ(ǫ)

∂ǫ
+

∂R(ǫ)
∂ǫ

.

(14)

Therefore, solving
∂f

∂ǫ
(ǫc) = 0 and separating imaginary and

real parts, we obtain,

∂α

∂ǫ
(ǫc) =

∂R

∂ǫ
(ǫc)− ∂P

∂ǫ
(ǫc)Q(ǫc)− P (ǫc)

∂Q

∂ǫ
(ǫc)

2Q(ǫc) + 2P (ǫc)2
.

Since2Q(ǫc) + 2P (ǫc)2 > 0,
∂α

∂ǫ
(ǫc) < 0.

Finally, if 4r3(ǫ)+ 27s2(ǫ) > 0 and
2
3
(a− d) < xe < 0, then

all the conditions of the Poincaré-Andronov-Hopf theorem
hold and(Se, ǫc) is a Hopf bifurcation point of system (1).

Let us now study direction, stability and period of this Hopf
bifurcation occuring atǫc using Hassard method, see [7] and
see also [6], [14], [16] .

Let us denote byω0 the value ω(ǫc) > 0 and let vj ,
j = 1, 2, 3, be the eigenvectors of the matrixM(ǫc),
given in (10), corresponding to the eigenvaluesλj . We have,
λj = ±iω0 = ±iQ1/2(ǫc), j = 1, 2, and
λ3 = −P (ǫc).

The eigenvectorv1 associated withλ1 = iω0 is,

v1 =
(
1,

m21(1− iω0)
1 + ω2

0

,
ǫcb(ǫc − iω0)

ǫ2c + ω2
0

)T

,

and the eigenvectorv3 associated withλ3 is,

v3 =
(
1,

m21

m11 − ǫc
,

ǫcb

m11 − 1

)T

.

Let us defineP such that(x1, y1, z1)T = [P (x2, y2, z2)]T ,

P = (Re(v1),−Im(v1), v3) = (pij)1≤i,j≤3 (15)

The inverse matrix is given byP−1 = (p−1
ij )1≤i,j≤3.

Thus,  ẋ2 = ω0y2 + F1(x2, y2, z2),
ẏ2 = −ω0x2 + F2(x2, y2, z2),
ż2 = λ3z2 + F3(x2, y2, z2),

where F1, F2 and F3 are the nonlinear terms, satisfying
Fi(x2, y2, z2) = P−1(F̂i(x1, y1, z1)),
Procedures proposed by Hassardet al. [7] are used to calculate
the following quantities, evaluated atǫ = ǫc.

g11 =
1
2

[
p−1
11 (a− 3xe)− p−1

12 d
]

+
i

2
[
p−1
21 (a− 3xe)− p−1

22 d
]

g02 = g11

g20 = g11

G21 = −3
4

(
p−1
11 + ip−1

21

)
.

Moreover, let us calculate the quantities,

h11 =
1
2

[
p−1
31 (a− 3xe)− p−1

32 d
]

h20 = h11.

Then, solving the two equations,

λ3w1 = −h11

(λ3 − 2iω0)w20 = −h20

gives,

w11 =

[
p−1
31 (a− 3xe)− p−1

32 d
]

2(1−m11 + ǫc)
,

w20 =
1
2

[
p−1
31 (a− 3xe)− p−1

32 d
]

(1−m11 + ǫ)2 + 4ω2
0

. (1−m11 + ǫc + 2iω0)

Furthermore, calculating the quantities,

G110 =
1
4

[
p−1
11 (a− 3xe)− p−1

12 d
]

+ i
4

[
p−1
21 (a− 3xe)− p−1

22 d
]

G101 = G110

g21 = G21 + (2G110w11 + G101w20)

and by setting,

c1 =
i

2ω0

[
g20g11 − 2|g11|2 − 1

3
|g02|2

]
+

1
2
g21

we can give the main result below in which,

µ2 = −Re(c1)
∂α
∂ǫ (ǫc)

,

τ2 = −Im(c1) + µ2
∂ω
∂ǫ (ǫc)

ω0
,

β2 = 2Re(c1).

Theorem 1. Under the hypothesis of proposition 2, system
(1) undergoes a Hopf bifurcation at the equilibrium point
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(xe, ye, ze) as ǫ passes through ǫc with the following prop-
erties.

1) If µ2 < 0 (reps. µ2 > 0) , then the direction of
bifurcation is ǫ < ǫc (resp. ǫ > ǫc) and the bifurcation
is supercritical (resp. subcritical),

2) If β2 < 0 (resp. β2 > 0), the bifurcating periodic
solutions are orbitally stable (resp. unstable),

3) If τ2 > 0 (resp. τ2 < 0), the period of bifurcating
periodic solutions increases (resp. decreases).

The period and characteristic exponents are given by,

T =
2π

ω0
(1 + τ2E

2 + O(E4))

β = β2E
2 + O(E4)

Where,E2 =
ǫ− ǫc

µ2
+ O(ǫ− ǫc)2 (providedµ2 6= 0).

The periodic solutions themselves are, x
y
z

 =

 xe

ye

ze

 + P.

 u1

u2

u3

 (16)

where,

u1 = Re(ζ) , u2 = Im(ζ)
u3 = w11|ζ|2 + Re(w20ζ

2) + O(|ζ|3)
and

ζ = Ee2iπt/T +
iE2

6ω0
(g02e

−4iπt/T

−3g20e
4iπt/T + 6g11) + O(E3)

Now, numerical computations are done to illustrate these
theoretical results. Thereafter, we consider system (1), with
parametersa, b, cx and d fixed as in (2) andI = 3.25.
Equilibria of this system are studied as presented in the first
section of this paper, and using notation of (4), we obtain,

4p3 + 27q2 ≈ 76.443755 > 0

Therefore, proposition 1 leads to the existence an uniqueness
of system (1) equilibrium(xe, ye, ze), given by (5),

xe ≈ −0.722126 , ye ≈ −1.607329 , ze ≈ 3.583632

Let us verify if proposition 2 can be applied to system (1)
with the fixed values of parameters (2).
The bifurcation value ofǫ, given by equation (9) of proposition
2, is,

ǫc ≈ 0.125912.

This value ofǫc is really close to the one we observe on the
bifurcation diagram given in figure 3.
For this value of ǫc, we have, 4r3(ǫc) + 27s2(ǫc) ≈
443.299666 > 0 and condition (7) holds. Therefore, the
jacobian matrixM(ǫc) has one real eigenvalueλ3(ǫc) and
two complex onesλ1,2 = α(ǫc)± iω(ǫc).
Since2(a−d)/3 = −4/3, the condition2(a−d)/3 < xe < 0
is verified.

Furthermore,
∂α

∂ǫ
(ǫc) ≈ −0.748444 6= 0, and λ3(ǫc) ≈

−7.025406 < 0.

Thus, thanks to proposition 2,ǫc ≈ 0.125912 is the
Hopf bifurcation value of parameterǫ for system (1) at
(−0.722126,−1.607329, 3.583632).

ǫ

Figure 3. Bifurcation diagram of system (1) with parametersgiven in (2)
according to parameterǫ.

(a) (b)

Figure 4. (a) (x, y, z) view of the phase portrait and time series of system (1)
with parameter fixed as in (2) andǫ = 0.12 < ǫc, the asymptotic solution is
a stable limit cycle.(b) (x, y, z) view of the phase portrait and time series of
system (1) with parameter fixed as in (2) andǫ = 0.13 > ǫc, the asymptotic
solution is stable focus.

The computation of matrixP and its inverse matriceP−1

gives,

P =

 1 0 1
6.890683 1.509269 −1.198934
0.993530 1.728299 −0.073022


and ,

P−1 =

 0.158582 0.139699 −0.121995
−0.055612 −0.086210 0.653888
0.841418 −0.139699 0.121995


The various useful coefficient presented in the previous section
are then,
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g11 = 0.060399 + 0.071870i
G21 = −0.118936 + 0.041709i
h11 = 2.522790
w11 = 0.359215
w20 = 0.357823 + 0.022319i
G110 = 0.030199 + 0.035935i
g21 = −0.087236 + 0.081058i
c1 = −0.063437− 0.009879i

Finally, computations give,
µ2 = −0.084758 < 0 ,
β2 = −0.126873 < 0 ,
τ2 = 0.384677 > 0.
According to theorem 1, the Hopf bifurcation occuring
at ǫc is supercritical and the direction of bifurcation is
ǫ < ǫc. Moreover, the bifurcating periodic solutions are
asymptotically orbitally stable and the period of bifurcating
periodic solutions increases.

The period of the solution is given by,
T = 28.686363− 130.193932(ǫ− 0.125912)
+O((ǫ− 0.125912)2)
and this period increases asǫ decreases. The characteristic
exponents is given by,

β = 1.496888(ǫ− 0.125912) + 0((ǫ− 0.125912)2)

The periodic solutions are, x
y
z

 =

 −0.722126
−1.607329
3.583632


+

 1 0 1
6.890683 1.509269 −1.198934
0.993530 1.728299 −0.073022


 u1

u2

u3


where,
u1 = Re(ζ),
u2 = Im(ζ),
u3 = 0.359215|ζ|2 + Re((0.357823 + 0.022319i)ζ2) +
O(|zη|3)
and,

ζ = Ee2iπt/T

+
iE2

6ω0

(
(0.060399 + 0.071870i)e−4iπt/T

−3(0.060399 + 0.071870i)e4iπt/T

+6(0.060399 + 0.071870i)
)

+ O(E3)

IV. CONCLUSION

In this paper, after a presentation of the three-dimensional
autonomous ordinary differential equations Hindmarsh-Rose
neuronal model, bifurcation diagrams according to parameters
I andǫ are presented. Then, the existence of a Hopf bifurcation
according to parameterǫ in this model is discussed. Indeed, for

a critical valueǫc of this parameter, a Hopf bifurcation occurs
under some conditions. Using Hassard algorithm, the direction,
stability and period of this bifurcation are then studied. Finally,
numerical simulations are done to observe this bifurcationand
to illustrate theoretical results.
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The chikungunya epidemic:
modelling and dynamics

Djamila Moulay

Abstract—Models for the transmission of the chikungunya
virus to human population are done. The chikungunya virus
is an alpha arbovirus, first identified in 1953, transmitted by
Aedes, mosquitoes, responsible for a little documented uncommon
acute tropical disease. Models describing the mosquito population
dynamics and the virus transmission to human population are
discussed. Global analysis of endemic equilibria is given,which
use on the one hand Lyapunov function techniques and on the
other hand results borrowed to theory of competitive systems
and satbility of periodic orbits.

Index Terms—chikungunya virus, Epidemiologic model, En-
demic equilibrium, Global stability, Competitive system.

I. I NTRODUCTION

An unprecedented chikungunya epidemic has appeared on
the Reunion Island (775,000 inhabitants) with over 244,000
reported and 205 deaths (directly or indirectly linked) as
of April 20 2006. Aedes albopictus, see [1], long present
on the island, is the main vector of this disease. After the
Grande Comore Island epidemic, the first cases were reported
in the Reunion Island in March 2005. This is the first time
that a chikungunya epidemic was described in this part of
the world. The Asian tiger mosquito or forest day mosquito
(Aedes albopictus), from the mosquito family Culicidae, is
characterized by its black and white striped legs, small black
and white body. It is native to the tropical and subtropical areas
of Southeast Asia. In the past couple of decades this species
has invaded many countries throughout the world, through the
transport of goods and increasing international travel.

The chikungunya is an arthropod-borne viral disease (ar-
bovirus). The name is derived from the Makonde word
meaning “that which bends up” in reference to the stooped
posture developed as a result of the arthritic symptoms of
the disease. It was first described by Marion Robinson and
W.H.R. Lumsden [2], following an outbreak in 1952 on the
Makonde Plateau. Some Arboviruses are able to cause emer-
gent diseases. Arthropods are able to transmit the virus upon
biting, allowing it to enter the bloodstream which can cause
viraemia. The dynamics of arboviral disease like Dengue,
[3],[4] or chikungunya [5] are influenced by many factors such
as humans, the mosquito vector and the virus, as well as the
environment which affects all the present mechanisms directly
or indirectly. This paper deals with a succession of two model
involving differential equations for the mosquito population
and virus transmission to human population and is organized

D. Moulay is with Laboratoire de Mathématiques Appliquées du Havre
(LMAH), University of Le Havre, France, e-mail: djamila.moulay@univ-
lehavre.fr.
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dAd

b

Fig. 1. A stage structured model for Aedes Albopictus population dy-
namics. E states for eggs, L for larvae and pupae, A for femaleadult.
s, sL, b, d, dL, dA are system parameters.

In the diagram:

• b= eggs laying rate;
• s, sL= transfer rates;
• d, dL, dA= mortality rates of eggs, larvae and adult

population.

as follows. The second section deals with the formulation of
the dynamical models, first of all for the population growth
that is the Aedes Albopictus mosquito, and secondly for the
virus transmission to human population. The first model use an
stage structured model and the second SI and SIR type models.
The third section is devoted to the mathematical analysis of
both models, focusing on the boundedness, the positivity ofthe
solutions, local or global satbility for the endemic equilibria.
For the first system we use the Lyapunov theory to establish
the global stability of the endemic equilibrium, while for the
second we use the general theory of competitive systems and
compound matrix. As usual in mathematical epidemiology
studies, we have also found thresholds parameters which
determine the global dynamical behaviour.

II. V ECTOR POPULATION AND TRANSMISSION MODELLING

A. Formulation of a dynamical model for vector population
growth

To describe the Aedes Albopictus population dynamic we
use a stage structured model, which consider three main stages
(see Fig. 1), embryonnic (E), larvae (L, which consists here
of the larvae and pupae populations) and adult (A), see [6] for
more details.

We assume that the number of laid eggs is proportionnal
to the number of females. Moreover, it has been observed
that mosquitoes are able to detect the best breeder site for
the eggs developpement. Indeed if there are too much eggs
in the oviposition habitat or too few nutrients and water
ressources, then females laid less eggs or choose an over site. It
seems reasonable to express this biological phenomenon with
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a mathematical model which explicitly incorporates the idea
of limited carrying capacity resources. This model should take
into account the availability of nutrients and the occupation by
eggs or larvae of the available breeder sites.

That is why we assume that,

• per capitaoviposition rate is then given by,

b

(
1− E(t)

KE

)
A(t)

where KE is the availability of nutrients and space,b
represents the rate at which the population would grow
if it were unencumbered by environmental degradation,

• the number of possible larvae (only a part of the eggs
class became larvae), see [6], is given by,

s

(
1− L(t)

KL

)
E(t)

whereKL is the availability of nutrients and space, and
s the transfert rate from eggs class to larvae class.

The above hypothesis lead to the following equations,



dE

dt
(t) = b

(
1− E(t)

KE

)
A(t) − (s + d)E(t)

dL

dt
(t) = s

(
1− L(t)

KL

)
E(t)− (sL + dL)L(t)

dA

dt
(t) = sLL(t)− dAA(t)

(1)

This system is defined on the bounded subset ofR3, see
[6],

∆ =

(E, L, A) |
0 ≤ E ≤ KE

0 ≤ L ≤ KL

0 ≤ A ≤ sL

dA
KL


B. A compartemental model for the virus transmission to
human population

Denote byNH the human population size for which we
assume an exponential growth. Then, its dynamics is described
by,

dNH

dt
(t) = (bH − dH)NH(t)

where bH and dH are the birth and natural death rates,
respectively.

Let S̄H , ĪH andR̄H denote the total number of susceptibles,
infectives, and immunes in the population, respectively, and
S̄m, Īm be the total number of susceptible and infective
mosquitoes. The immune class in the vector population does
not exist, since mosquitoes carry the infection allong their life.
The model is schematically represented in Fig.2.

The effective contact rateβH is the average number of
contacts per day that would result in infection if the vectoris
infectious. The effective contact rateβm is the average number
of contacts per day that effectively transmits the infection to
vectors.βH andβm depends on the average number of bites
per mosquito per day and the proportion of bites that result in
vector infection.

b
H

b
H

H
b

H

I
H

γ

m

Im

R
H

d

dd

d

m

m

H

H

Hd

deads

deads

deads

deads

deads

HUMANVECTOR

S

S

βH
A

HN
mβ

Fig. 2. A compartemental model for the chikungunya virus transmission

• βm= effective contact rate between suscepible vectors and
humans

• βH= effective contact rate between suscepible humans
and vectors

• γ= recovery rate of infected humans
• dH=mortality rate of human population
• dm=mortality rate of human vector population

The above hypotheses lead to the following equations,



dS̄H

dt
(t) = bH(S̄H(t) + ĪH(t) + R̄H(t))

−βH
Īm(t)
A(t)

S̄H(t)− dH S̄H(t)

dĪH

dt
(t) = βH

Īm(t)
A(t)

S̄H(t)− γĪH(t)− dH ĪH(t)

dR̄H

dt
(t) = γĪH(t)− dH R̄H(t)

dS̄m

dt
(t) = sLL(t)− dmS̄m(t)− βm

ĪH(t)
NH(t)

S̄m(t)

dĪm

dt
(t) = βm

ĪH(t)
NH(t)

S̄m(t)− dmĪm(t)

(2)

All parameters in this model are non-negative. We assume
that human and vector populations remain constant. Therefore,
without loss of generality, we can introduce the proportions
SH = S̄H/NH , IH = ĪH/NH , RH = R̄H/NH , Sm = S̄m/A,
Im = Īm/A in system (2), and using the relationSH + IH +
RH = 1, we obtain the following system that describes the
dynamics of the proportion of individuals in each class,
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dE

dt
(t) = bA(t)

(
1− E(t)

KE

)
− (s + d)E(t)

dL

dt
(t) = sE(t)

(
1− L(t)

KL

)
− (sL + dL)L(t)

dA

dt
(t) = sLL(t)− dmA(t)

(3a)



dSH

dt
(t) = − (bsH + βHIm(t))SH(t) + bH

dIH

dt
(t) = βHIm(t)SH(t)− (γ + bH)IH(t) (3b)

dIm

dt
(t) = −

(
sL

L(t)
A(t)

+ βmIH(t)
)

Im(t) + βmIH(t)

This system is defined on the bounded subset ofR6
+, which

is the region of biological interest,∆× Ω where

Ω = {(SH , IH , Im) ∈ R3
+ : 0 ≤ SH + IH ≤ 1, 0 ≤ Im ≤ 1}.

(4)
Obviously, this model may be enhanced by taking into

account the delay between the transfer to mosquitoes and
the transmission to humans (from five to six days). In this
case the model would be of type SEI for the vector (see [5]).
However if we consider a huge mosquito population, the
number of mosquitoes in stateE (exposed) can be neglected
in comparison to the whole population.

The next sections give the mathematicals results on those
models. For the proofs see [6].

III. A NALYSIS OF THE POPULATION DYNAMIC MODEL

We will investigate the asymptotic behaviour of orbits
starting in the non-negative cone :

R3
+ = {(x, y, z) ∈ R/x ≥ 0, y ≥ 0, z ≥ 0}

R∗
+

3 = {(x, y, z) ∈ R/x > 0, y > 0, z > 0}
Lemma III.1. Let (t0, X0 = (E0, L0, A0)) ∈ R+ × R3

+ and
([t0, T [, X = (E, L, A)) (T ∈ ]t0, +∞]) be the maximal
solution of the Cauchy problem associated to(1) with the
initial condition (t0, X0) .
Then,

∀t ≥ t0, X(t) ∈ R3
+.

Lemma III.2. The set,

∆ =

(E, L, A) |
0 ≤ E ≤ KE

0 ≤ L ≤ KL

0 ≤ A ≤ sL

dA
KL


is an invariant region under the flow induced by(1).

Proposition III.3. The set∆ is an attraction basin of system
(1).

We shall use the following threshold parameter for comput-
ing the stady state,

r =
(

b

s + d

) (
s

sL + dL

) (
sL

dA

)
(5)

Proposition III.4. System (1) always has the disease free
equilibrium N∗

0 = (0, 0, 0).
• If r ≤ 1, then system (1) has no other equilibria.
• If r > 1, there is a unique endemic equilibrium

N∗ =
(

1− 1
r

)


KE

γE

KL

γL

sL

dA

KL

γL

 =

 E∗

L∗

A∗



where,

γE = 1+
(s + d)dAKE

bsLKL
and γL = 1+

(sL + dL)KL

sKE

Proposition III.5. The equilibriumN∗
0 = (0, 0, 0) is locally

asymptotically stable ifr ≤ 1 and unstable ifr > 1.

Proposition III.6. If r > 1, N∗ is locally asymptotically
stable.

Proposition III.7. If r > 1 the equilibriumN∗ is globally
asymptotically stable (GAS) inint(∆).

IV. DYNAMICS ANALYSIS OF THE TRANSMISSION MODEL

We will focus on the caser > 1, r given by (5) which is
the condition of survival of all populations as we studied in
the previous section.

Our work adresses the existence and stability of equilibrium
point of (3). For this aim, we shall use the following threshold
parameter,

R0 =
βmβH

dA(γ + bH)
=

βmβH

SL
L∗
A∗ (γ + bH)

(6)

A. Existence and GAS of the equilibria

Proposition IV.1. We assume thatr > 1. System (3) al-
ways has the disease free equilibrium(E∗, L∗, A∗, X∗

1 ) where
X∗

1 = (1, 0, 0).
• If R0 ≤ 1, then system (1) has no other equilibria.
• If R0 > 1, there is a unique endemic equilibrium

(E∗, L∗, A∗, X∗
2 ) whereX∗

2 = (S∗
H , I∗H , I∗m), and

S∗
H =

bH

βH + bH
+

βH

(βH + bH)R0

I∗H =
dmbH

βm(βH + bH)
(R0 − 1)

I∗m =
bH

βH + bHR0
(R0 − 1)

where (E∗, L∗, A∗) is the endemic equilibrium of the inde-
pendent system(1).

System (3) is the coupling of the two subsystems(3a) and

(3b), for wich the coupling term is the functionsL
L(t)
A(t)

Im(t),

that is system(3a) drives system(3b). Therefore, since the
previous section was devoted to the study of the subsystem
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(3a) corresponding to the population dynamic we only have
to analyse the subsystem(3b),



dSH

dt
(t) = − (bH + βHIm(t))SH(t) + bH

dIH

dt
(t) = βHIm(t)SH(t)− (γ + bH)IH(t)

dIm

dt
(t) = −

(
sL

L(t)
A(t)

+ βmIH(t)
)

Im(t) + βmIH(t)

(7)

We use usefull results gives in [7] or [8], for ours system.
Since N∗, the endemic equilibrium of subsystem (3a), is

GAS for r > 1, then
L(t)
A(t)

→ L∗

A∗ as t → +∞. Therefore

system (3b) is a three-dimensional asymptotically autonomous
differential system with limit system:



dSH

dt
(t) = −bH(1− SH(t))− βHIm(t)SH(t)

dIH

dt
(t) = βHIm(t)SH(t)− (γ + bH)IH(t)

dIm

dt
(t) = −

(
sL

L∗

A∗ + βmIH(t)
)

Im(t) + βmIH(t)

(8)

First of all, note that the region of biological interest

Ω = {(SH , IH , Im) ∈ R3
+ : 0 ≤ SH + IH ≤ 1, 0 ≤ Im ≤ 1}.

is positively invariant under the flow induced by (8), as the
vector field on the boundary does not point to the outside of
Ω.

Theorem IV.2. If R0 > 1, the endemic equilibrium is globally
asymptotically stable in int(Ω).

To prove this theorem we use some results about
competitive systems, given in [9], [10] and stability of
periodic orbits.

Let D ⊂ Rn be an open set, andx 7−→ f(x) ∈ Rn be aC1

function defined inD. We consider the autonomous system in
Rn given by,

x′ = f(x) (9)

Definition IV.3. We say that system(9) has the property
of stability of periodic orbits, iff the orbit of any periodic
solutionγ(t), if it exists, is asymptotically orbitally stable.

The following theorem is the main tool to prove the global
stability of the endemic equilibrium.

Theorem IV.4. Assume that n=3, D convex and bounded.
Suppose that (9) is competitive, persistent and has the
property of stability of periodic orbits. Ifx0 is the only
equilibrium in int(D), and if it is locally asymptotically
stable, then it is globally asymptotically stable in int(D).

Now, let us apply those results to the GAS study ofX∗
2 .

The proof of this theorem is similar to the one in [11]. In
order to prove the persistence of system (8), we shall prove
the following proposition.

Proposition IV.5. On the boundary ofΩ, system (8) has only
oneω − limit point which is the equilibriumX∗

1 . Moreover
for R0 > 1, X∗

1 cannot theω− limit of any orbit in int(Ω).

Proposition IV.6. The equilibriumE0 is globally asymptoti-
cally stable inΩ if R0 ≤ 1, and unstable ifR0 > 1.

Proposition IV.7. The system (8) has the property of stability
of periodic orbits with asymptotic phase.

Proof: A sufficient condition for a periodic orbit
γ = {p(t) : 0 ≤ t ≤ ω} of (9) to be asymptotically orbitally
stable is that the linear non-autonomous system,

y′(t) =
∂f [2]

∂x
(p(t))y(t) (10)

is asymptotically stable.
Equation (10) is called thesecond compound equationof (9)

and∂f [2]/∂x is thesecond compound matrixof the jacobian
matrix ∂f [2]/∂x of f .

Theorem IV.8. Consider system (8). IfR0 > 1, then
Ω − {(SH , 0, 0) : 0 ≤ SH ≤ 1} is an asymptotic stability
region for the endemic equilibriumX∗

2 . Moreover all trajec-
tories starting in theSH − axis approach the disease-free
equilibrium X∗

1 .

V. CONCLUSION

We have proposed models to describe the vector population
dynamic and the chikungunya virus transmission to human
population.

First of all, we have proposed model (1) to describe the
vector population dynamic (Aedes Albopictus) which take into
account auto-regulation phenomenon of eggs and larvae stages.
We have shown that this model is well defined. For this model
we found that,

r =
(

b

s + d

) (
s

sL + dL

) (
sL

dA

)
is the threshold condition for the existence of the endemic
state, where

(
b

s+d

)
,
(

s
sL+dL

)
and

(
sL

dA

)
are respectively

eggs, larvae and adult growth rates. Forr > 1, we proved
using Lyapunov function that the endemic equilibrium is
globally asymptotically stable.

Then we have proposed model (3) to describe the virus
trasmission to human population. We have found, in the case
r > 1 which is the biologial interesting case, the following
thresold parameter,

R0 =
βmβH

dA(γ + bH)
=

βmβH

SL
L∗
A∗ (γ + bH)

which is a very important result for epidemiologists seeking
to control a disease via the control of the vector population.
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For R0 > 1, there is a unique endemic equilibrium which is
globaly asymptoticaly stable. One of the next steps to have a
more acurate model would be to take into account the effect
of the control of the mosquito population. This could be done,
for instance, destroying the breeding sites or introduct a sterile
male mosquito population.
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A Novel Data Pre-Processing Method on 
Automatic Determining of Sleep Stages:   

K-Means Clustering Based Feature Weighting  
S. Güneş, K. Polat, Ş. Yosunkaya and M. Dursun 

  
Abstract— Sleep scoring is a time consuming and difficult task 

conducted by sleep specialist. The main aims of this study are to 
propose a novel data pre-processing method called K-means 
clustering based feature weighting (KMCFW) and to develop an 
automatic recognition system for determining of sleep stages. In 
this paper, we have used a three stage hybrid system comprising: 
(i) feature extraction using Welch method from PSG 
(Polysomnogram) signals including EEG (Electroencephalogram) 
and chin EMG (Electromyogram), (ii) data pre-processing using 
KMCFW, and (iii) sleep stages classifying using C4.5 decision tree 
classifier. There are five sleep stages: Awake, REM (Rapid Eye 
Movement), N-REM (Non-Rapid Eye Movement) stage 1, N-REM 
stage 2, and N-REM stage 3. In order to determine the sleep 
stages, three all night PSG recordings were used for this study. 
Using alone spectral features belonging to EEG signal; decision 
tree has obtained classification accuracy of 37.84% on 
classification of sleep stages using ten fold cross validation. Sleep 
stages have been classified with accuracy of 41.85% using decision 
tree based on spectral features belonging to EEG and chin EMG 
signals. In weighted spectral features belonging to EEG signal 
with KMCFW, the classification accuracy of 92.40% has been 
achieved on sleep stages classification using decision tree. As for 
weighted spectral features belonging to EEG and chin EMG 
signals with KMCFW, sleep stages has been determined with 
accuracy of 93.39% using decision tree. These results have 
demonstrated that the proposed weighting method have a 
considerable impact on determining of sleep stages. 
 

Index Terms— K-means clustering based feature weighting; 
Sleep staging; Decision tree; Polysomnography; EEG; EMG  

I. INTRODUCTION 
leep is a losing state as temporary, partial, and periodic in 
the form of that can be returned with various forced 

stimulus of the communication of organism with environment. 

Sleep can be also defined the decreasing of motor activity, the 
decreasing of response with stimulus, and to be easy recycling 
as behavioral [1, 2].  
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     Sleep scoring was made according to human sleep standard 
terminology and handbook prepared by Rechtschaffen and 
Kales (RK) in 1968 [2].  Scoring of sleep stages was done on 
the basis of RK standard (RKS) until recent dates and sleep 
stages in normal subject was divided into 5 stages including 
awake, N-REM 1 (non- Rapid Eye Movement-1), N-REM 2, 
N-REM 3, N-REM 4, and REM (Rapid Eye Movement). 
American Academy of Sleep Medicine (AASM) determined 
new rules in the scoring of sleep on the chairmanship of Dr. 
Iber Conrad. Nowadays, sleep staging is done according to 
these new rules. Sleep stages basically consists of two stages 
including N-REM (stage I, stage II, and stage III) and REM 
stages [3, 4, 5].  
     The process of sleep scoring consists of three steps as 
follows:  

a. There need epochs with 30 seconds to score the sleep 
stages.  

b. Each epoch is named with a sleep stage. 
c. If two stages take place in same epoch, it is called as 

that stage what stage is more than half of the epoch. 
 

 In literature, there are many works regarding to sleep stage 
scoring. The used systems are generally on the basis of 
extracting features obtained from EEG, EMG, and EOG and on 
classifying them into one of the sleep stages, while trying to 
obtain similar results as the experts of visual scoring [6]. Few 
studies among these studies have been explained as follows. 

In study of Este´vez et al., an automated sleep scoring system 
has been demonstrated. Five patterns have been searched for: 
slow delta and theta wave predominance in the background 
EEG activity, presence of sleep spindles in the EEG, presence 
of rapid eye movements in an electro-oculogram, and the 
muscle tone in an electromyogram. Results on a test set have 
shown an overall accuracy of 87.7% between the automated 
system and the human expert [7]. 
     Šušmáková et al. has researched the basic knowledge about 
classification of sleep stages from polysomnographic 
recordings. And also, they have reviewed and compared a large 
number of measures to find the suitable candidates for the study 
of sleep onset and sleep evolution. They obtained classification 
error of 23% on the most difficult decision problem, between 

S 
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S1 and REM sleep by measures computed from 
electromyogram led by fractal exponent [6].  
     Zoubek et al. has focused on the problem of selecting 
relevant features extracted from human polysomnographic 
(PSG) signals to perform accurate sleep/wake stages 
classification. While they achieved an agreement of 71% with 
the whole database classification of two human experts using a 
simple set of features such as relative EEG powers in five 
frequency bands, 80% of agreement with the expert 
classification obtained using features extracted from the EEG, 
EOG and EMG signals [8]. 
 In this paper, we have proposed a novel data pre-processing 
called k-means clustering based feature weighting and 
combined with C4.5 decision tree to classify the sleep stages 
including Awake, REM (Rapid Eye Movement), N-REM 
(Non-Rapid Eye Movement) stage 1, N-REM stage 2, and 
N-REM stage 3. Decision tree has obtained classification 
accuracy of 37.84% on classification of sleep stages with ten 
fold cross validation using frequency domain features 
belonging to EEG signal. Sleep stages have been classified 
with accuracy of 41.85% using decision tree based on 
frequency domain features belonging to EEG and chin EMG 
signals. In weighted frequency domain features belonging to 
EEG signal with KMCFW, the classification accuracy of 
92.40% has been achieved on sleep stages classification using 
decision tree.  
 

II. MATERIAL 

A. Data 
All night polysomnographic records were made by using 

VIASY trademark PSG device on the sleep laboratory of 
Meram Medicine Faculty of Selcuk University. 
Polysomnography device is a device that recorded 
electrophysical signals such as electroencephalograph (EEG), 
electrooculograms (EOG), Electromyography (EMG) etc. In 
this study, we studied on three male subjects and their ages are 
56, 31, and 40, respectively. In automatic scoring of sleep 
stages, their PSG recordings including EEG and chin EMG 
were used.  The average recording time was 6.22 h and total 
recording time was 18.67 h. Signals and their sampling 
frequencies that are the PSG recordings used by us are as 
follows: 

 
a) EEG (Channel: C4A1), sampling frequency: 128 

Hz 
b) Chin EMG, sampling frequency: 256 Hz 

 
     Figure 1 presents the EEG and chin EMG with 30 seconds 
obtained from PSG device recorded on a subject. The sleep 
stages are divided into five stages including Awake, REM 
(Rapid Eye Movement), N-REM (Non-Rapid Eye Movement) 
stage 1, N-REM stage 2, and N-REM stage 3. The distribution 
of sleep epochs belonging to three subjects is shown in Table 1. 
And also, this table represents the reduced and full sleep stages 
as epoch. In the full sleep stages dataset, there are 2241 epochs 

while there are 1000 epochs in the reduced sleep stages dataset. 
The causes of this reducing process are to balance the 
distribution of dataset and to prevent the over fitting in the 
learning and testing of sleep stages dataset. Thanks to this 
process, false classification results can be prevented.  

 
TABLE I 

THE DISTRIBUTION OF SLEEP 
 STAGES ON FULL DATASET AND REDUCED DATASET 

Sleep 
Stages 

Awake N- 
REM-1 

N- 
REM-2 

N- 
REM-3 

REM Total  

Full 
Dataset 

287 119 1168 141 526 2241 

Reduced 
Dataset 

187 119 277 141 276 1000 

 
 
Fig. 1.  Raw EEG and chin EMG signals with 30 seconds obtained from PSG 
device recorded on a subject 

III. METHOD  
In this paper, we have proposed a hybrid intelligent with 

three phases based on feature extraction, feature weighting, and 
classifier algorithm. Figure 2 shows the flowchart of proposed 
method.  

 

Dividing PSG signals into epochs with 30 seconds  

Feature extraction using Welch spectral analysis 
from PSG signals including EEG and chin EMG 

signals  

Feature weighting process using K-means 
clustering based feature weighting on the sleep 

stages dataset 

Classification of sleep stages using C4.5 decision 
tree classifier  

           Fig. 2 The flowchart of proposed method 

Obtaining the sleep stages  
Awake, REM, N-REM 1, N-REM 2, N-REM 3 
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In scoring of sleep stages, PSG signals including EEG and 
chin EMG are divided into epochs with 30 seconds and labeled 
each epoch by sleep physician. Later, Welch FFT (Fast Fourier 
Transform) spectral analysis has been applied to each epoch 
comprising PSG signals and extracted salient features from 
frequency domain about sleep stages by means of Welch 
method. After feature extraction process, K-means clustering 
based feature weighting has been applied to sleep stages dataset 
with extracted features. Finally, sleep stages have been 
automatically scored using C4.5 decision tree classifier.  

 

A. Welch Spectral Analysis Method 
We have used Welch spectral analysis method to transform    

PSG signals from time domain to frequency domain. Welch 
method is explained as classical method based on FFT. Welch 
method is the second modification of periodogram spectral 
estimator, which is to window data segments before computing 
the periodogram [9-15]. If ready for use information on the 
signal composes of the samples , the periodogram 
spectral estimator is provided as follows:  
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where is the estimation of periodogram. In Welch 
method, signals are divided into overlapping segments, each 
data segment is windowed, periodograms are calculated and 
then average of periodograms is found. {  , l=1,…,S are 
data segments and each segment’s length equals M. The 
overlap ratio is frequently chosen as 50% (M/2) [15]. The 
Welch spectrum estimate is given by:  
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where  is the periodogram estimate of  segment, 
v(n) is the data-window, M is window sequence. P is total 

average of 
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is the Welch PSD estimate, M is the length of each signal 
segment and S is the number of segments [15]. 
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   Later, evaluation of  at the frequency samples 
fundamentally demands the computation of the following 
discrete Fourier transform (DFT): 

)(ˆ fPw

    The FFT algorithm can calculate the Welch PSD. Variance 
of an estimator is one of the measures often used to characterize 
its performance. For 50% overlap and triangular window, 
variance for the Welch method is provided by [15]; 
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      (3)  

    where the Welch PSD is estimate and  is the 
periodogram estimate of each signal interval [9-15].  

         )fP  (ˆ
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    In feature extraction from EEG and chin EMG signals, 129 
data segments (windows) for each signal have been used and 
obtained a sleep stage dataset comprising 258 features in the 
end of Welch method for EEG and chin EMG signals.  
 

B. Feature Reduction 
In order to reduce the dimension of sleep stage dataset with 258 
features, the statistical measures have been used. The used 
statistical features are minimum value, maximum value, 
standard deviation, and mean value belonging to each feature in 
sleep stage dataset. The dimension of sleep stage dataset is 
decreased from 258 to 8 features for EEG and chin EMG 
signals. The used statistical features are as follows: 
 

TABLE II 
THE USED STATISTICAL FEATURES 

 

1. Minimum value: )(min nxx p =  

2. Maximum value: )(max nxx p =  

3. Standard deviation: 
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where, , )(nx Nn ,...,2,1= is a time series. N is the number of 
data points.  

C. K-means Clustering Based Feature Weighting (KMCFW) 
   Clustering algorithms are used widely not only to collect 
similar or dissimilar data, but also useful for data compression 
and data reduction. The most used clustering algorithms are 
K-means clustering [16], fuzzy C-means clustering [17], the 
mountain clustering [18], and subtractive clustering [19]. In 
this paper, we have chosen K-means clustering as weighting 
process since this method is widely used in literature.  
    In K-means clustering based feature weighting method, at 
first the clusters of each feature are found using K-means 
clustering (KMC) and calculated the distance between its 
cluster and mean value of that feature. According to calculated 
distance, features are weighted.   
 The goal of feature weighting method is to map the features 
according to their distributions in a dataset and also transform 
from non-linearly separable dataset to linearly separable 
dataset. Feature weighting method works based upon principle 
that decreasing the variance in features forming dataset. Thanks 
to this weighting method, the similar data in same feature are 
gathered and the discrimination ability of classifier is increased.  
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    In this study, a new weighting method (KMCFW) is 
proposed. The K-means clustering is briefly explained and then 
explained the proposed weighting method.  
   K-means clustering also known as C-means clustering has 
been applied to a variety of areas including image 
segmentation, speech data compression, data mining etc [20]. 
The working of KMC can be summarized as follows [21]: 
  
Phase 1: Choose K initial cluster centers randomly 
from the n points . 

Kzzz ,..., 21

},....,,{ 321 nXXXX
 
Phase 2: Assign point  to the cluster 
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Phase 3: Compute new cluster centers as follows  
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Phase 4: If Kizz i

new
i ,...,2,1, =<− ε , then terminate. 

Otherwise continue from phase 2. 
 
     This weighting method works as follows: firstly the cluster 
centers are calculated using KMC method. After computing the 
centers of features, the ratios of means of features to their 
centers are calculated and these ratios are multiplied with data 
point of each feature. Figure 3 demonstrates the flowchart of 
KMCFW method.  
 

D. C4.5 Decision Tree Classifier 
    Decision trees have been successfully used in solving 
problems related to machine learning and classifier systems. A 
decision tree is induced from sample training dataset and each 
sample is composed of feature values and class label. Decision 
trees are general classification method based on inductive 
inference. They can work with noisy data and missing data in 
dataset. Decision trees search in the hypothesis space that is 
fully explained. In constructing of decision tree, small trees are 
generally preferred to big trees [22, 23].  
   Each node in decision tree provides testing features belong to 
training set and each branch created from this node is suitable 
for a value of feature [23].   

Decision trees are considered as a junction of disjunctions. 
C4.5 decision tree learning is a method for discrete-valued 
functions classifying, where a C4.5 decision tree depicts the 
learned function. Learned trees can be shown as sets of if-then 
rules. These learning methods are among the most popular of 
inductive inference algorithms and have been successfully 
applied to a broad range of tasks. C4.5 decision tree is a 
discovering method, hill climbing, not going backwards search 

through the space of all available C4.5 decision trees. The 
objective of C4.5 Decision tree learning is to partition 
recursively data into subgroups. For more information on C4.5 
decision tree learning, the readers can refer to [22, 23, 24]. 

 

Load the dataset including classes 

Find the centers of features using K-means Clustering 
(KMC) 

Calculate the ratios of means of features to their 
centers and multiply these ratios with each feature 

Weighting of features using KMC method 

 
 
Fig. 3. The flowchart of KMCFW method 
 
 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 
 

In this study, a novel feature weighting method based on 
K-means clustering was proposed and applied to automatic 
determining of sleep stages including awake, REM, N-REM 1, 
N-REM 2, and N-REM 3. Sleep scoring is a difficult and time 
consuming task for sleep clinicians. Therefore, the sleep 
staging process is a challenging work. First of all, the EEG and 
chin EMG signals were transformed from time domain to 
frequency domain using Welch method. The salient features 
were obtained about sleep stages by means of Welch method. 
In the second step, K-means clustering based feature weighting 
was applied to sleep stages dataset with extracted features. 
Finally, sleep stages have been automatically scored by using 
C4.5 decision tree classifier. Table 3 presents the results of only 
C4.5 decision tree and combination of C4.5 decision tree and 
KMCFW method on the determining of sleep stages. In training 
and testing of C4.5 decision tree classifier, 10 fold cross 
validation method has been used. And also, we have used the 
classification accuracy to evaluate the performance of proposed 
weighting method on the automatic determining of sleep stages.  

Figure 4 presents the data distribution of sleep stages dataset 
including raw EEG frequency domain without KMCFW 
according to first three features (1st, 2nd, and 3rd). Figure 5 
demonstrates the data distribution of sleep stages dataset 
including EEG frequency domain weighted by KMCFW 
according to first three features (1st, 2nd, and 3rd).  
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TABLE III 
THE RESULTS OF ONLY C4.5 DECISION TREE AND COMBINATION OF C4.5 

DECISION TREE AND KMCFW METHOD ON THE DETERMINING OF SLEEP STAGES  
 

Method Used  
signals 

Number  
of 
Features 

Classification  
Accuracy  
(%) 

Decision tree classifier EEG 4 37.84 
Decision tree classifier EEG and  

chin EMG 
8 41.85 

Combination of k-means 
 clustering based feature  
weighting and decision 
tree classifier 

EEG 4 92.40 

Combination of k-means 
 clustering based feature  
weighting and decision 
tree classifier 

EEG and  
chin EMG 

8 93.39 

 
Fig. 4. The data distribution of sleep stages dataset including raw EEG 
frequency domain without KMCFW according to first three features (1st, 2nd, 
and 3rd) 
 

 
 
Fig. 5. The data distribution of sleep stages dataset including EEG frequency 
domain weighted by KMCFW according to first three features. 
 
     As can be seen from these figures, the linearity of sleep 
stages dataset was increased by means of KMCFW method. 
Thanks to KMCFW method, the distribution of non-linearly 
separable sleep stage dataset was transformed to a linear 

separable distribution. These results have demonstrated that the 
proposed weighting method called KMCFW is an effective and 
superior method on determining of sleep stages.  

V. CONCLUSION 
In this paper, a novel feature weighting called K-means 

clustering based feature weighting was proposed for automatic 
scoring of sleep stages including awake, REM, N-REM 1, 
N-REM 2, and N-REM 3 stages.  While decision tree has 
obtained worse results on automatic scoring of sleep stages 
without KMCFW, the combination of decision tree and 
KMCFW has achieved better results than only decision tree 
classifier. The advantage of this weighing method is that a 
non-linearly separable dataset can be transformed to a linearly 
separable dataset and in this way; the classification ability of 
classifier algorithms can be increased. The proposed method 
could be confidently used in automatic scoring of sleep stages.  
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Spectral Kurtosis and Wavelets’ Entropy for
Transients’ Enhancement: Application to Termite
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Abstract— In this paper we present the operation results of a
portable computer-based measurement equipment conceived to
perform non-destructive testing of suspicious termite infestations.
Its signal processing module is based in the Spectral Kurtosis
(SK) and it can be applied to numerous kinds of transients’
detection. We introduce the de-noising complement of the discrete
wavelet transform (DWT) and we study how can it serves to
reduce subjectiveness. The SK pattern allows the targeting of
alarms and activity signals. The DWT complements the SK, by
keeping the successive approximations of the termite emissions,
supposed more non-Gaussian (less noisy) and with less entropy
than the detail approximations. For a given mother wavelet, the
maximum acceptable level, in the wavelet decomposition tree,
which preserves the insects’ emissions features, depends on the
comparative evolution of the approximations details’ entropies,
and the value of the global spectral kurtosis associated to the
approximation of the separated signals. The paper explains
the detection criterion by showing different types of real-life
recordings (alarms, activity, and background).

Index Terms— Acoustic Emission, Higher-Order Statistics, In-
sect detection, Spectral Kurtosis.

I. INTRODUCTION

B IOLOGICAL transients gather all the natural complexity
of their associated sources, and the media through which

they propagate. As a consequence, finding the most adequate
method to get a complete characterization of the emission
implies the selection of the appropriate model, which better
explains the processes of generation, propagation and capture
of the emitted signals. This description matches the issue of
measurement termite activity.

This paper deals with the improved equipment whose pre-
vious prototype’s performance, based in the time-frequency
domain analysis of the kurtosis, was described in [1].

In this final version, the measurement method is mainly
based in the interpretation of the spectral kurtosis graph, along
with the wavelet analysis, which is thought as an aid. At
the same time, we use a simple data acquisition unit, the
sound card (maximum sampling speed at 44,100 Hz), which
simplifies the hardware unit and the criterion of detection.

J.J.G. de la Rosa is with the University of Cádiz. Electronics-Research Unit
PAIDI-TIC-168. EPSA-Av. Ramón Puyol S/N. E-11202-Algeciras-Spain. Tel-
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168. Email: amoreno@uco.es

University of Granada-ESII. Research unit PAIDI-TEP-232 E-18071-
Granada-Spain. Email: antolino@ugr.es

The instruments for plague detection are thought with the
objective of decreasing subjectiveness of the field operator.
On-site monitoring implies capturing the natural phenomenon
of insect emissions with high accuracy. As a consequence it is
imperative the use of a deep storage device, and high sensitive
probes with a selective frequency response. These features
make the price paid high, and do not guarantee the success of
the detection.

Regarding the procedures, the prior detection methods are
very much dependent on the detection of the excess of power
in the signals; these are the so-called second-order methods.
For example, the RMS calculation can only characterize the
intensity, and does not provide information regarding the
envelope of the signal nor the amplitude fluctuations. Another
handicap of the second-order principle, e.g. the power spec-
trum, attends to the preservation of the energy during data
processing. Consequently, the eradication of additive noise lies
in filter design and sub-band decomposition, like wavelets and
wavelet packets.

As an alternative to improve noise rejection and complete
characterization of the signals, in the past ten years, a myriad
of higher-order methods are being applied in different fields
of Science and Technology, in scenarios involving signal sep-
aration and characterization of non-Gaussian measurements.
Concretely, the area of diagnostics-monitoring of rotating
machines is also under our interest due to the similarities of
the signals to be monitored with the transients from termites.
Many time-series of faulty rotating machines consist of more-
or-less repetitive short transients of random amplitudes and
random occurrences of the impulses.

This paper describes a method based in the SK (related to
the fourth-order cumulant at zero lags) to detect infestations of
subterranean termites in a real-life scenario (southern Spain).
Wavelet decomposition is used as an extra tool to aid detection
from the preservation of the approximation of the signal, which
is thought to be more Gaussian than the details.

The interpretation of the results is focused on the peaked-
ness of the statistical probability distribution associated to each
frequency component of the signal, to get a measure of the
distance from the Gaussian distribution. The SK serves as a
twofold tool. First, it enhances non-Gaussian signals over the
background. Secondly, it offers a more complete characteriza-
tion of the transients emitted by the insects, providing the user
with the probability associated to each frequency component.

The paper is structured as follows: in the following Section
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II a review on termite detection and relevant HOS experiences
sets the foundations. Then we make a brief report on the
definition of kurtosis in Section III; we use an unbiased
estimator of the SK, successfully used in [1]. Results are
presented thereinafter, and finally, conclusions are drawn.

II. SUBTERRANEAN TERMITES: DETECTION PROJECT

TOWARDS HOS

Termite detection has been gaining importance within the
research community in the last two decades, mainly due to the
urgency of avoiding the use of harming termiticides, and to
the joint use of new emerging techniques of detection and
hormonal treatments, with the aim of performing an early
treatment of the infestation. A localized partial infestation can
be exterminated after two or three generations of the colony’s
members with the aid of these hormones, which stop chitin
synthesis.

The primary method of termite detection consists of looking
for evidence of activity. But only about 25 percent of the
building structure is accessible, and the conclusions depend
very much on the level of expertise and the criteria of the
inspector [2], [1]. As a consequence, new techniques have been
developed to remove subjectiveness and gain accessibility.

User-friendly equipment is being currently used in targeting
subterranean infestations by means of temporal analysis of the
vibratory data sequences. An acoustic-emission (AE) sensor
or an accelerometer is fixed to the suspicious structure. This
class of instruments is based on the calculation of the RMS
value of the vibratory waveform. The RMS value comprises
information of the AE raw signal power during each time-
interval of measurement (averaging time). This measurement
strategy conveys a loss of potentially valuable information both
in the time and in the frequency domain [1]. A more sophis-
ticated family of instruments makes use of spectral analysis
and digital filtering to detect and characterize vibratory signals
[3], [4]. Other second-order tools, like wavelets and wavelet
packets (time-dependent technique) concentrate on transients
and non-stationary movements, making possible the detection
of singularities and sharp transitions, by means of sub-band
decomposition.

Higher-order statistics are being widely used in several
fields. The spectral kurtosis has been successfully described
and applied to the vibratory surveillance and diagnostics of
rotating machines [5], [6]. In the field of insect detection,
the work published in [1] set the foundations of the present
paper. The combined used of the SK and the time-domain
sliding kurtosis showed marked features associated to termite
emissions. In the frequency domain (sample frequency 64,000
Hz) three frequency zones were identified in the spectral
kurtosis graph as evidence of infestation; two in the audio
band (which will be also checked in the present paper) and
one in the near ultrasound (roughly equal to 22 kHz). In the
present paper the sample frequency was fixed to 44,100 Hz and
the sound card was directly driven by MATLAB. Results are
presented in the user interface, which is forwarded in Fig. 1; in
this measurement situation, the time-raw data contains alarms
an activity signals from termites. This is a clear example of
positive detection.

Fig. 1. The graphical user interface which presents the results to the field
operator. The spectral kurtosis is in the bottom-right corner.

The developed virtual instrument also calculates and
presents the power spectrum (up-right graph) and the raw
data (bottom-left). The field operator adds therefore visual
information to the classical audio-based criterion, which was
by the way very subjective and very expertise-dependent.

III. KURTOSIS, SK AND DE-NOISING STRATEGY VIA

WAVELETS

Kurtosis is a measure of the ”peakedness” of the probability
distribution of a real-valued random variable. Higher kurtosis
means more of the variance is due to infrequent extreme
deviations, as opposed to frequent modestly-sized deviations.
This fact is used in this paper to detect termite emissions in an
urban background. Kurtosis is more commonly defined as the
fourth central cumulant divided by the square of the variance
of the probability distribution, which is the so-called excess
kurtosis, according to Eq. (1) [1], [7], [8]:

γ4,x = E{x4(t)} − 3(γ2,x)2 = C4,x(0, 0, 0) (1)

Normalized kurtosis is defined as γ4,x/(γ2,x)2. We will use
and refer to normalized quantities because they are shift and
scale invariant.

Ideally, the spectral kurtosis is a representation of the
kurtosis of each frequency component of a process (or data
from a measurement instrument xi). For estimation issues we
will consider M realizations of the process; each realization
containing N points; i.d. we consider M measurement sweeps,
each sweep with N points. The time spacing between points
is the sampling period, Ts, of the data acquisition unit.

A biased estimator for the spectral kurtosis for a number
M of N-point realizations at the frequency index m, is given
by Eq. (2):

ĜN,M
2,X (m) =

M

M − 1

⎡⎢⎣ (M + 1)
∑M

i=1 |Xi
N (m)|4(∑M

i=1 |Xi
N (m)|2

)2 − 2

⎤⎥⎦ .

(2)
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This estimator is the one we have implemented in the
program code in order to perform the data computation and it
was also used successfully in [1].

We expect to detect positive peaks in the kurtosis’s spec-
trum, which may be associated to termite emissions, charac-
terized by random-amplitude impulse-like events. This non-
Gaussian behavior should be enhanced over the symmetrically
distributed electronic noise, introduced in the measurement
system. Speech is perhaps also reflected in the SK, but not
in the frequencies were termite emissions manifest. Besides,
we assume, as a starting point, that non-Gaussian behavior
of termite emissions is more acute than in speech. As a
consequence, these emissions would be clearly outlined in the
kurtosis spectrum. As a final remark, we expect that constant
amplitude interferences are clearly differentiate due to their
negative peaks in the SK.

To show the ideal performance of the estimator, which
has been described in these lines, and also described in [1],
we show an example based in synthetics. A mixture of six
different signals has been designed. Each mixture is the sum
of a constant-amplitude sine of 2 kHz, a constant-amplitude
sine at 9 kHz, a Gaussian-distributed-amplitude sine al 5 kHz,
a Gaussian-distributed-amplitude sine at 18 kHz, a Gaussian
white noise, and a colored Gaussian noise between 12 and
13 kHz. Each mixture (realization or sample register) con-
tains 1324 points. Negative kurtosis is expected for constant-
amplitude processes, positive kurtosis should be associated to
random-amplitudes and zero kurtosis will characterize both
Gaussian-noise processes. A simulation has been made in
order to show the influence of the number of sample registers
(M) in the averaged results for the SK graph, and to test
its performance. Fig. 2 shows a good performance because
enough registers have been averaged (M=500).
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Fig. 2. Performance over a set of synthetics, for M=500 realizations.

The mother wavelet Daubechies 5 has been selected as most
similar wavelet mother, because of the highest coefficients in
the decomposition tree. Given the wavelet mother, to show
the process of selecting the maximum decomposition level
in the wavelet tree, we have adopted a criterion based on
the calculation of Shannon’s entropy (information entropy),
which is a measure of the uncertainty associated with a random
variable X; this entropy denoted by H(X), and defined by Eq.

(3):

H(X) := −
N∑

i=1

p(xi) log10 p(xi), (3)

where X is an N-outcome measurement process {xi, i =
1, · · · , N}, and p(xi) is the probability density function of
the outcome xi.

We show this strategy via the following example, based on
real-life data, which contain activity signals from termites,
presented in Fig. 3. The lower sub-figure in Fig. 3 is the
result of the de-noising performance at the 4th-decomposition
level; using the global thresholding we keep the approximation
signal. The entropy of the approximations and the details are
compared for each level of comparison and shown in Fig. 4.
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Fig. 3. An example of the de-noising performance with dB5 at level 4 for
a sample register.

By looking at the graph of Fig. 4, at levels 3 and 4, the
entropy of the approximations is less than the entropy of the
details. So level 4 is in a sense, a point of inversion. No
improvement is obtained for level 5, where the entropies are
very similar.
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Fig. 4. Evolution of the entropy.

We can also see that the global difference of entropies in-
creases towards zero, at level 5, as a complementary indication
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that further decomposition will not suppose progress in de-
noising.

IV. EXPERIMENTAL RESULTS

A. The instrument and the measurement procedure

A piezoelectric probe-sensor (model SP-1L from Acoustic
Emission Consulting) is used in the final version of the
instrument, and was described in detail in [1]. The sensor is
connected to the sound card of a lap-top computer and the
acquisition is driven by MATLAB, via the Graphical User
Interface (GUI).

The user interface was presented in Fig. 1, in which a clear
detection case is shown, and both types of acoustic emissions
(alarm and activity - feeding and excavating) are evidenced
in the SK graph. The peak near 6 kHz outlines activity and
the kurtosis near 16 kHz denotes generic activity - movement,
feeding and excavating.

The operator can select the acquisition time and the sample
frequency (maximum 44,100 Hz if the sound card is driven).
In the bottom-right corner of Fig. 1, the spectral kurtosis graph
is presented. The user can also examine the raw data (time-
series) and the spectrum. After performing the acquisition, the
instrument saves the acquired data, labeling the file with the
date and exact hour. Additionally, the operator can recall the
stored files; this option allows the operator to present a report
to the customer.

The electronic transducer is presented in Fig. 5, along
with its charge-to-volt conversion modulus (Integrated Circuit
Piezoelectric; ICP interface), and the accessory to fix it in the
wood that we used to test the sensor’s performance in the lab.
A bare waveguide has been used for insertion into soil.

Fig. 5. A photograph of the sensor SP-1L with the mounted accessories (drill
bit) prepared to couple it into the a test-piece of wood, in our lab. On the left,
the charge-to-volt converter according to the Integrated Circuit Piezoelectric
(ICP) protocol.

The transducer SP-1L was used to record the data registers
in the field experience, and the ICP unit was connected to the
sound card of a lap-top computer, configuring an autonomous
measurement unit. The sampling frequency was Fs=44,100
Hz for all the registers analyzed in this paper. The recording
stage took place in a garden with evidence of infestation and
the bare waveguide of the sensor was introduced in the lawn,
over the suspicious zone.

Termite sounds from feeding are like sharp pops and crack-
les in the audio output. Hit rates of 25-100 per second are
common in infestation locations1.

We remember that the main goal of this signal-processing
method is to reduce subjectiveness associated with visual or
listening inspection of the registers. This means that in a noisy
environment, it may be possible to ignore termite feeding
activity even with an ad hoc sensor because, despite the fact
that the sensor is capable of register these low-level emissions,
the human ear can easily ignore them because emissions are
buried in the speech, urban or environmental noise, or even
may be confused by the steps or other sounds being propagated
through the soil, in the moment of the measurement. It has
been shown that filtering can only be used as a pre-processing
tool, and that the real enhancement is developed using higher-
order statistics [1].

Termite emissions are non-stationary, so the instrument
treats data by ensemble averaging of the sample registers,
following the indications in [9] (pp. 463-465). Each spectrum
and spectral kurtosis graph presented in this section is the
result of averaging the spectra of the sample registers, or
realizations. As a final remark, acquired data is normalized

according to the norm: ‖s‖ =
(∑N

i=1 |si|2
)1/2

.

The virtual instrument does not include the wavelet analysis
tool (it is thought to be easy to use by a field operator). Wavelet
analysis are introduced here to complement the experimental
results, in the sense of achieving further conclusions regarding
signal separability and entropy criterion.

B. Operating cases

We present the signals out of the instrument display in order
to be analyzed more precisely. A data acquisition time of 5
seconds and a sample frequency of 44,100 Hz were selected.
So every time the user performs an acquisition (pressing the
button ”Go” in the interface) 220,500 points are stored. The
software-engine is adjusted to calculate the averaged spectral
kurtosis (SK) over a set of 220 realizations, each of them
containing 1,000 points.

A number of 30 registers, each of them of 5 seconds length,
have been analyzed. Each register is supposed to contain
evidences of termite activity, where alarm impulses can appear
spontaneously as a consequence of the defense mechanism of
the insects. Among them a number of 5 were considered as
false-positives.

Two couples of graphics (two measurement cases) have
been selected in this paper to summarize the results: a clear
detection case, and a doubtful situation. Fig. 6 presents a clear
detection case, characterized by termite activity signals with
almost non-audible alarms. Two peaks are clearly enhanced
in the SK graph (near 6 kHz, and near 16 kHz), which
matches the insect-activity frequency pattern associated to the
infestation. If a frequency appears below 5 kHz, alarms (head-
banging movements [10]) are supposed to be significative in
amplitude.

1Courtesy of Acoustic Emission Consulting, Inc. The definition os ”hit” is
related to the instrument AED2000, and refers to the times the voltage rms
signal pass the threshold.
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Fig. 6. A clear measurement of activity detection.

The de-noised data in the time domain are shown in the
upper graph of Fig. 7. Applying the spectral kurtosis to the
de-noised time-series, it is seen in the SK graph that all the
frequency components are enhanced, specially those in the
detection bands of interest. This fact confirms the presence of
insects, and it is of special value in doubtful situations, when
they are really needed.
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Fig. 7. De-noising results for data in Fig. 6. A general enhancement of the
spectral kurtosis occurs.

In Fig. 8 a doubtful measurement case is presented. Activity
evidence is outlined only near 6 kHz. Once, the wavelets have
been applied (shown in Fig. 9), the enhancement near 6 kHz
and 16 kHz confirms the detection.

Finally, in order to compare, we present a final couple of fig-
ures to show the measurement performance over background.
In the time-domain, the impulses that are similar to Dirac
deltas ar associated to cracks or little movements of the sensor
while attached in the ground.

This last couple of graphics clearly shows the difference
between a possible detection case and a background pattern.
There’s no peaks in the SK pattern for both the original time-
register and the de-noised register.

V. CONCLUSION

The kurtosis as a global indicator, considered as the aver-
age of the kurtosis computed for each individual frequency
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Fig. 8. A doubtful measurement situation. Only one peak appears and
confirmation is required.
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Fig. 9. De-noising results of data in Fig. 8.

component, is not a valid tool to target termite activity. This
is due to the fact that no discrimination is made among the
frequency bands of the emissions, which may be originated
by different agents. A selective procedure is then required.

The key of the spectral kurtosis detection strategy used
in this work lies in the potential enhancement of the non-
Gaussian behavior of the emissions. If this happens, i.e. if
an increase of the non-Gaussian activity (increase in the kur-
tosis, peakedness of the probability distribution) is observed-
measured in concrete bands (near of 6 kHz and 16 kHz) of
the spectral kurtosis graph, there may be infestation in the
surrounding subterranean perimeter, where the transducer is
attached.

Thus, assuming the starting hypothesis that the insect emis-
sions may have a more peaked probability distribution than
any other simultaneous source of emission in the measurement
perimeter, we have design a termite detection strategy and a
virtual instrument based in the calculation of the 4th-order
cumulants for zero time lags, which are indicative of the
signals’ kurtosis. Its frequency domain representation is the
SK. The engine of the instrument is an estimator of the SK,
which performs a selective analysis of the peakedness of the
signal probability distribution. It has been shown that new
frequency components gain in relevance in the spectral SK
graphs.
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Fig. 10. Spectral kurtosis over a background sample register. No activity is
seen in the surroundings of the characteristic frequencies.
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Fig. 11. De-noising of data in Fig. 10. No information is added.

The repeatability of the instrument is high and helps dis-
criminate when false positives appear.

Regarding the benefits, the main goal of this signal-
processing method is to reduce subjectiveness due to tradi-
tional visual or listening inspection of the registers. This means
that in a noisy environment, it may be possible to ignore
termite feeding activity even with an ad hoc sensor because,
despite the fact that the sensor is capable of register these low-
level emissions, the human ear can easily ignore them. The
commercial version of the instrument is actually been planned
to appear by a the Spanish Company Natural Connection and
Consulting (Konectia).
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Abstract: During worldwide new military revolution, every military great power greatly attaches 

importance to improve mechanization weapon arm, while contending to study new 

information-based weapon system. During investigating the armament requirements for the future 

combat system (FCS), a new species of gun propulsion that dramatically reduces recoil momentum 

imparted to the gun is presented, first conceived by Eric Lee Kathe on 18 March 1999 as part of the 

Army After Next (AAN) project. It is termed RAVEN for RArefaction waVE guN, and may usher in 

a new era of lightweight weaponry. The rarefaction wave gun (RAVEN) can achieve much low recoil 

momentum without decreasing the muzzle velocity of the projectile by means of suddenly opening 

nozzle while projectile traveling special location in barrel. Base on vent mechanics’ work property of 

RAVEN, the paper research the modeling and simulation of RAVEN applying the inertial 

breechblock, and then compare the simulation result with same type orthodox gun. It is concluded 

that RAVEN can extremely reduce recoil impulse and the barrel temperature without effect the 

muzzle velocity under the same loading condition. 

Guns remain heavy, despite advances in material technology, for two principal reasons. Their 

thermal mass is required to manage the heat generated during burst-fire. Also, the inertia of heavy 

guns aids in recoil –lighter guns are endowed with more recoil energy during firing than heavier guns. 

Therefore, RAVEN propulsion is an enabling technology to provide future war fighters with 

lightweight guns that impose less recoil burden and provide improved thermal management. This 

will allow the war fighter to engage with maximum firepower and to keep firing longer. RAVEN can 

achieve much low recoil momentum without decreasing the muzzle velocity of the projectile by 

means of suddenly opening breechblock while projectile traveling special location in barrel. 

Two major different breechblock opening mode are discussed respectively, based on the launch 

mechanism of rarefaction wave gun (RAVEN). RAVEN which apply the redesigned newly inertial 

breechblock is emphatically modeled and simulated, and then compare the simulation result with 

same type orthodox gun. It is concluded that RAVEN can extremely reduce recoil impulse and the 

barrel temperature without effect the muzzle velocity under the same loading condition. 

Keywords: Rarefaction wave gun, interior ballistics, inertial breechblock, simulation 
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Abstract— In this paper, we have investigated the effect of Burg 

AR spectral analysis model degrees to early detection of 
rheumatoid arthritis (RA) disease using Doppler signals belonging 
to right ulnar arterial obtained from patient and healthy subjects. 
This study focuses on the diagnosis of rheumatoid arthritis disease 
via the analysis of Doppler Signals’ AR Burg power spectral 
density graphic with the aid of artificial neural network (ANN) on 
right ulnar arterial. In the feature extraction from Doppler signals 
belonging to right ulnar arterial, the AR Burg model degrees of 5, 
10, 15, 20, and 25 were used. After feature extraction, multilayer 
feed forward ANN trained with a Levenberg Marquard (LM) 
back propagation algorithm was used to classify the Doppler 
signals belonging to right ulnar arterial whether the patient has
RA disease or not (i.e. healthy). In classification of Doppler signals, 
the obtained classification accuracies from combination of AR 
Burg spectral analysis and ANN for AR model degrees of 5, 10, 15, 
20, and 25 were 90%, 95%, 85%, 95%, and 85%, respectively. The 
integrations of AR Burg model degrees of 10 and 20 with ANN 
have achieved better results than other combinations of other AR 
model degrees with ANN on classification of RA disease using 
Doppler signals belonging to right ulnar arterial. This system can 
be useful for physicians to make the final decision without 
hesitation, on early diagnosis of RA disease.

  Index Terms— Rheumatoid Arthritis Disease; Autoregressive
spectral analysis; Burg Method; Artificial neural network; Back 
propagation algorithm

I. INTRODUCTION

heumatoid arthritis (RA) is a systemic chronic 
inflammatory disorder that mainly  affects diarthrodial 
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joints. It is characterized by inflammatory activity of synovium 
leading to the destruction of bone and joint cartilage along with 
periarticular structures like tendons and ligaments. It is the most 
common form of inflammatory arthritis and the world 
prevalence of RA might be around 0.3-1.2 %, in a female/ male 
ratio of 2-5/1. It is most common in patients at 40 - 70 years old 
and its incidence increases with age [1 – 3]. 

Disease activity and therapeutic response has predominantly 
based on clinical assessment and laboratory for serum markers 
of inflammation like erythrocyte sedimentation rate (ESR) or C 
reactive protein (CRP). Tender and swollen joint counts are 
essential for physical examination and evaluating disease 
activity. These are components of disease activity score 28 
(DAS 28) which was developed for evaluating disease activity 
in RA. However, clinical evaluation of joint pain and swelling 
has not been sufficiently reliable [4]. Also direct radiography 
can be used for evaluating established erosions but gives us little 
information on synovial inflammation and early erosions [5].   
However Color Doppler ultrasound (CDU) displays blood flow
in the tissues and it can be a marker of the inflammatory 
response. So the amount of CDU activity in the inflamed 
synovium may be used to quantify the inflammatory activity in 
RA [6]. 

The Doppler effect, which is a resulting from interaction of 
the ultrasonic wave with moving red blood cells, has been 
extensively used to determine blood flow velocity [7]. Doppler 
systems are dependent  on the principle that ultrasound, emitted 
by an ultrasonic transducer, is returned partly towards the 
transducer by the moving red blood cells, thereby inducing a 
shift in frequency proportional to the emitted frequency and the 
velocity along the ultrasound beam [8-10]. The Doppler shift is 
related to the flow velocity by

2
(1)

v
f CosDoppler 




where fDoppler is the mean frequency of the Doppler 

spectrum, v is the flow velocity,  is the acoustic wavelength 
and  is the Doppler angle [7]. Since the scatterers within the 
ultrasound beam does not usually move at the same speed, a 
spectrum of Doppler frequencies is investigated. By using 
spectrum analysis techniques, the variations in the shape of the 
Doppler spectra as a function of time are presented in the form 
of sonograms in order to acquire medical information [8-10].

Doppler Ultrasound detects the movement of red blood cells 
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in the vessels by the analysis of the change in frequency of the 
returning echoes. This information is converted into sound. 
Additionally, it is possible to delineate flow curves and to 
designate the direction of the blood flow [11].  

In literature, the comparison of healthy and patient subjects 
having RA disease over Doppler Ultrasound images on RA 
disease and the resistive index (RI) and pulsalite index (PI) 
index comparisons calculated on these images have been 
generally conducted by researchers in recent years. Therefore, 
this study is a new study using Doppler ultrasound signals on the 
early diagnosis of RA disease. There are a few studies related to 
RA disease in literature. 

Among these, Kiriş et al. has examined synovial vascularity 
and flow patterns in hand and wrist joints- metacarpophalangeal 
joints and ulnar stiloid regions-of patients with RA using power 
Doppler ultrasonography (PDUS) and spectral Doppler analysis 
and to assess the accuracy of PDUS in detecting overall disease 
activity in RA patients [12].

Terslev et al. has evaluated the sensitivity and specificity of 
Doppler ultrasound in diagnosing arthritis in the wrist and 
hands, and, if possible, to define a cutoff level for this study
ultrasound measures for inflammation, RI, and color fraction 
[13].   

Varsamidis et al. has evaluated the use of spectral Doppler in 
the assessment of patients with RA. The study group consisted 
of 32 patients with RA followed up clinically and by ultrasound 
using the RI measurements in the patients’ wrists as indicator of 
inflammation [14].   

In this work, the effect of Burg AR spectral analysis model 
degrees to early diagnosis of RA disease using Doppler signals 
belonging to right ulnar arterial achieved from patient and 
healthy subjects has been searched. The detection of RA disease 
comprises of two phases: (i) feature extraction using AR Burg
power spectral density (PSD) graphic from Doppler ultrasound 
signals taken from right ulnar arterial and (ii) the classification 
of RA disease as healthy and patient using ANN. The AR Burg
model degrees of 5, 10, 15, 20, and 25 were used in the part of 
feature extraction from Doppler signals belonging to right ulnar 
arterial. Later, multilayer feed forward ANN trained with a LM
back propagation algorithm was used to classify the Doppler 
signals belonging to right ulnar arterial whether the patient has 
RA or not. 

II. MATERIAL 

A. Hardware and Demographic Acknowledgments

The study included 24 patients with RA diseases, ( 2 men and 
22 women with an age of 38 -70, mean: 48 years) and 16 healthy 
(1 man and 15 women with an age of 37 - 64, mean: 48 years).

Doppler signal acquisition was conducted by General 
Electric LOGIQ S6 Power Doppler Ultrasound Unit in the 
Radiology Department, Meram Faculty of Medicine, Selcuk 

University. The system hardware was provided of Power
Doppler Ultrasound unit that can work in the pulsed mode, 
linear ultrasound probe (12 MHz), input – output card and a 
laptop personal computer (Fig. 1). A laptop personal computer 
was used for storage, displaying and spectral analysis of the 
acquired Doppler data. Before Doppler data were recorded, a 
color and pulsed Doppler ultrasound examination of the right 
ulnar arterial was performed in order to exclude the presence of 
a hemodynamically significant stenosis. A linear ultrasound 
probe of 12 MHz was used to transmit pulsed ultrasound signals 
into the right ulnar arterial. Signals reflected from the arterial
were recorded to derive out the Doppler shift frequencies. In all 
tests performed on the patients and healthy subjects, the 
insonation angle and the presetting of the ultrasound were kept 
fixed. The insonation angle was adjusted via electronic steering
methods and manually in order to keep a constant value of 60
degrees on a longitudinal view. The sampling volume was 
placed within the center of the arterial. The amplification gain 
was carefully set to take a clean spectral output with minimized 
background noise on the spectral display [15-18]. The audio 
output of ultrasound unit was sampled at 44100 Hz and then sent 
to a laptop computer via an   I/O card.

Fig. 1. Block diagram of the system hardware used to acquire Doppler data.

(a)

I / O
Unit

Doppler
Unit

Ultrasonic
probe

Laptop
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126 ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France



(b)

Fig. 2. Doppler signals for (a) a patient subject having RA disease and 
(b) a healthy subject on the right ulnar arterial

  
  Figure 2 presents the Doppler signals for a patient subject 
having RA disease and a healthy subject on the right ulnar 
arterial. As shown in these figures, the difference between 
healthy Doppler signals and patient Doppler signals is clear. 
Transforming the Doppler signals from time domain to 
frequency domain using AR Burg method, RA disease has been 
diagnosed. 

III. METHOD 

In this paper, we have proposed a system which consists of 
three parts: (i) measurement of right ulnar arterial Doppler 
signals, (ii) feature extraction from right ulnar arterial Doppler 
signals using AR Burg spectral analysis method, (iii) 
classification of right ulnar arterial Doppler signals using neural 
network. Figure 3 shows the flowchart of proposed method. We 
have explained the following subsections below. 

Fig. 3 The flowchart of proposed method

A. Feature Extraction using AR Burg Method

AR model is the most widely used model, first it is suitable for 
representing spectra with narrow peaks and secondly a number 
of linear equations need to be solved for finding the AR 
parameters. The Burg method is a least-squares optimization 
problem with the constraint from which the reflection 
coefficients obtained. The problem must satisfy 

Levinson-Durbin recursion. The Burg method has three 
advantages. The Burg method has high frequency resolution, it 
results stable AR model and it uses Levinson-Durbin recursion 
[19-20].

An AR process model is defined as
* *( ) ( ) ( 1) ... ( ) (2)1v n x n a x n a x n pp     

where  ( ), ( 1) , ..., ( )x n x n x n p  is a realization of the 

process and ( )v n is a white-noise process with variance 2 . 

Given the AR parameters  ai , the power spectrum density 

(PSD) of  ( )x n is found as
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B. Classification of Right Ulnar Arterial Doppler Signals 
Using ANN

An ANN is a data processing system where data spreads
parallel on. An ANN can determine its conditions and adjust 
itself to enable different responses by using inputs and desired 
outputs, which are provided to the system. The most charming
thing about an ANN is that it works as an expert system that will 
lastly help the physicians with the decision processing about the 
existence of the disease. An ANN is trained with the available 
data samples to discover the association between inputs and 
outputs [20, 21].

A multilayer feed forward ANN trained with a  LM back 
propagation algorithm was used to classify the Doppler signals 
belonging to right ulnar arterial as patient having RA disease or 
healthy. The advantage of using this type of ANN is the rapid 
execution of the trained network, which is especially
advantageous in signal processing applications. ANN training is
normally formulated as a non-linear least-squares problem [20].

Figure 4 shows the structure of ANN with LM used in our 

Acquisition of right ulnar arterial Doppler signals

Feature extraction from right ulnar arterial Doppler 
signals using AR Burg spectral analysis method

Classification of right ulnar arterial Doppler        
signals as healthy and RA diseases using ANN
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experimental studies. In the input layer, hidden layer, and output 
layer, there are 129 features (neurons), 10 hidden neurons, and 2 
outputs (health and patient), respectively. 

Fig. 4.  The structure of ANN with LM

The back propagation algorithm is a widely used training 
procedure that adjusts the connection weights of a multilayer 
perceptron. As a matter of fact, the LM algorithm is a 
least-squares estimation algorithm based on the maximum 
neighborhood idea. A multilayer perceptron consists of three 
layers: an input layer, an output layer, and one or more hidden 
layers. Each layer is composed of a predefined number of 
neurons [22].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this study, the effect of the model degrees of Burg AR 
spectral analysis method to early diagnosis of RA disease has 
been examined. First, the Burg AR spectral analysis method was 
used to extract the relevant features from Doppler signals 
belonging to healthy and patient subjects having RA disease. In 
this part, we have used the various model degrees in Burg AR 
method and applied to Doppler signals. For each model degree, 
the power spectral density (PSD) values were obtained. And 
these obtained PSD values were applied to input of ANN to 
classify the Doppler signals as healthy and patient subject 
having RA disease.
      

In training and testing of ANN, the data partition of 50-50% 
train-test has been used. In our dataset, there are 24 patients with 
RA diseases and 16 healthy subjects. Totally, 40 subjects were 
used to diagnose the RA disease. In order to evaluate the 
performance of ANN models, the classification accuracy, ROC 
(Receiver Operating Characteristic) curves, sensitivity and 
specificity values have been used. Table 1 shows the obtained 
results for model degrees of 5, 10, 15, 20, and 25 in Burg AR 
method in the early diagnosis of RA disease. And also, we have 
given the obtained ROC curves for 5, 10, 15, 20, and 25 in Burg 
AR method and showed in Figure 5. 
    

These results have shown that the model degrees of 10 and 20 

in Burg AR method have obtained best classification results in 
classification of right ulnar arterial Doppler signals.  

Fig.5. ROC curves for model degrees of 5,10,15,20 and 25 of AR Burg spectral 
analysis method on the early diagnosis of RA diseases

TABLE I
THE OBTAINED RESULTS FOR MODEL DEGREES OF 5, 10, 15, 20, AND 25 IN BURG 

AR METHOD IN THE EARLY DIAGNOSIS OF RA DISEASE FROM ANN CLASSFIER

Model Degree in Burg
AR method

Classification
Accuracy

(%)

Sensitivity 
(%)

Specificity
(%)

5 90 100 80

10 95 92,30 100

15 85 80 100

20 95 92,30 100

25 85 80 100

V. CONCLUSION

In this paper, we have examined the effect of model degrees 
in Burg AR spectral analysis to early detection of RA disease 
using Doppler signals belonging to right ulnar arterial obtained 
from patient and healthy subjects. For model degrees of 5, 10, 
15, 20, and 25 in Burg AR method, the RA disease has been 
diagnosed by using ANN classifier. In the obtained results, the 
best prediction accuracy has been achieved for model degrees of 
10 and 20. This study is a new work related to diagnosis of RA 
disease using right ulnar arterial Doppler signals belonging to 
healthy and patient subjects.  In future, we will increase the 
number of patient and healthy subjects to further evaluate 
proposed method. Therefore, this study is the preliminary study 
conducted by us. This system can be useful for physicians to 
make the final decision without hesitation, on early diagnosis of 
RA disease.
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A technique of nonlinear mathematical programming good for 

grounding an optimal technological process of nitrogenization in a 

distributed environment of electrostatic field is proposed. The 

technique is based on the quadratic approximation for deviations 

of the vector argument of deviations of the vector argument of 

physics-chemical factors of metal working from some given regime 

of nitrogenization and imposes minimal requirements to 

experimental data in the process of identification of the 

mathematical model of the process of obtaining an nitrogenized 

layer. 

 
Identification, !itrogenization, Optimization, Regression 

Analysis 

I. INTRODUCTION 

classical view to mathematical modeling implies a 

descriptive approach characteristic of a physicist: the 

functions bound up with natural phenomena are subject to 

definite universal principles (laws), and the problem is to 

discover them. But the practice of descriptive sciences is 

different. The central conception sooner presumes that 

mathematical modeling consists in following the principle: the 

desired optimal model is simply the most exact model within the 

limits of a given admissible level of complexity or the least 

complex model, which approximates the (experimental) data 

observed with a precision up to a given admissible 

discoordination. The idea of formalization of considerations of 

model’s complexity, which relates to the theory of identification 

of systems, was investigated in [1,2]. From the viewpoint put 

forward by L. Ljung [3,4], the idea that identification algorithms 

(by all means) have interpretation in the language of optimal 

approximation, is the main one. In the present paper have we 

essentially employed both of the indicated approaches, i.e. we 

have outline a combined methodology, which forms the ground 

of the procedure of optimal nonlinear approximation in the 

process of mathematical modeling  of the process of 

nitrogenization of a mechanical part’s surface to be processed 

under the conditions of effect of some inversive electrostatic 

field (with a non-stationary potential), within the frames of some 

linear-quadratic representation of vector regression equations. 

 
This work was supported by Basic Research Program No. 22 of the 

Presidium of the Russian Academy of Sciences (Project No. 2.5), by the 

Russian Foundation for Basic Research (Project No. 05-01-00623), and by the 

Program “Leading Scientific Schools” (Project No. NSh-1676.2008.1). 

II. STATEMENT OF THE PROBLEM OF SYNTHESIS OF OPTIMAL 

MULTI-DIMENSIONAL REGRESSION 

In principle, static models of the type “input–output” may be 

obtained from dynamic ones by applying experimental 

stationary finite values (or, what is equivalent, for the zero 

frequency). Unfortunately, the dynamic model is generally 

linearized, what is inadmissible for the static model, when this 

model is to be used for the purpose of optimization within a 

substantial band. Furthermore, the static model must be more 

detailed than the dynamic one (optimization, which improves 

the productivity by some 1%, already represents a substantial 

interest from the application viewpoint), so, the 

structural-parametric identification of the multi-dimensional 

static nonlinear system of the type “input–output” in the absence 

of complete a priori understanding (knowledge) of the 

physics-mathematical principles of its functioning, a so called 

mathematical model of “black box”, deserves an attentive deep 

consideration, especially when we have to ground the 

admissible level of complexity of the process under scrutiny. 

From now on, R is the field of real numbers; R
n
 is an n-vector 

space over R (with the Euclidean norm denoted by ||⋅||R
n
); 

Mn,m(R) is the space of all the n×m-matrices (i.e. the matrices of 

dimension n×m) with the elements from R and with the 

Frobenius matrix norm ||D||F:=(∑dij
2
)

1/2
, D=[dij] (what is 

equivalent to D∈Mn,m(R) ⇒||D||F=(tr D
T
D)

1/2
); as usually, the 

symbol := denotes the equality by definition; det is a matrix 

determinant; tr G:=∑gii is the trace of quadratic matrix G (the 

sum of its diagonal elements); «T» is the operation of 

transposition of a matrix; En is a unit n×n-matrix; col(a1,…,an) 

is a column vector with real elements a1,…,an. 

A normal approach in the theory of identification of complex 

systems of the type of “input–output” methodologically consists 

in [5] a priori fixation of some partially parameterized class of 

stationary models and then, on the basis of fixed a posteriori 

data, to choose the parameters of the model’s equations, which 

would minimize some formal criterion. In essence, this 

approach may be considered as application of the first method 

(denoted in the Introduction), in which “adjustment of the 

model’s parameters” (under a fixed number of free coefficients 

in its equations) is conducted. In this case, the criterion is 

defined by the model’s complexity chosen a priori. So, for the 

purpose of further consideration, let us identify a class of 

stationary static interconnected nonlinear systems of the type 
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“input–output”, which are described by the vector-matrix 

regression equation of the form 

 

y=c+Au+diag [uTB1u,…,uTBnu]col(1,…,1)+ε(u);      (1) 

 

y∈R
n
 is the vector of system’s output signals, u∈R

m
 is the vector 

of system’s assigning influences, c∈R
n
, A∈ Mn,m(R), 

Bi∈Mm,m(R), Bi
T=Bi (1≤i≤n) and diag [...] is the diagonal 

n×n-matrix of corresponding bi-linear controlling influences 

uTBiu. As far as the vector function ε(u) is concerned, we 

presume that the structure of its analytical representation is a 

priori unknown, but on the whole, it inexplicitly depends on the 

choice of the linear c+Au and bi-linear diag [uTB1u,…,uTBnu] 

components of the input signal – because the nonlinear 

component ε(u) of equation (1) may always be considered as a 

residual (“under-modeled”) term of the expansion of its 

right-hand side. 

It is clear, the result y, predicted by the linear-quadratic form 

(LQF) c+Au+diag [uTB1u,…,uTBnu] of the right-hand side of 

equation (1), shall differ from the real signal, because the 

nonlinear law ε(u) introduces some influence. On the other 

hand, as noted above, the analytical representation of the term 

ε(u) depends on the choosing (fixation) of coefficients of the 

LQF. As a result, on the stage of identification, correction 

consists in varying the parameters of the LQF so that the results 

obtained, and those predicted on the basis of the LQF, would 

maximally coincide with each other. Obviously, new forecasts 

and parametric correction may then be conducted operatively 

(furthermore, additional information is used mainly for 

conducting partial or complete analysis of adequacy of the 

model on the basis of the latest current measurements). In other 

words, speaking more formally, the methodological paradigm 

of the a posteriori-optimal parametric synthesis of LQF shall 

provide for min ||ε(u)||R
n
 on the family of the representative 

sample of the field experiments conducted. When we proceed to 

the “language of formulas”, this paradigm acquires the form of 

the following optimization problem. 

Statement of the problem of a posteriori-optimal parametric 

synthesis of LQF for the equation of nonlinear regression: find a 

vector-matrix solution c, A, Bi, i=1,…,n bi-criterion problem 

 

min(∑l=1,…,k(||y(l)-c-Au(l)-diag[uT(l)B1u(l),…,uT(l)Bnu(l)] 

               ·col(1,…,1)||Rn)
2
)

1/2
,    (2) 

min(||c||Rn2
+||A||F

2
+∑i=1,…,n||Bi||F

2
)

1/2
, 

 

y(l)∈R
n
, u(l)∈R

m
 are vectors of experimental data (here y(l) is 

the “reaction” to the input influence u(l)), k is the number of 

experiments completed; noteworthy, there are no 

methodological constraints imposed on the value of k. 

Remark 1. The first condition − min ∑… in the 

mathematical statement (2) guarantees – by the general sample 

of k field experiments – the optimal linear-quadratic 

approximation of the scrutinized physical process in terms of 

the nonlinear regression model (1); the second condition − 

provides (in the case of non-uniqueness of the solution for the 

first min ∑…) for parametric concretization of such a model 

with the property of the minimal matrix norm. 

III. PARAMETRIC IDENTIFICATION OF THE LQF-STRUCTURE OF 

EQUATIONS OF NONLINEAR VECTOR REGRESSION 

Let us relate the identification algorithm in the multi-criterion 

problem statement (2) for the interconnected stationary 

nonlinear system “input–output” of class (1) to the concept of 

normal pseudo-solution (or, what is equivalent, of canonical 

solutions by the method of least squares) for the system of linear 

algebraic equations. 

Definition 1 [6, p. 501]. Vector x∈R
p
 is called the normal 

pseudo-solution of the system of linear equations Dx=d, 

D∈Mq,p(R), d∈R
q
. This vector has the smallest Euclidean norm 

||x||R
p
 among all the vectors, which make minimum the value of 

||Dx-d||Rq. 

Let D∈Mq,p(R) and D
+
 be the inverted reciprocal 

(pseudo-inverse) Moore-Penrose matrix [6, p. 500] for matrix 

D. The asymptotic construction of the pseudo-inverse matrix 

has the following analytical form: D
+
=lim{D

T
(DD

T
+ τEq)

-1
: 

τ→0}. From now on, the mnemonic sign «
+
» denotes the 

operation of pseudo-inverting of the respective matrix. 

Lemma 1 [7, p. 35]. Vector x=D
+
d represents a normal 

pseudo-solution of the linear system Dx=d, D∈Mq,p(R), d∈R
q
. 

For the purpose of “interrelation” between the variables of 

input effects on the data of the general sample, let us denote by 

û(l) the (1+m(m+3)/2)-vector, which has the following 

coordinate representation: 

 

û(l):=col(1,u1(l),…,um(l),u1(l)u1(l),…, 

ur(l)us(l),…,um(l)um(l))∈R
m(m+3)/2

, 1≤r≤s≤m,    (3) 

col(u1(l),…,um(l)):=u(l)∈R
m
, 1≤l≤k. 

 

Let us call U:=[û(1),…,û(k)]
T∈Mk,1+m(m+3)/2(R) the full 

matrix of experimental data related to input effects, 

respectively, βi:=col(yi(1),…,yi(k))∈R
k
 − the fill vector of 

experimental data related to output signal yi (i=1,…,n). Next, 

orienting to the linear-parametric description of the coefficients 

for the nonlinear model of the type “input–output” for the output 

signal yi, let us write down – due to system (1) – the 

linear-quadratic form of its regression equation 

 

ci+∑1≤j≤maijuj+∑1≤q≤p≤mbiqpuqup, (i=1,…,n).         (4) 

 

Now introduce the (1+m(m+3)/2)-vector of regression 

model’s parameters. Obviously, due to (4), any fixed set of n 

such vectors completely defines the representation of the LQF 

with respect to some “input–output” model of type (1): 

zi:=col(ci,ai1,…,aim,bi11,…,biqp,…,bimm)∈R
1+m(m+3)/2

, 1≤q≤p≤m. 

Proposition 1. The optimization problem (2) has the solution 

 

zi
*
=U

+βi, i=1,…,n;                  (5) 

 

here U is a complete matrix of experimental data related to 
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input effects, βi is the full vector of experimental data related to 

output signal yi (i=1,…,n). 

Remark 2. Qualitative estimates a), b) from Corollary 1 

depend mainly on the volume of a posteriori information 

(number of experiments k), i.e. if k>1+m(m+3)/2, then, as a rule, 

realized is item a); if k≤1+m(m+3)/2 then it is quite probable 

that realized is item b). 

IV. MODELING OF THE LINEAR-QUADRATIC STRUCTURE OF 

EQUATIONS OF VECTOR REGRESSION FOR THE PROCESS OF 

NITROGENIZATION 

Without any loss of generality, in the capacity of the initial 

(zero) position of the vector of input control influences u it is 

possible to accept some empirically identified (from the general 

set of experimental data) point ω of space R
m
; obviously, in this 

case, coordinates u1,…,um of vector u shall be considered as 

deviations with respect to the regime ω. 

The process of nitrogenization in the environment of inversive 

electrostatic field in a series of field experiments (k=12) may be 

described in terms of the following variables: 

vector y=col(y1,y2,y3)∈R
3
 of controlled characteristics of 

nitrogenization: 

y1 − Vickers surface hardness number 10
-1

 [HV], 

y2 − specific wear 10
-1

 [mg/cm
2
], 

y3 − depth of the nitrogenized layer 10
2
 [mm]; 

vector u=col(u1,u2,u3,u4)∈R
4
 of variations of the regime’s 

parameters ω=col(ω1,ω2,ω3,ω4): 

u1 − variation (w.r.t. ω1) of the degree of dissociation of 

ammonium 10
-1

 [%], 

u2 − variation (w.r.t. ω2) of the temperature of the process 

10-1[оС], 

u3 − variation (w.r.t. ω3) of the duration of the process 10
-1

 [h], 

u4 − variation (w.r.t. ω4) of the voltage on the electrodes 10
-3

[V]. 

 
Note, direct application of analytical methods developed 

above, results in not very complex but bulky computations 

(below the computation was conducted in the environment of 

MATLAB [8]); for example, according to Table 1, matrix U has 

the dimension of k×1+m(m+3)/2=12×15, and the matrix 

pseudo-inverse with respect to U
+
 has, respectively, the 

dimension of 15×12. 

Taking into account the solution of the parametric 

optimization problem (4)-(6) and equation of the model of 

linear-quadratic vector regression (which describes in terms of a 

multi-dimensional polynomial approximation the 

interconnected process of nitrogenization in the environment of 

inversive electrostatic field, which possesses the variation of the 

potential due to the parametric representation of the vector 

structure U
+
, and also, according to Table 1, of vectors βi, 

i=1,…,3) have the form: 
 

y1(u)=97,4-65,075u1-3,706u2+9,369u3+5,991u4-64,313u1
2 

          +25,339u1u2+11,2136u1u3+7,159u1u4+0,529u2
2 

          -8,346u2u3-6,161u2u4-8,607u3
2
+6,29u3u4+6,227u4

2
; 

y2(u)=13,1-9,098u1-2,232u2+4,435u3-2,235u4-8,648u1
2 

               
+3,531u1u2-15,604u1u3+5,491u1u4+0,067u2

2
      (7) 

               
+2,361u2u3+0,502u2u4-3,986u3

2
-5,336u3u4+0,5u4

2
; 

y3(u)=17+0,398u1+0,964u2+1,388u3-0,437u4+0,226u1
2 

                
-0,424u1u2+5,264u1u3-1,84u1u4+0,507u2

2
+0,091u2u3 

           -0,772u2u4-1,56u3
2
-0,027u3u4+0,702u4

2
. 

 

Critical analysis of the “predicted efficiency” of the proposed 

model intended for nonlinear mathematical description of the 

physics-chemical properties of the process of nitrogenization 

expressed in terms of quasi-linear vector-matrix regression 

equations (1), i.e. by the system (7), allows to conduct the 

relative comparison of the latter three columns of Table 1 with 

the following table obtained due to (7). 
 

 

In the next section, we are going down to the 

multi-dimensional geometric investigation of “minimax” 

properties of solutions for the nonlinear vector regression, 

which describes electrostatic nitrogenization of the processed 

part surface, to the end of finding the regime of wear resistance 

and corrosion resistance for the geometry of its part. An 

TABLE II 

Number in 

the forecast 

Forecast for the nonlinear 

regression model 

№ y1(u) y2(u) y3(u) 

1 80,3 6,0 14 

2 93,3 3,4 22 

3 97,4 13,1 17 

4 84,7 12,2 18 

5 79,2 10,3 28 

6 54,8 42,4 11 

7 87 11,9 25 

8 89,4 3,5 33 

9 86,226 4,129 21,782 

10 94,066 3,989 24,582 

11 97,251 3,858 27,564 

12 89,658 3,624 34,073 

 

TABLE I 

EXPERIMENTAL DATA OF THE PROCESS OF OBTAINING THE NITROGENIZED 

LAYER ARE: ω1=45 %,   ω2=500 
ОС,   ω3=25 H,   ω4=-1900 V 

Exper

iment 
Assigning influences Nitrogen layer parameters 

№ u1 u2 u3 u4 y1 y2 y3 

1 0 0 -1 0,4 80,3 6,0 14 

2 1 5 -1 0,4 93,3 3,4 22 

3-ω 0 0 0 0 97,4 13,1 17 

4 1 0 0 3,4 84,7 12,2 18 

5 0 5 0 3,4 79,2 10,3 28 

6 1 0 -1 3,8 54,8 42,4 11 

7 0 5 -1 3,8 87,0 11,9 25 

8 1 5 0 0 89,4 3,5 33 

9 0,4 3 -0,4 0,18 87,0 4,2 22 

10 0,3 3,5 -0,3 0,16 92,0 3,8 24 

11 0,2 4 -0,2 0,14 98,8 4,0 28 

12 0 5 0 0,1 89,4 3,6 34 
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interesting trait of the analytical results obtained is their explicit 

algebraic dependence on the parameters of (7). 

V. INTERPOLATION OF THE PHYSICS-TECHNOLOGICAL 

CHARACTERISTICS OF THE NITROGEN LAYER. OPTIMIZATION OF 

THE PROCESS OF NITROGENIZATION 

After all, the main objective of mathematical modeling is to 

answer the question “How it can the scrutinized physical 

process proceed and how it must proceed actually under some 

external controlling influence?”. The answer to the second part 

of the question gives the solution of the optimization problem 

(9), while the answer to the first presumes the following fact: 

Proposition 2. The indicator of quality of nitrogenization 

Ji(u):=yi(u), (i=1,…,n) may have the internal maximum or 

minimum in the identified LQF-structure of equations of 

nonlinear regression only at point ui*∈R
m
: 

 

ui*=-Bi
-1
A

T
ei/2,                   (8) 

 

{e1,…,en} − basis in R
n
. Furthermore, when u

T
Biu is a negative 

definite quadratic form, the indicator Ji(u) has maximum at 

point (8); when u
T
Biu is a positive definite quadratic form, the 

indicator Ji(u) has minimum at ui*. In the case, when u
T
Biu 

assume both positive and negative values, we encounter the 

stationary point of more complex type, i.e. the so called saddle 

point. 

Corollary 2. If matrix Bi is positive definite (similarly, 

negative definite) then the minimum (resp. maximum) value of 

the quality indicator Ji(u) is ci-ei
T
ABi

-1
A

T
ei/4. 

Now we can solve the analytical problem, which has been the 

stimulus to investigation of positiveness (or negativity) of 

quadratic forms from equation (7), i.e. to answer the question – 

when the stationary point (8) is the point of relative minimum, 

maximum or the saddle point. Speaking more formally, the 

problem of defining the positive (or negative) algebraic 

definiteness of the quadratic forms u
T
Biu has been reduced to 

the geometric problem of rather general type − computing of 

eigenvalues λij (i=1,…,3; j=1,…,4) of symmetric matrices Bi 

(i=1,…,3): 

- λ11=-67,5644, λ12=-9,2743, λ13=1,8251, λ14=8,8491, what 

speaks about the existence of a stationary saddle point for 

the goal functional y1(⋅): R
4→R; 

- λ21=-14,7856, λ22=-2,6697, λ23=0,362, λ24=5,0252, what 

speaks about the existence of a stationary saddle point for 

the goal functional y2(⋅): R
4→R; 

- λ31=-3,5248, λ32=0,0847, λ33=0,8665, λ34=2,4482, what 

speaks about the existence of a stationary saddle point for 

the goal functional y3(⋅): R
4→R. 

While combining previous results, the standard regime of 

nitrogenization, which provides for maximum hardness, wear 

resistance and the thickness of the physical structure of nitrogen 

layer of the processed surface of a mechanical part, let us relate 

them to the solution of the optimization problem of the 

following form 

 

max {F(u)=r1J1(u)+r2J2(u)+r3J3(u): u∈R
4
},        (9) 

Ji(u):=yi(u) (i=1,…,3) 

 

where the weighting coefficients ri, i=1,…,3 of the goal 

functional F(u) must be chosen, while proceeding from the 

considerations of proper expert assessment of the differentiated 

effect of the quality indicators Ji(u), i=1,…,3 [9]. We have 

considered the following weighting coefficients: r1=0,5; 

r2=-0,3; r3=0,2; the sign «-» with the coefficient r2 means that 

the problem statement (9) actually provides for relative 

minimization (!) of the parameter of specific wear y2 (what is 

equivalent, displacement to the point of min J2(u) in the linear 

structure of functional F(u)). This allows us to write down the 

goal functional (9) in the following analytical form: 

 

F(u)=48,17-29,729u1-0,99u2+3,632u3+3,579u4-29,517u1
2 

         +11,526u1u2+11,341u1u3+1,564u1u4+0,346u2
2
    (10) 

              
-4,863u2u3-3,4u2u4-3,42u3

2
+4,74u3u4+3,1u4

2
. 

 

In this case, parameters of the variations have constituted the 

following intervals (in terms of relative physics units): 

u1=±40%, u2=±50 
о
С, u3=±5 h, u4=±1000 V. 

Development of new techniques of alloying metals 

necessitates existence of an adequate mathematical model, 

which would be capable of predicting the reciprocal influence 

of different factors of the physics-chemical environment on the 

process of metal working, as well as revealing the influence of 

mechanical and geometric characteristics of the processed 

part’s surface upon the results obtained. As far as the 

multi-factor process of nitrogenization is concerned, the 

mathematical model of optimization (9) gives such a possibility, 

i.e. the possibility to reveal the most critical parameters and give 

the defining directions of improving the exploited and 

developed technological installations intended for obtaining the 

nitrogenized layer. Proposition 2, and also formula (8), which 

allow to compute the geometric coordinates of the stationary 

point for the optimization problem (9), define (in terms of 

system (1)) the following highly efficient technological 

parameters of the regime of nitrogenization: 

Proposition 3. The stationary point u*∈R
4
 in the problem 

related to optimization of the regime of electrostatic 

nitrogenization (9) has the algebraic solution 

 

u*=-(r1B1+r2B2+r3B3)
-1

((e1+e2+e3)
T
diag [r1,r2,r3]A)

T
/2,  (11) 

 

in this case, the sufficient condition (that the given point 

ensures satisfaction of max {F(u): u∈R
4
}) is the requirement 

that it is elliptic: 

 

det [bij]q<0,   q=1,…,4                (12) 

 

or, what is equivalent, for the eigen-numbers λi of matrix 

(r1B1+r2B2+r3B3) we have λi<0, i=1,…,4; here [bij]q∈ Mq,q(R) 

are the main sub-matrices [6, с. 30] of matrix (r1B1+r2B2+r3B3). 
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VI. DISCUSSION 

Let us start from the remark that if condition (12) is not 

satisfied the stationary point (11) is possibly the saddle 

(hyperbolic) point of functional F(u) and, consequently, 

additional analysis of coordinates (11) is required; when 

speaking more formally, the availability of the saddle point is 

guaranteed by the replacement – at least in one relation (but not 

in all relations) – of the inequality «<» from (12) with «>». In 

this case, a similar replacement of «<» with «≤» possible 

provokes the structure of the parabolic point. 

Due to system (1) (or, what is equivalent, due to equation 

(10)) the stationary point (11) in the coordinate representation 

(of the vector-row) writes u*
T
=[0,1761  3,7794  -0,5622  

1,8787], or, the same, in terms of physical dimensions and 

“counting” from the regime ω, we have: u*
T
=[46,76 %  537,794 

о
С  19,378 h  -21,3 V]. 

Let us show that the mathematical result (in particular, the 

coordinates of the stationary point of the regime of 

nitrogenization (11)) obtained above are in good 

correspondence with the logic of our physics related reasoning. 

Since the eigen-numbers of matrix (r1B1+r2B2+r3B3) are, 

respectively, λ1=-31,8762, λ2=0,5298, λ3=-3,276, λ4= 5,1355, 

this gives evidence that functional F(u) has a stationary saddle 

point: R
4→R for the weighting coefficients ri, i=1,…,3, chosen 

above. 

According to (10), at the stationary point u* obtained the 

functional F(u) reaches its “max” with respect to variables u1 

and u3 and “min”, respectively, with respect to u2 and u4. The 

physical sense of this proposition implies the following: as far as 

the structure F(u) is concerned, it is not possible to exceed 

(make larger) the degree of dissociation of ammonium by more 

than 46,76%, and the duration nitrogenization by more than 

19,378 hours, and, furthermore, in this case, simultaneously, it 

is better not to decrease the temperature of the gas mixture 

below the level of 537.794
о
С, it is also better not to make the 

general potential of the electrostatic field smaller than 21.3 V. 

Otherwise, violation of these parameters shall provoke the 

reduction of efficiency of the process of nitrogenization in the 

aspect of reaching the technological indicator F(u), which 

provides for the maximum surface hardness and the depth of the 

nitrogenized layer side by side with minimization of specific 

wear of the part processed. 

If computed (predicted) coordinates of the stationary point 

(11) go beyond the confidence region of adequacy of the 

mathematical model (7) in virtue of some physics-technological 

factors-parameters, than it is necessary to conduct an additional 

practical experiment bound up with nitrogenization, which is 

“maximally close” to the coordinates (11) and introduce (in the 

capacity of the regime ω) the data of this experiment into the 

extended matrix of experimental data U, after what it is possible 

to conduct recomputation of all the stages of optimization of the 

process of obtaining the nitrogenized layer, which is described 

above (if there is the need, such an experiment and the process 

of identification of model (1) are to be repeated); this important 

improvement, in essence, methodologically extends the 

standard [10] procedure of planning the experiment. 

VII. CONCLUSION 

We have described the process of constructing a nonlinear 

mathematical model of the type “input–output” for the process 

of nitrogenization in the distributed environment of electrostatic 

field. This model is used for technological computation of 

hardness parameters for the material of the metal part, whose 

surface is processed. It can be used for assessment of the 

specific mechanical wear, the depth of the nitrogenized layer, 

etc. This regression model uses the identified (on the basis of 

experimental data obtained) multi-dimensional quadratic 

equations, what allows the researcher to adequately describe the 

process of nonlinear diffusion in the process of 

“nitrogen-alloying” within a wide band of variations of i) the 

degree of dissociation of ammonium, ii) the temperature, iii) the 

duration of the process and iv) the electric voltage at the pair 

“anode–cathode”. 

Deviations in the computed (predicted) values of the 

synthesized nitrogenized layer and experimental data revealed 

are hardly ever of principal character. This has given us the 

opportunity to propose an efficient mathematical technique (“a 

finite chain” of algebraic formulas) for computing optimal 

properties and parameters of nonlinear multi-factor regime of 

nitrogenization. The ideas explicated in the present paper may 

be developed in several directions of theoretical-applied 

investigations oriented to improvement of the algorithms of 

computing an optimal technology of nitrogenization in an 

electrostatic field proposed above, as well as to extending the 

frames of adequacy of regression equations of nitrogenization at 

the expense of additional investigation of the factors of its 

nonlinearity; these can be oriented to: 

- determination and algorithmization of the procedure of 

choosing the weighting coefficients ri, 1≤i≤3 in (9), while 

proceeding from satisfaction of the algebraic conditions 

(12), which provide for the elliptic character of the 

stationary point of the goal functional (9); 

- extension of the linear-quadratic form of regression 

equations (1) by the “Taylor expansion” of the vector 

function y of higher order; 

- account (in the capacity of extended coordinates of the 

vector function y of the regression model) of such 

physics-mechanical parameters of the synthesized 

nitrogenized layer in the environment of some electrostatic 

field, such as the coefficient of dry friction for the surface 

processed and for the brittle nitrogenized layer obtained; 

- constructing the process of identification of a nonlinear a 

posteriori–adaptive mathematical model of nitrogenization 

with an additional condition of presence of high-frequency 

electromagnetic field; determination (under such a 

problem statement) of high technological multi-factor 

parameters of the process of nitrogenization, and also 

obtaining optimal values for the length and the amplitude 

of the waves of electromagnetic oscillations. 
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Abstract—Engineering physical systems can be represented using 
different mathematical modeling tools with finite dimensional 
models. However, the resulting models are usually complex and 
of high order. The complexity of these models imposes 
computational and implementation difficulties in simulation, 
analysis and control design. Several optimal model reduction 
methods that are mainly based on conventional analytical 
optimization techniques, either in time domain or in frequency 
domain, are available. However, these techniques do not usually 
lead to globally optimized reduced order models and, at best, 
converge to local optimal solutions. Thus, the use of an 
Evolutionary Algorithm, namely Particle Swarm Optimization 
(PSO) is adopted in this paper for its robustness in global 
optimization. 

It is demonstrated in this work that, in the absence of analytic 
formulations to these challenging optimization problems, PSO 
leads to tractable solutions.   

Keywords- Model Reduction; Optimal Approximation; H∞ 
Norm; Particle Swarm Optimization; Global Solution. 

 

I.  INTRODUCTION 
Most physical systems require complex high order 

mathematical models to well represent them. The complexity 
of these models imposes a lot of difficulties on simulation, 
analysis and control design.  

Optimal model reduction reduces the order of the models 
representing the physical systems whilst ensuring high time 
and frequency response resemblance to the original high order 
models. Hence, reducing difficulties on simulation, analysis 
and control design. 

Large number of techniques have been developed in the last 
few decades to approximate high order systems by low order 
models. 

The model reduction problem is stated as follows: consider 
a general state space model representation of a single input 
single output (SISO) time-invariant linear continuous time 
system: 

  
x t Ax t  Bu t

y t Cx t  (1) 

where x(t) is the state, u(t) is the input, and y(t) is the output. 
This state space model can be represented by the following nth 
order transfer function: 

 G s   (2) 

The aim of optimal model reduction is to obtain a reduced 
order state space model representation or a reduced order 
transfer function of the system that well represents the original 
system: 

  
x t A x t  B u t

y t C x t  (3) 

 G s   (4) 

In this paper, the H∞ Norm model reduction problem will 
be investigated using Genetic Algorithms (GA) and Particle 
Swarm Optimization (PSO).  

Let E(s) = G(s) – Gr(s), then the H∞ norm is defined as 
follows: 

 
∞ max | |

 
        max  .  

 (5) 

Classical early model reduction techniques are summarized 
in [1]. The classical approach to model reduction dealt only 
with eigenvalues. However, in 1981, Moore published a paper 
presenting a revolutionary way of looking at model reduction 
by showing that the ideal platform to work from is that when 
all states are as controllable as they are observable [2]. This 
gave birth to “Balanced Model Reduction”, where the concept 
of dominance is no longer associated with eigenvalues, but 
rather with the degree of controllability and observability of a 
given state.  

Moore’s approach aims at changing the form of the 
system’s state space model representation, by the use of a 
certain transformation matrix, into a balanced model with the 
transformed states being as controllable as they are 
observable, and ordered from strongly controllable and 
observable to weakly controllable and observable.   
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Since the output depends on both the controllability and 
the observability of a state, the states which are weakly 
controllable and observable will have little effect on the 
output, and thus, discarding them will not affect the output 
very much.  This is what motivated Moore to develop his 
approach. Pernebo and Silverman [3] showed that the stability 
of this reduced model is assured if the original system was 
also stable. However, Moore’s approach still suffered from 
steady state errors [1].   

Hankel-norm reduction [4-7] on the other hand is optimal. 
It has a closed form solution and is computationally simple 
employing standard matrix software [1]. The singular values 
of the Hankel Matrix are called the Hankel Singular Values 
(HSV) of the system G(z) and they are defined as follows [4-
7]:  

     (6) 

where P and Q are the controllability and observability 
Gramians respectively. The Hankel norm of a transfer function 
G(z), denoted by  is defined to be the largest HSV of 
G(z) [4-7]: 

     (7) 

The balanced model reduction realizations and the optimal 
Hankel-norm approximations changed the status of model 
reduction dramatically. Those two techniques made it possible 
to predict the error between the frequency responses of the full 
and the reduced order models [1].  

Starting at 1992, Kavaranğlu and Bettayeb [8-20] studied 
the H∞ norm approximation of a given stable, proper, rational 
transfer function by a lower order stable, proper, rational 
transfer function. They found that the H∞ norm model 
reduction problem can be converted into a Hankel norm model 
reduction problem, and therefore they based their approach on 
this finding [8].  

A comparison between Hankel norm approximation and 
H∞ norm model reduction in the H∞ norm sense was conducted 
in [9].  Kavaranğlu and Bettayeb found that the H∞ 
approximation method can be much better or, in some cases, 
comparable to the Hankel norm approximation scheme.  

Kavaranğlu and Bettayeb then studied Hankel norm model 
reduction, and H∞ approximation schemes where they 
explored some further properties related to the H∞ norm [10]. 
In 1994, they presented a simple state-space suboptimal L∞ 
norm Model reduction computational algorithm [11].  

In 1995, Kavaranğlu and Bettayeb developed a suboptimal 
computational scheme for the problem of constant L∞ 
approximation of complex rational matrix functions, based on 
balanced realization for unstable systems [12]. They also 
derived an L∞ error bound for unstable systems and obtained 
optimal solution for a class of symmetric systems [12].  

In [13-15], they studied the L∞ norm optimal simultaneous 
system approximation problem and explored various LMI 
based approaches to solve the simultaneous problem. On the 
other hand, L∞ norm constant approximation of unstable 
systems was studied in [16].  

Kavaranğlu and Bettayeb [17] also presented an overview 
on H∞ filtering, estimation, and deconvolution approaches, 
where they considered the problem of reduced order H∞ 
estimation filter design. They then presented an iterative 
scheme for rational H∞ approximation in 1995 [18].  

Kavaranğlu and Bettayeb also investigated L∞ norm 
approximation of simultaneous muitivariable systems by a 
rational matrix function with desired number of stable and 
unstable poles in [19].  

A case study was presented in [20] where Sahin, 
Kavaranğlu and Bettayeb applied four different model 
reduction schemes, namely, balanced truncation, singular 
perturbation balanced truncation, Hankel norm approximation, 
and H∞ norm approximation; to a two-dimensional transient 
heat conduction problem.   

Assunção et al. [21-22] addressed the H∞ model reduction 
problem for uncertain discrete time systems with convex 
bounded uncertainties [21] and proposed a branch and bound 
algorithm to solve the H2 norm model reduction problem for 
continuous time linear systems [22]. 

Ebihara et al. [23] noted that the lower bounds of the H∞ 
Model Reduction problem can be analyzed by using Linear 
Matrix Inequality (LMI) related techniques, and thus, they 
reduce the order of the system by the multiplicity of the 
smallest Hankel Singular value which showed that the 
problem is essentially convex and the optimal reduced order 
models can be constructed via LMI optimization. 

Wu et al. [24] investigated a frequency-weighted optimal 
H∞ Model Reduction problem for linear time-invariant (LTI) 
systems. Their approach aimed to minimize the H∞ norm of 
the frequency-weighted truncation error between a given LTI 
system and its lower order approximation. They proposed a 
model reduction scheme based on Cone Complementarity 
Algorithm (CCA) to solve their H∞ Model Reduction problem. 

In 2005, Xu et al. [25] studied H∞ Model Reduction for 2-
D Singular Roesser Models. However more recently in 2008 
and 2009, Zhang et al. investigated the H∞ Model Reduction 
problem for [26] a class of discrete-time Markov jump linear 
systems (MJLS) with partially known transition probabilities 
and for [27] switched linear discrete-time systems with 
polytopic uncertainties. 

The main problem with the above analytical optimization 
techniques is that they result in non-linear equations in the 
parameters of the reduced order model. In order to solve those 
non-linear equations, one will have to go through 
computationally demanding iterative minimization algorithms, 
that suffer from many problems such as the choice of starting 
guesses, convergence, and multiple local minima, not to 
mention the huge amount of time it demand to reach a solution 
[1]. 

 

II. PARTICLE SWARM OPTIMIZATION 
Researchers observed that some living creatures tend to 

perform swarming behavior. Examples of swarms include 
flocks of birds, schools of fish, herds of animals, and colonies 
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of bacteria. Such a corporative behavior has certain advantages 
as avoiding predators and increasing the chance of finding 
food, but it requires communication and coordinated decision 
making [28-31].  

Particle Swarm Optimization simulates the behavior of bird 
flocking. When a group of birds are randomly searching food 
in an area, that has only one piece of food, all birds have no 
idea where the food is, but rather know how far the food is in 
each iteration; and thus tend to follow the bird that is nearest to 
the food.   

Similarly, in PSO, each single solution is a particle (bird) in 
the search space.  All particles have fitness values evaluated by 
the fitness function to be optimized, and have velocities which 
direct the flying of the particles.  

The PSO algorithm is simple in concept, easy to implement 
and computationally efficient. The procedure for implementing 
a PSO is as follows [30]:  

1. Initialize a population of particles with random positions 
and velocities on D dimensions in the problem space.  

2. For each particle, evaluate the desired optimization fitness 
function in D variables.  

3. Compare particles fitness evaluation with pbest. If current 
value is better than pbest, then set pbest equal to the 
current value, and pi equals to the current position xi in D-
dimensional space. Where pbest is the best fitness value a 
particle has achieved so far.  

4. Identify the particle in the neighborhood with the best 
success so far, and assign its position to the variable G 
and its fitness value to variable gbest.  

5. Change the velocity and position of the particle according 
to the bellow equations [31]: 

 1     –   
       (8) 
 
 1   1  (9) 

where: 

 i is the particle index 
 k is the discrete time index 
 v  is the velocity of the ith particle 
 x is the position of the ith particle 
 p  is the best position found by the ith particle 

(personal best) 
 G is the best position found by swarm (global 

best, best of personal bests) 
 &   are random numbers on the interval [0 , l] 

applied to the ith particle 
   is the inertial weight function 
 c1 & c2 are acceleration constants 

6. Loop to step 2 until a criterion is met, usually a 
sufficiently good fitness or a maximum number of 
iterations. 

A decreasing inertial weight  of the following form is used 
in the PSO approach: 

w  w  w
N

  (10) 

where wi and wf are the initial and final inertial weights 
respectively, k is the current iteration (epoch) and N is the 
iteration (epoch) when the inertial weight should reach its final 
value [31]. The decreasing inertial weight is known to improve 
the PSO performance. 

 

III. PREVIOUS STUDIES 
Model reduction has caught the attention of many 

researchers in the past few decades. However, most of the 
existing work relies on tedious analytical solution methods. 
Minimal work has been done on H∞ model reduction using 
Genetic Algorithms whereas no work at all has been done on 
H∞ model reduction using Particle Swarm Optimization.   

  Tan et al. [32] developed a Boltzmann learning enhanced 
GA based method to solve  identification and model 
reduction problems, and obtain a globally optimized nominal 
model and an error bounding function for additive and 
multiplicative uncertainties. They used their GA to identify 2nd 
and 3rd order discrete nominal models for a 4th order discrete 
plant of an industrial heat exchanger. Comparing the 
frequency responses of the original plant with the two GA 
defined models; the GA results were proven to give a good 
fitting over the frequency range concerned and to outperform 
other techniques yielding the smallest L   norm errors 

It is the intent of our work to perform a comprehensive 
evaluation of GA and PSO for H∞ optimal model reduction 
using several benchmark model reduction examples. Both time 
domain and frequency domain performances are considered in 
our work. 

 

IV. SIMULATION AND RESULTS 
The H∞ norm has a finite lower bound. Consider the 

Hankel singular values of system G(s) defined in eq. (6). In 
H∞ Model Reduction [11], if the nth order transfer function 
G(s) is reduced into an rth order transfer function Gr(s), then:   

    (11) 

where σr+1 is the (r + 1)st HSV of G(s). Thus, the H∞ norm of 
the reduced order model can never be lower than the highest 
hankel singular value dropped. 

However, it is convenient to mention here that the H∞ 
lower bound is almost impossible to achieve; but if one results 
with a close enough H∞ norm, this would be a good indication 
that an optimal solution was reached.  

The first model to be reduced is the 4th order Wilson 
example [33]:  
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0 0
1 0

0 150
0 245

0 1
0 0

0 113
1 19

  
4
1
0
0

 

0 0 0 1  

 (12) 

 

Hankel Singular Values: 

σ1 = 0.015938, σ2 = 0.002724,   σ3 = 0.000127, σ4 = 0.000008 

Eigen Values: [–1, –3, –5, –10] 

 

This system was reduced into a 2nd order model (lower 
bound Hankel singular value = 1.27×10–4) using the following 
PSO settings:  

 Swarm size  =  100  
 Maximum velocity =  2 
 Acceleration Const. c1  =  2 
 Acceleration Const. c2  =  2 
 Initial inertia weight  =  0.9  
 Final inertia weight  =  0.1  
 Epoch when inertial weight at final value  =  1000 

and resulted with the following reduced order model:    

 
0.9233 0.2375
1.117 2.766   0.5446

1.087  

0.04847 0.02771  
 (13) 

Eigen Values: [–1.0807, –2.6086] 

 

The following model represents the result of the H∞ 2nd 
order model reduction using Genetic Algorithms (GA) 
obtained in [34]: 

 
3.457 6.049

0.3239 0.2429   0.2793
0.01254  

0.05126 1.428  
 (14) 

Eigen Values: [–1.0604, –2.6395] 

 

Table 1 compares the steady state errors and norms of the 
resulting 2nd order model to that reduced with H∞ Model 
Reduction using GA in [34]. Figures 1 to 4 show the impulse 
responses, initial values, step responses and frequency 
responses of all models respectively.  

 

TABLE I.  WILSON SYSTEM SSE & NORMS OF REDUCED MODELS 

 SS Error H∞ Norm 

GA H∞ model 
reduction [34] 2.144×10–6 2.239×10–4 

PSO H∞ model 
reduction 2.144×10–4 2.144×10–4 

 
Figure 1. Impulse Response. 

 
Figure 2. Initial Values. 

 
Figure 3. Step Response. 

 
Figure 4. Frequency Response. 

Note that the impulse responses and the step responses of 
the reduced order model well resemble the original system. 
However, due to the two missing states in the reduced order 
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models, they fail to resemble the frequency response of the 
original system in high frequencies. This tends to be 
acceptable since many practical systems operate in low 
frequencies. 

The second system to be reduced is a 9th order Boiler 
System [35]: 

A = [–0.910 0 0 0 0 0 0 0 0; 0 –4.449 0 0 0 0 0 0 0; 0 0 
–10.262 571.479 0 0 0 0 0; 0 0 –571.479 –10.262 0 
0 0 0 0; 0 0 0 0 –10.987 0 0 0 0; 0 0 0 0 0 –15.214 
11.622 0 0; 0 0 0 0 0 –11.622 –15.214 0 0; 0 0 0 0 
0 0 0 –89.874 0; 0 0 0 0 0 0 0 0 –502.665] 

B = [–4.336; –3.691; 10.141; –1.612; 16.629; –242.476; 
–14.261; 13.672; 82.187] 

C = [–0.422 –0.736 –0.00416 0.232 –0.816 –0.715 
0.546 –0.235 –0.0806] (15) 

Hankel Singular Values: 

σ1 = 6.2115 σ2 = 0.8264 σ3= 0.6770 σ4=0.0593  

σ5 = 0.0568 σ6 = 0.0188 σ7 = 0.0096 σ8 = 0.0031 

σ9 = 0.0007 

Eigen Values: [–0.91, –4.45, –10.26 ± j571.48, –10.99, –15.21 
± j11.62, –89.87, –502.67] 

This system was reduced into a third order system (lower 
bound Hankel singular value = 5.93×10–2) using the same PSO 
settings, except the epoch when inertial weight at final value 
was set to 6000. The following model represents the result of 
3rd order model reduction using PSO:    

 
24.01 13.71 26.67

22.65 10.85 22.19
2.5 9.653 22.01

  
13.18

11.6
1.477

 

18.29 6.884 10.24  
 (16) 

Eigen Values: [–0.8192, –17.1804 ± j12.8069] 

and the following model represents the result of the GA 
approach of [34]: 

 
6.449 29.73 0.3856

3.129 21.71 10.69
4.918 6.326 6.661

  
4.921
4.127

10.74
 

6.591 0.1677 10.71  
 (17) 

Eigen Values: [–1.0423, –16.8889 ± j13.0262] 

Table 2 and figures 5 to 8 compare the steady state errors, 
norms, impulse responses, initial values, step responses and 
frequency responses the resulting 3rd order model with the GA 
reduced order model of [34].  

 

TABLE II.  BOILER SYSTEM SSE & NORMS OF REDUCED MODELS 

 SS Error H∞ Norm 

GA H∞ model 
reduction [34] 1.126×10–1 1.127×10–1 

PSO H∞ model 
reduction 1.275×10–3 1.116×10–1 

 

 
Figure 5. Impulse Response 

 
Figure 6. Initial Values 

 
Figure 7. Step Response 

 
Figure 8. Frequency Response  
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Note that the impulse, step and frequency responses of the 
reduced order model well resemble the original system.  

 

CONCLUSION 
The use of Evolutionary Algorithms in optimal model 

reduction, such as Particle Swarm Optimization, provide 
robust search in complex spaces and helps solve complex 
optimal model reduction problems without the need to go 
through computationally demanding iterative non-linear 
mathematical procedures. 

The PSO approach of this paper was compared to the GA 
approach of [34] and it was noted that the PSO outperforms 
the GA by resulting in better norms. Also, the simplicity of the 
computations in the PSO Algorithm in comparison to the GA 
Algorithm makes it much faster.  
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Abstract—The use of reduced order models of systems makes it 
easier to implement analysis, simulations and control designs. 
Several physical systems, including transportation systems, 
chemical and heat processes, computer and communication 
networks, have inherent time-delay and high order dynamics. 
The reduced order time-delay model is generally determined by 
minimizing a nonlinear quadratic cost function that has multiple 
local minima. Therefore obtaining global minima using nonlinear 
optimization techniques is very difficult.  

To overcome these difficulties, we use Particle Swarm 
Optimization (PSO) to solve H2 model reduction problems for 
high order dynamical systems with time-delay. 

The performance of PSO is demonstrated with application 
examples. 

Keywords- Model Reduction; Optimal Approximation; H2 
Norm; Time-Delay; Particle Swarm Optimization; Global Solution. 

 

I.  INTRODUCTION 
Most physical systems are complex and their transfer 

function representations are of very high orders. In order to 
perform simulation, analysis or control design on those high 
order models, one will face many difficulties.  

Therefore it is desirable to represent those physical systems 
with reduced order models that well resemble the original 
model in time and frequency domain.  

However, many of those physical systems have inherently 
pure time delays. And in order to ensure high resemblance of 
the reduced order models to the original system we introduce 
time delay into the reduced order models.  

The model reduction problem is stated as follows: consider 
a general nth order transfer function representation of a single 
input single output (SISO) time-invariant linear continuous 
time system: 

 G s   (1) 

The aim of optimal model reduction with time delay is to 
obtain a reduced order transfer function representation of the 

system that well represents the original system of the 
following form: 

 G s    e  (2) 

In this paper, the H2 Norm model reduction problem with 
time-delay will be investigated using and Particle Swarm 
Optimization (PSO).  

Let E(s) = G(s) – Gr(s), then the H2 norm is defined as 
follows: 

 E
π

|E jω |  dω∞
∞  (3) 

The H2 norm can also be represented in time domain as 
follows: 

 e |y τ y τ |  dτ∞  (4) 

where y(τ) and yr(τ) are the impulse responses of the original 
model and the reduced order model respectively. 

Classical early model reduction techniques are summarized 
in [1]. The classical approach to model reduction dealt only 
with eigenvalues. However, in 1981, Moore published a paper 
presenting a revolutionary way of looking at model reduction 
by showing that the ideal platform to work from is that when 
all states are as controllable as they are observable [2]. This 
gave birth to “Balanced Model Reduction”, where the concept 
of dominance is no longer associated with eigenvalues, but 
rather with the degree of controllability and observability of a 
given state. However, Moore’s approach still suffered from 
steady state errors [1].   

Hankel-norm reduction [3-6] on the other hand is optimal. 
It has a closed form solution and is computationally simple 
employing standard matrix software [1].  

The balanced model reduction realizations and the optimal 
Hankel-norm approximations changed the status of model 
reduction dramatically. Those two techniques made it possible 
to predict the error between the frequency responses of the full 
and the reduced order models [1].  

Modern H2 model reduction was studied in [7-14], for 
earlier classical least squares model reduction, see ([1] and 
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references therein). Hyland et al. [7] used optimal projection 
to derive H2 reduced models. Yan et al. [8] proposed an H2 
optimal model reduction approach that uses orthogonal 
projections to reduce the H2 cost over the stiefel manifold so 
that the stability of the reduced order model is assured.  

Assunção et al. [9-10] addressed the H2 and H∞ model 
reduction problems for uncertain discrete time systems with 
convex bounded uncertainties [9] and proposed a branch and 
bound algorithm to solve the H2 norm model reduction 
problem for continuous time linear systems [10].   

In 2001, Huang et al. [11] proposed a globally convergent 
H2 model reduction algorithm in the form of an ordinary 
differential equation. Then, in 2002, Marmorat et al. [12] 
proposed an H2 approximation approach using shur 
parameters. An H2 optimal model reduction case study is 
given in [13]. 

More recently, in 2007, Beattie et al. [14] proposed an H2 
model reduction technique, based on Krylov method, suitable 
for dynamical systems with large dimension. 

Model Reduction with Time-Delay was studied in [15] 
where a procedure for approximating a high-order system with 
a rational transfer function by a low-order system with a 
rational transfer function together with a pure time delay. The 
procedure introduced a delay into the system output and 
computed the low-order transfer function using truncation of a 
certain balanced realization. 

The main problem with the above analytical optimization 
techniques is that they result in non-linear equations in the 
parameters of the reduced order model. In order to solve those 
non-linear equations, one will have to go through 
computationally demanding iterative minimization algorithms, 
that suffer from many problems such as the choice of starting 
guesses, convergence, and multiple local minima, not to 
mention the huge amount of time it demand to reach a solution 
[1]. 

 

II. PARTICLE SWARM OPTIMIZATION 
Researchers observed that some living creatures tend to 

perform swarming behavior. Examples of swarms include 
flocks of birds, schools of fish, herds of animals, and colonies 
of bacteria. Such a corporative behavior has certain advantages 
as avoiding predators and increasing the chance of finding 
food, but it requires communication and coordinated decision 
making [16-25].  

Particle Swarm Optimization simulates the behavior of bird 
flocking. When a group of birds are randomly searching food 
in an area, that has only one piece of food, all birds have no 
idea where the food is, but rather know how far the food is in 
each iteration; and thus tend to follow the bird that is nearest to 
the food.   

Similarly, in PSO, each single solution is a particle (bird) in 
the search space.  All particles have fitness values evaluated by 
the fitness function to be optimized, and have velocities which 
direct the flying of the particles.  

The PSO algorithm is simple in concept, easy to implement 
and computationally efficient. The procedure for implementing 
a PSO is as follows [16]:  

1. Initialize a population of particles with random positions 
and velocities on D dimensions in the problem space.  

2. For each particle, evaluate the desired optimization fitness 
function in D variables.  

3. Compare particles fitness evaluation with pbest. If current 
value is better than pbest, then set pbest equal to the 
current value, and pi equals to the current position xi in D-
dimensional space. Where pbest is the best fitness value a 
particle has achieved so far.  

4. Identify the particle in the neighborhood with the best 
success so far, and assign its position to the variable G 
and its fitness value to variable gbest.  

5. Change the velocity and position of the particle according 
to the bellow equations [25]: 

 1     –   
       (5) 
 1   1  (6) 

where: 

 i is the particle index 
 k is the discrete time index 
 v  is the velocity of the ith particle 
 x is the position of the ith particle 
 p  is the best position found by the ith particle 

(personal best) 
 G is the best position found by swarm (global 

best, best of personal bests) 
 &   are random numbers on the interval [0 , l] 

applied to the ith particle 
   is the inertial weight function 
 c1 & c2 are acceleration constants 

6. Loop to step 2 until a criterion is met, usually a 
sufficiently good fitness or a maximum number of 
iterations. 

A decreasing inertial weight  of the following form is used 
in the PSO approach: 

 w  w  w
N

  (7) 

where wi and wf are the initial and final inertial weights 
respectively, k is the current iteration (epoch) and N is the 
iteration (epoch) when the inertial weight should reach its final 
value [25]. The decreasing inertial weight is known to improve 
the PSO performance.  

 

III. PREVIOUS STUDIES 
Model reduction has caught the attention of many 

researchers in the past few decades. However, most of the 
existing work relies on tedious analytical solution methods. 
Some work has been done on H2 model reduction with time-
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delay using Genetic Algorithms whereas no work at all has 
been done on H2 model reduction with time-delay using 
Particle Swarm Optimization.   

Yang et al. [26] proposed a GA based H2 Norm model 
reduction approach for SISO continuous time systems that 
introduces time delay into the reduced order model.  

Given an nth order SISO time delay system with transfer 
function: 
  exp  (8) 
where its rational part is stable and strictly proper, they tried to 
find a strictly proper lth order reduced model with the time 
delay: 

 
∏

exp         

∏ .
exp        

 (9) 

Their cost function was defined as:  
 
   (10) 
 
where W(jω) is a frequency weighing function introduced to 
obtain better approximation over a pre-specified frequency 
range.  

 

IV. SIMULATION AND RESULTS 
Yang et al. [26] used the following 6th order academic 

example from [15] to test their GA approach:  
 
        

 .          
 (11) 

 
Yang, Hachino and Tsuji reduced the above system into 1st 

order, 2nd order, 3rd order, and 4th order systems with time 
delay, and resulted with the following transfer functions 
respectively: 
The 1st order reduced order model:  

 .  .
.

 (12) 

The 2nd order reduced order model:  

 .  .  .
 .   .

 (13) 

The 3rd order reduced order model: 

 .  .   .  .
 .  .   .  

 (14) 

The 4th order reduced order model: 

 .  .   .   .  .
 .  .  .  .

 (15) 

Using PSO with the following settings we obtained the 1st 
order, 2nd order, 3rd order, and 4th order reduced order models 
of the same 6th order system:  

 Swarm size   =  100  
 Maximum Velocity  =  4 
 Acceleration Const. c1  =  2 
 Acceleration Const. c2  =  2 
 Initial inertia weight  =  0.9  
 Final inertia weight  =  0.1  
 Epoch when inertial weight at final value =  10,000 

The H2 fitness function defined in (4) was computed using 
trapezoidal integration to perform the reduction in PSO.  

The 1st order reduced order model: 

   .  .
.

  (16) 

The 2nd order reduced order model:  

  .  .
 .   .

 (17) 

The 3rd order reduced order model: 

 .  .   .    .
 .   .    .

   (18) 

The 4th order reduced order model: 

 .  .   .   .    .
 .   .   .    .

 (19) 

Table I compares the H2 Norms of the above eight reduced 
order models: 

TABLE I.  H2 NORM OF REDUCED MODELS 

 1st order 2nd order  3rd order 4th order 

Yang et 
al.’s GA 

Approach 
1.0330×10–1 1.8286×10–2 1.3084×10–2 8.5880×10–3 

Proposed 
PSO 

Approach 
9.9326×10–2 1.8094×10–2 1.2937×10–2 8.2235×10–3 

 

Table I proves that the proposed PSO approach yields 
better results than Yang et al.’s proposed GA approach. 
Figures 1 to 12 show the impulse responses, step responses, 
and frequency responses of the eight reduced order models in 
comparison to the original 6th order system. 

 

 
Figure 1. 1st order ROMs Impulse Responses. 
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Figure 2. 1st order ROMs Step Responses. 

 
Figure 3. 1st order ROMs Frequency Responses. 

 
Figure 4. 2nd order ROMs Impulse Responses. 

 
Figure 5. 2nd order ROMs Step Responses. 

 
Figure 6. 2nd order ROMs Frequency Responses. 

 
Figure 7. 3rd order ROMs Impulse Responses. 

 

 
Figure 8. 3rd order ROMs Step Responses. 

 
Figure 9. 3rd order ROMs Frequency Responses. 
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Figure 10. 4th order ROMs Impulse Responses.  

 
Figure 11. 4th order ROMs Step Responses. 

 
Figure 12. 4th order ROMs Frequency Responses. 

 
From Figures 1 to 12, it is noted that the 4th order reduced 

model provides the best approximation to the original system 
amongst all the reduced order models. It is also shown in 
figure 3 from the Bode plot of the 1st order reduced model that 
the approximating error is quite large at low frequencies.   

 

CONCLUSION 
Particle Swarm Optimization proved to be a very strong 

optimization tool in the past few decades. In this paper PSO 
was used to find optimum reduced models for complex high 

order SISO models using H2 norm with time-delay. The PSO 
results were compared to the GA results of previous authors. 
PSO was found to outperform the GA resulting in better 
norms.  
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Abstract-A power system operation at minimum cost is no 

longer the only criterion for electrical power dispatch. Combined 
economic emission dispatch problem is obtained by considering 
both the economy and emission objectives with required 
constraints. This problem can be solving optimization techniques. 
Many optimization techniques are slow for such complex 
optimization tasks and are not suitable for on-line use. This paper 
presents an optimization algorithm, for solving security 
constrained combined economic emission dispatch problem, 
through the application of programming method. The proposed 
method has been tested on IEEE 30-bus test system and found to 
be suitable for on-line combined economic emission dispatch. 

 
Index Terms-Economic dispatch, emission dispatch, combined 

economic emission dispatch. 
 

I. INTRODUCTION 

CONOMIC  load  dispatch  is  one  of  the  main  functions   
electrical  power  management  system [1]. Electrical  

power system operation should be characterized by security, 
reliability and economy. The main objective of economic load 
dispatch (ELD) is to minimize the fuel cost while satisfying the 
required equality and inequality constraints. 

Nowadays, a large part of energy production is done with 
thermal sources. Thermal electrical power generating is one of 
the most important sources of carbon dioxide (CO2), sulfur 
dioxide (SO2) and nitrogen oxides (NOx) which create 
atmospheric pollution [2]. Emission control has received 
increasing attention owing to increased concern over 
environmental pollution caused by fossil based generating units 
and the enforcement of environmental regulations in recent 
years [3]. Numerous studies have emphasized the importance 
of controlling pollution in electrical power systems [4-14]. 

Which is the best for optimal solution? Economic load 
dispatch (ELD), emission dispatch (ED) or combined economic 
emission dispatch (CEED). To find the correct answer to this 
question, a good power management strategy is required. 
Several optimization techniques such as lambda iteration, 
linear programming (LP), non-linear programming (NLP), 
quadratic programming (QP) and interior point method (IPM) 
are employed for solving the security constrained economic 
dispatch and unit commitment problem [15]. Among these 

methods, the lambda iteration method has been applied in many 
software packages due to its ease of implementation and used 
by power utilities for ELD [16]. Most of the time, alone lambda 
method does not find optimal solution because of power system 
constraints. Therefore, the lambda method is used in 
conjunction with other optimization techniques. 

 
 

The solution of ELD problem using genetic algorithm 
required large number of iterations/generations when the power 
system has large number of units. In order to minimize the 
number of generations and avoid the loss of useful 
chromosome for further generation micro genetic algorithm 
(MGA) was developed [17]. 

Combined economic and emission dispatch (CEED) has 
been proposed in the field of power generation dispatch, which 
simultaneously minimizes both fuel cost and pollutant 
emissions. When the emission is minimized the fuel cost may 
be unacceptably high or when the fuel cost is minimized the 
emission may be high. 

In literature as environmental economic dispatch or 
economic emission dispatch, many algorithms are used to solve 
CEED problem. Literature [18] proposed a cooling mutation 
technique in EP algorithm to solve CEED problem for nine 
units system. Literature [19] validated EP algorithm to solve 
optimal power flow problem with quadratic and sine 
component cost functions. 

E 

 Proposed methods in [20, 21] convert a multiobjective 
problem into a single objective problem by assigning different 
weights to each objective. This allows a simpler minimization 
process but does require the knowledge of the relative 
importance of each objective and the explicit relationship 
between the objectives usually does not exist. 
  In this study two objectives considered are minimizing 
both fuel cost and environmental impact of emission by using 
programming based algorithm. 

II. PROBLEM FORMULATION 
A. Economic Dispatch 

The ELD problem is to find the optimal combination of 
power generation that minimizes the total fuel cost while 
satisfying the total demand and power system constraints. The 
fuel costs for power generation units should be defined. The 
total fuel cost function of ELD problem is defined as follows: 
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where fi(Pi) is the cost of ith generator in $/h; Pi is the power 
output of generator i in MW; ai, bi and ci are the cost 
coefficients of the ith generator. 

The total fuel cost function including valve point loading of 
ELD problem is defined as follows: 
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        (4) 

where FT is the total fuel cost of electrical power generation in 
$/h; Pi.min is min. power constraint for ith unit in MW; d, e are 
the fuel cost coefficients of the ith generating unit reflecting the 
valve-point effect. 
 
B. Emission Dispatch 

The solution of ELD problem will give the amount of active 
power to be generated by different units at a minimum fuel cost 
for a particular demand. But the amount of emission or is not 
considered in pure ELD problem. The amount of emission from 
a fossil-based thermal generator unit depends on the amount of 
power generated by the unit. Total emission generated also can 
be approximated as sum of a quadratic function and an 
exponential function (5) of the active power output of the 
generators. The emission dispatch problem can be described as 
the optimization of total amount of emission release defined by 
as: 
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where ET is total amount of emission (lb/h); αi, βi, γi, ξi and ζi 
are coefficient of generator emission characteristics. 

The total emissions of SO2, CO2 and NOX are represented as 
follows: 
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C. Combined Economic and Emission Dispatch 

The economic dispatch and emission dispatch are two 
different problems. Emission dispatch can be included in 
conventional economic load dispatch problems by the addition 
of emission cost to the normal dispatch cost. In this method 
different types of emissions are modeled as a cost in addition to 
the fuel cost. Actually, CEED problem have two objectives. 
But CEED can be converted into single objective optimization 

problem by introducing a price penalty factor h ($/lb) as 
follows: 

max.max.

max.max.

/)(
/)(

iiT

iiT

PPE
PPF

h =                (9) 

where Pi.max  is max. power constraint for ith unit in MW. 

Minimize )(.)( PEhPF TTT +=φ                (10) 
where φT is the total operational cost of the system subject to the 
required constraints. 

Minimize )(..)(. 21 PEhwPFw TTT +=φ             (11) 
where w1 and w2 are weight factors. The weight factors w1 and 
w2  have many implications. For w1 = 1 and w2 = 0  the solution 
will yield results for pure economic dispatch. For w1 = 0 and     
w2 = 1 results for pure emission dispatch and for w1 = w2 = 1 
results for combined economic emission dispatch can be 
obtained. The problem can be formulated other form [3, 22] as: 

)(.).1()(. PEhwPFw TTT −+=φ                (12) 
 

D. Equality constraint 
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where PD is the total power demand and  PL is the total trans- 
mission loss. 

The transmission loss PL can be calculated by using B matrix 
technique and is defined by as: 
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where Bij ’s are the elements of loss coefficient matrix B. 
 
E. Inequality constraints 

The cost is minimized with the following generator 
capacities and active power balance constraints as; 

max.min. iii PPP ≤≤                (15) 
where, Pi.min and Pi.max are the minimum and maximum power 
generation by ith unit respectively. 

max.mm PP ≤          m = 1, … nl                          (16) 
where Pm is magnitude of the line flow in mth line, nl is number 
of lines. 

III. PROPOSED ALGORITHM FOR COMBINED ECONOMIC AND 
EMISSION DISPATCH 

Mathematical calculations and comparisons to be done very 
quickly with Delphi, that’s why the proposed algorithm in this 
paper is written in Delphi programming language. 

At first power system data and required constraint must be 
entered into the program. ELD and ED are solved separately. 
Suitable generating unit’s powers are leaved the total demand 
power after making the ELD and ED. According to the rest of 
total demand power, ELD and ED are made solution. When the 
total power demand and required constraints are suitable for all 
power system, CEED is done. The total fuel cost and emission 
are calculated with together in CEED step. When the 

ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France 151



 

convergence is done the problem will be solved. There is a 
convergence on the change of circumstances of cost increase or 
cost decrease. Then, generating unit’s powers are saved. 
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Fig. 1. Flowchart for the proposed CEED method 

IV. SIMULATION RESULTS AND DISCUSSION 
The proposed combined economic and emission dispatch 

(PCEED) was solved for IEEE 30 bus and 6 generating unit 
system. 

The cost coefficients and power generation limits for the test 
system are given in Table I. The NOX emission coefficients are 
given in Table II. Test system data are taken from [23]. 
 
TABLE I 
Generator cost coefficients for IEEE 30 bus system 
Unit a b c d e Pmin Pmax 

1 100 200 10 15 6,283 0,05 0,5 
2 120 150 10 10 8,976 0,05 0,6 
3 40 180 20 10 14,784 0,05 1 
4 60 100 10 5 20,944 0,05 1,2 
5 40 180 20 5 25,133 0,05 1 
6 100 150 10 5 18,48 0,05 0,6 

TABLE II 
Generator emission coefficients for IEEE 30 bus system 

Unit α β γ ξ ζ 
1 6,490 -5,554 4,091 2,0e-4 2,857 
2 5,638 -6,047 2,543 5,0e-4 3,333 
3 4,586 -5,094 4,258 1,0e-6 8,000 
4 3,380 -3,550 5,326 2,0e-3 2,000 
5 4,586 -5,094 4,258 1,0e-6 8,000 
6 5,151 -5,555 6,131 1,0e-5 6,667 

 
TABLE III 
Results of best fuel cost for the PCEED and 3 approaches 

Unit PCEED [23] [29] [30] 
1 0,1098 0,1281 0,1086 0,1168 
2 0,2998 0,2702 0,3056 0,3165 
3 0,5244 0,5552 0,5818 0,5441 
4 1,0160 1,0053 0,9846 0,9447 
5 0,5240 0,4544 0,5288 0,5498 
6 0,3598 0,4453 0,3584 0,3964 

Best Cost 600,18 606,66 607,807 608,245 
Emission 0,2537 0,2207 0,22015 0,21664 
 
TABLE IV 
Results of best emission for the PCEED and 3 approaches 

Unit PCEED [23] [29] [30] 
1 0,3918 0,3713 0,4043 0,4113 
2 0,4603 0,4665 0,4525 0,4591 
3 0,5252 0,5642 0,5525 0,5117 
4 0,3810 0,3650 0,4079 0,3724 
5 0,5467 0,5223 0,5468 0,5810 
6 0,5528 0,5783 0,5005 0,5304 

Cost 644,40 648,01 642,603 647,251 
Best Emis. 0,2125 0,1945 0,19422 0,19432 
 
TABLE V 
CEED solutions 

Unit PCEED [23] [29] [30] 
1 0,2245 0,17613 0,2594 0,2699 
2 0,3324 0,28188 0,3848 0,3885 
3 0,5682 0,54079 0,5645 0,5645 
4 0,7066 0,76963 0,7030 0,6570 
5 0,5917 0,65019 0,5431 0,5441 
6 0,4269 0,44569 0,4091 0,4398 

Cost 611,635 612,35 616,069 618,686 
Emission 0,22915 0,20742 0,20118 0,19940 

 
The fuel costs of PCEED are found to be better than other 

methods which are shown in Table III, IV and V. The 
maximum differences between the PCEED fuel costs with the 
other method’s costs are 8.065, 3.61 and 7.051 respectively. 
But the emission is not the best. The differences between the 
best emissions with PCEED are 0.03706, 0.01828 and 0.02975 
respectively. PCEED solutions for IEEE 30 bus test system are 
given in Fig. 2. 

The PCEED method is used to simulate the cases on an Intel 
(R) Core (TM)2 Duo T7300 2GHz laptop computer with 1 GB 
RAM. Computation time is only about 0.6 s. 
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 Fig. 2. PCEED solutions for IEEE 30 bus test system 

V. CONCLUSION 
The proposed multiobjective computer programming based 

algorithm has been developed to solve CEED problem. The 
performance of the proposed algorithm is demonstrated for 
IEEE 30 bus, 6 unit test system. The performance of proposed 
algorithm is compared with literature [23, 29 and 30]. The 
results showed that the PCEED method is well suited for 
obtaining minimum fuel cost. The differences between the 
emissions are not very important values. Calculation time of the 
PCEED algorithm is very less according to genetic algorithm 
and neural network applications in literature. As a result, 
PCEED algorithm is acceptable and applicable for CEED 
problem solution. 
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Abstract - Nowadays, the development of mobile 

communications and the miniaturization of radio frequency 
transceivers are experiencing an exponential growth, hence 
increasing the need for small and low profile antennas.  As a 
result, new antennas have to be developed to provide larger 
bandwidth and this, within small dimensions.  The challenge 
which arises is that the gain and bandwidth performances of an 
antenna are directly related to its dimensions.  The objective is to 
to find the best geometry and structure giving best performance 
while maintain the overall size of the antenna small. 

This paper presents the bandwidth optimization of a PIFA 
(Planar Inverted-F Antenna) antenna in order to achieve an 
optimal bandwidth in the 2 GHz band, using optimization 
techniques based upon Genetic Algorithms (GA).  This work 
involves the Binary Coded Genetic Algorithms (BCGA) as the 
main optimization engine and the Real Coded Genetic 
Algorithms (RCGA) as an alternative.  The optimization process 
has been enhanced by using a Hybrid Genetic Algorithm by 
Clustering.  The different PIFA models are evaluated using the 
finite-difference time domain (FDTD) method. 

I. INTRODUCTION 

The Planar Inverted-F Antenna (PIFA) is the most widely 
used antenna owing to its low profile, ease of fabrication, and 
high efficiency.  PIFAs are nowadays being experimented for 
Multiple Input Multiple Output (MIMO) antenna arrays as 
well [1].  High gain of antennas, which is an important 
characteristic, may be attained through proper design and 
structure.  However, there are many constraints, like the 
overall size, that prevent engineers from designing such 
antennas.  To achieve optimal performance from the antenna, 
the geometry has to be optimized.  This work describes the 
performance evaluation and optimization of the PIFA antenna 
via Modeling methods and Optimization techniques. 
 
A. Modeling methods 

A variety of three-dimensional full-wave methods are 
available for electromagnetic propagation in space.  Of these, 
three particular methods have become the most popular:  
� the Finite Element Method (FEM) 
� the Transmission Line Matrix (TLM) 
� the Finite Difference Time Domain (FDTD) method  

The application of these methods requires the use of powerful 
computers and delivers good approximation of electric and 
magnetic field propagation.  To evaluate the performance of 
the antenna and observe the three-dimensional propagation of 
the electric and magnetic fields, the FDTD method was used. 
 
B. Optimization techniques 

Traditional optimization techniques can be classified into 
two distinct groups: direct and gradient-based methods [2].  
Direct search methods use only objective function and 
constraint values to guide the search strategy, whereas 
gradient-based methods use the first and second-order 
derivatives of the objective function and constraints to guide 
the search process.  Since derivative information is not used, 
the direct search methods are usually slow, requiring many 
function evaluations for convergence.  For the same reason, 
they can also be applied to many problems without a major 
change of the algorithm.  On the other hand, gradient-based 
methods quickly converge to an optimal solution, but are not 
efficient in non-differentiable or discontinuous problems.   

Because of the nonlinearities and complex interactions 
among problem variables, the search space may have more 
than one optimal solution.  When solving these problems, 
there is no escape if traditional methods get attracted to any of 
these locally optimal solutions. 

The technique which can fortunately alleviate some of the 
above difficulties is the Genetic Algorithm (GA) technique 
which can constitute an efficient optimization tool.  In this 
work, the GA used has also been modified for fitness 
evaluation by clustering. 

II. METHODOLOGY 

The method used in this work involves the modeling of 
the PIFA using the FDTD technique whereby bandwidth of the 
antenna is calculated.  The bandwidth is optimized by varying 
parameters in the antenna and then allowing the optimization 
tool to converge to the optimal solution, that is, the best 
bandwidth performance.  Further experimentation has been 
done to analyze the convergence towards the best solution. 
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A. Implementation of FDTD 
FDTD starts by discretizing a three-dimensional space 

into rectangular cells, which are called Yee Lattice [3].  The 
Yee lattice is specially designed to solve vector 
electromagnetic field problems on a rectilinear grid.  The grid 
is assumed to be uniformly spaced, with each cell having edge 
lengths ∆x, ∆y and ∆z.  Fig. 1 shows the positions of fields 
within a Yee cell.   

 

 
Every E component is surrounded by four circulating H 

components.  Likewise, every H component is surrounded by 
four circulating E components.  In this way, the curl 
operations in Maxwell’s equations can be performed 
efficiently.   

Arrays must be used to represent the discrete space into a 
high-level programming language.  One-dimensional space is 
represented by a 1D array, similarly 2D and 3D discrete spaces 
are represented by 2D and 3D arrays respectively.  However, 
the discrete fields must satisfy Gauss’s laws to avoid spurious 
charge which can corrupt the solution [4]. 

The cell size is an important aspect of FDTD.  It has to 
be properly chosen for the well-running of the simulation.  A 
wrongly chosen cell size may cause the simulation to display 
rough and imprecise curves.  The cell size is usually 
determined by calculations involving the frequency of the 
excitation pulse.  In this project, frequencies in the 2 GHz 
band are studied and since no dielectric has been used, the 
velocity of the propagating waves has been chosen to be the 
same as the velocity of free-space that is 300,000km/s.  In 
accordance to the wavelength used, a cell size of 2mm has 
been used in this work for better resolution of the simulated 
fields. 

1) FDTD onto PIFA 
After having discretized the computational space and 

time, the FDTD has to be applied to the PIFA in order to 
simulate the propagating E-fields and H-fields.  The structure 
of the PIFA varies according to the different context in which 
it is used.  This work deals only with the basic geometry of a 

PIFA which normally consists of a ground plate, a radiating 
plate and a feeding wire.   

To excite the PIFA with a wide range of frequencies, a 
Gaussian pulse implemented as soft source has been used as 
the excitation source.  The source is represented by the feeding 
wire of the PIFA.  The structure to be modeled is shown in 
Fig. 2 below. 

 

2) Absorbing Boundary Condition 
Various absorbing boundary conditions have been used 

for truncating the FDTD mesh in this project, and among 
those, the Higdon boundary condition, the Dispersive 
boundary condition and the Mur’s second-order boundary 
condition provide minimal reflection.  However the Higdon 
boundary and Dispersive boundary do not provide significant 
attenuation over the frequency range of interest.  Thus, 
because of its effectiveness, the Mur’s second order boundary 
condition has been used in this work. 

3) Voltage Standing Wave Ratio 
The Voltage Standing Wave Ratio (VSWR) is the key to 

obtaining the bandwidth of the PIFA and thus, the key to 
achieve the objective of this project.  In order to obtain the 
VSWR, the input impedance of the PIFA has first to be 
determined.  The generalized input or line impedance can be 
simply calculated using the line voltage and current at a fixed 
point on the transmission line.  These are obtained by Fourier 
transforming the time-dependent voltages and currents.  Using 
the input impedance calculated, the S11 parameter can be 
evaluated and consequently the VSWR is calculated as 

11

11

1

1

S

S
VSWR

−
+

=    (1) 

4) Performance evaluation 
VSWR is calculated for several frequencies in the 2GHz 

band, ranging from 1.9GHz to 2.5GHz.  A graph of VSWR 
against frequencies can be plotted to observe the parabolic 
shape of the curve.  The performance of the antenna is then 
evaluated by determining the bandwidth from the range of 
frequencies where the VSWR is less than 2, which is 
recommended by most telemetry applications.   

Fig. 2 Geometry of the PIFA to be modeled 

Fig. 1 An FDTD cell or Yee cell showing the positions of 
electric and magnetic field components 
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B. Implementation of the GA 
GA is applied to the whole FDTD process which acts as 

the main component for the fitness evaluation.  GA begins its 
search with a random set of solutions, analyses the solutions 
and selects the best ones to afterwards converge to the optimal 
solution, which will result to the best bandwidth performance.  
The set of solutions was first coded in binary string structures 
and Binary-Coded GA was used for this purpose.  Then Real-
Coded GA was used for improvement in convergence and 
precision to the optimal solution.  The GA was then modified 
to a hybrid version using Clustering technique. 

1) Binary-Coded GA 
The basic block of the genetic algorithm is the 

chromosome.  Each chromosome is composed of genes 
described as a binary sequence of zeros and ones.  Each gene 
is associated with a parameter to be optimized.  For the PIFA 
dealt in this project, three parameters were used: the 
coordinates of the feeding wire, ‘fx’ and ‘fz’,  and the height ‘h’ 
of the radiating plate as shown in Fig. 2.  For the parameters fx 
and fz, only four discrete possible values were assigned to 
them and thus, only 2 bits were used to represent each of them.  
For the height h, only 1 bit was enough to quantify it as only 
two discrete possible values were assigned to it.  Hence, 5 bits 
represent each chromosome associated with the PIFA and in 
any case, each chromosome describes a particular geometry.   

The population strings are represented as shown in Fig. 3 
below: 

 

 
where Xi is a binary digit (0 or 1) and i taking values from 1 to 
5.  As illustrated in Fig. 3, the first 2 bits represent the 
parameter fx, the next 2 bits the parameter fz and the last bit the 
height h of the radiating plate.   

The population used for the GA is of size 10.  Those 10 
strings are chosen at random out of all the possible 
combinations of the parameters and form the population.  Each 
string is then decoded and evaluated.   

To start the GA simulation, the initial population is 
created at random, each string is evaluated and the three GA 
operators are used.  The operators used are the proportionate 
selection reproduction operator, the single-point crossover 
operator with a probability of 1 and the bit-wise mutation 
operator with a probability of 0.01.   

Each string is decoded, mapped and evaluated.  The 
evaluation process involves the FDTD method mentioned in 
the previous section.  This explains the long simulation time of 

this project: For each chromosome, the GA evaluates the 
fitness of the string by applying the FDTD method to evaluate 
the performance of the antenna with the predefined parameters 
fx, fz and h.  It should be noted that using all possible values 
for the parameters, the computational time to end up with an 
optimal solution may go up to months of simulation.  
Consequently, the parameters have been restricted to few 
discrete values, thus reducing the simulation time to 3 to 5 
weeks depending on the processing speed of the computer.   

2) Real-Coded GA 
Handling continuous search space with binary coded GA 

has several difficulties.  Real coded GA represents parameters 
without coding, which makes representation of the solutions 
very close to the natural formulation of many problems.  Real-
world optimization problems often involve a number of 
characteristics, which make them difficult to solve up to a 
required level of satisfaction [5].  After experimenting the 
BCGA, RCGA was experimented to compare the convergence 
and precision of the optimization process. 

In RCGA, decision variables are used directly to form 
chromosome-like structure.  Chromosome represents a 
solution and population is a collection of such solutions.  The 
operators modify the population of the solution to create new 
one.   

For implementing the RCGA in order to solve problems 
developed in this model, the following basic components are 
considered: Parameters of GA, Representation of 
chromosomes, Initialization of chromosomes, Evaluation of 
fitness function, Selection process, Genetic operators like 
crossover [6] and mutation [7]. 

The real-coded GA depends on some parameters like 
population size, maximum generation number, probability of 
crossover and probability of mutation.  According to genetics, 
the probability of crossover is always greater than that of 
mutation.  Generally, the probabilities of crossover and 
mutation are taken as 0.75 to 0.9 and 0.05 to 0.2 respectively. 

3) Clustering GA 
GA can sometimes get stuck on sub optimal solution 

without any progress to the real optimal solution.  Previous 
work has shown that this might be caused by the fact that GA 
optimizes the whole population out of a whole search space.  
One of the possible solutions to this problem is to maintain a 
population size as large as possible.  However, maintaining 
large population involve high cost to evaluate each individual.  
Therefore to reduce the cost of evaluation and accelerate the 
convergence the Hybrid Clustering GA [8] is applied in this 
work.  Fig. 4 illustrates the concept behind the conventional 
GA and the modified clustered GA. 

Fig. 3 Population string known as the chromosome 

fx fz h 

 X1   X2       X3   X4      X5 
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As illustrated in Fig. 4, clustering is a simple method of 
grouping the population into several small groups, called as 
clusters [9].  The algorithm evaluates only one representative 
for each cluster.  The fitness of other individuals are estimated 
from the representatives’ fitness.  Using this method, large 
population can be maintained with relatively less evaluation 
cost.  One of the important factors to take into consideration 
for clustering is the similarity measure.  This is commonly 
achieved using distance measures such as Euclidean distance, 
City block distance and Minkowski distance [10].  
Computation of the distance is generally done using equation 

∑
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−==
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(2), 

where m=1, m=2 and m ≥ 3 for City block distance, Euclidean 
distance and Minkowski distance respectively. 

There exist other clustering techniques namely the 
Hierarchical clustering, Overlapping clustering and Partitional 
clustering.  A hybrid GA with clustering based on the k-means 
algorithms [11] from Partional clustering had been used in the 
presented work because of its applicability and flexibility of 
specifying the number of clusters required. 

III.  EXPERIMENTAL RESULTS 

A series of tests were carried out throughout the work to 
check whether the implementation of the FDTD was 
appropriate to evaluate the performance of the PIFA.  These 
tests were carried out using different boundary conditions, 
different excitation pulses and different computational space 
size.   

The PIFA was excited using a Gaussian waveform of 
frequency ranging from 1.9GHz to 2.5GHz.  The feeding 
point, that is, the source location was varied by adjusting the 
parameters fx and fz.  The height of the radiating plate from the 
ground plate was also varied by changing the value of another 
parameter ‘h’.   

The mesh was tested with various ABCs for comparison 
purposes.  The Mur’s Absorbing Boundary Condition has been 
observed to provide “reflection less” boundary over broad 

spectrum and for all angles of incidence and polarization.  
Moreover, it achieves minimal in computational cost and 
memory requirement.   

The FDTD mesh size was defined large enough for the 
waves to propagate smoothly.  A very large mesh size would 
obviously give better approximation of the fields propagation 
since the reflection from the boundaries would be farther from 
the source.  However, a very large mesh size would 
automatically increase the simulation time considerably.   

The bandwidth was evaluated from the input impedance 
and different VSWR values obtained for the set of frequencies 
used.  A graph of VSWR against frequencies, as shown in Fig. 
7, is plotted to show how the bandwidth is obtained.   

 

 
 

The BCGA and RCGA has shown to be very good 
optimization methods.  However, it has been observed that 
both may get stuck to sub optimal solution.  To improve the 
optimization engine, the hybrid GA by clustering was used.  
The distance from the representatives has been used in the 
clustered GA.  The representative is evaluated and fitness of 
each representative is calculated.  The fitness for the 
remaining individuals is calculated from the fitness of the 
representatives in proportion to their respective distance.  
Using the Euclidean distance as in equation (2) with m=2, the 
distance measure and fitness of remaining individuals can thus 
be estimated. 

Table I shows the comparison of the different GA 
techniques used in this work after 100 iteration of the 
optimization.  The experiment has been repeated 5 times.  The 
figures in the table show that the conventional GAs may tend 
towards sub optimal zones and may also get stuck in the 
wrong zones.  BCGA in this case has the worst results in terms 
of convergence to real optimal zone.  RCGA comes to the 
second position with a significant improvement on the 
convergence while the hybrid GA by clustering is the clear 
winner and has proved to have better chance of converging to 
the optimal solution. 

Fig. 4 Conventional GA vs. Clustered GA 

 
Fig. 7 Graph of VSWR v/s frequency 

Bandwidth ~ 420 MHz 
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TABLE I 
COMPARISON OF GAS OPTIMIZATION – 100 ITERATIONS 

BCGA RCGA Hybrid 

1 1.0000 1.0000 1.0000 

2 0.9093 1.0000 1.0000 

3 0.9093 1.0000 1.0000 

4 1.0000 0.9996 1.0000 

5 0.9093 1.0000 1.0000 

IV.  CONCLUSION 

A. FDTD Outcome 
The results show that at different positions of the feeding 

wire of the PIFA, different waveforms are generated and 
therefore different values of the input impedance and of the 
VSWR are obtained.  The simulated results also show how the 
E-fields in between the radiating plate and the ground plate are 
highly concentrated and how they attenuate and fade out as 
they propagate in the surroundings.   

The FDTD technique was found to be a very powerful 
tool for the analysis of electromagnetic propagation.  
However, the FDTD method is limited by the amount of 
computational memory storage required, which depends on the 
complexity of the problem structure.  The total storage 
requirement for a given computation can be determined by 
considering that each three-dimensional FDTD cell requires 
six real number storage places for the six field components, 
and an additional large storage for the number of iterations.   

B. GA Outcome 
The bandwidth obtained from the simulation is 

approximately 420 MHz.  This is the optimal solution 
generated by the GA.  The ground and radiating plates’ 
dimensions were set to 50x26mm and 22x14mm respectively.  
The values of the parameters achieving this particular 
bandwidth are fx = 3 cells (6mm), fz = 3 cells (6mm) and h = 4 
cells (8mm).  The results could be enhanced if the population 
size of the GA was bigger and if the number of discrete values 
used for the parameters were larger.  However, as mentioned 
earlier, this would cause the simulation to last much longer.   

The RCGA has proved to converge better to the optimal 
solution.  However, owing to the large number of combination 
using real values, the RCGA took more time to simulate.   

The Hybrid GA by clustering, on the other hand, has 
shown to converge faster to the optimal solution.  Population 
size could be increased to some extent without affecting the 
performance of the optimization using the Hybrid GA by 
clustering. 

C. Improving Outcome 
The FDTD simulation has been observed to take really 

very long before generating the required output.  As such, 
most of the time is spent in the simulation and the future work 
regarding the FDTD is to optimize the FDTD logic such that 
processing is faster.   

The BCGA has proved to be a very good optimizing tool 
and if used properly, it may serve to solve various problems of 
search and optimization.  However, the optimization does not 
always converge to the optimal solution and sometimes get 
diverted to some other sub-optimal solution.  RCGA on the 
other hand has proved to be a very good convergence tool.  
Coupled with the clustering method, the GA has shown to be a 
very powerful optimization tool. 

The next step is to test the simulation and optimization 
using the following: 
� Optimized FDTD technique. 
� Real-Coded GA with different combination of operators. 
� Binary String Fitness Characterization. 
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Abstract— Concrete is the most important material in civil 

engineering. The concrete compressive strength is a highly 
nonlinear function of ingredients. Several studies have shown that 
concrete strength is not only related to water-to-cement ratio, but 
also is influenced by the other additive materials. The concrete 
compressive strength is a complex non-linear regression problem 
for construction engineering.  It is highly difficult to predict the 
concrete strength due to non-linearity. For nonlinear problems, 
artificial neural network is widely used to solve and easy to create 
for any nonlinear problem. Although it is easy to apply, there are 
some parameters to set carefully to obtain more accuracy. 
Selection of training method, transfer function, number of nodes 
and hidden layer are crucial to solve the problem. According to 
these parameters, normalization method, kind of preprocessing 
way, is important to improve the accuracy of the solution. 
Euclidean based normalization method uses Euclid distance to 
normalize dataset through the attribute. In this study, artificial 
neural network training methods were employed using euclidean 
normalization method on prediction of concrete compressive 
dataset. The best result for concrete compressive dataset was 
obtained using Levenberg-Marquardt training algorithm. To 
compare the ANN training methods, mean square error and 
average deviation have been used as performance measure using 
two-fold cross validation. Euclidean normalization method 
composed with artificial neural network with 
Levenberg-Marquardt training algorithm has better r esults than 
the other training methods, namely gradient descent training 
method, gradient descent with momentum training method, 
gradient descent momentum and adaptive learning rate  training 
method and gradient descent with adaptive learning rate training 
method. For proposed method, Euclidean normalization merged 
with artificial neural network with Levenberg-Marqu ardt 
training algorithm, the obtained results for mean square error and 
average deviation are 0.000197 and 4.564, respectively. 
 

Index Terms— Artificial neural network; Training method; 
Euclidean normalization; Concrete compressive strength; 
Levenberg-Marquardt 
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I. INTRODUCTION 

oncrete has high importance in civil engineering. It is 
widely used for many kinds of structures. Day by day 

different structures have been designed and constructed. 
Earthquake is the most important obstacle to be overcome and 
taken into account by the experts. In order to simulate behavior 
of the structure, concrete compressive strength must be known. 
But it can not be guessed easily due to its ingredients and 
processes [1]. Concrete compressive dataset has been obtained 
from data repository of University of California, Irvine [2]. 
Concrete compressive strength is a nonlinear problem and 
artificial neural network (ANN) is a way to present a solution 
[3,4]. ANN has a huge background and many studies have 
proven that it can present solutions on nonlinear problems [5-7]. 
ANN has a simple and comprehensible structure. Although a 
few parameters are present to be adjusted in ANN, it requires 
expert knowledge and extreme care must be given. ANN has 
five different training methods widely used in literature. Five 
common training methods are Levenberg-Marquardt training 
algorithm, gradient descent training algorithm, gradient descent 
with momentum training algorithm, gradient descent 
momentum and adaptive learning rate  training algorithm and  
gradient descent with adaptive learning rate training algorithm 
abbreviated as  trainlm, traingd, traingdm, traingdx, traingda,  
respectively. 

In addition to training algorithms, transfer functions, number 
of nodes and number of layers must be determined before the 
processing of ANN. In this study, transfer function was chosen 
as logsig transfer function for all training algorithms. Number of 
nodes and hidden layer were chosen as 20 and 1, respectively.  

Before the processing of ANN, Euclidean normalization 
method was performed to normalize concrete compressive 
dataset. Euclidean normalization method uses Euclid distance to 
normalize the dataset [8,9]. Euclidean distance is a way to 
measure similarity and accuracy between predicted and 
measured value.  

In this paper, we have discussed different artificial neural 
network training methods using real concrete compressive 
dataset to evaluate the concrete compressive dataset.  

Firstly, concrete compressive dataset was performed using 
Euclidean base normalization method (EBNM) to normalize the 
dataset as pre-processing. After the normalization, normalized 
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dataset, which is concrete compressive strength, was applied to 
ANN using different training algorithms.  
 In this paper, we have discussed different training algorithms 
for ANN application using concrete compressive dataset. 
Artificial neural network with Levenberg-Marquardt training 
algorithm has given the best results in terms of mean squared 
error (MSE) and average deviation (AD). MSE and AD values 
are 0.000197 and 4.564, respectively. Levenberg-Marquardt 
training algorithm has given approximately 8.36 times better 
MSE result and 4.33 times better AD result than that of the 
closest training algorithm, which is gradient descent momentum 
and adaptive learning rate training algorithm. 

II.  MATERIAL  

 
The concrete compressive strength is a highly nonlinear 

function of age and ingredients. Concrete compressive dataset 
was obtained from data repository, which belongs to University 
of California, Irvine. The dataset includes 1030 real observation 
and nine attributes. Concrete compressive dataset has real 
numbers and no missing value. Table 1 presents the attributes 
details belonging to concrete compressive dataset.  

 
TABLE  I 

CONCRETE COMPRESSIVE DATASET DETAILS  

Attributes Unit Minimum Maximum Average 

Cement Kg/m3 540 102 281.2 
Blast Furnace Slag Kg/m3 359.4 0 73.9 

Fly Ash Kg/m3 200.1 0 54.2 

Water Kg/m3 247 121.8 181.6 

Superplasticizer Kg/m3 32.2 0 6.2 

Coarse Aggregate Kg/m3 1145 801 972.9 

Fine Aggregate Kg/m3 992.6 594 773.6 

Age Day 365 1 45.7 

Concrete 
compressive strength 

Mega 
pascal 
(MPa) 

82.6 2.3 35.8 

 
Concrete compressive strength not only belongs water to 
cement ratio but also belongs to other materials which is used in 
the mix.  There are six ingredients in the concrete except cement 
and water.  Computing of the concrete compressive strength is 
not easy due to large number of inputs and nonlinearity of the 
concrete structure.   

III.  METHOD  

In this paper, we have proposed Euclidean normalization 
method merged with ANN to predict the concrete compressive 
strength. Proposed method starts with Euclidean based 
normalization method (EBNM). After the normalization, 
normalized concrete compressive dataset was applied to ANN 
using different training algorithms to obtain the best accuracy. 

Mean square error and average deviation were used as 
performance criteria after the two fold cross validation. Mean 
square error and average deviation are widely used in literature 

to evaluate performance of the system [10, 11]. 
Two fold cross validation is a common method to present any 

solution validity [12, 13].  
Figure 1 presents the proposed method.  
 

 
Fig. 1 The flowchart of proposed method 

 
Proposed method includes Euclidean based normalization 

method and artificial neural network. Firstly, dataset is 
normalized according to Euclid distance. In second and third 
stages, artificial neural network is performed and two fold cross 
validation is applied to improve proposed methods’ validity.  

A. Euclidean Based Normalization Method 

Euclidean based normalization uses Euclid distance to 
normalize the dataset. Euclidean distance is widely used to 
measure the similarity and distance between predicted and 
current value [14]. For every attribute, there is an Euclid 
distance to compute the new values. Euclidean normalization 
can be calculated by Equation 1.   
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where 'a is the new computed values normalized and 

naaa ..., 21 are member of the same attributes of the dataset, 
na ℜ∈ . After the normalization, obtained matrix and raw 

matrix have the same dimension.   
In addition to training methods, Euclidean based normalization 
method has been compared to Tchebytchev Norm to make a 
comparison. 

B. Artificial neural Network and training algorithm 

Artificial neural network is one of the most famous artificial 
intelligence methods studied in literature, which has learning 
ability. It has over fifty years of background and there are many 
studies on ANN, in which it has been employed to solve 
nonlinear problems [15]. ANN uses nodes to calculate the 
output. Performing of ANN resembles neurons in brain. There 
are different transfer functions in the nodes to simulate the 

Normalization of the dataset using (EBNM) 

Dataset was divided into two groups 

Artificial Neural Network 
 

Two-fold cross validation 

Prediction of the concrete compressive data 
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neurons. In this study, logsig transfer function was chosen for all 
training algorithms and logsig transfer function was not changed 
through the experiment. Learning ability of ANN was hidden in 
the neurons and the weights of the net. As depicted in Figure 2, 
multi layer perceptron (MLP) ANN structure, which is a 
common configuration, includes one input, one hidden and one 
output layer [16]. 

 

 
Fig. 2 Structure of ANN 

 
This is miniature of an ANN. The back propagation 

algorithm is widely used to adjust connection weights and bias 
values using training. 

Each MLP layer is formed by a number of predefined 
neurons. The neurons in the input layer can be explained as a 
buffer which distributes the input signals xi to following neurons 
in the hidden layer without decaying the signal. Each neuron j in 
the hidden layer sums the input signals xi after weighting them 
with the strengths of the respective connections wij from the 
input layer, and computes its output yj as a function f of the sum 
as given in Equation 2. 

 

)(∑= ixwfy iiji                (2) 

 
where f is the activation function which is needed to 

transform the weighted sum of all signals influencing a neuron. 
Although there are many activation functions for ANN 
application due to different data set groups, logsig is a very 
common activation function. All activation functions have 
different transfer curves that may be threshold, linear tangent 
etc. In the end, the output neuron in the output layer can be 
calculated similarly [16-17].  

The training parameters and structure of the MLP was set as 
logsig and tried 10 times each for 2000 epoches. In this study, 
the experimental studies were performed on the MATLAB(™) 
6.5 environment. 

In this study, five training algorithms, namely 
Levenberg-Marquardt training algorithm, Gradient descent 
training algorithm, Gradient descent with momentum training 
algorithm, Gradient descent momentum and adaptive learning 
rate  training algorithm, were used.   

Gradient descent search method is listed below. Gradient 
descent search method uses derivatives to reach the target. 
Gradient can be computed by Equation 3. 

 

nwEwEwE ∂∂∂∂=∇ /,.../)( 0       (3) 

 
Fig. 3 Presents computing of gradient descent  
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Gradient descent flow chart 

 
Gradient descent training algorithm (traingd):  
Traingd is a network training function that updates weight 

and bias values according to output error. This learning method 
is the basic form of back propagation method. 

 
Gradient descent with adaptive learning rate training 

algorithm (traingda):  
For standard gradient descent, the learning rate is held 

constant throughout training. The performance of the algorithm 
is very sensitive to the exact setting of the learning rate. If the 
learning rate is set too high, the algorithm may oscillate and 
become unstable. If the learning rate is too small, the algorithm 
takes too long to reach the solution. It is not practical to 
determine the optimal setting for the learning rate before 
training. Traingda is a network training function that updates 
weight and bias values according to adaptive learning rate. 

 
 Gradient descent with momentum training algorithm 

(traingdm):  
Another technique that can help the network out of local 

minima is the use of a momentum term. This is probably the 
most popular extension of the back propagation algorithm; it is 
hard to find cases where this is not used. With momentum m, the 
weights can be updated at a given time t using Equation 4.  

 

)1()( ),(),( −+=∆ tmwytw jiiiiji δµ       (4) 

 
Traingdm is a network training function that updates weight 

and bias values according to gradient descent with momentum. 
 
Gradient descent momentum and adaptive learning rate  

training algorithm (traingdx): Traingdx is a network training 
function that updates weight and bias values according to error 
surface using momentum and an adaptive learning rate. 

 
 

- Until 
- Initialize each ∆wi to zero 
- For each <x,t> in S Do 

o Compute o=<x,w>   
o For each weight wi  

� Do 
� ∆wi= ∆wi + η (t-o) 

xi 
- For each weight wi Do 

o w=w +∆w 

162 ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France



 

 

Levenberg Marquardt training algorithm (trainglm): 
Levenberg-Marquardt algorithm was designed to approach 
second-order training speed without having to compute the 
Hessian matrix. Levenberg-Marquardt uses approximated 
Hessian matrix computed from Jacobian Matrix. The 
Levenberg-Marquardt algorithm uses this approximation to the 
Hessian matrix in Equation 5 Newton-like update [18]: 
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When the scalar µ is zero, this is just Newton's method, using 

the approximate Hessian matrix. When µ is large, this becomes 
gradient descent with a small step size.  

 

In Levenberg-Marquardt method, the change (∆ ) in the 
weights (wi) are obtained by solving Equation 6 [19]. 
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where E is the mean-squared network error and can be 

computed by Equation 7. 
 

[ ]∑
=

−=
1

2
)(

1

k
kk dxy

N
E

rr
         (7) 

 

N is the number of samples, )( kxy
r

 is the network output 

corresponding to the sample xk, and kd
r

 is the desired output for 

the sample. 
Adjusting the µ changes the behavior of the 

Levenberg-Marquardt between Newton method and gradient 
descent method.  

Five training methods have been performed using real 
concrete compressive strength data set to evaluate ANN 
performance. The obtained performance results have been given 
in Section IV. 

C. Two-Fold cross validation 

Two-fold cross validation is widely used to improve validity 
of the any proposed system [18]. The data set is divided into two 
subsets as 50% training and 50% testing and the two-fold cross 
validation method is two times. Each time, one of the one 
subsets is used as the test set and the other subset is used a 
training set. Then the average error across two trials is 
computed. The advantage of this method is that it matters less 
how the data gets divided and every data is used test and train.  

D. Performance Criteria 

There are several ways to measure performance of any system. 
In this study, mean squared error and average deviation were 
used as performance criteria after the two fold cross validation.  

Mean squared error (MSE) is a widely used method to 
evaluate the performance of any system. As the name suggests, 

MSE error can be explained as a measure of the center 
distribution quality. MSE is average of the squares of the 
distances between target and the predicted values [19]. MSE 
can be calculated by Equation 8.  
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Average deviation (AD) Average deviation can be explained 

as a percentage of the average error, as shown in Equation 9 
[20]. 
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In order to demonstrate the performance of proposed method, 

two-fold cross validation was used. Dataset was divided into 
two groups as 50% training and 50% testing. After training and 
testing was performed in ANN, testing and training datasets 
were re-located and ANN was performed again. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

In this study, Euclidean based normalization merged with 
artificial neural network was discussed for different ANN 
training methods to predict concrete compressive strength. 
Concrete compressive data set has real observation. For training 
methods, Levenberg Marquardt has given the best results 
among the five training methods to predict the concrete 
compressive strength. Figure 4 presents error graphics of the 
Levenberg Marquardt training method for concrete compressive 
dataset. For the best fitting, the obtained results must be closer 
to diagonal line. 

 

 
Fig. 4 Error graphics of the Levenberg-Marquardt training method 

 
 
Figure 5 presents outputs for all inputs in the normalized axis.  
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Fig. 5 The results graphics of Levenberg-Marquardt training method 

 
Table 2 presents five training methods and their mean squared 
error and average deviations for Euclidean normalization based 
ANN performing. In addition to Euclidean based normalization 
method.  

It can be seen in the Table 2, Levenberg-Marquardt training 
method has the best results among all the training methods. 
MSE and AD values for Levenberg-Marquardt training method 
are 0.000197 and 4.564, respectively.  

 
TABLE II 

THE PERFORMANCE RESULTS OF THE DIFFERENT TRAINING METHODS FOR THE 

PREDICTION OF CONCRETE COMPRESSIVE STRENGTH USING EUCLIDEAN 

NORMALIZATION  

Training method Mean Squared Error Average Deviation 

Levenberg Marquardt 0.000197 4.564 
Triangd 0.033742 66.58 

Traingdm 0.052518 89.32 

Traingda 0.002474 23.34 

Traingdx 0.001648 19.77 

 
Table 3 presents same five training methods and their mean 

squared error and average deviations for Tchebytchev 
normalization to make a comparison.  

 
TABLE III 

THE PERFORMANCE RESULTS OF THE DIFFERENT TRAINING METHODS FOR THE 

PREDICTION OF CONCRETE COMPRESSIVE STRENGTH USING TCHEBYTCHEV 

NORMALIZATION  

Training method Mean Squared Error Average Deviation 

Levenberg Marquardt 0.888465 -12.729 
Triangd 0.931183 -26.836 

Traingdm 0.811167 -30.465 

Traingda 0.774674 -17.45 

Traingdx 0.677321 -25.504 

 
 

From the Table 3, MSE and AD values belonging to concrete 
compressive strength data set which is normalized using 
Tchebytchev norm are worse than Euclidean normalization 
method.  

V. CONCLUSION 

In this paper, five common ANN training methods were 
discussed to predict concrete compressive dataset using 
Euclidean normalization method. Among the five methods, 
Levenberg-Marquardt training method has the best results in 
terms of mean squared error and average deviation. The 
obtained results of MSE and AD are 0.000197 and 4.564, 
respectively. In addition to Euclidean normalization method, 
Tchebytchev norm was used as normalization and compared to 
Euclidean normalization for same training methods and same 
data set, concrete compressive strength data set. The obtained 
results of MSE and AD are 0.888465 and -12.729, respectively.   

The test results have shown that Levenberg-Marquardt 
training method for ANN has the best result for predicting 
concrete compressive dataset and it encourages us to use 
Levenberg-Marquardt training method to predict the concrete 
compressive dataset.  
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Abstract—A concept clustering method on interval concept 

lattice is introduced in this paper. Based on the distance between 
two formal concepts defined, the clustering method is presented. 
Clustering can reduce the size of interval concept lattice to get 
better interval lattice structure which can be easier to understand. 
Experimental results show that the reduction algorithm has 
reasonable performance on the complexity. 
 

Index Terms—interval concept lattice, interval clustering, 
interval FCA, reduction of interval lattice 
 

I. INTRODUCTION 
ormal Concept Analysis (FCA) is a data analysis technique 
based on the ordered lattice theory firstly introduced by 
Wille [1]. It defines formal contexts to represent relations 

between objects and attributes and interprets the corresponding 
concept lattice. Actually classical formal concept analysis just 
can deal with the context with Boolean value. Burusco 
introduced the interval data into FCA at the first time [2]. 
Combining with interval analysis method [4-7], An interval 
concept lattice model is introduced in [8] which is inspired by 
Scaling [3] to process interval attributes by interval attribute 
scaling. Interval concept lattice (abbr. interval lattice) extends 
the data process ability of FCA to interval data. 

In interval lattice, the objects which have very small different 
attribute will be separated into different formal concept. In fact, 
people think they are similar, and normally not divide them into 
different classes. Base on this observation, a clustering method 
is proposed for the reduction of interval concept lattice. There 
are researches on interval clustering [9-12]. The most important 
thing is to define the distance between intervals and the 
dissimilarity (or similarity) between interval vectors. On 
interval lattice, the concept is represented by the attributes of 
the concept. The attributes can be transformed into interval 
vector, the dissimilarity between interval concepts are 
measured by the dissimilarity between interval vectors. Then 
the clustering algorithm on the interval concept lattice is 
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introduced for the reduction of concepts based on the 
dissimilarity.  Actually, the concept lattice is used for web 
exploring because it’s different from the tree structure. A 
concept note in the lattice can have more than one parent note. 
When exploring the web, the user can get the target through 
several routes. And the reduced lattice can help the user get the 
target faster. 

The rest of the paper is organized as following. Section 2 
introduces Interval Formal Concept Analysis. Section 3 
presents the definition of dissimilarity between interval 
concepts. Section 4 gives the clustering algorithm for the 
reduction of interval lattice. The experiment is in Section 5 and 
Section 6 concludes. 

II. INTERVAL FORMAL CONCEPT ANALYSIS 
This section concisely introduces the Interval Formal 

Concept Analysis (IFCA) which was proposed in [8]. Its core 
data structure is interval concept lattice, which incorporates 
attribute decomposition based interval scaling to make FCA 
has the capacity of representing interval information. 

An interval [a, b] is the set of all real numbers {x: a≤x≤b}. A 
natural definition of arithmetic for intervals, represented as 
pairs of real numbers [13]. The interval [a, b] with a=b is called 
degenerate interval which degenerate to a real number a. 
interval decomposition denoted as ⊙. There are two rules in 
decomposition process: 

i. The degenerate intervals do not participate in the 
decomposition process. 

ii. The decomposition process does not generate 
degenerate intervals. 

Firstly the two intervals decomposition process is analyzed. 
Both [a1,b1] and [a2,b2] are not degenerate intervals. Without 
missing the generality, we assume a1≤a2. 

[a1,b1]⊙[a2,b2] = I1,I2,I3=[a1,a2∧b1], [a2,(a2∨b1)
∧b2],[(a2∨b1)∧b2, b1∨b2] 

(1)

If the interval Ii =[a-,a+] (i=1,2,3) with a-＝a+ ( a- and a+ are 
the lower bound and the upper bound of Ii respectively), it does 
not satisfy rule 2, and will be deleted from the result. There 
exists eight conditions of the two interval [a1, b1] and [a2 b2] 
shown in Table 1.  

Table 1. The decomposition condition table of two intervals 
Type Condition [a1, b1]⊙[a2, b2] Example 

1 

A1

B1 - [a1,b1] [2,5]⊙[2,5]= [2,5] 

2 B2 C3 [a1,b1],[b1, b2] 
[2,8]⊙[2,12] 
=[2,8],[8,12] 

3 B3 - [a1, b2],[b2, b1] 
[2,8]⊙[2,5] 
=[2,5],[5,8] 
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4 

A2 

B1 C3 [a1, a2],[a2,b2] 
[2,6]⊙[3,6] 
=[2,3],[3,6] 

5 

B2 

C1 [a1,b1], [a2,b2] 
[2,4]⊙[4,6] 
=[2,4],[4,6] 

6 C2 [a1,b1],[a2,b2] 
[2,3]⊙[4,6] 
=[2,3],[4,6] 

7 C3 [a1, a2],[a2, b1], 
[b1, b2] 

[2,5]⊙[4,7] 
=[2,4],[4,5],[5,7] 

8 B3 - [a1, a2],[a2,b2], 
[b2, b1] 

[2,11]⊙[5,9] 
=[2,5],[5,9],[9,11] 

 
(The condition A1 and A2 denote a1=a2, a1<a2 respectively, B1, B2 and B3 
denote b1=b2, b1<b2, and b1>b2, and C1, C2, C3 denote b1=a2, b1<a2 and b1>a2 
respectively.) 
 

The information table (G, M, R) (the relation of R (g, m) 
((g∈G, m∈M) has the value of u (g, m)) can be represented as 
a cross-table shown in Table 2. The information table has three 
objects representing three doctors, namely D1, D2 and D3. In 
addition, it also has four attributes, “working day” (A), 
“working time” (B), “registration fee” (C) for out-patient, 
“physician level” (D) of the doctors. The relation between an 
object and an attribute is represented by interval data as 
showing in Table 2. 

Table 2.  Information table of interval. 
 A B C D 

D1 [1,3] [8,12] [20,100] [9,10] 
D2 [2,5] [14,17] [10,50] [1,6] 
D3 [6,7] [9,11] [20,50] [7,8] 

 
Interval attribute decomposition is for m ( m M∈ ), the 

intervals u (g, m) of R (g, m) in (G, M, R) is decomposed as Wm. 
The information table can be transferred to interval context by 
interval attribute scaling.  

Definition 1 interval attribute scaling. After interval 
attribute decomposition the information table (G, M, R) is 
extended to (G, M, (Wm)m∈M, R, I), each Wm is a set of 
decomposed intervals of ( , )g mμ for the attribute m (m∈M, 
g∈G ), ( , , )g m w I∈ if and only if there exists 

( , )w g mμ⊆ ( mw W∈ , ( , )g mμ is the value of R(g, m) of 
information table (G, M, R)). 

Definition 2 interval formal context. It is a tuple 
:=( , , ( ) , )m MmG M W I∈Κ where G is a set of objects, M a set of 

attributes, and  {( , ) |  , }mI G m w m M w W⊆ × ∈ ∈ , a relation 
with 1 2 1 2( , , ) , ( , , )g m w I g m w I w w∈ ∈ ⇒ = . ( , , )g m w I∈  is 
read “object g has value w for attribute m”. 

The set of W shown in Table 3 is generated from the attribute 
M from Table 2. 

 
 
 
 
 
 
 
 

The interval formal context is as shown in Table 4 which is 
obtained from Table 2 by interval attribute scaling after 
attribute decomposition. 

 
 

Table 4. Interval formal context 
M A B C D 
W a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 d1 d2 d3

D1 1 1 0 0 1 1 1 0 0 1 1 0 0 1
D2 0 1 1 0 0 0 0 1 1 1 0 1 0 0
D3 0 0 0 1 0 1 0 0 0 1 0 0 1 0

 
Definition 3. for A G⊆ , there are two mapping: 

{ }
{ }

 : , , ( , , )

: , , ( , , )
m

m

A w W g A m M g m w I

B g G w W m B g m w I

′ = ∈ ∀ ∈ ∈ ∈

′ = ∈ ∀ ∈ ∈ ∈
 

Definition 4 interval formal concept (interval concept). C 
(A, B) is called an interval formal concept of ( ): , , ,K G M W I=  if 

and if only A G⊆ , ( , )B BB M W , BM M⊆ , 

( ) { }m m mW B w w B= ∈∪ , A B′ = and B A′ = , A and B are 
called the extent and intent of C respectively. 

Definition 5 interval concept lattice (interval lattice). The 
concepts of a given context are naturally ordered by the partial 
relation defined by 

1 1 1 2 2 2 1 2 2 1( , ) ( , ) : ( ) ( )m mC A B C A B A A W B W B≤ ⇔ ⊆ ⇔ ⊆  where 

2mW B∈ . The ordered set of all interval formal concepts of 
:=( , , , )G M W IΚ  is denoted by B ( , , , )G M W I , and is called 

interval concept lattice of ( , , , )G M W I . Without 
ambiguousness, the interval concept lattice is called concept 
lattice or lattice.  

The attribute decomposition is the base of attribute scaling to 
form the interval context after the attribute decomposition.  
 

 

 

Fig. 1. The interval concept lattice 

The interval concept lattice is generated as Figure 1 from 
context shown as Table 4. 

III.  DISSIMILARITY BETWEEN TWO INTERVAL FORMAL 
CONCEPTS 

In interval concept lattice, each concept can be represented 
by a concept vector which is used for calculating the 
similarities between concepts. The distance function of the two 
vectors of intervals is the dissimilarity function of two interval 
formal concepts.  

Table 3. W generated by interval attribute decomposition  

a1 [1,2] a2 [2,3] a3[3,5] a4 [6,7] 
b1 [8,9] b1 [9,11] b3[11,12] b4 [14,17] 
c1 [10,20] c1 [20,50] c1[50,100]  
d1 [1, 6] d1 [7,8] d1 [9,10]  
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The information in the information table of intervals (like 
Table 2) and the intents of the concepts are used for the 
generation of the vectors. Each concept is related to one vector. 
|M| which is the cardinal number of attributes in information 
table of interval is the dimensionality of the vector |M|. The 
concept vector is defined as Definition 6. 

Definition 6 (Concept Vector). Given interval concept 
C=(A, B) of {G, M, I} (|G|=k, |M|=q), the vector of C is defined 
as 

C q1 2 i(v , v , , v , , v )V , o∈ O, m∈M, g∈ G: 

( , ) ,

i

i i

i
mi

w m B

u g m m g
v

B A

⎧ ∈

∉ ∈
= ⎪

⎨
⎪⎩

 (2) 

where ( , ) [ ( , ) , ( , ) ]i i iu g m u g m u g m− +=  and  
| |

=1

| |

=1

(

(

1( , ) , ) ,
| |

1( , ) , ) ,
| |

A

i j j
j

A

i j j
j

i

i

g m

g m

u g m u g A
A

u g m u g A
A

− −

+ +

= ∈

= ∈

∑

∑

 . 

( , )iu g m − is an average of ( , )iu g m −  where g A∈ . ( , )iu g m +  

is an average of ( , )iu g m +  where g A∈ . 
The element vi of VC that is corresponding to attribute mi is 

different according to whether mi is included in the intent B of 
concept C. Concept vector incorporates the fuzziness of 
concept into concept lattice. It endows the concept with 
comparable attribute so any two concepts in the concept lattice 
can be compared with each other. It’s the base for the 
computing of concept dissimilarity. The interval concept vector 
is derived from information table of intervals according to the 
extent and intent of the concept, keeping all the information in 
context and avoiding information lost.  

For the comparison between vectors is meaningful, the 
normalization of vectors of intervals is necessary. Here the 
normalization process of vectors of intervals is as following: 
Corresponding to an attribute mi, the element vi of VC is [ai, bi]. 
The normalization of vi is Ii, and Ii=[c,d].  

c=(a-min[i])/(max[i]-min[i]); 
d=(b-min[i])/(max[i]-min[i]); 
where (min[ ] min{ , ) },j jig mi u g G−= ∈  and 

(max[ ] max{ , ) },j jig mi u g G+= ∈ . 
Here the concept dissimilarity is given as following. 
Definition 7 (Concept Dissimilarity). The dissimilarity 

between concept C1 and C2 of interval concept lattice is defined 
as the distance of interval vectors of concept C1 and C2: 

=1

)(( , ) ,i j

i j k

M

k
kd C C I Iφ= ∑

( ) ( ) ( ) ( ) 2

2 2

(

1

3 2

, )i j

k k

j j i i

k k k ki j i j

k k k k

I I

I I I I
I I I I

φ

− + − +

− − + +
+ +

−
−

+ − +
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

＝

 

(3)

The definition of , )( i j

k kI Iφ  is introduced from [14]. When 

C1 is the parent concept of C2, or C2 is the parent concept of C1, 
the distance between C1 and C2 is called parent-child distance. 

IV.  CLUSTERING ALGORITHM FOR THE REDUCTION OF 
INTERVAL FORMAL CONCEPT LATTICE 

The distance between two concepts shows the dissimilarity 
of the two concepts. Dissimilarity threshold TS for Clustering 
determines by the specific application or specified by the user. 
If the distance between two concepts is less than TS, these 
concepts are similar with each other and are included in the 
same concept cluster (CK). If the distance of concepts greater 
than TS, the concept be categorized into different clusters. 

Definition 8 (the maximal concept in the Concept Cluster).  
For CK B(K)∀ ⊆ , if there is i( ) CKi iC A , B ∈  and there is 

no ( ) CKj j jC A ,B ∈ , which makes i jA A⊂ , Ci is the maximal 
concept of CK. 

By definition, there is at least one maximal concept in a 
concept cluster. The concept clustering process just is carried 
on between the parent and child concepts. 

Definition 9 (Conceptual Hierarchy). Concept clusters have 
hierarchical relationships that can be derived from interval 
formal concepts on the interval concept lattice. That is, a 
concept hierarchy. 

The interval concept lattice is also very intricate and 
complicated as a result of producing many interval formal 
concepts. Objects that have small differences in terms of 
attribute values are still classified into different formal concepts. 
However, such objects should belong to the same concept when 
they are interpreted. 

The clustering algorithm on interval concept lattices is 
shown in Fig. 2. 
 
Algorithm: Interval Concept hierarchy generalization 
Input: TS, A //A=B(K)-{top concept, bottom concept} 

Output: interval concept hierarchy 

Process: 

CK=null;  //concept cluster 
while(CH1!=null) 
{   CH2=null; 

for(i=0; i<n; i++) 
{   sameCluster=null; 

judgeConcept(C1i,sameCluster,C1i,CH2); 
} 
CK.add(sameCluster); 
for(each concept ‘sc’ in sameCluster) 
{  sc.cluster(C1i);}  

//put cluster sign on “ C1i” on sc 
CH1=CH2; 

} 
judgeConcept(C1i,sameCluster,C1i,CH2)    

{   sameCluster.add(C1i); 
if(C1i has no child concept) {return;} 
else{   for(each child concept c1ij of C1i) 

{  if(d(C1i,c1ij)<= Ts) 
{ judgeConcept(C1i,sameCluster, c1ij,CH2) ; }

else 
{ If(all the parent concepts of c1ij are 

already have cluster sign) 
{CH2.add(c1ij);}  } 

} 
} 

} 
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Then, form the concept set  
Finally, add edges to concepts, and generate interval concept 

hierarchy 
 

Fig. 2. Concept hierarchy generalization algorithm  

 
The first cycle process of the 2nd step in Fig.2, CH1 is the set 

of all the child concepts of the top concept in interval concept 
lattice, CH2 is null. After substituting the clusters with their 
supremeums and adding edges to concepts, the concept 
hierarchy is generated. 

The conceptual clusters generated have the following 
properties: each concept cluster is a sub-lattice extracted from 
the interval concept lattice; a formal concept must belong to at 
least one concept cluster, but it can also belong to more than 
one conceptual cluster.  

After the clustering based on parent-child concept pairs on 
interval concept lattice of formal context shown in Table 4, the 
distance between parent-child concept pairs (not including top 
and bottom concept of lattice) detected as shown in Fig. 3 
When the threshold is set as 0.55, concept pairs (#0, #2) and (#3, 
#4) are clustered respectively as concept cluster CK1 and CK2, 
concept #1, top concept, and bottom concept are formed as 
three different clusters. The concepts in the lattice are totally 
clustered into five categories. The concept set is formed as {#1, 
#2, #4, #5, #6} by substituting the cluster with the supremum. 
Then the generalization and specialization relations are found 
out, and the concept hierarchy is generated, shown as Fig. 4. 
 

 

 
Fig. 3. Conceptual clustering on interval FCA  

 
Then the generalization and specialization relations are 

found out, and the interval concept hierarchy is generated, 
shown as Fig. 4. 

The interval concept hierarchy reflects the taxonomy 
relations between the interval concepts. It has smaller size than 
interval concept lattice. 

  #5{G, C[20,50]}

#2{D1D2,B[2,3]
C[20,50]}

#4{D1D3, B[9,11]
C[20,50]}

#6{ , A[1,7]
           B[8,12][14,17]
           C[20,100]
           D[9,10]}

#1{D2,A[2,5]
B[14,17]
C[10,50]
D[1,6]}

 
Fig. 4. Interval concept hierarchy 

 

V.  EXPERIMENTS 
Adopting the data as the test data which is randomly created 

by JAVA random function, all the algorithms realized with 
Java running on PC (CPU PIV 2.6G, memory 1.5G) within 
Windows XP environment. To improve the reality of the 
experiments, each of experiments with different parameters 
carries on five randomly generated non-homogeneous data and 
take the average values of results of five times of experiments 
as the final result.  

The spatial consuming of lattice construction algorithm is 
tested. Figure 5 expresses the spatial complexity. Curve 1 and 
Curve 2 show the numbers of lattice nodes changing according 
to the different number of attributes and the different numbers 
of objects respectively. The horizontal ordinate indicates both 
the numbers of objects and attributes are respectively 
{5,10,20,30,40,50}. The vertical ordinate indicates the size of 
lattice. With the ascending of object numbers, the size of the 
lattice has exponential ascending tendency. The influence of 
attribute number has very slight impact on the size of lattice.  
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The curves confirm the results that the numbers of objects 
have big influence on the lattice in the size and the numbers of 
attributes haven’t so strong impact on the result lattice. Fuzzy 
lattice spatial consuming character is different. According to 
the experiments result on fuzzy FCA [15], the numbers of 
objects has slight influence on lattice size, but the attribute 
numbers has big impact on it. 

The size of reduced interval concept lattice by clustering 
algorithm is shown in Figure 6 expresses the spatial complexity. 
Curve 1 and Curve 2 show the size of the reduced interval 
concept lattice (the interval concept hierarchy) changing 
according to the different number of attributes and the different 
numbers of objects respectively. The TS is set to 0.2. The 
horizontal ordinate indicates both the numbers of objects and 
attribute are respectively {5,10,20,30,40,50}. The vertical 
ordinate indicates the size of interval hierarchy. With the 
ascending of object numbers, the size of the lattice is sharply 
reduced. 

VI.  CONCLUSION 
Based on the interval concept lattice model produced extend 

FCA to IFCA which extends the expression capacity of the 
classical FCA, the clustering based reduction method is 

produced in this paper. With the number of objects increasing 
the size of interval concept lattice is sharply reduced. The 
future research includes associate rule extracted from the 
reduced interval concept lattice and the application of this 
interval concept lattice as the Grid resource management tools. 
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Dagda, a load-balanced middleware to distribute
Complex Systems simulations

Antoine Dutot, Damien Olivier, Guilhelm Savin

Abstract—Complex systems which are modeled and are sim-
ulated in computer science become increasingly sophisticated.
The computing power of a single machine becomes insufficient
to execute these simulations. Therefore, it needs to exploit
computing power of a set of machines.

DAGDA, the architecture and the platform which are presented
in this paper, offers a layer between simulation of a complex
system and the available resources. This layer manages spreading
of entities on machines to reduce work-load and network-load of
each machine.

Index Terms—middleware, dynamic load-balancing, complex
systems simulations

I. INTRODUCTION

PROGRAMS asking increasingly computing ressources,
developers create distributed programs that aim to be

executed on several computers. This kind of programs raises
some problems. There are problems about communication
between remote parts of the program: how to realize a layer
to process remote calls, what impact this layer will have
on the program’s performances. There are also problems
about computers architecture : is same architecture needed for
computers, etc. . . Finally, there is problem of how distribute
tasks or components of the distributed program.

In this paper, we focus on simulations of complex systems
and we propose a dedicated platform, DAGDA, for their
distribution. This kind of simulations is often composed of a
massive set of entities with many interactions between them.
Entity is a generic concept which covers for example agent
and object concept. Execution of an entity is not deterministic
because of interactions existing between the entity and other
entities or environment, what explains a distributed approach
rather than others methods used in deterministic programs.
Execution of such simulations can be modeled by a dynamic
graph which allows to describe interactions (edges) existing
in a set of elements (nodes).

DAGDA merges a middleware, to allow communication
between remote entities, and a load-balancer, to spread these
entites on available machines.

Middlewares are a category of programs that creates a layer
between a distributed application and computing ressources.
They help developers by creating an abstraction of the
ressources, so developers do not have to deal with resource
problems and can focus on the application. The subsection
I-B describes middlewares.

DAGDA uses the load-balancing algorithm ANTCO2 which
is described in II. It has been chosen because it spreads
entities considering not only the workload of machines but
also interactions existing between entities. The load-balancing
concept is described in subsection I-C.

A. Active Object

An important pattern needing to be presented for this paper
is the active object pattern[1]. The difference between a basic
object and an active object takes place between method call
and its execution. With basic object, calling and execution of
a method are synchronous (ie Fig. 1).

method is called
method is executed
result is returned to caller
caller deals with result

Fig. 1. call of an object method

With active objects, calling and execution are asynchronous.
Method calls are request which are sent to an active object.
This last one stores requests in a queue and executes them
according to a scheduler (ie Fig. 2).

method is called
caller executes some tasks waiting result
when result is receive, caller deals with it

called object receives request
following a scheduler, request is executed

result is returned

Fig. 2. call of active object method

Figure 3 shows this process : caller send a request, with the
help of a stub object, to an active object. This active object
returns a future with an empty value. When request has been
executed, value of the future is set and caller can handle this
value.

Interest of active objects is that caller can execute other
tasks while it is waiting for a request’s result : call is not
blocking anymore. Each active object has its own thread to
execute received requests. A stub object is used to contact an
active object on a method call. This call is done through a
proxy which is a bridge between stub objects and the active
object.

B. Middleware

A middleware provides a connection between softwares or
between components of a software. This connection allows a
communication between process. These process can be located
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Fig. 3. Active Object pattern

on different machines, with different operating systems. So,
a middleware allows a program to exploit power of several
participating computers. It can also manage connection and
disconnection of participants. So, it creates a dynamic grid of
machines used to distribute tasks.

There is different types of middleware. Some of them
provide to developers a way to send a job to a machine
and then, when job is done, retrieve the result. In this case,
there is no interaction between participants, and it is usually a
centralized approach : a server (or a restricted set of servers)
distributing job to some slaves. For example BOINC[2], which
is used by @home projects like SETI@home1.

Others have an object-approach of the distribution using
for some of them the active object pattern. It is the case of
ProActive[3] developed by INRIA Sophia Antipolis. This kind
of middleware allows interactions between different distributed
tasks.

With program running on a single machine, there is an
addressing space which allows to attribute an unique id to each
object. This id is often the memory address of the object. When
a program is distributed (it is running on a set of machines),
uniqueness of an id is more difficult to assure. Middlewares
provide a global addressing space which allow an unique id
for each object.

C. Load-balancing
The concept of load-balancing is that a set of machines

S are grouped as an unique virtual machine M. If T is the
set of all executable tasks, then load-balancer is a function
l : T → S which attributes to a task t a machine l(t) = m
that will execute the task t. So the load-balancer l defines a
policy to distribute tasks on M.

This technique is used by web services, for example, to
spread users’s requests between servers : several servers look
like one for users. When a user sends a request to a web
service, load-balancer redirects this request to one of the
available servers. This allows to equilibrate work-load of
servers and provide a best quality of service.

In distributed programming, it allows to optimize work-load
of each machine by establishing a policy to spread tasks on
machines. Some load-balancing algorithms can depend on the
type of distributed network: this network can be synchronous
or asynchronous and its topology can be dynamic.

1http://setiathome.ssl.berkeley.edu/

D. Dynamic Graph

Execution of simulations distributed by DAGDA can be
described as a dynamic graph, so the concept of graph and
then of a dynamic graph need to be defined.

A graph G is a pair (N,E) where N is a set of elements
called nodes and E is a set of nodes-pair (u, v) called edges
such that u, v ∈ N . A dynamic graph is a sequence Gi =
(Ni, Ei) such that ∀(u, v) ∈ Ei, u, v ∈ Ni. So, it is a graph
that can change over time, by adding/removing nodes and/or
edges, but such that if an edge exists at a time i then its ends
also exist at the same time i.

Nodes of the graph are the entities of the simulations and
edges model interactions between entities. Edges of the graph
modeling the execution are weighted : more intensive is an
interaction between two entities, more important is the weight
of the corresponding edge.

II. ANTCO2

ANTCO2 is a distributed algorithm dedicated to load
balancing and communication minimisation.

AntCo2 considers only the dynamic graph of the application
to compute the distribution.

As communications and agents appear and disappear, as
the importance of communication evolve, the graph changes.
Therefore the load balancer should also handle this dynamic
process and be able to provide a distribution as the graph
evolve.

Each computing resource is associated with a color, then
by assigning a color to a node, the algorithm specify the
distribution.

One can see the distribution as a weighted partionning of the
graph. In this partionning we try to distribute evenly the load
(number of entities weighted by their computing demand) and
to minimize communications between computing ressources to
avoid saturating the network. These two criteria are conflicting,
therefore a trade-off must be found.

We see the partionning as a dynamic community detection
algorithm. We call such dynamic communities "organizations".
Communities are often seen as group of vertices that are more
densely connected one with another than with the rest of the
graph. An algorithm able to detect organizations is able to
follow communities as they evolve when nodes and edges
appear, evolve and disappear in the communities.

There exists several graph partionning algorithms ([4], [5],
[6]) and community detection algorithms ([7]), but few handle
evolving graphs. It is always possible to restart such algorithms
each time the graph changes, but this would be computation-
ally intensive. AntCo2 is an incremental algorithm that start
from the previous partionning to compute a new partionning
when the graph changes.

Having a load balancer running on a single machine, to
distribute applications that are often very large could be inef-
ficient. Another goal of AntCo2 is to be able to be distributed
with the application.

AntCo2 uses an approach based on swarm intelligence,
namely colonies of ants. This algorithm provides several
advantages: ants can act with only local knowledge of the
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graph representing the application to distribute. AntCo2 tries
to avoid any global computation, therefore allowing it to be
distributed with few communications and no global control.

In AntCo2, each colony represents a computing resource and
has its own color. Inside colonies, ants collaborate to colonize
organizations inside the graph and assign their color to nodes.
Inversely, colonies compete to keep and conquer organizations.

Ants color nodes using numerical colored pheromones cor-
responding to their colony color. Such pheromones "evaporate"
and therefore must be maintained constantly by ants. This
allows to handle graph dynamics by forgetting old partionning
solutions and discovering new solutions by the constant explo-
ration of ants inside the graph. The details of the algorithm
are given in ([8]).

The change of a color for a node indicates a "migration
advice", meaning that the corresponding agent should migrate
on the computing resource associated to the new color. An
inerty mechanism allows to avoid oscillatory advices.

III. DAGDA

DAGDA is a middleware dedicated to the distribution
of Complex Systems simulations. It uses an existing

middleware as a base which is extended with new features.
The final aim is to provide a simple way to create distributed
complex system simulation.

The main words of Dagda are decentralized, portable, load-
balanced. Decentralized means that there is no restricted
set of machines on which depend all machines. Dagda
aims to be as portable as possible, is that any machines
(computer,pda,phone,super-calculator,. . . ) can participate to
the distribution.

The used middleware is ProActive[3]. This choice is moti-
vated by the active object approach which is used in ProActive.

A. Entities

Dagda is based on the concept that the distributed applica-
tion is composed of a massive set of objects. These objects
are called entities and are hosted on a machine by an agency.
Entities are active objects.

Entities can interact with each other and can migrate from
one agency to an other. This rises a problem: how to identify
each entity through the network and how to get a remote
entity ? The second part of this problem, how to get entity, is
treated on section III-B. Entities are identified by an id which
is unique through time and network. Uniqueness is assumed
by the fact that id depends on the agency’s address (agency
who creates the entity) and on a timestamp.

B. Communication between agencies

Dagda aims to have a decentralized architecture so there
is no master server to reference informations as for example
entities location. Therefore, some mechanisms are needed to
provide functionalities like entity-search.

Each agency has a dedicated active object whose role is
to detect other agencies and to provide to user functionalities
through connected agencies.

Agency

Network

AgencyAgency

Node

Entities

Agora
interactions with
other agencies

Load-Balancer
spreads entities

Fig. 4. Dagda overview

C. Context

A program may have some parameters which create a
context that is used by composants of this program. With
programs running on a simple process, this is easy to do
by declaring global variables. But with distributed programs,
each machine has its own memory and one other can not see
changes.

Dagda creates a context divided in two parts. It contains a
local part which contains parameters that do not have to be
shared. Second part is global and changes on this part will be
spread on all machines. Context users can access to parameters
without local or global distinctions.

D. Interactions Graph

Dagda profiles method calls between entities. For example,
if an entity A calls a method m() of an entity B, this call will
be detected and registered. Then this detection of interactions
between entities is used as provider to a dynamic graph
which models these interactions through the time. Nodes of
this graph are the entities host on the machine and remote
entities such that there is an interaction between these remote
entities and one of the hosted entities. Edges of the graph
represent interactions between entities. Greater is the number
of interactions between two entities, greater is the weight of
the corresponding edge. There is a mechanism which decreases
edges’s weight through the time. The GRAPHSTREAM[9]2 API
is used to create the graph.

This graph can be used by tools, for example to monitor
entities activity and have a look on this activity.

2http://www.graphstream-project.org

ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France 173



E. Load-balancing

Entities are spread on the available machines with the
ANTCO2 load-balancing algorithm. This choice allows :

• equilibrate the work-load of machines;
• reduce the network-load;
• distribute the load-balancer.

Distribution of the load-balancer is an important thing to have
a decentralized platform. In [10], three ways are presented
to run the ANTCO2 algorithm. The first and the second one
run with a restricted set of servers (size of this set is one
in the first case). In these two cases, computing-load of
server is fully used and ANTCO2 has a global view of the
distributed application. The last one uses each machines to
run the algorithm. In this case, only a few computing-load
is used on each machine and ANTCO2 has just a local view
of the distributed application. This case allows to decentralize
ANTCO2, so it has been choosen in DAGDA.

Work-load dedicated to ANTCO2 is function of number of
entities, so by balancing entities-load, it balances itself : it is
auto-distributed.

IV. RESULTS

AT this time, DAGDA is still in development. The platform
is able to create entities and profile interactions between

them. So it is possible to view the graph of the simulation’s
execution in real time. It is also able to connect agencies and
migrate entities from one agency to another.

A. Test application

To realize some tests, a simple application has been written
which aimed to generate interactions between entities and mi-
grate them between agencies. Entities used for this application
can be described as follows :

TESTENTITY:
attributes :

List<TestEntity> neigh
methods :

call( TestEntity te ) {
while( neight.size() > MAX )

neigh.poll();
neigh.add(te);

}
execute() {

int i,j;
i = random() % neigh.size();
j = random() % neigh.size();
neigh.get(i).call(neigh.get(j));
if( random() < P_MIGRATION )

migrateSomewhere();
}

The application creates a set of TestEntity and inits
randomly the neigh attribute of entities. Then each agency
run the execute() method of each hosted entity.

Figure 5 shows the graph of the execution of this application
with 64 entities.

Fig. 5. Execution of the test program

V. CONCLUSION

In this paper, concepts of middleware and load-balancing
have been described. Then the DAGDA platform which merges
a middleware and the load-balancer ANTCO2 has been pre-
sented.

DAGDA is still in development but it ables to launch a
program and profile execution of this program. Next step is to
finalize implementation of the load-balancer and validate the
platform making battery of tests.

Then we need to provide an application running on DAGDA
and realize tests on performances to show the gain brought by
DAGDA.
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RÉSUMÉ.:L’objectif de cette communication est de présenter le projet de développement d’une 
plate-forme de simulation de processus géographiques (Géocells), permettant de modéliser le 
comportement des régions européennes en fonction des aides accordées par l’Union 
Européenne. Le schéma d’ensemble de la plate-forme repose sur l’utilisation des techniques 
de simulation par automates cellulaires. La prise en compte des disparités régionales par les 
politiques structurelles de la Commission européenne, l'analyse des positions relatives des 
régions européennes sous l'angle des indicateurs macroéconomiques et budgétaires, va 
permettre d'évaluer l'efficacité globale des Fonds structurels européens, de mesurer 
l’influence des modifications des règles d’attribution sur les trajectoires des différentes 
régions aidées, évaluées par des indicateurs de convergence. 

ABSTRACT : The aim of this paper is about the trends of regional disparities in the European 
Union who can be considered as a complex system.. For modelling the uncertain efficiency of 
the regional policy we attempted to use a cellular automata (Geocells) developed by 
P.Langlois). Methodologically, this cellular automata Geocells is based on interrelated 
processes between variables (like time periods, growth rates in the GDP per head, flows of 
public investments) and three geographical levels (european level, national level and regional 
level). This three levels are used to lay the emphasis on the fact that the EU structural 
expenditure, and its spatial impact, work as a rules-based system. Simulations were made, in 
order to evaluate, on the one hand, the specific role of each level and each variable, and on 
the other hand how some change in one part affects the whole. In this perspective we could 
underline the role of increasing or decreasing budgets, the weigth of national policies and 
national economic trends and the contiguity effect according to the geographical location of 
each eligible region. 
 

MOTS-CLÉS :automates cellulaires, politique régionale européenne, disparités régionales, 
régions 

KEYWORDS: cellular automata, regional policy, regions, regional inequalities 
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1. Introduction. 

The aim of this paper is to present 
the functioning of GeoCells : the 
geographic simulation platform, as 
well as a first application enabling to 
model the European regions’ 
behaviour according to the variation 
in aid granted by the European Union 
and to neighbourhood effects. The 
platform's overall diagram relies on 
the use of cellular automata 
techniques. 

The taking into account of 
regional disparities by the European 
Commission’s structural policies, the 
analysis of European regions relative 
positions from the angle of 
macroeconomic and budgetary 
indicators, will allow an evaluation of 
the overall effectiveness of the 
aforementioned policies, and to 
measure the influence in the 
modification of granting rules. The 
different settings offered by the 
simulation platform ensure to 
simulate both the impact of aid on the 
overall evolution of the Europe of the 
Fifteen regions (measured by 
indicators such as beta or sigma 
convergence), as well as on each 
region's specific future. 

The introduction of simulation 
and forecasting methods in the 
debates on the European Union’s 
regional policy does not aim to 
enable to find the one and only 
response to the problem of European 
regions’ unequal development, but to 
suggest a range of credible options as 
a decision support tool for territorial 
solidarity and economic and social 
cohesion, in a European space in 
perpetual evolution. Even though 
they belong to an interdependent 

group such as the European Union, 
these spatial units each own their 
specific trajectories, in which the 
reaction delays, the transformation 
rhythms strongly vary from one 
region to another. All of these 
differentiated laps of time will build a 
European regional mosaic, making it 
unlikely to happen a mechanical 
adjustment between the impulsions of 
the European Union’s regional policy 
(Structural Funds, Cohesion Funds, 
etc.) and the regional readjustment 
initially planned. 

 

2. Community solidarity policies 
and the regions’ future 

The issue of the solidarity effort 
between State members and the 
regions, as well as their adequacy to 
the cohesion principles displayed in 
the European texts and treaties is at 
the centre of the debates on European 
regional policy. The main questioning 
is about the European public policies’ 
ability to adjust disparities produced 
by the single market. How can we 
improve redistribution and territorial 
equity in an Union of low economic 
growth ? In such an economical 
context, should we limit the solidarity 
effort of rich countries or on the 
contrary emphasize it in order to 
accelerate the catching-up of 
backward regions ? 

2.  1 The issue of allocated 
Funds’ effectiveness 

In order to evaluated the 
effectiveness of passed programmes 
and to discuss the necessity of 
possible reorientations in the granting 
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of structural Funds within the 
European Union, it is essential to 
recall budgetary stakes and a few 
functioning principles of European 
intervention as far as regional policy 
is concerned. Since the creation of the 
ERDF in 1975, redistribution rules 
and amounts granted, within the 
framework of what we put behind 
regional policy have changed during 
the last twenty years and have not 
affected the same regions during the 
same periods of time. The general 
conditions of eligibility have changed 
over the reforms, and individually for 
each region, because economic 
results made them eligible or not 
from one period to another. Various 
reforms in 1984, then in 1988, carried 
along by the imperative of economic 
and social cohesion, have changed 
the amount of granted budgets. A 
Cohesion Fund concerning four 
countries (Spain, Portugal, Greece, 
and Ireland), was born subsequently 
from 1994 onwards, in order to offset 
these countries’ budgetary effort, 
with the aim of a convergence 
towards criteria of participation to the 
Economic and Monetary Union. 
These so called cohesion countries 
have received ever since aid of a 
substantial weight in their GDP. 

For many years, surveys have 
tried to evaluate the consequences of 
the European economic integration 
consolidation over regions, as well as 
the effectiveness of the various 
European Structural Funds’ reforms1. 
They all agree to admit, at country 
scale, the alternation of catching-up 
stages, notably for the Cohesion 
countries (Spain, Portugal, Greece, 

                                                           
1 July 1997 and March 1999 CEPII 
journal numbers 

and Ireland), more particularly for 
Ireland which has reached the 
European average from 1997, with 
more uncertain stages. Regional 
convergence would have known a 
slowing down in the first half of the 
1980's, then an improvement at the 
end of this same 1980's, followed by 
an overall divergence period in the 
1990's. This changing diagnosis, at 
European scale, is, in most cases, 
tempered by a maintaining, ore even 
an increase in disparities between 
regions of a same country. Since 
regional growth dynamics are not 
exactly the same as the ones at a 
national level, we have been 
wondering after the works of Martin 
(2000), Maurel (1999), and Riou 
(2002) about the spatial consequences 
of the European economic integration 
and about the reasons of an unequally 
distributed and polarizing growth. 
The conditions for the reduction of 
this gap between the scopes of 
interregional solidarity and territorial 
cohesion and reality, outlined in 
many official texts such as the 
European Spatial Development 
Perspective or the Second report on 
economic and social cohesion 
(Eurostat 2000), as well as in the 
results of our previous works 
(Elissalde 2005) were the purpose of 
different simulations achieved in this 
paper. 

In addition to the issue of 
European Structural Funds’ 
effectiveness, this shift between scale 
levels makes it wonder in the future 
about the solutions to mobilize in 
order to bring down the development 
gaps significantly increased by the 
progressive transition from fifteen to 
twenty seven members in the 
European Union. The use of a 
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simulation platform through cellular 
automaton aims at answering the 
question of knowing on which 
conditions (of settings in terms of 
budgetary redistribution), according 
to which duration of financial aid 
programs, and according to which 
objective levels of reduction, 
convergence, or adjustment, 
European solidarity policies could be 
effective. 

 

Two hypothesis can be 
considered: either the results of 
financial aid programs at European 
level are due to other factors such as 
the differentiated effects of each 
country's particular national situations 
(lets not forget that regional aid work 
according to the principle of 
additionality), either the selectivity of 
growth dynamics would be due to the 
region's relative position inside a 
wider spatial unit, affected itself by a 

situation of growth or stagnation. 
With regard to the analysis presented 
above, we have therefore added the 
hypothesis that neighbourhood effects 
between regions played a role in the 
spreading of growth or in the 
reduction of disparities. 

For all these reasons, we join R. 
Geyer [2003], in order to consider 
that the European Union shows 
certain specific characteristics of a 
complex system. The European 
Union's spatial dynamic would thus 
begin to look like a partly auto-
organized system where the reactivity 
of spatial units would behave in a 
more ore less autonomous manner in 
relation to the redistributive 
impulsions of the European 
Commission, which on its side 
assumes and tries to demonstrate in 
its reports on cohesion, the 
fundamental importance of regional 
aid’s immediate positive effects

. 

2. 2. The issue of regions' convergence 

In order to evaluate the 
consequences of different parameters 
settings noted above on simulation 
results, we have used the concept of 
convergence and two indicators in 
order to refine diagnosis on the 
reality of disparities reducing 
between European regions. Following 
other economic works, Beine and 
Docquier (2000) suggest three 
declensions of this idea of 
convergence : 

- absolute convergence which 
supposes that per capita income 
would converge towards each other 

independently from initial conditions 
and led policies 

- conditional convergence which 
puts forward the hypothesis that 
identical territories in terms of 
demographic growth, public policies, 
but with different initial conditions, 
are supposed to converge towards the 
same stationary state the ones 
according to the others. 

- « club » convergence which puts 
forward the hypothesis that 
convergence is not achieved in a 
global manner but by group of 
regions. Per capita incomes would 
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not converge at an identical pace for 
all regions but through groups of 
regions, which would distance 
themselves by an original growth 
dynamic. 

 

 

 

 

 

 

 

As for evaluation, we adopted the 
distinction of X.Sala-i-Martin (1996) 
which opposes: 

 - sigma convergence Cσ measuring 
the evolution of the GDP per capita 
over n years, calculated as the annual 
variation gap of the coefficient of 
variation between two periods t0 et tn, 
where mi is the GDP mean of the year 
i and σi  its standard deviation. Thus 
we have: 

n

mm
C n

n

0

0σσ

σ

−
=  

- beta convergence Cβ  which 
measures the relation between the 
GDP per capita (logarithmical) 
variation over a given period 
compared to the initial level. 

If we call: 

0log kk PIBx =  

the GDP neperian log of the region 

k for the initial year t0 and 

)log()log()log(
0

0
k

ki
kkik PIB

PIB
PIBPIBy =−=

 

the GDP logarithmical variation of 

k between t0 and ti, beta convergence 

between two periods t0 et tn, is then 

defined by the slope a of the straight 

line Y = aX + b of the variable 

{ } KkkyY ,..,1==  in relation to the 

variable { } KkkxX ,..1== . 

Therefore, we can write: 

)(

),(

XVar

YXCov
C =β  

Lets note that the more these 
indicators are negative, the more they 
indicate a better convergence. 

The diffusion of wealth between 
regions (if we suppose it exists) tends 
to make the regions' standards of 
living converge. This mechanism is 
opposed to the regions' internal 
growth, which increases 
exponentially from these wide range 
of wealth levels between regions. 
This growth then tends to make them 
diverge. The combination of these 
two effects is generally to the benefit 
of growth. Even though the growth of 
the wealthier improves the 
wealthiness of the neighbours, the 
gap deepens nevertheless. The 
financial aid policy towards the most 
underprivileged regions seeks 
therefore to counterbalance the 
predominant effects of this 
divergence. Lets note also that the 
way Europe measures the 
“convergence” (through beta-
convergence) allows in theory to 
mask the exponential widening of 
absolute gaps between regions using 
relative gap logarithms… However, 
simulations show that the behaviour 
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of these indicators are not so simple 
to interpret. 

These indicators were already used in 
the research works of Charleux 
(2003) and Le Gallo (2006) and 
initially in France by F.Maurel’s team 
(1999) from the General 
Commissariat for National Planning 
in order to test the hypothesis of an 
« absolute » catching-up of the most 
underprivileged regions, then by 
introducing complementary 

explanatory variables (ex: facilities 
endowment) in order to evaluate their 
weight in growth regional gaps. 
These calculations carried out by 
comparing separately convergence 
tests at States’ level and at regions’ 
level lead simultaneously to the 
empirical observation of a 
convergence between countries and 
of a regional divergence internal to 
countries. 

 

3. The GeoCells project

4.  

4.1. From the strict notion of cell to 
the complex spatial agent’s one 

The GeoCells project is part of the 
continuity of two experiences 
developed by our laboratory (MTG 
Rouen, UMR IDEES) [Langlois et al 
02], [Guermond et al 03], [Guermond 
et al 04].  

First of all the SpaCelle software, 
which is a cellular automaton based 
on rules dealing only with qualitative 
spatial variables, followed by another 
very different cellular model, 
allowing to simulate continuous 
flows such as surface flow in 
hydrology called the RuiCells model. 

The strict formal concept of 
cellular automata defines a cell as 
purely reactive. A cell in the broad 
sense does not know how to do 
anything else but to change its 
internal state according to the 
perception of its environment and of 
its own state. Nevertheless, in a wider 
sense, the notion of cell can be 

understood in its analogy with the 
living world. Moreover, its based on 
this analogy that von Neumann 
defined the term of cellular 
automaton, in order to try to model 
the phenomenon of living agents’ 
reproduction. In this sense, a cell is 
not only reactive, but becomes an 
agent which can own a complex 
behaviour. A cell must be delimited 
in space by its membrane, which is 
both a frontier separating the inside 
from the outside, and a filter 
controlling solid, energy, and 
information flows with its 
environment. 

In addition, we often need to define 
spatial units of any forms, because 
this is the way that geographical 
information is available : agricultural 
plots, land registry, urban units, etc. 
Thus we have tried to define directly 
a behaviour (a dynamic) to spatial 
units of any forms. The polygonal 
form must thus be directly usable as a 
geometric support of a cell in a 
geographic simulation system. 
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4.2. The GeoCells project, an  
automaton to simulate the regional 
policy 

The purpose of the GeocCells 
project is to create a simulation 
platform based on geographic 
information layers. Its main driving 
force is a geographic model generator 
based on topologic cellular agents. –

(Batty 2005) ( Longley1996)( White 
2004) 

From a model description 
considered as representative of an 
issue in association with a real or 
virtual geographic environment, the 
user builds, through this platform, an 
automated structure allowing this 
model to live, in order to see its 
evolution and to check its pertinence 
level. 

The overall functioning principle 
of GeoCells is given by the following 
diagram : 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. GeoCells functioning principle

 The different distinct parts visible on 
the diagram match the following 
stages : 

GIS layers 
Objects’ geometry 
+ topology 

Tables Objects’ 
descriptive data 

Tables 
Relations between 
objects 

Construction of the 
environment  

and of the agents’ 
initial configuration  

Dynamic : 
Model’s script 

Control :  
Inputs setting 

Observation :  
Outputs setting 

 
Construction of 

the dynamic 
model 

Control of the 
simulation 

observation 

Construction of 
the interface 

GeoCells 

simulation 
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1 - The user calls for a set of static 
information used as a support to the 
model and thus describing its initial 
physical environment 

2 - The user, relying on the above 
data, provides the desired model 
dynamic, that is to say the group of 
action features peculiar to the 
simulation and relating to the 
simulator-user interaction, 

3 - GeoCells translates this 
information and generates an 
automated model and a command 
interface, 

4 - the user communicates by 
means of the interface in order to 
change certain parameters relating 
either to the simulation or else to the 
ones linked to the results display. 

4.3. Basic principles 

a) Cellular structure 

The system is based on a group of 
geographic information layers. Each 

layer is made of features from a same 
class. To each layer of information, 
and to each feature of this layer, 
matches a cell, which main asset is to 
own, in addition to the feature’s 
physical components (location, shape, 
size…), the knowledge of its 
neighbourhood and above all its 
behaviour dynamic. 

Each cellular class owns : 
– Behaviour rules giving to the cells 
of its class the same function in the 
system (district, plot, department), 
– properties and attributes (perimeter, 
surface area, budget...), 
– relations with cells from other 
layers of the system. 
 
b) Hierarchized structure 

 
The system takes into account the 

hierarchical relations existing 
between layers, such as the ones 
explained on the diagram below (a 
district [layer 1] belongs to a 
department [layer 2] and the 
department is made up of districts…), 
but nothing prohibits to implement 
other relations between cells of 
different layers, such as for example 
transport connections, etc. 
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Figure 2. Hierarchy of cellular layers 

  

4.4. Generated automata characteristics

4.5.  

Time definition - In order to scan 
all cells of all layers, therefore to give 
them the means to carry out their 
actions, the system takes a certain 
(physical) machine time that depends 
on the performances of the host 
computer. This proceeding time 
matches the lapse of time which is the 
system’s temporal reference (logical 
time). We can therefore build from 
this reference a time unit adapted to 
each simulation. 

Synchronization – One of the 
difficulties of this type of mechanism 
is to maintain the temporal coherence 
between every cellular layers. In 
order to do so, the automaton 
synchronizes the system by ordering 
itself the starting of each cell’s life 

stage. This synchronization applies 
to : 

– all of the cell’s input reading 
(incoming flows), 

– the execution of all of the cell’s 
peculiar processes, with according to 
the circumstances, change of its 
internal states 

– all of the cell’s output writing 
(outcoming flows).  

– saving of all current contexts. 

 
Communication canals - An 

unidirectional communication canal 
feature was introduced when it was 
necessary to implement the system’s 
multilayer nature with the flexibility 
required by exchanged data’s 
multiform nature, combined, 
according to the models, with the 
possible plurality of flows. This 

country country 

Layer 3 

Layer 2 

Layer 1 

Containing link 
 
Inclusion link 
 
Neighborhood link lev 1 
 

Neighborhood link lev 2 

ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France 183



    10

feature is automatically generated and 
sized. Each cell owns the input and 
output references relating to the 
canals that concerns it, and this is true 
for each communication action 
(informational and/or energetic). For 
this reason, it has the knowledge of 
its environment and enters into 
dialogue with it. 

Command interface - According 
to the needs, each of the model’s 
influential magnitude is combined 
with an interface component, for 
example, in the form of a cursor, 
giving the opportunity at initialization 
to change its value. All of these 
components, created dynamically, 
associated to a certain number of 
structural dialog components (menus, 
etc.), makes the system’s command 
interface, the simulator’s control 
panel. 
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4.6. GeoCells’ field of action 

GeoCells can be used in any 
model that brings into play 
phenomena where the  spatial 
component is predominant. Among 
these phenomena, we can cite the 
diffusion or the propagation of 
magnitudes (physical or not), whether 
they are generated by rules of 
neighbourhood-contact (ex : frontiers 
between cells of a same layer) and/or 
by rules of neighbourhood-transport, 
by inserting between layers one ore 
more transport layers (linear 
topology) and access relations that 
are associated with them. We can also 
take on rules relating to virtual 
exchanges of a hierarchized type or 
not. In the following example, we 

carry out several hierarchized 
economic exchange flows. 

The GeoCells model applies to 
the evolution of the GDP per capita in 
the Europe of the 15 and to the 
influence, in this evolution, of the 
game of the various aid granted as 
regional policy (ERDF). The platform 
is made up of three topological 
layers: 

– Administrative regions level 
NUTS2 (512 cells : 511 regions + 1 
cell representative of the outside) 

– Countries (17 cells : 15 country 
cells + 1 cell rest of Europe + 1 
« external » cell) 

–  EU (3 cells : 1 cell Europe of 15 
+ 1 cell rest of Europe + 1 
« external » cell). 

 
  

 
 
 

 
 

5. Model and simulations 

5.1. Description of the growth-
diffusion model between European 
regions 

 

We will now clarify the diffusion 
model a bit unusual that we have 
used. Let’s note Xi the GDP of the 
region i, Pi its population and 
Yi = Xi/Pi its GDP per capita at a 
moment t.  

We put forward the following 
hypothesis. Each cell has the aim to 
homogenize, through time, its 
standard of living Y in relation to its 
neighbours. But the standard of living 
is not comparable to a physical 
magnitude capable of diffusing like a 
flow. It is through the variation of 
wealth (X) symbolized by the GDP 
(by internal growth and by diffusion) 
or through the variation of population 
(P) (also by internal growth or by 

R1 

R3 R2 

R1 and R2 diffusion 
action zone 
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migrations) that each region can work 
in order to achieve its goal. In this 
model, at first approximation, we 
have considered that population was 
constant throughout time. It is 
therefore here only on the variation of 
X that relies the diffusion mechanism 
in order to reach the goal. 

Another hypothesis is to consider 
that only a small fringe close to the 
borderline (area in dotted line on the 
figure) takes part in the diffusion of 
wealth, by the levelling-out of 
standards of living of the two 
neighbouring border fringes. Since 
we do not have any information on 
the spatial distribution of the 
populations inside a region, we must 
put forward the hypothesis of an 
uniform distribution. Consequently, 
instead of launching forth into 
geometric calculations of insane 
zoning, we use a simple 
proportionality parameter, accessible 
in the user interface by a cursor, 
called diffusion rate, which sets the 
rate k (of surface area, population, 
and wealth all at once, since we 
consider them as uniformly 
distributed over the region’s surface 
area), which takes part in the 
diffusion between regions. This rate 
defines therefore the part of the 
region’s surface area matching the 
border fringe, in which the standard 
of living is going to attempt to level 
up through time, with the 
neighbouring regions’ homologous 
fringes. 

In order to model the diffusion 
between two regions i and j, we then 
introduce the coefficient kij which is 
the surface area’s proportion i 
matching the intersection between the 
border fringe defined by k and the 

proportion pij of its land borderline 
shared by the region j , defined by 

∑
∈

=

)(iNk
ik

ij
ij l

l
p  , where l ij is the 

borderline’s length between i and j. 

We then have : ijij pkk .=  

If the wealth on the two sides of 
the border fringe between i and j was 
evenly distributed like connected 
vessels, we would obtain a levelled-
out standard of living (which is not 
the average of the two previous 
standards), defined by: 

jjiiij

jjiiij
ij PkPk

XkXk
Y

..

..

+
+

=  

We can then define the variation 
dXij (positive if it emits or negative if 
it receives) of the diffusion from the 
region i towards the region j during a 
short lapse of time dt as being 
proportional to the concerned 
population (kijPi) and proportional to 
the difference between the current 
standard of living (Yi) and the (local) 
aim of levelling-out (Yij) of standards 
of living i and j. This can be 
translated into the following 
equation : 

)(.. ijiiij
ij YYPkK

dt

dX
−=  

The value of K is set internally 
(since we can already play on k). 

By adding the border fringes of 
the region i, we note down: 

∑
∈

=
)(iNj

iji dXdX  
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One should notice that this 
diffusion is, by construction, 

preservative of the mean ∑
=

n

i
iX

1

. 

(because one can verify easily that for 
any couple (i, j) we have : 
dXij + dXji = 0) 

Moreover, the variable Xi is 
subjected to an a priori exponential 

internal growth, ii
i XC

dt

dX
=  

Internal growth is adjustable, 
either individually region by region 
through the attribute table, either on 
the whole as being the same for all 
regions with the help of a cursor 
present in the user interface. 

The final growth-diffusion 
equation is thus given by : 

dtYYPkKtXCtXdttX ijiiijiiii ))(.)(.()()( −++=+
 

The lapse of time for the 
discretization of growth and diffusion 
processes are small compared to 
redistributing flows, because they 
correspond to continuous processes. 
We have selected the month as lapse 
of time, that also matches the time 
unit that we chose, so dt =1. (Ci is 
then the twelfth of the annual growth 
rate). 

The equation with this lapse of 
time is then written : 

)(.)()1()( ijiiijiii YYPkKtXCdttX −++=+
 

The model introduced here 
attempts to give an account of the 
crossed recursion of the processes’ 
effects contributing to regional 

dynamics : the region’s peculiar 
growth, the redistribution mechanism 
linked to its membership to a wider 
territorial group (State, Union), and 
finally neighbourhood effects. Many 
economic models try to isolate the 
various sectoral variables in the final 
growth. Here, we suppose that the 
three components presented above 
create system effects introducing a 
large part of uncertainty in terms of 
growth. 

We will not describe in detail the 
part of the model concerning aid and 
contributions, insofar as they show 
through clearly enough in the settings 
of the user interface. 

5.2. Simulator’s settings 

Given the data available for the 
group of regions NUTS2 of the 
fifteen member States European 
Union, the model retained, as the 
main indicator, the variation of the 
GDP per capita of each European 
region. The variation of this 
magnitude linked only to the 
variation of the GDP (we have made 
the choice of a constant population), 
is subjected within the platform to 
several influences adjustable for each 
simulation: 

• The GDP variation rate is, either 
specific to the region, either identical 
to the group of regions of a same 
country, either, by simple hypothesis, 
identical for the whole group of 
regions. 

• The terms of public intervention 
include the mechanisms relating to 
contributions (Countries and EU), to 
the aid linked to regional policy, such 
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as eligibility thresholds (75%) for 
Structural Funds. 

• The European budget weight was 
taken into account, stabilized around 
a threshold of 1% of the European 
total GDP since fifteen years 
(threshold reached since 1984). From 
this average budget, simulations were 
able to make the Community budget 
weight vary from 0,5% to 3% of the 
EU total GDP. 

• The principle of additionality 
between the States and the European 
Union in the Structural Funds 
financing was also taken into 
account, as well as the variability of 
the relative importance of regional 
policy in the Community 
expenditures. 

• Finally, the rule of 4% maximum 
weight of European aid in the GDP of 
a region or of a State was applied. 

• To these principles officially 
ratified by the European 
Commission, we have added to our 
model a spatial dynamic parameter: 
the hypothesis of the role of spatial 
interactions and of contiguity effects 
in the regions’ trajectories. 

 

 

The diffusion  by contact with 
neighbouring regions, made possible 

by the functioning of the cellular 
automaton, is carried out therefore 
naturally in one way or another. 
Many regional growth models 
analyse the region as a stand-alone 
unit and ignore spatial interaction 
phenomena linked to proximity, 
neighbourhood, or contiguity effects. 
What is happening in the 
neighbouring regions is ignored, 
while sensitivity to exchange and 
migration distance is very large. 
Now, many works have shown that 
economic interaction and territorial 
interaction acted in a multiplicative 
way (Heylen.C et al, 2001), and some 
empirical assessments evaluating the 
spatial auto-correlation degree 
between European regions, as far as 
GDP per capita is concerned, confirm 
the pertinence of the reasoning 
process (Elissalde, 2005). The 
existence of territorial cores matching 
either regional areas or national 
spaces having similar development 
characteristics and trajectories 
corroborates this idea. While a 
situation of spatial competition 
between activities and between 
territorial units exists, the taking into 
account of contagion, of mimicry 
phenomena, of power struggles 
linked to neighbourhood effects 
proves to be necessary. 

 

5.3. Test of the simulator 

In order to test the validity of the 
model, one of the first priorities was 
to attempt to “calibrate” the 
simulator’s results in relation to the 
regions’ real variations. Therefore, 
we have compared, given the most 
recent data available, the 2004 GDP 

per capita actual results with a 
simulation fot the period 1996-2004 
(see diagram figure 5). It emerges 
from the comparison between 
simulated and observed variations 
that the platform shows an important 
degree of credibility, both in its 
overall results (values of the 
coefficient of determination) and for 
regions taken individually. For 
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certain settings of the simulator, the 
differences between the simulated 
and the observed variations, reveals a 
trend towards significant results. 
They underestimate the big 
metropolitan regions’ final values 
(Brussels, London, Hamburg, Paris 
area, etc.), and on the contrary 
overestimate the less-developed 
regions’ ones (Alentejo, Epire, 
Calabria, Estremadura). These results 
reproduced on the diagram match 
settings including a 10% GDP per 
neighbourhood diffusion rate. By 
repeating simulations over the same 
period with a diffusion rate reduced 
to 5%, but with a doubling of the 
Community budget (2% of the GDP), 
added to a substantial increase of 
regional aid in the aforementioned 
budget, an overall result is reached, 
which, this time, underestimates, with 
one or two exceptions, the entire 
values of the regions’ GDP per 
capita. The more the GDP diffusion 
rate is decreased from one region to 

another, the more the underestimation 
is important. Several interpretations 
can henceforth be suggested. It seems 
that the simulator gets closer to 
reality, when it includes an important 
degree of permeability from the 
neighbouring regions GDP (through 
the diffusion rate), giving indirectly 
an account of exchanges and 
interdependencies between them. 
Moreover, it seems necessary to 
wonder about the overall impact (and 
not only at a particular region’s level) 
of structural policies in relation to the 
co-variation general dynamics of the 
Europe of the fifteen entire group of 
regions. From these results, it 
emerges that the reducing of 
disparities are potentially plausible 
for regions that are eligible for 
European Funds, and that the options 
of European regional policies comes 
within a choice between 
egalitarianism by readjustment, 
equity without hierarchical upheaval, 
and lack of solidarity. 
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Figure 5

 

6. Simulations and impacts of 
regional policy in the Europe of 
Fifteen  

6.1. Mixing of variables and political 
options 

Over four hundred simulations 
were achieved from 1996’s 
population and GDP values. They 
attempted to evaluate the relative 
weight of the simulator’s variables, 
the impact of budgetary variations, 
and can be grouped together in three 
main categories of scenarios. This 
type of reasoning concurs with the 

one achieved from “qualitative” 
scenarios about the demands of a 
polycentric development in order to 
attempt to weaken the weight of the 
“Middle-European ridge”. 

 

 

a) The first scenario (simu 1) is 
the one of free competition between 
regions without the intervention of 
Structural Funds. It is tantamount to 
abolishing European 
“interventionism” and to 
“renationalizing” aid, just as 
recommended in the Sapir Report. 
Simulations include a GDP growth 

y = x 

Log observed values 

Overestimated 
results 

 comparison between simulated (1996-2004) and observed  (2004) variations of  the GDP per capita 

Underestimated 
results 

Log simulated results (1996-
2004) 
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specific to each region and a 
diffusion rate by neighbourhood, as 
well as a redistribution rate of 20% or 
30% of GDP. The difference of 
growth rates has few effects, on the 
other hand the redistribution rate by 
neighbourhood has consequences on 
the diffusion of prosperity. The 
readjustment strongly depends on the 
level of wealth transfers by 
neighbourhood, whatever the 
mechanism. In other words, a 
backward region will have more 
chances of developing itself if it is 
located near an already thriving 
region. 

b) The second scenario (Simu 2) 
consists in searching out territorial 
equity. 

Territorial equity includes ideas of 
parity of treatment, equivalence of 
access, and more generally of 
solidarity between territorial groups, 
with what it takes in terms of public 
action, especially by bringing 

corrective as far as resources and 
facilities are concerned. The project 
consists in endowing each region or 
each region with a measure of 
autonomy with the necessary 
conditions to its development. 
Structural Funds are used alone, by 
magnifying the part devoted to 
regional policy to 1,5% of GDP, but 
by limiting the diffusion phenomena 
by neighbourhood to 5 or 10%. 

c) Finally, a last approach offers a 
selective allocation of aid (Simu 3). It 
consists in searching out results more 
than automatic distribution of 
resources, granting compensations to 
the most underprivileged units. 
Simulations are achieved with growth 
rates specific to each region, bringing 
Structural Funds aid to 2% or 3% of 
the EU’s GDP, according to the usual 
eligibility criteria, but by stoping 
neighbourhood effects. This 
hypothesis of watertightness between 
regions attempts to isolate what could 
be a pure effect of European aid. 

Table 1: Results of 400 simulations from the GeoCells platform 

 Coeff. of correlation Beta convergence Sigma convergence 
Simu1 (see details of settings in the text) 

10 years -0,64 -0,343 -0,014 

20 years from -0,50 to -0, 531      from -0,560 to -0,590  0,000 

25 years -0,476 -0,70  0,004 

Simu2 (see details of settings in the text) 

10 years from -0,631 to -0,695 from -0,456 to -0,500  -0,009 

20 years from -0,519 to -0,592 from -0,661 to -0,731  0,002 

25 years from -0,463 to -0,533 from -0,773 to -0,846  0,005 

Simu3 (see details of settings in the text) 

10 years from -0,54 to -0,55 from - 0,414 to -0,429 from -0,009 to -0,008 

20 years from -0,41 to -0,42 from -0,582 to -0,606  0,003 

25 years from -0,35 to -0,36 from -0,675 to -0,696  0,007 

 

In order to evaluate their weights 
in regional trajectories, these 
simulations were based on 

associations of variables between, on 
the one hand settings between 
endowment parameters cited above 
and coming from European regional 

ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France 191



    18

policy, and on the other hand on the 
neighbourhood effects and on the 
duration of redistribution phases. The 
results obtained in the above chart 
emphasize: 

• Whichever the scenario, a strong 
sensitivity to the duration of 
redistribution programs, more than to 
the percentage of European budget 
(within a range evolving from 0,5% 
to 3% of the Europe of the Fifteen 
GDP) devoted to Structural Funds. 
While periods of regional aid 
programs take place more often over 
periods of five or six years added to 
repeated  adjustments in allocation 
criteria, beta convergence values give 
results showing the strongest values 
of tendency reversal, therefore the 
most significant as far as catching-up 
is concerned, only after 20 or 25 
years of actions. 

• convergence indicators do not 
obtain the most performing scores for 

the same scenarios. The convergence 
measure based on the variation of the 
statistical dispersion (sigma 
convergence) is more important for 
scenario 3 (simu3), relying on the 
regional policy’s budget increase, 
while the prospect of a catching-up 
(beta convergence) is more credible 
with the scenario of territorial equity 
(simu2). 

• the « liberal » scenario (simu1) of 
the diffusion of prosperity only 
through neighbourhood effects and 
without European aid seems very 
little discriminatory. Given 
equivalent temporal sequences, the 
values are supplanted by the ones 
from the two other scenarios. It is 
only over a period of a quarter of a 
century after possible substantial 
changes of the regions’ activity 
profiles that results become 
equivalent. 

  

 

Chart 4. Statistical indicators of simulation results according to the importance of 
European budget in percentage of the EU’s total GDP 

  Beta 
convergence 

Sigma 
convergence 

Budget at 1% of GDP (1996) mean -0.698 -0,0012 
 

Budget at 1,5% of GDP (1996) mean -0,701 -0,0007 
 

Budget at 2% of GDP (1996) mean -0.707 -0,0007 
 

Budget at 2.5% of GDP (1996) mean -0.717 -0,0006 
 

Budget at 3% of GDP (1996) mean -0,720 -0,0005 
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5.3.Towards an optimization of the 
two convergence indicators via 
simulations ? 

If multiple regression calculations 
achieved above brought out the most 
discriminating variables, the next aim 
of the work consists in selecting 
specific settings for each one of the 
four variables that lead to the most 

effective results for the two aspects of 
the convergence idea. Knowing that 
the two chosen indicators give an 
account of various convergence 
process, reduction of dispersion and 
disparities for the sigma indicator and 
improvement of development levels 
through time for the beta indicator, 
variations in settings lead to more or 
less close or more or less far, not to 
say completely opposite results. 
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  comparaison des résultats après simulations des  deux indicateurs de 
convergence 

 du PIB/hab des régions européennes  
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By reproducing on the above 
diagram the variation in values taken 
by beta and sigma convergence over 
a series of more than 400 simulations, 
it comes out that there are no 
simulation for which settings lead to 
high values both for sigma and beta 
convergence. On the contrary, 
opposite values, divergence for an 
indicator, convergence for the other, 
are the most frequent. While high 
values for both would correspond, on 
the contrary, to an ideal situation of 
regional growth and of convergence 
for the entire group of regions. 

This apparent paradox results 
from each indicator’s and each 
variable’s functioning modes. When 
diffusion mechanism by contiguity 
are activated between two regions, 
the weakest receives an additional 
contribution, but on its side, the 
strong region carries on to develop 
itself. In other words, there is not 
automatically a reducing of 
disparities (sigma) even if there is 
progression of every regions 
compared to the previous situation 
(beta around -0,9). Conversely, when 
by assumption, neighbourhood 
effects are almost nonexistent, weak 
regions are simulated externally only 
by the aid of Community Funds, the 

Figure 6 - Comparison of beta and sigma convergence values 
                                                  (over 440 simulations) 

High sigma and low beta 

High beta and low sigma 

Medium resuts for 
beta and sigma 
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overall gap between regions 
decreases but with a beta 
convergence that does not improve 
much (values around -0,4). We find 
here again the strongly discriminating 
impact of neighbourhood effect 
(already pointed out with multiple 
regressions) compared to the 
Community aid factor. 

When a certain proximity exists 
between two indicators, it is 
significant to notice that it does not 
match necessarily the maximum 
settings offered by the four variables. 
The tendencies towards an (ideal) 
complete convergence does not 
result, according to our simulations, 
from the one and only increase of the 
Community budget and from the 
allocated Funds to the regional 
policy, but seems more likely due to 
particular mixing that take into 
account interregional regulations. 
Hence the sometimes deceiving or 
“unexpected” impact of structural 
policies which does not bring the best 
effectiveness in terms of reducing of 
regional disparities within the EU. 

These efficient mixing are the 
indication of a multicriteria 
complexity which relies on specific 
proportions between Funds levels and 
the average durations of Community 
aid (unlike short and standardized 
durations of current programs), and 
above all on the taking into account 
of the interdependency between 
neighbouring regions. For the reason 
of the co-evolution of the European 
regions system’s various magnitudes, 
seldom are situations favourable to 
complete convergence processes of 
wide regional groups. 

 

6. Which configuration for 
territorial cohesion ? 

The cartography of the various 
types of simulation gives concrete 
expression to the impact of territorial 
cohesion modes’ geographic 
distribution chosen by each option : 
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Map 1 - GDP per capita value after a  simulation  over 10 years without diffusion 

This first map reproduces the 
result of a situation where values of 
beta convergence and sigma 
convergence evolve in a completely 
opposite way. The simulation 
concerns a Community budget 
brought up to 2% of the GDP during 
a 10-year period with, by hypothesis, 
a total lack of GDP diffusion by 
contiguity between neighbouring 
regions. This hypothesis of regional 
growth’s watertightness gives a good 

sigma with a low dispersion of 
incomes between regions, since 
backward regions saw their GDP per 
capita rise up, but, on the other hand, 
a bad beta convergence, since the 
GDP per capita of the entire group of 
regions, except for a few 
metropolitan regions, increased only 
slightly. 
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Map 2 - GDP per capita value after a  simulation over 25 years with  a diffusion 

by neighbourhood of 40% 

This second type of setting 
concerns a 25-year period with a 
budget representing 2% of the 
Fifteen’s GDP, and a diffusion rate 
by neighbourhood of 40%, distributed 
among every neighbouring regions. 
The results of this type of setting 
show a good beta convergence and a 
bad sigma convergence. 
Representative of an inegalitarian 
growth, this setting reveals a certain 
effectiveness at national level, but 
establishes itself as less homogeneous 
at European level. The high GDP 
diffusion rate between contiguous 
regions reflects the importance of 

European spaces’ growing 
integration. It produces prosperous 
regions aggregation phenomena by 
expansion very often from 
metropolitan regions : Parisian Basin, 
South of England, North East of 
Spain (hence the high values of beta 
convergence). But on the contrary, 
neighbouring effects also work 
between peripheral and poor region 
areas that do not pull out of their 
backwardness (hence a bad sigma 
convergence). Growth develops itself 
by clusters of regions, but the 
development gaps are not on the 
whole being shortened

. 
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Map 3 - GDP per capita value after a  simulation over 15 years with a diffusion by 

neighbourhood of 30% 

This third map represents the 
result of settings combining values of 
beta and sigma convergence close to 
each other ensuring an average 
progression of underprivileged 
regions and a reducing of the overall 
disparities. It is obtained with a 15-
year duration of policies application, 
relying on a doubling of the European 
budget, by devoting to it half of the 
regional policy. While diffusion by 
integration of neighbouring regions 
concerns 30% of the GDP. Here, it is 
about an attempt of a compromise 
trying to reconcile the beneficial 
effects of each of the two types of 
convergence. From this setting, 
emerges a configuration of the 
European space which is relatively 
homogeneous, but dominated by a 
few very big metropolis (London, 
Paris, Brussels, Luxemburg, 

Stockholm), which development level 
stands out clearly from the rest of the 
regions. 

From these two indicators, in 
theory complementary, and often 
found in literature about regions’ 
convergence, the introduction of a 
growth propagation variable by 
contiguity, changed the expected 
scenarios worked out by the 
instigators of the Community 
policies. This introduction of spatial 
interaction by neighbourhood 
transforms the Community policies 
determinist projections in a system of 
regional units reacting according to a 
multi-level and a multi-localized 
complexity. To the multiplicity of 
settings offered by the simulation 
platform answers a few seldom co-
occurrence probabilities of the two 
forms of convergence. The taking 
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into account of the neighbourhood 
effects reveals the existence of an 
auto-organized process, which is only 
seldom holder of a global 

convergence at the level of a group of 
regions as well as of the entire 
European space. 

7. Conclusion 

The use of the GeoCells cellular 
automaton is an attempt in order to 
simulate the combined effects of the 
role of neighbourhood interactions 
and of the variations in the European 
regional policies on the reducing of 
disparities and the European group 
global cohesion. GeoCell’s multi-
layer organization is adapted to the 
specificity of this policies’ 
functioning involving a transfer of 
resources between State members via 
the European Union’s budget and the 
neighbourhood effects linked to the 
integration in the European space. 
Starting from the double assessment 
that European Union’s spatial 
dynamic revealed an inegalitarian 
growth and strongly polarized mode 
in which a third of European regions 
produce two thirds of the Community 
GDP, and that structural aid did not 
have, in this context, the expected 
consequences at regional level, we 
attempted to optimize the 
combination of duration and of public 
expense levels in order to make 
probable the reducing of disparities. 
The GeoCells model contributed to 
highlight the incidence of spatial 
interactions and the complexity 
induced by diagnosis brought up by 
two type of indicators of economical 
convergence. The fact that all of the 
European regional system’s 
components vary together by 
interactions between scale levels and 
between neighbouring regions, make 
it difficult to achieve the coincidence 

between improvement of the growth 
of the whole and the reducing of 
disparities between regions. It is 
however at these conditions that the 
cohesion policy, which makes up one 
of the pilar of the European building 
will be likely to answer the challenge 
of territorial integration in an 
enlarged Union. On the contrary, 
there is a high probability of a 
perennization of an inegalitarian 
growth mode, associating 
consolidation of the European 
integration and regional divergence 
process partially compensated by 
redistribution funds. 
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Abstract—There is a wide acceptance of benefit of the synergy 

effect. The object of this paper is to investigate whether a hybrid 
approach combining different stock prediction approaches 
together can dramatically outperform the single approach and 
compare the performance of different hybrid approaches. The 
hybrid model includes three well-researched prediction 
algorithms: back propagation neural network (BPNN), adaptive 
network-based fuzzy neural inference system (ANFIS) and 
support vector machine (SVM). First, we utilize them 
independently to single-step forecast the stock price, and then 
integrate the three forecasts into a final result by a combining 
strategy. Two different combining methods are investigated. The 
first method is a linear combination of the three forecasts. The 
second method combines them by a neural network. We have all 
of the algorithms experiment on the S&P500 Index. The 
experiment verifies that by combining the single algorithm 
considerately, a better performance can be received. 
 

Index Terms—BP neural network,  ANFIS, Support vector 
machine  
 

I. INTRODUCTION 
T is assumed that the behaviors of stock market in the future 
could be predicted with previous information given in the 
history [1]. This is the very idea behind Technical Analysis 

of Investment trading. Therefore, there exists a function 

( 1) ( , , ; , , ; , , ; )t k t t l t t m tp t f p p x x y y− − −+ =  

where p is the stock price, x and y are the other influence factors 
such as daily highest prices, daily lowest price, exchange 
volume, consumer confidence index etc. So the work of 
predicting the price in the future of stocks transforms to the 
problem of data regression in the computer science sense.  

Many effective artificial intelligence methods can do this 
work [2]. Among them, as claimed by Grudnitski and Osburn 
[3], artificial neural networks (ANN) are particularly well 
suited for finding accurate solutions in an environment 
characterized by complex, noisy, irrelevant or partial 
information. So many works focus on applying the different 
neural networks into stock prediction. Weigend et al [4] and 
Refenes et al [5] applied multilayer forward network (MLFN) 
models in their forecasts of foreign exchange prices. Tenti [6] 
applied recurrent neural network (RNN) models to forecast 
exchange rates. Kuan and Liu [7] provided a comparative 
evaluation of MLFN’s performance and an RNN for the 
prediction of an array of commonly traded exchange rates. In a 
more recent study by Leung et al. [8], Chen and Leung [9] used 

 
 

an error correction neural network (ECNN) model to predict 
exchange rates and good forecasting results can be obtained 
with their model. Although the successful application of neural 
networks, however, neural networks suffer from a “black box” 
syndrome and involve difficulties to deal with qualitative 
information.  

On the other hand, fuzzy logic as an effective rule-based 
modeling system in artificial intelligence not only tolerates 
imprecise information, but also makes a framework of 
approximate reasoning. But the fuzzy logic lacks self-learning 
capability. Therefore, the approach of combining a neural 
network model with fuzzy logic techniques becomes more 
popular. For example, Li et al. [1] and Cheng et al. [10] employ 
ANFIS to predict future stock price. Brent et al [11] compared 
the Mamdani with Takagi Sugeno Fuzzy inference system 
learned using neural learning and genetic algorithm, which 
shows the Takagi Sugeno based Fuzzy inference is much better 
than the Manani based Fuzzy inference system in the 
considered stock.  

At the same time, recently, a novel type of learning machine, 
called the support vector machine (SVM), has been receiving 
increasing attention in areas ranging from its original 
application in pattern recognition to the extended application of 
regression estimation. This was brought about by the 
remarkable characteristics of SVM such as good generalization 
performance, the absence of local minima, and sparse 
representation of solution. L. J. Cao and Francis E. H. Tay [12] 
show that SVM forecasts significantly better than the BP 
network, but has a similar performance with the regularized 
RBF neural network in time series forecasting. Y.K. Bao et al 
[13] conclude the support vector machines for regression is a 
robust technique for function approximation. 

So it is a natural question about what will happen if we 
combine these approaches together. In this paper, we focus on 
studying the hybrid of different single stock price prediction 
algorithm to investigate whether a hybrid approach combining 
different stock prediction approaches together can dramatically 
outperform the single approach and compare the performance 
of different hybrid approaches. The three widely used 
algorithms are employed, they are BP neural network, adaptive 
network-based fuzzy neural inference system and support 
vector machine. First, we utilize them independently to 
single-step forecast the stock price, and then integrate the three 
forecasts into a final result by a combing strategy. The 
experiment results indicate that creating a considerate combing 
strategy, the performance of the hybrid way is better than the 
performances of using the three algorithms independently. Two 
different combining methods are investigated.   
The rest of the paper is organized as follows: Section 2 simply 
describes the three main algorithms used in this paper. Section 
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3 explains the combing strategies for the hybrid approach. The 
detailed experiment setup and the corresponding analysis are 
shown in section 4, and finally some concluding remarks are 
described in section 5. 

II. OVERVIEW OF THE ALGORITHMS 

A. BPNN  
The BP neural network implies the feed-forward neural 

networks of which the weight matrix is adjusted by 
back-propagation (BP) algorithm. BP neural network had 
emerged as one of the most powerful tool for regression and 
classification problems. Many papers have investigated the 
application of BP network in stock price prediction in which 
most of them employ other optimization algorithms to improve 
the structure and the parameter of the network to achieve a 
better forecast. A detail of the application of the BP network in 
stock can refer to [14], which make a completely discussion of 
the financial application of BP network. The standard 
three-layer BP neural network is used in this paper. 

B. ANFIS  
Adaptive Network-based Fuzzy Inference System(gang 

1993, Jang 1995) is a class of adaptive networks that are 
functionally equivalent to fuzzy inference system, which 
combines the advantage of artificial network and fuzzy 
inference system, and avoids the “black box” of common 
neural network. 

ANFIS is based on Tagaki-Sugeno fuzzy model. The fuzzy 
rule is:  

1 1 1 1 1 1:  if  is  and  is , then Rule x A y B f p x q y r= + +  

Generally speaking, ANFIS incorporates the following three 
important features: meaningful and concise representation of 
structured knowledge, efficient learning capability to identify 
parameters and clear mapping between parameters and 
structured knowledge. ANFIS is a class of adaptive networks 
that are functionally equivalent to fuzzy inference system. 

C. SVM  
Support vector machine (SVM) is a relatively new approach 

of data mining. It was developed by Vapnik and his co-workers 
[15][16] which initially used in pattern classification, with the 
introduction of Vapnik’s insensitive loss function, SVMs have 
been extended to solve non-linear regression estimation 
problems and they have been shown to exhibit excellent 
performance in financial time series forecasting [17]. 

Compared to other neural network method, SVM has three 
distinct characteristics [17]. First, SVM estimates the 
regression using a set of linear functions that are defined in a 
high-dimensional feature space. Secondly, SVM carries out the 
regression estimation by risk minimization, where the risk is 
measured using Vapnik’s insensitive loss function. Third, SVM 
implements the structured risk minimizing principle which 
minimizes the risk consisting of the empirical error and a 
regularized risk. The SVM employed in this paper is the 
LibSVM developed by Lin [18]; the details about the LibSVM 

refer to [18].  

III. COMBINING STRATEGY  
The combining strategy is employed to merge the three 

forecast result of the single forecasts algorithm to form the final 
prediction of the stock price. Unlike the voting strategy 
common used in classification problem, in this paper, two 
special combining strategy is used which called Hybrid-1 and 
Hybrid-2 in the following experiment respectively. Hybrid-1 is 
a simply linear combination of the three predictions. 
Considering the different performance of the three algorithms, 
the weight assigned for different algorithms is proportional to 
their accuracies. The weight determined by:  
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Hybrid-2 is a more complex approach which combines the 
forecasts by a three-layer feed-forward neural network in 
which there are 3 nodes in the input layer, 3 nodes in the hidden 
layer, 1 node in the output layer. 

IV. EXPERIMENT AND ANALYSIS  

A. Data preprocessing  
The stock price is quite different in value may affect the 

performance of the prediction algorithm. So the original data is 
mapped to [0,1]  by min-max normalization:  

scaled
x m

x
M m

−
=

−
 

for the time series data x, m=min{x}, M=max(x). In the 
experiment, three kinds of time series, e.g. the close price, 
highest price and lowest price are normalized independently. 
For convenience, the prediction result don’t map back to the 
true stock price, just compare the scaled value. 

B. Feature selection   
Feature selection is a key issue for the prediction accuracy. 

Many papers have dealt with input selection. In the study, the 
genetic algorithm (GA) is employed to select the most 
appropriate features for the three algorithms from 15 candidate 
features respectively. The original 15 inputs considered are:  

1 2 3 4, , , ,t t t t tC C C C C− − − −  

1 2 3 4, , , ,t t t t tL L L L L− − − −  

1 2 3 4, , , ,t t t t tH H H H H− − − −  
where C, L, H represent the close price, the lowest price and 
highest price respectively. The target is to select some most 
important features as the inputs of the models to forecast the 
stock price in the t+1 transaction day. The number of the 
selected feature varies with the forecast models.  

The genetic algorithm is built with a population size of 40 
and trained for 100 generations. The mean squared error (MSE) 
of regression is used as the measurement. 
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C. Experiment setup 
For the BPNN model, the 8 features selected 

are 1 2 4 1 4, , , , , , ,t t t t t t t tC C C L L H H H− − − − − . The standard 
three-layer BP neural network is used. There are 8 nodes in the 
input layer which is equal to the number of features, 1 output 
node and 10 hidden nodes. The number of hidden node is 
determined based on the experimental result. The sigmoid 
transfer function is used for the hidden nodes and the linear 
transfer function for the output node.  

For the ANFIS model, the final selection of inputs 
is: 1 2 1, , , , ,t t t t t tC C C L H H− − − . For every input variable, two 
membership functions are created, and all of the membership 
functions are global bell functions.  

The input of SVM model is same to the BP network model. 
When applying SVM to financial forecasting, the most 
important thing that needs to be considered is what kernel 
function is to be used. As the dynamics of financial time series 
are strongly nonlinear, it is intuitively believed that using 
nonlinear kernel functions could achieve better performance 
than the linear kernel. In this study, the radial basis function 
(RBF) is used as the kernel function. The two parameters of the 
RBF are optimized by cross-validation method. 

D. Result and analysis 
For every model, we test them on the S&P 500 index under 

different size of the training set vs. test set. The result shows in 
the Table.1.  

The algorithm is implemented in MALAB tool box.  
TABLE I 

PERFORMANCE OF DIFFERENT MODEL WITH DIFFERENT SIZE OF TRAINING SET VS. 
TEST SET  

Training set 
: test set 80:20 800:20 800:100 800:200 

ANFIS 0.000351 0.000142 0.000121 0.000133 

BPNN 0.000295 0.000148 0.000114 0.000130 

SVM 0.000486 0.000154 0.000121 0.000144 

Hybrid-1 0.000335 0.000147 0.000117 0.000132 

Hybrid-2 0.000263 0.000138 0.000113 0.000129 

 
In the first row, the number before the colon is the size of 

training set, the number after is the size of testing set. The 
testing set follows the training set in time. E.g. 80:20 means that 
the price of the first 80 days is the training set, whereas the 
price in the next 20 days (from the 80th to the 100th) as the test 
set. Hybrid-1 and Hybrid-2 mean the two combining strategies 
to combine the three prediction result. The performance is 
measured by average MSE. 

The prediction of Hybrid-1 and Hybrid-2 of 80:20 shows in 
Fig 1. 

 
 

 
 

Fig. 1.  The prediction of the Hybrid-1 model (top) and the Hybrid-2 model 
(bottom) for the price of 20 days using the 80 historical daily prices. Blue lines 
show the true prices, green lines show the forecasts. 

As shown in Table 1, the three models share a similar 
performance. All of them are fit to the short-term prediction, as 
the test size increases, the performance decrease. The training 
set also influences the performance. This characteristic implies 
the stock price reflects the long-term historical prices, not just 
determined by the short-time historical prices. The 
performance of hybrid approach is generally better than the 
single algorithm.  

On the other hand, the performance of Hybrid-2 model is 
much better than the Hybrid-1 in all and outperforms any single 
algorithm. Hybirid-1 is just slightly better than the average 
performance of the single algorithms. The reason is that the 
prediction of the three models is approximately similar. This 
characteristic shows in Figure 2. The performance of the three 
models is approximately similar, so the Hybird-1 is equivalent 
to using mean prediction of the single algorithm as its final 
prediction. 
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Fig. 2.  From top to bottom: the predictions of the SVM model, the BPNN 
model and the ANFIS model for the price of 20 days using the 800 historical 
daily prices. Blue lines show the true prices, green lines show the forecasts. 

V. CONCLUSION 
Many classical soft computing approaches have successfully 

applied in the prediction of stock price and showed good 
performance. In this study, the object of this paper is to 
investigate whether a hybrid approach combining different 
stock prediction approaches together can dramatically 
outperform the single approach and compare the performance 
of different hybrid approaches. The soft computing approaches 
employed in this paper are the ANFIS model, the BP network 
model and the SVM model. The experiment is implemented on 
S&P 500 index. As shown in the experiment, by combining 
them considerately, a better performance receives  
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Abstract—Multimedia applications usually manage large quan-
tities of data in the form of frames of certain types. To ensure
a good trafic of these frames through the network, temporal
constraints must be respected when sending and receiving these
frames. If the temporal constraints are not met, then the quality
of service (QoS) provided to users decreases. In this paper,we
exploit some results obtained in QoS management in Real-Time
Databases Systems (RTDBSs), and we apply them to multimedia
applications, because of similarities existing between these two
fields. We propose a new method allowing to control the QoS
provided to clients according to the network congestion, by
discarding some frames when needed.

Index Terms—Distributed multimedia systems, Feedback con-
trol loop, Quality of service, MPEG format, (m,k)-frame con-
straints.

I. I NTRODUCTION

T HE recent improvements in networks area allow to con-
sider the large exploitation of new services in many

applications, particularly in multimedia applications. These
applications deal with large volumes of data and require real-
time processing, i.e., they must be completed before fixed
dates, to guarantee an acceptable quality of service (QoS) in
the streams presented to the users. Systems adapted to the
management of these kinds of data with QoS guarantees are
real-time database systems (RTDBSs) [13] [14].

Many distributed multimedia applications must face to the
unpredictable loads that cause the system overload. For ex-
ample, user-demands may arrive in a bursty manner during
a short period. Currently, all applications need to provide
a good QoS to the users (a good flow of video frames).
To this purpose, it will be interesting to adapt the existing
techniques to multimedia applications in order to obtain more
reliable and efficient transfer of the video packets, without
modifying the initial infrastructure. The main problems are
related to the adaptation of available resources (bandwidth,
buffer size, video servers, etc.) and to the proposition of
new techniques which deal with system instability periods
(overload or under-utilization). The proposition must allow
to ensure an acceptable QoS while respecting the multiple
requirements of the video streams.

Many works on QoS management in RTDBSs have been
done [1] [10]. Almost all these works are based on a feed-
back control scheduling architecture (FCSA) that controlsthe
system behavior thanks to a feedback loop.

The feedback loop begins to measure the performances of
the system in order to detect overload periods. Then, according
to the results observed, the values of the parameters are mod-
ified to adjust the system load to the real conditions. As these
conditions always vary, this process is repeated indefinitely.
Because of the similarities existing between RTDBSs and
multimedia applications[6], in this paper, we propose to apply
the results obtained on the QoS management in RTDBSs to
multimedia applications. The main objective is to allow to
design multimedia applications that will be able to providethe
QoS guarantees and a certain robustness when user’s demands
quickly grow up or when the network becomes congested.
These works are especially applied to video on demand (VoD)
applications. We adapt a method called FCA-DMS (Feedback
Control Architecture for Distributed Multimedia Systems).
The architecture proposed contains three main components,
such as, the master server, the video server and the clients.We
will apply a control of the network congestion by discarding
or not some multimedia frames of certain types according to
the network state, notably to the shared bandwidth. This will
increase the QoS provided to the users.

In this article, we present a method allowing to take into
account the network congestion in order to increase the QoS
provided to the users, especially, how to achieve an optimal
value of frames in a MPEG stream [6][12]. In Section 2,
we present the multimedia system architecture that we use.
In Section 3, we develop our approach which allows to
increase the applications QoS during the overload periods
(network congestion). Then, in Section 4, we present the
simulations results that we have done to test the validity of
our approach. Finally, we conclude this article and we give
some perspectives.

II. A QUALITY OF SERVICE APPROACH

A. Quality of service in distributed multimedia systems

The usually admitted definition of the QoS in a multimedia
application is the whole of requirements in terms of band-
width, quality of visualization, delay and rate of video packets
loss. Our approach consists in taking into account researches
already done on the management of QoS in RTDBSs [11] [2]
and their adaptation to multimedia systems. To this purpose,
we propose an adaptation of a method based on feedback
control architecture to distributed multimedia systems [6]. We
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Fig. 1. Functional model of the FCA-DMS architecture.

exploit, to this purpose, the notion of (m,k)-firm constraints
used in real-time sytems [5] and in RTDBSs [8][3].

B. Feedback control architecture

In a previous work, Natalia Dulgheru has proposed an ar-
chitecture, named QMPEGv2 [6] which deals with distributed
multimedia systems (cf. figure 1). The architecture proposed
contains three main components:

• Master server: it accepts requests from clients, chooses
the video servers able to serve the demand, supervises
the system state and adjusts the video streams in order to
maintain the QoS initially fixed.

• Video servers: They run under the master server control
and send the video packets to the clients.

• Clients: they send requests to the master server and
receive the video frames from the video server. When
a state change occurs, they send a feedback report to the
master server.

In the following, we describe briefly a typical procedure
which is executed when a video on demand is requested, based
on FCA-DMS architecture:

1) A client sends a request to the master server to get a
video, with a certain level of QoS.

2) The master server broadcasts the request to the video
servers available in the system.

3) The video servers send back their response to the master
server, which chooses one among them.

4) A stream is opened between the chosen video server and
the concerned client.

5) The master server asks the video servers to adapt their
QoS, when necessary.

The feedback loop consists on adapting the QoS according
to the load system conditions (servers and network conges-
tion). The system observes the QoS obtained by the client
and, if necessary, asks the concerned video server to improve
it.

In order to improve the QoS, the system increases or
decreases the number of transmitted frames of certain types. To
this purpose, we based our action on the characteristics of the
standard MPEG format [9], that defines a mechanism to code
frames at the time of the video compression. A video sequence
enters the system. It’s then compressed and coded according
to three types of frames:Intra frames (I), Predicted frames (P)
andBidirectional frames (B). I frames are references frames.
P frames allow to rebuild a frame using anI frame.B frames
useI frames andP frames to rebuild a sequence. Therefore, I
frames are the most critical. To decrease the eventual network
congestion, it is necessary to remove some frames from a video
sequence, but these suppressions must be done in a controlled
manner. We propose in the following section a method based
on the controlled frames suppression in order to control the
QoS provided to users.

C. Feedback control loop

Using the feedback loop allows to stabilize the system
during the instability periods [4]. It is based on the two prin-
ciples: observation and auto-adaptation. The principle consists
of observing the results obtained by the system and checkingif
the current QoS observed is consistent with the QoS initially
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required, e.g. in VoD application, the system checks if the
videos sequences are presented to users without interruptions.
The auto-adaptation consists for the system to adapt the results
according to the QoS needed par the clients, by adjusting some
network and video parameters, e.g. the system increases or
decreases the number of accepted frames1. In this way, the
feedback loop ensures the stability of the system.

III. A NEW METHOD TO CONTROL THE NETWORK

CONGESTION

A. The (m,k)-frame method

According to certain conditions, the system load varies from
overload state to under-utilization state and vice-versa.Indeed,
since the number of video servers sending the video packets
is unknown, sometimes this causes severe damages on the
service level provided to clients. Consequently, the number
of transmitted packets is also unknown and can be important.
Moreover, when a high number of video packets access to
network resources, it is necessary to keep a high priority level
for more critical packets (I frames, then B frames, then P
frames)[6][12].

We propose an approach based on (m,k)-firm method [7].
The (m,k)-firm model is characterized by two parametersm
andk. An application is said under (m,k)-firm real-time con-
straint if at leastm operations amongk consecutive operations
meet their deadlines. We adapt this method to the context of
multimedia applications. An multimedia operation consists of
sending/receiving a video frame. To adapt this method, we
consider thatm video packets amongk must be correctly sent.
To this purpose, we propose a new technique of video packets
management crossing the network, called (m,k)-frame.

A video stream is decomposed into several classes according
to their tolerance to the loss of frames characteristics, i.e.
each class contains the video packets of similar (m,k)-frames
constraints. The three classes, we consider, refer to the three
types of frames: I, B and P. With this technique we realize a
trade off between the shared resources and the QoS granularity
in the same class of a video stream.

B. The quality of service adaptation

In this work, we focus on the adaptation of the video stream
to the network state. We assume that measures of the network
capacity are available, in one hand, and that we have an
important number of frames to send, on the other hand.

The three classes of frames (I, B and P) are used to adapt the
quality of stream sent to the network capacity. We consider the
following constraints: (mI , kI )-frame, (mP , kP )-frame and
(mB, kB)-frame, i.e,mi frames of a certain type must be
received among theki frames sent. Then the network capacity
is measured by the formula:mI + mP + mB. Recall that I
frames are the most critical. The parameters are ordered in
the following manner:mI > mP > mB. We usually havemI

= kI , i.e., I frames are critical and it is forbidden to remove
them.

1note that I frames (critical) are not removed

We assume the situation where the network, whose current
capacity isN , is congested. We also assume thatQoSmax is
the quality of the stream to send including M frames. To be
consistent with the network capacity, it is necessary to remove
(M − N ) frames. Therefore, we have to degrade the quality of
the MPEG stream. When we apply no method of congestion
control, frames will be randomly removed, i.e. they are lostby
the network, causing the degradation of the video presentation,
notably if some I frames are removed. Here, we apply our
(m,k)-frame method, which consists of removing frames in an
intelligent manner. We have: (1)M=kI + kP + kB, and (2)
N=mI + mP + mB. The number of frames to remove is
then:M − N = (kI − mI ) + (kP − mP ) + (kB − mB),
wherekI = mI (I frame are the most critical, and are not to
remove).

C. Bandwidth fair sharing

With the previous assumptions, we deal with the broblem
of sharing bandwidth between servers in case of network
congestion phases. In the previous section, we have seen
how to reduce the QoS at the stream level, according to the
available capacity of the network. Here, we need to share fairly
the bandwidth between all sources that wish to send a stream.
We compute the total capacity needed by all servers. Then,
we computeR, the ratio between the needed capacity and the
available network capacity (N).

R =
N

m∑
i=1

RCi

such as :

• m: the number of video servers.
• RCi: The Required Capacity of the video serveri.

Example: let 3 video servers wishing to send flows of
40, 30 and 20 frames per second respectively. The total
capacity of the network needed to answer to this demand
must be 40+30+20=90. If, however, the network only ar-
ranges a capacity of 75 frames per seconds, it is not able
to sent all the frames. The ratioR is computed as follows:
(75/90)*100 = 83.33%. Then, we apply this rate to each of
the three required capacities 40*83.33%=33, 30*83.33%=25
and 20*83.33%=17. If we sum the three obtained numbers,
we find 75 frames per second. It corresponds to the current
capacity of the network.

In the following, are listed some advantages of the band-
width fair sharing:

• To control of the congestion of the network by fair
sharing resources between all streams. A bad stream
doesn’t affect the service provided to the other streams.
Only this service will be concerned if a stream wants to
consume more resources than available.

• To guarantee an acceptable bandwidth and delay.
• To guarantee a link sharing between the different classes

of service.
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Fig. 3. The simulator
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Fig. 2. The (m,k)-frame algorithm.

IV. SIMULATIONS AND RESULTS

A. The simulator

To test the validity of our proposition, we have developed
and implemented a simulator (cf. Figure III-C) in order to
verify the behavior of system and its adaptation to different
load variations.

This simulator is based on the architecture components
presented in Section II. A master server serves all video servers
participating to the video diffusion. Moreover, the master
server allows to add new video servers, when necessary. A new
server is assigned a number and a list of accessible objects.
After starting the master server, the video servers who want
to participate in the video distribution, refer themselvesto the
master server, and then get a number.

In order to make a request, a client dialogs with the
master server, that distributes the request to the available video

servers. When the master references a video server able to
satisfy the client request, i.e. the server is able to provide the
required QoS, it sends the video server reference to the client.
Then, the broadcast from the video server can begin. After
some time, the client sends to the server the QoS level he
obtained.

The three parts of the architecture of this simulator are
modeled thanks to an object modeling language and realized
in JAVA language.

The objective of the simulations is to demonstrate how our
method, called (m,k)-frame, is able to adapt the QoS to the
real conditions of a multimedia application, according to the
current system load. Notably, the system must adjust the QoS
when the client number that does requests varies (dynamic
arrived of clients). The network congestion can have different
sources:

• internal: when there is a large number of clients doing
requests in the system. We can limit this client number
by using an admission controller located at the master
server level.

• external: when the network is used by other applications
that can cause the congestion.

Our architecture must adjust the QoS by reducing the
number of frames broadcasts in the network.

B. Simulation results

In these Figures,sim0 indicates the rates before (m,k)-
frame application andsim1 indicates the rates after (m,k)-
frame application. We noticed in these Figures, a difference
in the rates of lost frames, the rate of received frames and
the rate of useful frames before and after using the (m,k)-
frame application. In Figure 4, we observed more gain to rate
of received frames after the application of the (m,k)-frame
technique in case of system overload.
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Fig. 5. Lost frames rates with and without application of (m,k)-frame technique.

In Figure 5, we found a difference in loss rate after the
implementation of the (m,k)-frame classification. With the
increasing of the number of clients over time, we notice in the
Figure 5 that reduces of loss frames, we also note an increase
in the rate of received and useful frames in Figure 4 and Figure
6 respectively. We have not found a significant gain in the
rate of received frames and the rate of useful frames, because
our technique of (m,k)-frame classification is not sufficient to
effectively stabilize the QoS desired by the clients.

Our simulation shows nearly 10% gain in the rate of loss
frames. But by combining our (m,k)-frame application with
other techniques, we can have a significant gain in terms of
received frames.

V. CONCLUSION AND FUTURES WORKS

In this work, we proposed an improvement of the feedback
control architecture for distributed multimedia systems (FCA-

DMS). Our objective is to provide a deterministic temporal
guarantee according to the temporal constraints to real-time
video streams. Our main contribution concerned the adapta-
tion of (m,k)-firm constraints for the video packets and the
establishment of a video distribution strategy.

A possible extension of this work consists on enhancing
the architecture presented. Notably, in order to bring some
breakdowns tolerance because of the presence of only one
master server. We also have presented the importance of the
bandwidth sharing and given a certain priority to the video
packets in the network resources level, in order to increase
its reliability and robustness and to converge towards the QoS
specified by the client.

The simulator design allowed to validate the feasability of
our approach and should permit to provide results demonstrat-
ing the real contribution of this new approach.

A possible future work would consist also of building a

210 ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France



6

ra
te

(%
)

Fig. 6. Useful frames rates with and without application of (m,k)-frame technique.

real video on demand server based on the architecture that we
proposed.
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Fayçal Kelai , Olivier Crumeyrolle , Innocent Mutabazi . . . . . . . . . . . . . . . . . . 49

The renormalized fragmentation equation and its exact solutions
M.A. Gorokhovski , V.L. Saveliev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Combinatorics, Physics and Complexity 51
Asymptotic analysis and convergence of some leader election algorithms

Christian Lavault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Learning self organizing maps as a Markov mixture

Mustapha Lebbah , Younès Bennani , Nicoleta Rogovschi . . . . . . . . . . . . . . . . . . 53
Statistics on graphs, exponential formula and combinatorial physics

Gérard H.E. Duchamp , Laurent Poinsot , Silvia Goodenough , Karol A. Penson . . . . . . 60

iv ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France



Exponential random graphs as models of overlay networks
Moez Draief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Coding rhombus tilings by multidimensional words: a first attempt
Damien Jamet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Synchronization of countable cellular systems, localization of quasi-periodic
solutions of autonomous differential systems
Laurent Gaubert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Drawing solution curve of a differential equation
Farida Benmakrouha , Christiane Hespel , Edouard Monnier . . . . . . . . . . . . . . . . 75

Generating series: a combinatorial computation
Farida Benmakrouha , Christiane Hespel . . . . . . . . . . . . . . . . . . . . . . . . . . 79

On approximation of nonlinear generating series by rational series
Mikhail V. Foursov , Christiane Hespel . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Counting rooted and unrooted triangular maps
Samuel Vidal , Michel Petitot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

About a group of Drinfel’d associators
Hoang Ngoc Minh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Combinatorics & Schelling’s model
Cyril Banderier , Hanane Tafat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Systemic modelling
Daniel Krob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4 Risk and Complexity 99
Exploring crowd dynamics based on individual behaviors and local interac-

tions
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Ahmed Medeghri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
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Description

Biology and BioMedicine is a field where the systems are complex by nature. There are two
opposite ways to investigate the resulting dynamics. One approach consists that a complex system
is nothing but the sum of its parts, and that an account of it can be reduced to accounts of individual
constituents. The second approach corresponds to the idea that all the properties of a given system
(physical, biological, chemical, etc.) cannot be determined or explained by its component parts
alone. Instead, the system as a whole determines in an important way how the parts behave. In this
latter case, it is important to start with a time series produced by the whole system. The next step is
then to use one of the most important results from the nonlinear dynamical systems theory that can
be summed up by the Takens theorem: it is possible to reconstruct from a single time series a phase
portrait equivalent to the original phase space that cannot be measured. It is therefore relevant
to possess powerful technique of analysis to deeply investigate the dynamics underlying biological
and biomedical systems. This session is devoted to recent techniques developed in the context of
nonlinear dynamical systems theory as well as some applications in biology and/or biomedicine.
The aim is to develop a common language and a unified methodology between physicians, biologists
and physicists.
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Representations of Dynamical Systems
Daniel J. Cross and Robert Gilmore,Fellow, APS

Abstract—Data from an experiment can be embedded inRN in
many different ways. Different embeddings may provide different
information. A set of labels is needed to distinguish inequivalent
embeddings, or representations, of the data. We describe how
the number of labels decreases as the dimension,N , of the
embedding increases. These ideas are illustrated in terms of the
representation theory for three dimensional (d = 3) dynamical
systems, where all appropriate results are available.

Index Terms—Chaos, nonlinear dynamics, embedding, repre-
sentation, inequivalent, isotopy

I. I NTRODUCTION

W HEN you analyze embedded experimental data: What
do you learn about the embedding and what do you

learn about the underlying dynamics that create the data? This
is the first fundamental question confronting the analysis of
chaotic experimental data.

The same analysis techniques may provide different infor-
mation when applied to different embeddings of the same
data. It is therefore essential to separate the invariants of the
analysis, that point to the fundamental processes responsible
for the dynamics, from those (the “variants”) that may differ
from one embedding to another.

We show below that embeddings are representations of the
dynamics; that different representations may or may not be
equivalent; that distinct classes of equivalent representations
are labeled by an appropriate set of representation labels;that
fewer and fewer labels are necessary to distinguish among
representations as the embedding dimensionN increases; and
that in a sufficiently high dimension all representations become
equivalent. We illustrate these ideas for three dimensional
dynamical systems (d = 3) where three types of labels
are needed to distinguish representations in three dimensions
(N = 3), one type is necessary in four dimensions (N = 4),
and all representations become equivalent in five and higher
dimensions (N ≥ 5).

II. EMBEDDINGS

The first challenge for the analysis of experimental data is
the construction of a suitable representation of the data. This
amounts to a mapping of the data into a space that can be
used as a phase space to describe the dynamics. This space is
typically RN , with N sufficiently large.

Such a mapping is called an embedding. An embedding (in
the sense of Whitney [1]) is a diffeomorphism between the
phase space that governs the experimental dynamics and a
submanifold inRN . We are usually concerned with mappings

D. J. Cross and R. Gilmore are in the Physics Department, Drexel
University, Philadelphia, PA 19104 USA e-mail: d.j.cross@drexel.edu,
robert.gilmore@drexel.edu.

Manuscript received April 15, 2009.

of data generated by strange attractors into strange attractors
in RN . These are not manifold embeddings, rather they are
embeddings in the sense of Takens [2]. In the discussion that
follows embeddings should be understood in the sense of
Whitney.

When data consist of a single experimental time series taken
at equally spaced time intervals, the data must be used to
createN -vectors [2], [3]. Standard recipes include time delay
embeddings and differential embeddings. When data consist
of fields, for example fluid height dataz(x, y; t) on a planar
grid at equally spaced time intervals, other methods must be
uses. These include Fourier, Galerkin, and SVD projections
[4].

III. R EPRESENTATIONS

An embedding is a diffeomorphism (1-1, onto, differentiable
with differentiable inverse) between the original phase space
and a recreated phase space inRN . As such, it provides a rep-
resentation of the dynamics. What we learn about the original
dynamics is what we learn by analyzing its representation, the
embedding.

Different embeddings (e.g., time delay with different delays,
differential-integral) provide different representations of the
dynamics. As in the theory of Group Representations we must
ask: Are they equivalent or not?

A. Equivalence:

For dynamical systems the natural notion of equivalence is
under topological deformation (isotopy). Two embeddings of
a dynamical system are defined to be equivalent if they are
isotopic [5]. The isotopy smoothly deforms the phase space
given by one representation into the phase space provided by
the other; at the same time it smoothly deforms the attractor
(strange or otherwise) contained in one phase space into that
contained in the other.

B. Geometric and Dynamical Measures:

Geometric measures, such as fractal dimensions, are dif-
feomorphism invariants. As a result they are representation-
independent, and in principle it doesn’t matter which repre-
sentation they are determined in. However, implementationof
this theorem on experimental data can be problematic. In [6]
significantly different estimates of the correlation dimension of
experimental data were made on sets that differed by a simple
logarithmic transformation.

In principle, dynamical measures such as the spectrum
of Lyapunov exponents are also diffeomorphism invariants.
However, the number of exponents depends on the embedding
dimension, so grows withN . Further, if N grows past the
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“proper” dimension, “spurious exponents” are determined that
are sometimes even larger than the largest Lyapunov exponent
in the phase space of appropriately small dimension [7], [8].

To summarize, in principle geometric and dynamical mea-
sures are representation-independent quantities.

C. Topological Measures:

A useful theorem by Wu Wen-Tsün [9] guarantees that
all embeddings are equivalent in sufficiently high dimension.
Specifically, mappings of ad dimensional manifoldMd into
RN are isotopic whenN ≥ 2d + 1 for d > 1. For d = 1,
N ≥ 2d+ 2 = 4: N = 3 is knot theory. ForN in the range
d ≤ N ≤ 2d different representations may be inequivalent.

When there are obstructions to isotopy [10], representations
fall into equivalence classes. It should be possible to find
representation labels that are sufficient to distinguish among
these classes. As the dimension increases fromN = d to
N = 2d these representation labels “fall away”. In higher
dimensional spaces there is more room to maneuver so there
are fewer obstructions to isotopy. Finally, forN = 2d+1 and
larger, no representation labels are necessary to distinguish
among representations, since all are equivalent.

The only topological imprint that remains, like the smile
of the Cheshire cat, is the mechanism that is responsible for
generating chaotic dynamics [11].

IV. REPRESENTATIONS, d = 3, N = 3

A set of representation labels is known for strange attractors
that are generated by three dimensional dynamical systems
d = 3 and embedded inR3 [11], [12]. The representation
labels are of three types: parity, global torsion, and knot type.
The spectrum of these representation labels depends on the
genusg of the attractor [12], [13], [14]. The spectrum is
simplest in the simplest case,g = 1. This case is discussed
first. The more general case,g ≥ 3, is discussed in the
following subsection.

Wu’s theorem guarantees that in both cases, all represen-
tations are equivalent forN ≥ 7. In fact, in both cases all
representations become equivalent forN ≥ 5. In dimension
five or greater the only remaining topological signal in any
representation is the mechanism that creates chaotic motion.

A. Genusg = 1

Strange attractors in three dimensions that are created by
repetition of the stretching-twisting-folding processesare con-
tained in bounding tori of genusg = 1. Such attractors include
two-dimensional nonlinear oscillators that are periodically
driven as well as autonomous dynamical systems such as the
Rössler attractor. For such systems the phase space isD2×S1.
All embeddings have a “hole in the middle” when viewed
from the proper perspective. Two of the representation labels
for this class of attractors are derived from the mapping class
group of the torus [10], [11]. The mapping class group of
the torus surface∂(D2 × S1) that preserves direction of flow
(longitudes) has discrete representatives with matrix form

[
1 n
0 ±1

]
(1)

The integer indexn describes how often a longitude is twisted
around the centerline (“core”) of the torus. The index±1
is the parity index: it determines the handedness of the
diffeomorphism.

The third index required to distinguish among representa-
tions of strange attractors withg = 1 is directed knot type. The
torusD2 × S1, and the attractor it contains, can be mapped
into R3 in many different diffeomorphic ways. Specifically,
a directed knotK(θ) = (ξ(θ), η(θ), ζ(θ)) is adopted that
satisfies periodic boundary conditions:K(θ) = K(θ + 2π).
Harmonic knots [15] provide useful representations for such
knots. An attractor inD2 × S1 is mapped intoR3 by the
mapping(x(t), y(t), t) ⊂ D2 × S1 → K(θ) + x(t)n(θ) +
y(t)b(θ) ⊂ R3. Here n(θ) and b(θ) are the unit normal
and binormal toK(θ) and the angleθ and the time are
synchronized according to

t

Td
=

θ

2π
(2)

whereTd is the period of the driving term inS1 [11]. In order
to prevent self-intersections from occurring in this mapping of
D2 × S1 into R3 we require the attractor be scaled so that
the nonlocal minima of the knot distance function|K(θ) −
K(θ′)| > R, wheremax x(t)2 + y(t)2 < R2.

The parity index distinguishes among embeddings intoD2×
S1 ⊂ R3 but is no longer an obstruction to isotopy inR4 [5].
To see this, we lift coordinatesx(t), y(t), z(t) from R3 to R4

by means of the injection


x(t)
y(t)
z(t)
0

 R34(φ)−→


x(t)
y(t)

z(t) cosφ
z(t) sinφ

 φ=π−→


x(t)
y(t)
−z(t)

0

 (3)

The projection back down intoR3 reverses the parity index
of the original representation. The rotationR34(φ) is not only
an isotopy, it is an isometry as well.

Knot type no longer is an obstruction to isotopy inR4. The
idea is similar to that presented in Eq. (3). Not only do knots
in R3 fall apart inR4, but tori surrounding knots inR3 can
also be untangled inR4 [5].

Representations with different global torsion inR3 become
equivalent inR5 [5]. Coordinates in a torusD2 × S1 with a
global torsionn can be taken in the form

[
θ, rei(φ+nθ)

]t
. Here

θ ∈ S1 and reiφ is a complex number identifying a point in
the diskD2. The curve withr = 0 is the core of the torus. A
homotopy between a torus withn = 0 andn = 1 is given by

[
θ
reiφ

]
Inject−→

 θ
reiφ

rei(φ+θ)

 C23(ψ)−→
 θ
rei(φ+θ)

−reiφ

 (4)

The rotation byψ = π/2 radians in the complex 2-3 plane is
an isometry as well as an isotopy.
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Global torsion continues to distinguish inequivalent repre-
sentations even when they are embedded inR4. The proof
is somewhat involved [5]. In summary, it involves linking a
longitude (S1) on the torus surface with a sphereS2 ⊂ R4 in
such a way that the linking number of these two manifolds is
the same as the linking number between the longitude and the
core of the torus inR3. Since isotopy cannot change linking
numbers of the two- and one-dimensional manifolds inR4,
global torsion remains an obstruction to isotopy inR4.

B. Genusg ≥ 3

Strange attractors in three dimensions that are created by
repetition of the stretching-tearing-squeezing processes are
contained in bounding tori of genusg ≥ 3 [13]. Such attractors
include many autonomous three dimensional systems with a
symmetry, such as the Lorenz attractor.

Each bounding torus of genusg ≥ 3 can be built up
systematically by combiningg − 1 pairs of stretching and
squeezing units [12]. These units are shown in Fig 1. The rules
for combining these units are the usual: outputs are connected
to inputs and there are no free ends (as is the case for
branched manifolds [4]). There is one additional constraint: all
connections are colorless. Fig. 2 illustrates the use of twopairs
of stretch-squeeze units to build up a genus-three bounding
torus of the type that contains the Lorenz attractor. Disks at the
entrances of the stretch units (blue) serve to define components
of the global Poincaré surface of section. Alternatively,disks
at the exits of the squeeze units (yellow) can be used. The
global Poincaré surface of section of an attractor contained in
a bounding torus of genusg is the union ofg − 1 disks [13].
The topological period of a closed trajectory in the attractor is
the number of its intersections with the disks comprising the
Poincaré surface of section.

Fig. 1. Stretching (left) and squeezing (right) units are needed to build up a
bounding torus. The flow direction is indicated by arrows. Input and output
ends are color-coded.

Diffeomorphisms map strange attractors in a genus-g
bounding torus to other representations in bounding tori of
the same genus and index [13], [14]. The representation labels
in this case are similar to the genus-one case, but more
extensive [12]. Parity is one of the indices in three-dimensional
embeddings. This is no longer an obstruction to isootopy in
four-dimensional embeddings by arguments that follow closely
those surrounding Eq.(3) [17].

There are a number of integer indices that are related to
torsion. A “flow tube” can be inserted into each bounding
torus of genus-g as shown in Fig. 3. One such flow tube can

Fig. 2. The bounding torus that contains the Lorenz attractor is a genus-
three torus [13]. This is built up using two pairs of stretching and squeezing
units as shown. Outflows from one type of unit are inflows to theother. All
connections are colorless. The global Poincaré surface ofsection is a union
of blue (or yellow) disks.

be inserted following each outflow. There are three outflow
regions for each pair of stretch and squeeze units, andg − 1
pairs make up each genus-g torus. As a result,3(g − 1) inte-
ger indices distinguish inequivalent representations of strange
attractors interior to a genus-g bounding torus. These remain
obstructions to isotopy inR4 by arguments similar to those
given above in the genus-one case, involving the links of
spheresS2 and longitudes. InR5 all representations become
equivalent. The argument is somewhat more involved than that
surrounding Eq.(4), and is given elsewhere [17].

Fig. 3. Flow tubes are inserted at the outflow ends of all stretching and
squeezing units. Each can be twisted independently, givingrise to3(g − 1)
integer indices describing the “local torsion” in various parts of the attractor’s
representation.

Finally, there is an analog to knot type as a representation
label. It is related to the link type of theg fundamental
longitudes in the genus-g torus. This link index disappears
as a representation label for embeddings intoR4 [17].

V. A PPLICATION

Two-dimensional nonlinear oscillatorṡx = F1(x, y), ẏ =
F2(x, y) typically have a natural time scaleTn. When such
systems are periodically driven at an angular frequencyω =
2π/Td, they exhibit behavior that becomes increasingly com-
plicated as the ratio of the drive to the natural time scaleTd/Tn
increases.

A rotational transformation with global torsionn is very
useful for simplifying analysis of the data. This takes the form[

u(t)
v(t)

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x(t)
y(t)

]
(5)
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The rotation angle is synchronized to the drive time and global
torsion through θ

2π = n t
Td

. A useful value ofn is typically
near±Td/Tn. This value can be estimated by computing two
simple quantities that measure how the attractor is “wound
up”. These are the torsion along the direction of the flow and
the (kinetic) energy of the flow [18]:

T = 〈uv̇ − vu̇〉 (6)

KE =
1
2
〈u̇2 + v̇2〉 (7)

These are time averages of classical quantities. These averages
are plotted in Fig. 4 for a number of representations of a
strange attractor generated by the van der Pol equations [18].
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Fig. 4. Plots of the classical integralsT and KE for a number of
representations of the attractor generated by the van der Pol equations
ẋ = by + (c − dx2)x ẏ = −x + a sin(ωdt) with (a, b, c, d, ωd) =
(0.25, 0.7, 1.0, 10.0, π/2). The representations differ by the global torsion
k.

In general, topological analyses of data become increasingly
difficult as the representation of the attractor becomes increas-
ingly wound up. For this reason it is useful to choose the repe-
sentation of the attractor that minimizesKE . The topological
indices (linking numbers, relative rotation rates [4], [16], [19])
resulting from an analysis of this representation can easily be
related to the corresponding indices in representations with
other values of global torsion, parity, and knot type. The
mechanism is representation-independent.

VI. I MPLICATIONS

Topological analyses of three dimensional embeddings of
strange attractors provide information about both the embed-
ding and the underlying physics. Such analyses identify a
branched manifold that is a caricature of the strange attractor
[4], [16]. This caricature reveals the mechanism responsible
for chaotic behavior; that is, how the different branches
are stretched and recombined repetitively. As the embedding
dimension increases the topological indices fall away as ob-
structions to isotopy, leaving behind only information about
mechanism. ForN ≥ 5, mechanism is the only remaining
information available from analysis of an embedding [5]. It
should be possible to construct an index in dimensionsN ≥ 5
that identifies the underlying mechanism. Such an index is not
yet known.

VII. C ONCLUSION

Many repesentations of experimental data are possible.
From an experimental point of view, representations of lower
dimension are preferable to those of higher dimension, and
those of the lowest possible dimension are the most preferable
of all. As the dimension decreases, the number of representa-
tion labels required to distinguish inequivalent representations
increases. In reverse, as the embedding dimension increases
fewer labels are necessary to distinguish inequivalent rep-
resentations, and in sufficiently high dimension, not greater
than N = 2d + 1 for d-dimensional dynamical systems
(d > 1), and 5 for 3-dimensional dynamical systems, all
embeddings are equivalent. The useful set of labels needed
to distinguish representations of three-dimensional dynamical
systems is known. Very little is known about representations
of dynamical systems withd > 3.
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Abstract—In mammals circadian rhythms are generated 

autonomously at the molecular level in the neurons of the 
suprachiasmatic nucleus of the hypothalamus. In these cells, 
oscillations in the expression of the clock genes and in the 
concentration of the clock proteins are generated through a 
complex gene regulatory mechanism involving interlocked 
positive and negative feedback loops. Deterministic models of this 
network account for the occurrence of autonomous circadian 
oscillations and for their entrainment by light-dark cycles and 
are used to study the molecular bases of clock-related 
pathologies. Stochastic versions of these models take into 
consideration the molecular fluctuations that arise when the 
number of molecules involved in the regulatory mechanism is 
low. We previously studied the robustness of the oscillations with 
respect to noise using a simple model based on the core 
regulatory mechanism of the circadian clock. Here we extend this 
analysis to the more detailed model for circadian rhythms in 
mammals. Our numerical simulations show that robust 
oscillations can occur even when the number of mRNA and 
protein molecules oscillates with a maxium around 100. 
Interestingly, we notice that robust oscillations in some genes do 
not require that all clock components exhibit robust oscillations. 
We also show that, in presence of noise, entrainment by a 
light-dark cycle might be lost. 
 

Index Terms—circadian rhythms, mammalian circadian 
network, stochastic simulations, robustness to molecular noise 
 

I. INTRODUCTION 
IRCADIAN rhythms are observed in most living organisms, 
from cyanobacteria to plants, insects, and mammals [1]. 
These 24-hour rhythms allow living organisms to live in 

phase with the alternance of day and night and are observed at 
every level of the physiological and cellular organisation [2]. 
Alterations of the circadian clock have been linked with 
physiological disorders. In mammals, circadian rhythms are 
generated autonomously at the molecular level in the neurons 
of the suprachiasmatic nucleus of the hypothalamus, which 
constitutes the pacemaker of circadian oscillations [2,3]. In 
these cells, oscillations in the expression of the clock genes as 
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well as in the concentration of the corresponding proteins are 
generated through a complex gene regulatory mechanism 
involving interlocked positive and negative feedback loops 
[4].  
 
 The dynamics of the circadian clockwork has been 
investigated using mathematical models. One of the first 
molecular models showed that a delayed negative feedback 
loop involving a single gene was sufficient to generate 
self-sustained circadian oscillations [5]. This auto-regulation 
constitutes the core of the circadian clockwork. However, with 
the accumulation of molecular data, the network was shown to 
be more complex: it involves several clock genes and several 
regulatory feedback loops. Subsequent mathematical models 
were then developed to integrate this complexity [6,7]. These 
detailed models account for the occurrence of autonomous 
circadian oscillations and for their entrainment by light-dark 
cycles and were used to study the molecular bases of 
clock-related pathologies [8]. Based on ordinary differential 
equations, they are however of a deterministic nature and thus 
neglect the fluctuations due to molecular noise. Because of the 
low number of molecules involved in the molecular 
mechanism responsible for circadian rhythms, the effect of 
noise may impair the robustness of circadian oscillations 
[9,10]. To assess the impact of molecular noise on the 
dynamical behaviour of the system, it is thus needed to resort 
to stochastic simulations.  
 
 In a previous work, we performed stochastic simulations of 
Goldbeter's 5-variable model [11]. Numerical simulations of 
this model have been performed by means of the Gillespie 
method [12]. The results indicated that robust circadian 
oscillations can occur even when the numbers of molecules of 
mRNA and nuclear proteins involved in the oscillatory 
mechanism are reduced to a few hundreds. We further showed 
that entrainment by light-dark cycles and cooperativity in 
repression enhance the robustness of circadian oscillations 
with respect to molecular noise. Here, we extend this analysis 
to a detailed model for circadian rhythms in mammals. 

 

II. MODEL AND SIMULATIONS 
 In this work we considered the detailed model developed by 
Leloup & Goldbeter [6]. The model incorporates the major 
components of the circadian clock, namely the genes Per, Cry, 
and the CLOCK/BMAL1 complex, and two interlocked 
regulatory feedback loops (fig. 1). A positive loop is based on 
the activation of the expression of the Bmal1 gene by the 

Stochastic modeling of the mammalian 
circadian oscillator 

Didier Gonze 

C 
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CLOCK-BMAL1 complex. In the negative loop, the products 
of the Per and Cry genes form a PER-CRY complex that can 
bind to and inactivates the CLOCK-BMAL1 activator, thereby 
preventing the transcription of Per and Cry genes. The model 
also takes into account the reversible phosphorylations of the 
clock proteins, as well as their nuclear transport. In an 
extended version of the model, an additional feedback loop 
involving Rev-Erbα is included. Without and with the 
Rev-Erbα feedback loop, the model counts 16 or 19 variables, 
respectively and their evolution is described by ordinary 
differential equations. 
 

We then need to establish the stochastic version of the 
16-variable model for the mammalian circadian clock. To this 
end we describe the reaction steps as birth and death 
processes. In our model the reaction steps consist of the 
synthesis and degradation of mRNA, and synthesis, 
degradation, phosphorylation/dephosphorylation, and nuclear 
transport of proteins, as well as protein complex formation. In  
total, there are 42 reaction steps. Note that we did not develop 
Michaelian and Hill kinetics into elementary reaction steps. 
This means that we compute the propensity of each reaction 
directly using the non-linear kinetic functions. In a previous 
work, we compared the developed and non-developed 
approaches for the core model for circadian rhythms and 
showed that both approaches yield largly similar results [13]. 
The system is then simulated by the exact algorithm proposed 
by Gillespie [12]. The list of the reactions steps and parameter 
values can be found in the Appendix. 
 

III. RESULTS 
 In figure 2, we compare the deterministic (fig. 2A) and 
stochastic (fig. 2B) time series obtained by numerical 
simulation of the mammalian circadian model. For the default 
parameter values, we observe that the stochastic oscillations in 
the level of Per and Cry mRNA (variables MP and MC) are 
relatively robust, although the number of molecules does not 
exceed 100 molecules. The levels of the PER and CRY protein 

also oscillate with a clear circadian period and their 
amplitudes are of the same magnitude as the mRNA levels 
(not shown). In contrast, in presence of noise, the level of 
Bmal1 mRNA (variable MB) does not display a clear 
periodicity. Yet, the corresponding deterministic time series 
predicts that this protein should oscillate. These results show 
that noise can obliterate oscillations and that robust oscillation 
in Bmal1 mRNA is not required to observe robust oscillations 
in Per and Cry levels. This is consistent with the observation 
of Leloup & Goldbeter [8] who remarked that, even in absence 
of oscillations in the expression of the Bmal1 gene, Per and 
Cry mRNA can still undergo self-sustained oscillations. 
 
 Leloup & Goldbeter showed that in absence of per 
expression (i.e. when its synthesis rate vsp=0), the system 
converges towards a stable steady state (unless other 
parameters are changed) [6]. In figure 3, we show both the 
deterministic (fig. 3A) and stochastic (fig. 3B) time series 
obtained for the same parameter values as in figure 2 except 
vsp=0. In this condition, the Per gene is not expressed and the 
PER protein is not produced. Looking at the transients of the 
deterministic evolution of the system, we can nevertheless 
notice a high amplitude peak of Cry and Bmal1 mRNA levels 
before they undergo damped oscillations. This explains why in 
the stochastic time series, large amplitude oscillations in the 
level of Cry mRNA are observed. Because the noise 

 

 
 
Fig. 1. Simplified scheme of the mammalian circadian oscillator 
 

 
Fig. 2. (A) Deterministic and (B) stochastic oscillations obtained by numerical 
simulation of the mammalian circadian oscillator using the default parameter 
values. 
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continuously moves the system out of its steady state, the 
evolution of Cry and Bmal1 mRNA repetitively undergo large 
peaks. The amplitude and peak-to-peak intervals are highly 
variable and obviouly do not reflect circadian oscillations. 
 
 In natural conditions, living organisms are subject to the 
alternance of day and night, and thus, in order to allow the 
organisms to stay in phase with the day, the circadian 
oscillator must be appropriately entrained by a light-dark 
cycle. In mammmals, light was shown to induce the 
expression of the Per genes. This is in contrast with the 
situation encountered in the fly Drosophila, where light 
interacts with the circadian clock by inducing the degradation 
of one the clock protein. Using a periodic forcing of the 
parameter controlling Per expression, deterministic 
simulations have permitted Leloup & Goldbeter to identify the 
conditions in which the circadian oscillator is entrained and 
appropriately phase-locked [6]: the maximum of Per mRNA 
always occurs in the middle of the dark phase (fig. 4A). 
 
 We performed stochastic simulation of the system in the 
same conditions (fig. 4B). Interestingly, we observed that, in 
presence of noise, the system is not phase-locked any more. 
The time of the maximum of Per mRNA varies from one 
cycle to another. This lack of entrainment is better reflected by 
the rapid damping of the auto-correlation function (fig. 5). 
Contrarily to our previous results that featured a core model 

for the circadian clock with a periodic forcing of a clock 
protein degradation as in Drosophila (and for which the 
auto-correlation function does not damp out) [11], the detailed  
mammalian circadian oscillator is not stably entrained by a 
periodic forcing.  

 
Fig. 3. (A) Deterministic and (B) stochastic time series obtained by 
numerical simulation of the mammalian circadian oscillator for the default 
parameter values except vsp=0. 

 
Fig. 4. (A) Deterministic and (B) stochastic oscillations obtained by numerical 
simulation of the mammalian circadian oscillator subject to a periodic forcing. 
Parameter vsp varies as a square wave between 1.5 during the dark phase 
(represented by black rectangles) and vsp=1.8 during the light phase (represented 
by white rectangles). 

 
 
Fig. 5. Auto-correlation functions of the Per mRNA time series obtained for 
the autonomous system (blue curve) and for the periodically forced system 
(red curve). 
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IV. DISCUSSION AND PERSPECTIVES 
 Molecular noise, resulting from the low number of 
molecules involved in cellular processes, may affect the 
robustness of circadian oscillations [9,14]. To assess the 
impact of molecular noise on the mammalian circadian 
oscillator we considered here the stochastic version of the 
model of Leloup & Goldbeter [6]. Our results corroborate the 
conclusions of our previous work using a core model for 
circadian oscillations [11]: robust autonomous oscillations can 
still be observed when the maximum number of mRNA and 
protein molecules is around 100. This observation is also in 
agreement with the conclusions of Forger & Peskin [15], who 
performed stochastic simulation of another detailed 
mammalian circadian oscillator. The present simulations 
furthermore show that robust oscillations in one of the key 
variables, namely Bmal1, are not required to guarantee robust 
oscillations in the expression of the Per and Cry genes.  
 
 Deterministic simulations also predict that, upon the 
deletion of one gene, the system would evolve to a stable 
steady state. Here we have seen that, under the influence of the 
noise, the system may nevertheless display large-amplitude 
fluctuations. These results thus suggest that experimental data 
should be interpreted with caution: it is not because one 
variable of the system does not show clear oscillations that the 
whole system does not oscillate, and, conversely, it is not 
because one variable presents large peaks that the system 
oscillates. In this context, it should be noticed that some 
systems characterized by a relaxation behaviour may present 
noise-induced oscillations, i.e. periodic oscillations that occur 
only in presence of noise [16]. 
 
 The present stochastic simulations also show that in 
presence of noise, entrainment by a light-dark cycle can be 
lost. We can nevertheless not rule out the possibility that for 
other parameter sets stable entrainment may occur. Using a 
core model for circadian clock, we previously showed that 
entrainment by a light-dark cycle has a stabilizing effect on 
the phase [11]. It is also possible that other regulatory 
mechanisms might play a role in the robustness of the 
oscillations upon entrainment. 
 

In subsequent studies, it would be interesting to investigate 
further parameters responsible for the robustness of the 
oscillations, such as the binding/unbinding rates associated to 
the binding of the regulatory proteins to their target genes. 
This would imply to decompose the model into detailed 
reaction steps, as shown in [17]. The full clockwork is also 
known to involve additional feedback loops, including the 
RevErbα regulatory loop. It would be interesting to check if 
these additional feedback loops contribute to the robustness of 
the oscillations with respect to molecular noise. Mathematical 
and experimental analyses of a synthetic oscillator suggested 
that interlocked postive and negative feedbak loops may be a 
means to increase the robustness of the oscillator to noise [18]. 
Finally, here we considered the oscillator in a single cell. It is 
known however that neurons in the SCN are coupled through 
neurotransmitters and gap junctions. This intercellular 

coupling allows the synchronisation between the individual 
cellular oscillators, but may also provide the system with a 
higher robustness. Preliminary studies already showed that 
coupling indeed increases the robustness of the oscillations in 
Drosophila [19] and Neurospora [14]. These results could be 
extended to the mammalian systems. More generally, it would 
be interesting to understand if the complexity of the circadian 
network may have a role in its robustness to molecular noise. 

 

APPENDIX 
 Reaction steps and parameters values are listed in Tables 1 
and 2, respectively. 
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TABLE I 
STOCHASTIC VERSION OF THE MAMMALIAN CIRCADIAN CLOCK 

No Reaction Propensity 
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TABLE I (CONT.) 
STOCHASTIC VERSION OF THE MAMMALIAN CIRCADIAN CLOCK 

No Reaction Propensity 
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Note that in the stochastic version of the model the variables are numbers 
of molecules and not concentrations as in the deterministic model. Some 
parameter values should be adapted accordingly. They are noted by a prime. 
Their values are modulated by the system size Ω as defined in Table 2.  

 
 

TABLE 2 
PARAMETER VALUES 

v'sp 1.5 × Ω molec/h kdnc 0.12 /h 
K'ap 0.7 × Ω molec v'dpc 0.7 × Ω molec/h 
n 4  v'dcc 0.7 × Ω molec/h 
v'mp 1.1 × Ω molec/h K'd 0.3 × Ω molec 
K'mp 0.31 × Ω molec v'1pc 0.4 × Ω molec/h 
kdn 0.01 /h v'2pc 0.1 × Ω molec/h 
v'sc 1.1 × Ω molec/h k2 0.2 /h 
K'ac 0.6 × Ω molec k1 0.4 /h 
v'mc 1 × Ω molec/h v'3pc 0.4 × Ω molec/h 
K'mc 0.4 × Ω molec v'4pc 0.1 × Ω molec/h 
v'sb 1 × Ω molec/h k7 0.5 / Ω /h 
K'ib 2.2 × Ω molec k8 0.1 /h 
m 2  v'dpcc 0.7 × Ω molec/h 
v'mb 0.8 × Ω molec/h v'dpcn 0.7 × Ω molec/h 
K'mb 0.4 × Ω molec ksb 0.12 /h 
ksp 0.6 /h v'1b 0.5 × Ω molec/h 
v'1p 0.4 × Ω molec/h v'2b 0.1 × Ω molec/h 
K'p 0.1 × Ω molec k5 0.4 /h 
v'2p 0.3 × Ω molec/h k6 0.2 /h 
K'dp 0.1 × Ω molec v'dbc 0.5 × Ω molec/h 
k4 0.2 /h v'3b 0.5 × Ω molec/h 
k3 0.4 / Ω /molec/h v'4b 0.2 × Ω molec/h 
ksc 1.6 /h v'dbn 0.6 × Ω molec/h 
v'1c 0.6 × Ω molec/h v'din 0.8 × Ω molec/h 
v'2c 0.1 × Ω molec/h    

For all the simulations presented in this paper, Ω=20. Note also that in 
fig. 3, vsp=0 and in fig. 4, vsp=1.5 × Ω (during the dark phases) and 1.8 × 
Ω (during the light phases). 
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Close Return Plots for a Analysing Patient-ventilator
Interactions during Nocturn Ventilation

C. Letellier1, D. Bounoiare2, R. Naeck2, U. S. Freitas1, A. Portmann2, A. Cuvelier2 & J.-F. Muir2

Abstract—Biomedical systems as the cardio-respiratory system
can be easily considered as a nonlinear dynamical system.
Although the underlying determinism is still difficult to evidence,
tools borrowed from the nonlinear dynamical systems theory are
appropriate to investigate them. A good example is prodived by
recurrence plots when applied to noninvasive mechanical venti-
lation. Using a Shannon entropy computed from the recurrence
plots built on the pressure maxima during ventilatory cycles and
on total time duration, respectively, patient-ventilator interactions
can be divided into four typical groups, one corresponding to
optimal synchronization between the patient and its ventilator.
Then the sleep fragmentation can be estimated by the Shannon
entropy computed from the recurrence plots built from the EEG
scoring into sleep stages.

Index Terms—Chaos, nonlinear dynamics, nonlinearity. Shan-
non entropy, Recurrence plots, cardio-respiratory system, Sleep

I. I NTRODUCTION

A MOng the natural rhythms that are relevant for life,
breathing is certainly one of the most often perceived

as fluctuating depending on various parameters. We always
alternate inspirations and expirations but such a cycling de-
pends on our activity, our stress, etc. For short it depends
on the surrouding world and on our behave in this ambient
world. It is known that breathing is not exactly periodic but
a decisive proof for its chaotic nature is still lacking [1],[2],
[3]. Such a feature does not prevent to use tools borrowed
from the nonlinear dynamical systems theory to investigate
— to characterize — its related dynamics. Biomedical dy-
namics are necessarily noise contaminated in the sense that
the ambient world has always an impact on the subjects.
Morever, performing a measurement, even in a noninvasive
manner, necessarily affects the subjects and, consequently, the
dynamics underlying the mechanism under study. Often, the
simple fact that a patient knows that something is measured
suffices to change his cardiac or/and breathing rhythms. Such
a noise contamination can contribute to develop — to make
more complex — the dynamics and, unfortunately, this cannot
be avoided.

It is thus required to develop techniques that are taking into
account the most robust properties of the dynamics. Among
others, recurrence properties are not too affected by noise
contamination and are easily investigated using the so-called
recurrence plots [4]. Recurrence plots analysis are often used
in biomedicine [4], [5] and this work belongs to this paradigm.
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Two examples of applications of recurrence plot analysis will
be discussed in the contexte of noninvasive mechanical ventila-
tion. First, patient-ventilator interactions will be characterized
using two Shannon entropies computed from recurrence plots
built from pressure signal and time duration of respiratory
cycles, respectively. Second, the sleep fragmentation will be
quantified with a Shannon entropy based on a recurrence plots
built from a sleep stage scoring. It will be shown how these
quantities can bring some light to questions asked by the
physicians.

II. CLOSE RECURRENCE PLOTS

Recurrence plots were introduced by Eckmannet al [6] and
some quantifiers were later introduced to convert recurrence
plots into a statistical analysis [7]. Among these quantifiers, it
is possible to properly define a “Shannon entropy” which was
found to be correlated to the largest Lyapunov exponent [8].

A recurrence plot Rij is built as follows. Every point of the
phase space trajectory{xi}N

i=1 is tested whether it is close to
another pointxj of the trajectory, that is, whether the distance
between these two points is less than a specified thresholdǫ. In
this case, the point is said to be recurrent and is represented
by a black dot. Otherwise, the point is not recurrent and is
represented by a white dot. This can be described as aN ×N
array

Rij = θ(ǫ− ‖xi − xj‖) (1)

whereθ(xi) is the Heaviside function. When built using this
definition, recurrence plots are symmetrical with respect to
the diagonal and, consequently, they used twice the same
information. In order to optimize the representation, Mindlin
and Gilmore used a so-called “close return plots” defined as
a N × τ array

Cij = θ(ǫ− ‖xi − xi−j‖) (2)

where j ∈ [1, τ ] with τ defining the size of the window
over which close returns are checked. These plots present the
advantage to have horizontal and vertical lines as the main
structuring axes which are, compared to diagonals, slightly
easier to use for computations and interpretations. Thus, close
return plots were used by Gabriel Mindlin and Robert Gilmore
for extracting periodic orbits from experimental data recorded
in a Belousov-Zhabotinski reaction [9] and by Claire Gilmore
for showing that there is no obvious signature of deterministic
chaos in financial data [10]. Two examples of these close
return plots are shown in Fig. 1 for the Logistic map

xn+1 = µxn(1− xn) . (3)
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Periodic behaviors are easily identified by parallel horizontal
lines spaced by the period of orbits (a period-4 limit cycle in
the case of Fig. 1a). Chaotic behaviors present more jittery
close return plots with few recurrent horizontal segments
as a signature of the deterministic nature of the underlying
dynamics (Fig. 1b).
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(a) period-4 limit cycle:µ = 3.5
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(b) chaotic attractor:µ = 3.89
Fig. 1. Close return plots computed for the Logistic map.

As for the usual recurrence plots, it is possible to compute
a Shannon entropy according to

SRP = −
H∑

n=1

Pn log(Pn) . (4)

where Pn 6= 0 corresponds to the number of non-recurrent
horizontal segments with lengthn > 0 divided by the total
number of recurrent points. If the number of recurrent points
is not included in this definition, the entropy provides moreor
less a yes-or-no estimator [8]. With this definition, the Shannon
entropy quantifies the complexity of the dynamics and is
correlated to the largest Lyapunov exponent (Fig. 2). Such
a feature suggests that such a Shannon entropy can behave
as a Kolmogorov-Sinai entropy known to be correlated to the
largest Lyapunov exponent as stated by the Pesin conjecture
[11]. As for the recurrence plots, a working Shannon entropy
can be defined and used as an estimation of the largest
Lyapunov exponent.

As any estimation of a Shannon entropy or other dynamical
invariants, computations may depend on some parameters. In
the present case, estimations of the Shannon entropy dependon
the number of points retained for computing the close return
plots. Nevertheless, with a maximum time delayτ equal to
100 (the smallest reasonable value forτmax), it is found that
the Shannon entropy value does not depend too much on the
number of points until this number is greater than 500 (Fig.
3). This feature tells us how long must be the data set to have
a rather safe estimation of the Shannon entropy.
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Fig. 2. Comparison between the Shannon entropy computed from the close
return plots and the largest Lyapunov exponent for the Logistic map versus
parameterµ. A close return plots of3000 × 150 data points was used for
computing the Shannon entropy for eachµ-value.
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Fig. 3. Shannon entropy computed from the close return plots for the Logistic
map versus the number of points. Parameter valuesµ = 3.89.

III. PATIENT-VENTILATOR INTERACTIONS IN

NONINVASIVE VENTILATION

Pressure support ventilation is a ventilatory mode where a
preset inspiratory positive airway pressure (IPAP) and a preset
expiratory positive airway pressure (EPAP) are superposed
to spontaneous respiratory cycles. It unloads the respiratory
muscles and, consequently, decreases the work of breathingin
stable patients with obstructive diseases like chronic obstruc-
tive pulmonary disease (COPD) [12] or cystic fibrosis [13].
Pressure support ventilation is often qualified as a “physiolog-
ical” ventilatory mode because it allows the patient to keep
a control over his respiratory rate, inspiratory time and tidal
volume. It is therefore not surprising that it has been found
to be better tolerated than other ventilatory modes, especially
when compared with volume-target ventilation [13], [14].
However, it requires an adequately titrated and performing
ventilator in order to correctly superpose mechanical breaths
to spontaneous respiratory efforts [15], that is, to optimize
patient-ventilator synchronization [16].

Patient-ventilator asynchronies and especially ineffective
inspiratory triggering efforts are regularly encounteredwhen
performing noninvasive mechanical ventilation. [17]. Ineffec-
tive inspiratory efforts under pressure support ventilation are
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more frequent during sleep [18], [19] or when increasing
the level of ventilatory assistance [20], [21]. Patient-ventilator
asynchronisms including ineffective inspiratory efforts, may
be clearly a cause of noninvasive ventilation intolerance and
failure. Either in acute or chronic setting, the incidence of non
triggered respiratory cycles and their consequences on nonin-
vasive mechanical ventilation efficacy and comfort remains
unknown.

During routine measurements of breathing pattern, respi-
ratory flow (Qv) was measured using a pneumotachograph
connected to a pressure transducer. The pneumotachograph
was inserted between the full face mask and the intentional
leak. Airway pressure (Paw) was measured with a differential
pressure transducer near the pneumotachograph. Two typical
excerpts of the data sets recorded during the protocol are
shown in Fig. 4. They correspond to an healthy subject not
very trained to noninvasive mechanical ventilation. When an
antibacterial filter is inserted within the ventilatory circuit, this
subject has some difficulties to trigger the ventilator and many
inefficient inspiratory efforts lead to a high asynchrony event
index (41%) (Fig. 4a). Basically, a non triggered cycle can be
identified when a small amplitude oscillation of the airflow
is associated with a low peak of pressure (about the EPAP
value). In this case, it is sufficient to remove the antibacterial
filter to greatly reduce the rate of non triggered cycles to 4.6%
(Fig. 4b).

Twelve subjects (seven female and five male) with various
health conditions were studied [5]. When applied in a Poincaré
section close return plot analysis provides a more reliable
characterization of the underlying dynamics [8]. Thus, the
maximum of the airway pressurePmax during a respiratory
cycle is used to build a “discrete” time series. The Shannon
entropy is computed from these close return plots according
to our new estimator. When computed from the maxima of
the airway pressure, the Shannon entropy will be denoted as
SP . It is equal to 2.3 without the filter and equal to 0.4 with
the filter. It has been found that the Shannon entropySP is
strongly correlated to the rate of non triggered cycles. In a
previous study [22], we found that an asynchrony event index
less than 10% was not relevant for ventilatory comfort. Such
a rate corresponds to a Shannon entropy slightly less than
1. Thus, a Shannon entropySP less than 1 corresponds to a
situation where inefficient efforts are not clinically relevant on
the subjects’ comfort.

Another dynamical characteristics relevant for the quality of
the assisted mechanical ventilation is the rate of fluctuations
of the total duration of the respiratory cycle. Since the subject
is in a quiet seated position, the breathing rhythms should be
regular. In particular, the patients very familiar with mechan-
ical ventilation should be able to manage their ventilator for
breathing in a regular way. On the other hand, we assume that
more regular the dynamics is, better the comfort is. Moreover,
the fluctuations over the total duration of the respiratory cycle,
Ttot, are not necessarily correlated with the asynchrony index
[5]. Recurrence plots are computed fromTtot using a threshold
ǫ setted to

√
dE×0.1×T whereT is the “ideal” time duration

cycle corresponding to a respiratory frequency equal to 12
breaths per min.
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Fig. 4. Time series of the airflow and the pressure measured withan healty
subject not so well trained to noninvasive mechanical ventilation. Few types of
asynchrony events were identified in these two examples. Theyare labelled as
follows: NT = non-triggered cycle; ST= self-triggered cycle and DT= delayed
triggered cycle. The beginnings of the respiratory cycle, corresponding to the
inspiratory effort of the patient, are designated by circles and the end of
the inspiratory phase (during which the ventilator appliesa pressure support
at the IPAP value) are marked by black diamonds on the airflow timeseries.
Parameter setting: IPAP=16 mbar, EPAP=4 mbar and the inspiratory threshold
is set to the most sensitive value, that is,0.0167 l.s−1.

The two Shannon entropies thus characterize two relevant
dynamical properties for investigating the dynamics underly-
ing patient-ventilator interactions. The Shannon entropyST

was computed for the 69 data sets recorded and plotted versus
the Shannon entropySP (fig. 5). These estimations of the
Shannon entropies are computed over the whole 10 min data
sets. Depending on the respiratory frequency, the number of
data points is therefore between 91 and 337 as previously
explained. Working at fixed number of data points is not
natural in such a study. Typically, when more than one hundred
of points are considered, estimations are not significantly
dependent on the length of the data sets. Basically, four
different regions are distinguished in this figure. First, the
square defined byST < 1 andSP < 1 corresponds to subjects
who have fluctuations neither overPmax, nor overTtot. There
is no ambiguity for these subjects since they have almost no
asynchrony event and their breathing rhythms are very regular.

Second, there is the rectangle defined byST > 1 and
SP < 1. These data sets correspond to subjects with less than
10% of non triggered cycles but quite significant fluctuations
over the total duration of the ventilatory cycle. They corre-

ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France 15



4

1

1

1

1
1

1

2

2

2

2
22

3
3

3

3

3

3

4

4

44
4

5

5

5

5

55

6

6

6

6

66

77
7

7
7

7

8
8

8
8

9
9

9

9

9 9

A

A

A

A

A
A

BB

BB

B
B

CC

C
C

C

C

A

A

A

0 1 2 3 4
 Shannon entropy S

T

0

0,5

1

1,5

2

2,5

3

S
ha

nn
on

 e
nt

ro
py

 
S P

’

’

’

Fig. 5. Shannon entropyST versus Shannon entropySP for the 69 data sets
recorded during our protocol. Integersi (i ∈ [1 ; 9] designate subjectsSi for
the six mesurements at different IPAP values. Letters A, B and Cdesignate
subjectsS10, S11 andS12, respectively.

spond to two subjects,S1 andS9, not familiar with noninvasive
mechanical ventilation. There is no OHS patient under these
conditions. This could suggest that OHS patients would not
display significant fluctuations over the total duration of the
ventilatory cycle,Ttot. Indeed, obesity tends to reduce lung
volumes and there is no longer possibility for varying the
inspiratory volume and/or the respiratory time. Third, the
rectangle defined byST < 1 andSP > 1 corresponds to cases
where there is many ineffective efforts although the breathing
rhythm is regular. The fourth part of the graph shown in fig. 5
is associated with a sector such asST > 1 andSP > 1. Most
of the points located in this fourth sector correspond to subjects
not familiar with a mechanical ventilation (only patientS2 and
S6 are familiar). For all of the subjects being not familiar with
mechanical ventilation there is an obvious correlation between
SP andST . For these patients, the fluctuations over the time
durationTtot results from asynchrony events.

IV. ESTIMATING SLEEP FRAGMENTATION

If patient-ventilator interactions are relevant for patient’s
comfort, it is still an open question to determine whether the
quality of these interactions has an impact on the sleep quality.
The main problem to address this question is to estimate the
sleep quality from measurements. Usually, it is estimated using
the Epworth sleepiness scale [23] that consists in a series of
questions asked to the patients. In the other hand, a factor
contributing to impaired daytime function and sleepiness is the
sleep fragmentation [24], [25]. Many attempts have been made
to estimate sleep quality from EEG. Among others, micro-
arousals have been introduced to estimate sleep fragmentation
[26] and number of arousals correlates significantly with
nearly all sleep parameters in the direction of indicating de-
creased quantity and quality of sleep as arousals increases[27].
As any EEG scoring, identifying micro-arousals is a time-
consuming method that requires a trained observer and manual
edition. It therefore presents a high-inter-scorer variability
[28], [29], [30]. As another measure of the sleep quality, a
sleep fragmentation index has been introduced as a crude
estimate of sleep disruption [31] presenting a good correlation

with micro-arousals. Unfortunately, EEG estimated arousals
does not uniformly provide robust correlations with daytime
sleepiness [32], although sometimes this index seems to be
an accurate estimator of sleep fragmentation in patients with
sleep disorders [33]. Consequently, the reliability of thesleep
fragmentation index can be questioned.

The sleep fragmentation index is defined as the total sleep
stage shift plus the total number of awakening divided by
the total sleep time [33]. Thus, this index does not take
into account the time duration of each stage, a factor quite
important since intervals of sleep must be 5-10 min to provide
restoration, that is, to eliminate sleepiness [25], [34], [35].
In order to improve the sleep fragmentation index previously
discussed, that is, to take into account the interval of sleep,
we will use close return plots computed from the EEG scored
using 30 s-windows into sleep stages (Fig. 6). The EEG is thus
converted into a symbolic sequence using 6 symbols according
to

σn =

∣∣∣∣∣∣∣∣∣∣∣∣

0 Awake
1 Stage 1
2 if EEG Stage 2
3 corresponds to Stage 3
4 Stage 4
5 REM sleep

. (5)

The EEG is thus transformed into a hypnogram as shown in
Figs. 6. In this study each EEG was scored by two different
scorers, namely A and B. Obvious departures are observed.
They will be quantified by using close return plots.

0 60 120 180 240 300 360 420
 Time  (min)

 Awake
Stage 1
Stage 2
Stage 3

Stage 4
REM

(a) Scoring by neurologist A

0 60 120 180 240 300 360 420
 Time  (min)

 Awake
Stage 1
Stage 2
Stage 3

Stage 4
REM

(b) Scoring by neurologist B

Fig. 6. Hypnograms scored by two different neurologists fromthe same
electroencephalograms.

Hypnograms, that is, symbolic sequences{σn}N
n=1 were

converted into a close return plots using

Cij =
∣∣∣∣ 1 if σi = σi−j

0 if σi 6= σi−j
(6)

wherej ∈ [0, 50]. The close return plots shown in Figs. 7a and
7b encode the recurrence properties of hypnograms scored by
A and B, respectively. Black segments indicate intervals ofa
given sleep stage. More jittery the close return plot is, more
fragmented the sleep is. The common part shared by these two
close return plots is obtained by the product

CA⊗B,ij = 1− CA,ij × CB,ij (7)

16 ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France



5

(Fig. 7c). White points thus correspond to the parts of EEG
that were scored with the same type of sleep stage shift by
both scorers. It thus provides the sleep structure identified by
both scorers.
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Fig. 7. Close return plots for two different sleep stages coded from the
same electroencephalograms. Case where neurologist A found asleep more
fragmented than found by neurologist B.

From these close return plots, a Shannon entropy is com-
puted to estimate the sleep fragmentation. The length of
interval of sleep is naturally taken into account in a Shannon
entropy computation. In the present case, the Shannon en-
tropies resulting from the two scoring differs by around 25%.
Here, scorer A estimated that the sleep was more fragmented
than scorer B. In the case shown in Figs. 8, both scorers got
the same entropy, although the two close return plots differ
a little bit. In Fig. 9, contrary to what was observed in Figs.
7, scorer B estimated the sleep more fragmented than scorer
A did. Shannon entropySA estimated from scoring A was
thus less than the Shannon entropySB from scoring B. It has
been observed that whenSA < SB , this always corresponded
to a situation where a quite long interval was scored in a
rather fragmented way — with micro-arousals — by scorer B
but uniformly scored in the awake state by scorer A. Such an
example is shown in Fig. 9 for the interval240 < t < 300 min.
The averaged recovering rate between the two close return
plots is (83± 6.5)%.
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Fig. 8. Close return plots for two different sleep stages coded from the same
electroencephalograms. Case where neurologist A found a sleep as fragmented
as found by neurologist B.
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Fig. 9. Close return plots for two different sleep stages coded from the
same electroencephalograms. Case where neurologist A found asleep less
fragmented than found by neurologist B.

Such a Shannon entropy was computed for each patient and
plotted versus time duration of stages 1+2 (Fig. 10) and the
number of micro-arousals (Fig. 11). In both cases, a signicant
correlation was obtained. These correlation are slightly better
than those obtained with the sleep fragmentation index —
defined as the total number of awakenings and shifts to stage
1 sleep divided by the total sleep time — used in [31].
The Shannon entropy is thus quite well correlated with two
quantities that are known to quantify the sleep quality. The
advantage it has compared to the usual sleep fragmentation
index is that it takes into account how the stage switches are
distributed over the night.
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Fig. 10. Shannon entropySSleepversus the time duration of stages 1 and
2.

V. CONCLUSION

Assessing the quality of patient-ventilator interactionsis a
major issue for the development of noninvasive mechanical
ventilation. Indeed, determining such a quality contributes to
understand why a ventilation is accepted or not by some
patients. With two Shannon entropies estimated from close
return plots built on maxima of pressure and time duration
of respiratory cycles, it was possible to exhibit four classes
of patient-ventilator interactions. One of the most promising
feature is that one class corresponds to ideal interactions
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Fig. 11. Shannon entropySSleepversus the number of micro-arousals.

and, consequently, constitutes a target to improve ventilator
settings.

In a more prospective way, we introduced a novel manner to
quantify sleep quality in computing Shannon entropy from a
close return plot built from sleep stage scoring. It is promising
because this Shannon entropy was correlated to some quan-
tificators that were commonly used to assess the sleep quality.
Shannon entropies computed from close return plots are rather
promising since they provide good measures of the complexity
of the underlying dynamics. Morevoer, their computations is
quite robust against noise contamination.

REFERENCES

[1] M. SMALL , J. JUDD, M. LOWE & S. STICK, Is breathing in infants
chaotic? Dimension estimates for respiratory patterns during quiet sleep,
Journal of Applied Physiology, 86, 359-376, 1999.

[2] C. AHLSTROM, A. JOHANSSON, P. HULT & P. ASK, Chaotic dynamics
of respiratory sounds,Chaos, Solitons & Fractals, 29, 1054-1062, 2006.

[3] M. W YSOCKI, M.-N. FIAMMA , CH. STRAUS, C.-S. POON & T. SIM -
ILOWSKI, Chaotic dynamics of resting ventilatory flow in humans as-
sessed through noise titration,Respiratory Physiology & Neurobiology,
153 (1), 54-65, 2006.

[4] N. M ARWAN , N. WESSEL, U. MEYERFELDT, A. SCHIRDEWAN, &
J. KURTHS, Recurrence-plot-based measures of complexity and their
application to heart-rate-variability data,Physical Review E, 66, 026702,
2002.

[5] H. RABARIMANANTSOA , L. ACHOUR, C. LETELLIER, A. CUVELIER

& J.-F. MUIR, Recurrence plots and Shannon entropy for a dynamical
analysis of asynchronisms in mechanical non-invasive ventilation,Chaos,
013115, 2007.

[6] J.-P. ECKMANN , S. O. KAMPHORST& D. RUELLE, Recurrence plots of
dynamical systems,Europhysics Letters, 4, 973–977, 1987.

[7] L. L. T RULLA , A. GIULIANI , J. P. ZBILUT & C. L. WEBBER JR.,
Recurrence quantification analysis of the logistic equation with transients,
Physics Letters A, 223, 255–260, 1996.

[8] C. LETELLIER, Estimating the Shannon entropy: recurrence plots versus
symbolic dynamics,Physical Review Letters, 96, 254102, 2006.

[9] G. B. MINDLIN & R. GILMORE, Topological analysis and synthesis of
chaotic time series,Physica D, 58, 229-242, 1992.

[10] C. GILMORE, A new test for chaos,Journal of Economic Behavior and
Organization, 22, 209-237, 1993.

[11] YA B. PESIN, Dimension Theory in Dynamical Systems, University of
Chicago Press, 1998.

[12] S. NAVA , N. AMBROSINO, F. RUBINI , C. FRACCHIA, C. RAMPULLA ,
G. TORRI & E. CALDERINI , Effect of nasal pressure support ventilation
and external PEEP on diaphragmatic activity in patients withsevere stable
COPD,Chest, 103, 143–150, 1993.

[13] B. FAUROUX, J. PIGEOT, M. I. POLKEY, D. ISABEY, A. CLEMENT

& F. L OFASO, In vivo physiologic comparison of two ventilators used
for domiciliary ventilation in children with cystic fibrosis, Critical Care
Medicine, 29, 2097–2105, 2001.

[14] M. V ITACCA , F. RUBINI , K. FOGLIO, S. SCALVINI , S. NAVA & N.
AMBROSINO, Non-invasive modalities of positive pressure ventilation
improve the outcome of acute exacerbations in COLD patients,Intensive
Care Medicine, 19, 450–455, 1993.

[15] L. BROCHARD, & F. LELLOUCHE, Pressure-support ventilation. In M.
J. Tobin, editor.Principles & practice of mechanical ventilation, Second
Edition ed. McGraw-Hill, Inc, New-York. 221–250, 2006.

[16] J.-C. RICHARD, A. CARLUCCI, L. BRETON, N. LANGLAIS , S. JABER,
S. MAGGIORE, S. FOUGERE, A. HARF & L. B ROCHARD, Bench testing
of pressure support ventilation with three different generations of venti-
lators,Intensive Care Medicine, 28, 1049–1057, 2002.

[17] S. NAVA , C. BRUSCHI, C. FRACCHIA, A. BRASCHI & F. RUBINI ,
Patient-ventilator interaction and inspiratory effort during pressure sup-
port ventilation in patients with different pathologies,European Respira-
tory Journal, 10, 177-183, 1997.

[18] S. PARTHASARATHY Effects of sleep on patient-ventilator interaction,
Respiratory Care Clinics of North America, 11, 295–305, 2005.

[19] F. FANFULLA , M. DELMASTRO, A. BERARDINELLI , N. D. LUPO, &
S. NAVA , Effects of different ventilator settings on sleep and inspiratory
effort in patients with neuromuscular disease,American Journal of
Respiratory Critical Care Medicine, 172, 619–624, 2005.

[20] P. LEUNG, A. JUBRAN & M. J. TOBIN, Comparison of assisted venti-
lator modes on triggering, patient effort, and dyspnea,American Journal
of Respiratory Critical Care Medicine, 155, 1940–1948, 1997.

[21] E. GIANNOULI , K. WEBSTER, D. ROBERTS& M. Y OUNES, Response
of ventilator-dependent patients to different levels of pressure support
and proportional assist,American Journal of Respiratory Critical Care
Medicine, 159, 1716–1725, 1999.

[22] L. ACHOUR, C. LETELLIER, A. CUVELIER, E. VÉRIN & J.-F. MUIR,
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Abstract— The development of transgenic mosquitoes, that are 

resistant to diseases, may provide a new and effective weapon of 

diseases control. Such approach relies on transgenic mosquitoes 

being able to survive and compete with wild-type populations. 

These transgenic mosquitoes carry a specific code that inhibits the 

plasmodium evolution in his organism. In actual paper, a 

nonlinear control strategy is proposed to indicate how the 

genetically modified mosquitoes should be introduced in the 

environment. The numerical simulations show the effectiveness of 

the proposed control. 

 
Index Terms—Mathematical modeling, malaria, transgenic 

mosquitoes, optimal vector control. 

  

I. INTRODUCTION 

ector borne diseases have affected many countries, mainly 

that very poor, but due to global warming, there is a real 

risk of these diseases appear in regions where they have 

already been eradicated or even in that where the environmental 

conditions would never have allowed its existence. 

Some efforts have been made to control tropical diseases 

such as dengue fever, malaria and others. Even these diseases 

are not lethal at most of cases; the consequences of an epidemic 

are very serious.  

Scientists are working in vaccines, new drugs, biological e 

chemical insecticide and other strategies to combat diseases 

and/or their intermediate hosts. Due to evolution of genetic 

studies, it has been possible to obtain genetically modified 

mosquitoes refractory to some diseases. These new insects 

should couple with wild mosquitoes and spread out the gene that 

intervenes in the transmission block. This research have 

advanced quickly and a chronological line of main results is 

shown in [1]. 

The development of transgenic mosquitoes, that are resistant 

to diseases, may provide a new and effective weapon of diseases 

control. Such approach relies on transgenic mosquitoes being 
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able to survive and compete with wild-type populations. These 

transgenic mosquitoes carry a specific code that inhibits the 

plasmodium evolution in his organism. It is said that this 

characteristics is hereditary and consequently the disease fades 

away after some time.  

In the last years, the genetic modification of malaria vectors 

has been very prominent. The first Anopheles mosquitoes 

refractory to malaria were engineered in 2002 from a technique 

developed by Catteruccia et al [2].  Once transgenic mosquitoes 

are released, interactions between the two populations and 

inter-specific mating between the two types of mosquitoes take 

place. 

The simple mathematical model for interacting wild and 

transgenic mosquito populations based on systems of difference 

equations was formulated in [3]. The generation overlapping 

and a variable environment were not considered in this model. 

In [4]  a non-autonomous continuous-time mathematical model 

was presented. In that model the transgenic mosquitoes were 

considered to be in a single population and, as the wild 

population, its dynamics followed a seasonal pattern varying 

during the year. In [5] an optimal control problem was 

formulated and solved for this model, and the linear feedback 

control strategies indicated guidelines for the success of 

transgenic mosquitoes. 

In actual paper, a nonlinear control strategy is proposed to 

indicate how the genetically modified mosquitoes should be 

introduced in the environment. The numerical simulations show 

the effectiveness of the proposed control. 

  

II. MATHEMATICAL MODEL FOR INTERACTING WILD AND 

TRANSGENIC MOSQUITO POPULATIONS 

The interactions between wild and transgenic mosquito 

populations consider that the following assumptions prevail: 

a) all transgenic mosquitoes, without distinguishing their 

zygosity, were considered as a single population 

group; 

b) the transgenic and wild mosquitoes have the same 

carrying capacity and fitness rate; 

c) in the absence of transgenic mosquitoes, population of 

wild mosquitoes is described by the solution of the 

model (1); 

d) in the absence of wild mosquitoes, population of 

transgenic mosquitoes is described by the solution of 

the model (1). 

Controlling the Interaction between Wild and 

Transgenic Mosquitoes  

Marat Rafikov, Member, IEEE, Ana Paula P. Wyse, and Luiz Bevilacqua  
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The mathematical model which considers the interactions 

between wild and transgenic mosquito populations in a variable 

environment has the following form [4]: 
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where  

V  is the adult female mosquito density for time t ; 

T  is the transgenic adult female density for time t ;  

)(trii  is the difference between the recruitment rate of female 

mosquitoes through a mating  with the same mosquito class into 

adult for time t  and the density-dependent death rate;   

jitrij ≠),(  is the difference between the recruitment rate of 

female mosquitoes through a mating  with the another mosquito 

class into adult for time t  and the density-dependent death rate; 

1δ  are coefficient  associated with death rate.  

 The practical achievement of the control program is the 

substitution of the wild mosquitoes by the transgenic ones. 

Introducing the control function )(tu  in the system (2) with the 

purpose of accomplishing this substitution we get: 
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Now, the control strategy has to be able to modify the 

population mixing – wild/transgenic mosquitoes – from an 

initial state where transgenic mosquitoes are absent into a final 

population where no wild mosquito is present. That is the 

control function )(tu  in the system (2) has to be able to carry 

the population density into the ideal final state given by:   
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The control problem can be formulated as follow:  

Determine the strategy associated to the introduction of 

transgenic species u which leads the non-linear system (4) with 

periodical coefficients from a given initial to a final state 

defined by: 

( ) 0=ftx            (4) 

In [5] this optimal control problem was solved using the 

linear feedback control coupled to a nonlinear system.   

In actual paper this problem is solved by using the nonlinear 

feedback control.  

III. NONLINEAR OPTIMAL CONTROL DESIGN PROBLEM 

Consider the general infinite-horizon, autonomous, nonlinear 

regulation (stabilization) problem where the system is full-state 

observable, in the state, and affine in the input, represented in 

the form 

 

uxBxfx )()( +=&                 (5) 

0)0( xx =                    (6) 

where n
Rx ∈  are state vector, m

Ru ∈  is input vector, and 

),0[ ∞∈t , with )(1 nRC functions nn RRf →:  and 

nn
RRB →: , and 0)( ≠xB for all x. The origin 0=x  is 

assumed to be an equilibrium point, such that 0)0( =f . The 

infinite-time horizon nonlinear regulation problem is defined 

with the following (nonquadratic in x but quadratic in u) 

performance index: 
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where  the state and input weighting matrices are assumed 

state-dependent such that nxnn
RRQ →:  is positive 

semidefinite and mxmn RRR →:  is positive definite for all x. It 

is assumed that functions f(x), B(x), Q(x) and R(x) are 

sufficiently smooth so that value function defined by (3) is 

continuously differentiable. It can be shown that the optimal 

feedback controller for system (1) can be constructed as [7] 
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Hamilton-Jacobi-Bellman (HJB) equation [7] 
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The HJB equation provides the solution to the optimal 

control problem for general nonlinear system (5); however, in 

most cases, it is impossible to solve it analytically. This has led 

to many methods being proposed in the literature for ways to 

approximately obtain the solution to the HJB equation as well as 

obtain a suboptimal feedback control for general nonlinear 

dynamical models. 

According Mracek and Cloutier [11]  the SDRE approach for 

obtaining a suboptimal solution of problem (5)-(7) is: 

1) use direct parameterization (factorization)  to bring the 

nonlinear dynamics to the state-dependent coefficient (SDC) 

form 

uxBxxAx )()( +=&                  (9) 

where 

xxAxf )()( =  ;                 (10) 

2) solve the state-dependent Riccati equation 

  

0)()()()()()()()()()(
1 =+−+ −

xQxPxBxRxBxPxPxAxAxP
TT      

                       (11) 
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to obtain matrix-valued function P(x) which is positive definite 

for all x; 

construct the nonlinear feedback controller 

xxPBRu
T

)(
1−−=                 (12) 

Under the assumption 0)0( =f  and )(1 nRCf ∈ , a 

continuous nonlinear matrix-valued function )(xA  always 

exists such that (5) is satisfied. It is obvious, that nxnn
RRA →:  

is found by mathematical factorization and is nonunique for 

1>n . 

 

IV. SDRE  SOLUTION OF THE WILD POPULATION CONTROL  

 

Introducing error variables: 
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the following error system is obtained:  

 

BuxxAx += )(&                 (13) 

with 










−
=

2221

1211
)(

aa

aa
xA  and 








=

1

0
B ,        (14) 

where 

1
21

21

12111
11 )

~

1(~

~

δ−
++

−
++

+
=

k

Txx

Txx

Trxr
a , 

)

~

1(~
21

21

112
12

k

Txx

Txx

xr
a

++
−

++
=  

)
~

(~
)

~
(

2
21

21

222
21 Tx

k

r

Txx

Txr
a ++

++

+
= , 

1
222

2222

)
~

2(
δ−

+
−=

k

Txr
ra . 

 

The SDRE control is obtained in nonlinear feedback form: 

 

222112 xpxpu −−=               (15) 

 

where 12p  and 22p  are elements of the positive definite 

matrix )(xP  which is solution of (11). 

We illustrate the application of the strategy which is proposed 

to indicate how the genetically modified mosquitoes should be 

introduced in the environment.  

For numerical simulations of interactions between wild and 

transgenic mosquito populations were used the following values 

of model coefficients: 

,5979.0,5684.2 1211 == rr .5684.2,5684.2 2221 == rr  

These values were obtained in [4] based on data from [1]. 

Choosing  









=

500

05.0
Q   and [ ]1=R , 

we obtain )(xP from the solution of the Riccati equation (11). 

The evolution of the wild and transgenic  mosquito population 

without control for initial conditions V(0)=10 and T(0)= 0 is 

shown in Fig. 1. The dynamics of the controlled error system 

and control function are presented in Fig. 2 and 3, respectively. 

The evolution of the wild and transgenic mosquito populations 

subjected to the control function u are shown in Fig. 4. 

 

 
Fig. 1. Evolution of the wild and transgenic mosquito population without 

control 
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Fig. 2. Dynamics of the  controlled error system 
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Fig. 3. Dynamics of the control function u 
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Fig. 4. Evolution of the wild and transgenic mosquito populations with 

control 

 

 

V. CONCLUSION 

The continuous variable model proposed to describe an 

interaction between wild and transgenic mosquitoes, does not 

consider the zigosity of the transgenic mosquito. We decided to 

start with a simpler model that is however supported by very 

strong evidence that the transgenic mosquito’s gene is 

dominant. This fact makes the model meaningful to evaluate the 

performance of a control variable that could optimize the 

cost/benefice relation. The relevant question is: what is the best 

strategy to introduce transgenic mosquitoes in the environment 

in order to optimize costs.  

The answer is to formulate and solve a vector control optimal 

control problem indicating how the genetically modified 

mosquitoes should be introduced in the environment.  

It was shown that a nonlinear feedback control could steer the 

solution of the nonlinear system towards a desirable trajectory. 

The numerical simulations show the effectiveness of the 

proposed control system. 

Finally one must be aware of the fact that the introduction of 

transgenic species in the environment is still very questionable. 

Biologists and ecologists play a critical role in answering the 

questions about secure introduction of transgenic mosquitoes. If 

there is sufficiently confidence that there is no harm by 

introducing this procedure then the proposed control can be 

considered as an economic and effective solution of the malaria 

vector control. 
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Description

Complexity can be observed in many aspects of Soft and Condensed matter physics. Examples
include turbulent flows in liquid, glassy dynamics, granular matter, complex fluids, damage and
fracture of disordered materials, earthquakes, domain growth in ferroelectric or magnetic materials,
superconductivity, dislocations in crystals, surface and interface dynamics in deposition problems,
among other realisations. Despite their diversity, these systems share similar features: the emer-
gence of generic collective behaviours from the interaction between the elementary constituents
that cannot be understood or predicted simply by some averaging over the behaviour of individual
components.

Statistical physics represents the privileged tool of physicists to study these systems. However
understanding this complex matter necessitates new theoretical developments since the systems un-
der consideration are generally far from equilibrium and often involve various relaxation processes,
sometimes dissipative and irreversible, ranging over several time and length scales.

This special session of the ICCSA is intended (i) to provide some examples of physical complex
systems illustrating the diversity of this theme in Soft and condensed matter physics, (ii) to present
the various recent theoretical progresses to describe them and (iii) to draw possible orientation
for future research in this field. It will be the occasion to bring together physicists from various
domains, both experimentalists and theoreticians working on complex systems as well as researchers
from other fields interested by physical applications or concepts.

Invited speaker

Hugues Chaté (Groupe Théorie des Systèmes Complexes, DSM/IRAMIS/SPEC, CEA Saclay)
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Controlling and tuning the morphology and texture of surfaces, interfaces and thin films at the 
nanoscale is of primary importance in term of technological applications (electronics, 
spintronics, chemical reactivity, photovoltaics, photonics…). Since the introduction of the 
Scanning Tunnelling Microscope (STM), progress in imagery at the nanoscale, by various 
techniques, is constant. Real space pictures give us a direct view of the topography, chemical 
composition, magnetisation… among others. At the nanoscale, the competition between thermal 
fluctuations and smoothening processes leads to complex morphologies that must be 
deciphered. In this respect, tools of "out of equilibrium" statistical physics were shown to be 
relevant. Morphological evolution of vicinal surfaces at thermal equilibrium and upon growth / 
smoothening, together with the investigation of ferromagnetic (Fe3O4/γ-Al 2O3) and 
antiferromagnetic (α-Fe2O3/Co) thin films will illustrate the potentialities of such approaches in 
the field of nanotechnologies. 
 
 

 
 
 
 
 
 
 
 

 

Fig.1 – AFM images of the topography 
of a vicinal surface of sapphire after 
various time of annealing at 1273K. 

Fig.2 – 20 µm field of view X-PEEM images 
of an α-Fe2O3 20 nm thin film. The contrast 
arises from antiferromagnetic domains. 
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Over the past century, the understanding of failure in brittle amorphous materials has been 
greatly improved. There exists now a coherent theoretical framework, the Linear Elastic 
Fracture Mechanics (LEFM) which allows describing precisely crack propagation in 
homogeneous brittle materials. On the other hand, the effect of materials heterogeneities onto 
their failure properties remains far from being understood. In particular, in heterogeneous 
materials under slow external loading, cracks growth often displays a jerky dynamics, with 
sudden jumps spanning over a broad range of length-scales, as also suggested from the acoustic 
emission accompanying the failure of various materials and - at much larger scale - the seismic 
activity associated to earthquakes. Presently, this intermittent “crackling” dynamics cannot be 
captured by standard Linear Elastic Fracture Mechanics (LEFM). 
In this presentation, we will see how to extend LEFM to derive a stochastic description of quasi-
static crack growth in disordered media [1]. Its predictions will then be confronted to 
experimental observations performed at University of Oslo [2] on the crack propagation within a 
transparent Plexiglas block. All the statistical features seem perfectly reproduced. This 
description suggests that the material failure is analogue to a critical transition between a stable 
phase where the crack remains pinned by the material heterogeneities and a moving phase 
where the mechanical energy available at the crack tip is sufficient to make the front propagate. 
While growing, the crack decreases its mechanical energy and gets pinned again. This 
mechanism exhibits universal – and to some extent predictable – statistical features, insensitive 
to the materials nature and the loading conditions. 
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Fig.1 – (a) In heterogeneous 
media, cracks progress through 
successive pinning/depinning 
phases, so-called avalanches. The 
distribution of avalanche area (b) 
and the scaling between the 
avalanche duration and area (c) 
form universal power-law 
independent of both the materials 
nature and loading conditions. 
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The mean orientations of the fluctuations of the director of a nematic liquid crystal are measured 
using a sensitive polarization interferometer. When an electric field is applied perpendicularly to 
the initial alignment of the molecules, there is a critical point for which molecules try to align to 
the field. This is called the Frédericksz transition which is expected to be second order phase 
transition. We report experimental evidence that,  because of the critical slowing down, the LC 
presents, after a quench near the critical point, several properties of an aging system, such as 
power law scaling versus time of correlation and response functions. During this slow 
relaxation, a well defined effective temperature, much larger than the heat bath temperature, can 
be measured  using the fluctuation dissipation relation. The results are in excellent agreement 
with the previous theoretical prediction for the effective temperature. 
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Contrasting with the rheology of standard dispersions of passive particles, bacterial fluids form 
an active system essentially due to the self-propelling properties of each swimming entity (the 
bacterium). To a large extend, the macroscopic rheological properties depend non only on the 
supplementary transfer of momentum due to the swimming activity but also, on the collective 
organization of the bacteria that can react to chemical signaling, long range hydrodynamic 
interaction and other complex properties due to the their biological nature. 
Here we present experimental measurement of diffusion properties of a passive tracer (latex 
sphere) among a population of bacteria (E-Coli) that are concentrated close to a boundary. We 
change systematically the activity properties of the bacterium by changing the fraction of 
nutritive material in the fluid, the pH of the solution that directly act on the proton-motor 
rotation (bacterium velocity) and also the concentration of active bacteria in the surrounding of 
the tracer particles. We establish a relation between the effective diffusivity that can be much 
higher that the Brownian thermal value, as a function of active bacteria concentration and self 
propelling characteristics.   
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We consider a simplified 2D ocean model. We use the thermohaline equations, under the 
classical Boussinesq approximation [1]. We show that the thermohaline equations for inviscid 
flows admit an infinite number of steady state solutions. We describe the statistical mechanics 
of such a system, and derive equilibrium states [2, 3]. We show that the stable steady state 
minimize a functional F while conserving an infinite number of conserved quantities. For a 
finite number of conserved quantities, simplest analytical solutions are calculated. These 
solutions describe well the thermohaline circulations. We furthermore derive relaxation 
equations which can be used as numerical algorithm to construct nonlinearly dynamically stable 
stationary solutions of thermohaline circulation. 
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Since the early eighties, fracture and damage of heterogeneous materials have motivated a large 
number of studies inspired by statistical physics [1]. In those disordered materials, the toughness 
varies from place to place which complicates the prediction and understanding of crack 
propagation. Due to randomness, the crack front can be distorted both in the out of plane and in-
plane directions (cf. Fig.1). At the same time, this distortion of the crack front is responsible for 
elastic forces which tend to make it smooth. This competition between elasticity and disorder 
leads to a rich phenomelogy. In particular a critical threshold appears for the stress intensity 
factor. Below threshold, the front propagate over a finite distance; above threshold, the crack 
front propagates freely at a highly fluctuating velocity [2,3]. Although promising, this depinning 
scenario appeared to give only a qualitative agreement with experimental results. In particular, 
the predicted roughness exponents are far from the experimental estimates. In the following we 
will try to discuss the validity of these models in brittle heterogeneous materials. 
First we will precise the type of disorder to be considered in the context of fracture and show an 
experimental illustration which seems to validate this approach [4]. These results which 
contrasts with the previous experimental knowledge could be obtained via a fine control on the 
nature and scale of heterogeneities in a model material: phase separated glasses. 
Second, an experimental study of purely interfacial crack propagation in the presence of very 
simple, macroscopic and fully described heterogeneous toughness field will be presented [5]. 
We will try to capture the individual contribution of each components of the toughness field by 
analyzing the crack front morphology (cf. Fig.2). We will show that designing specific 
heterogeneous interface allows modifying and controlling the crack front morphology. We will 
show that it is possible to describe quantitatively the crack front morphology in the framework 
of the pinning theory. 

                 
Fig.1 – Sketch of a propagating crack 

front pinned by heterogeneities. 
Fig.2 – Crack front morphology in presence of a 

patterned interface. 
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From cage jumps to dynamical heterogeneities in granular media 
 

O. Dauchot 1, R. Candelier 1 
 

 1Groupe Instabilities and Turbulence, DSM/IRAMIS/SPEC, CEA Saclay,  
91 191 Gif sur Yvette, France, 

 
Unveiling the connection between the short term relaxation and the long term dynamical 
heterogeneities as observed near the glass transition in super-cooled liquids and the jamming 
transition in granular materials remains one of the major challenge in the physics of glassy 
systems. 

                 
            Cage jumps                      Dynamical heterogeneities 
 
On one hand, KCM models relate dynamical heterogeneities to a non trivial structure in the 
trajectory space, inherited from the local dynamical rules. [1]. On the other hand, recent studies 
of hard spheres close to isostaticity suggest that the collective aspect of the relaxation would 
stem from the extended character of the softest degrees of freedom [2].  
 
There is still no direct experimental evidence in favour of one or the other mechanism in super-
cooled liquids and whether they apply to dense granular media remains pure speculation. Also, 
in both cases one misses a clear picture of the microscopic mechanisms underlying the 
formation of such dynamical heterogeneities. Here we will show that for a dense granular layer 
under cyclic shear [4, 5] dynamical heterogeneities result from a two timescales process [6]. 
Short time but already collective events consist in clustered cage jumps, which concentrate most 
of the non affine displacements. Such clusters aggregate both temporally and spatially within an 
avalanche process, which ultimately builds the large scales dynamical heterogeneities.  
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Space-time diagrams are widely used for investigation of spatio-temporal dynamics of nonlinear 
systems. To obtain a space-time diagram, values of a physical parameter I  are measured in the 
points with coordinates ),,( 321 Kxxx  along a line in different moments of time ),,( 321 Kttt .  In the 

obtained two dimensional field ),( ki txI , it is possible to distinguish different structures (so called 
building blocks): sources and sinks, topological defects, holes Nozaki-Bekki. Such “blocks” play an 
important role in the pattern formation and spatio – temporal dynamics of extended nonlinear 
systems. In physical experiments identification of such blocks and measurements of their 
characteristics are not a trivial task. One of the encountered problems here is connected with 
influence of noise. In this report we propose the conditional averaging of spatio-temporal diagram to 
diminish the influence of noise distorting the properties of building blocks.   

We have applied conditional averaging for investigation of defect appearing on the background 
of spiral pattern in Couette - Taylor flow between two rotating cylinders.  We investigated structure 
of the field ),( ki txI  in the neighborhood of a single defect. For conditional averaging we proceeded 
as follows. We used several spatio-temporal diagrams. In each diagram we determined position of 

the defect ),(
ii dd

tx  as a point where amplitude of structure is zero 0),( =
ii dd

txA .   For each 

diagram we introduced a local coordinate system, with the point ),(
ii dd

tx  taken as an origin. After 

that we determined averaged amplitude fields over a sequence of diagram. During averaging these 
diagrams were superposed so that their local coordinate systems coincided.  

 

 

                      a                                              b                                                 c            

Fig.1 Results of conditional averaging of amplitude field for different supercriticalities. Intersection of 

black lines corresponds to the zero amplitude 0),( =
ii dd

txA  of structure. (a) ε=0.038; (b) ε=0.040, (c) 

ε=0.042 
 

Obtaining of the averaged amplitude field allowed us to develop simple theoretical model to explain 
the characteristics of topological defects generated on the background of periodic vortex structure in 
Couette-Taylor  flow.  
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How herds move: a study of polar self-propelled particles 
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Collective motion in animal groups is a ubiquitous phenomenon. Thus, during the two last 
decades, statistical physicists show a strong interest on the question of the emergence of such a 
new ordered state. A minimal model of moving vectors on a plane has been introduced by T. 
Vicsek et al [1] and has been studied mainly by simulations.  But there are few concepts to 
understand out-off-equilibrium systems.  
We will give an overview of the numerical results on two-dimensional collective motion [2,3]. 
Then we will show how we obtained a coarse-grained description of such a population [4]. 
Studying the properties of those modified Navier-Stokes equations allow us to give a better 
interpretation of the agent-based simulations. 
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radial temperature gradient 
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We investigate experimentally the flow produced in a narrow gap and large aspect ratio 
Couette-Taylor system submitted to a high radial temperature gradient. Demineralised water is 
confined in the five millimetres gap between a rotating inner cylinder and a fixed outer cylinder. 
The geometrical parameters are fixed with aspect ratio and radius ratio respectively equal to 
111.8 and 0.8. The control parameters of the system are the Grashof number Gr, related to the 
radial temperature gradient and the Taylor number Ta, related to the rotation of the inner 
cylinder. For this study, Gr is fixed and Ta is gradually increased. The flow is characterized by 
Kalliroscope flakes visualizations and velocity and temperature fields measurements using 
encapsulated thermochromic liquid crystals [1-2]. 
For small values of Ta, the base flow is composed of the circular Couette flow due to the 
rotation of the inner cylinder and a vertical flow induced by the radial temperature gradient. 
Above a critical value of Ta, the destabilization of the base flow gives rise to a wavy pattern 
described by the temperature, the axial velocity component and the vorticity fields of figures 1 
(a, b, c) [3-4]. This pattern has a spiral shape. It spreads on the whole length of the system and 
corresponds to alternate laminar and spiral areas (Fig.1d). It rotates as a whole at the mean 
angular velocity of the flow. By a suitable change of variable t → t’ followed by a z-average, 
this modulated spiral pattern appears as a wave-packet and shares strong similarities with 
solitary waves (Fig.2).  
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Fig.1 – (a) Temperature field, (b) axial velocity component 
field, (c) vorticity field and (d) light intensity space-time 
diagram of the modulated spiral pattern obtained for Gr = 
2405 and Ta = 11.2 

Fig.2 – z-averaged light intensity 
amplitude as a function of t’  for Gr 
= 4257, Ta = 12.5. 
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A frozen and dense assembly of interacting magnetic nanoparticles exhibits a transition to a 
disordered and frustrated state, the superspin-glass at low temperature. Such a non-
equilibrium system evolves continuously with time, and a still open question is the connexion 
of this aging with the growing of a dynamical correlation length. We have studied such a 
system made of maghemite (Fe2O3) nanoparticles suspended in glycerol, with a strong 
anisotropy due to “texturing”, i.e. freezing the ferrofluid in a strong magnetic field [1]. By 
using a global method based on the relaxation of the Zero-Field-Cooled Magnetization at 
various fields [2], we extracted the time dependence of the number of correlated superspins. 
Another method based on the local measurement of the superspin-glass magnetization 
fluctuations has also been used [3]. It is based on Hall microprobes operated with the spinning 
current technique [4].  Its first results will be presented. 
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Large assemblies of interacting nonlinear units give examples of complex systems in which 
collective behaviour emerges, characterised by the ordered evolution of averaged quantities in 
spite of strong chaos persisting at the scale of the individual units. Sub-critical transitions 
between collective regimes T2 and T4, with respective periods 2 and 4 not connected via a sub-
harmonic bifurcation, have been observed in a 4-dimensional hyper-cubic lattice of coupled 
logistic maps Xj

t+1 = [1/(2d+1)] Σ<ij> rXi
t(1-Xi

t), where <ij> means that node i belongs to the 
neighborhood of node j, and d=4 [1]. At finite and moderate size, intermittent switching 
between the two regimes takes place in the upper part of the bifurcation diagram (fig.1) while 
systematic decay with exponentially distributed transient lifetimes is observed in the lowest part 
of the coexistence region (fig.2). Statistical findings can be interpreted in terms of the average 
activity Mt = <Xj

t> escaping from potential wells in the presence of noise [2], the noise being 
here induced by chaos in the dynamics of local variables Xj. A consistent picture arises from the 
consideration of an effective stochastic dynamics with a deterministic part associated to the 
trend towards well bottoms counteracted by noise, the intensity of which varies as the inverse 
square root of the number of sites in the lattice. An analogy with sub-critical bifurcations 
between different turbulent regimes observed in some hydrodynamic systems is discussed. 
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Fig.1 – Time series of the average X t of the 
local variable Xi

t for r = 4 in a system of size 
n4, here n=16. T4 regime with two possible 
phases can be observed, interrupted by short 
sequences of T2 regime, e.g. for t ~ 1.1 105, 
1.45 105, or 1.7 105.  The switching frequency 
decreases as n increases. For n > 27, the system 
can stay stuck in one or the other regime over 
more than 107 iterations when appropriately 
prepared. 

Fig.2 – Distribution of transient lifetimes ttr, 
P(ttr > t), as functions of t (semi-log scale) in 
quench experiments from ri=3.98 to various 
values of rf from 3.905 (upper curve with 
black dots) down to 3.985: P(ttr > t) ~ 
exp(t/τ) with τ~1/(rlim-r)4 and rlim ~ 3.91 for a 
system of size 274. 
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We study experimentally the fluidization of bidisperse suspensions of macroscopic particles, at 
low Reynolds number. The suspensions are made of the same amount of large glass beads of 
190µm and smaller ones, the size of which has been varied from 110 to 160µm. 
We follow the segregation process, when an initially mixed bidisperse suspension is fluidized at 
a fixed flow rate. The time evolution of the composition the suspension along the column is 
obtained with the help of an acoustic scanner, which records the composition-dependent 
attenuation of the sound propagation, measured at an appropriate frequency of 2MHz.  
For a large enough size contrast (for small particles smaller than 150 µm), we observe a 
segregation process (Fig.1, left), induced by the different settling velocities. The process results 
in a stationary segregated state: a monodisperse suspension of small particles fluidized on top of 
a monodisperse suspension of large particles, with a transition zone slightly enlarged by the 
mixing of particles due to hydrodynamic dispersion. 
For smaller size contrasts, however, the segregation process is interrupted by a fast mixing of 
the suspension, which is followed by a new segregation process, etc. As a result, the bidisperse 
fluidized suspension undergoes quasi periodic oscillations between segregated and mixed states 
(Fig.2, right). Although unexplained yet, the onset of the mixing could be caused by a columnar 
instability already observed in experiments of bidisperse sedimenting [1, 2]. 
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Fig.1 – Spatio-temporal diagram of sound attenuation, measured through a bidisperse suspension 
fluidized at a constant flow rate (at mean concentration C≈40%).  Whereas the suspension of beads 
sizes 190µm/150µm reaches a stationary segregated state (left figure), the one of beads sizes 
190µm/155µm alternatively segregates and mixes, in a quasi periodical way. 

ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France 41



Intermittent regime in flow oscillations  
investigated by means of symbolic dynamics  

 
Luc Pastur 1,2, François Lusseyran 1, Thierry Faure 1,3, Christophe Letellier 4 

 
1  LIMSI-CNRS, BP 133, F-91403 Orsay cedex, France 

2  Université Paris Sud 11, F-91405 Orsay Cedex, France 
3  Université Pierre et Marie Curie, 75252 Paris Cedex 05, France 

4  CORIA UMR 6614 - Université de Rouen, F-76801 Saint-Etienne du Rouvray Cedex, France 
 
 
 
A cavity flow driven by a laminar shear layer was investigated in the incompressible regime. 
Such flows are characterized by strong shear layer self-sustaining oscillations, due to complex 
feedback loop mechanisms [1]. Over some range of the working parameters (cavity length and 
height; inlet flow velocity), a mode-switching phenomenon is observed between two shear layer 
dominant modes, say f1 and f2 [2]. This regime is here investigated in terms of symbolic 
dynamics [3]. To that aim, velocity is measured at a single spatial point in the flow, past the 
cavity, using laser Doppler velocimetry (LDV). From the obtained time series, a space is 
reconstructed using principal components. The estimation of the attractor correlation dimension 
suggest that a space whose dimension should be at least 10 would be required 
In spite of that, a first useful analysis is performed using a Poincaré section defined in the plane 
projection spanned by the first two components. Defining an angle with respect of the centre of 
the Poincaré section and an arbitrary axis, an angular first-return map is computed.  Using the 
minima of the probability of visits of the angle interval to define a partition, a symbolic 
dynamics is introduced. Thus, each intersection of the trajectory with the Poincaré section is 
encoded by 0 or 1, depending on the angle associated with the orbit intersection. The two 
symbols, 0 or 1, reveal to be essentially associated to f1 and f2, namely. Therefore, using a 
symbolic dynamics, based on an angular first-return map, provides an efficient tool for 
quantifying the observed intermittent regime. Moreover, it helps us to investigate the dynamics 
at time-scales of the order of a single period of the shear layer oscillations, that is, at a better 
resolution than common spectral-based methods, such as Fourier analysis, would do [4]. 
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When a granular material is tilted above a maximum angle of stability, a surface avalanche 
starts that decreases the pile angle until the angle of repose where the flow stops. If during the 
avalanche the container rotates, two regimes can be observed: for slow rotation rates compared 
to the decrease rate of the pile angle during the avalanche, a succession of discrete avalanches 
are observed, when for larger rotation rate a continuous surface flow is observed. 
We recently study experimentally and theoretically the transition between these two regimes in 
rotating cylinder geometry. Under the action of the continuous forcing imposed by the rotation 
of the tank we observed such transition between a limit cycle (discrete avalanche regime) and a 
fixed-point dynamics (continuous flow). In an intermediate range of angular velocity the system 
exchanges intermittently between the two regimes (figure 1). The mean fraction of continuous 
flow increases continuously from 0 to 1 in the transition range. The experimental results are 
recovered by a simple model equation of this dissipative system when a noise term is added [1].  
 

 
 
Fig.1 – Time evolution of the instantaneous pile angle for 4 increasing rotating velocity. In red, large 
oscillations corresponding to the discrete avalanche regime, in blue small oscillations of the pile angle 
corresponding to the continuous flow regime.    
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AFM (Atomic Force Microscopy) experiments and MD (Molecular Dynamics) 
simulations have revealed a process zone (PZ) near the crack tip in amorphous silica (a-
SiO2). Within this process zone pores nucleate and coalesce with one another up to 20 nm 
ahead of the crack tip [1-4].  After which the cavities merge with the advancing crack to 
cause mechanical failure. Similarly, when a-SiO2 sample is nanoindented one finds 
permanent damage under the indenter in the form of densified silica [6]. 
To shed light on the origin of irreversible deformation in amorphous media where the 
notion of dislocations is irrelevant, MD simulations have been performed in a-SiO2 
systems which are subjected to (1) a cyclic loading and unloading of the hydrostatic 
pressure and (2) a shearing force at room temperature.  In particular, the so-called fabric 
tensor commonly used in granular physics is computed and allows to evidence anisotropy 
setting in the structure silica [7].  
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Autocatalytic reaction front between reacted and unreacted species may propagate as solitary 
waves, namely at a constant velocity and with a stationary concentration profile, resulting from 
a balance between molecular diffusion and chemical reaction. When a hydrodynamic flow field 
is forced on this reaction, the front still propagate as a solitary wave but with an enhanced 
propagation velocity and with a shape front reminiscent of front flame [1]. In most system, the 
fluid left behind the front has a different density leading to buoyancy driven flows and 
instabilities. In the present we revisit, with chemical reaction, the classical situation of lock 
exchange in gravity currents [2]. The latter refers to the reciprocal exchange of two fluids of 
different density in a horizontal channel; as the result the front spreads as the square root of time 
[2].  
We present both experimental and numerical simulations analysis of buoyancy effects on the 
shape and the velocity of the Iodate Arsenous Acid (IAA) autocatalytic reaction fronts, 
propagating in a horizontal thin rectangular channel (Hele-Shaw cell). To complement the 
experiments, we use 2D lattice BGK numerical simulations of gap-averaged equations for the 
flow and the concentration, namely a Stokes-Darcy equation coupled with an advection-
diffusion-reaction equation. We do observe stationary-shaped fronts, spanning the width of the 
cell and propagating along the cell axis. We analyze the scaling law for the shape and the 
travelling velocity of the fronts.  
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Fig.1 –Chemical gravity current in an 
800 µm thick and 8 mm wide Hele- 
Shaw cell. The front travels from left 
to right leaving a lighter fluid behind. 
The gravity is vertical. 

Fig.2 –Lattice BGK numerical simulations of the 
viscous chemical gravity current.  Velocity field : 
the color scale gives the intensity of the velocity . 
We clearly see the vortex traveling with the front. 
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Linear Elastic Fracture Mechanics [1] quantitatively describes crack propagation in brittle 
amorphous solids for crack velocities v smaller than vb, a critical velocity governing the onset of 
micro-branching instability [2]. In this range, all dissipations processes, irrespective of their 
physical origin, can be gathered in one material-dependent quantity, the fracture energy Γ. 
Intriguingly, even below vb, Γ was found much higher than at crack initiation.  
Experiments in an extensively investigated brittle amorphous material, PMMA, allowed us to 
measure the velocity dependence of the dynamic fracture energy between 0 and vb. The latter 
reveals a new critical velocity, va, well below vb, at which Γ exhibits an abrupt 3-folds increase. 
The nature of this transition is unravelled by a post-mortem fractographic analysis of the 
samples: va corresponds exactly to the appearance, on the fracture surfaces, of conic patterns. In 
many materials, these are the signature of damage spreading through the nucleation and growth 
of micro-cracks ahead of the propagating crack [3-4]. Nominally brittle amorphous solids 
therefore behave as quasi-brittle for crack velocities above va.  
Following [3], we consider a simple geometrical model to describe the nucleation and growth of 
micro-cracks. By feeding this model with the actual locations and nucleation thresholds of the 
micro-cracks, we successfully reconstruct the complex patterns observed (Fig.1), in the whole 
velocity range va – vb, with both micrometer and microsecond resolutions. We present statistical 
characterizations of the velocity-dependent geometrical parameters of the population of micro-
cracks, the origin of which is left as an open question. More generally, this system emerges as a 
good experimental model system to test descriptions of damage processes in amorphous 
materials, including rate dependence and spatial interactions. 
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Fig.1 – Reconstruction of crack 
propagation from post-mortem 
fracture surface images in the 
micro-cracking regime. 
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The vitreous slowing down of supercooled liquids at the glass transition is still poorly 
understood. Many models intend to describe its physical mechanism. A particularly interesting 
scenario is the one of dynamical heterogeneities: timescales are spatially distributed in the 
supercooled liquid with slow or fast relaxing regions. Finally slow regions become fast and vice 
versa. They are called dynamical heterogeneities. Our issue is to measure the number of 
correlated molecules of these regions. When the temperature decreases the relaxation time of the 
liquid increases and this may be linked to an increase of these regions’ length scale and also to 
an increase of the energy needed to relax. This image refers to phase transition concepts. 
Dynamical heterogeneities have been shown in simulations or granular experiments but this 
number of correlated molecules has never been directly measured in supercooled liquids. 
 
A method to measure this number of correlated molecules has been proposed by Bouchaud and 
Biroli [1]. It is based on the measure of the polarisation P third harmonics. P = χ1E + χ2E

2 + 
χ3E

3 with E the electric field. χ2E
2 = 0 for symmetry reasons and χ3 is proportional to the number 

of correlated molecules. We have developed an original experiment to measure this non-linear 
susceptibility by dielectric techniques in supercooled glycerol near the glass temperature [2]. 
We succeeded in following the temperature evolution of this number of molecules as in phase 
transitions. This number as also been evaluated from linear susceptibilities [3] and the two 
results are compared.  
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Fig.1 – The growing of a quantity proportional to χ3E
3, with I(3ω) 

the measured third harmonic current as a function of the source 
voltage V = E × sample thickness.  
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Sea beds are often covered by small scale sedimentary structures in the coastal zone [1, 2] 
(typical wave length ~ 10 cm); these structures result from complex interactions between the 
flow and the sediments. Many experimental and theoretical works have been conducted on the 
morphology of these structures which are generally called ripples, due to their significant 
effect on sediment transport, wave attenuation and boundary layer structure. Most of these 
studies have been carried out considering size homogeneous sediments; however, the in-situ 
works generally show the presence of a large variety of sediment size, and segregation 
phenomena [3]. The aim of the present work is to bring a contribution to the study of this 
segregation; experiments are carried out in a wave flume where ripples are generated, and the 
trajectories of sediments in suspension close to the bed are recorded. Figure 1 shows a typical 
view of the grain segregation in the case of bi-dispersed sediments [4]. In order to explain this 
segregation, the bedforms are fixed and a few sediment grains are dropped in the flow, above 
the rippled bed. The wave maker is switched off and the grain trajectories (Fig 2) are recorded 
using a high resolution video camera. These trajectories are compared with the results 
predicted by a theoretical model, and an explanation of the observed segregation based on the 
existence of a mean flow towards the ripple crests is proposed. 
 

 

 

 
Fig 1. Typical view showing sediments 
segregation on a rippled bed (light grains in 
white and heavy grains in grey). 
 

 
Fig 2. Grain trajectories in suspension above the rippled bed 
beneath waves.  
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The study of transition to turbulence in Newtonian flows is governed by the well-known Navier-
Stokes equations. In case of viscoelastic flows, no such universal equations exist and the 
transition to turbulence in such fluids is much more difficult to predict without any theoretical 
guidelines [1]. Viscoelastic liquids intervene in many industrial processes in which production 
rates or final product quality can be limited by flow instabilities. Therefore strong motivations 
exist for experimental investigation of viscoelastic flow behavior.  
The present work report the behavior of the viscoelastic Couette-Taylor flow with dilute solutions 
of high-molecular-mass polyethyleneoxide in viscous solvents obtained by dissolving low-
molecular-mass polyethyleneglycol in water. The solution viscosity varied from 41.5 mPa.s to 
113.3 mPa.s and did not depend on shear rate. The solution was sheared  in vertical Couette-
Taylor cell with inner radius a = 4 cm and outer radius b = 5 cm. The gap width is  d = 1cm and 
its height is L = 45.9 cm leading to aspect ratio Γ = H/d = 45.9 and radius ratio η = a/b = 0.8. 
Experiments were conducted at room temperature. Kalliroscope flakes were used for flow 
visualization together with a laser light sheet. Rotation speeds of both cylinders were controlled, 
but for a given experiment only one of the cylinders is rotating with angular velocity Ω.  Above a 
critical rotation rate Ωc, the flow bifurcated to flow patterns typical of purely elastic regime (Fig. 
1). These elastic instability-induced patterns exhibited disordered domains separated by strong 
radial flows [2]. The critical value of the onset of this purely elastic instability agrees well (Fig. 
2) with theoretical criterion from [3] when only the inner cylinder is rotated, while preliminary 
result obtained with rotation of the outer cylinder exhibited a significant hysteresis.   

 
 

Fig. 1:  Typical flow patterns for : a) inner rotating cylinder, 
cΩ=Ω ;  b) outer rotating cylinder,

cΩ=Ω ;   

c) outer rotating cylinder,
cΩ=Ω .88.0 ; d) space-time plot extracted from pattern (a) at  r = 0.25 + a 
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The fragmentation equation describes the time evolution of particles system, when particles 
break up. Spray atomization, turbulent eddy decay, solid particle decomposition, rock crushing, 
polymer degradation, impact of meteorites and network branching represent the examples of 
such fragmentation. In this paper, the renormalized form of the fragmentation equation is 
obtained, with the spectrum and the frequency of fragmentation, as arbitrary functions. If the 
fragmentation frequency is a power function of size, a simple exact solution to this equation is 
obtained, providing for stationary mass flux, from large scales towards zero scales. This work is 
a further development of results obtained in [1-3]. 
1. The fragmentation equation has the following form: 
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where F(r) is the number distribution function, Q(α) is the probability density function of break-
up, q0 is the mean number of particles formed by a break-up and ν(r) is the break-up frequency.    
2. The mass distribution function. With evolution in time, the total mass is conserved but not the 
total number of particles. This motivates to introduce the energy distribution function f(r), 
instead of using F(r); the norm of the former one will not change. The relation between both 
functions, f(r) = r3F(r), leads to the following fragmentation equation: 
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3. Exacts solutions for arbitrary fragmentation spectrum q(α). The first term in (2) represents 
difference between two terms; each of them can be very large, and even infinite (if to give up 
the normalization requirement of q(α)). In order to overcome this problem, the renormalization 
of (3) was obtained, describing evolution of an infinite system of particles in the form of 
continuity equation. When ν(r) = crµ, a simple solution to this equation, verifies to be: 
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With accumulation of particles of zero size, this solution provides for stationary mass flux j0, 
from infinity towards zero size. Other self-similar solutions to the renormalized fragmentation 

equation have the following form: ( ) 
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Description

The (new) science of Complex Systems likes to consider the notion of ”level of description”. Many
tools from Combinatorics, Computer Science and Mathematics are there needed, be it at the level
where ”things do happen” or at higher levels where statistical exactly solved models of a striking
precision can be experimented and set. This special session is intended to be a contribution to the
exposition of these tools/results. Includes (not exhaustive)

• Mathematical and Combinatorial local rules

• Theoretical Computer Science for Complex Systems

• Statistical Physics

• Exactly solved models

• Combinatorial models for and of emergence

• Explicit schemes for analysis of dynamical systems: finite (combinatorial) and infinite (based
on functional analysis)
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Asymptotic analysis and convergence of some leader
election algorithms

Christian Lavault

We start with a set of n players. With some probability P (n, k), we kill n − k players; the other
ones stay alive, and we repeat with them. What is the distribution of the number Xn of rounds
before getting only one player? We present a probabilistic analysis of this very general algorithm
(expectation and moments of Xn), under some conditions on the probability distributions P (n, k)
(if any), including stochastic monotonicity and the assumption that roughly a fixed proportion of
the players survive in each round. Applications of the general result include asymptotic analysis of
leader election algorithms where players are eliminated by independent coin tosses.
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Learning Self-Organizing Maps as a Mixture
Markov Models

Mustapha Lebbah, Younès Bennani and Nicoleta Rogovschi

Abstract—This paper describes a new algorithm to learn Self-
Organizing map as Markov Mixture Models. Our model realizes
an unsupervised learning using unlabelled evolutionary data sets,
namely those that describe sequential data. The new formalism
that we present is valid for all structure of graphical model.
We use E-M (Expectation-Maximisation) standard algorithm to
maximize the likelihood. The graph structure is integratedin the
parameter estimation of Markov model using a neighborhood
function to learn a topographic clustering of not i.i.d dataset. The
new approach provides a self-organizing Markov model usingan
original learning algorithm.

Index Terms—Self-Organizing clustering, Markov Models, Se-
quential data, Expectation-Maximisation, graphical model

I. I NTRODUCTION

SInce many years, temporal and spatial sequences have
been the subject of investigation in many fields, such as

statistics, pattern recognition, web mining, and bioinformatic.
The easiest way to treat sequential data would be simply to
ignore the sequential aspects and treat the observations as
independent and identically distribution (i.i.d) in the first stage.
For many applications, the i.i.d assumption will be a poor one.
Often in many application the treatment is decomposed in two
steps; the first one is the clustering task with i.i.d assumption.
In second stage the result of clustering is used to learn a
probabilistic model by relaxing the i.i.d. assumption, andone
of the simplest ways to do this is to consider a Markov model.

Hidden Markov Models (HMMs) are the most well-known
and practically used extension of Markov model. They offer
a solution to this problem introducing, for each state, an
underlying stochastic process that is not known (hidden) but
could be inferred through the observations it generates. In
fact the probabilistic graphical modelling motivates different
graphical structures based on the HMM [1], [2]. Another
variant of the HMM worthy of mention is the factorial hidden
Markov model [3], in which there are multiple independent
Markov chains of latent variables, and the distribution of
the observed variable at a given time step is conditional on
the states of all of the corresponding latent variables at that
same time step. Many related models, such as hybrids of
HMMs with artificial neural networks [4], [5], [6]. Clearly,
there are many possible probabilistic structures that can be
constructed according to the needs of particular applications.
Graphical models provide a general formalism for motivating,
describing, and analysing such structures. Therefore, it will
be very important to have algorithms able to infer from a

Mustapha Lebbah,Younès Bennani and Nicoleta Rogovschi are with LIPN-
UMR 7030 - CNRS, Université Paris 13. 99, av. J-B Clément F-93430
Villetaneuse e-mail: firstname.second-name@lipn.univ-paris13.fr.

data set of sequences not only the probability distributions but
also the topological structure of the model, i.e., the number of
states and the transitions interconnecting them. Unfortunately,
this task is very difficult and only partial solutions are today
available [7], [8], [9]. In order to overcome the limitations of
HMMs, in [9] the author proposes a novel and an original
machine learning paradigm, which is titled topological HMM,
that embeds the nodes of an HMM state transition graph in
Euclidian space. This approach models the local structure of
HMM and extract their shape by defining a unit of information
as a shape formed by a group of symbols of a sequence.

Others attempts have been made for combining HMMs
and SOMs (Sel-Organizing Map of Kohonen) to form hybrid
models that contain the clustering power of SOM with the
sequential time series aspect of HMMs [6]. In many of
these hybrid architectures, SOM models are used as front-end
processors for vector quantization, and HMMs are then used
in higher processing stages. In [10], [11], a vector sequence
is associated with a node of SOM using DTW (dynamic time
warping) model. Others works exist and differ in the manner
of combination [12], [13], [14]. In [14] the authors proposean
original combined model which is the offspring of a crossover
between the SOM algorithm and the HMM theory. The
model’s core consists of a novel unified/hybrid SOM-HMM
algorithm where each cell of SOM map presents an HMM. The
model is coupled with a sequence data training method, that
blends together the SOM unsupervised learning and the HMM
dynamic programming algorithms. Of course, there is a lot
more litterature on HMMs and their applications than can be
covered here, but this survey wants to be representative of the
issues addressed here. However, in the other the organization
process are not integrated explicitly in HMM approach.

The aim of this paper is to built a new model for automating
and self-organizing the construction of a statistical generative
model of a data set of spatial sequences. In our model 3M-
SOM (Self-Organizing Maps as a Mixture Markov Models),
we consider that we have one Markov chain forming a grid.
The generation of the observed variable at a given time step is
conditional on the neighborhood states at that same time step.
Thus, a high proximity implies a high probability to contribute
to generation. This proximity is quantified using neighborhood
function. The same principle is used by Kohonen algorithm for
i.i.d data set [15]. In our case we focus about not i.i.d obser-
vations. We use Expectation-Maximization (EM) algorithm to
maximize the likelihood. The formalism that we present is
valid for all structure of graph model. In our case we prefer
to define the HMM architecture as map (grid).
This paper is organized as follows. In section II we present the
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model we propose 3M-SOM. In section III we discuss the self-
organizing process integrated in HMM. Finally, conclusions
and some future works are provided.

II. SELF-ORGANIZING MARKOV MODEL

We assume that the HMM architecture is a latticeC, which
has a discrete topology (discrete output space) defined by an
undirect graph. Usually, this graph is a regular grid in one or
two dimensions. We denote the number of cells (nodes,state)
in C asK. For each pair of cells (c,r) on the graph, the distance
δ(c, r) is defined as the length of the shortest chain linking
cells r andc. The architecture of 3M-SOM model is inspired
from probabilistic topographic clustering of i.i.d observations
using a self-organizing map model of Kohonen [16], [17], [18].

A. Mixture model and Self-Organizing

We assume that each elementxn of sequence observation
X = {x1,x2, ...,xn, ...,xN} is generated by the following
process: We start by associating to each cell (state)c ∈ C
a probability p(xn/c) where xn is a vector in the data
space. Next, we pick a cellc∗ from C according to the prior
probability p(c∗). For each cellc∗, we select an associated
cell c ∈ C following the conditional probabilityp(c/c∗). All
cells c ∈ C contribute to the generation of an elementxn

with p(xn/c) according to the proximity toc∗ described by
the probabilityp(c/c∗). Thus, a high proximity toc∗ implies
a high probabilityp(c/c∗), and therefore the contribution of
statec to the generation ofxn is high.

Let us introduce aK-dimensional binary random variable
as latent variablezn and z

∗
n having a 1-of-K representation

in which a particular elementznk and z∗nk is equal to 1 and
all other elements are equal to 0. Each componentz∗nk and
znk indicate a couple of state responsible for the generation
of an element of the observation. Using this notation we can
rewrite:

p(xn/c) ≡ p(xn/znc = 1) ≡ p(xn/zn)

and

p(c/c∗) = p(znc = 1/z∗nc∗ = 1) ≡ p(znc/z∗nc∗) ≡ p(zn/z∗n)

is assumed to be known. To introduce the self-organizing
process in the mixture model learning, we assume that
p(znc/z∗nc∗) can be defined as:

p(znc/z∗nc∗) =
KT (δ(c, c∗))

∑

r∈C K
T (δ(r, c∗))

,

where KT is a neighbourhood function depending on the
parameterT (called temperature):KT (δ) = K(δ/T ), whereK
is a particular kernel function which is positive and symmetric
( lim

|x|→∞
K(x) = 0). Thus K defines for each statez∗nc∗ a

neighbourhood region in the graphC. The parameterT allows
the control of the size of the neighbourhood influencing a
given cell on the mapC. As with the Kohonen algorithm for
i.i.d observations, we decrease the value ofT between two
valuesTmax andTmin.

For the better understanding we have used similar notations

as in the book [19, chap. 13]. We denote the set of all latent
variables byZ∗ andZ, with a corresponding rowz∗n andzn

associated to each sequence elementxn. Now assume that,
for each sequence observation inX , corresponds the coupe
of latent variableZ and Z

∗. We denote by{X,Z,Z∗} the
complete data set, and we refer to the observed dataX as
incomplete.

The set of all model parameters is denoted byθ, the
likelihood function is obtained from the joint distribution by
marginalizing over the latent variablesZ∗ andZ

p(X; θ) =
∑

Z∗

∑

Z

p(X,Z,Z∗; θ) (1)

Because the joint distributionp(X,Z,Z∗; θ) does not fac-
torize overn, we cannot treat each of the summations overz

∗
n

andzn independently.
An important concept for probability distributions over

multiple variables is that of conditional independence [20].
We assume that the conditional distribution ofX, given Z

∗

and Z, is such that it does not depend on the value ofZ
∗.

Often this assumtion is used for graphical model, so that
p(X/Z,Z∗) = p(X/Z). Thus the joint distribution of the
sequence observations is equal to:

p(X,Z∗,Z) = p(Z∗)p(Z/Z∗)p(X/Z)

thus we can rewrite the marginal distribution as

p(X; θ) =
∑

Z∗

p(Z∗)
∑

Z

p(Z/Z∗)p(X/Z) (2)

We note that

p(X/Z∗) =
∑

Z

p(Z/Z∗)p(X/Z) (3)

B. Cost function and optimization

Considering a mapC as Markov model, we allow the
probability distribution of z∗n to depend on the state of
the previous latent variablez∗n−1 through a conditional
distribution p(z∗n|z

∗
n−1). Because the latent variables are

K-dimensional binary variables, this conditional distribution
corresponds to a table of probabilities that we denote by
A. The elements ofA are known as transition probabilities
denoted byAjk = p(z∗nk = 1/z∗n−1,j = 1), with

∑

k Ajk = 1.
So the matrixA has maximum ofK(K − 1) independent
parameters. In our case the number of transitions are limited
by the grid (map). We can then write the conditional
distribution explicitly in the form

p(z∗n/z∗n−1,A) =

K
∑

k=1

K
∑

j=1

A
z∗

n−1,jz∗

nk

jk

All of the conditional distributions governing the latent
variables share the same parametersA.

The initial latent statez∗1 is special in that it does not
have a parent cell, and so it has a marginal distribution
p(z∗1) represented by a vector of probabilitiesπ with elements
πk = p(z∗1k = 1), so that p(z∗1|π) =

∏K
k=1 πz∗

1k , where
∑

k πk = 1.
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The model parameters are completed by defining the con-
ditional distributions of the observed variablesp(xn/zn; φ),
whereφ is a set of parameters governing the distribution which
is known as emission probabilities in HMM model.

Becausexn is observed, the distributionp(xn/zn, φ) con-
sists, for a given value ofφ, of a vector of K numbers
corresponding to theK possible states of the binary vector
zn. We can represent the emission probabilities in the form

p(xn/zn; φ) =

K
∏

k=1

p(xn; φk)znk

The joint probability distribution over sequence observed
variables and both latentZ andZ

∗ is then given by

p(X,Z∗,Z; θ) = p(Z∗;A) × p(Z/Z∗) × p(X/Z; φ)

p(X,Z∗,Z; θ) =

[

p(z∗1|π)
N
∏

n=2

p(z∗n/z∗n−1;A)

]

×

[

N
∏

i=1

p(zi/z
∗
i )

]

×

[

N
∏

m=1

p(xm/zm; φ)

]

(4)

θ = {π,A, φ} denotes the set of parameters governing
the model. Most of our discussion of the self organizing
Markov model will be independent of the particular choice
of the emission probabilities. It’s not obvious to maximizethe
likelihood function, because we obtain complex expressions
with no closed-form solutions. Hence, we use the expectation
maximization algorithm to find parameters for maximizing
the likelihood function. EM algorithm starts with some initial
selection for the model parameters, which we denote byθold.
In the E step, we take these parameter values and find the
posterior distribution of the latent variablesp(Z∗,Z/X, θold).
We then use this posterior distribution to evaluate the expecta-
tion of the logarithm of the complete-sequence data likelihood
function (4), as a function of the parametersθ, to give the
function Q(θ, θold) defined by:

Q(θ, θold) =
∑

Z∗

∑

Z

p(Z∗,Z/X; θold) ln p(X,Z∗,Z; θ)

Q(θ, θold) =
∑

Z∗

∑

Z

p(Z∗,Z/X; θold) ln p(Z∗; π,A)

+
∑

Z∗

∑

Z

p(Z∗,Z/X; θold) ln p(X/Z; φ)

+
∑

Z∗

∑

Z

p(Z∗,Z/X; θold) ln p(Z/Z∗)

Q(θ, θold) = Q1(π, θold) + Q2(A, θold)

+ Q3(φ, θold) + Q4 (5)

where

Q1(π, θold) =
∑

Z∗

∑

Z

K
∑

k=1

p(Z∗,Z/X; θold)z∗1k lnπk

Q2(A, θold) =
∑

Z∗

∑

Z

N
∑

n=2

K
∑

k=1

K
∑

j=1

p(Z∗,Z/X; θold)z∗n−1,jz
∗
n ln(Ajk)

Q3(φ, θold) =
∑

Z∗

∑

Z

N
∑

n=1

K
∑

k=1

p(Z∗,Z/X; θold)znk ln (p(xn; φk))

Q4 =
∑

Z∗

∑

Z

p(Z∗,Z/X; θold) ln p(Z/Z∗)

At this point, we introduce some notation. We will
use γ(z∗n, zn) to denote the marginal posterior distribu-
tion of a latent variablez∗n and zn, and ξ(z∗n−1, z

∗
n) =

p(z∗n−1, z
∗
n/X, θold) to denote the joint posterior distribution

of successive latent variables, so that

γ(z∗n, zn) = p(z∗n, zn|X; θold)

thus

γ(z∗n) =
∑

z

p(z∗n, zn|X; θold)

γ(zn) =
∑

z∗

p(z∗n, zn|X; θold)

γ(z∗nk) = E[z∗nk]

=
∑

z∗

∑

z

γ(z∗n, zn)z∗nk

=
∑

z∗

γ(z∗n)z∗nk

We observe that the objective function (5)Q(θ, θold) is defined
as a sum of four terms. The first termQ1(π, θold) depends on
initial probabilities; the second termQ2(A, θold) depends on
transition probabilitiesA; the third termQ3(φ, θold) depends
on φ, and the forth term is constant. MaximizingQ(θ, θold)
with respect toθ = {π,A, φ} can be performed separately.

1) Maximization ofQ1(π, θold): Initial probabilities:

Q1(π, θold) =
∑

Z∗

∑

Z

K
∑

k=1

p(Z∗,Z/X; θold)z∗1k lnπk

=
∑

Z∗

K
∑

k=1

p(Z∗/X; θold)z∗1k lnπk

=

K
∑

k=1

γ(z∗1k) lnπk

The update parameter is computed as follows:

πk =
γ(z∗1k)

∑K

j=1 γ(z∗1j)
(6)
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2) Maximization ofQ2(A, θold): Probability transitions :

Q2(A, θold) =

∑

Z∗

∑

Z

N
∑

n=2

K
∑

k=1

K
∑

j=1

p(Z∗,Z/X; θold)z∗n−1,jz
∗
n ln(Ajk)

=
∑

Z∗

N
∑

n=2

K
∑

k=1

K
∑

j=1

p(Z∗/X; θold)z∗n−1,jz
∗
n ln(Ajk)

=

N
∑

n=2

K
∑

k=1

K
∑

j=1

ξ(z∗n−1,jz
∗
n) ln(Ajk)

The update parameter is computed as follows:

Ajk =

∑N

n=2 ξ(z∗n−1,j , z
∗
nk)

∑K

l=1

∑N

n=2 ξ(z∗n−1,j , z
∗
nl)

(7)

where

ξ(z∗n−1,j , z
∗
n,k) = E[z∗n−1,jz

∗
nk] =

∑

z∗

γ(z∗)z∗n−1,jz
∗
n,k

3) Maximization ofQ3(φ, θold): Emission probabilities:

Q3(φ, θold) =

∑

Z∗

∑

Z

N
∑

n=1

K
∑

k=1

p(Z∗,Z/X; θold)znk ln p(xn; φk)

=
∑

Z

N
∑

n=1

K
∑

k=1

p(Z/X; θold)znk ln p(xn; φk)

=

N
∑

n=1

K
∑

k=1

γ(znk) ln p(xn; φk)

In the case of spherical Gaussian emission densities we have
p(x/φk) = N (x;wk, σk), defined by its ”mean”wk, which
have the same dimension as input data, and its covariance
matrix, defined byσ2

kI where σk is the standard deviation
andI is the identity matrix. The maximization of the function
Q3(φ, θold) provides:

wk =

∑N
n=1 γ(znk)xn

∑N

n=1 γ(znk)
(8)

σ2
k =

∑N

n=1 γ(znk)||xn − wk||2

d
∑N

n=1 γ(znk)
(9)

whered is the dimension of the elementx.

The EM algorithm requires initial values for the parameters
of the emission distribution. One way to set these is first to
treat the data initially as i.i.d. and fit the emission density
by maximum likelihood, and then use the resulting values to
initialize the parameters for EM.

C. The forward-backward algorithm: E-step

Next we seek an efficient procedure for evaluating the
quantitiesγ(z∗n), γ(zn) andξ(z∗n−1, z

∗
n), corresponding to the

E step of the EM algorithm. In the particular context of the
hidden Markov model, this is known as the forward-backward

algorithm [21], or the Baum-Welch algorithm [22], [23]. In
our case it can be renamed topological forward-backward
algorithm, because we use the graph structure to organize the
sequential data. Some formula are similar if we don’t use the
graph structure. We will use the notationsα(z∗nk) andα(znk)
to denote the value ofα(z∗) andα(z) whenz∗nk = 1, znk = 1
with an analogous notations ofβ.

γ(z∗n) = p(z∗n/X) =
p(X|z∗n)p(z∗n)

p(X)

=
p(x1, ...,xn, z∗n)p(xn+1, ...,xN/z∗n)

p(X)

γ(z∗n) =
α(z∗n)β(z∗n)

p(X)

Using the similar decomposition we obtain

γ(zn) =
α(zn)β(zn)

p(X)

The values ofα(z∗n) and α(zn) are calculated by forward
recursion as follows:

α(z∗n) =

[

∑

z

p(xn/zn)p(zn/z∗n)

]

×
∑

z
∗
n−1

α(z∗n−1)p(z∗n|z
∗
n−1) (10)

and

α(zn) = p(xn|zn)
∑

z∗
n

p(zn/z∗n) (11)





∑

z
∗
n−1

α(z∗n−1)p(z∗n|z
∗
n−1)

∑

zn−1

p(zn−1|z
∗
n−1)





wherep(zn/z∗n) = p(znc = 1/z∗nc∗ = 1) = KT (δ(c,c∗))
∑

r∈C
KT (δ(r,c∗))

.

To start this recursion, we need an initial condition that is
given by

α(z∗1) = p(x1, z
∗
1) = p(z∗1)

[

∑

z1

p(x1/z1)p(z1/z
∗
1)

]

α(z1) = p(x1, z1) = p(x1/z1)





∑

z
∗
1

p(z∗1)p(z1/z
∗
1)





The value ofβ(z∗n), are calculated by backward recursion
as follows:

β(z∗n) =
∑

z
∗
n+1

β(z∗n+1)p(xn+1/z
∗
n+1)p(z∗n+1/z

∗
n) (12)

β(zn) =
1

p(zn)

∑

z∗
n

p(z∗n)p(zn/z∗n)
∑

zn+1

∑

z
∗
n+1

(13)

p(zn+1/z
∗
n+1)β(z∗n+1)p(xn+1/z

∗
n+1)p(z∗n+1/z

∗
n)

where

p(xn+1/z
∗
n+1) =

[

∑

z

p(xn+1/zn+1)p(zn+1/z
∗
n+1)

]
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p(zn) =
∑

z∗
n

p(z∗n)p(zn/z∗n)

and

p(zn+1/z
∗
n+1) = p(zn+1,c = 1/z∗n+1,c∗ = 1)

=
KT (δ(c, c∗))

∑

r∈C KT (δ(r, c∗))

Again we need a starting condition for the recursion, a value
for β(z∗N ) = 1 and β(zN ) = 1. This can be obtained by
settingn = N in (expression 10).

Next we consider the evaluation of the quantities
ξ(z∗n−1, z

∗
n) which correspond to the values of the conditional

probabilitiesp(z∗n−1, z
∗
n/X) for each of theK × K settings

for (z∗n−1, z
∗
n). Using the applying Bayes theorem, we obtain

ξ(z∗n−1, z
∗
n) = p(z∗n−1, z

∗
n/X)

=
p(X/z∗n−1, z

∗
n)p(z∗n−1, z

∗
n)

p(X)

ξ(z∗n−1, z
∗
n) =

α(z∗n−1) [
∑

z
p(xn/zn)p(zn/z∗n)]

p(X)

×
p(z∗n/z∗n−1)β(z∗n)

p(X)

If we sum both sides ofα(z∗) over zN , we obtainp(X) =
∑

zN
α(zN ). Then we compute the forwardα recursion and

the backwardβ recursion and use the results to evaluateγ and
ξ(z∗n−1, z

∗
n). We use these results to compute a new parameter

model θ using the M-step equations (6, 7, 8, 9). These both
steps are repeated until some convergence criterion is satisfied.

III. D ISCUSSION ABOUT TOPOLOGICALMARKOV MODEL

ORGANIZATION

The 3M-SOM model allows us to estimate the parameters
maximizing the log-likelihood function for a fixedT . As in
the topological clustering algorithm, we have to decrease the
value ofT between two valuesTmax andTmin, to control the
size of the neighbourhood influencing a given state of HMM
on the graph (grid) and at same time. For eachT value, we get
a likelihood functionQT , and therefore the expression varies
with T . When decreasingT , the model of 3M-SOM will be
defined in the following way:

• The first step corresponds to highT values. In this case,
the influencing neighbourhood of each statez

∗ on the
HMM graph (grid) is important and corresponds to higher
values ofKT (δ(c, r)). Formulas use a high number of
state and hence high number of observations to estimate
model parameters. This step provides the topological
order of Markov model.

• The second step corresponds to smallT values. The
number of observations in formulas is limited. Therefore,
the adaptation is very local. The parameters are accurately
computed from the local density of the data. In this
case we can consider that we converge to traditional
HMM (without using neighborhood). Recall that cluster-
ing based on mixture model for i.i.d. observations is a
special case of the HMM [19, chap 9].

IV. CONCLUSION

In this paper, we presented an original model that could
be applied to more advanced/complex data set (not i.i.d
observations, time series). We provides here the mathematical
formulation of our model. We present one way to estimate
the parameter using EM algorithm with Baum-Welch algo-
rithm. Visualization techniques and refined graphic displays
can be developed to illustrate the power of 3M-SOM to to
explore the not i.i.d data. As has been stressed, the 3M-SOM
unsupervised topographic learning algorithm is purely batch
learning. An extension to an on-line mode version is quite
straightforward. Finally, providing an equivalent to the 3M-
SOM for applications requiring Bernoulli emission probability
density functions should be interesting task.
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Statistics on Graphs, Exponential Formula and
Combinatorial Physics

Gérard H. E. Duchamp, Laurent Poinsot, Silvia Goodenough and Karol A. Penson

Abstract—This paper concerns a famous combinatorial for-
mula known as the “exponential formula” which occurs quite
naturally in many physical contexts. Its meaning is the following:
the exponential generating function of a whole structure is equal
to the exponential of those of connected substructures. Keeping
this descriptive statement as a guideline, we develop a general
framework to handle many different situations in which the
exponential formula can be applied.

Index Terms—Combinatorial physics, Exponential generating
function, Partial semigroup, Experimental mathematics.

I. INTRODUCTION

Applying the exponential paradigm one can feel sometimes
incomfortable wondering whether “one has the right” to do so
(as for example for coloured structures). The following paper
is aimed at giving a rather large framework where this formula
holds.

Exponential formula can be traced back to works by
Touchard and Ridell & Uhlenbeck [16], [13]. For an other
exposition, see for example [2], [4], [7], [15].

We are interested to compute various examples of EGF
for combinatorial objects having (a finite set of) nodes (i.e.
their set-theoretical support) so we use as central concept the
mapping σ which associates to every structure, its set of (labels
of its) nodes.
We need to draw what could be called “square-free decom-
posable objects” (SFD). This version is suited to our needs
for the “exponential formula” and it is sufficiently general to
contain, as a particular case, the case of multivariate series.

II. PARTIAL SEMIGROUPS

Let us call partial semigroup a semigroup with a partially
defined associative law (see for instance [3] for usual semi-
groups and [1], [11], [14] for more details on structures with
a partially defined binary operation). More precisely, a partial
semigroup is a pair (S, ∗) where S is a set and ∗ is a (partially
defined) function S×S → S such that the two (again partially
defined) functions S × S × S → S

(x, y, z) 7→ (x ∗ y) ∗ z and (x, y, z) 7→ x ∗ (y ∗ z) (1)
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UMR 7030, 99 av. J.-B. Clément, F 93430 Villetaneuse, France (emails:
{ghed,laurent.poinsot}@lipn-univ.paris13.fr, goodenou@iutv.univ-paris13.fr).

K. A. Penson is affiliated to Laboratoire de Physique Théorique de la
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coincide (same domain and values). Using this requirement
one can see that the values of the (partially defined) functions
Sn → S

(x1, · · · , xn) 7→ ET (x1, · · · , xn) (2)

obtained by evaluating the expression formed by labelling by
xi (from left to right) the ith leaf of a binary tree T with n
nodes and by ∗ its internal nodes, is independant of T . We
will denote x1 ∗ · · · ∗ xn their common value. In this paper
we restrict our attention to commutative semigroups. By this
we mean that the value x1 ∗ · · · ∗ xn does not depend on the
relative order of the xi. A nonempty partial semigroup (S, ∗)
has a (two-sided and total) unit ε ∈ S if, and only if, for every
ω ∈ S, ω ∗ ε = ω = ε ∗ ω. Using associativity of ∗, it can be
easily checked that if S has a unit, then it is unique.

Example 2.1: Let F be a set of sets (resp. which contains
∅ as an element) and which is closed under the disjoint sum
t, i.e., if A,B ∈ F such that A ∩ B = ∅, then A ∪ B(=
AtB) ∈ F . Then (F,t) is a partial semigroup (resp. partial
semigroup with unit).

III. SQUARE-FREE DECOMPOSABLE PARTIAL SEMIGROUPS

Let 2(N+) be the set of all finite subsets of the positive
integers N+ and (S,⊕) be a partial semigroup with unit
equipped with a mapping σ : S → 2(N+), called the (set-
theoretic) support mapping. Let D be the domain of the ⊕.
The triple (S,⊕, σ) is called square-free decomposable (SFD)
if, and only if, it fulfills the two following conditions.
• Direct sum (DS):

1) σ(ω) = ∅ iff ω = ε;
2) D = {(ω1, ω2) ∈ S2 : σ(ω1) ∩ σ(ω2) = ∅};
3) For all ω1, ω2 ∈ S, if (ω1, ω2) ∈ D then σ(ω1 ⊕

ω2) = σ(ω1) ∪ σ(ω2).
• Levi’s property (LP): For every ω1, ω2, ω

1, ω2 ∈ S such
that (ω1, ω2), (ω1, ω2) ∈ D and ω1 ⊕ ω2 = ω1 ⊕ ω2,
there are ωji ∈ S for i = 1, 2, j = 1, 2 such that
(ω1
i , ω

2
i ), (ωj1, ω

j
2) ∈ D, ωi = ω1

i ⊕ω2
i and ωj = ωj1⊕ωj2

for i = 1, 2 and j = 1, 2.
Note 3.1: The second and third conditions of (DS) imply

that σ(ω1 ⊕ ω2) = σ(ω1) t σ(ω2) whenever (ω1, ω2) ∈ D
(which means that σ(ω1) ∩ σ(ω2) = ∅), where t denotes the
disjoint sum.

Example 3.2: As example of this setting we have:

1) The positive square-free integers, σ(n) being the set
of primes which divide n, the atoms being the prime
numbers.
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2) All the positive integeres (S = N+), under the usual
integer multiplication, σ(n) being the set of primes
which divides n.

3) Graphs, hypergraphs, (finitely) coloured, weighted
graphs, with nodes in N+, σ(G) being the set of nodes
and ⊕ the juxtaposition (direct sum) when the set of
nodes are mutually disjoint.

4) The set of endofunctions f : F → F where F is a finite
subset of N+.

5) The (multivariate) polynomials in N[X], X = {xi : i ∈
I}, with I ⊆ N+, being a nonempty set of (commuting
or not) variables, with σ(P ) = Alph(P ) the set of
indices of variables that occur in a polynomial P , and
⊕ = +.

6) For a given finite or denumerable field, the set of
irreducible monic polynomials is denumerable. Arrange
them in a sequence (Pn)n∈N+ , then the square-free
monic (for a given order on the variables) polynomials
is SFD, σ(P ) := {n ∈ N+ : Pn divides P} and ⊕
being the multiplication.

7) Rational complex algebraic curves; σ(V ) being the set
of monic irreducible bivariate polynomials vanishing on
V .

In what follows we write ⊕ni=1ωi instead of ω1 ⊕ · · · ⊕ ωn
(if n = 0, then ⊕ni=1ωi = ε) and we suppose that (S,⊕, σ) is
SFD for the two following easy lemmas.

Lemma 3.3: Let ω1, . . . , ωn ∈ S such that ⊕ni=1ωi is
defined. Then for every i, j ∈ {1, . . . , n} such that i 6= j,
it holds that σ(ωi) ∩ σ(ωj) = ∅. In particular, if none ωk is
equal to ε, then ωi 6= ωj for every i, j ∈ {1, . . . , n} such that

i 6= j. Moreover σ(⊕ni=1ωi) =
n⊔
i=1

σ(ωi).

Lemma 3.4: Let (ωi)ni=1 be a finite family of elements of S
with pairwise disjoint supports. Suppose that for i = 1, · · · , n,
ωi = ⊕ni

k=1ω
k
i , where (ωki )ni

k=1 is a finite family of elements
of S. Then ⊕ni=1ωi = ⊕ni=1

(⊕ni

k=1ω
k
i

)
.

These lemmas are useful to define the sum of two or more
elements of S using respective sum decompositions.

Now, an atom in a partial semigroup with unit S is any
object ω 6= ε which cannot be split, formally

ω = ω1 ⊕ ω2 =⇒ ε ∈ {ω1, ω2} . (3)

The set of all atoms is denoted by atoms(S). Whenever
the square-free decomposable semigroup S is not trivial, i.e.,
reduced to {ε}, atoms(S) is not empty.

Example 3.5: The atoms obtained from examples 3.2:
1) The atoms of 3.2.2 are the primes.
2) The atoms of 3.2.3 are connected graphs.
3) The atoms of 3.2.4 are the endofunctions for which the

domain is a singleton.
4) The atoms of 3.2.5 are the monomials.
The prescriptions (DS,LP) imply that decomposition of

objects into atoms always exists and is unique.
Proposition 3.6: Let (S,⊕, σ) be SFD. For each ω ∈ S

there is one and only one finite set of atoms A = {ω1, · · · , ωn}
such that ω = ⊕ni=1ωi. One has A = ∅ iff ω = ε.

IV. EXPONENTIAL FORMULA

In this section we consider (S,⊕, σ) as a square-free
decomposable partial semigroup with unit.

In the set S, objects are conceived to be “measured” by
different parameters (data in statistical language). So, to get a
general purpose tool, we suppose that the statistics takes its
values in a (unitary) ring R of characteristic zero that is to say
which contains Q (as, to write exponential generating series
it is convenient to have no trouble with the fractions 1

n! ). Let
then c : S → R be the given statistics. For F a finite set and
each X ⊆ S, we define

XF := {ω ∈ X : σ(ω) = F} . (4)

In order to write generating series, we need
1) that the sums c(XF ) :=

∑
ω∈XF

c(ω) exist for every finite

set F of N+ and every X ⊆ S;
2) that F → c(XF ) would depend only of the cardinality

of the finite set F of N+, for each fixed X ⊆ S;
3) that c(ω1 ⊕ ω2) = c(ω1).c(ω2).

We formalize it in

(LF) Local finiteness. — For each finite set F of N+, the
subset SF of S is a finite set.
(Eq) Equivariance. —

card(F1) = card(F2) =⇒ c(atoms(S)F1) = c(atoms(S)F2) .
(5)

(Mu) Multiplicativity. —

c(ω1 ⊕ ω2) = c(ω1).c(ω2) . (6)

Note 4.1: a) In fact, (LF) is a property of the set S, while
(Eq) is a property of the statistics. In practice, we choose
S which is locally finite and choose equivariant statistics for
instance

c(ω) = x(number of cycles)y(number of fixed points)

for some variables x, y.

b) More generally, it is typical to take integer-valued
partial (additive) statistics c1, · · · ci, · · · , cr (for every ω ∈ S,
ci(ω) ∈ N) and set c(ω) = x

c1(ω)
1 x

c2(ω)
2 · · ·xcr(ω)

r .

c) The set of example 3.2.2 is not locally finite, but other
examples satisfy (LF): for instance 3.2.3 if one asks that the
number of arrows and weight is finite, 3.2.1.

A multiplicative statistics is called proper if c(ε) 6= 0. It is
called improper if c(ε) = 0. In this case, for every ω ∈ S,
c(ω) = 0. Indeed c(ω) = c(ω ⊕ ε) = c(ω)c(ε) = 0.

If R is a integral domain and if c is proper,
then c(ε) = 1 because c(ε) = c(ε ⊕ ε) = c(ε)2,
therefore 1 = c(ε). Note that for each X ⊆ S,

c(X∅) =
∑
ω∈X∅

c(ω) =
{
c(ε) if ε ∈ X
0 if ε 6∈ X . For every

finite subset X of S, we also define c(X) :=
∑
ω∈X

c(ω), then
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we have in particular c(∅) = 0 (different from c(S∅) = c({ε})
if c is proper). The requirement (LF) implies that for every
X ⊆ S and every finite set F of N+, c(XF ) is defined as
a sum of a finite number of terms because XF ⊆ SF , and
therefore XF is finite.

Now, we are in position to state the exponential formula as
it will be used throughout the paper. Let us recall the usual
exponential formula for formal power series in R[[z]] (see [10],
[15] for more details on formal power series). Let f(z) =∑
n≥1

fnz
n. Then we have

ef =
∑
n≥0

an
zn

n!
(7)

where
an =

∑
π∈Πn

∏
p∈π

fcard(p) (8)

with Πn being the set of all partitions of [1..n] (in particular

for n = 0, a0 = 1) and ez =
∑
n≥0

zn

n!
∈ R[[z]].

In what follows [1..n] denotes the interval {j ∈ N+ : 1 ≤ j ≤
n}, reduced to ∅ when n = 0. Let (S,⊕, σ) be locally finite
SFD and c be a multiplicative equivariant statistics. For every
subset X of S one sets the following exponential generating
series

EGF(X; z) =
∞∑
n=0

c(X[1..n])
zn

n!
. (9)

Theorem 4.2 (exponential formula): Let S be a locally fi-
nite SFD and c be a multiplicative equivariant statistics. We
have

EGF(S; z) = c(ε)− 1 + eEGF(atoms(S);z) . (10)

In particular if c(ε) = 1 (for instance if c is proper and R is
an integral domain),

EGF(S; z) = eEGF(atoms(S);z) . (11)

Proof — Let n = 0. Then the unique element of S∅ is ε.
Therefore c(S∅) = c(ε). Now suppose that n > 0 and let ω ∈
S[1..n]. According to proposition 3.6, there is a unique finite
set {α1, . . . , αk} ⊆ atoms(S) such that ω = ⊕ki=1αi. By
lemma 3.3, {σ(αi) : 1 ≤ i ≤ k} is a partition of [1..n] into k
blocks. Therefore ω ∈ atoms(S)P1

⊕· · ·⊕atoms(S)Pk
where

Pi = σ(αi) for i = 1, . . . , k. We can remark that α1⊕· · ·⊕αk
is well-defined for each (α1, . . . , αk) ∈ atoms(S)P1

× · · · ×
atoms(S)Pk

since the supports are disjoint. Now, one has,
thanks to the partitions of [1..n]

S[1..n] =
⊔
π∈Πn

⊕
p∈π

atoms(S)p (12)

c(S[1..n]) =
∑
π∈Πn

∏
p∈π

c(atoms(S)p) (13)

as, for disjoint (finite) sets F and G of N+, it is easy to
check that c(XF ⊕ XG) = c(XF )c(XG) for every X ⊆ S
and because the disjoint union as only a finite number of

factors. Therefore due to equivariance of c on sets of the form
atoms(S)F , one has

c(S[1..n]) =
∑
π∈Πn

∏
p∈π

c(atoms(S)[1..card(p)]) . (14)

But c(atoms(S)[1..card(p)]) is the card(p)th coefficient of the
series EGF(atoms(S); z). Therefore due to the usual expo-
nential formula, EGF(S; z) = c(ε) − 1 + eEGF(atoms(S);z).
Now if c(ε) = 1, then we obtain EGF(S; z) =
eEGF(atoms(S);z).

V. TWO EXAMPLES

The examples provided here pertain to the class of la-
belled graphs where the “classic” exponential formula applies,
namely Burnside’s Classes1 Burna,b, defined, for 0 ≤ a < b
two integers, as the class of graphs of numeric endofunctions
f such that

fa = f b (15)

where fn denotes the nth power with respect to functional
composition. Despite of its simplicity, there are still
(enumerative combinatorial) open problems for this class and
only B1,`+1 gives rise to an elegant formula [5], [15] (see
also [8], for the idempotent case: ` = 1 and compare to exact
but non-easily tractable formulas in [2] for the general case in
the symmetric semigroup, and in [9] for their generalization
to the wreath product of the symmetric semigroup and a finite
group).

The second example: the class of finite partitions which
can be (and should here) identified as graphs of equiva-
lence relations on finite subsets F ⊆ N+. Call this class
“Stirling class” as the number of such graphs with support
[1..n] and k connected components is exactly the Stirling
number of the second kind S2(n, k) and, using the statistics
x(number of points)y(number of connected components), one ob-
tains ∑

n,k≥0

S2(n, k)
xn

n!
yk = ey(ex−1) . (16)

Examples of this kind bring us to the conclusion that bivari-
ate stastistics like Burna,b(n, k), S2(n, k) or S1(n, k) (Stirling
numbers of the second and first kind) are better understood
through the notion of one-parameter group, conversely such
groups naturally arinsing in Combinatorial Physics lead to
such statistics and new ones some of which can be interpreted
combinatorially.

VI. GENERALIZED STIRLING NUMBERS IN
COMBINATORIAL PHYSICS

Many tools of Quantum Mechanics bail down to the con-
sideration of creation and annihilation operators which will be

1The name is related to the notion of free Burnside semigroups, namely
the quotient of the free semigroup A+, where A is a finite alphabet, by the
the smallest congruence that contains the relators ωn+m = ωn, ω ∈ A+.
For more details see [12].
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here denoted respectively a† and a. These two symbols do not
commute and are subject to the unique relation

[a, a†] = 1 . (17)

The complex algebra generated by these two symbols and
this unique relation, the Heisenberg-Weyl algebra, will be
here denoted by HWC. The consideration of evolution (one-
parameter) groups eλΩ where Ω =

∑
ω∈HWC

α(ω)ω is an

element of HWC, with all - but a finite number of them -
the complex numbers α(ω) equal to 0, and ω a word on the
alphabet {a, a†} leads to the necessity of solving the Normal
Ordering Problem, i.e., the reduction of the powers of Ω to
the form

Ωn =
∑

βi,j(a†)iaj . (18)

In the sequel, Normal(Ωn) denotes such a sum. This problem
can be performed with three indices in general and two in the
case of homogeneous operators that is operators for which the
“excess” e = i − j is constant along the monomials (a†)iaj

of the support (for which βi,j 6= 0). Thus, for

Ω =
∑
i−j=e

βi,j(a†)iaj (19)

one has, for all n ∈ N,

Normal(Ωn) = (a†)ne
∞∑
k=0

SΩ(n, k)(a†)kak (20)

when e ≥ 0, and

Normal(Ωn) =

( ∞∑
k=0

SΩ(n, k)(a†)kak
)
an|e| (21)

otherwise. It turns out that, when there is only one annihilation,
one gets a formula of the type (x, y are formal commutative
variables)∑

n,k≥0

SΩ(n, k)
xn

n!
yk = g(x)ey

∑
n≥1

SΩ(n,1) xn

n! (22)

which is a generalization of formula (16). A complete study
of such a procedure and the details to perform the solution of
the normal ordering problem may be found in [6].

VII. CONCLUSION

In this paper, we have broadened the domain of application
of the exponential formula, a tool originated from statistical
physics. This broadening reveals us together with the essence
of “why this formula works” a possibility of extension to
denominators other than the factorial and also a link with one-
parameter groups whose infinitesimal generators are (formal)
vector fields on the line. The general combinatorial theory of
the correspondence (vector fields↔ bivariate ststistics) is still
to be done despite the fact that we have already a wealth of
results in this direction.
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Exponential random graphs as models of overlay
networks
Moez Draief

In this talk, we describe a Metropolis-Hastings type algorithm to construct optimised overlay net-
works in the context of Peer-to-Peer systems to provide load balancing and minimise communica-
tion costs. We show that the graphs obtained are distributed according to a Gibbs like distribution
?(G) = 1

Z e
−βsumid

2
i on a subset of of the set of connected graphs with n nodes, di being the degree

of node i. Using analogies with the configuration model for graph generation we derive a number of
asymptotic results for the properties of such graphs. More precisely we show that the degrees are
concentrated around their mean value, derive asymptotic results on the number of edges crossing
a graph cut and use these results (i) to compute the graph expansion and conductance, and (ii) to
analyse the graph resilience to random failures.

Coding rhombus tilings by multidimensional words: a
first attempt

Damien Jamet

Since the discovery of quasicrystals, rhombus tilings have provided well adapted models for qua-
sicrystalline alloys. In the present work, we focus on a particular class of rhombus tilings, namely
the ones one can code with a 2D-sequence over the three-letter alphabet 1,2,3. Among these tilings,
we deeply investigate the ones coding radomized rhombus tilings and the ones coding the trajecto-
ries of an element of the torus R/Z under the action of two irrational rotations. Firstly, we study
the recognition problem of 2D-sequences coding a rhombus tiling: given a 2D-sequence, does it
represent a rhombus tiling ? We then show that the set of such sequences is of finite type, that
is, a sequence coding a rhombus tiling is entirely characterized by a finite set of its configurations.
In the second part of this talk, we investigate the combinatoric properties of such tilings such
as, for instance, the enumeration of local configurations. We will end this talk by stating several
perspectives and challenges of these researchs, in computer science as well as in mathematics.
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Synchronization of countable cellular systems,
localization of quasi-periodic solutions of

autonomous differential systems
Laurent Gaubert

Abstract—We address the question of frequencies locking in
coupled differential systems, related to the existence of quasi-
periodic solutions of differential systems. Our tool is what we
call “cellular systems”, quite general as it deals with countable
number of coupled systems in some general Banach spaces.
Moreover, the inner dynamics of each subsystem does not have
to be specified. We reach some general results about how the
frequencies locking phenomenon is related to the structureof
the coupling map, and therefore about the localization of quasi-
periodic solutions of some differential systems that may beseen
as cellular systems. This paper gives some explanations about
how and why synchronized behaviors naturally occur it a wide
variety of complex systems.

Index Terms—coupled differential systems, synchronization,
frequencies locking.

I. I NTRODUCTION

SYNCHRONIZATION is an extremely important and in-
teresting emergent property of complex systems. The first

example found in literature goes back to the 17th century with
Christiaan Huygens’ work [11], [2]. This kind of emergent
behavior can be found in artificial systems as well as in
natural ones and at many scales (from cell to whole ecological
systems). Biology abounds with periodic and synchronized
phenomena and the work of Ilya Prigogine shows that such
behaviors arise within specific conditions: a dissipative struc-
ture generally associated to a nonlinear dynamics [20]. Bio-
logical systems are open, they evolve far from thermodynamic
equilibrium and are subject to numerous regulating processes,
leading to highly nonlinear dynamics. Therefore periodic
behaviors appear (with or without synchronization) at any
scale [21]. More generally, life itself is governed by circadian
rhythms [9]. Those phenomena are as much attractive as they
are often spectacular: from cicada populations that appear
spontaneously every ten or thirteen years [10] or networks
of heart cells that beat together [17] to huge swarms in
which fireflies, gathered in a same tree, flash simultaneously
[3]. This synchronization phenomenon occupies a privileged
position among emergent collective phenomena because of its
various applications in neuroscience, ecology, earth Science,
for instance [27], [25], [16], as well as in the field of coupled
dynamical systems, especially through the notion of chaotic
systems’ synchronization [18], [7] and the study of coupled-
oscillators [13]. This wide source of examples leads the field

L. Gaubert is with Centre Européen de Réalité Virtuelle,LISYC EA3883
UBO/ENIB, 25 rue Claude Chappe, 29280 Plouzané, France, e-mail:
(gaubert@enib.fr).

Manuscript received April 19, 2005; revised January 11, 2007.

of research to be highly interdisciplinary, from pure theory to
concrete applications and experimentations.

The classical concept of synchronization is related to the
locking of the basic frequencies and instantaneous phases of
regular oscillations. One of the most successful attempts to
explore this emergent property is due to Kuramoto [14], [15].
As in Kuramoto’s work, those questions are usually addressed
by studying specific kinds of coupled systems (see for instance
[5], [22], [8]). Using all the classical methods available in
the field of dynamical systems, researchers study specific
trajectories of those systems in order to get information on
possible attracting synchronized state [28], [13], [22], [19],
[8], [12].

The starting point of this work was the following question :
“Why synchronization is such a widely present phenomena ?”
In order to give some mathematical answer to this question,
the first step is to build a model of coupled systems that
is biologically inspired. This is what is done in the second
section, after having described some basic material, we define
what we call cellular systems and cellular coupler. If one
would summarize the specificities of cellular system, one could
say that each cell (subsystem) of a cellular system receives
information from the whole population (the coupled system)
according to some constraints:

• a cell has access to linear transformations of all the others
cell’s states

• the way this information is gathered depends (not lin-
early) on the cell’s state itself

In other words, a cell interprets its own environment via the
states of the whole population and according to its own state.

It’s a bit surprising that despite this model arising very
naturally, it gives a good framework to address the main
question. Indeed, in the third section we expose a localization
result concerning periodic trajectories of cellular systems,
according to some sub-periods dependencies. It exhibits some
links between the coupler’s properties and the structure of
periodic trajectories.

The fourth section gives some example of general results
that may be proved using the localization lemma. Moreover,
it goes out of the scope of coupled systems as synchronization
is strongly related to the more abstract field of dynamical
systems. If one thinks about presence of regular attractors(in
opposition with strange attractors) in a differential system, one
may for example classify those as:

• point attractor
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• limit cycle
• limit torus

Those attractors can be related to coupled systems in an
obvious way: roughly speaking, a point attractor may be
seen as a solution of coupled systems for which each of
the subsystems has a constant behavior. Similarly, a limit
cycle may be thought as the situation where every subsystem
oscillate, all frequencies among the whole system being
locked. A limit torus is a similar situation which differs from
the previous one by the fact that the frequencies are not locked
(non commensurable periods of a quasi-periodic solution of
the whole coupled system). Hence, the three previous cases
may be translated into the coupled dynamical systems context:

• point attractor↔ constant trajectories
• limit cycle ↔ periodic trajectories, locked frequencies
• limit torus↔ periodic trajectories, unlocked frequencies

Therefore, we deduce some results about the localization of
solutions of the third type, quasi-periodic solutions, using the
point of view of coupled dynamical systems. The results of
this third section may help to understand why the second case
is the most observed in natural systems, which may be seen as
coupled dynamical systems, at many levels. Indeed, the section
ends with a sketch of how the cellular systems point of view
may be applied to a wide class of differential systems in order
to systematically address those questions with algebraic tools.

II. BASIC MATERIAL AND NOTATIONS

As our model is inspired by cellular tissues, some terms
clearly come from the vocabulary used to describe those kinds
of complex systems.

A. Model of population behavior

Here are the basic compounds and notations of our model:
A populationI is a countable set, so we may consider it

as a subsetI ⊂ N. Moreover, as it’s only the cardinality ofI
that’s important,I may be chosen as an interval of integer.
Elements ofI are calledcells.

We suppose that the systems we want to study are valued
in some Banach spaces. Thus, for anyi ∈ I, (Ei, ‖.‖i) is a
Banach space, and thestate spaceof I is the vector space
S =

∏
i∈I

Ei.

We will sometimes identifyEi with∏
j<i

{0} × Ei ×
∏
j>i

{0} ⊂ S

and then consider it as a subspace ofS.

We denoteSb the space of uniformly bounded states:

Sb =
{

x ∈ S, sup
i∈I

‖xi‖i < ∞
}

This subspace will sometimes be useful as, embodied with the
norm ‖x‖∞ = supi∈I ‖xi‖i, it’s a Banach space, allowing

the classic PicardLindelöf theorem to be valid.

Given an intervalΩ ⊂ R, a trajectory x of I is an element
of C∞ (Ω,S). Suchx is then described by a family ofC∞
applications(xi)i∈I such that∀i ∈ I:

xi : Ω −→ Ei

t 7−→ xi(t)

The space of trajectories onI is denotedT .

A period on I is a mapτ : I → R∗+. A trajectoryx ∈ T
is said to beτ -periodic if for any i ∈ I, xi is τ(i)-periodic
and non constant.τ(i) is then said to bea period of the cell
i. The space of such trajectories is writtenTτ .

Each cell i is supposed to behave according to an au-
tonomous differential system given by a vector fieldFi : Ei →
Ei. Thus, given a family of functions{Fi}i∈I we define the
vector fieldFI on S:

FI : S −→ S
x 7−→ FI(x)

with, for any i ∈ I:

[FI(x)]i = Fi(xi)

Remark. The definition of periodic trajectory handle both
classical concepts of periodic and quasi-periodic solutions of a
differential system. From the point of view of coupled systems,
it describes the situation in which each subsystem of the
whole system oscillates. We stress the point that a period of
a periodic trajectory needs not to be a minimal period (τ(i)
isn’t necessarily a generator of the group of periods ofxi).
Nevertheless, our definition ofTτ avoid any trajectory which
contains some constant component (none of thexi can be a
constant map) as they may be seen as degenerate (localized
into an “hyperplane” ofS).

We recall that a (finite) subset{τ1, . . . , τk} of R is said to be
rationally dependent if there exists some integersl1, . . . , lk
non all zero and such that:

l1τ1 + . . . + lkτk = 0

Then there exists a unique lowest common multiple (lcm) τ0

for which there exitsn1, . . . , nk such that:

n1τ1 = . . . = nkτk = τ0

An infinite set of real numbers is said to be rationally depen-
dent if any finite subset is rationally dependent.

Now, any periodτ on I (or, equivalently, any periodic
trajectory) defines a equivalence relation onI as:

i ∼ j ⇔ {τ(i), τ(j)} is a dependent set

Hence we may consider the (countable) partitionI(τ) of I
into equivalence classes (K countable):

I(τ) = {Ik}k∈K
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B. Cellular coupler and cellular systems

In this section we build what we callcellular systemsby
way of cellular coupler. Most of the works always deal with
a specific way of coupling dynamical systems: one adds a
quantity (that models interactions between subsystems) tothe
derivative of the systems. This leads to equations with the
following typical shape (here, there are only two coupled
systems):

x′1(t) = F
(
x1(t)

)
+ G1

(
x1(t), x2(t)

)
x′2(t) = F

(
x2(t)

)
+ G2

(
x1(t), x2(t)

)
The functionsG1 and G2 are the coupling functions. The
problem is then restated in terms of phase-shift variables and
efforts are made to detect stable states and to prove their
stability.

Our approach to coupling is different. We study exclusively
a way of coupling where the exchanges are made on the
current state of the system. This means that the coupling
quantity applies inside the mapF , which leads us to the
following type of equation:

x′1(t) = F
(
x1(t) + H1(x1(t), x2(t))

)
(1)

x′2(t) = F
(
x2(t) + H2(x1(t), x2(t))

)
Remark.We stress the point that those two different ways of
handling coupled systems are quite equivalent in most cases.
Indeed, starting with the first two equations, as soon asG1

andG2 stay in the range ofF (which is likely if the coupling
functions are small), we can rewrite them in the second shape
involving H1 andH2.

The last kind of coupled systems is sometimes studied (for
instance in [12]) but never broadly (indeed, if one wants some
quantitative results about convergence of trajectories, one must
work with specific equations and dynamical systems). Even in
a few papers that are quite general (as the very interesting [24])
some strong assumptions are made (in [24] authors deal with
symmetric periodic solutions). The kind of coupled systems
we handle are a generalization of the one describe in equation
(1). Its general shape is:

x′i(t) = Fi

∑
j∈I

cij(xi(t))xj(t)


Each celli ∈ I holds it’s own differential system represented
by a mapFi (hence, all the dynamical systems are not forcibly
identical nor have the same shape, nor that they are weakly
coupled (as in the classical paper of Art Winfree [26]). A cell
i “interprets” it’s own environment by mean of the functions
cij .

Before giving the exact definition of a cellular coupler,
we recall that, asS may be seen as a module on the
ring

∏
i∈I

L(Ei), L(S) has to be understood as the space of

linear operators onS with coefficients in theL(Ei, Ej). Any

M ∈ L(S) may then be written as an infinite (ifI isn’t finite)
matrix:

M = [mij ](i,j)∈I2 , mij ∈ L(Ej , Ei)

In this context, here is the definition of a cellular coupler on
I:

Definition 1. A cellular coupling mapon I is a mapc:

c : S −→ L(S)
x 7−→ c(x)

such that the matrix[cij ](i,j)∈I2 satisfies:

1) ∀(i, j) ∈ I2, ∀x ∈ S, cij(x) depends only onxi

(so that we may consider it as a map
cij : Ei → L(Ej , Ei));

2) ∀i ∈ I, ∀xi ∈ Ei,
∑
j∈I

‖cij(xi)‖i < +∞

Then,c defines acellular couplerc̃ onI in the following way:

c̃ : S −→ S
x 7−→ c(x).x

In other words (for the sake of simplicity, we only take
examples with a finite population), for anyx ∈ S, the matrix
c(x) has the following shape:

c(x) =

 c11(x1) · · · c1k(x1)
...

. . .
...

ck1(xk) · · · ckk(xk)

 ∈ L(S)

And then :

c̃(x) = c(x).x =

 c11(x1).x1 + . . . + c1k(x1).xk

...
ck1(xk).x1 + . . . + ckk(xk).xk

 ∈ S
Now we can define a cellular system:

Definition 2. Let FI be a vector field onS given by a family
{Fi}i∈I of vector fields on theEi. Let c̃ a cellular coupler on
I. (I, FI , c̃) is called acellular system. A trajectory of this
system is a trajectoryx ∈ T that satisfies:

x′ = FI ◦ c̃(x) = FI
(
c(x).x

)
in other words:

∀i ∈ I, ∀t ∈ Ω, x′i(t) = Fi

∑
j∈I

cij(xi(t)).xj(t)


This equation may be naturally interpreted in biological

terms: the celli behaves according to a mean of the states of
all other cellsxj , but only its state defines how this mean is
computed (the cell interprets its own environment), and this
link state↔ interpreting functionhas no reason to be linear
in xi.

Remark. In order to avoid any confusion, we stress the
differences between trajectory and solution regarding periodic
behaviors. In this paper, periodic trajectory has a specific
meaning related to the cells. A periodic trajectory of a cellular
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system is a trajectory for which each cell has a periodic behav-
ior. From the classic point of view of differential equations,
periodic and quasi-periodic solutions of the cellular system
are periodic trajectories. In the case of a periodic solution,
τ(I) admit a lcm, which false in the case of a quasi-periodic
solution.

In the next section we start of by exposing algebraic links
between a cellular coupler and a periodic trajectory, and then
we turn to our localization lemma.

III. L OCALISATION LEMMA

If M is a matrix indexed onI2, and if J ⊂ I, we write
J = I − J and we defineMJ as the matrix:

M = (mij)(i,j)∈J×J

For x ∈ S (resp.x ∈ T ) we denotexJ the vector (resp. the
map) [xi]i∈J (see figure 1).

J

J

J
M

M

x

x

x

J

J

Fig. 1. Matrix and vectors associated to a subsetJ of I.

If I(τ) = {I1, ..., IK} is a partition ofI, we define the
matrix MI(τ) as (see figure 2):

m
I(τ)
ij =

{
0 if (i, j) ∈ I1 × I1 ∪ . . . ∪ IK × IK

mij if not

I1

I2

I3

I4

I
M 1

I
M 2I

M 2

I
M 3 I

M 3

I
M 4

0

0

0

0

Fig. 2. Matrix associated to a partition ofI.

We can then go further and begin to work on the heart of
our matter. The forthcoming result that can be used in many
ways and generalized as, for the sake of simplicity, we did
not use the weakest assumptions under which it holds (for
example, the series convergence in the proof can be insured
in many other contexts).

Lemma 1. Let (I, FI , c̃) be a cellular system andτ a period
on I. Let U ⊂ S on whichFI is injective. If x ∈ T τ is a
periodic trajectory of cellular system that satisfies:

1) x(Ω) ⊂ Sb ;
2) c̃(x)(Ω) ⊂ U

then there existsb ∈ Sb such that for anyt ∈ Ω:

x (t)− b ∈ ker
(
c(x(t))I(τ)

)

Remark.Note that the first condition onx is useless ifI is
finite.

The previous result is not very practical as it involves the
trajectoryx itself, which is unknown. As there is no ambiguity,
we define the kernel ofcI(τ) as:

ker
(
cI(τ)

)
=
⋃
x∈S

ker
(
c(x)I(τ)

)

Hence we may give a weaker version of the previous lemma

Corollary 1. Under the conditions of lemma 1 there exists
b ∈ S such that:

x (Ω)− b ∈ ker
(
cI(τ)

)

Proof: (of lemma 1) First of all, let’s check that̃c(x) is
τ -periodic.
For anyi ∈ I, x′i is τ(i)-periodic and non constant forxi is
so. Let’sUi = U ∩ Ei, Fi has to be injective onUi. Hence,
asx is a trajectory of the cellular system,Fi (c̃(x)i) must be
periodic and theñc(x)i is τ(i)-periodic. Therefore,c(x) is
τ -periodic.

Now, according to the partitionI(τ) = {Ik}k∈K defined
by τ (see section II-A), letk ∈ K andi ∈ Ik. For anyM ∈ N
we define the following set:

IM
k = Ik ∩ J0, MK

The setτ
(IM

k

)
is now a finite dependent set, so that we can

consider itslcm τM
k . Now, for anyj ∈ IM

k , xj and c̃(x)j are
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τM
j -periodic, so that, for any integerN :

c̃(x)i(t) =
1

N + 1

N∑
l=0

c̃(x)i

(
t + lτM

k

)
=

1
N + 1

N∑
l=0

∑
j∈I

cij

(
xi

(
t + lτM

k

) )
.xj

(
t + lτM

k

)
=

1
N + 1

N∑
l=0

∑
j∈I

cij

(
xi(t)

)
.xj

(
t + lτM

k

)
=

1
N + 1

N∑
l=0

∑
j∈IM

k

cij

(
xi(t)

)
.xj(t)

+
1

N + 1

N∑
l=0

∑
j∈Ik−IM

k

cij

(
xi(t)

)
.xj

(
t + lτM

k

)
+

1
N + 1

N∑
l=0

∑
j∈Ik

cij

(
xi(t)

)
.xj

(
t + lτM

k

)
=
∑

j∈IM
k

cij

(
xi(t)

)
.xj(t)

+
1

N + 1

N∑
l=0

∑
j∈Ik−IM

k

cij

(
xi(t)

)
.xj

(
t + lτM

k

)
+

1
N + 1

N∑
l=0

∑
j∈Ik

cij

(
xi(t)

)
.xj

(
t + lτM

k

)

As x is uniformly bounded, using the second property of a
coupling map (def. 1), we may invert the summation orders in
the previous equation and compute the limits whenM → +∞
andN → +∞ in any order. Thus we have:

c̃(x)i(t) =
∑

j∈IM
k

cij

(
xi(t)

)
.xj(t)

+
∑

j∈Ik−IM
k

cij

(
xi(t)

) [ 1
N + 1

N∑
l=0

xj

(
t + lτM

k

)]

+
∑
j∈Ik

cij

(
xi(t)

) [ 1
N + 1

N∑
l=0

xj

(
t + lτM

k

)]

for the same reasons, it’s easy to show that: and

lim
M,N→+∞

∑
j∈Ik−IM

k

cij

(
xi(t)

) [ 1
N + 1

N∑
l=0

xj

(
t + lτM

k

)]
= 0

Now, as for allj ∈ Ik, τM
k andτ(j) are non commensurable,

if we denote τ ′j the generator ofxj group of period, as
τ(j) = njτ

′
j for a certain integernj , τM

k andτ ′j as well are non

commensurable. Therefore, the sequence

(
t + lτM

k

τ ′j

)
l∈N

is

equidistributed mod1, and we may apply some classic ergodic

theorem (see for instance [23], [4]) and write:

lim
N→+∞

1
N + 1

N∑
l=0

xj

(
t + lτM

k

)
=

1
τ ′j

∫ τ(j)

0

xj(s)ds

=
nj

τ(j)

∫ τ(j)

0

xj(s)ds

We can now define the stateb as:

b = [bj ]j∈I , bj =
nj

τ(j)

∫ τ(j)

0

xj(s)ds

so that:

lim
N→+∞

∑
j∈Ik

cij

(
xi(t)

) [ 1
N + 1

N∑
l=0

xj

(
t + lτM

k

)]

=
∑
j∈Ik

cij

(
xi(t)

)
bj

hence, we have shown that:

c̃(x)i(t) =
∑
j∈Ik

cij

(
xi(t)

)
.xj(t) +

∑
j∈Ik

cij

(
xi(t)

)
.bj

But, obviously, from the beginning we had:

c̃(x)i(t) =
∑
j∈Ik

cij

(
xi(t)

)
.xj(t) +

∑
j∈Ik

cij

(
xi(t)

)
.xj(t)

So that: ∑
j∈Ik

cij

(
xi(t)

)
.xj(t) =

∑
j∈Ik

cij

(
xi(t)

)
.bj

The previous work can be done for anyi which belongs toIk,
thus we can summarize in the following way (see previously
defined notations):

c
(
x(t)

)Ik . (x(t)− b)Ik = 0

Again, the previous conclusion still holds for anyk ∈ K,
hence we may conclude using our notations:

c
(
x(t)

)I(τ)
. (x(t)− b) = 0

In the next section we give some examples of results based
upon this lemma. We will mainly show how lemma 1 may
be applied to turn synchronization issues (and existence of
quasi-periodic solutions to a differential system) into algebraic
problems. One of the main argument is that one wants to avoid
periodic trajectories for which one cell is inert (a constant
map), as it may be discarded from the population (in the
case of an infinite population, this may lead to recurrence
reasoning).

IV. A PPLICATIONS

A. Weakly injective coupler

In this example we just write down an elementary property
of c̃ which ensures that a periodic trajectory must have an
inert cell.
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Definition 3. Let c̃ be a cellular coupler onI. c̃ is said to
be weakly injective if for any non trivial partitionI(τ) of I
there existi ∈ I such that:

∀x ∈ S, ker
(
c(x)I(τ)

)
∩ Ei = {0}

Now we can state a simple result:

Proposition 1. Under the conditions of lemma 1, ifc̃ is weakly
injective and ifx is a τ -periodic trajectory of the cellular
system, thenτ(I) is a dependent set.

Proof: Let suppose thatI(τ) is not trivial, applying
lemma 1 we know that:

c
(
x(t)

)I(τ)
. (x(t) − b) = 0

As c̃ is weakly injective, there existsi ∈ I such that:

∀t ∈ Ω, x(t)i = bi

which contradicts the definition of a periodic trajectory.
This result may be restated in terms of quasi-periodic

solution of the cellular system:

Proposition 2. Under the conditions of lemma 1, ifc̃ is weakly
injective and ifτ is bounded, the cellular system has no quasi-
periodic solution.

The next example deals with some topological properties of
a coupler (how it connects cells together).

B. Chained cellular system

In this section, for the sake of simplicity, all the vector
spacesEi have finite dimension.

We first study the case of differential systems for which the
spacesEi have same dimension and are coupled withk-nearest
neighbors (the finite dimension condition isn’t necessary,but it
makes the exposure simpler). This case is formally described
by a cellular system(I, FI , c̃) where I is countable, all
dim(Ei) = n and c̃ satisfies:

∀i, j ∈ I, |j − i| > k ⇒ cij = 0

This is what we call achained cellular system. Adding the
following condition on the coupler, we may reach a general
result:

Definition 4. A cellular coupler̃c is said to havefull rank if
for any i, j ∈ I andx ∈ S the mapcij(x) has full rank

Proposition 3. Let (I, FI , c̃) be a chained cellular system
coupled withk-nearest neighbors (allEi having same finite
dimension). LetFI be injective onU ⊂ S andx a τ -periodic
trajectory that stays inU . If c̃ has maximal rank and if there
existsI ∈ I(τ) which contains2k consecutive cells, i.e. there
existsi ∈ I such that:

Ji, i + 2k − 1K ⊂ I

ThenI(τ) = {I} (equivalently,τ(I) is a dependent set).

Proof: Let suppose thatI 6= I. There must existJi, i +
2kK ⊂ I, such thati−1 /∈ I. Then, linei+k−1 of the matrix

c(x(t))I(τ) contains only one non zero elementci+k−1,i−1.
As this linear map is injective for anyt ∈ Ω, we know that:

ker(c(x(t))I(τ))
⋂

Ei−1 = {0}
Applying lemma 1 we know that there existsbi−1 ∈ Ei−1

such that for anyt ∈ Ω:

xi−1(t)− bi−1 ∈ ker
(
c(x(t))I(τ)

)⋂
Ei−1

i.e. xi−1(t) = bi−1 is a constant map, which contradicts the
definition of a periodic trajectory. So we can conclude that
I = I.

If we assume thatτ is bounded, this result may be restated
as: “as soon ask consecutive cells are synchronized (locked
frequencies), then all the population is syncrohnized”.

Moreover, we may drop some assumptions made on the
indentical dimension of theEi and reach an interesting con-
necting result concerning the case whenk = 1.

Proposition 4. Let (I, FI , c̃) be a chained cellular system
coupled with1-nearest neighbor. LetFI be injective onU ⊂ S
andx a τ -periodic trajectory that stays inU . If c̃ has maximal
rank and if there exists two setsI1 and I2 in I(τ) such that:

Ji, i + 1K ⊂ I1 Ji + 2, i + 3K ⊂ I2

ThenI1 = I2.

Proof: Let suppose that the cellsi + 1 have non com-
mensurable periods with those of the cellsi+2 (i.e. I1 6= I2).
Following the previous proof, we know that the linesi + 1
andi+2 of the matrixc(x(t))I(τ) contains only one non zero
element, respectivelyci+1,i+2 andci+2,i+1. But, we recall that
for any t ∈ Ω:

ci+1,i+2(xi+1(t)) : Ei+2 → Ei+1

and
ci+2,i+1(xi+2(t)) : Ei+1 → Ei+2

As the coupler has maximal rank, one of the previous map
must be injective for allt ∈ Ω. Using the same argument we
may conclude that eitherxi+1 is a constant map, either it’s
xi+2, leading to a contradiction.

Moreover, one could restate those results in terms of quasi
periodic solutions of differential systems, but it may sound
less intuitive. We will do it in the next sections.

For the next example, we add some regularity conditions on
the cellular system which lead to a interesting descriptionof
S.

C. Localization results with bounded states

As (Sb, ‖.‖∞) is a Banach space, the classic PicardLindelöf
theorem is valid and we can give a version adapted to cellular
systems (we stress the point that in this section, any vector
field FI has to be a vector field onSb, as well for any
cellular coupler̃c, which brings some constraint on the families
(Fi)i∈I and (cij)(i,j)∈I2 ).
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Proposition 5. If FI : Sb → Sb and c̃ are locally lipshcitz,
which is the case if for anyx ∈ Sb there exists a neighborhood
V =

∏
i∈I

Vi, a positive numberk and a sequence(kj)j∈I of

positive numbers such that:

1) ∀y, z ∈ V, ∀i ∈ I, ‖Fi(yi)− Fi(zi)‖i ≤ k‖yi − zi‖i

2) ∀y, z ∈ V, ∀i ∈ I, ‖cij(yi)− cij(zi)‖(Ej ,Ei) ≤ kj‖yi −
zi‖i

3)
∑
j∈I

kj < +∞

then, given any initial condition(t0, x0) in R×Sb, the cellular
coupling admits a unique maximal solutionx that satisfies
x(t0) = x0.

Before stating our localization result, we need to define
the sets that any non synchronized periodic trajectory of the
cellular system must avoid (or, with the classical point of view,
any quasi periodic solution).

Definition 5. Let c̃ be a cellular coupler onI. The set of
regular points for̃c is defined as:

R(c̃) =
{
x ∈ S, ∀I(τ) partition of I, c(x)I(τ) is injective

}
We say that̃c is regular ifR(c̃) = S.

Now we can state a localization result:

Proposition 6. Under the conditions of lemma 1 and propo-
sition 5, if there exists a infinite compact subsetV ⊂ Ω such
that:

∀t ∈ V, x(t) ∈ R(c̃)

thenτ(I) is a dependent set.

One can rewrite this result in terms of differential systems:

Proposition 7. Under the conditions of lemma 1 and propo-
sition 5, and ifτ is bounded, a quasi-periodic trajectory must
“avoid” R(c̃) (it can’t cross this set on an infinite compact
subset ofΩ).

Proof: (of proposition 6) Let suppose thatI(τ) is not
trivial, applying lemma 1 we know that:

c
(
x(t)

)I(τ)
. (x(t) − b) = 0

the assumptions made oñc ensure that:

∀t ∈ V, x(t) = b

As V has an accumulation point, we may conclude that there
existst0 ∈ V such that:

x′(t0) = 0

Proposition 5 may be applied, hence we know thatt 7→ x(t) is
a constant map, which contradicts the definition of a periodic
trajectory.

The next example gives a more precise result in the case
where the mapscij don’t depend on the state of the system
(homogeneous coupler).

D. Exact frequencies locking with homogeneous cellular cou-
pler

If x ∈ Tτ , for any i ∈ I the mapxi equals its Fourier’s
series. We write:

ek
τ(i)(t) = exp

(
2iπkt

τ(i)

)
and we define :

x̂i(k) =
1

τ(p)

∫ τ(p)

0

xi(t)ek
τ(i)(t)dt

so that we have :
x =

∑
k∈Z

x̂(k)ek

i.e. ∀i ∈ I:
xi(t) =

∑
k∈Z

x̂i(k)ek
τ(i)(t)

with normal convergence (note thatx̂i(k) is Ei-valued).

Theorem 1. Under the conditions of lemma 1, let̃c be
homogeneous and regular. Ifτ is a bounded period onI andx
a τ -periodic trajectory of the cellular system thenτ is constant
on I.

Remark. As this result is true as soon asτ is a period of
x, it may be applied to the minimal periods of eachxi, then
its conclusion is that all cells have exactly the same minimal
period.

Proof: As c̃ is homogeneous, we may identify it withc.
Moreover, applying lemma 1 we know thatτ(I) is a
dependent set (unless at least one of thexi would be a
constant map). We now have to prove thatτ is constant onI.

Let’s write a partition ofI according toτ ’s values onI
(we must recall thatτ is supposed bounded):

{I1, I2, . . . , IK}
such that

∀1 ≤ k ≤ K, τ(Ik) = τk

andτl 6= τk if l 6= k.

We now suppose thatK > 1.

As τ(I) is a finite dependent set, there existsn1, . . . , nK

integers andτ0 (the lcm) such that:

τ0 = n1τ1 = n2τ2 = . . . = nKτK

The trajectoryx is τ0-periodic. We may therefore write its
Fourier’s series:

x(t) =
∑
l∈Z

x̂(l)el
τ0

(t)

and as well forc.x :

(c.x)(t) =
∑
l∈Z

ĉ.x(l)el
τ0

(t)
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uniqueness of Fourier coefficients forces them to satisfy:

ĉ.x(l) = c x̂(l)

So that, for anyi ∈ I:

ĉ.xi(l) =
k∑

j=1

cij x̂j(l)

Now, let i ∈ Ik, the properties of Fourier decomposition
ensure that̂xi(l) andc.x̂i(l) are zero as soon asnk does not
divide l (as (c.x)i andxi areτk-periodic andτ0 = nkτk).
So, if l ∈ Z, let’s defineI(l) as:

I(l) = {k ∈ {1, . . . , K}, nk 6 | l}
For any integerl, if k ∈ I(l) and i ∈ Ik, then x̂i(l) =
c.x̂i(l) = 0, so that (with similar convergence arguments that
in the proof of lemma 1):

c.x̂i(l) =
k∑

j=1

cij x̂j(l)

0 =
k∑

j∈I(l)

cij x̂j(l) +
k∑

j /∈I(l)

cij x̂j(l)

0 =
k∑

j /∈I(l)

cij x̂j(l)

This last property, (observable on figure 3), can be writen as:

∀l ∈ Z cI(l) x̂(l)I(l) = 0

Fig. 3. Constraints on the Fourier’s coefficientsx̂(l).

This property holds for any integerl, and is empty whenl
is a multiple of all theni. So that, ifI(l) is the partition of
I defined as:

I(l) =
{
I(l), I(l)

}
we can re-write it as:

∀l ∈ Z cI(l) x̂(l) = 0

Let’s now considerI1 6= I2 (this is possible asK > 1). As
those two classes are distinct, there existsl such thatn1 does

not divide l andn2 divides l. As c is regular,cI(l) is thereby
injective. We deduce that:

x̂(l)I(l) = 0

This proves that for anyl divisible by n2 and not byn1,
x̂(l)I(l) is zero. Thus, for any coefficient of̂x(l)I(l) to be non
zero,n1 must dividel, and consequently (as none of thexi is
a constant map) for alli ∈ I2, xi(t) is n1τ0 periodic. This is
incompatible with the partition ofI. Thus,K = 1 and thereby
τ is a constant map (in other words,I is synchronized).

E. Perspectives of application to classical differential systems

In this last section, we show how the cellular systems point
of view may be applied to classic differential systems and
how dealing with different Banach spacesEi may be useful.
This discussion will be enlightened with a really simple
example (finite population).

Let E be a Banach space andF a vector field onE. We
want to see how this differential equation may be seen as
a cellular system. For instance, one could consider a simple
conservative system onE = R4 with an Hamilton’s equation
given by (see [1])

x′1 = y1

y′1 = αx1 − βx3
1 + εx2

x′2 = y2

y′2 = −γx2 + εx1

The first step is to identify the different cells ofI. The first
step is to factorize each term in the equations according to the
different variables. For example, the second equation may be
seen as:

y′1 = (α− βx2
1)x1 + εx2

So that the term(α− βx2
1) has to be a part of the coupler we

are building. Moreover, as it’s the equation givingy′1, and as
the way a cell computes how it interprets the population’s state
depends only on its own state,x1 and y1 have to belong to
the same cell. In this simple example it’s the only case where
to variables have to be gathered in the same cell. In the end,
this leads to the following structure of cellular system:

I = {1, 2, 3}
with the Banach spaces:

E1 = R2, E2 = E3 = R

As it should often be the case, the associated vector fields are
just identity maps onEi, and the coupler is then:

c =

 c11 c12 c13

c21 c22 c23

c31 c32 c33


with

c11 : E1 −→ L(E1)

(x1, y1) 7−→
[

0 1
α− βx2

1 0

]
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c12 : E2 −→ L(E2, E1)

x2 7−→
[

0
ε

]
c13 : E3 −→ L(E3, E1)

y2 7−→
[

0
0

]
c21 : E1 −→ L(E1, E2)

(x1, y1) 7−→ [
0 0

]
c22 : E2 −→ L(E2)

x2 7−→ [
0
]

c23 : E3 −→ L(E3, E2)
y2 7−→ [

1
]

c31 : E1 −→ L(E1, E3)
(x1, y1) 7−→ [

ε 0
]

c32 : E2 −→ L(E2, E3)
x2 7−→ [ −γ

]
c33 : E3 −→ L(E3)

y2 7−→ [
0
]

Now, before applying some of the previous techniques, we
may compute the different decomposition ofc upon different
non trivial partitions ofI. Those partitions are:

P1 =
{{1}, {2}, {3}}, P2 =

{{1, 2}, {3}}
P3 =

{{1, 3}, {2}}, P4 =
{{1}, {2, 3}}

which gives:

cP1 =

 0 c12 c13

c21 0 c23

c31 c32 0

 cP2 =

 0 0 c13

0 0 c23

c31 c32 0


cP3 =

 0 c12 0
c21 0 c23

0 c32 0

 cP4 =

 0 c12 c13

c21 0 0
c31 0 0


Now, in order to simplify, we replace thecij that are identically
zero by0, we obtain the following different matrices:

cP1 =

 0 c12 0
0 0 c23

c31 c32 0

 cP2 =

 0 0 0
0 0 c23

c31 c32 0


cP3 =

 0 c12 0
0 0 c23

0 c32 0

 cP4 =

 0 c12 0
0 0 0

c31 0 0


In the end, writing the coupler as an application fromS to
L(S), one finds those four matrices:

0 0 0 0
0 0 ε 0
0 0 0 1
ε 0 −γ 0




0 0 0 0
0 0 0 0
0 0 0 1
ε 0 −γ 0




0 0 0 0
0 0 ε 0
0 0 0 1
0 0 −γ 0




0 0 0 0
0 0 ε 0
0 0 0 0
ε 0 0 0



At this point, we just have to check that the coupler is
weakly injective:

ker
(
cP1
) ∩E2 = ker

(
cP4
) ∩E2 = {0}

ker
(
cP2
) ∩E3 = ker

(
cP3
) ∩E3 = {0}

So, we may apply the proposition 1 and without any analytic
calculus, state that this differential system may not admitany
quasi-periodic solution. In other words, in case there exists
periodic trajectories (which is well known to be true) they
must be synchronized.

Moreover, those conclusions may hold in a more general
case were thecij are less simple, and we can easily produce
a result without any effort:

Proposition 8 (Generalized coupled pendulum). Let’s con-
sider a differential system which is driven by the following
equations:

x′1 = a1(x1, y1)x1 + a2(x1, y1)y1 + a3(x1, y1)x2

+a4(x1, y1)y2

y′1 = a5(x1, y1)x1 + a6(x1, y1)y1

x′2 = a7(x2)x2 + u(x2)y2

y′2 = ε(y2)x1 + a8(y2)y1 − γ(y2)x2 + a9(y2)y2

If the mapsu and ε never vanish, then the systems has no
quasi-periodic solution.

This result doesn’t have to be deep in itself, neither has it
to be the most general one we could have deduced from the
previous discussion. It’s just a sketch of how one can handle
some structure properties of a differential system, applying 1,
without going into deep and specific calculus.

V. CONCLUSION

In this work we have built a general framework of cel-
lular systems in order to handle a wide variety of coupled
systems, and therefore a wide class of complex systems. We
focused on an emergent property of those dynamical systems:
the frequencies locking phenomenon. Usually one observes
solutions of particular coupled systems and shows that within
suitable conditions synchronization must occur. Those results
are qualitatively dependent on the systems of interest and
do not stand in the general cases. We tried to change our
point of view and to bring out completing results. As we
choose not to address the problem of the convergence to a
periodic solution, we don’t prove that synchronization ulti-
mately happens. Instead, we consider the problem at its end:
if one supposes that some coupled systems “truly” oscillates,
then they must be synchronized, regardless to the individual
dynamical systems as soon as the maps which define each
of them are injective nearby the trajectories. The loss in time
evolution information is compensated by very general results,
almost independent from the individual differential systems
to be coupled. For example, we proved results concerning
countable coupled systems, each of them needing not to be
finite dimensional. In most papers (see for instance [13])
this population of coupled systems is implicitly defined and
has only two cells (sometimes a finite numberN , and more
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rarely an infinity). Moreover, on the contrary of what most
studies about synchronization issues state, we do not assume
anything concerning the cells dynamics (especially, we don’t
assume that they are oscillators). We only assume that they
exhibit periodic behaviors under the coupling effects (thefirst
assumption implies the second, but the opposite is clearly
false).

We believe that this way of reaching general results about
cellular systems gives some explanations about why the fre-
quencies locking phenomenon emerges naturally in a large
variety of coupled dynamical systems. Our results show that
the following alternative is natural in many cases: either the
whole population is synchronized, or its cells can’t all have
periodic behaviors.

Another interesting perspective is to apply this strategy to
differential systems, as we outlined in the end of the fourth
section. We think that it could prove useful to understand
the stability or instability of limit torus when one adds some
perturbations to a differential system. For example, if one
already knows that there’s no periodic solution, even with
perturbations, and if on is able to prove, using our strategy,
that a quasi-periodic solutions disappears under the effects of
those perturbation, some conclusions about strange attractor
emergence may be reachable.

Moreover, we have achieved some similar work on a natural
generalization of this strategy to non countable population (in
order to model natural systems, it’s often necessary to handle
continuous populations). We truly think that all those results
are only a part of what can be done using cellular systems
and that this work enlarges the possibilities of studying
synchronization issues. But the scope of those kind of cellular
systems may be beyond synchronization questions, as it’s
quite general and allows some theoretical studies. It couldbe
a promising theoretical tool to model complex systems by the
way of coupled differential systems.
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Drawing solution curve of differential equation
Farida Benmakrouha, Christiane Hespel, and Edouard Monnier

Abstract—We develop a method for drawing approximated
solution curves of differential equations. This method is based
on the juxtaposition of local approximating curves on successive
intervals [ti, ti+1]0≤i≤n−1.
The differential equation, considered as a dynamical system, is
described by its state equations and its initial value at t = t0.
A generic expression of its generating series Gt truncated at any
order k, of the output and its derivatives y(j)(t) expanded at any
order k, can be calculated. These expressions are obtained from
the vector fields, from the observation of the state at time t, in
the state equations [3], [7].
We get an expansion of y(j)(t) as a linear combination of
differential monomials indexed by some colored partitions.
At every initial point of the present interval, we specify the
previous expressions of Gt and y(j)(t) for t = ti. Then we
obtain an approximated output y(t) at order k in every interval
[ti, ti+1]0≤i≤n−1. We present an example from physics: the
Duffing equation.
By using Maple system, we have developed a package corre-
sponding to the creation of the generic expression of Gt and
y(j)(t) at order k and to the drawing of the local curves on
every interval [ti, ti+1]0≤i≤n−1, by iterations on the initial points
t = (ti)0≤i≤n−1.

Index Terms—analysis of dynamical systems, symbolic algo-
rithm, generating series, colored partitions, rational approxima-
tion

I. INTRODUCTION

The usual methods for drawing curves of differential equa-
tions consist in an iterative construction of isolated points,
connected by straight lines (Runge-Kutta). Rather than calcu-
late numerous successive approximate points y(ti)i∈I , it can
be interesting to provide some few successive local curves
{y(t)}t∈[ti,ti+1]0≤1≤n−1 .
Moreover, the computing of these local curves can be kept
partly generic since a generic expression of the generating
series Gti of the system can be provided in terms of ti.
The expression of the local curves {y(t)}t∈[ti,ti+1] is only a
specification for t = ti at order k of the formula given in the
proposition of section 3.
We consider a differential equation

y(N)(t) = φ(t, y(t), · · · , y(N−1)(t), u(t)) (1)

with initial conditions

y(0) = y0,0, · · · , y(N)(0) = y0,N

We assume that φ(t, y(t), · · · , y(N−1)(t), u(t)) is polynomial
in y, · · · , y(N−1).
Then this differential equation can be viewed as an affine input
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Computer Science, INSA-IRISA, 20 avenue des Buttes de Coesmes, 35043
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(u(t) = (uj(t))1≤j≤m) dynamical system.
By derivating, in the Fliess’s formula, the expression of y(t)
in a neighborhood of t = t0, we get an expansion of y(n)(t0).
This expression can be written as a linear combination of
differential monomials ⊗1≤j≤m(u(i1)

j )e1 · · · (u(iq)
j )eq indexed

by some colored partitions µ = ⊗µj , for uµ = uµ1
1 · · ·uµm

m .
And then there exist some polynomials gµ in noncommutaive
variables such that

y(n)(t0) =
∑
µ

〈Gt0 |gµ〉 (2)

For the partition (µj) = (u(i1)
j )e1 · · · (u(iq)

j )eq , the weight
wgt(µj) and the length lg(µj) are

wgt(µj) =
∑

1≤k≤m ekik
lg(µj) =

∑
1≤k≤m ek

(3)

II. PRELIMINARIES

A. Affine system, Generating series

We consider the nonlinear analytical system affine in the
input:

(Σ)
{

q̇ = f0(q) +
∑m
j=1 fj(q)uj(t)

y(t) = g(q(t))
(4)

• (fj)0≤j≤m being some analytical vector fields in a neigh-
borhood of q(0)

• g being the observation function analytical in a neighbor-
hood of q(0)

Its initial state is q(0) at t = 0. The generating series G0 is
built on the alphabet Z = {z0, z1, · · · , zm}, z0 coding the drift
and zj coding the input uj(t). Generally G0 is expressed as a
formal sum G0 =

∑
w∈Z∗ 〈G0|w〉w where 〈G0|zj0 · · · zjl〉 =

fj0 · · · fjlg(q)|q(0) depends on q(0).

B. Fliess’s formula and iterated integrals

The output y(t) is given by the Fliess’s equation ([3]):

y(t) =
∑
w∈Z∗

〈G0|w〉
∫ t

0

δ(w) (5)

where G0 is the generating series of (Σ) at t = 0:

G0 =
∑
w∈Z∗ 〈G0|w〉w

= g(q)|q(0)+∑
l≥0

∑m
ji=0 fj0 · · · fjlg(q)|q(0)zj0 · · · zjl

(6)

and
∫ t
0
δ(w) is the iterated integral associated with the word

w ∈ Z∗ = {z0, z1, · · · , zm}∗.

ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France 75



Remember that the iterated integral
∫ t
0
δ(w) of the word w for

the input u is defined by
∫ t
0
δ(ε) = 1∫ t

0
δ(vzi) =

∫ t
0

(∫ τ
0
δ(v)

)
ui(τ)dτ

∀zi ∈ Z ∀v ∈ Z∗.
(7)

where ε is the empty word, u0 ≡ 1 is the drift
and ui, 1 ≤ i ≤ m is the ith input.
We define the Chen’s series as follows ([2])

Cu(t) =
∑
w∈Z∗

∫ t

0

δ(w) (8)

From the previous definitions, we obtain the following expres-
sion of y(t)

y(t) =
∑
w∈Z∗

〈G0|w〉〈Cu(t)|w〉 (9)

C. Iterated derivatives y(n)(0) of the output
G0 being the generating series of the system, the ith

derivative of y(t) is

y(i)(t) = 〈G0|C(i)
u (t)〉 (10)

We prove the following lemma ([6]) based on the Picart-
Vessiot theory ([4])

Lemma :
Let be

∑
0≤j≤m uj .zj = A. Then the derivative of the

Chen’s series is d
dtCu = Cu.A

From it, results the following recurrence relation:

C(i)
u = CuAi, A1 = A, Ai+1 = AAi +DtAi (11)

Dt being the operator of time derivation.
Since Cu(0) = 1 and C(i)

u (0) = Ai(0) then

y(i)(0) =
∑
w∈Z∗

〈G0|w〉〈C(i)
u (0)|w〉 = 〈G0|Ai(0)〉 (12)

Let us remark that the successive derivatives
y(0), y(1)(0), · · · , y(k)(0) are obtained from the coefficients
〈G0|w〉 associated with the words whose length is ≤ k.
It results that the Taylor expansion of y(t) up to order k only
depends on the coefficients of G0 truncated at order k.
For instance, for a single input u(t) with drift u0(t) ≡ 1, the
derivatives are the following

y(0) = 〈G0|ε〉
y(1)(0) = 〈G0|z0〉+ 〈G0|z1〉u(0)
y(2)(0) = 〈G0|z2

0〉+ (〈G0|z0z1〉+ 〈G0|z1z0〉)u(0)+
〈G0|z2

1〉u(0)2 + 〈G0|z1〉u(1)(0)
· · · = · · ·

(13)
This method allows us to compute recursively the successive
derivatives of y(t) at t = 0.
The derivation law D of the partitions, producing the effect of
the time derivation Dt of the differential monomials satisfies

D(ik) = ik+1

D(ie11 · · · ieq
q ) =

∑q
k=1 ek × (ie11 · · · iek−1

k i
ek+1+1
k+1 · · · ieq

q
(14)

For a single input u(t) with drift u0(t) ≡ 1, the bicolored
multiplicity is µ = µ0 ⊗ ν with

µ0 = 1p

wgt(µ) = p+ wgt(ν)
D(1p ⊗ ν) = 1p ⊗D(ν)

(15)

III. APPROXIMATE VALUE OF y(n)(t)

The Fliess’s formula can be written

y(t) = 〈G0|ε〉+
∑

w∈Z∗−{ε}
〈G0|w〉〈Cu(t)|w〉 (16)

An approximate function yk(t) de y(t) up to order k in
a neighborhood of t = 0 is obtained by expanding this
expression up to the same order k. Then we have

|y(t)− yk(t)| = O(tk+1) (17)

For instance, at order k = 1, y(t) has the following approxi-
mate expression for a single input with drift

y1(t) = 〈G0|ε〉+ 〈G0|z0〉t+ 〈G0|z1〉ξ1(t) (18)

where ξk(t) denotes the kth primitive of u(t).
This computing can be generalized to the successive
derivatives of y(t).

Proposition
Given the expression of y(n)(0) in terms of the coefficients
of G0 and of the derivatives of order ≤ n− 1 of the input
u(t)t=0 obtained recursively according to the previous
section, we can deduce the expression of y(n)(t) by
executing in y(n)(0) the following transformations

1) We substitute u(i)(t) to u(i)(0) for 0 ≤ i ≤ n− 1
2) For every occurrence of a coefficient 〈G0|v〉 where

v ∈ Z∗, we add the following corrective term∑
w 6=ε
〈G0|wv〉〈Cu(t)|w〉

The proof is based on the following properties{
d
dt 〈Cu(t)|vzi〉 = 〈Cu(t)|v〉ui(t)
〈Cu(t)|ε〉 = 1

(19)

For instance, for a single input with drift, we compute from

y(1)(0) = 〈G0|z0〉+ 〈G0|z1〉u(0)

the expression of y(1)(t) :

y(1)(t) = 〈G0|z0〉+
∑
w 6=ε 〈G0|wz0〉〈Cu(t)|w〉+

(〈G0|z1〉+
∑
w 6=ε 〈G0|wz1〉〈Cu(t)|w〉)u(t)

(20)

By restricting the sums to the words w whose length |w| satis-
fies 1 ≤ |w| ≤ k, we obtain a function y(n)

k (t) approximating
y(n)(t) up to order k. And then

|y(n)
k (t)− y(n)(t)| = O(tk+1) (21)
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A. Generalization at time t = ti

For a single input with drift, the system (Σ) can be written
at t = ti:{

q̇(ti + h) = f0(q(ti + h)) + f1(q(ti + h))u(ti + h)
y(ti + h) = g(q(ti + h))

(22)
By setting  Ui(h) = u(ti + h)

Yi(h) = y(ti + h)
Qi(h) = q(ti + h)

(23)

we obtain the following system

(Σi)
{
Q̇i(h) = f0(Qi(h)) + f1(Qi(h)Ui(h)
Yi(h) = g(Qi(h))

(24)
And Gi is the generating series of (Σi).
By setting ψi,k(h) = ξk(ti + h), then ψi,k(h) is the kth
primitive of u(ti + h) or the kth primitive of Ui(h).

We have the equalities

ξ1(ti + h) =
∫ ti+h

ti

u(τ)dτ =
∫ h

0

Ui(t)dt = ψi,1(h) (25)

And then, we can prove recursively that the Chen’s integral∫ ti+h
ti

δ(w) can be computed as an integral
∫ t
0
δ(W ) by

considering Ui(t) instead of u(ti + t).

IV. APPLICATION TO CURVES DRAWING

We present an application to the curve drawing of the
solution of differential equations. We consider a differential
equation

y(N)(t) = φ(t, y(t), · · · , y(N−1)(t), u(t)) (26)

with initial conditions

y(0) = y0,0, · · · , y(N)(0) = y0,N

It can be written for y = q1:
q
(1)
1 = q2

q
(1)
2 = q3
· · · = · · ·
q
(1)
N = φ(t, q1, · · · , qN )

(27)

We assume that

φ(t, q1, · · · , qN ) = P0(q1, · · · , qN ) +
m∑
j=1

Pj(q1, · · · , qN )uj(t)

for P0, P1, · · · , Pm polynomials in commutative variables
q1, · · · , qN .

For an analytical affine single input system (Σ) then
m = 1 and the vector fields are f0, f1, corresponding to
P0, P1.

We propose a curve drawing of the output y(t) of this
system in [0, T ] =

⋃
[ti, ti+1]0≤i≤n−1 according to the

following algorithm:
Firstly, we compute a generic expression of the generating
series Gt.

• Initial point t0 = 0:
y(0) = q1(0), · · · , y(N−1)(0) = qN (0) are given.
The vector fields f0, f1 applied to g(q) evaluated in t0
provide 〈G0|w〉 for |w| ≤ k

• Step i:
Knowing y(ti−1) = q1(ti−1), · · · , y(N−1)(ti−1) =
qN (ti−1) and 〈Gi−1|w〉 (for |w| ≤ k), we compute
y(ti), · · · , y(N−1)(ti) according to section 3 and 〈Gi|w〉
(for |w| ≤ k) by applying the vector fields f0, f1 to g(q)
at q(ti).
We draw the local curve of the function ti−1 + dt →
y(ti−1 + dt) on the interval [ti−1, ti].

• Final point t = T = tn:
stop at i = n.

A. Genericity of the method

The computing of the coefficients

〈Gi|zj0 · · · zjl〉 = fj0 · · · fjlg(q)|q(ti)
is generic.
The computing of the expressions of

Yi(h) = y(ti + h) = y(ti) +
∑
|w|≤k

〈Gi|w〉〈CUi(h)|w〉

and of

Y
(1)
i (h) = 〈Gi|z0〉+

∑
1≤|w|≤k 〈Gi|wz0〉〈CUi(h)|w〉+

(〈Gi|z1〉+
∑

1≤|w|≤k 〈Gi|wz1〉〈CUi(h)|w〉)Ui(h)
(28)

are generic too.
We use the previous algorithm by specifying ti at every step
in the previous expressions.

B. Example: Duffing equation

Its equation is the following:

y(2)(t) + ay(1)(t) + by(t) + cy3(t) = u(t)
y(0) = y0,
y(1)(0) = y1,0

(29)

It can be written as a first order differential system
q
(1)
1 (t) = q2(t)
q
(1)
2 (t) = −aq2(t)− bq1(t)− cq31(t) + u(t)

= F (q(t)) + u(t)
y(t) = q1(t) = g(q)
q1(0) = y0, q2,0 = y1,0

(30)
The vector fields are

f0(q1, q2) = q2
∂
∂q1
− (aq2 + bq1 + cq31) ∂

∂q2

= q2
∂
∂q1

+ F (q) ∂
∂q2

f1(q1, q2) =
∂

∂q2
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1) We write generic equations describing the generating
series Gi at t = ti :

∀ti 〈Gi|zj1 · · · zjl〉 = (fj1 · · · fjlg(q))|q(ti)
Let us remark that

〈Gi|wz1〉 = 0 ∀w ∈ Z∗, 〈Gi|wz1z0〉 = 0 ∀w ∈ Z+

For instance, for order k = 3, we have only to compute
6 coefficients of Gi instead of 15 coefficients.

〈Gi|ε〉 = q1(ti)
〈Gi|z0〉 = q2(ti)
〈Gi|z2

0〉 = F (q(ti))
〈Gi|z1z0〉 = 1
〈Gi|z3

0〉 = (q2 ∂
∂q1

F (q) + F (q) ∂
∂q2

F (q))q(ti)
〈Gi|z1z2

0〉 = −a
(31)

2) We write generic approximate expression of the output
y(ti+1) and its derivative y(1)(ti+1) for every t =
ti+1 = ti + h at order k:

y(ti+1) = 〈Gi|ε〉+
∑

1≤|w|≤k 〈Gi|w〉〈CUi
(h)|w〉

y(1)(ti+1) = 〈Gi|z0〉+∑
1≤|w|≤k 〈Gi|wz0〉〈CUi(h)|w〉+

(〈Gi|z1〉+
∑

1≤|w|≤k 〈Gi|wz1〉〈CUi(h)|w〉)Ui(h)
(32)

For instance, for order k = 3

Yi(h) = y(ti + h)
= y(ti) + 〈Gi|z0〉h+ 〈Gi|z2

0〉h2/2+
〈Gi|z1z0〉ψi,2(h) + 〈Gi|z3

0〉h3/(3!)+
〈Gi|z1z2

0〉ψi,3(h)
(33)

and

Y
(1)
i (h) = y(1)(ti + h)

= 〈Gi|z0〉+ 〈Gi|z2
0〉h+

〈Gi|z1z0〉ψi,1(h) + 〈Gi|z3
0〉h2/2+

〈Gi|z1z2
0〉ψi,2(h)

(34)
3) And we use the algorithm of section 4 by specifying ti

at every step. So we obtain the drawing of y(t).

C. Contribution of symbolic computing

The symbolic computing allows us to profit from the
genericity and from the precision.

1) Genericity : We propose that one uses the formal expres-
sion of the generating series Gi and of the output y(ti)
and its derivative y(1)(ti). Then we replace successively
the expressions by their values at every step.

2) Precision : We can choose any order k for approximating
the output and its derivative. The error is on the order
of k + 1.

D. Comparison with other methods

The main interest of this method consists in choosing the
precision, not only by the size of the time interval h but by
the order of the approximation.
The quality of any approximation depends on the order, the

size of the interval but also depends on the roughness of the
curve and the stability of the system [1]. When the system
is stable, the drawing of the curve is suitable, by using our
method, for a large period of time and a small order. In this
case, our method is favourable. Otherwise we have to reduce
the period of time in order to follow the true curve.
In comparison with Runge-Kutta methods, this method con-
sists in selecting a much smaller number of steps, the local
curve being acquired on every interval.
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I. I NTRODUCTION

The purpose of this paper is to apply combi-
natorial techniques for computing coefficients of
rational formal series(Gk) in two noncommutative
variables and their differences at order k and k-1.
This in turn may help one to study validation of a
family (Bk) of bilinear systems, described by the
series(Gk) and global modeling of an unknown
dynamical system(Σ).
The model validation is a central problem in sys-
tem identification [2]. In almost cases, the model
validation consists, in a test that falsifies or not
falsifies the model, using a validation data set.
Computing and bounding these differences, we
propose an estimation of the error due to approxi-
mations by(Bk). This error computation is a sum
of differential monomials in the input functions
and behavior system. We identify each differential
monomial with its colored multiplicity and analyse
our computation in the light of the free differential
calculus.
We propose also a combinatorial interpretation
of coefficients of(Gk), according to [12]. These
coefficients are powers of an operatorΘ which is
in the monoid generated by two linear differential
operators∆ andΓ.
The n-th power ofΘ is equal to the sum of the
labels of all forests of colored increasing trees.
This error computation allows one to better mea-
sure the impact of noisy inputs on the convergence
of (Bk). Indeed, one can determine the contribu-
tion of the inputs and of the system in the error
computation.

II. A LOCAL MODELING OF THE UNKNOWN

SYSTEM

The problem consists in modeling an unknown
dynamic system(Σ) for t ∈ [0, T ] =

⋃
i∈I [ti, ti +

d], when knowing some correlated sets of in-
put/output.
We construct a behavioral model, based on the
identification of its input/output functional (the
generating series), in a neighborhood of everyti,
up to a given orderk [1], [4]. At once a local
modeling by a bilinear system(Bi)k around every

ti is provided. Then a family((Bi)i∈I)k, global
modeling of the unknown system is produced, such
that the outputs of(Σ) and((Bi)i∈I)k coincide up
to orderk.

III. T HE BILINEAR SYSTEM

We consider a certain class (GP ) enclosing the
electric equation

y(1)(t) = f(y(t)) + u(t) (1)

whereu(t) is the input function
Σ, the unknown system is an affine system.
In this case, equation (1) can be written

(Σ)
{

ẋ = A0(x) + A1(x)u(t)
y(t) = x(t)

• u(t) is the real input
• x(t) is the current state
• A0 = a(0) ∂

∂x where a(0) = f(x)|x(0)

• A1 = ∂
∂x

The class (GP ) encloses the nonlinear differen-
tial equation relating the current excitation i(t) and
the voltage v(t) across a capacitor [9]

v(1) + k1v + k2v
2 = i(t)

Let a(i) = f (i)(x)|x(0)

We notice that the fundamental formula
[9]provides the following bilinear system(Bk),
approximating at order k :{

ẋk(t) = (M0 + M1u(t))xk(t)
yk(t) = λxk(t)

whereλ = (x(0) 1 0 · · · 0)

xk(0) =


1
0
...
0


M0 = (Cz0zk

1
) (respM1 = (Czk+1

1
)) expressed in

basis(Czk
1
).
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M0 =



0 0 0 · · · 0
a(0) a(1) a(2) · · · a(k)

0 a(0) 2a(1) · · · 0
0 0 a(0) · · · 0
...

...
...

...
0 0 0 · · · 0



M1 =



0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 0


So, at order k, we obtain the ith derivative of the

state vector x as a function of the previous ones.
Our solution consists of two steps : to compute
x

(k−n+i)
(k−n)k (0) and to compute the difference of the

ith derivativex
(i)
2k (0)− x

(i)
2(k−1)(0).

IV. F IRST STEP: COMPUTATION OF x
(k−n+i)
(k−n)k (0)

By derivating and term’s regrouping, we can
show that :

x
(k−n+i)
(k−n)k (0)

=
min(i+1,k−1)∑

m=1

a(m)
k−n−1∑

l=1

„
k − n − l + m − 1

m

«

(a(0) + u(0))l−1x
(k−n−l+m+i−m)
(k−n−l+m)k (0)

+
i+1∑
m=1

u(m)
k−n−2∑

l=1

„
k − n − l + i

m

«

(a(0) + u(0))l−1x
(k−n−l+i−m)
(k−n−l)k (0) + 1

(if m = i + 1)

We analyze now these equations in the light
of the free differential calculus. Considering the
derivativea(i) and u(i) specialized in time t=0 as
differential letters, it is clear that our computation
is a sum of differential monomials in a and u.

A. Colored partitions and multiplicities

A number partition or multiplicity is a se-
quenceµ = (µ1, µ2, µ3, · · · ) (often written as
1µ12µ23µ3 · · · ) of nonnegative integers. On a sin-
gle letter a, the differential monomials become :

aµ = (a(i1))e1(a(i2))e2 · · · (a(iq))eq ,

1 ≤ i1 < i2 < . . . iq

Such a monomial is indexed by the following
partition [10] :

µ = (iµi1
1 i

µi2
2 · · · iµiq

q )

Let C = {a, u} be a set of two colors. We
call colored partition on C an element of the free
monoid generated by the cartesian productN ×N
i.e. any finite sequence of couples of nonnegative
integers

µ = ((µa
1 , µu

1 ), (µa
2 , µu

2 ), · · · )
So, a colored partitionµ will denote the differential
monomial

aµ = (a(i1))e1 · · · (a(ip))ep(u(j1))f1 · · · (u(jq))fq

1 ≤ i1 < i2 < . . . ip, 1 ≤ j1 < i2 < . . . jq

where el (resp fl) = µa
il

(resp µu
jl

). The weight
and the size ofµ are defined as follows :

wgt(µ) =
∑

c

∑
k

k.µc
k

size(µ) =
∑

c

∑
k

µc
k

The empty partition is notedǫ.
If L is the set of colored partitions, we define a
partial order≪ on L :

ν = {(νa
i , νu

i )} ≪ µ = {(µa
i , µu

i )}
if

νa
i ≤ µa

i and νu
i ≤ µu

i ∀i
L, with this partial ordering forms a Young lattice.
[11]
We consider nowBi a subset ofL defined by :

{µ/wgt(µ) = i}
and we noteI(µmax) the order ideal generated by
µmax, if

µmax = max(µ/µ ∈ Bi)

B. Combinatorial analysis of our computation

Let us now interpret combinatorially our com-
putation by identifying each differential monomial
with its colored multiplicity. The recursive relation
is captured by the operation :

µmax ⊙ c =
∑

ν∈I(µmax)
wgt(ν)=j≤i

c(i−j+1).ν

By factorizing according to the colored partitions,
we get :

x
(k−n+i)
(k−n)k =

∑
c

∑
ν∈I(µmax)

wgt(ν)=j≤i

c(i−j+1).ν.g1
(c(i−j+1)ν)

where :

gl
a(m)ν = (a(0) + u(0))m+1

nl+m∑
p=m

„
l
m

«
gp

v
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and

gl
u(m)ν = (a(0) + u(0))m−1

nl∑
p=1

„
l + i + 1

m

«
gp

v

with n1 = k − n− 1, nl = l ∀l > 1

gǫ = 1

C. Computation ofx(k−n+i)
(k−n)k (0)

We consider now permutations of a colored
partition µ on an alphabetX =

⋃
c∈C Xc. A

permutation [11] ofµ is a word in which each
letter belongs to X and for eachxi ∈ X, the total
number of appearances ofxi in the word isµc

i , for
somec ∈ C
Let us noteπ = ξ1ξ2 · · · ξsize(µ) a permutation of
µ andσµ the set of permutations ofµ.
Since, our alphabet

Xa = {a(p)|p = 1,min(k − 1, i + 1)}
and

Xu = {u(p)|p = 1, i + 1)}

ξj = c(ij)

, for some(c, ij).
x

(k−n+i)
(k−n)k is a linear combination of monomial

yλ1
1 · · · yλn

n (yi ∈ Xa

⋃
Xu) and all distinct mono-

mials obtained from it by a permutation of vari-
ables.
We get finally , if s = (

∑
j j| µu

j 6= 0) and r
=size(µ)

x
(k−n+i)
(k−n)k =

∑
wgt(µ)=i+1

µ.(a(0)+u(0))k−n+i−r−sgn
µ

gn
µ =

∑
π∈σµ

A1

r∏
j=2

Aj + b

where:

Aj =


∑mj−1+ij

mj=ij

„
mj

ij

«
if ξj = a(ij)∑mj−1

mj=1

„
mj + i − j + 2

ij

«
if ξj = u(ij)

A1 =


∑k−n−2+m

m1=m

„
m1
i1

«
if ξ1 = a(i1)∑k−n−2

mj=1

„
m1 + i + 1

i1

«
if ξ1 = u(i1)

and b = 1 ifξ1 = u(i+1), 0 otherwise.

Remark : x
(k−n+i)
(k−n)k is not a symmetric

polynomial even if its structure is the same,
because input and system contributions are
different.

V. SECOND STEP: COMPUTATION OF

x
(k+i)
2k (0)− x

(k+i)
2(k−1)(0)

The first derivative coincide up to order k-2, but
at order k-1, we have
x

(k−1)
2k − x

(k−1)
2(k−1) = 0 andx

(k−1)
jk − x

(k−1)
j(k−1) 6= 0.

Let M (respP ) the set of partitions on the single
letter a (resp u)
Wi a subset ofM defined by

{ν|1 ≤ size(ν) ≤ i + 2}

Vi a subset ofP defined by

{λ|size(λ) = ⌊ i

2
⌋ , wgt(λ) ≤ i−2 or λ = u(i−2) or λ = u(i−1)}

andSl a subset ofL defined by

{µ|wgt(µ) = l}
We define now an operation∇ : M ×P ×L 7→ L

∇(ν, λ, µ) = ((νi + µa
i , λi + µc

i ))i

and a subsetPt of L ∀0 ≤ t ≤ i

Pt = {τ = ∇(ν, λ, µ)| µ ∈ St, λ ∈ Vi, ν ∈ Wi, wgt(τ) = k+i−1}
We obtain, by a straightforward computation :

x
(k+i)
2k −x

(k+i)
2(k−1) =

∑
∇(ν,λ,µ)∈Pt

0≤t≤i

∇(ν, λ, µ) hν .fλ.g1
µ.(a(0)+u(0))k+i−2−r1

where

fλ =
∑

π∈σλ

size(λ)∏
l=1

„
k + i − 2l

k + i − 2l − ij

«

hν =

{ ∑
π∈σ1

ν

∏r−2
j=1

„
ij + ij+1 − 1

ij+1

« „
k − 2

ir

«
if size(ν) 6= 1

1 if size(ν) = 1

with
r = size(ν

)
r1 = r + size(µ)

s = (
∑

j

j|µu
j 6= 0)

π = ξ1ξ2 · · · ξr

ξj = c(ij)

g1
µ defined previously.

σ1
ν = {π ∈ σν |π 6= ν1.µ, size(ν1) < size(ν)

and π 6= (a(1))r−1.ξr}
Taking into account thaty(i)

k (0) = x
(i)
2k (0), we

obtain a right computation of the output’s differ-
ence at order k and k-1. By majorization of these
output’s differences, and when k tends towards
infinity, we get an overestimation of the error due
to approximation by the(Bk)
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VI. COEFFICIENTS OF THE GENERATING SERIES

We give, in this section, a combinatorial inter-
pretation of coefficients of generating series. In
[12], the author define increasing trees, model used
to describe powers of a differential linear operator.
We extend this concept to multiple operators by
introducing colored increasing trees.

A. Forest of colored increasing trees

A forest of increasing trees on{1, · · · , n}, ac-
cording to [12], is a set of rooted increasing trees,
the set of vertices of which is exactly [n] and such
each vertex is smaller than all its successors. To
take into account the multiplicity of operators,, we
use a notion of a “colored partition” ([11]). For
each vertex i, we color i any one ofci colors. Let
C the set of colors. We define colored increasing
trees on cartesian product{1, · · · , n} × C.

B. Combinatorial interpretation

The author shows that the n-power of a linear
differential operator is equal to the sum of the la-
bels of all forests of increasing trees on{1, · · ·n}.
So, in our case, the label of a forest on
{1, · · · , n}×C is a noncommutative monomial and
is defined as :

Π(i,c)∈{1,··· ,n}×CP (α(i,c)) ∂

∂q

k

where
P (q) = 1 or P (q) = a(0)

α(i, c) is the number of sons of the node (i,c)
k is the number of trees of the forest.

C. Application

We consider the class (GP ) given in the previous
section. According to ([5]), the coefficients of the
generating series are :

〈G | zi1zi2 · · · zik
〉 = [Ai1 ◦Ai2 ◦ · · · ◦Aik

◦h(q)]0

where :

Aij
= a(0) ∂

∂q

or

Aij
=

∂

∂q

Let us define two differential operators

∆ = a(0) ∂

∂q

Γ =
∂

∂q

These coefficients are powers of an operatorΘ
which is in the monoid generated by the two linear
differential operators∆ andΓ . C = {c1, c2}

The 2-power of operatorΘ is :

Θ2 = 〈G | z1z0〉+〈G | z0z1〉+〈G | z0z0〉+〈G | z1z1〉
The colored increased trees are :

O/

211

2

The labels of these trees are monomials
P (0)P (1) ∂

∂q , P (0)2 ∂
∂q

2

Each colored vertex is associated toP (q) = 1 or
P (q) = a(0)

We note that, since the observation function h(q)
is the identity function, all the powers of∂∂q

n
,

n ≥ 2 are zero.

VII. C ONCLUSION

The validation which is presented in this pa-
per is not statistical. It consists in valuing the
convergence of a bilinear models family(Bk) on
the unknown system(Σ) by an effective symbolic
computation. It displays the respective contribu-
tions of the input and of the system itself.
More than a symbolic validation, these comput-
ing tools are parameterized by the input and the
system’s behavior. They can particularly provide a
valuation process for rough and oscillating inputs
as well as for smooth inputs.

REFERENCES

[1] F. Benmakrouha, C. Hespel, G. Jacob, E. MonnierAlge-
braic Identification algorithm and application to dynam-
ical systemsCASC’2001,The 4th International Workshop
on Computer Algebra in Scientific Computing

[2] B.Ninness, G C.GoodwinEstimation of Model Qual-
ity10th IFAC Symposium on System Identification,
Copenhagen July 1994.

[3] A.Juditsky, H.Hjalmarsson, A.Benveniste, B.Delyon,
L.Ljung, J.Sjoberg, Q.Zhang,Nonlinear black-box mod-
eling in system identification:mathematical foundations,
Automatica, 31, 1995.

[4] Benmakrouha F., Hespel C., Jacob G., Monnier E.,A
formal validation of Algebraic Identification algorithm:
example of Duffing equation, IMACS ACA’2000, Saint
Petersburg, june 25-28, 2000.

[5] Fliess M.,Fonctionnelles causales non linaires et indter-
mines non commutatives, Bull. Soc. Math. France 109, pp.
3-40, 1981.

[6] Fliess M.,Sur certaines familles de séries formelles, Thèse
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[7] Hespel C.,Une étude des śeries formelles non commuta-
tives pour l’Approximation et l’Identification des systèmes
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On approximation of nonlinear generating series
by rational series

Mikhail V. Foursov and Christiane Hespel

Abstract—In his article we propose an improvement of the
method of identification and modeling of dynamical systems of
Hespel–Jacob in the case of a single input. Our new method
allows one to construct, whenever possible, the unique bilinear
system of minimal rank satisfying all conditions obtained during
the process of identification of the coefficients of the generating
series of the dynamical system. Most importantly, we can un-
ambiguously recognize a rational power series of rankr from
the information obtained from the first 2r− 1 derivatives of the
output of the dynamical system.

Index Terms—Formal power series, Hankel matrices, dynam-
ical systems, finite analysis of dynamical systems, generating
series, identification of dynamical systems, modeling of dynamical
systems.

I. I NTRODUCTION

The causal input/output functionals can be described by a
certain noncommutative formal power series: the generating
(or Fliess) series. The generating series is a canonical repre-
sentation of the causal functional, in the sense that different
functionals have different generating series. The functional
corresponding to a generating series is obtained as a product
with another noncommutative power series depending on the
input: the Chen series.

If the system of equations defining a causal functional is
not known, we may consider it as a black box [12], [14]
and identify the coefficients of the generating series from the
input/output behavior. It was shown by Hespel and Jacob that
it is possible to identify the coefficients of the generating
seriesG using a sufficient number of appropriate correlated
input/output sets and their derivatives, up to an arbitraryorder
k [10], [11]. The proof is of a combinatorial nature, the
coefficient of the generating series being binomial coefficients.

Once a generating series is identified up to orderk, it
is possible to construct a rational series of minimal rank
that coincides with it up to orderk [7], [8], [9]. A rational
series corresponds to a bilinear dynamical system that can be
constructed using the dependencies between the columns of
its Hankel matrix. As a result, the method of Hespel–Jacob
allows one to construct a bilinear system that approximatesan
unknown system with an error ofO(tk).

Since the combinatorial explosion makes it difficult to
identify the coefficients of high order, it would be quite

Mikhail V. Foursov is with IRISA/Université de Rennes–1, Cam-
pus Universitaire de Beaulieu, 35042 Rennes Cedex, France,e–mail :
mikhail.foursov@irisa.fr

Christiane Hespel is with IRISA/INSA de Rennes, 20, avenue des Buttes
de Coësmes, 35043 Rennes Cedex, France, e–mail : christiane.hespel@insa-
rennes.fr

Manuscript submitted April 2nd, 2009

interesting to better profit from all the information available to
us and identify more generating series coefficients. Moreover,
in general, there may be more than one rational series of
minimal rank that coincides with a given nonlinear generating
series up to orderk.

In this article, we thus propose to reduce as much as possible
the problem of choosing one of those rational series, for the
case of systems with a single input. The main idea is to use the
partial information about the coefficients of orders greater then
k that was obtained during the identification. Indeed, during
the modeling step, one uses only the values of the coefficients
of orders up tok. However, some of linear combinations of
the coefficients of higher order were also identified at the
identification step. We propose thus an algorithm that uses
this additional information in order to give the rational series
that fits best to the known data. In the cases when the series
is rational of rankr such that the output derivatives of orders
up to2r−1 were used during the identification, we show that
this rational series can be uniquely determined.

II. PRELIMINARIES

By a dynamical system we will mean an affine system of
ordinary differential equations of the form

(Σ)

 q̇(t) =v0(q) +
m∑

j=1

vj(q)uj(t),

y(t) =h(q(t)),

(II.1)

where

1) u(t) = (u1(t), . . . , um(t)) is the input vector,
2) q(t) ∈ M is the current state, whereM is a real

differential manifold,
3) {v0, . . . ,vm} is a family of smooth vector fields onM,
4) h : M→ R is a smooth function called the observation

map,
5) y(t) ∈ R is the output function.

We will be working with the causal functional that
associates to the set ofm input functions (commands)
u(t) the corresponding output functiony(t). To the com-
mandsu1(t), u2(t), . . . , um(t) we associate analphabetZ =
{z0, z1, . . . , zm} of (m+1) letters,z0 being associated to the
drift (which we will represent as an additional constant input
functionu0(t) ≡ 1). To every multi-indexI = (i1, i2, . . . , ik)
we associate a wordw = zI = zi1zi2 · · · zik

. These words
formZ∗, the free monoid overZ. (The empty word is denoted
by ε.)
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The behavior of causal functionals is uniquely described by
two noncommutative power series: the generating series and
the Chen series.

The generating seriesG =
∑

w∈Z∗〈G|zI〉zI [4] is the
geometric contribution and it is independent of the input. Its
coefficients〈G|zI〉 are obtained by iteratively applying Lie
derivatives corresponding to the vector fields to the observation
map and evaluating the resulting expression at the initial state
q0:

〈G|zI〉 = 〈G|zi1zi2 · · · zik
〉 = vi1 ◦ vi2 ◦ · · · ◦ vik

◦ h
∣∣
q0

.

The generating series completely describes the causal func-
tional. More precisely, two formal power series define the same
functional if and only if they are equal [5], [16].

TheChen seriesCu(t) =
∑

w∈Z∗〈Cu(t)|zI〉zI measures the
input contribution [1], [2], and is independent of the system.
The coefficients of the Chen series are calculated recursively
by integration using the following two relations:

• 〈Cu(t)|ε〉 = 1,

• 〈Cu(t)|w〉 =
∫ t

0

〈Cu(τ)|v〉uj(τ)dτ for a wordw = vzj .

The causal functionaly(t) is then obtained locally as the
product of the generating series and the Chen series [6]:

y(t) = 〈G||Cu(t)〉 =
∑

w∈Z∗
〈G|w〉〈Cu(t)|w〉 (II.2)

This formula is known as thePeano–Baker formula, as well
as theFliess’ fundamental formula. Differentiating (II.2), we
obtain

dny(t)
dtn

=
∑

w∈Z∗
〈G|w〉

〈 dn

dtn
Cu(t)

∣∣∣w〉
. (II.3)

Note that only the time derivatives of the Chen series appear
in this expression. Their exact or at least recursive formula is
needed. It can be shown in a straightforward way that [15]

dn

dtn
Cu(t) = Cu(t)An(t), (II.4)

where the noncommutative polynomialsAn(t) are recursively
defined by the following relations

A0(t) = 1, An+1(t) = Lu(t)An(t) +
d

dt
An(t), (II.5)

whereLu(t) =
∑

zi∈Z ui(t)zi. Thus we finally obtain that

dn

dtn
y(t)

∣∣∣∣
t=0

=
∑

w∈Z∗
〈G|w〉〈An(0)|w〉 (II.6)

TheHankel matrixof a formal power seriesG is an infinite
matrix with columns and rows indexed by the monomials
from Z∗ ordered lexicographically, such that the entry on the
intersection of the rowu and the columnv is 〈G|uv〉.
Theorem II.1. A (real–valued) formal power series is recog-
nizable if and only if its Hankel matrix has finite rank [3].

Theorem II.2. A (real–valued) formal power series is rational
if and only if it is recognizable [13].

The following result due to Fliess is also important in this
article.

Theorem II.3. If all the rows (columns) corresponding to
monomials of a certain fixed length are linear combinations of
previous rows (columns), then all the following rows (columns)
are also linear combinations thereof.

Corollary II.4. If a rational series in two variables is of
rank n, then the upper left block of the Hankel matrix of size
(2n − 1)× (2n − 1) is of rankn.

Algorithm II.5. The method of Hespel–Jacob consists in two
steps: identification of the coefficients of the generating series
and construction of a bilinear model. A short description
follows. For a complete description, see [7], [8], [9], [10],
[11].

• Identification.
The derivatives of the output are linear in the generat-
ing series coefficients and polynomial in the inputsuj

and their derivatives (cf. (II.6)). Choosing appropriate
input/output sets, certain linear combinations of the gen-
erating series coefficients can be identified (those are
exactly the coefficients of the monomials in the inputs
and their derivatives).
On the second stage of identification, the identified lin-
ear combinations are used to find the generating series
coefficients themselves. Identification of coefficients of
orders up tok can be done using the output derivatives
of orders up tom = k + ⌊k/2⌋(k − ⌊k/2⌋), in the case
of a series in two letters. However, not all the linear
combinations are used during this step, but only those
involving the coefficients of orders≤ k. The remaining
linear combinations give only partial information about
the individual coefficients.

• Modeling.
During the identification, the coefficients of the generat-
ing series were identified up to orderk. These values are
inserted into the Hankel matrix whose column basis is
then calculated. The bilinear model is of the form{

ẋ(t) = (M0 + u(t)M1)x(t),
x(0) = x0,

whereM0 andM1 are matrices that are computed by ex-
pressing, in terms of the basis vectors, the left–multiplica-
tive action of the letters ofZ on the basis vectors. As the
Hankel matrix is not completely determined, one obtains
multi–parameter families of linear combinations of the
basis vectors. The algorithm proposes to choose the linear
combination that depends on the leftmost basis vectors.

We note that some partial information obtained during the
identification is not used in the modeling. The main goal
of this article is to fill this gap and to try to construct the
unique model that fits best to all the available information.
However, the unique model exists only if the generating series
is rational of an appropriate rank. In the other cases, the
modeling method we present here still has an advantage, as
it allows one to construct a bilinear approximating system of
rank r using the output derivatives of orders up to2r − 1 ≤
k+⌊k/2⌋(k−⌊k/2⌋). Thus the identification can be done using
fewer input/output sets, which is quite imporatant he since
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the necessary number of input/output sets grows exponentially
with the increase of the order of differentiation of the output.

In order to simplify the explications, we will only deal
with column operations. However, in practice, a more efficient
strategy is to mix the column and row operations. In other
words, our MAPLE package constructs both a row basis and
a column basis of the Hankel matrix and uses both column
and row dependencies during its “filling in”. Even though
it is possible to rely exclusively on column operations, the
algorithm is simpler for a mixed strategy.

III. I DENTIFICATION OF FORMAL POWER SERIES OF RANK

2

Corollary III.1. (of theorem (II.3)) If the Hankel matrix is of
rank 2, then either{Cε, Cz0} or {Cε, Cz1} span the space of
column vectors.

Theorem III.2. A rational generating series of rank 2 can be
uniquely identified from the output derivative conditions (II.6)
of orders up to 3.

Proof:
Without loss of generality, we can assume that{Cε, Cz0}

span the column space. If not, we can interchangez0 andz1.

Let λ = (gε, g0), M0 =
(

0 a
1 b

)
andM1 =

(
c d
e f

)
. Let us

consider the following system of equations, equivalent to the
conditions obtained from the output derivative conditionsof
orders up to 3:

λM(z)γ = gi(i = ε, z0, z1, z
2
0 , z0z1, z1z0, z

2
1 , z3

0 , z3
1),

λ(M(z2
0z1)+M(z0z1z0)+M(z1z

2
0))γ = g001+g010+g100,

λ(M(z0z
2
1)+M(z1z0z1)+M(z2

1z0))γ = g011+g101+g110,
(III.1)

Here M(zi0 · · · zik
) = Mi0 · · ·Mik

, the coefficient of the
rational series corresponding to a bilinear system of the type
(II.7).

Appending to it the conditions of vanishing of all3×3 mi-
nors of the Hankel matrix involving the coefficients of orders
up to 3, we obtain a system in the unknowns{a, b, c, d, e, f}.
Using Gröbner basis techniques, it is possible to show (it
takes a significant amount of time) that it admits a solution
for any value of the coefficientsgi on the right-hand side of
the equations (of course satisfying the minor vanishing con-
ditions). Moreover, the solution is unique under an additional
assumption that the rank of the Hankel matrix is strictly greater
than 1.

Solving complicated systems of polynomial equations is
a very useful tool from a theoretical point of view, but it
becomes practically unfeasible as the number of equations
and unknowns increases. However, we do not need to solve
the most general system in every case. Firstly, one does not
need to consider the most general case. Most of the generating
series coefficients involved in the system are found during the
identification. The system (III.1) can then be solved almost
instantaneously. Secondly, the algorithm II.5 allows one to find
the two–parameter family of rational series of rank 2 having
the given coefficients of orders up to 2. Substituting it intothe
system (III.1) eliminates even more variables and any example
of rank 2 can be easily solved this way. However, the systems

one has to solve become more difficult for higher–rank cases.
We would like thus to propose a different method that involves
solving mostly linear equations.

Algorithm III.3. The algorithm consists in a loop that in-
cludes the following three main steps.

1) Identify dependencies between the columns and use them
to fill in a part of the matrix.

2) Solve the system of linear equations obtained during the
identification, and substitute the solution into the Hankel
matrix (thus some entries will be linear expressions of
other entries).

3) (necessary only at ranks 4 and higher) Find a parameter
(or a linear combination of parameters) in such a way
that the rank of the Hankel matrix is “too high” for all
but one value of this parameter (or linear combination of
parameters). “Too high” means that is is greater then
⌊(m + 1)/2⌋ when m is the maximal order of output
differentiation used during identification.

For generating series of rank 2, there are 3 different possible
scenarios :

• {Cε, Cz0} and{Cε, Cz1} both form bases of the column
space and{Rε, Rz0} and{Rε, Rz1} both form bases of
the row space. In this case, filling in the matrix using the
column dependencies allows one to find both unknown
parameters of the two-parameter family.

• only one of {Cε, Cz0} and {Cε, Cz1} is a base of the
column space oronly one of{Rε, Rz0} and{Rε, Rz1} is
a base of the row space. In this case, filling in the matrix
allows one to find one of the unknown parameters. The
other one is found from the equations (II.6).

• only one of {Cε, Cz0} and {Cε, Cz1} is a base of the
column space andonly one of{Rε, Rz0} and{Rε, Rz1}
is a base of the row space. In this case, filling in the
matrix is not sufficient to find any unknown parameters.
But it allows one to diminish the number of unknown
coefficients of the generating series and to find the
unknown parameters one by one.

The algorithm is very easy in each case. But since complete
explanations will not be feasible in higher–rank cases, we will
illustrate in detail our techniques here, for cases 1 and 3.

Example III.4. Let us first consider the following (bilinear)
dynamical system which is an example of case 1.

q̇1 = −q2,

q̇2 = q1 + q2 + (2q1 + q2)u,

y(t) = q1(t) + 2q2(t).

q1(0) = 1,
q2(0) = 0.

(III.2)

Using the algorithm II.5, we obtain the following information
at order 3 of differentiation:

〈G |ε〉 = 1, 〈G |z0〉 = 2, 〈G |z1〉 = 4, 〈G |z2
0〉 = 1,

〈G |z0z1〉 = 2, 〈G |z1z0〉 = 2, 〈G |z2
1〉 = 4, 〈G |z3

0〉 = −1,

〈G |z2
0z1 + z0z1z0 + z1z

2
0〉 = −3,

〈G |z0z
2
1 + z1z0z1 + z2

1z0〉 = 0, 〈G |z3
1〉 = 4.

Its Hankel matrix is thus as follows (with monomials ordered
lexicographically) :
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1 2 4 1 2 2 4 · · ·
2 1 2 −1 −3−x1−x2 x1 −y1−y2

4 2 4 x2 y1 y2 4
1 −1 −3−x1−x2

2 x1 −y1−y2

2 x2 y1

4 y2 4
· · ·


(wherex1, x2, y1, y2 are yet unknown values). The rank of

this matrix should be 2. Using the algorithm II.5, we obtain
{Cε, Cz0} as the basis of the column space, as well as

λ = (1 2), µ(z0) =
(

0 1− 2a
1 a

)
, µ(z1) =

(
0 2− 2b
2 b

)
,

where a and b are unknown parameters (recall that the
algorithm does not use any coefficients of order 3 since most
of them were not identified yet). The available information on
the third–order terms allows us to conclude immediately that
we also haveCz2

0
= Cz1 − Cε and Cz2

1
= 2Cε.

Using the known values of the Hankel matrix, these two
relations between the columns together withCz1 = 2Cz0 and
their consequences, we obtain additional relations−3− x1−
x2 = 4, −y1 − y2 = 2x1, y1 = 2x2, x2 = −2 and 8 = 2y2.
Solving these equations, we obtain all the coefficients of order
3. The Hankel matrix is now

1 2 4 1 2 2 4 −1 −2 1 2 −2 −4 2 4
2 1 2 −1 −2 1 2
4 2 4 −2 −4 2 4
1 −1 −2
2 1 2
2 −2 −4
4 2 4
· · · · · · · · ·


giving usa = 1 and b = 1. The rank 2 rational series is

thus completely determined. Constructing the bilinear system
corresponding to it, we obtain the system (III.2). Let us remark
that it was a different system that was found by the original
method, using the same information. The rational generating
series corresponding to (III.2) is

G = 1 + (2 − z0)
(
z0 + z1 − (z0 + 2z1)z0

)∗
(z0 + z1)

Remark. Of course, if the additional relations were contra-
dictory, we would conclude that the rank of the series was
greater than 2, and use only some additional conditions to
find the values ofa andb.

Example III.5. Let us now consider an example of case 3: q̇1 = q1 + q2,
q̇2 = q2 + (q1 + 2q2)u,
y(t) = q1(t) + 2q2(t).

q1(0) = 1,
q2(0) = 0.

(III.3)

At order 3 of differentiation of the output, we have identified

the following:

〈G |ε〉 = 1, 〈G |z0〉 = 1, 〈G |z1〉 = 2, 〈G |z2
0〉 = 1,

〈G |z0z1〉 = 3, 〈G |z1z0〉 = 2, 〈G |z2
1〉 = 4, 〈G |z3

0〉 = 1,

〈G |z2
0z1 + z0z1z0 + z1z

2
0〉 = 9,

〈G |z0z
2
1 + z1z0z1 + z2

1z0〉 = 16, 〈G |z3
1〉 = 8.

Its Hankel matrix is thus of the following form

1 1 2 1 3 2 4 · · ·
1 1 3 1 9−x1−x2 x1 16−y1−y2

2 2 4 x2 y1 y2 8
1 1 9−x1−x2

3 x1 16−y1−y2

2 x2 y1

4 y2 8
· · · · · · · · ·


By the algorithm II.5 we obtain, taking the basis{Cε, Cz1}

λ = (1 2), µ(z0) =
(

1 3− 2a
0 a

)
, µ(z1) =

(
0 4− 2b
1 b

)
,

where a and b are again some unknown parameters. Using
the only known relationCz0 = Cε and its consequences, we
obtain additional equationsx1 = 3, x2 = 2 and y2 = 4. This
allows us to conclude that thatCz0z1 = Cε + Cz1 and thus
a = 1. This last relation between the columns implies in its
turn thaty1 = 6 and thusb = 2. The rank 2 rational series is
now completely determined:

G =
(
1 + 2(z0 + 2z1)∗z1

)(
z0 + z0(z0 + 2z1)∗z1

)∗
.

IV. I DENTIFICATION OF FORMAL POWER SERIES OF RANK

3

The rank 3 case would be rather similar to the rank 2 case,
except for the fact that we may not know the complete basis
of the column space at the beginning. However, the following
easy proposition guarantees that at least 2 basis vectors are
known.

Proposition IV.1. The part of the Hankel matrix of a rational
series of rank 3, constructed using the coefficients obtained
from derivatives of orders up to 5 of the output, cannot be of
rank 1.

Theorem IV.2. All the coefficients of a rational power series
of rank 3 can be uniquely determined from the information
obtained from the output derivative conditions (II.6) of orders
up to 5.

Proof:
This theorem, which is a counterpart to (III.2), cannot

be realistically proven by solving a system of polynomial
equations, since the corresponding system is quite complicated
in this case. Solving this polynomial system is still feasible
for a given series if we use the information obtained from the
algorithm II.5.

However, the general proof can rely on the new techniques
described in this paper and it can be done by considering
separately different cases arising during the identification. We
give its outline here. Further details can be easily filled in.
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At fifth-order differentiation of the output, the known part
of the Hankel matrix is of the form

y y y y y y y y y y y y y y y . . .
y y y y y y y y
y y y y y y y y
y y y y y
y y y
y y y
y y y y y
y y y
y
y
y
y
y
y
y y y


where y denotes (different) known values. There are 3

possibilities.
1) The first three columns and the first three rows are inde-

pendent. The algorithm II.5 gives us all the coefficients
of M1 andM2. The rest of the matrix can then be then
unambiguously found.

2) The known part of the Hankel matrix is of rank 3, but
the upper-left3× 3 determinant vanishes. Without loss
of generality, we can assume thatCε, Cz0 , Cz1 span the
column space. (If not, the same argument works by
considering the rows instead of the columns.) Since there
is a linear relationship between the first 3 rows, there is
a linear relationship between the coefficients of orders 3
and 4, of the forma〈G |z0zI〉 +b〈G |z1zI〉 +c〈G |zI〉 =
0, whereI is a multi-index of length 3. These equations
are independent, which allows us to reduce the number
of unknown coefficients of order 4 from 8 to 3.
Now, among the rowsR4 throughR7, one is part of
the basis, two are linear combinations of the other ones
(consequence of linear dependence of the first 3 rows).
The remaining one is also a linear combination of the
basis rows. This relationship gives us another 4 relations
between the coefficients of order 4, which allows us
to identify them completely. The image of the basis
columns under the left multiplication is now identified
and the rational series uniquely determined.

3) The known part of the Hankel matrix has rank 2. That
is, the third basis column vector has to be somewhere
among columnsC4 through C7 and third basis row
vector somewhere among rowsR4 throughR7.
As in the previous case, we obtain the relations of the
form a〈G |z0zI〉 + b〈G |z1zI〉 + c〈G |zI〉 = 0 for the
fourth-order terms. However, since we do not know the
whole basis, we do not have an immediate extra relation
between the rows. However, we can use the similar
relationship among the first 3 columns to find more
equations for the coefficients of order 4. This allows
us to find the third row completing the row basis as
well as the third column completing the column basis.
Doing another round of equating the coefficients of the
dependent columns and rows allows us to find all the
coefficients of orders 4 and 5, thus determining the
missing coefficients of the matricesM1 andM2.

Example IV.3. Examples of the three above-mentioned cases
can be the series obtained usingγ = (1 0 0)⊥ and the
following matrices :

λ = (1 2 3), M0 =

0 0 1
1 0 0
0 1 0

 , M1 =

0 0 2
0 1 0
1 0 0


λ = (1 1 1), M0 =

0 1 0
1 0 1
0 1 1

 , M1 =

0 1 0
0 1 1
1 0 1


λ = (1 1 2), M0 =

1 0 1
0 0 1
0 1 0

 , M1 =

0 2 −1
1 0 1
0 0 1


The corresponding generating series are:

G1 =
(
1+3z1+2z∗1z0+3z0z

∗
1z0

)(
(z0+2z1)(z1+z0z

∗
1z0)

)∗
G2 =

(
1 + (1 + z0 + z1)

(
(1 + z0z

∗
1)(z0 + z1)

)∗
z1+

+ (1 + z0)
(
z1 + (z0 + z1)+z0

)∗
z0

)
×

×
(
(z0+z1)

(
z1 + (z0+z1)+z0)

)∗((z0+z1)+z1 + z0)
)∗

G3 =
(
1 + (1 + 2z0z

∗
1)

(
(z0 + z1)z∗1z0

)∗
z1

)
×

×
(
z0 + 2z1

(
(z0 + z1)z∗1z0

)∗
z1+

+ (z0 − z1)
(
z1 + z0(z0 + z1)

)∗
z0z1

)∗
V. I DENTIFICATION OF FORMAL POWER SERIES OF RANK4

At rank 4, we meet additional difficulties. The main one is
that we want to identify a rational series of rank 4 before the
complete identification of coefficients of order 4. Thus, the
known part of the Hankel matrix can be of rank 1. However,
using the technique of minimization of the rank of the Hankel
matrix, we can still find the unique rational series of rank 4
whenever the generating series of rank≤ 4.

Theorem V.1. A rational series of rank≤ 4 can be uniquely
identified from the information obtained from the output
derivative conditions up to order 7.

Proof:
The proof is done by considering every possible case, as for

the Theorem IV.2. However, there are many more cases and it
is impossible to present a complete proof here. We will only
illustrate in detail the new technique of minimizing the rank.
This technique is applied whenever the first two techniques
are insufficient for “filling in” the whole matrix.

Its principle is based on the observation that the rank of a
parametric matrix may vary is a function of its parameters. The
goal is to find a square submatrix depending on at least one
parameterp whose rank is greater than 4 unless the parameter
p is equal to a certain valuek. Since we want to find the
rational series of minimal rank (i.e. less than or equal to 4),
we can takep = k and repeat the algorithm’s loop from the
beginning. Lemma V.2 guarantees that it is always possible to
find such a value.
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Now, considering separately all the different cases (for
different possibilities of basis vectors and basis rows), we
see that at most 1 minimization is necessary in order to
complete the identification of the parameters. Indeed, the only
coefficients of order 4 that were not identified at order 7 are
those of the monomials involving 2 occurrences ofz0 and 2
of z1. There are 6 such coefficients in all, but only 5 equations
to find them. However, the minimization technique allows us
to find one of these coefficients. The remaining ones are then
immediately found from the 5 identified linear combinations.
Once this step is finished, the remaining steps are quite similar
to the rank 3 case and are executed without difficulties.

Lemma V.2. Let H be the Hankel matrix corresponding to
a rational series of rank 4, whose coefficients were identified
from the output derivative condition of orders up to 7. Then
there exists a yet unidentified coefficientgi with the property
that the rank ofH is greater or equal to 5, unlessgi is equal
to a certain valuek.

Proof:
The lemma is again proven on a case-by-case basis.
Remark. The disadvantage of the minimization part is its

nonlinearity, but it can still be efficiently implemented on
computer, since it involves only one symbolic parameter.

Example V.3. Consider the rational generating series for the
bilinear system withλ = (1 1 1 1),

γ =


1
0
0
0

 , M0 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 2

 , M1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .

At the order 7 of differentiation of the output, all the known
coefficients are equal to 1. The yet unknown conditions for the
coefficients of the fourth–order terms giveg0011 = a, g0101 =
7 − 5a, g0110 = 4 − 3a, g1001 = 4 − 3a, g1010 = 6 − 5a,
g1100 = a, wherea is an unknown parameter.

Since all the known coefficients are equal to 1, no depen-
dency between the columns can be identified at this stage.
As a consequence, we cannot obtain any other coefficient yet.
Studying the rank of the Hankel matrix, we see that its rank
is r ≥ 4 for a = 1, r ≥ 8 for a 6= 1 and r ≥ 9 for
a = (9 ± √

1105)/32 (no matter what are the values of the
coefficients of orders 5 and higher). Therefore, since we are
trying to construct a rational series of rank≤ 4, a = 1 is the
only value that could eventually allow us to obtain a matrix of
rank 4. Once we choosea = 1, four independant columns are
immediately found and the rest of the matrix is easily filled in.

VI. I DENTIFICATION OF SERIES OF RANK GREATER THAN

4

The identification algorithm works essentially in the same
way as in the rank 4 case, except that there are no direct
counterparts of the lemma V.2. However, it can be replaced
with a following strategy, applied as many times as all the
other strategies fail. It is based on the following conjecture
based on strong experimental evidence :

Conjecture VI.1. Let H be the Hankel matrix corresponding
to a rational series of rankr ≥ 5, whose coefficients were
identified from the output derivative conditions of orders up
to 2r − 1. Then there exists a combination of unidentified
coefficientss =

∑
j gIj with the property that the rank of

H is greater thanr, unlesss is equal to a certain valuek.

The rank minimization algorithm is as follows :

1) Letn be the length of the shortest word in the generating
series (the smallest according to the lexicographical
ordering) whose coefficient is unknown.

2) Let m =
∑

i aigi be the sum of the coefficients of order
n that are not identified yet andai unknown constants.

3) We initialize the stack with({m = 0}, Cε), the basis
with Cε (since it can be always considered as a part of
the basis) and the current column with̃C = Cz0 .

4) During each iteration of the loop, one considers the
column C̃.

• If the basis contains more thanr columns, pop the
stack and obtain the last–in element(s, CK). Solve
the systems, replace the obtained values in the
Hankel matrix and exit the loop.

• If C̃ is the column corresponding to a word of length
> r, we encountered a linear combination that does
not work. Let(s, CK) be the element on top of the
stack. We pop the stack and resetC̃ to the column
that followsCK .

• We write the (truncated) columnCJ as a linear
combination (with arbitrary coefficients) of the ba-
sis columns and solve the corresponding system
of equations augmented with the systems, where
(s, CK) is the element on the top of the stack.

– If the system is incompatible, we add this column
to the basis.

– If there is one solutionm′ that involves only
linear combinations ofgi and such that not all
ai vanish, we appendm′ to s and push(s, CJ )
onto the stack.

– In all the other cases, no action needs to be done
on this stage.

Finally, we resetC̃ to the column that followsCJ .

Conjecture VI.2. A rational series of rankr (or less) can
be uniquely identified from the information obtained from the
output derivative conditions (II.6) up to order2r − 1.

Proof:
Due to a large number of different cases, it is not possible to

clearly identify all the different possible scenarios and give a
complete proof similar to the rank 2, 3 and 4 cases. Extensive
experimental evidence shows however clearly that the system
of rank k can be identified in all the cases.

VII. C ONCLUSION

In this article, we propose an improvement of the method
of Hespel–Jacob for modeling nonlinear dynamical systems in
the case of a single input. Among its main advantages are: the
use of all the information obtained during the identification,
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which implies a better approximation and the possibility to
precisely identify a rational series whenever there is sufficient
data. Moreover, we have bounded by2k − 1 the order of
differentiation of the output derivatives which is necessary for
identifying a rational series of orderk. This algorithm was
successfully programmed and tested in MAPLE.

An interesting direction to pursue is to generalize this
algorithm to the case of several inputs.
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Counting Rooted and Unrooted Triangular Maps
Samuel Vidal and Michel Petitot

Abstract—In this paper, we describe a new way to count
isomorphism classes of rooted triangular maps and unrooted
triangular maps. We point out an explicit connection with the
asymptotic expansion of the Airy function. The analysis presented
here is used in a recent paper “Vidal (2007)” to present an
algorithm that generates in optimal amortized time an exhaustive
list of triangular maps of a given size.

Index Terms—rooted triangular maps, unrooted triangular
maps, generating functions, Airy funtion, cycle index series

INTRODUCTION

Triangulations of surfaces constitute an important data struc-
ture in computer graphics as they provide a handy discrete
model of surfaces. It has proven invaluable for instance to
model the shape of objects in computed graphics. From the
point of view of computer science, the applications of surface
triangulations are well known and numerous, they touch both
practical and theoretical aspects of the discipline and they
range from computer graphics to discret methods of solving
partial differential equations. They also play a central role in
many algorithms of computational geometry, a fast growing
subject having an heavy industrial impact as it is used in
computer aided design.

One particularly interesting treat of the subject, apart from
its broad range of applications, is precisely its ubiquity both
in computer science, mathematical physics and even pure
mathematics, providing generous range of fruitful exchange
between seemingly remote parts of science. From the point
of view of mathematics, the theory of combinatorial maps is
also a venerable subject dating back to Cayley and Hamilton.
Since those times, it generated an impressive amount of results
of all sorts concerning the particular enumeration problem
of counting the rooted combinatorial maps. Those results
came from various communities of researchers, each with
its own methods and tradition. Among them, enumerative
combinatorists of course played a significant role, starting with
pioneering works by Tutte [17] on rooted planar maps. Those
works where at first motivated by the four color problem.
Theoretical physicists also played a significant role, starting
with the work by t’Hooft [16] on integration on random
matrix spaces and Feynman diagrams. Pure mathematicians
like Harer and Zagier [5] also have contributed to the theory
in connection with cutting edge algebraic geometry problems
concerning moduli spaces of Riemann surfaces. Last but not
least, one must mention in mathematical physics the Witten-
Kontsevich model of quantum gravity [7] using in a central
fashion the higher combinatorics of triangular maps and triva-
lent diagrams.

Although a lot is known concerning the theory of rooted
combinatorial maps, very little is currently known about the
outstanding problem of enumeration of unrooted combinatorial

maps up to isomorphism except for planar maps with the
pioneering work of Liskovets [9]. It appears as a very difficult
problem of combinatorics, which stayed barely untouched for
almost 150 years. As a matter of fact, the only general result
on those important objects were up to now contained in the
recent paper by Mednykh and Nedela [14]. In section II-D
of this paper, we give our first contribution to this problem,
namely in the form of a generating series giving the number
of unrooted triangular maps (c.f. series (20) on page 4).

In this paper, a triangular map is a triangulation of a (not
necessarily connected) oriented surface without boundary, and
its size is an integer divisible by 6, hence of the form n =
6k, such that the triangulation has 2k triangular faces and 3k
edges. Apart from those unrooted map enumeration results the
most interesting theorems of this article are the following.

Theorem 1: Let an be the number of labelled triangular
maps of size n. Then, an = 0 if n isn’t a multiple of 6 and,

a6k =
(6k)!
k!

(
1
6

)
k

(
5
6

)
k

6k (1)

where (x)k = x (x + 1) . . . (x + k − 1) is the Pochhammer
symbol. Therefore, the exponential generating series of the an
is hypergeometric and divergent. We have,∑

n≥0

an
n!
zn = 2F0

(
1
6 ,

5
6− 6 z6

)
(2)

=
∑
k≥0

( 1
6 )k( 5

6 )k
k!

6k z6k (3)

Theorem 2: Let bn be the number of pointed connected
unlabelled triangular maps of size 6n. Then bn satisfies the
following recurrence equation,

bn+1 = (6n+ 6) bn +
n−1∑
k=1

bk bn−k (4)

with n ≥ 1 and b1 = 5.
Those two theorems provide a connection with the asymp-

totic expansion of the Airy function as explained in section
II-C.

I. COUNTING PRINCIPLE FOR TRIANGULAR MAPS

An oriented surface without boundary is described by a
finite set of triangular faces. The orientation of the surface
is given by an normal unitary vector on each point of the
surface, the normal vector varying continuously with respect
to the point. This normal vector induce a cyclic order on the
tree edges belonging to a same triangle.

Any triangulation is transformed by a classical duality
(due to Poincaré), to a triangular diagram (see figures 1
and 2). Faces of the triangulation become black vertices of
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a
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d

Fig. 1. A triangulation of the Riemann sphere made of 2k triangles
(a, b, c, d, e, f). case k = 3
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Fig. 2. The associated triangular diagram made of n = 6k edges,
2k black vertices and 3k white vertices.

the diagram while edges of the triangulation become white
vertices of the diagram. In such a diagram, every edges is
adjacent to one black vertex and one white vertex. Black
vertices have degree 3 (i.e. are adjacent to three edges). White
vertices have degree 2 (i.e. are adjacent to 2 edges). Every
three edges adjacent to a same black vertex are cyclically
ordered. An isomorphism between two diagrams is given by
a bijection which transforms edges and vertices of one of the
diagrams into edges and vertices of the second, preserving
color of the vertices and cyclic orientation of the edges.

In what follows, we shall describe a triangulations by a
couple of two permutations (σ0, σ1). The permutation σ0

exchanges the two edges adjacent to a same white vertex while
the σ1 permutation cyclically permutes the three edges adja-
cent to a same black vertex. For example the two permutations
corresponding to figure 2, are the following,

σ0 = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)
(11, 12)(13, 14)(15, 16)(17, 18),

σ1 = (1, 5, 3)(2, 15, 14)(4, 9, 7)
(6, 13, 12)(10, 11, 18)(8, 17, 16).

Definition 1 (triangular map): A triangular map of size
n ∈ N is given by a finite set of edges labelled from 1 to
n and by a pair of permutations (σ0, σ1) belonging to Sn

such that the cycles of σ0 are only of length 2 and that the
cycles of σ1 are only of length 3.

Two maps (σ0, σ1) and (σ̄0, σ̄1) both of size n are called
isomorphic if there exists a permutation τ ∈ Sn such that,
σ̄0 = τ ◦ σ0 ◦ τ−1 and σ̄1 = τ ◦ σ1 ◦ τ−1, this is an
exact translation of the notion of diagram isomorphism defined
above.

A. Species used in this paper and related generating series

In the sequel, we use the following species (see appendix
A) :

1) The species of sets, denoted by E, which associates to
any labelling set U the singleton E[U ] := {U}. For
every set U there is a unique structure which is U itself.

2) The species of permutations, denoted by S, which as-
sociates to any labelling set U the set S[U ] composed
of permutations of U . For every relabelling σ : U → U
and every permutation τ ∈ S[U ], one put S[σ](τ) :=
στσ−1.

3) The species of cycles of length n, denoted by Cn, which
associates to any labelling set U the set Cn[U ] composed
of cyclic permutations of U of length exactly n. One put
Cn[U ] = ∅ when cardU 6= n.

4) The species Sn of permutations having only cycles of
length n.

5) The species of triangular maps, denoted by T ∗, which
associates to any labelling set U , the set T ∗[U ] of
triangular maps whose edges are labelled by U .

6) The species of connected triangular maps, denoted by
T , which associates to any labelling set U the set T [U ]
of connected triangular maps whose edges are labelled
by U .

7) The species of pointed connected triangular maps, de-
noted by T •, having a distinguished edge.

The considered species are related by the following rela-
tions,


S2 = E(C2)
S3 = E(C3)
T ∗ = S2 � S3

T ∗ = E(T )

(5)

In intuitive terms, this means,

• A permutation of S2 decompose uniquely in a set of
cycles of length 2.

• A permutation of S3 decompose uniquely in a set of
cycles of length 3.

• A triangular map is uniquely determined by a couple of
permutation (σ0, σ1) ∈ S2×S3 acting simultaneously on
a set of labels.

• A triangular map is uniquely decomposed in a set of
connected triangular map.

The set of species permits to derivate in an automatic
fashion from the equations (5), the following relations between
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generating series,

S2(z) = expC2(z)
S3(z) = expC3(z)
T ∗(z) = S2(z)� S3(z)
T (z) = log T ∗(z)

T •(z) = z
d

dz
T (z)

(6)

II. COUNTING TRIANGULAR MAPS

A. Labelled triangular maps

In this section, we are counting the triangular maps having
n edges labelled by numbers from 1 to n.
Proof of theorem 1 – There are (n − 1)! labelled cycles
of length n then Cn(t) = zn

n . This enables to compute the
following generating series,

S2(z) = exp
z2

2
=
∞∑
k=0

z2k

2k
1
k!
, (7)

S3(z) = exp
z3

3
=
∞∑
k=0

z3k

3k
1
k!
. (8)

Let’s study the coefficients of the series T ∗(z) = S2(z) �
S3(z). In T ∗(z), the coefficient of zn vanish when n in not a
multiple of 6. One has,

[ z6n ]T ∗ =
1

23n32n

(6n)!
(2n)! (3n)!

, (n ≥ 0).

Let’s put T ∗(z) = f(6z6). Let’s show that the series
f(x) =

∑
n≥0 fn

xn

n! is hypergeometric. Using formula (21),
the computation of fn yields,

fn =
1

6n23n32n

n! (6n)!
(2n)!(3n)!

, (n ≥ 0). (9)

By a straightforward computation one deduces that the fn
coefficients satisfie the following linear recurrence,

fn+1

fn
= (n+ a1)(n+ a2) where a1 =

1
6
, a2 =

5
6
. (10)

As f(0) = 1, one deduces that f(x) = 2F0

(
a1, a2

− x

)
which ends the demonstration. �

B. Pointed connected triangular maps

Proposition 1 ([23] lemma 1.4): The species T • of pointed
connected triangular maps is rigid (see definition 3), or equiv-
alently T̃ •(z) = T •(z).

Proof: Let φ be an automorphism of a pointed connected
diagram (Γ, a) preserving basepoint, i.e. such that φ(a) = a.
Let A be the set of edges of Γ left invariant under φ i.e. edges x
such that φ(x) = x. Our proposition is proved if we show that
every edge of Γ belongs to A. As φ preserves adjacency and
cyclic orientations around vertices, if x ∈ A then every edges
adjacent to x must be preserved by φ. Hence by induction the
condition propagates to the full connected component of x. As
a ∈ A then A is nonempty, and as Γ is connected then every
edges of Γ belongs to A, which ends the proof.

A1

A2

A3

A4

A5

Fig. 3. As an example, this figure gives the 5 pointed connected triangular
maps having 6 edges. This corresponds to b1 = 5.

Proof of theorem 2 – From the linear recurrence 10, the
hyper geometric series f(x) satisfies the differential equation
Lf(x) = 0 where,

L := θ − x(θ + a1)(θ + a2), θ = x
d

dx
. (11)

Using the change of variables x = 6z6, the equations (6)
implies,

T •(z) = z
d

dz
T (z) = z

d

dz
log T ∗(z)

= 6x
d

dx
log f(x) = 6v(x).

(12)

the function v(x) := xf ′(x)/f(x) is solution to the Riccati
equation associated to the linear equation (11),

v − x[θv + v2 + (a1 + a2)v + a1a2

]
= 0. (13)

From this equation, one deduce that the coefficients vn of the
series v(x) =

∑
n≥0 vnx

n satisfies the following quadratic
recurrence (where δ is the Kronecker symbol),

vn+1 = (a1 + a2 + n) vn +
n∑
k=0

vkvn−k + a1a2 δn,0

with n ≥ 0. Replacing a1 et a2 by their values yields,

vn+1 = (n+ 1) vn +
n∑
k=0

vkvn−k +
5
36
δn,0, (14)

with n ≥ 0 and initial condition v0 = 0. One deduce v1 =
5/36.

The sequence bn one gets from the sequence vn while
putting One then have bn = 6n+1vn. The recurrence (14)
defining the sequence vn is equivalent to the recurrence,

bn+1 = 6 (n+ 1) bn +
n∑
k=0

bkbn−k + 5δn,0 (15)

with n ≥ 0 and initial condition b0 = 0 which defines the
sequence bn of theorem 2. �

That recurrence (15) gives,

T̃ •(z) = T •(z) = 5 z6 + 60 z12 + 1105 z18 + 27120 z24

+ 828250 z30 + 30220800 z36 + · · ·
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C. Connection with Airy asymptotics

The following special function,

Ai(x) :=
1
π

∫ +∞

0

cos
(1

3
t3 + xt

)
dt (16)

due to the british astronomer Airy, find applications in optics.
It solves the linear differential equation y′′(x) = x y(x). In
ordre to numerically compute the zeros of this function, Stokes
in 1857, used the following asymptotic expansion

Ai(x) ∼
x→+∞

exp(−2/3 x3/2)
2
√
π x1/4 2F0

(
1
6 ,

5
6− −3

4
x−3/2

)
,

(17)

wich is divergent. It establishes the connection with the
generating series (2) of T ∗(z).

Reworking the computation of the proof of theorem 2, one
proves the following asymptotic expansion,

z2/3 Ai′
(
1/4 z2/3

)
Ai
(
1/4 z2/3

) +
1
2
z + 1 ∼

z→+∞
b1
z
− b2
z2

+
b3
z3

+ · · ·

= −T •(−1/z), (18)

where Ai′ is the derivative of the Airy function.

D. Connected triangular maps

In this section, we are computing the generating series T̃ (z)
which counts connected triangular maps having n edges. Two
isomorphic maps are counted once. The species T isn’t rigid ;
we shall thus use the cycle index series of T through the
formula T̃ (z) = ZT (z, z2, z3, . . .). To that purpose we shall
first compute the cycle index series of the specie C2, C3 and
E which are,

ZC2(z1, z2, . . .) =
1
2
z2
1 +

1
2
z2

ZC3(z1, z2, . . .) =
1
3
z3
1 +

2
3
z3

ZE(z1, z2, . . .) = exp
(
z1 +

z2
2

+
z3
3

+ · · ·
)

For the species S2 := E(C2), one gets using (23),

ZS2(z1, z2, . . .) = ZE
(1

2
(z2

1 + z2),
1
2

(z2
2 + z4),

1
2

(z2
3 + z6), . . .

)
= exp

(1
2

(z2
1 + z2) +

1
4

(z2
2 + z4)

+
1
6

(z2
3 + z6) + · · ·

)
= A1(z1) A2(z2) A3(z3) · · ·

where for all integer n ≥ 1,

An(zn) =


exp

(
z2
n

2n
+
zn
n

)
n ≡ 0 mod 2

exp
(
z2
n

2n

)
n ≡ 1 mod 2

A similar computation gives for the species S3 := E(C3),

ZS3(z1, z2, . . .) = B1(z1) B2(z2) B3(z3) · · ·

where for all integer n ≥ 1,

Bn(zn) =


exp

(
z3
n

3n
+

2zn
n

)
n ≡ 0 mod 3

exp
(
z3
n

3n

)
n 6≡ 0 mod 3

The cycle index series ZS2(z1, z2, . . .) and ZS3(z1, z2, . . .)
are separated (see definition 4). The cycle index series of the
species T ∗ := S2 � S3 is computed using lemma 1,

ZT∗(z1, z2, . . .) = (A1 �B1)(z1) (A2 �B2)(z2)
(A3 �B3)(z3) · · ·

The cycle index series of the connected species T is computed
using formula (24),

ZT (z1, z2, . . .) =
∑
k≥1

µ(k)
k

∑
n≥1

log(An �Bn)(znk). (19)

The series T̃ (z) := ZT (z, z2, z3, . . .) is eventually com-
puted using a computer algebra package. One gets,

T̃ (z) = 3 z6 + 11 z12 + 81 z18 + 1228 z24

+ 28174 z30 + 843186 z36 + 30551755 z42

+ 1291861997 z48 + 62352938720 z54

+ 3381736322813 z60 + . . .

(20)

Fig. 4. The three triangular maps with two faces. Using the notion of
Poincaré duality described in section I, the diagrams A1 and A2 of figure
3 corresponds to the leftmost map and to the middle map respectively while
the three diagrams A3, A4 and A5 being conjugated, altogether correspond
to the same triangular map on the right.

Fig. 5. The eleven triangular maps with four faces. Among them one finds
the tetrahedron which can be seen as a triangulation of the Riemann sphere.
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APPENDIX

A. Definitions

The goal of species theory is to provide a simple way to
describe labelled structures that are met in computer science.
That description style is broader than the pure syntactic style
for it explicitly takes account of the relabelling process. It
enables to count structures up to isomorphism, which means
that two structures are counted as one if they are equal modulo
a permutation of their labels.

Definition 2 (species): A species of structure [6], [1] is a
functor F which produces

(i) for all finite label set U , a finite set of structures denoted
by F [U ],

(ii) for all bijections σ : U → V , a bijection

F [σ] : F [U ] −→ F [V ].

F [U ] denotes the set of F -structures labelled by U , σ is any
permutation of the labels and F [σ] is the related permutation
of labelled structures. One assumes that F is a functor, which
means that for all permutation σ : U → V and σ′ : V → W ,
one has F [σ′ ◦σ] = F [σ′]◦F [σ]. Moreover, for all set U , one
has F [IdU ] = IdF [U ].

B. Generating series

Two F -structures s1 ∈ F [U1] and s2 ∈ F [U2] are called
isomorphic if there exists a bijection σ : U1 → U2 such that
s2 = F [σ](s1).
One usualy consider the following series:

1) the exponential generating series which counts the num-
ber an(F ) of labelled F -structures of size n:

F (z) =
∑
n≥0

an(F )
zn

n!

2) the ordinary generating series which counts the number
ãn(F ) of unlabelled F -structures of size n i.e. counted
up to isomorphism:

F̃ (z) =
∑
n≥0

ãn(F ) zn

3) the cycle index series which counts the number
fn1,n2,...,nk

(F ) of F -structures left invariant under a
permutation F [σ] when the cycle type of the permutation
σ is the partition λ := (n1, n2, . . . , nk). Equivalently, σ
decomposes in n1 cycles of length 1, n2 cycles of length
2 etc. One sets for n = n1 + 2n2 + · · ·+ knk:

ZF (z1, z2, . . .) =
∑
σ

fn1,...,nk
(F )

zn1
1 . . . znk

k

n!

=
∑
λ

fn1,...,nk
(F )

zn1
1 . . . znk

k

1n1n1! . . . knknk!

One gets the second formula from the first collecting in
the sum all the permutations σ having the same cycle
type λ.

One can recover the two other generating series from the cycle
index series using,

F (z) = ZF (z, 0, 0, . . .)

F̃ (z) = ZF (z, z2, z3, . . .)

1) Rigidity: The automorphism group (i.e. symetry group)
of a F -structure s ∈ F [U ] is the set of permutation σ of U
such that F [σ](s) = s.

Definition 3 (rigid species): A species F is called rigid
whenever the group of automorphism of any F -structure is
reduced to the identity transformation.
A F -structure is rigid if and only if an(F ) = n! · ãn(F ) for
all integer n, which is equivalent to the equality of the two
generating series F (z) and F̃ (z).

C. Two basic operations on structure species

1) Cartesian product (superposition): The cartesian prod-
uct F �G of two species F and G corresponds to a superpo-
sition of two structures labelled over a same alphabet. More
precisely, to any set of labels U , one sets (F � G)[U ] :=
F [U ] × G[U ] and (F � G)[σ] := F [σ] × G[σ] for all
permutation σ : U → U .

By definition of the superposition and following the nota-
tions above, for all natural number n one has an(F � G) =
an(F ) · an(G) and for all partition λ := (n1, n2, . . . , nk) one
has fλ(F �G) = fλ(F ) · fλ(G). At the opposite, for a non-
rigid species ãn(F � G) 6= ãn(F ) · ãn(G), which justifies
the use of cycle index series. Translation in the language of
generating series is straightforward ; this yields a variation of
the Hadammard product,

(F �G)(z) =
∑
n≥0

an(F ) an(G)
zn

n!
(21)

ZF�G(z1, z2, . . .) =∑
λ

fλ(F )fλ(G)
zn1
1 . . . znk

k

1n1n1! . . . knknk!
(22)

2) Composition of two species: Compostion of two species
F et G will be denoted by F ◦G or else F (G). A (F ◦G)-
structure labelled by a set U is given by (see book [2, page
41])

(i) a partition π = {U1, U2, . . . , Uk} with U = U1 t U2 t
· · · t Uk,

(ii) a F -structure labelled by the set {U1, U2, . . . , Uk},
(iii) a list (s1, s2, . . . , sk) of G-structures labelled by

U1, U2, . . . , Uk respectively,
which can be summed up by,

(F ◦G)[U ] =
∑

π partition of U

F [π]×
∏
p∈π

G[p].

This construction translates to the following relations on
generating series,

(F ◦G)(z) = F (G(z)),

(F̃ ◦G)(z) = ZF
(
g̃1, g̃2, g̃3, . . .

)
,

ZF◦G(z1, z2, . . .) = ZF (g1, g2, . . .),

(23)

ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France 95



using the following conventions g̃k := G̃(zk) and gk :=
ZG(zk, z2k, z3k, . . .) for all integers k ≥ 1.

The application we have in mind here is the decomposition
of a structure in its connected components. One may write
the following relation between species F = E(F c), this is
a particular case of the composition of species : E is the
species of sets F is a given species and F c is the species of
connected F -structures. In this particular situation, one may
use the following formulae (see book [2, page 54]) where µ
is the Mobius function,

F c(z) = logF (z)

F̃ c(z) =
∑
k≥1

µ(k)
k
· log F̃ (zk)

ZF c(z1, z2, . . .) =
∑
k≥1

µ(k)
k
· logZF (zk, z2k, . . .)

(24)

3) Separated series:
Definition 4 (separated series): A cycle index series is said

to be separable if
(i) it can be decomposed in a product of series each one

on a single indeterminate, equivalently, if it is of the
following form,

ZF (z1, z2, . . .) = F1(z1) · F2(z2) · F3(z3) · · ·
(ii) for all partitions λ := (n1, n2, . . . , n`), one has

fλ(F ) = fλ1(F ) · fλ2(F ) · · · fλ`
(F ),

using the following partitions λk =
(0, . . . , 0, nk, 0, . . . , 0) for 1 ≤ k ≤ `.

Lemma 1: Let

ZF (z1, z2, . . .) = F1(z1) · F2(z2) · F3(z3) · · · ,
ZG(z1, z2, . . .) = G1(z1) ·G2(z2) ·G3(z3) · · · ,

be two separated cycle index series. Then the series
ZF�G(z1, z2, . . .) is also separated and we have,

ZF�G(z1, z2, . . .) = (F1 �G1)(z1) · (F2 �G2)(z2) · · ·
(25)
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[2] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial Species and
Tree-like Structures. Cambridge University Press, 1998. English edition
of [1].

[3] P. Flajolet, B. Salvy, and G. Schaeffer. Airy Phenomena and Analytic
Combinatorics of Connected Graphs. The electronic journal of combi-
natorics, 11(34), 2004.

[4] F. Harary and E.M. Palmer. Graphical Enumeration. Academic Press
New York/London, 1973.

[5] J. Harer and D. Zagier. The euler characteristic of the moduli space of
curves. Invent. Math., 85:457–486, 1986.
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About a group of Drinfel’d associators
Hoang Ngoc Minh

The biological activivity of DNA molecule depends mainly on the way it is arranged in space and
the way in which it is twisted things which fall within the province of the mathematical theory of
knots [5]. There is a real parallel between mathematical transformations of knots (see the Conway’s
ip and incrossing elementary operations) and enszymatic mechanisms (the topo-isomerases) [9].

Combinatorics & Schelling’s model
Cyril Banderier , Hanane Tafat

Thomas Schelling got the Nobel prize in economic sciences in 2005 for having enhanced our un-
derstanding of conflict and cooperation through game-theory analysis. In 1971, in the Journal of
Mathematical Sociology, he published ”Dynamic Models of Segregation.” This seminal article ex-
hibited a very simple model (a variant of cellular automata) which clearly showed that a small racial
preference for each individual leads to a society with a high level of segregation. Thought being
modelizable via a Markov chain, the model is however not that simple to analyze, So they have
beeing a lot of experimental studies on this subject ; we adopt here an automata theory approach,
coupled with generating functions (analytic combinatorics), in order to establish enumerative and
asympotic rigorous results. How many rounds before the periodic regime ? What is the ratio of
each species ? What is the length of the period ? What is the migration rate (global displacement)
?

Systemic modelling
Daniel Krob

We will propose an overview of systems architecture & engineering, focusing on the systems mod-
elling aspects. The talk will adress the main aspects of these topics: what is a system ? what are
the main issues with respect to systems design ? how to describe a system ? how to model a system
?
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Description

The main goal of this special session is to join together different disciplins concerned by the analysis
of risk in terms of methodologies and management.

The proposed researches contribute to showing that risk and catastrophe are often the out-
come of structural complexities related to the number of components and their interactions, of
complexities of spatial scales and levels of organization, and of complexity of non-linear systems
(A. Dauphiné, 2003). The various research results show that, in a more or less explicit way, these
complexities do not exclude one another but may combine in the course of one and the same event.
Through its applied character, these works also contribute to territorial risk management.

These researches relate to the themes of natural risk, health risk and technological risk. Two
orientations are proposed. First the theme of risk is addressed in terms of hazard, population
vulnerability and complex decision-making about a risk or catastrophe (flooding, car travel, crowd
movement, panic, population evacuation, pedestrian behaviour in urban transport, population vul-
nerability to a cholera epidemic, decision-making aids in crisis situations). The simulation models
(simulation or GIS) are often proposed as part of a risk-management approach and meet the needs
of private or public actors such as the RATP, CODAH or the Haute-Normandie regional council.
Secondly, the theme of risk is addressed from a more conceptual angle. One paper looks at the
methods of map algebra to create spatial information and new themes in the form of a GRID;
another proposes a factual ontology of risk and catastrophe.

The session is organized on a non-thematic basis. In this way the various contributions can be
brought together. Three headings are proposed: 1) risk management 2) risk diffusion 3) conceptual
models of risk.
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Abstract—This   paper  aims   to  present   an  approach   to  model 
crowd motion in normal and panic situations in order to study the 
influence   of   the   individual's   decision   on   a   crowd   situation. 
Different aspects of the human behavior are modelled for example 
the individual and group strategy for evacuation, the negotiation 
strategy in a blocked situation and the spreading of panic into the 
crowd.  This   approach  is   based  on  the   Individual   Based  Model 
(IBM) to study and simulate the complex system such as the social 
system of crowd motion, and presents another way to study the 
special spreading of panic into the environment.

The prototypes produced by our approach for crowd simulation 
in   a   virtual   environment   illustrate   the   importance   of   the 
individual's decisions within the crowd and show how disruption 
affects the efficiency of evacuation. 

Keywords—Crowd motion simulation, human behavior, panic, 
Individual Based Model, Cellular Automata, individual's strategy. 

 

I.INTRODUCTION

Pedestrian   dynamics   studies   have   caught   the   attention   of 
scientists   in recent  years.  In this domain some models  study 
and   simulate   pedestrian   evacuation   strategies   in   panic   and 
normal   situations   to   test   their   effectiveness   and   then   help 
decisionmakers   to   reduce   human   and   material   losses.   In 
addition, this better understanding of crowd behavior is needed 
to improve safety procedures in a variety of buildings and areas 
and should optimize pedestrian motion.  

Crowd dynamic is a complex systems where global behavior 
emerge   from   local   interactions   between   individuals   and 
between individuals and their environment.  In this system of 
interactions,   decisions   of   one   individual   can   modify 
environment   and   in   this   way   affect   human   and   non   human 
entities.. One can schematically distinguish two ways to model 
pedestrian crowd:  the macroscopic model and the microscopic 



model   which   mainly   reflect   a   differentiation   in   term   of 
geographical scale.

The   microscopic   class   model   (e.g   Helbing's   force   social 
model [1], CA model [2], etc.) focuses on individuals and their 
characteristics as well as  their capacities  to take decisions in 
different situations. The global behavior of crowding is then the 
result   of   individual's   interactions  and   the   resulting  emergent 
behavior. 

The  macroscopic  class  model   (e.g  D.  Provitolo's  dynamic 
model for panic propagation [3], Henderson's approach “Fluid 
approach” [4]) studies the social system as a whole to predict a 
possible evolution of  human motion. Detailed interactions are 
then looked at and the model's description is shifted toward  a 
description of the dynamic population variation.    

In this paper, we present our approach to model pedestrian 
motion   based   on   the   Individual   Based   Model   (IBM).   This 
approach   is   a   microscopic   approach   according   to   IBM 
particularities, so take into account the individual's details and 
decisions   to   give   a   coherent   evolution   of   the   system.   To 
simplify the representation of the spatial environment we use a 
discretized representation of the space based on a grid of cells, 
where cell state includes the representation of the presence of 
individuals or other environmental obstacles. 

The paper is organized in the following manner. In section 
II, we present an overview of our model in normal and panic 
situations  with a  brief view  of the IBM approach.   In section 
III,   we   analyze   the   model   based   on   the   simulation   results. 
Finally,   we   provide   discussion   for   the   evolution   of   the 
approach.  

II.THE IBM APPROACH FOR PEDESTRIAN MOTION

Pedestrian   dynamic   models   are   used   to   control   and 
understand crowd behavior. Different types of approaches are 
developed, some focus on the prediction of a possible crowd 
evolution,   others   focus   on   the   observation   of   the   emergent 
behavior  produced by pedestrians'   interactions.  The latter  are 
called   microscopic   models.   Two   types   of   these   models   are 
described in literature:  continuous in space like the Helbing's 
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social   force   model,   and   discrete   on   space   like   the   cellular 
automata models.

Helbing's studies are based on pedestrian observations in the 
real world in normal and panic situations. He demonstrated that 
“The transition between the “rational” normal behavior and the 
apparently “irrational” panic behavior is controlled by a single 
parameter,   the   “nervousness”,   which   influences   fluctuation 
strengths, desired speed,...” [1]. Helbing's social force model is 
based   on   force   terms   which   influence   the   evolution   of 
pedestrian  motion and  where   the  variation  of  one  parameter 
may cause the appearance of panic motion.

“Cellular automata (CA) microsimulation is used to model 
complex behavior and is named after the principle of automata 
(entities) occupying  cells  according to localized neighborhood 
rules of occupancy” [5]. In fact, the CA models are based on 
cells   changing  state  what   is   determine   the   emergent   results, 
they approximate the more complex models with a minimal set 
of simple rules. Pedestrians' intelligence is not really modeled 
in   CA   approach,   other   alternative   are   introduced   to   model 
interactions   [6]   which   provide   collective   effects   and   self 
organization.

According to Helbing's studies, the evolution of pedestrian 
behavior from rational to irrational is caused by the variation of 
certain   pedestrian   characteristics.   These   variations,   brought 
about by a sudden disruption of the environment, influence the 
reasoning process of the pedestrian and causes him to panic. In 
fact, pedestrian motion in panic situations is the result of the 
variations   of   some   distinct   individual's   characteristics   that 
occur in normal pedestrian motion. Our approach is a model for 
pedestrian motion in general; we suppose that the disruptions 
that   occur   within   the   environment   affect   pedestrian 
characteristics   and  cause   their   transition   to     panic  behavior. 
This   approach   to   model   panic   is   quite   realistic   because 
pedestrian  panic  motion  is   the result  of   the feeling  fear   that 
obliges pedestrians  to modify their priorities and behavior   to 
escape the potential danger. 

A.The IBM approach 
In   our   approach   we   use   Individual   based   models   (IBM) 

which   are   a  part   of   a  multi   agent   system which   includes   a 
computational   system  composed   of   entities   in   interaction   to 
produce a solution. The particularity of IBM is the autonomy of 
the   entities   which   interact   with   each   other   and   with   their 
environment   to   produce   a   global   behavior.   Individual   based 
models are used in many social sciences and physical sciences, 
in fact in all  complex systems to investigate the properties that 
emerge from entities in interaction.[7]

This microscopic approach offers tools to take into account 
the   heterogeneity   of   the   entities,   the   characteristics   of   each 
individual   are   tracked   through   time,   in   contrast   with   the 
macroscopic   approach   where   “the   characteristics   of   the 
population   are   averaged   together   and   the  model   attempts   to 
simulate   changes   in   these   averaged   characteristics   for   the 
whole population” [8], (Graig Reynolds).

The IBM approach provides agent notion to model system's 
entities (e.g an  individual, a wall, a moving obstacle within the 
environment etc. ). Agent can be a mobile or a static entity and 

can   have   reactive   or   cognitive   behavior,   it   depends   on   the 
characteristics of the entity it models. 

1) Reactive agents 
Reactive   agents   are   autonomous   agents   with   a   partial 

representation   of   the   environment.   They   choose   actions   by 
using their current state and the external stimuli as a reference 
in the base rule to get the appropriate reaction. The architecture 
of these agents is based on the perception to produce behaviors 
called   “stimuliresponse”    behavior.   The   simplicity   of   the 
architecture  and   the  behavior  of   these  agents   allow  them  to 
model   and   study   complex   systems   where   behaviors   emerge 
from  interactions of a large number of entities. 

The   purely   reactive   agent's   drawback   is   its   lack   of 
adaptability. This type of agent cannot generate a plan to reach 
one's goal because of its incapacity of taking into account past 
actions in later decisions.     

2) Cognitive agents 
Cognitive agents  also called  Belief  Desire  Intention (BDI) 

agents[9], have a global representation of the environment. The 
architecture  of   those   agents   contains   three   classes;   beliefs, 
desires and intentions:
–Beliefs: describe the internal representation of the agent's state 
and properties, the agent's beliefs and habits   and the   agent's 
environment and the neighbors' characteristics.
–Desires: define the goals of agent. First of all the agent has to 
select a goal according to the environmental interactions.  
–Intentions: define the goal selected to reach first 

The  specificity  of   these  agents   is   their  architecture  which 
allow reasoning.  Their ability to generate a plan according to 
the   particularity   of   their   environment,   even   in   unforeseen 
situations catch up with specially human ability.  

The   main   problem   with   a   purely   cognitive   agent   is   the 
reasoning   process,   because,   for   some   simple   well   known 
situations, reasoning may not be required at all. So controlling 
the agent's reasoning process can save time in simulations.

B.The IBM model for pedestrian motion in normal and 
panic situations

The  agent   in   our   approach   is   a   hybrid   agent   which   use 
“reactive”   and   “cognitive”   approaches   to   get   the   best 
properties. In fact, a graduation exists between purely reactive 
agents   and   purely   cognitive   agents   which   represents   the 
extremity of a line and not a categoric opposition [10].

Our  hybrid   agent   adapts   its   reasoning   process   to   specific 
situations   and   reacts   in   a   deterministic   way   to   different 
situations. It is able to act as a reactive agent and gets a quick 
response for external stimuli those which do not need a plan, 
and acts as a cognitive agent to generate or use plans in some 
complicated situations.

The   architecture   of   the   agent   comprises   three   classes   or 
containers:  Beliefs,   Desires,   Intentions.   We   introduce   three 
essential  functions:  Perception,  Deliberation and Action upon 
which the agent behavior is based:
–Perception:   the   agent's   perception   updates   the   agent's 
knowledge base “Belief” according to    the interactions with 
the   environmental   entities.   These   interactions   require   a 
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“communication”   between   the   entities   which   are   normally 
assured   by   sensory   capacities   (i.e   vision   capacity,   hearing 
capacity, oral capacity). 
–Deliberation: deliberation is a cognitive capacity of the agent, 
it  assures the reasoning process  to find the desire to   firstly 
achieve.  To   deliberate,   the     agent   takes   into   account   his 
beliefs,  his action base (i.e  the   base is  an agent  base rules 
which  contain a set of actions that the agent can carry out, in 
response to stimulations) and his perceptions.
–Action:   after  deliberation   the   agent's   goal   is   to   realize   the 
desire chosen, a set of actions (i.e plan) is then established, the 
agent is able to update its plan according to its perceptions.

Fig .1:  Hybrid agent's architecture

Space   is  defined  as   a  grid  of   cells   where   every   cell   can 
contain one agent (e.g an individual,a wall, an obstacle,  etc.) 
per time step. Pedestrians move into this  discrete  space from 
one cell to another according to their velocity characteristics. 
They   have   to  refer   to   their   perceptions   to   recognize   other 
pedestrians   and   objects   in   their   vision   field,   and   have   to 
communicate with their environment  to exchange information 
and so coordinate their actions.

Perceptions are controlled by the sensory capacities of each 
agent, namely the vision capacity and the hearing capacity .In 
our  approach  vision is  defined by two parameters   the  vision 
angle and the vision radius controlling the visual perception of 
the   agent.   The   agent's   hearing   capacity   is   defined   by   the 
parameter perturbation, the  agent is continually listening to its 
environment,thus the   hearing capacity is always active and is 
ready to detect any perturbation in sounds such as an alarm..

Communication   is   a   basic  agents'   interaction   process,   it 
provides the interchange of decisions, thoughts, or information 
by speech, signs, etc. Three major parts in human face to face 
communication are distinguished in literature; body language, 
voice   tonality   and   words  [11].   In   order   to   simplify   the 
modelisation of the agents' communication, we firstly consider 
that   the   agent   can   communicate   only   with   its  Moore 
neighborhoods  (8   neighbors)   [12],   and   then   we   propose   a 
simple protocol  of  communication  based on  the sending and 
the   receiving   of   messages.   When   communication   is   needed 
between   two   agents,   each   agent   asks   its   neighbor   for 

information.   The   reception   of   these   information   allows   the 
update of the agent's knowledge base, so that it can decide the 
appropriate actions to perform.  

The   agent's   perceptions   are   the   base   of   the   interaction 
process. The exchange of information between agents, and the 
reception of the vision or the sonorous information, influence 
the decisions taken and therefore the evolution of the system 
modeled.

The agents'  motion is  based on realistic  pedestrian motion 
rules. When we look at Helbing's observations [1], we can note 
that   pedestrian   motion   is   controlled   by   certain   rules   which 
influence   its   orientation   choice.  Helbing's  observations 
demonstrated that:
–Pedestrians keep a certain distance from other pedestrians and 
borders (walls, obstacles, etc.).
–Pedestrians prefer to walk at their own speed which depends 
on their characteristics and desires.
–Pedestrians choose the fastest  route to their next destination 
rather than the shortest one. 

To   model   such   behavior   we   introduce   a   few  known 
properties in our agent base rules like repulsion and attraction 
properties,  and   collision avoidance strategies.  Agents   in our 
approach are attracted by agents who are walking on the same 
side as them and avoid agents walking in the opposite direction 
[13]. These repulsive and attractive behaviors are controlled by 
the agents'   interactions  and  allow the description  of  a   lot  of 
quite   realistic   observed   phenomena   such   as  lane   formation 
which refers to a selforganization of pedestrians into separate 
flows according to their walking direction, and  oscillations at  
bottlenecks  which refer to oscillations of the passing direction 
at bottlenecks [14]. 

However, despite the collision avoidance strategies' the agent 
sometimes may be in a conflictual  situation when its desired 
next   position   is   occupied   by   another   agent,   and   without   a 
reliable strategy, agents can remain still for a long time which 
may cause  bottlenecks.  To solve  this  situation we propose a 
conflict   resolution   strategy   inspired   by  the   “Game   theory”, 
which is  a reliable  theory to study and model social  science 
problems and situations where the individuals' decisions affect 
each other [15].  

In a blocked situation where two pedestrians aim to reach the 
same   position,   a   negotiation   must   be   done   between   the 
individuals to decide who does what. In the “Game theory” this 
situation   is   represented   in   an   hybrid   game   which   contains 
cooperative and   non cooperative  player behavior, negotiation 
and competition strategies are then defined to guide individuals' 
decision and to control the evolution of the system. The conflict 
resolution strategy that we propose in our approach is based on 
this hybrid strategy where the   agent is free to decide whether 
to cooperate or not. 

In   a   blocked   situation   the   agent's   action   depends   on   its 
strategy (i.e a cooperative strategy or a competitive strategy). In 
fact, in that situation deliberation function provides the action 
to perform according to agent's conflict resolution strategy and 
agent's current state. After deliberation each agent informs the 
other about its decision and moves to target cell. To accelerate 
simulations, agents move to the target cell providing that they 
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do not create another blocked situation, otherwise agents have 
to negotiate again.  In fact,   blocked situations will be resolved 
in   all   cases,   the   only   variable   which   changes   is   time.   The 
cooperative behavior may reduce conflict time between agents, 
and so save time for pedestrians to achieve their destinations.

Fig.   2:  Solving   conflict   situations.  These   figures   present   a   solving   conflict 
situations of  the  initial  situation (a).  The figure    (b)   illustrate  a cooperative 
behavior of the agent in white. The figure (c) present a conflict situation due a 
conflict behavior of the two agents , agents still blocked again.

In panic situations people are overwhelmed by a feeling of 
fear and anxiety.  The sudden disruption which accrued affect 
their behaviors and makes them loose their reasoning capacities 
and behave “irrationally”[16]. In our model, agent's perceptions 
detect   disruptions   which   affect   its   characteristics   and   cause 
variations   in   its   behaviors.   Panicking   agent   boost   then   its 
velocity   in   order   to   escape   as   fast   as   possible   the   danger. 
Agent's   interactions   increase   then,   an   imitation   behavior 
appears which affects the evacuation process and may produces 
the emergence of collective behavior like “boids”[13].

Hybrid agent   increases  its  walking speed when it  starts   to 
panic.   Because   of   the   lack   of   information   about   the   panic 
propagation process, we concentrate on interactions as a unique 
means   for   panic   propagation.   When   a   non   panicking   agent 
interacts with panicking neighbors, panic ensues if the number 
of  those panicking reaches  a fixed limit.  The new panicking 
agent   then   increases   its   speed   which   corresponds   to   the 
maximum speed that it can reach, and may follows agents with 
same   speed.  Boids  will   be   formed   then   and   the   emergent 
behavior   will   appear   as   a   response   to   the   environmental 
variations. 

III.SIMULATION RESULTS 

We describe in this section the results of simulations of two 
situations, namely normal situations and panic situations. The 
simulations provide critical informations to study the variation 
of pedestrians' behavior  according to environment stimuli and 
the pedestrians' conflict resolution strategy. 

A.The influence of the conflict resolution strategy on 
evacuations

We   investigate   in   this   part   the   behavior   of   pedestrians 
leaving   the environment when strategies to resolve potential 
conflict   situations  vary.  The   simulations   are  performed   in   a 
41*41   NetLogo[17]   lattice,   with   112   heterogeneous   agents 
located in a random cell  (i.e 56 agents  in the up part  of the 
environment and 56 agents in the down part, the distribution is 
uniform).  In fact,  in the simulations agents do not have   the 
same Beliefs (i.e speed, conflict resolution strategy, faith neigh 

boors,  and alarm detection),  because these beliefs depend on 
individual's   culture,   age,   sex,   experience,   etc.   We   take   into 
account these human characteristics in the model to make it as 
much realistic as possible. 

Fig. 3: The figure shows the screen shots of the simulation with a population 
of 112 heterogeneous agents. Agents in yellow represent pedestrian on the up 
part of the environment who try to reach the upexit. Agents in green represent 
pedestrians on the down part of the environment who try to reach the down
exit.

The exits upexit, downexit, and middleexit are represented 
by a still agents that occupy red patches. To exit environment 
agents on the uppart (i.e yellow agents) have to reach first the 
middleexit and then the upexit to exit the environment. At the 
same time agents on the downpart (i.e green peoples) have to 
reach   first   the  middleexit  but   the  downexit    to  exit   the 
environment. When the agents reach their exit the downexit or 
the upexit, they exit the simulations. 

The middle exits in the simulations act like doors walkable 
in both direction, they are performed in order to reduce space 
for agents and to provoke bottlenecks with agents moving on 
opposite direction. This is environment is artificial but it allows 
the study of conflict  phenomena and the observation of     the 
emergent one. 

Figure 4 illustrates the variation of the pedestrians' flows in 
normal   situations.   We   see   that   in   cooperative   strategy 
pedestrians  evacuate  quickly  than  in conflict  strategy,   this  is 
because in a conflict strategy the facetoface conflict can make 
last blocked situations. The figure 5 illustrates evacuation flows 
in panic situations with varying conflict resolution strategy, the 
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result   is   similar   than   the  one   in  normal   situations.  With   the 
same   initial   conditions,   in   cooperative   strategy   pedestrians 
leave   the   environment   in   less   than   45   time   step   whereas 
evacuation   time   pass   the   60   time   steps   with   a   conflict 
resolution strategy.

5

Fig. 4: Variation of the evacuation flows in normal situations

Fig. 5: Variation of the evacuation flows in panic situations
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From   these   two   figures   we   note   that   conflict   resolution 
strategies   influence   the   pedestrians   evacuations   flows.   The 
cooperation is the best behavior that individuals have to take 
when   they  are   in   facetoface   situations   to   avoid  bottleneck 
situations. This result is confirmed in figure 6 which illustrates 
the variation  of bottlenecks  in normal  situation with the two 
conflict   resolution   strategy,  namely   cooperative   and   conflict 
resolution strategy.

B.The influence of panic behavior on  evacuations 

We investigate in this part the effect of panic on evacuations 
process. The figure 7 presents the evolution of evacuation on 
normal   and   panic   situations   with   pedestrians'   cooperative 
strategy. In fact, for 150 time steps about 121 pedestrians are 
evacuated in normal situations whereas only 71 pedestrians are 
evacuated in panic situations. We note that evacuation time in 
panic situations is greater than the one in normal situation, thus 
trying to move fast can slow down evacuation and then may 
cause   human   disasters   by   reducing   chances   to   survival   in 
catastrophic situations.

Trying   to   move   fast   increase   pedestrians  bottlenecks   (see 
figure 8) which has a bad effect on the pedestrians' evacuation 
flows. This phenomena  has been observed in Helbing's social 
force   model   [1]   “Fasterisslowereffect”   due   to   impatience  
where  he demonstrated  that   trying to  move fast  can cause  a 
smaller average speed of leaving. 
Getting   nervous   and   panic   make   pedestrians   behave 
“irrationally”  and  make  them  take  decisions   that  worsen   the 
catastrophic situations. Alternative solution can be developed 
for panic solution to avoid such behavior and to improve the 
evacuations flow.  

6

Fig. 6: Bottlenecks variation according to the conflict resolution strategy
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7

Fig. 7: Influence of the conflict resolution strategy in peoples' evacuations. 346 heterogeneous 
pedestrians (173 pedestrians in up part, 173 pedestrians in down part). The Beliefs' parameter 
“detectalarm? = true” and “speed = 1” for all pedestrians.

Fig. 8: Bottlenecks' variations  on panic and normal situations. The beliefs' parameter are the 
same a Fig. 7.

108 ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France



IV.CONCLUSION AND PERSPECTIVES 

We have presented a model of crowd motion in normal and 
panic situations. Pedestrians'  characteristics and behaviors are 
tracked through time to investigate the properties that emerge 
from entities' interactions. Results obtained by this IBM model 
shows   that   cooperative   strategy   reduce   blocked   situation 
between pedestrians while conflict strategy makes them stand 
still for a long time. In panic situations pedestrians try to move 
fast to escape danger. The increase of the velocities increase on 
the same time bottlenecks which can produce deadlocks.  

Since human life is connected with delays the best strategies 
have to be taken and the best behaviors have to be adopted by 
pedestrians in order to reduce human loses.

These are a preliminary results and we aim to improve our 
model   by   detailing   and   including   more   pedestrians' 
characteristics,   and   by   introducing   more   detailed   conflict 
situations.   Besides,   we   will   concentrate   on   emergent 
phenomena   that  have  been  observed   like  lane   formation,  or 
freezing by heating.  
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Cholera in the 19th century: 
Constructing epidemiological risk with 

complexity methodologies 
Éric Daudé, Emmanuel Eliot, Emmanuel Bonnet 

  
Abstract— Risk epidemic and complexity are linked by space 

and interactions. First, space matters in risk situations because of 
its ability to hold concurrently and simultaneously favorable 
conditions for a future emergence or re-emergence of epidemics. 
Second, space matters as a mediator of interactions, social as 
environmental, and at different levels. Risk is dynamic and its 
spatio-temporal dimension increases difficulties to catch it. 
Empirical data lack off precision to follow epidemiological 
outbreak. Complex system theory and connected methodologies 
can help us to enlighten this empirical failure. 

First, we present some knowledge about risk, health and 
complexity. Second we present social and spatial data based on 
the first epidemic of cholera in the city of Rouen, in 1832. Third 
we propose two models to explore the diffusion of this epidemic.   

 
Index Terms— Risk, epidemic, dynamical system, cellular 

automata, modeling, simulation. 

I. INTRODUCTION 
HE spatial analysis of risk may be defined as the 
investigation of probability of being affected by 

a hazard in space and in time. This type of analysis 
requires a deep focus on the multilayered and 
complex combinations of indicators that are located 
in space. The analysis is ever difficult for certain 
risks but it reaches a peak when it concerns 
epidemiological ones. Because mobility and the 
ways people move in space and time is a major 
factor in the dynamic, especially in the case of an 
epidemic, the investigation of epidemiological risk 
faces three major problems:   

- First, the need of understanding the ways people 
move and interact with space. Mobility is socially 
constructed and its patterns vary in history and 
according to social and cultural characteristics. 
- Second, the question of the emergence of risk and 
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its location. Because the intensity of the epidemic 
depends upon the level of interactions between 
people, we need to consider the accessibility of 
spaces in regards with others. 

- Third, the evaluation of the temporality of the 
epidemic. 

We propose to explore these problems on the basis 
of the analysis of the second cholera pandemic that 
affected most parts of France at the beginning of the 
19th century. We examine it on the basis of an 
ecological approach of the epidemic but also by 
adding complexity theories analysis. The study will 
take advantage of these frameworks in order to 
avoid and overcome data bias. 

 In the analysis, space and risk are strongly 
related. Risk appears in space and can be created by 
space: not only considered as a support but also as 
an ‘incubator’ of risk situations. Risk is thus space 
related: presence and density of the vibrio cholera 
are dependent upon both aquatic reservoir and upon 
the more or less high concentration of population in 
the environment. In addition, risk occurs at different 
scale (world, nations and cities) and involves many 
actors: disease control, doctors and inhabitants. 
Risks are dynamics: going from the emergence of 
the virus to the pandemic may reflect this. 

Self-organization theory [1] is adapted to explain 
emergence of risk for which local disruptions may 
product global and unpredicted events [2]. The self-
organization theory identifies processes which 
allow describing behaviour at a global level, 
persisting in time and space, from numerous 
interacting entities located at one or several lower 
levels. Most of these interactions are local one and 
such systems are characterized by an absence of 
planning: no global control which would pilot such 
structure, such behaviour, or such form. Activity of 

T 
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such system, dynamic and open to their 
environment, is in evolution. Evolution between 
attractors can be cyclic. Such systems are 
characterized by phases of intense activities: 
evolution of societies is tagged by wave of huge 
pandemics. Otherwise, system can evolve towards a 
stationary state, converged at an attraction point and 
absorbing progressively its activity. Activity of a 
system, in an epidemic perspective, can lead it 
through different states through the time. This 
switch from a state to another is situated close to a 
bifurcation point that may lead towards chaos. In an 
earlier work, we explored the different phases of 
activity of the logistic function often linked with 
diffusion processes [2]. When the system evolves 
from a bifurcation threshold, the transition from one 
state to another qualitatively similar refers us to the 
concept of resilience. The stability of self-organized 
systems refers to the possibility of change which 
explains that all living systems go through distinct 
phases during their activities. These phases are 
theorised by the criticality [1], which shows that all 
self-organized systems evolve towards a critical 
state and that a small and local disruption is enough 
to produce huge alterations. This event is 
characterized by a system which goes into a phase 
of mutual and global interaction during which level 
of connections and interdependences is maximal: 
this is the case of pandemics. 

If they are useful in a heuristic context, such 
concepts are however difficult to use when one 
wants to apply them or to spot them in an empirical 
way. For example, how evaluating the intensity of 
relationships between elements at the same level 
and between elements at different levels? These 
uncertainties lead us to propose simple models of 
diffusion based at the same time on empirical 
evidence and theoretical knowledge.  

II. THE GLOBAL AND NATIONAL CONTEXTS OF THE 
EPIDEMIC AT THE BEGINNING OF THE 19TH CENTURY 
After decades, routes of the epidemic have been 

recomposed on the basis of archives, reports and 
medical information. The second epidemic seems to 
have started in the British colony of Bengal in 1826. 
In 1837 the west coast of Mexico, the Anglo 
Egyptian protectorate and the French colonies of the 

North West of Africa seemed to have reported the 
last cases in the known world at the beginning of 
the 19th century (figure 1). 

 
Although the etiologic of vibrio cholerae was 

unknown yet, details about the transmission disease 
were reported by doctors of the British Raj since the 
beginning of the 19th century. As many other 
unknown diseases, cholera produced social 
reactions. In the French context of the 1830’s, the 
epidemic broke out in a period of political troubles, 
which contributed to reinforce both the political 
conflicts and the social representations. Officially, 
the epidemic broke out in Paris in April 1832 and 
spread until the month of November. However, high 
rates of mortality due to diarrhoea were already 
reported in the northern parts of France by the end 
of 1831 [4]. 

 
The ‘département’ of the ‘Seine-Inférieure’ was 

not the most severely affected by the epidemic 

Fig. 2 Under mortality caused by the 1832 cholera pandemic in France. 
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Fig. 1 Routes of the second world cholera pandemic (1826-1837). 
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according to the official sources, but located 
between Paris and the English coastline - two major 
epicentres of the epidemic - this region is interesting 
for analysing the course of the epidemic at several 
levels (figure 2). 

III. THE DATA 

A. The Cholera data 
All the cholera data were collected in the archive 

services of the region between 2006 and 2007. The 
collection covers the period 1832-1893, i.e. from 
the second to the fifth pandemic. The sources of 
information are mixed: medical reports, medical 
topographies, municipal and administrative reports. 
The present paper focuses on the second pandemic 
(« the cholera morbus epidemic ») and in the main 
regional centre of the department: Rouen. The 
epidemic reached this city in April 1832 and left it 
in October 1832. In Rouen, the analysis of the 
epidemic is based on two complementary materials: 
a medical topography done by the chief doctor of 
the hospital, Dr. Hellis (figure 3) and the report of 
the municipal officers. Obviously, the collected data 
suffer from bias. 

 
First, in 1832, the etiology of the disease was 

unknown yet. The second pandemic was the first 
that reached France in the beginning of the 19th 
century and the causes and the ways of treatments 
were totally unknown, although information 
circulated all over the colonial empires. The main 
debate was based on the explanation of the causes 
of the disease: either contagious or not. This debate 
fed all the policies and fuelled all the theoretical 

conflicts until the end of the 19th century. The 
discovery of the cholera organism by F. Pacini in 
1854 and after all by R. Koch in 1883 however 
improved the knowledge about the disease. 

Second, the data were produced by a health care 
system that was centralized at the national and 
departmental levels. It produces statistics and 
topographies that gave an overview of the epidemic 
but it does not have the possibility to evaluate the 
under-reporting. Moreover, sources of report were 
very mixed: doctors, sanitary and municipal 
officers. In addition, the topographies (map) done 
on cholera aimed at proving the interpretation of the 
disease. In other words, all the cartographic 
methods were used in order to show that the 
epidemic comes from outside and was imported by 
seamen. However, comparisons between local data 
based on hospital and municipal reports with the 
Hellis’map seem to converge. As a conclusion, the 
map and the associated data are in fact the only 
available source able to trace the first cholera 
epidemic in Rouen. 

B. From data to visualization and interpretation 
We used different methodologies to integrate 

historical data from the archives services. The most 
important difficulties using archives data is the lack 
of statistical and geographical information. The first 
step was to consider if this collect was 
representative about the disease. The second step 
aimed at validating the data by checking their 
localization and their translation between 
manuscript and database. The third step aimed at 
calibrating the data with geographical information. 
Thus, we needed to reconstruct the geography of the 
19th century by recreating the different 
administrative levels, by modifying the city's names 
and by identifying some city groupings. Fig. 3 Dr. Hellis' map of cholera's cases. 

The interpretation of the epidemic necessitates a 
better understanding of the topography and of the 
social geography of Rouen. Different surveyor's 
maps were available about the city. This step of 
modelling allowed us to construct environmental 
factors which were necessary to understand the 
context of the epidemic. Therefore, the hydrology, 
the topography, the open spaces, the fountains, and 
some public places (market) were integrated in a 
Geographical Information System (GIS). Based on 
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the available parishes, charity expenditures, rental 
values of housing, population density were 
integrated and compiled into indicators in the GIS. 
These information were based on academic and 
archives information that were compiled by 
historians [5]. 

For the geocoding, we have used the current street 
names for the first treatment, and for the 
unavailable data, we have compared current and 
past street names. After the first and the second 
treatment, 90% of the archive data were located.  
The analysis of each cholera case is difficult 
because the information on the map were 
insufficient. So, by using some spatial analysis 
treatment we have produced a density map of the 
cholera cases in the city (figure 4). 

 
There were many interpolation methods that 

provided this type of representation. We chose a 
Smooth Surface Reconstruction because this 
method uses natural neighbor interpolation, works 
in any dimension and allows dealing with non 
uniform samples. All these treatments allow 
identifying the most affected places of the epidemic. 

A cluster of cases is reported in the South-eastern 
parts of the city. By using animations based on the 
weekly available data, we also identify the diffusion 
of cholera in the western and north western parts of 
Rouen. An analysis of the mapping shows a relation 
between the cholera cases and socio-economic 
indicators, the aquatic environment and the density 
of population. Based on this interpretation of the 
epidemic, we aim at describing and explaining the 
dynamic of this epidemic at an infra-urban level. In 
the next section of this paper, we describe two 
models that capture these social and spatial aspects. 

IV. MATHEMATICAL AND COMPUTATIONAL 
EXPLORATION OF THE CHOLERA DIFFUSION 

First, we define a model based on ordinary 
differential equations. This macro model aims at 
understanding the general mechanisms of the spread 
of cholera. A second model is then presented, based 
on cellular automata. It takes into account both 
spatial and social heterogeneity as well as local 
interactions. 

A. A basic model of contagion 
The basic classical SIR model of Kermack-

McKendrick [6] has to be modified to take into 
account the indirect process of contagion [7], i.e. 
the ingestion of contamined water. In this case 
propagation is contingent on the existence of a 
mediator which is the vibrio cholera. In the model, 
population is divided in four groups: Susceptible, 
Infected, Removal and Death. During an epidemic, 
a fraction of population is contaminated by the 
virus, mostly by ingestion of infected water. Once 
infected, people becomes actors of the propagation 
because they produce and reject vibrio cholera in 
the environment. After few days, evolution of the 
infection may lead to death or recovering, 
depending mostly on the health state of the 
individual and of the care conditions. We capture all 
this elements in the following model. Fig. 4 Density map of cholera's cases. 

dttSrtsdttS ).(.)()( −=+   avec )(. Cfr β=  (1) 
dttItSrtIdttI )).(.)(.()()( γ−+=+  (2) 

dttItRdttR )).(..()()( αγ+=+  (3) 
dttItDdttD )).().1(()()( αγ −+=+  (4) 

dttCtIetCdttC )).(.)(.()()( λ++=+  (5) 
In equation (1), parameter r represents the 

proportion of susceptible which is infected by the 
vibrio. Parameter β is the probability to interact 
with an infected aquatic environment and is 
the probability to be contaminated by the vibrio, 
which is a function of the quantity of vibrio cholera 
(C) in water. 

)(Cf

In equation (2),γ represents the proportion of 
infected case which get out from infection. Part of 
them will remove from infection ( )(α in equation 
(3)) and other will die ( )1( α−  in equation (4)). 

In equation (5), λ represents the loss rate of vibrio 
cholera in the aquatic environment and e the growth 
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rate of C due to the excretions of each infected case.  
The flowchart of this model is presented in figure 5. 

 
We aim now at modifying this macro model in 

order to take into account the spatial dimension and 
the heterogeneity of the population. Implicit 
hypothesis of this model is a perfect mixing of the 
population with environment, but aquatic 
environment is not present everywhere in the city. 
The second implicit hypothesis is the homogeneity 
of the distribution and of the type of inhabitant, 
which is not the case.  

B. A cellular automata model of contagion 
A conceptual framework has been developed to 

capture the structures and dynamics which occur in 
the propagation processes [1, 8]. This framework is 
applied in the context of a cellular automaton. 
Structure of this model is defined by three elements: 

- Elementary entities: a cell represents a square of 
one hundred meters. A cell can be an environmental 
cell {river, green space, public building...} or a 
‘social’ one. In this last case, it has variable states 
which represent social attributes, such as number of 
inhabitants and the level of income. The domain is 
then the cellular grid (47x29) which shapes the city 
of Rouen. 

- Propagation channel: it is the local spatial 
interaction structure of the cellular automata, i.e. the 
Moore neighborhood. Each cell can then interact 
with its 8 neighboring cells. 

- Virus: It is the driver of the diffusion. This 
particle is generated by the fraction of infected 
people and is transported both by the environment 
and the infected cases. Each cell has a variable state 
which stocks an amount of the vibrio. 

The diffusion dynamic is related to this structure 
and is composed of three processes: 

- Emission: it represents the propagation of the 

vibrio, from the people to the environment. In the 
following simulation, each aquatic cell computes 
the stock of infected people (I) in its surrounding 
and receives a fraction e of vibrio related to this 
stock. 

1-α 

- Circulation: this process defines the ‘life’ of the 
virus in the environment. The circulation of the 
stock of vibrio cholera is mainly aquatic dependent. 
Three processes define this life: a water cell 
receives a fraction of virus from upper cells (1) and 
gives a fraction of virus to lower cells (2) - based on 
the elevation ground - and the stock declines at a λ 
rhythm (3);  

- Infection: the rule of infection is relevant to this 
process. People interact with their environment and 
can be in contact with infected water, and be 
contaminated. In the model, each inhabited cell 
compute the volume of vibrio present in its vicinity 
- order 4 - and the stock of susceptible population 
has a risk r to be infected by this amount of virus. 
Finally, once infected, the number of people which 
die or recover depend upon two parameters, d and 
(1-d). These parameters, which are proportions, are 
the same for all cells. This latter process is linked 
with the circulation process in the sense that it 
represents an indirect rule life for the vibrio 
cholera.  

Figure 6 presents the initial configuration of the 
model and the localization of the first cholera case 
in the south-eastern parts of the city. 

 
In the next section we present some simulations 

and first results.  

Fig. 6: Initial configuration: with rivers (blue), hole (black circles) 
green spaces (green), elevations (gray), income distribution 
(brown) and the first cholera case (noted by an arrow).

S I 

C λ 

r Dα 

e 
R

Fig. 5: Model diagram. Susceptible (S) can become infected (r) as they 
have a probability to be exposed to vibrio cholera (C). Infected people 
can die (D) or recovered (R) at rates (1-α) and α. While infected, people 
produce vibrio at a rate of e. Population of vibrio cholera declines at a 
rate λ. 
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V. SIMULATION OF THE CHOLERA DIFFUSION 
In this cellular automata model, the two mains 

factors which are responsible of the propagation are 
the presence of aquatic environment (river and 
wells) and the density and the level of income of the 
population, which is measured by the charity 
expenditures. Firstly, the proximity to a wet 
environment increases the probability to get the 
vibrio. There are two rivers in Rouen, the Robec 
and the Aubette, and a high number of cases are 
reported along and between these two rivers. The 
main reason of this spatial correlation is the location 
of mills, spinning and paper mills where many 
workers were concentrated. Secondly, and 
correlated to the first, both the high density of 
population in these areas and the low level of 
income of these populations increase the probability 
to be contaminated. Health risk based on the 
analysis of social and spatial determinants is thus 
very high in this model, as probably in this past 
reality. 

 
These first results presented in figure 7 hold 

attention because there are good qualitative and 
quantitative correlations between the simulations 

and the observations.   
Thus, the model has to be tested in different 

ways: What is the sensibility of the results to the 
parameters? Are the results significantly different if 
the first case is located in other sites in the city? 
Have the parameters significantly closed values to 
the observed ones? 
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Abstract— In Probabilistic Risk Management, risk is 

characterized by two quantities: the magnitude (or severity) of 

the adverse consequences that can potentially result from the 

given activity or action, and by the likelihood of occurrence of the 

given adverse consequences. 

But a risk seldom exists in isolation: chain of consequences 

must be examined, as the outcome of one risk can increase the 

likelihood of other risks. Systemic theory must complement 

classic PRM. Indeed these chains are composed of many different 

elements, all of which may have a critical importance at many 

different levels. 

Furthermore, when urban catastrophes are envisioned, space 

and time constraints are key determinants of the workings and 

dynamics of these chains of catastrophes: models must include a 

correct spatial topology of the studied risk. 

Finally, literature insists on the importance small events can 

have on the risk on a greater scale: urban risks management 

models belong to self-organized criticality theory. We chose 

multiagent systems to incorporate this property in our model: the 

behavior of an agent can transform the dynamics of important 

groups of them. 

 

 
Index Terms— Risk management, self-organized criticality, 

multiagent systems, modeling, simulation. 

I. INTRODUCTION 
PACE is an important factor of risks situations, 
not only as a support, but also as an actor in 

itself of the situation. Risk is space related. In 
epidemic contexts such as cholera, presence and 
density of the vibrio cholera are dependent both on 
aquatic reservoir and on the density of population in 
the environment. Risk has spatial impacts. In 
environmental context, flash floods caused high 
damages because of their torrential nature and of 
their high spatial concentrations. Risk management 
makes tracks in space, and risk sometimes stands to 
management. In technological context, urban land 
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use and planning reveals some tensions between 
industrial and residential areas. Risks are multi-
layered (world, nations, cities) and imply different 
kinds of actors, human and non-human. Fight 
against a possible A flu pandemic implies many 
actors at different levels (World Health 
Organization, national centers for disease control 
such as INSERM, local government and doctors) 
and control measures to reduce risks are both global 
(air traffic limitation) and local (public services 
closure). Furthermore, risks are dynamic. In 
industrial context, one can observe Domino effect as 
an explosion in one site produces secondary 
accidents in the neighborhood, due to the high 
concentration of activities.  
Risk is defined as a probability of space-time 
interaction between a source and a target [1]. Four 
concepts are relevant to this definition and are 
linked to capture the risk: hazard, intensity, 
vulnerability and resilience (figure 1). 

 
- Hazard represents the occurrence probability of an 
alteration into the source that could have effects on 
target: the probability of emergence or re-
emergence of a virus for example; 
- Intensity is viewed as an output of the source, it 
depends on the power and duration of the 
phenomenon and of the involved surface area: the 
volume and extension of a toxic cloud for example; 
- Vulnerability is an input of the target, it measures 
at the same time the sensitivity of the target to 
alterations in its environment, and the related 

A multiagent urban traffic simulation 
Part II: dealing with the extraordinary 
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Fig. 1 entities and concepts of risk. 
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damages, in term of population or equipments: the 
probability for a group to panic and to avoid 
confinement in a technological accident for 
example; 
-  Resilience is the capacity for an organization to 
return gradually an equilibrium state without 
modifying its final goal: the return time to a normal 
behavior in a transportation network after a crisis 
for example. 
The main difficulty to characterize risk is the huge 
amount of interactions that links entities: risk is 
complex because targets often become sources. And 
this is all the more true in an urban context 
characterized by a large number and a great 
diversity of entities susceptible to be target and 
source. So space and interactions matter in risk, and 
they are the two main entrances of our MOSAIIC 
project.  

II. DEALING WITH HUMAN BEHAVIORS IN RISK 
CONTEXT 

The MOSAIIC project aims to observe and 
understand local and global effects of individual 
behaviors in the dynamic of a transportation 
network system after an industrial accident. Few 
researches take into account the behaviors of group 
or individual when studying the risk at the scale of a 
city. Physical aspects override the measure of risk 
and population damage is just a result of these 
major forces. In this way, intensity of toxic cloud or 
of earthquake defines buffers that are used to 
estimate the number of inhabitants and equipment 
concerned by the event, and then give an estimation 
of the vulnerability. When human behaviors are 
considered in risk situation, it is mostly at a very 
fine scale, for example rooms or building [2], and 
with the same kind of behavior: panic and escaping 
[3]. At a global scale, deterministic model are 
mostly used as they are supposed to be more 
efficient to describe the mean behavior of 
individuals, particularly if there is a large number of 
people concerned. We argue that it is possible, and 
necessary in some sense, to go beyond this 
approach.  
In risk management, many studies have shown that 
early stages of the phenomenon are critical on the 
level of the global damage. It is true with epidemic 

outbreak when the very few infectious people 
present in the city can affect, by their individual 
actions, the course of the epidemic [4]. The same 
situation can appear when mimetic of panic 
between some individuals can produce a snow-bowl 
effect on the entire population. But individual 
behaviors in risk situations are not limited to panic 
and escaping behaviors. If one considered Bhopal 
(1984) or Toulouse (2001) accidents, the number of 
victims or the resilience of the system have largely 
increased due to the wondering behavior, curiosity 
behavior: in some circumstances, people want to see 
the damage.  The aim is then to detect where and in 
which conditions these bifurcations have a high 
probability of occurrence in order to prevent them. 
We then develop a model of simulation in which 
first, space, as a mediator of interactions, matters. 
Space is a traffic-oriented network [5]. And second, 
in which individual behaviors are predominant to 
explain the dynamic of the vulnerability.  

III. MODELS OF BEHAVIORS IN EXTRAORDINARY 
SITUATIONS 

As described in depth in [5], our model and its 
resulting simulation builds a transportation graph 
from GIS data, upon which it create mobile agents 
modeling vehicles. 

These agents enter the network at a controlled 
random place (their insertion is based on scenarios, 
they are not necessarily uniformly randomized on 
the whole network), and try to reach a controlled 
random destination. To each edge of the network is 
attributed a weight, which combines numerous 
characteristics of this edge, such as its length, speed 
limits, number of lanes etc. in a quantification of its 
attractiveness. This lets our agents the possibility to 
compute an efficient path from where they are to 
their destination through Dijkstra’s algorithm. The 
planned trajectory of an agent is then a succession 
of edges. Once in an edge the agent tries to drive to 
its end, the next connection, where it will be able to 
choose the next planned edge. 
Our mobile agents then drive to their destination, 
interacting one with another, as their speed, length, 
driving brashness etc. are considered at each step. 
Furthermore, these agents can adapt their goals to 
what they perceive of the traffic, using different 
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methods to choose other paths to reach their 
destination. 
MOSAIIC is concerned by situations where 
contextual mobility can occur and can diffuse or 
have large consequences on the global circulation. 
We call contextual mobility a mobility which is 
associated to short-range goals (to avoid a crowd) 
and whose result differs from the initial planning (to 
change a destination). We will now consider an 
urban industrial accident. This accident has a finite 
extension area and well-determined intensity, 
represented by a buffer. Inside this buffer, a 
proportion of people, related to intensity, want to 
escape. Outside this buffer, behaviors are less 
reactive. Some want to escape, others want to see 
and for others "show must go on", and they want to 
follow their way. We have then defined different 
kinds of behaviors and methods related to these 
different goals: 
- Chicken behavior: the goal is to find the opposite 
direction of the source (the buffer), and to drive 
following this way; 
- Bystander behavior: the goal is to find the source 
of danger and to go there. If agent is already in the 
place, then he stays here;   
- Pragmatic behavior: here the agent selects a new 
destination in the network and tries to reach it. This 
behavior simulates the fact that some people will 
want to reach their children at school or husband or 
wife at their working place; 
- Wandering behavior: there is no goal, this 
behavior is the sign of distress. At each time step, 
just select a road and go there. 
- Roadrunner behavior: this method consists in 
always selecting the less congested road and to go 
there. This method can be connected to the Chicken 
or Bystander behavior; 
- Sheep behavior: here agent follows the crowd 
whatever the direction. 
We will now present implementations of these 
behaviors. 

IV. SIMULATION OF BEHAVIORS 
We will discuss here how the behaviors themselves 
can be implemented, not why or when one or the 
other will be chosen. 

A. Behaviors classification 

In order to implement them, we will distinguish 
three categories of behavior: global, planar and 
local. These categories are based on the actual 
behavior, and not on the motivations behind it. 
A global behavior is one that makes a reasoning 
about the road network. Pragmatic behavior will 
probably fall in this category: the agent will try to 
find a good path to his newly decided destination 
using his knowledge of the network. Bystander can 
also fall here. 
A planar decision also chooses a destination but 
tries to reach it using orientation as if no roads 
existed, as if the vehicle was on an open plan. Of 
course the network will offer constraints, but a 
general cardinal like direction will guide the agent. 
Chicken and possibly Bystander will fall in this 
category. This means there are two sub-behaviors in 
by standing. 
A local decision is one based on local-only data: 
Wandering, Roadrunner and Sheep will fall there. 

B. Class implementations 

Global behaviors are implemented in the agents 
to allow them to reach their initial destination. 

Local require little complexity. Wandering is 
trivial, Roadrunner and Sheep differ only by the 
sign of their optimization. We also implemented a 
simple anti-loop measure: Roadrunners for example 
will choose the less congested road unless they 
already went recently through this one. 

Planar require the ability to choose an edge out of 
a node based on a global direction. Depending on 
what the modeler desires, he can choose a distance 
from the current road intersection, and the agent 
will choose the intersection at less than the selected 
distance (expressed in Euclidean distance or number 
of edges in a path leading to it) that is the closest to 
the desired direction. An anti-loop measure can be 
added. 

C. Examples of simulation 

The behaviors previously described are ways of 
coping with an extraordinary situation. Most urban 
important accidents will have their consequences 
felt locally at the beginning, before it spreads. The 
evolution of the perturbation will be like waves 
spreading from the initial locus outward. If the 
extraordinary behaviors are the waves, the 
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metaphorical medium of this propagation is the 
ordinary traffic flow. We therefore need a 
sophisticated modeling of the day-to-day activities 
of vehicles in an urban agglomeration. We 
described this model in [5]. 

With the simulation of ordinary traffic, one can 
see in figure n°2 an example of the distribution of 
vehicles in the main roads of the city.   

 
Starting at this point, we generate an event in the 

city that is supposed to represent an accident. This 
event, for the purpose of the simulation, is 
perceived by all individuals and is considered as a 
repulsive event. In figure n°3, this event is a mouse-
click event located by the user without any 
consideration about the reality of the area. As 
agents perceived the impact zone (in fact XY 
coordinates), they all change their planned 
trajectory. Once in a crossroad, all mobiles pick out 
the Chicken behaviors and compute their new XY 
position using:   
XY(t+1) = Best value (min (VxVy explosion - VxVy edge)) 

This escaping behavior is for instance not applied 

in concurrence with any other mobility strategies or 
tactical behavior: they have not the possibility to 
avoid traffic jam or loops. The main effect of the 
general application of this rule is purely the draining 
of the transportation network. Of course this 
"Hollywood" scenario is not relevant in reality but 
let us test implemented mechanism.    

Vulnerability increases when a certain quantity of 
actors changed their dynamics of mobility, mainly 
after a shift in their goals. Beliefs, desires and goals 
are then important to take into account in this kind 
of model. 

V. DISCUSSION 
We have defined methods modeling mobility 

itself, but we now need to model the decision 
processes for picking or switching between these 
methods. In an ordinary situation, people follow 
their own planning and most of the time never 
deviate of their schedule. But how to justify and 
explain the fact that in some circumstances, people 
shift from one behavior to another, from an ordinary 
behavior to one of the extraordinary described here 
such as Sheep or Roadrunner ? 

Each agent can be seen as a cognitive agent, 
where motivation is important in the act of mobility. 
Motivation is "life dependant", and "contextual 
dependant": we can say that there is a path 
dependence of the individual motivations, where the 
present and future is mainly conditioned by the past; 
and that sometimes motivations, in a short 
spatiotemporal range, depart and express something 
really different. This last conception can be seen as 
the result of processes such as adaptation, evolution, 
archaic instinct and so on and so forth. In our 
debate, this is linked to the fact that people are able 
to change their plans and that they do not want to 
keep going to the previously planned destination.     

We are not fathoming here the psychological 
processes that lead from one objective to another, 
the main point is the result of such behaviors. We 
have to think of a way to sum-up individual 
intelligence by simple processes.  

Architecture such as Beliefs - Desires - Intentions 
(BDI) [7] is probably well adapted to this kind of 
cognitive agent. 

- Belief here represents the schedule in normal 

Fig. 3: The same traffic after the accident occurs (red circle). The agents are 
all adopting Chicken behavior (in blue). 

Fig. 2: An example of traffic in a town before an accident occurs. 
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situation, information about environment (other 
mobile agents and road network) and attributes of 
agents that can describe risk culture, sociability, 
tolerance level etc. Belief is subject to uncertainty 
and error. In our model, Belief play a role as 
representation of industrial accident and its dynamic 
is important in human behaviors. Both the spatial 
and temporal distance of the accident can modulate 
how it is perceived. 

- Desires are goals assigned to the agent, they are 
influenced by beliefs. Desires represent in our 
model different points to reach in space. 

- Intentions represent the priority for an agent to 
achieve goals: it can represent a sort of utility 
function where each element is a point in space.  
f(g)={X1Y1; X2Y2;...XiYj} 

Intentions are then both a goal and a list of goals. 
In a disaster situation, agent receives different 

kind of information (Beliefs). If following his 
curiosity or instincts is a predominant goal of the 
agent (Desires), or fear or cupidity etc. then he will 
permute elements of his utility function, and even 
add new elements in order to plan new actions 
(Intentions).   

The main question is then: is it necessary to have 
a good knowledge of people desires to simulate 
crowd dynamics and vulnerability of transportation 
network? In other words, what level of detail is 
needed in the modeling of individual agent to 
accurately model the beahvior of a crowd of them ? 
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! 
Abstract—“Flash floods” occurring on the loamy plates of the 

Paris Basin, in the north of France, are the most dangerous form 
of floods encountered in this area because of their torrential 
nature. To better assess occurrence of these events, watersheds 
have been located thanks to the French CatNat data base. The 
morphological organization of the watershed between forms, 
slopes and drainage networks, plays a key role on the “flash 
floods” dynamics and on the water flow concentration along 
pathways. Therefore, all the traditional quantitative methods 
usually describe separately each morphological component and 
none of them enables to estimate, in a synthetic and dynamic way, 
impacts of the spatial organization of those three morphological 
components. Based on the complex systems theory, it is now 
possible to measure the 3D organization of the catchment area. 
Methodological implications of this work are very relevant as the 
tools involved were not currently used by geomorphologists or 
hydrologists at the beginning of this research. Results obtained 
and the validity of these spatial analysis methods will have to be 
discussed at the end of this work, progressively integrating other 
variables in simulations.  
 
Index Terms— Flash floods, Paris Basin, catchment morphology, 
Cellular Automata, complex systems. 

 
 

I. INTRODUCTION 
Occurring on the loamy plates of the Paris Basin (France) at 

the end of spring and during summer, “flash floods” events are 
the result of violent meteorological events (thunderstorms) 
concentrated both in time and space. High rainfall intensities (> 
50 mm) do not last for more than several hours (< 15 h). These 
phenomena are the most dangerous and un-known form of 
floods encountered in the north of France due to their torrential 
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behaviour. Human impact on these hazards is indisputable as 
they usually originate in agricultural ploughed areas. As well as 
the road network located in the thalwegs of the valleys, 
concentrating stream flows and aggravating their velocity, the 
urbanization leads to faster the water flows and increases the 
vulnerability of societies located in downstream parts (fig. 1). 

 

 
 
Fig. 1.  Photographs showing the violence and impacts of flash floods occurring 
in the North of France during summer of at the end of the summer after high 
rainfall intensities (Douvinet, 2008). 
 

II. METHODS AND DATA 

A. A morphological control at regional scale 
In a first time, 189 basins subjected to various “flash floods” 

(1983-2005) have been located thanks to the French disaster 
“CatNat” data base in order to better assess the spatial and 
temporal occurrences of the events. Despite rainfall intensities 
and land use controlling such hazards, the comparative analysis 
led on all the 189 case studies [1, 2] underlines that the internal 
morphological organization of a watershed and the relation 
between the forms, slopes and drainage networks, play a key 
role on the spatial dynamics of “flash floods” and on the water 
flow concentration. 

Use of geosimulations and the complex system 
theory to better assess flash floods risks in the 

Paris Basin watersheds (France) 
J. Douvinet, Geophen Laboratory, University of Caen (France) D. Delahaye, Geophen Laboratory, 

University of Caen (France), P. Langlois, MTG Laboratory, University of Rouen (France) 
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At regional scale, two major morphological types have been 
observed. 94 % of all basins are included in the Type 1: these 
watersheds are of small size, less than forty square kilometres; 
they present high-slope incision; as they are situated in the 
downstream of higher basins, they are characterized by a gap in 
the Strahler ordination [3]. Other basins representing 6 % form 
a second group, called the Type 2. The latter present stronger 
sizes, ranged from 25 to 80 km²; they present weak-slope 
gradients, and as they are localized in upstream parts of big 
basins, the Strahler ordination regularly increases.  

This result is important as the influence of the topography 
has always been underestimated in this area characterized by a 
“no-efficient relief” (fig. 2). 

 

 
 

Fig. 1.  A morphological control observed at a regional scale; two types have 
been distinguished on the 189 studied watersheds. 

 

B. Problem statement 
In a second time, according to previous results, we decided 

to better understand the effects of topography on hydrological 
response on affected basins. Generally, morphometric indexes 
are used to measure their influence. Therefore, a exhaustive 
inventory [4, 5] have well shown that this quantitative methods 
separately describe major morphological component in form 
indexes, network indexes and slope indexes. Hence, we have 
index of compacity of Gravelius, Horton ratio ordination, 

longitudinal profile section, the hypsometric curve…, but none 
of these indexes enables to estimate influence of the spatial 
organization of all morphological components in a synthetic 
and a dynamic ways [6, 7, 8].  

So we develop new methods, especially based on the theory 
of complex systems and cellular automata, to better analyze the 
incidence of the network patterns in a certain form and under 
slopes conditions [9, 10]. Our approach allows us to implement 
the three morphological components (shape, slope and drainage 
pattern) in a generalized cellular automaton called RuiCells. It 
becomes possible to make various simulations according to the 
implemented parameters. In this study, we focus our attention 
on results obtained by two simulations: the spatial influence 
between networks and form in a 2D-dimension; the effects with 
slopes in a 3D-dimension (fig. 3). 

 

 
 
Fig. 3. Cellular Routing Scheme allowing the integration of the morphological 
component in a dynamic system, and the two simulations types associated. 
 

C. Specific aims of this study 
The purpose of this study is to further expand the assessment 

of catchment morphology on surface hydrological response. 
The specific aim of our research is threefold: i) to identify the 
catchment morphology effects on the runoff routing and 
production; ii) to improve analysis of the relationships between 
morphological components (catchment shape, slopes, drainage 
networks) and measure the impacts of the three morphological 
components on hydrological responses, from local to global 
watershed scales; iii) to quantify the surface flows variability 
over space and time on these dry valleys. 

 

III. SIMULATION RESULTS IN 2D-DIMENSION 
In 2D-dimensions, the RuiCells Model provides a 

convenient approach for simulating surface flows on each point 
of the drainage areas. Studying numerous and complex 
environmental systems, we notice the importance of the spatial 
relations between surfaces and networks patterns, but also the 
minor effects of the catchment shape. Drainage networks 
effects and slope impacts are increasing as the area also 
increases. On the other hand, the global basin response can be 
broke up to identify the evolution of the peak of surface flow on 
local scales and starting in the downstream. Simulations reveal 
the “cascading system” between the surfaces.  
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Use of several points of measurement located on a few 
sub-catchments allows following the surface flow construction 
until the overall scale. At this global scale, similar peak flows 
can be obtained for similar catchment sizes but within various 
configurations of network patterns. A specific index (fig. 4) 
identifies the points in upstream of which networks of thalwegs 
are well organized regarding the basin form and quantifies the 
structural efficiency in all points of a watershed [1]. 

 

 
 

 
 

Fig. 4. The IE index underlines the structural efficiency within a watershed and 
various points can emerge since local to global scales. 

 
So we can identify various configurations explaining such 

efficiency (fig. 5). This efficiency can be hidden at the final 
scale whereas it explains the final peak flow and the watershed 
behavior. Our approach raises the question about the relevance 
of this global catchment scale: measuring discharges at the 
downstream of confluences seems to be the “bad solution” if 
we want to understand the internal behavior and influence of 
the topography since upstream sources [11, 12]. 

 
 
Fig. 5. Various spatial structure and organization between surfaces and network 
explain high IE Indexes. Various patterns can explain similar efficiency. 
 

This simple and powerful method provides an excellent way 
to assess the dynamics of “flash floods”, hyperconcentrated 
flows phenomena more and more occurring on the small dry 
valleys belong to the Paris Basin, in the North of France. 

All the case studies subjected to such flash floods present 
significant and various morphological signatures that the 
theory of complex systems and cellular automata make 
emerging. If this influence was expected, the dynamic and 
spatial simulations improve their quantification. 

 

IV. SIMULATION RESULTS IN 3D-DIMENSION 
Implementing the flow velocity, surface flow graphs have a 

better hydrological sense as they consider slopes and the water 
height on each cell. Simulated hydrographs represent now the 
discharges in m3.s-1 values. As the catchment shape, slopes 
and the networks are combined, results show a theoretical 3D 
response of the morphological system. The curves appear really 
smoothed under the effect of slopes (fig. 6).  

Indeed, the larger the basin, the smoother the gauge traces. 
The simulated curve for the catchment of Aizelles seems to be 
less disturbed than those for the Les Ouis or the Essômes 
catchments. The mean average discharge is also the highest for 
the smallest catchment whereas values decrease on the other 
areas. Furthermore, although their size is nearly of similar area, 
surface flow graphs for the Lézarde, Villers and St Martin 
catchments show major differences.  

The peak discharge for the Villers catchments (10,7 m3/min) 
is greater than those simulated for the St Martin (9,3 m3/min) 
and for the Lézarde (8 m3/min). A negative relationship, with r² 
= 0,81, exists between the time-to-flow-out vs the mean 
average slopes while the correlation coefficient between peak 
discharges vs catchment sizes decreases through spatial scales 
(r² = 0,58). The time-to-flow out for the Villers, St Martin and 
Lézarde exceeds those simulated on Essômes while the size of 
this latter is higher than others. 
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Fig. 6. Simulated graphs obtained with the assumptions of an injection of 1mm 
in all the cells and with a flow velocity increasing according to the slope angke. 
Algorithms are more detailled in Langlois and Delahaye (2002). 
 

V. DISCUSSION AND CONCLUSION 
Relationships between the catchment morphology and its 

hydrological response were often difficult to well-establish and 
this has been one of the main key issues for geomorphology 
theory since many years [13, 14, 15, 16].  

Few studies have shown that the drainage networks structure 
play a key role on functional entities (Vogt et al., 2003) and so 
on the theoretical surface flow response. The global response 
has usually been considered like a linear system and accepts the 
existence of an instantaneous unit hydrograph (IUH) or of a 
geomorphological instantaneous unit hydrograph (GIUH) as an 
global average response [8, 17, 18, 19]. Therefore, in this study, 
we propose using a simple CA model to integrate the drainage 
network, but also the surfaces and slopes from the cellular scale 
to better assess the global response. 

Simulation results obtained with RUICELLS bring original 
replies on hydrological influence of topography. Firstly, they 
underline the dominant influence of spatial organisations in 
relation with drainage networks on the surface runoff response, 
and at the opposite, the minor role of the catchment shape and 
its size. Second, they indicate a spatial scaling effect on these 
catchments of 3rd and 4th Strahler-order and highlight similar 
hydrological behaviours for these catchments independently of 
their size. Third, they partially explain why these watersheds 
are prone to flash floods, especially identifying two 
configurations where the natural hazard risk is dangerous. 
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ABSTRACT— This paper proposes a spatial risk analysis method founded 
on the concept of risk situations. the method is illustrated via the example of 
the seine estuary and its major industrial risks.  

I. INTRODUCTION 
 

 In the scientific community today, it is well 
understood that the Geographical information 
System (GIS) makes up one of the most pertinent 
approaches for discussing the complexity of the real 
world and the multitude of phenomena which 
develop, are found in and interact with each other in 
the real world. 

 
Most of these phenomena can be observed in 

simple, combined and organised spatial forms 
which make up what we could call « spatial space ». 
(1) At any time, this spatial property which they 
share gives them the capacity to be described and 
analyzed via simple fundamental “WH” questions 
such as Where? What? When? and How ? These 
questions, sorted out according to their thematic, 
temporal and geographic scales, aid in 
understanding how the spatial phenomena organize 
and maintain their particular spatial relationships.  

 
This being the case, it then becomes possible to 

identify the spatial processes which lead to 
interactive situations. One manner in which to 
specifically explain and understand space is to 
create spatial models and theoretical explanations. 
These models and theories can then be employed to 
reveal the processes which in turn lead to spatial 
phenomena. Quantitative geography is full of 
models (Von Thunen, Modèles gravitaires, Weber, 
Christaller, Lösch, Lowry, Zipf…) generally 
defined by theoreticians in the framework of a 

particular spatial thematic study. However, they are 
rarely available as such in the panoply of operators 
offered by the GIS programs. The stakes are very 
high when mobilizing these models by activating 
them using GIS via the spatial analysis functions 
which the latter regroup. 

 
The objective of this contribution is to 

demonstrate how the GIS can aid in understanding 
the complexity of the real world by deconstructing, 
questioning and combining the geographic 
information which informs it. 

 
Beyond this first objective, the intent is to show 

how the usage of map algebra permits us to 
illustrate spatial phenomena. At the same time, we 
can bring information to the dynamic systems 
capable of responding to the question: “What if?” - 
which is the missing link in the GIS tools. 

 
The final goal is to illustrate the contribution of 

the GIS, not only in risk analysis situations, but also 
in the elaboration of new modeling and simulation 
resources. 

 
The thematic example upon which this work rests 

is borrowed from the industrial risk thematic; hence, 
from a sector which is constantly seeking 
conceptual and methodological advances with 
which to improve crisis management capacity in the 
case of uncertainties. 

 
First, we will present the concepts which will be 

illustrated based on industrial risk research carried 
out in the Seine estuary. 

Compiled Risks of Spatial Complexity: the 
Map Algebra Contribution 

 
Emmanuel Bonnet, Thierry Saint-Gérand, Eliane Propeck, David Gaillard Université de Caen, 
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II. SPATIAL ANALYSIS AND MAP ALGEBRA 
 

Our talk will essentially be constructed around the 
algebraic mapping methods based on a 
georeferential network called “GRID”. The 
construction is done via an intermediary of 
geotreatments which can be called upon, most 
notably in the form of ArcInfo from  the ESRI 
company. 

 
Map algebra is a method used to achieve spatial 

modeling with the aid of high level programming 
language. This language also provides the 
possibility to perform simple calculations such as 
mathematical operations, arithmetic, trigonometry, 
Boolean equations, simple statistics, etc. There is 
also the possibility of performing complex 
calculations such as multidimensional statistics, 3D 
spatial models and hydraulic spatial models on a 
local as well as a global level. 

 
The usage of map algebra necessitates a specific 

informational structure from the very beginning. 
The geographic and thematic information must form 
a georeferential cell which has specific topological 
characteristics associated with a dual graph, the 
summit of which corresponds to the center of each 
link. 

 
Upon exiting, the new information retrieved from 

the algebraic mapping operations will present itself 
in this same cell GRID format. This information 
will correspond to the results derived from one or 
several GRID, cell by cell, at local, focal, zonal and 
global levels. 

 
These local, zonal and global functions were 

conceptualized by Dana Tomlin in 1990 during his 
work which took into account spatial variations 
during the treatment of phenomena. (2) 

 
The local functions take into consideration the 

phenomena only at the level of a cell. 
 

The focal functions take into account only the 
phenomena of the neighboring cells. In this type of 
treatment, the neighboring cells are defined by a 

mobile window in which the treatment is realized. 
The result is allocated to the cell which is in the 
center of the window. 
 

Zonal Method: The value of the cell in question is 
attributed in relation to the function of the 
calculations which are, in turn, based on the values 
of the cells in a neighboring zone which has been 
predefined by the user. 
 

There is a fourth method which can be referred to 
as “global”, which takes into account the combined 
value of the cells in GRID. The geotreatment is 
applied to the totality of the resulting links. 
 

III. MAP ALGEBRA FOR ANALYSING INDUSTRIAL 
RISK. EXAMPLE OF THE SEINE ESTUARY 

 
The Seine estuary constitutes one of the largest 

French concentrations in terms of establishments 
classed SEVESO 2. About twenty industries are 
dispersed in the oval portion of the estuary between 
two principle industrial areas : Le Havre and Port 
Jérôme (3). 

 
Research financed by the French Minister of 

Ecology and Sustainable Development, via the 
Risk, Decision and Territory program, has explored 
the exposition modalities, the risks and the 
vulnerabilities to which the population has been 
exposed. 

 
This analysis, based on a formalization of a 

previous concept of risk situations, permits us to 
better understand how spatial phenomena, once 
combined, can lead to a (or several) risk(s) 
situation(s) with varying degrees of seriousness.  

 
This concept considers a risk situation to be like a 

combination and a variation, in a given amount of 
space. This takes into account various hazards, 
exposure potential, risks, vulnerabilities, 
anticipation and recovery. 

 
Initially collected through vector analysis (in 

vector form), the information was first subjected to 
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GRID modeling. This operation structured the 
information on the same spatial cut out, at the same 
level, in order to proceed to the available 
informational combinations in a coherent fashion. 

 
Map algebra was especially useful during the 

creation of computer generated maps with the 
building of combination analysis on several levels 
of geographic information.  

 

 
Fig. 1 : Level of vulnerability and level of stakes 

 
The example in figure 1 shows the combination 

working on several levels of geographical 
information. The operations created with map 
algebra permit us to lay out the computer generated 
map showing the levels of what is at risk as well as 
the vulnerabilities. 

 
The usage of these techniques permits us to 

layout a computer generated spatial synthesis which 
is useful to decision makers and managers as the 
most exposed areas are vividly pinpointed. These 
locations simultaneously take into account three 
criteria.  

 
We can clearly see the manifold possibilities of 

map algebra. 
 
The possibilities correspond to distinct and 

pertinent logic used to reconstitute and explain their 
spatial solidarity. Each one in its own way, the 

elements enter into the complexity of risk situations 
such as exist on the real terrain. 

 
The first and most classic possibility consists in 

applying operative calculations to the heart of a 
more or less elaborate equation formula to the 
thematic values attached to the GRID cells. 

 
In this context, this procedure allows us to 

calculate (for each cell resulting from the GRID) the 
sum of the severity of the risk as relates to the 
corresponding cell in each GRID relating a specific 
type of risk.  
 

Therefore, we can obtain the global synthetic 
values of which cartography indicates the sectors of 
concentration and dispersion inclusive of all risks.  

 
The second possibility consists of creating 

qualitative information (coding) which express the 
combination of different types of risk concerning 
the cell in question: the expression of the risk level 
yields to the expression of the diversity of the 
combined risks in one location: this information is 
qualitative and focuses on a combination. 

 
Finally, another usage consists of using spatial 

generalization techniques of the cell value in 
function with the distance and the neighboring 
criteria specified by the user. 

 
These methods, for example the algorithm of the 

dominant neighbor, allow us to generate cells which 
contain the information of the neighboring cells. 
This information is particularly useful in 
reconstituting areas. The decision makers need this 
specific information in risk prevention scenarios. 

 

IV. CONCLUSION 
 

In conclusion, this example applied to the domain 
of industrial risk shows the GIS offers multiple 
spatial analysis resources to treat the complexity of 
spatial phenomena both in terms of their 
comprehension and management. 
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However, the map algebra technique is under 
employed in France.   

 
The potential of map algebra represents a level of 

interest well above that of the themes touched upon 
as an example in this extract. 

 The potential indicated in this extract merits 
validation by any sector requiring centralized 
information that can be employed in territorial 
decision-making. 
 

V. REFERENCES 
 [1] F. Pirot ; T. Saint-Gérand and al., “L’analyse spatiale versus algèbre de 
cartes sous ArcGIS. Des exemples en sciences de l’homme et de la société » 
in Conférences ESRI, 200515 p 
[2]  Tomlin C. Dana, 1990 
 [3] E. Propeck and al., « Probabilités, risques et gestion territoriale : champs 
d’action des PPRT », in Géocarrefour, vol. 82/1-2 – Risque : de la recherche à 
la gestion territorialisée, 2007, 25p 
 

128 ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France



 

  

Abstract—The RATP (Paris Public 
Transport System) needs a software to 
optimize the passengers' exchanges between the 
trains and the platforms in order to improve 
the train frequency and to reduce risks within 
passengers congestion. The SimTRAP 
prototype (Simulation of exchanges between 
TRains And Platforms) is an agent based 
model, using a microscopic approach, which is 
being built for this task. 
 

Index Terms—Agent based models, 
microscopic approach, self-organization, 
pedestrian behaviors. 
 

I. INTRODUCTION 
 

ITH more than 1.8 billion passengers a year 
on its train network (in 2005), the RATP 

(Paris Public Transport System) is continuously 
confronted to problems of management of crowds. 
Concerned by the quality of service, the RATP 
manages this phenomenon by optimizing the 
various steps met in a trip. From this perspective, 
it started a plan aiming at modeling and 
simulating passengers' exchanges between a train 
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and a platform. The resulting tool could help the 
company to optimize the arrangements on these 
spaces, to lower the risks of incidents like 
congestions or falls on tracks and therefore to 
higher trains frequency and general impression of 
people towards RATP. Improvements in the 
evacuation of trains and platforms could also be 
found.  

 

II. THE EXCHANGES BETWEEN TRAINS AND 
PLATFORMS 

 
Most of the difficulties which may alter the 

functioning of trains services occur during the 
train / platform exchanges: congestions in front of 
doors, passengers who obstruct the closing of 
doors... These situations, magnified by the 
increasing density of passengers, increase the 
stopping time of the trains and therefore, cause 
delays.  

 

 

W 

 
Fig. 1.  Congestion in front of doors during an exchange 
between a train and a platform 
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RATP specialists have been using models of 
simulation of exchanges for a long time. However, 
these models mostly belong to a macroscopic 
approach of the phenomenon: they are based on 
the management of crowds rather than the 
management of individuals (resulting in losses of 
precision, notably). 

 
Our objective is to propose a microscopic 

approach, therefore focusing on individual 
behaviors, which would provide better estimates, 
both at micro and macro levels. More generally, 
we assume that pedestrian behaviors can be seen 
as a self-organized process, merely based on 
microscopic interactions in a constrained 
environment. 
 

III. MODELING AND SIMULATING PEDESTRIAN 
BEHAVIORS AT MICROSCOPIC LEVEL 

 
Following [1], we identify five key issues to be 

addressed: 
1. Defining a detailed environment with an 

adapted scale; 
2. Reaching adapted spatial and temporal 

precision; 
3. Managing a realistic number of simulated 

pedestrians; 
4. Introducing physiological and behavioral 

heterogeneity; 
5. Combining both local and global 

interactions. 
 
N. Pelechano et al., in [2], distinguish three 

main types of modeling approaches: physical 
models, cellular automata models and rule based 
models. 

1. Physical models, like the famous “Social 
Force Model” [3] and its recent extensions 
[2] are able to reproduce some of the self-
organizing components of crowds 
behaviors, but require a large computation 
effort even for simple environments; 

2. Cellular automata models [4]-[5] focus on 
local interactions between neighboring 
spatial entities, in which are included 
desired individual behaviors. They are 
easier to develop and run faster than the 
physical models. However, the 
homogeneous behavior of the individuals 

within spatial entities and the limitation of 
their interactions in relations of spatial 
nearness can not reflect the real pedestrian 
behaviors, as concludes [6]; 

3. Rule based models, like agent based 
models, are able to deal with more 
complex environments and behaviors [1]-
[7]-[8]. 

 
Our SimTRAP prototype directly belongs to 

that last family. 
 

IV. THE SIMTRAP PROTOTYPE (SIMULATION OF 
EXCHANGES BETWEEN TRAINS AND PLATFORMS) 

 
The two versions of SimTRAP we created deal 

with detailed environments (platforms and trains), 
composed of both static and dynamic objects 
(trains, doors and folding seats) and are built on 
the NetLogo system1. 

 

A. First approach 
In this first version, all objects are defined by a 

point (their center) and a rectangular shape (their 
bounding box). Some of them have other 
attributes and can use procedures which allow 
them to move or which allow the passengers to 
interact with them: 

− a door can open or close with a given 
speed and until a maximum size; 

− a folding seat can open or close when a 
passenger is sitting on or leaving it; 

− all objects of the train can move together 
with a given speed and a given direction; 

− all seats can be free or not. 
 

Passengers are represented by circular agents 
having, as a first approach, the same internal 
structure and behaviors. They are defined by their 
destination, their direction, their speed, their 
position, their field of vision. 

 
Their destination is determined by their goal 

which is one of the following: 
− Find a good location on the platform 

(standing or sitting) (1); 
− Find a way to enter the train (2); 

                                                             
1  NetLogo: Web site: ccl.northwestern.edu/netlogo 
 © 1999-2008 Uri Wilensky. All rights reserved. 
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− Find a good location in the train (standing 
or sitting) (3); 

− Find a way to get of the train (4); 
− Find a way to an exit of the platform (5). 

The (1) to (3) goals are only for the “entering” 
passengers (starting with (1)) and the last ones for 
the “leaving” passengers (starting with (4)). (2) 
begins when the train opened its doors, (3) when a 
passenger entered in the train and (5) when a 
passenger got of the train. If a passenger has not 
any goal, he is waiting and does nothing. 
 

The current destination, direction and speed of a 
passenger can be modified in some cases by the 
local density (according to the number of other 
passengers in his field of vision) and by obstacles 
(an object or a passenger). When an obstacle has 
been detected, a new direction is computed with a 
shortest path algorithm. 

 

B. Second approach 
A second version of SimTRAP was created to 

improve the spatial precision. The rectangular and 
circular shapes used in the first approach were too 
approximative and not effective.  

This time, all objects from trains and platforms 
which can be generated by the prototype, have 
exactly the same forms than in reality. Even the 
trains with two levels can be used in this model. 

 
For this, we use the GIS extension of NetLogo 

which can load vertexes from a shape file (in 

which a fully detailed representation of a train or a 
platform is stored). Furthermore, the objects are 
here represented by a point (its center) and a list 
of its vertexes. Each vertex is linked with two 
other vertexes of the list in a specific order and 
knows its owner.  

 
Passengers are represented here by an oval-

shaped body and two shoulders (linked to the 
body). They are twice larger than thick, according 
to the canons of drawing, and are defined by their 
gender, which determines which one of the two 
given sizes they have to use (several men are 
larger than women).  

 

For example, with these representations, tests of 
collision are easier (we can use some built-in 
procedures of NetLogo with its GIS extension). 

  

V. FIRST RESULTS 
 

The first version of SimTRAP allows testing 
scenarios, for a given set of parameters. For 
example, figure 5 shows the number of exchanges 
(passengers entering into plus passengers getting 
of the trains) in 5 seconds real time, when the 
number of passengers on the platform and in the 
train varies. 

 

 
Fig. 3. Details of a train in the second version of SimTRAP 
  

 
Fig. 4. Representation of a passenger in the second version of 
SimTRAP 
  

 
Fig. 2.  Screenshot of the first version of SimTRAP showing 
passengers leaving and entering the train 
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Video analysis where also conducted, in order 
to calibrate some key parameters. Figure 6 shows 
the distribution of passengers waiting for the train, 
according to their distance to the entrance of the 
platform. 

 

The second version allows testing the capacity 
of a train. For example, table 1 shows a 
comparison between theoretical results and 
SimTRAP results of a test of capacity of a MF67 
train (5 wagons). The passengers' characteristics 
used in these SimTRAP tests are: 

− 47% men, 53% women; 
− 62 cm for a man's broad; 
− 55 cm for a woman's broad2. 

 

                                                             
2  Calculated from the means of the waists in [9]. 

 
 
 
 
 
 
 
 
These tests prove that our environments are 

realistic. The results depend on the quality of the 
original maps, but even in the worst cases, the 
differences between theoretical and simulated 
capacities are not over 5%. 

 

VI. ECO-PROBLEM-SOLVING 
 

Today, we focus on the passengers' behaviors. 
We actually try to adapt the eco-problem-solving 
system, introduced by J. Ferber in 1989 [10]. 

In this system, the agents are reactive ones and 
have only two behaviors: 

− they search for a state of “satisfaction” ; 
− they flee from states in which they can not 

be satisfied. 
 
In the case of the platform/train exchanges, the 

agents can be satisfied by modifying their 
standing or sitting location, but also by staying 
where they are and trying to pressure the close and 
disturbing passengers. 

So, each agent computes two costs each time it 
is not satisfied anymore: 

− a cost of displacement, which represents 
the “willpower” required to move to 
another location ; 

− a cost of position, which represents the 
“willpower” required to stay at the same 
location. 

The first cost is function of the attractiveness of 
the targeted location, the length of the planned 
path and the number of agents who are on it (and 
who must be disturbed). 

 
Fig. 5. Simulated number of exchanges in 5 seconds real time 
according to entering and leaving passengers (MP89 train). 
  

 
Fig. 6. Video analysis of the distribution of passengers on a 
given platform 
  

TABLE I 
TEST OF CAPACITY OF A MF67 TRAIN (5 WAGONS) 

 
Theoretical 

results 
SimTRAP 

results Difference 

Surface 
(standing zone) 

113.8 m² 115.2 m² 1.2% 

4 passengers/m² 
(standing + sitting) 

575 582 1.2% 

6 passengers/m² 
(standing + sitting) 

806 813 1.1% 

Max. 
passengers/m² 

Never 
tested 

1022 
(7.8 p/m²) 
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The second cost is function of the attractiveness 
of the current location and the power of the 
disturbance generated by the neighboring 
passengers. 

Like humans, the agents do not have an infinite 
“willpower”. We put a limit for each cost : when 
an agent's cost of displacement or position is 
beyond its limit, this person  do not want at all to 
go to the targeted location or can not stay longer 
at the same place. If a passenger really has to 
move or to stay, because the other choice is worst, 
he will pressure much more his neighbors. 

 
Some useful tips can be used with these rules. 

For example, if we want to set passengers' goal to 
“enter the train which just opened its doors”, we 
just have to put their cost of position beyond the 
limit while they are still staying on the platform 
(to do so, we could change the attractiveness of 
every places in the train by a much higher value 
and reduce the attractiveness of the platform). 

 
Furthermore, the limits can be personalized for 

each agent. So, we can simulate more complex 
behaviors with an easier way. For example, selfish 
persons can be represented by agents whose limit 
of the cost of position is higher than the others' 
limit (the pressure does not disturb them much: 
they just want to stay at the same location). 

 
This system has not been tested yet and still 

needs some improvements, but we can see that it 
offers some great possibilities. 
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 Abstract—This paper presents an agent-oriented approach to 
build a decision support system aimed at helping emergency 
managers to detect and to manage risks. We stress the flexibility 
and the adaptivity characteristics that are crucial to build a 
robust and efficient system, able to resolve complex problems. 
The system should be independent as much as possible from the 
subject of study. Thereby, an original approach based on a 
mechanism of perception, representation, characterisation and 
assessment is proposed. The work described here is applied on 
the RoboCupRescue application. Experimentations and results 
are provided. 
 

Index Terms—Assessment agents, clusters, decision 
support system, factual agents. 

I. INTRODUCTION 
The use of Decision Support Systems (DSSs) has 

considerably increased, during the last decade, due to the 
complexity of the problems faced by the decision makers. 
Indeed, the need for decision support tools should be, if 
anything, increasing [10]. In some domains or circumstances, 
making a decision is an arduous task that requires some 
abilities exceeding the human capacities. We can think 
decision-making in Simon's decision making model, which 
consists in intelligence, design and choice [11]. Based on this 
model, the complexity of decision making lies in the difficulty 
to get a clear insight into the problem to resolve, to process the 
vast amount of collected information, to make the right choice 
in time and to harmonise finally the set of decisions made by 
the decision makers or the organisations. Therefore, computer-
based systems may be very helpful to support decision 
making, especially when the environment problem is complex, 
dynamic and partially known. Processing and managing 
information issued from such an environment represents a 
challenge to the DSS developers. However, DSS are well 
known to be customized for a specific purpose and can rarely 
be reused. Moreover, DSSs only support circumstances which 
lie in the known and knowable spaces and do not support 
complex situations sufficiently [4]. This led us to think DSSs 
must be flexible and adaptive to be effective in solving 
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complex problems as the risk and crisis management. 
Flexibility allows the use of the system in different subject of 
studies with minor changes. In other words, the system 
operates in a generic manner and relies on specific knowledge 
that are defined by experts of the domain. Adaptivity is an 
essential characteristic to build intelligent information systems 
which draws increasingly the attention of the scientists in 
computer science and in artificial intelligence. Thanks to the 
adaptivity, the system may adapt its behaviour autonomously 
by altering its internal structure and changing its behaviour to 
better respond to the change of its environment. The 
multiagent systems technology is an appropriate solution to 
achieve these two objectives. Intelligent agents [13] are able to 
self-perform actions and to interact with other agents and their 
environment in order to carry out some objectives and to react 
to changes they perceive by adapting their behaviours.  

In this paper we propose an agent-oriented approach aimed 
at building a DSS that has as role to help emergency managers 
to detect and to manage risks in emergency situations. The 
system perceives facts occurred in the environment, represents 
them and analyses them to assess the current situation. To 
evaluate the situation, the system uses an analogical reasoning 
based on the following postulate: if a given situation A seems 
like a situation B, then it is likely that the consequences of the 
situation A will be similar to those of B. Consequently, the 
risk appeared in B become a potential risk of A. An internal 
multi-level kernel is used to insure the whole decision-support 
process. We utilise an earthquake scenario using the 
RoboCupRescue Simulation System (RCRSS) [7][9] in order 
to illustrate our approach. Experimentations and results are 
provided and discussed.  spacing.  

II. DECISION SUPPORT SYSTEM FOR RISK DETECTION AND 
MANAGEMENT 

A. Definitions and Approaches 
The Risk is a concept that denotes a potential negative 

impact to an asset or some characteristic of value that may 
arise from some present process or future event. There are 
many more and less precise definitions of risk. They do 
depend on specific applications and situational contexts. It can 
be assessed qualitatively or quantitatively. In our context, we 
are interested in natural and technological risks. The 
management of these risks often represented a large-scale 
challenge for the individuals and the organisations, since they 
are hard to predict and their occurrences are much sudden. The 
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risk management may be defined as the systematic application 
of management policies, procedures and practices to the tasks 
of establishing the context, identifying, analysing, evaluating, 
treating, monitoring and communicating risk [1]. This process 
is complex and exceeds widely the human abilities. The use of 
the DSS in this case is indispensable. Indeed, DSSs are 
interactive, computer-based systems that aid users in judgment 
and choice activities. They provide data storage and retrieval 
but enhance the traditional information access and retrieval 
functions with support for model building and model-based 
reasoning. They support framing, modeling, and problem 
solving [2]. In the context of the risks and crisis management, 
the DSS must insure the following functionalities: 

• Evaluation of the current situation, the system must 
detect/recognize an abnormal event; 

• Evaluation/Prediction of the consequences, the system 
must assess the event by identifying the possible 
consequences; 

• Intervention planning, the system must help the 
emergency responders in planning their interventions 
thanks to an actions plan (or procedures) that must be 
the most appropriate to the situation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1.  Whole DSS architecture 
 

The kernel is the main part of the DSS and has as role to 
manage all the decision-support process. The environment 
includes essentially the actors and Distributed Information 
Systems (DIS) and feeds permanently the system with 
information describing the state of the current situation. In 
order to apprehend and to deal with these information, specific 
knowledge related to the domain as ontologies and proximity 
measures are required. The final goal of the DSS is to provide 
an evaluation of the situation by comparing it with past 
experimented situations stored as scenarios in a Scenario Base 
(SB). 

The kernel is a MAS operating on three levels. It intends to 
detect significant organisations that give a meaning to data in 
order to support finally the decision making. We aim, from 
such a structure, to equip the system with an adaptable and a 
partially generic architecture that may be easily adjusted to 
new cases of studies. Moreover, its suppleness makes the 
system able to operate autonomously and to change its 
behaviour according to the evolution of the problem 

environment. As follows a description of each level: 
• Situation representation: One fundamental step of the 
system is to represent the current situation and its 
evolution over time. Indeed, the system perceives the facts 
that occur in the environment and creates its own 
representation of the situation thanks to a factual agents 
organisation. This approach has as purpose to let emerge 
subsets of agents.  
• Situation assessment: A set of assessment agents are 
related to scenarios stored in a SB. These agents scrutinise 
permanently the factual agents organisation to find agents 
clusters enough close to their scenarios. This mechanism 
is studied ``manually'' by an expert of the domain and is 
similar to a Case-Based Reasoning (CBR) [8], except it is 
dynamic and incremental. According to the application, 
one or more most pertinent scenarios are selected to 
inform decision-makers about the state of the current 
situation and its probable evolution, or even to generate a 
warning in case of detecting a risk of crisis. The 
evaluation of the situation will be then reinjected in the 
perception level in order to confirm the position of the 
system about the current situation. This characteristic is 
inspired from the feedbacks of the natural systems. In that 
manner, the system learns from its successes or from its 
failures.  
• Automating decisions: Outcomes generated by the 
assessment agents are captured by a set of performative 
agents and are transformed in decisions that may be used 
directly by the final users.  

 

B. RoboCupRescue Case Study 
The RCRSS is an agent-based simulator which intends to 

reenact the rescue mission problem in real world. An 
earthquake scenario is reproduced including various kinds of 
incidents as the traffic after earthquake, buried civilians, road 
blockage, fire accidents, etc. A set of heterogeneous agents 
(RCR agents) coexist in the disaster space: rescue agents that 
are fire brigades, ambulance teams and police forces, and 
civilians agents. We focus, in this application, on the 
development of the rescue agents behaviours. Our final goal is 
to use the DSS in order to improve their decision-making 
ability and to support them during their rescue operations.   

A model of the RoboCupRescue disaster space and the 
properties of its components, and the RCR agents are detailled 
in [12]. We use this model in order to extract knowledge and 
to formalise information. 

III. DYNAMIC REPRESENTATION OF THE SITUATION: FACTUAL 
AGENTS 

The system perceives and represents the facts occurred in 
the situation in an original manner using factual agents. 
Factual agents are reactive and proactive agents according to 
the agents definition given in [13]. Each agent carries an 
elementary datum that represents an observed fact and that 
aims to manage it over time. This information is presented in 
the shape of a Factual Semantic Feature (FSF), more details 
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about this structure and how it is formalised and managed by a 
factual agent is provided in [6]. 

The objective by using factual agents in the representation 
situation level is to reflect the dynamic change of the situation 
and to let emerge, from this view, agents subsets. These 
subsets may be representative of some situations that are close 
to some others encountered in the past. The analysis of these 
agents groups is based on geometric criteria, insuring thus the 
independence of the treatment from the subject of study. Each 
factual agent exposes behavioural activities that are 
characterised thanks to numerical indicators. The latter form a 
behavioural vector that draws, by its variations, the dynamics 
of the agent during its live. This gives a meaning to the state 
of the agent inside its organisation and consequently to the 
prominence of the semantic character that it carries.  

The goal of our approach is to characterise the factual 
agents organisation by forming dynamically agents clusters 
and comparing them with stored scenarios. The clustering 
algorithms seem appropriate to this objective, since they are 
able to create objects groups in an unsupervised way. 
However, these methods present some deficiencies in our 
case. The main ones are the need to specify some parameters 
as the minimal distance between two objects, required by 
density-based algorithms [3]; or the minimal length of a 
cluster, required by Kmeans algorithms [5]. Moreover, the 
experimentations we led using these methods showed us that 
we are unable to analyse instantaneously the obtained clusters 
neither to reproduce them. We changed therefore our way for 
proceeding by confiding this task to the assessment agents. 
These agents will search through the factual agents in order to 
form clusters, that should be the closest to the scenarios to 
which they are linked. We think this approach is more suitable 
for our problem, since it does not require specific knowledge 
and we are certain that the obtained clusters have probably a 
meaning and may be easily interpreted. In addition we may 
exploit the assets of the agents, especially their adaptivity and 
their communication abilities. 

IV. SITUATION ASSESSMENT 

A. Assessment Agents 
Each assessment agent is linked to a scenario stored in the 

SB (see Fig. 2). Each scenario is composed of one or more 
factual agents clusters, this depends on the treated application. 
A cluster is made up of a set of elements, each one includes an 
FSF, the indicators values of the factual agent associated to 
this FSF and the size of its Acquaintances Network (AN). 
Thus, a cluster element has the following structure: FSF:VI1... 
VIn:SAN, with VI a value of indicator I, and an example of an 
FSF is (fire, intensity, strong, location, 2nd street, time, 10:00 
pm). 

The role of the assessment agents is to scrutinise 
permanently the organisation of the factual agents in order to 
extract agents clusters that should be similar as much as 
possible to their scenarios. A relevance, which is the sum 
average of all the similarities values of a created cluster 
elements, is attributed to each cluster to indicate its proximity 

to a stored scenario. This value is included in a range of [0,1]. 
The more the relevance is near to 1, the more the cluster is 
close to its scenario maker and vice versa. The clusters, and 
consequently the assessment agents, are sorted according to 
their relevances and the selected agents depend on their rank 
and the size of their clusters i.e. the first agents covering the 
bulk of the situation are selected.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  Role of the assessment agents in the DSS 
 

To find close elements in the factual agents organisation, 
the assessment agents look only at the numeric properties of 
the agents and disregard the semantic characters that they 
carry. This insures the genericity of the mechanism. The 
assessment agents compare the elements of their scenarios 
with those carried by the factual agents by computing 
distances between them. The compared data are vectors 
defined by the n indicators of the factual agent and its AN 
size. The cosine similarity measure is used in order to compute 
the similarity between these vectors. The similarity value is 
included in a range of [0,1]. A value of 1 means the perfect 
equality between the two vectors, whereas 0 means their total 
divergence. 
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Fig. 3.  First test example at the beginning of the RCR simulation 

 

B. Experimentations 
We have made experimentations on the RCR application 

dealing with fires situations. We have developed a prototype 
allowing the representation and the assessment of risks. The 
perceived facts in the disaster space are related to the fires 
propagation and to the fire brigades activities that try to 
extinguish these fires. The system includes a factual agents 
organisation for the perception and the representation of the 
situation and a set of assessment agents to deal with the facts 
evolution. At this progression stage of our work, the 
assessment situation is limited to the recognition of factual 
agents clusters according to past ones defined and 
experimented beforehand. We have defined therefore, from a 
starting scenario, a clusters set that we intend to regain in 
other similar scenarios by forming similar clusters. To modify 
an RCR scenario, we change the strategy applied by the fire 
brigades. This allows to have a different perception of the 
environment and different behaviours of the agents. 

Fig. 3. shows two views of the disaster space state at the 
beginning of the simulation--at the 6th second. The left view 
belongs to the starting scenario, the right one belongs to a 
scenario test. What interests us in these views are the fire 
brigades agents represented by black ellipses and the fires 
represented by black rectangles. Both objects have white 
identifiers (IDs), we note that the RCRSS gives randomly new 
IDs for all the RCR objects in each new simulation. These two 
elements are represented in the system by two different kinds 
of factual agents. We have identified two factual agents 
clusters at this step. Cluster-1 includes starting fires and the 
first fire brigades having perceived these fires and which are 
the most able to put out them. Cluster-2 contains however the 
rest of the fire brigades that are in a passive state.  

 
TABLE I 

CREATED CLUSTERS AT THE 6TH SECOND OF THE RCR SIMULATION 

Stored clusters Assessmen
t Agents 

Similar clusters 

Cluster-2: 
fireBrigade#267864071 
fireBrigade#130020552 
fireBrigade#129970323 
fireBrigade#255666267 
fireBrigade#199205638 
fireBrigade#20884048 
fireBrigade#133635968 

Agent-2 Cluster-1, r=0.99 
fireBrigade#267888188 
fireBrigade#264158650 
fireBrigade#201310913 
fireBrigade#134192215 
fireBrigade#234821930 
fireBrigade#232695827 
fireBrigade#258896960 

Cluster-1: 
fireBrigade#200188078 
fireBrigade#250079625 
fireBrigade#263968700 
fire#238713057 
fire#222263253 
fire#256855677 

Agent-1 Cluster-2, r=0.89 
fireBrigade#64866967 
fireBrigade#268275018 
fireBrigade#33546030 
fire#265210206 
fire#262626275 
fire#217816816 

Cluster-4 Agent-4 Cluster-3, r=0.80 

Cluster-3 Agent-3 Cluster-4, r=0.67 

 
Table I presents a test example. For this example we have four 
assessment agents, each one is associated to one cluster in the 
base. The table shows both the stored clusters elements and 
those created by the assessment agents. As we see, the two 
first agents (Agent-2 and Agent-1) regained two analogous 
clusters with relatively high relevances (r) in the test scenario 
and cover all the perceived facts of the situation. These two 
agents are therefore selected as the best candidates to provide 
the final decisions. 
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Fig. 4. Second test example in the middle of the RCR simulation} 

 
TABLE II 

CREATED CLUSTERS AT THE 11TH SECOND OF THE RCR SIMULATION 

Stored clusters Assessmen
t Agents 

Similar clusters 

Cluster-3: 
fireBrigade#200188078 
fireBrigade#263968700 
fireBrigade#133635968 
fireBrigade#20884048 
fireBrigade#130020552 
fireBrigade#250079625 
fire#222263253 
fire#263966785 
fire#267173025 
fire#150719037 

Agent-3 Cluster-1, r=0.83 
fireBrigade#201310913 
fireBrigade#134192215 
fireBrigade#234821930 
fireBrigade#268275018 
fireBrigade#64866967 
fireBrigade#258896960 
fire#265210206 
fire#217816816 
fire#134174462 
fire#165395197 
fire#115811948 

Cluster-4: 
fireBrigade#199205638 
fireBrigade#267864071 
fireBrigade#255666267 
fireBrigade#129970323 

Agent-4 Cluster-2, r=0.80 
fireBrigade#264158650 
fireBrigade#267888188 
fireBrigade#232695827 

Cluster-1 Agent-1 Cluster-3, r=0.78 

Cluster-2 Agent-2 Cluster-4, r=0.44 

 
The second example (see Fig. 4) concerns another scenario in 
an advanced stage of the RCR simulation--at the 13th  second 
of the simulation--in which fires are more important and the 
fire brigades are more active. At this step, two starting clusters 
have been identified and stored. Cluster-3 includes fire 
brigades in full fight with fires and other important starting 
fires. Cluster-4 presents some isolated fire brigades blocked by 
debris and that are unable to move. A similar situation is 
perceived at the 11th  second of the test scenario. The most 
relevant assessment agents are Agent-3 and Agent-4 that 
succeed in creating two similar clusters, whereas Agent-1 and 
Agent-2 have retrogressed in the relevances rank.  

V. CONCLUSION 
We have described in this paper an agent-based approach that 
aims to build a DSS. The system intends to help emergency 
planners to detect risks and to manage crisis situations by 
perceiving, representing and assessing a current situation. We 
think this approach may be adjusted easily to different 
problems types and enables the system to have an adaptive 
behaviour thanks to a multiagent multilevel kernel. We are 
working currently on the assessment level of the system 
mechanism. We have presented here first results applied on 
the RoboCupRescue. We intend to apply this approach on 
different subjects of studies in order to better improve its 
generic aspect. We aim also to generalise this approach by 
setting up a generic modelling of factual agents clusters that 
will enhance their formalisation and their management. 
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Abstract— This paper seeks to validate a factual ontology 

derived from an ontology of the domain of risk and catastrophe 
(Provitolo, Müller, Dubos-Paillard, 2009). The factual ontology is 
that part describing the structure and dynamics of the system, 
that is, the representation of an event and of on what it has a 
bearing. The objective is to show that the ontology is able to 
account for and allow comparison between complex stories 
(because of the diversity of event types and of their multi-scale 
description). The event used as the basis for validation of the 
ontology is the Great Kanto Earthquake of 1923. The account is 
that of P. Hadfield (1991) that provides a detailed description of 
the earthquake. Judgements by the actors involved of the system 
elements and events are excluded from this exercise, which is a 
first stage in validating the ontology.  
 

Index Terms— instantiation, Kanto earthquake, modelling, 
ontology of disaster, validation  
 
 

I. INTRODUCTION 
N the field of risk and catastrophe, a great deal of research 
has been conducted into the concepts [1]-[2]-[3]-[4]-[5]- 
[6]-[7]-[8]-[9]-[10]-[11] and the analysis of accidents or 

catastrophes. On the basis of that work, we have proposed a 
formalized ontology of risk and catastrophe [12].  

The most common definition of an ontology is that of [13] 
who defines it as a specification of the conceptualization of a 
domain. An ontology is therefore a structure for describing 
knowledge in a given field. A distinction is generally drawn 
between the conceptual ontology defining the terminology 
employed and the concrete ontology, which uses that 
terminology to describe an actual situation. The formalized 
ontology that we proposed [12 op. cit.] is essentially a 
conceptual ontology in which we distinguish the terminology 
used to depict what happened (e.g. 30 died on some bridge) 
from the characterization of what happened (there has been an 
accident, a serious accident or catastrophe) from the 
standpoint of the various actors of the system.  
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Here we begin with this formalized ontology and look more 
especially at the part describing the system’s structure and 
dynamics. Henceforth we call this the factual ontology as it 
allows us to describe what happened without taking up any 
particular standpoint.  

The overall aim of this factual ontology is to be able to 
handle stories made complex by the diversity of types of 
events and their multi-scalar character. A conceptual 
framework needs to be provided within which to analyse the 
various types of events, whether localized or dispersed, 
natural, industrial/technological or social. This factual 
ontology purports also to be suitable for studying events on 
different scales (micro, meso, macro). This should make it 
easier both to put into perspective different events that a priori 
share few common features, and to come up with a method for 
comparing events.  

The paper aims first to validate such an ontology by 
instantiating it based on the factual description of an event: the 
Great Earthquake of Kanto of 1923 as related by P. Hadfield 
[14]. This concrete case was chosen because the account 
mostly describes facts and not standpoints or judgements of 
those facts by those involved. We are looking here, then, at the 
representation of the story. This will allow us both to test out 
our factual ontology and to question the validation process of 
this sort of ontology.  

 

II. A FACTUAL ONTOLOGY OF RISK AND CATASTROPHE 
Factual ontology is that part that allows us to describe the 

structure and dynamics of a system. As stated in the 
introduction, the factual ontology is a part of the conceptual 
ontology of risk and catastrophe presented in [12 op. cit.]. The 
conceptual ontology enabled us:  

- to return to the essential concepts allowing us to 
characterize risk, accident, catastrophe and the associated 
notions and to organize these concepts in terms of the relations 
among them; 

- to identify four subsystems making up the conceptual 
model: Structure, Dynamics, Actor and Characterization (Fig. 
1). The Characterization subsystem enables us to specify how 
different actors characterize the system’s structure and 
dynamics. 

In this paper we propose an initial validation of the structure 
and dynamics part of this ontology based on the account by P. 

Validation of an ontology of risk and disaster  
through a case study of the 1923 Great Kanto 

Earthquake 
D. Provitolo, J.P. Müller, E. Dubos-Paillard  

I 
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Hadfield [14 op. cit.] of ‘The Great Kanto Earthquake’ by 
reproducing the account using the concepts of this ontology. 
Actor judgements of the system’s elements and events are 
excluded from this first validation exercise.  

 
Fig. 1. Systemic division of the meta-model into four subsystems 
 
We therefore present only the Structure and Dynamics 

subsystems of the conceptual model of risk and catastrophe. 
This model has been represented by UML (Unified Modelling 
Language) class diagrams [15]. Ontologies do not have 
standard graphical means of representation although a graphic 
depiction is often a very powerful means of communication. 
UML provides such representations and especially class 
diagrams representing concepts and their attributes by 
rectangular boxes and relations between concepts  by arrows. 
Two types of relation are distinguished: the 
generalization/specialization relation for expressing that one 
concept is more general/more specific than another (arrow 
with white triangle pointing to the more general concept) and 
the semantic relations bearing the name of the relation and the 
associated cardinalities (how many objects may be related to 
how many others).  

In what follows, we begin with the ontology (and therefore 
the class diagram) proposed in [12 op. cit.] that we specialize 
to take account of the specific account. For example, the 
general notion of event will be specialized into collapse, fire, 
etc. as particular cases of events.  

Thereafter we shall instantiate these notions to reproduce 
the account proper. Thus, several cases of collapse are 
mentioned in the account and shall therefore be so many 
instances of the general notion of collapse. Another UML 
diagram -the object diagram- shall be used to depict these 
instances and their structural and temporal linkages. An object 
diagram represents each instance by a box mentioning the 
instantiated notion possibly with a name by which to identify 
it and each connection by an arrow. These connections are 

themselves instances of semantic relations between notions. 
For example, it can be said in conceptual terms that one event 
may cause another (that there is a semantic relation of cause 
and effect between events) and the connections will be able to 
express which events actually did cause other events 
according to the account.  

A. The structure of the system 
The Structure identifies the relevant elements for analysing 

a system open to potentially catastrophic events. The elements 
are the parts forming the system’s structure (Fig. 2). The 
system is open to its environment (in the systemic meaning of 
the term). It is therefore also composed of exogenous elements 
that are by definition outside of the field of study. The 
‘Element’ class generalizes the ‘Living Element’, ‘Physical 
Element’, ‘Organization’ and ‘Infrastructure’ classes that 
appeared to us to be the relevant categories to be distinguished 
in the case of risk and catastrophe:  

- living element includes all human beings and natural 
populations such as plants and animals;  

- physical element corresponds to the description of the 
earth’s surface (oceanography, hydrography, pedology, relief, 
etc.) and does not directly pertain to human activities;  

- organization is a structure for responding to needs and 
achieving set objectives. Organization integrates systems for 
preventing and managing events.  

- miscellaneous infrastructures encompass built areas, 
facilities, networks, etc. 

Instantiating the conceptual model has required the 
inclusion of new relations:  

- the first to indicate that a system may be a particular case 
of an element. Adding this relation makes it possible to 
represent the interleaving of spatial levels (scale) within a 
system (systems are thus composed of systems, which are 
themselves made up of systems, etc.); 

- the second to indicate the existence of neighbourhood 
relations between elements of the system. The concept of 
neighbourhood refers to a topological space. It provides more 
possibilities than the simple use of distance between spatial 
entities (metric space). It allows us to form spatial subsets by 
neighbourhood (first-, second-order continuity, etc.). We shall 
see that this neighbourhood relation allows us to make a 
territorial analysis of the event, or more accurately the series 
of events, that occurred in the city of Tokyo.  

This first instantiation therefore enhanced the structure of 
the system.  

The system structure is related to the dynamic subsystem 
since both events and damage bear on the ‘element’ class.  
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Fig. 2 The system structure and its relations with the dynamic subsystem 
 
 

B. System dynamics 
Just as the system structure is composed of elements, the 

system dynamics (Fig. 3) is composed of elementary 
structures in the form of events. Each event may be ascribed a 
date (at a given level of granularity) and a duration. Each 

event may be made up of events, which provides an 
understanding of the interleaving of temporal levels in the 
event structure in parallel with the interleaving of spatial 
levels. 

 

Fig. 3 System dynamics and its relations with the Structure subsystem 
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An event has a bearing on one or more elements of the 

system. The ‘bears on’ relation allows us to make a link, the 
cogwheel between and event and an element. Elements are in 
fact nothing other than the ‘matter’ of which events are part. 

An event may also cause another event. Events are then tied 
to each other by causal relations that are achieved via 
elements: one speaks of causal chains between events. This 
causal chain corresponds to domino effects that are often cited 
in the literature on risk and catastrophe, especially by 
[16]-[17]-[18]-[19]-[20]-[21]. It shall be seen later in this 
paper that it is a set of causal chains that allows the Kanto 
earthquake to be characterized as ‘The Great Kanto 
Earthquake’.  

Lastly, the event can engender damage of different kinds 
and in variable amounts. Damage bears on elements, which 
explains why the classification of damage is based on that of 
elements. The classes titled ‘human damage, ‘damage to 
species and ecosystem operation’, ‘material damage’, ‘damage 
to social system’ and ‘damage to heritage’ specialize the 
‘Damage’ concept. Such damage may be the subject of 
quantifications or of literary descriptions. It is generally 
defined in human or material terms. But it may also bear on 
economic and financial systems and on heritage whether 
natural or cultural.  

 

III. INITIAL VALIDATION OF THE FACTUAL ONTOLOGY BASED 
ON THE ACCOUNT OF THE GREAT KANTO EARTHQUAKE (1923) 

The aim is to determine to what extent the ontology 
developed can account for complete and complex stories 
(structural complexity related to the variety of type of event, 
elements, complexity of spatial scales and levels of 
organization).  

In this paper, validation is effected by instantiation on a 
wealth of situations within the chosen account so as to check 
whether the model constructed applies to different types of 
concrete situation. Thus, to test whether the factual ontology is 
robust, it was instantiated (using Magic Draw) from P. 
Hadfield’s account of the Great Kanto Earthquake of 1923. 
That account is rich enough for the factual ontology to be 
tested. It allows it to be tested on a large number of system 
elements (living elements, physical elements, infrastructure), 
on different types of event, whether localized 
(earthquake/natural origin) or widespread (fire/technological 
origin) and at different spatial scales (cities, districts) and at 
different levels of organization (population, individual). By 
contrast, this account makes no mention of the 
characterization of these events by their various actors.  

A. Presentation of the case study: the Great Kanto 
Earthquake, 1923 

The Great Kanto Earthquake (1923) is a well documented 
event, especially in P. Hadfield’s ‘Sixty Seconds That Will 
Change the World: The Coming Tokyo Earthquake’ [14 op. 
cit]. P. Hadfield draws on Japanese records to provide a 
detailed literary description of the event, of the domino effects 

and the damage. The description highlights the complexity of 
a catastrophe of natural origin in an urban environment.  

The major earthquake that struck the Kanto region on 1 
September 1923 shortly before noon killed thousands and 
caused serious damage in the cities of Yokohama and Tokyo. 
The shock waves that lasted less than one minute destroyed 
two-thirds of Tokyo and four-fifths of Yokohama. Numerous 
fires broke out in both cities, because the event occurred when 
the inhabitants were beginning to warm their braziers and light 
their cookers to prepare meals. At the time, Tokyo, the capital 
of a little developed country, counted 2.5 million inhabitants. 
In Tokyo the braziers set light to the wooden houses, gas and 
hydrocarbon depots and tanks exploded, gas mains broke and 
the broken water mains made fire-fighting impossible. The 
mostly agricultural Japanese economy was badly hit. It was 
estimated that 9000 factories were destroyed by fire. More 
than 120 000 were killed either by buildings collapsing or by 
fires, or by crowd panic. As the fire in Tokyo could not be 
brought under control, to escape the advancing flames, many 
victims tried to cross the River Sumida that skirts central 
Tokyo. But when the bridge between the two banks broke, 
hundreds became panic-stricken and toppled into the water, 
where they met their deaths.  

This account emphasizes both the speed of the event and the 
tragic consequences of the fires that broke out in Tokyo and 
Yokohama immediately after the earthquake. The traditional 
wooden buildings facilitated the outbreak of many fires [22]. 

B. Instantiation of the ontology 
The ontology is instantiated in two stages by our method: 
- specialization of generic concepts (element, event, 

damage) by specifying what types of elements, events and 
damage are spoken of in this story;  

- development of an object diagram representing the 
account.  

1) Specialization of the conceptual model 
The first stage of the instantiation consisted in analysing the 

account of the ‘Great Kanto Earthquake’ to extract the terms 
that specialize the ‘Element’, ‘Event’ and ‘Damage’ classes 
(Figs 4 and 5). This analysis uses the 
generalization/specialization relation of concepts. For 
example, geological faulting is one sort of event; a bridge is 
one sort of infrastructure.  

For the needs of the description, the concepts of ‘City’ and 
of ‘District’ will specialize the concept of systems (we 
consider them, then, as particular systems in that they are 
themselves made up of elements). This 
structuring/representation of information will enable us to 
understand the interleaving of the spatial levels and so the 
complexity of the spatial scale of a phenomenon: description 
at the scale of a city, a district or a set of districts making up a 
city (Fig. 4). 
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Fig. 4. Specialization of the system structure 

 
The elements on which events bear are the ‘House’, ‘Open 

Space’ and ‘Bridge’ elements for the ‘Infrastructure’ class; the 
‘River’ class for the class named ‘Physical Element’; the 
‘Person’ class for ‘Living Element’ (Fig. 4). The ‘Faulting’,  
 

‘Earthquake’, ‘Lighting Brazier’, ‘Fire’, ‘Collapse House’, 
‘Assembly’, ‘Flight’ and ‘Crushing’ classes specialize the 
‘Event’ (Fig. 5).  

The ‘Human Damage’ class is specialized into the classes 
‘Injury’, ‘Death’, ‘Injured’ and ‘Dead’, while the ‘Material 
Damage’ class generalizes the ‘Destruction House’, 
‘Destruction Houses’ and ‘Destruction Bridge’ classes (Fig. 
5).  

At this level of analysis, we can already see the complexity 
of the system explicitly appearing because of the variety and 
the number of components, the presence of individual and 
collective structures: the generic concept ‘Human Damage’ 
may concern one person (death, injury) or a population (dead, 
injured); the ‘Material Damage’ class may generalize 
destruction of a specific house or bridge or of several houses 
on the scale of a district or a city. Implicitly, complexity is 
also engendered by the interleaving of various levels of 
organization [Pavé, 1994]. The ‘Assembly’ class, for example, 
is the result of individuals clustering. We shall see later that 
such interleaving of levels is reflected by the emergence of 
new properties.  

Fig. 5. Specialization of the system dynamics 
 

 
 

It will be noticed that the complexity arising from the 
interleaving of spatial levels appears clearly in the system 
structure but is less directly apparent for events. This 
observation can be explained by:  

- the actual composition of the ontology which means that 
events relate to structure;  

- deliberately ignoring interactions governing each type of 
event. Such interactions usually give rise to new properties, 
especially in the field of catastrophes [20 op. cit]. Each type of 
event identified is therefore the outcome of a process of 
interaction. To take an example, friction between tectonic 
plates engenders stress that builds slowly and eventually 

causes a sudden release which, by domino effect and force 
transfer, may create another until a chain reaction is produced 
that is the origin of an earthquake [16 op. cit.].  

2) The construction of the concrete model  
To speak of the particular event of the ‘Great Kanto 

Earthquake’ we instantiate the abstract concepts identified 
generally in the conceptual model and more precisely in the 
specification of the model.  

a) Representation of the spatial and temporal context  
From P. Hadfield’s account we extract information about 

the identification and situation of elements of the system in 
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space and their spatial arrangement. This information allows 
us to identify the general spatial context on which the events 
will bear. The instantiation of the ontology on the basis of the 
textual data allows us to consider a particular system 
composed of two cities, Yokohama and Tokyo. A 
neighbourhood relation (from the ‘Element’ class relation) is 
established between these two cities because Yokohama is 
located ‘a few kilometres south-west of Tokyo’ (Fig. 6).  

 
Fig. 6. The spatial context 
 

These two cities experience a same event named the Great 
Kanto Earthquake. This event may, as need be, be considered 
as a point in time (1 September 1923) or as an episode, that is, 
in terms of its unfolding, its dynamics over time: from 11.58 
am until sunset (Fig. 7).  

 

 
Fig. 7.  The temporal context 

 
 

b) Representation of the event at different scalar levels  
Instantiation of the ontology allows us to account for the 

scales of analysis of the event and the variability in the 
fineness of the level of detail of the event depending on the 
selected scale level. Two examples are covered to further 
validate the ontology: the transition from the macro scale to 
the micro scale (analysis of the event on the scale of the city of 
Yokohama, then on the scale of one person), and the transition 
from the macro scale to the meso scale (analysis of the event 
on the scale of the city of Tokyo and then of its districts). The 
multiple scales of these two examples clearly show that the 
level of detail of the unfolding of the event varies with the 
spatial scale level selected for recounting the event. 
Instantiation of the account thus shows several changes of 
scale all providing clarifications about the unfolding of the 
catastrophe.  

The visual representation (of the graphic modelling type) of 
this instantiation also helps to identify the multiple scales.  

(1) From the macro scale (city) to the micro 
scale (person): the transition from an 
overview to a close-up view of the event  

Instantiation of the account allows us to distinguish the 

general history of the earthquake that unfolds on the scale of 
the city of Yokohama (Fig. 8) and a particular story of one 
building and one person (Fig. 9). We thus have an overview 
and a close-up view of the unfolding of the event, enabling us 
to test one of the objectives of the ontology, the multi-scale 
analysis.  

The event of 11.58 am, that we characterized as faulting, 
causes an earthquake at 11.58 am and that bears on the city of 
Yokohama. On the scale of the city of Yokohama, we learn 
that the earthquake is the cause of a domino effect, a fire. 
These two events engender material damage such as the 
destruction of housing, that has a bearing on the city (Fig. 8).  

But in his account, Hadfield also describes the story of the 
earthquake on an individual scale. That is a particular story in 
Yokohama that retranscribes the event for a building (a 
restaurant) and a clearly identified person (‘a pretty waitress’) 
(Fig. 9). 
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Fig. 8. Instance of the factual ontology: a general story in Yokohama 
 

Fig. 9. Instance of the factual ontology: an individual story in Yokohama 
 

 

The earthquake triggers two causal chains of events on the 
micro scale, a fire and the collapse of a house that bear on a 
restaurant and that engender damage of the ‘House 
Destruction’ class. That damage bears on a well identified 
establishment: a restaurant. The instantiation presented show 
therefore that we have a set of events that bears on individual 

entities (a restaurant, a young girl) that engender damage that 
becomes more serious with time. The young girl is first 
injured by being crushed in the collapse of a restaurant, and 
then killed by a fire that breaks out inside the restaurant. This 
instance shows that the fatal injury results from the 
combination of several events.  

146 ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France



 

This first instantiation allows us to validate the ontology on 
a multi-scale analysis, in this case the analysis at the macro 
scale and the micro scale. The example covered below also 
confirms the  validation of the ontology for the transition from 
the macro to the meso scale and reveals the complexity of the 
system due to the interleaving of spatial levels.  

(2) The interleaving of spatial levels: analysis 
of the unfolding of the event on the scale of 
the city of Tokyo and its districts  
 
 

Here the event is analysed at two levels: the city of Tokyo 

(Fig. 10) and its districts (Figs 11 and 12). 
The event (now characterized as the Great Tokyo 

Earthquake of 1 September 1923) is composed of two events 
that took place in one case at 11.58 am (the faulting) and just 
before noon (the lighting of the braziers). On the scale of the 
city of Tokyo (Fig. 10), two events are instantiated: the 
earthquake at 11.58 and 44 seconds and the collapse of 
houses. These events are part of a chain of events arising from 
the general temporal context. The ‘Collapse House’ event 
engenders two types of damage: material damage (destruction 
of houses) and human damage (the injured).  

 

 
Fig. 10.  The earthquake of 11.58 am and 44 seconds on the scale of the city of Tokyo 

 
 
The story of the centre (Fig. 11) requires different types of 

event to be differentiated: the fire, the flight and the assembly. 
One bears on the open space of the Imperial Palace, the other 
on the open space of the River Sumida. The gathering of a 
crowd outside the Imperial Palace did not cause any human 
damage. However, the assembly that bears on the River 
Sumida was the scene of many human losses connected with a 
series of relations of contextual causality and panic behaviour. 
Those behaviours were part of a chain of causal relations 
between events (fire, flight, assembly) and a chain of 
perceptions (visual, auditory, etc.) of the situation. Those 
behaviours could not be transcribed in the factual ontology 
because the ontology in its current state does not provide the 
conceptual tools for dealing with perception.  

Instantiation of the story of Honjô (Fig. 12) highlights a 
contextual system comprising three districts—Nihonbashi, 
Asakusa, Honjô—and of the River Sumida which, because of 
their neighbourhood relation, triggered an event chain of fires 
in space and time (at 2.00 pm, 4.00 pm) entailing behaviours 
of flight and of assembly in an open space: a former army 
depot that had become wasteland. This space was not spared 
by the advancing fires. After sunset, a new fire broke out, 
bearing on the open space and engendering many human 
losses because of a factual causal relation between two events: 
the assembly brought about by the earlier fires and this new 
fire. There was therefore a series of events which, because of 
their diffusion in space and time, became multipolar. 
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Fig. 11. Instantiation of the story of the Centre in Tokyo 
 

Fig. 12. Instantiation of the story of Honjô in Tokyo 
 

 

Instantiation of this story shows that it is relatively easy to 
give an account of a catastrophe type of event using the factual 
ontology ‘filter’ proposed by [12 op. cit.]. Instantiation of the 
Great Kanto Earthquake has also showed the need for a 
multi-scale approach to reconstruct the account as well as 
possible because each scale provides specific information 
about the event. This vision of an event on different scales has 
many advantages in terms of comparison: comparison of 
accounts pertaining to different catastrophes, but also 
comparison of events of the same scale localized in different 
places and part of the same catastrophe.  

 

IV. DISCUSSION 
A first important element is that UML diagrams make it 

possible to visualize not just the articulation between concepts 
but also the structure of events and of concrete systems. For 
example, in the previous figure, the cascade of events, here the 
propagation of the fire, by making it clear which districts it 

bears on, brings out a topology within the city of Tokyo that is 
never described as such in the account. The graphical 
representation brings it out quickly. In the same way, 
concurrent event chains appear that jointly contribute to a new 
event (e.g. the fire in the former depot) and the structural and 
event hierarchy that reciprocally make visible the implicit 
structures.  

Whether the example of the Honjô district or that of the 
waitress in Yokohama (on very different scales), by following 
the ties between instances, the representation of the account 
brings out structurally, the domino effects that are often 
mentioned in the literature. More than domino effects, it is 
multiple effects by separate causal chains that allow us to 
account for events (and therefore for vulnerability) that would 
not otherwise be identifiable. The catastrophe therefore 
became multipolar and evolved in space and time.  

The case of Honjô is especially interesting, for all of the 
districts involved, on either side of the river, only formed a 
system on the occasion of the events that occurred there. Three 
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points can be learned from this:  
- the existence of particularly substantial vulnerability of a 

district that does not seem to have been identified as such; 
- the relative vulnerability of the centre and of Honjô tied to 

the dynamics of the process that makes what are a priori 
similar elements -the imperial palace and wasteland on the site 
of a former depot- play very different roles since the 
population can take refuge there in one case and dies there in 
the other; 

- the fact that a system does not necessarily exist a priori 
but is identified depending on the events that occur there. This 
highlights the interest of making simulations under various 
scenarios so as to identify the systems that emerge and their 
associated vulnerabilities. A system and its vulnerability do 
not exist of themselves but only as a function of the events 
that may occur there.  

As concerns the validation approach itself, there are two 
points of interest. First, it has enabled us to complete the 
conceptual ontology, not just to add more specific concepts 
such as the idea of city or district, but also linkages we had not 
thought of a priori such as the neighbourhood relation and the 
hierarchical breakdown of systems. Conceptual ontology 
virtually acquires the status of theory, that can be revised after 
the experimentation constituted by the instantiation on a 
concrete case. It has also enabled us to show that the whole of 
a complex account through the diversity of the events 
described and its multi-scalar aspect could be represented (not 
everything has been presented here for reasons of space). 

Admittedly, that does not prove that any and all accounts 
can be modelled with the concepts proposed, nor does it prove 
the relevance of these concepts to the other part of the 
conceptual ontology that is specific to the characterization of 
facts such as catastrophes by various criteria. There too, a 
mixture of tests of internal coherence and instantiation of 
accounts and multiple testimonies is required.  
 

V. CONCLUSION AND PERSPECTIVES 
Although it must still be subjected to other instantiations, 

whether in terms of structure and of system dynamics or in 
terms of the representation borne by actors on the event, the 
example proposed has allowed us to emphasize that factual 
ontology may provide a framework for formalizing knowledge 
and so facilitating comparisons. It has also shown the essential 
character of a multi-scale approach when accounting for an 
event. Lastly, it seems to us that instantiation provides insight 
into the timing of events on a given scale (it is not always 
specified in the account) and their spatiality.  

At this stage, we cannot yet validate the ontology of risk 
and catastrophe proposed by [12 op. cit.] but this first 
instantiation has shed some interesting light on things. Other 
examples should be covered to confirm or possibly fine-tune 
the proposed ontology.  

Nonetheless, although the instantiation teaches us a great 
deal, we are aware of the limits of the ontology in its current 
shape. Thus, the panic phenomenon referred to in the text 
titled ‘The Great Kanto Earthquake’, could not be treated in 

the context of this ontology. Panic is part of a chain of causal 
relations between events (fire, flight, assembly) and a chain of 
perception (visual, auditory, etc.) of the situation. Panic is 
therefore dependent on a series of events but also on the 
perception people have of the event. The model proposed does 
not as it stands provide the conceptual tools for dealing with 
perception.  

We need, therefore, to go beyond this limit because panic 
behaviour is not an epi-phenomenon. Panic is unusual in more 
ways than one: it is neither localized, nor confined to a 
particular environment, nor the result of any one specific 
event.  
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Abstract—Many agglomeration are faced to multiple techno-
logical and natural hazards. The use of the road network by
vehicles may cause big problems especially under evacuation
situations. An accident on a main road may endanger many lives.
A household survey was conducted in CODAH 1about people
displacement in the seine estuary. In this paper, we extracted
and treated the survey result. We also compared results with a
detection of organizations in large graphs algorithm.

Index Terms—vulnerability, risk, self organization, detection
of organizations, GIS, household displacement survey.

I. INTRODUCTION

AS many agglomerations, CODAH is faced to natural and
technological hazards. 33 establishments are classified

SEVESO2 with high threshold. To minimize risk effects, we
must localize the population at any time. In this context, the
major risk management team (DIRM) of CODAH has devel-
oped a model to estimate the diurnal / nocturnal population
distribution at buildings scale (PRET RESSE) [1]. This model
does not take into account the population displacement on the
road network. In previous works, we proposed an approach
to dynamically assess the vulnerability related to the road
network use by vehicles [2], [3]. To complete this work, we
have exploited a household survey about the displacement
of the population of CODAH in the Seine estuary. In this
paper, we exploit the survey and we compute vehicles path
declared displacements to dispatch the population on the
network. We present also a detection of organizations on large
graphs algorithm. The aim of this algorithm is to detect zones

1COmmunauté De l’Agglomération Havraise: it groups 17 communes
including Le Havre. The goal is to to develop many common projects in
territory management, health and hygiene, public transport, risk management...

2Directive SEVESO is an European directive, it lays down to the states
to identify potential dangerous site. It intends to prevent major accidents
involving dangerous substances and limit their consequences for man and
the environment, with a view to ensuring high levels of protection throughout
the Community.

susceptible to be congested, this by taking into account the
topological aspect of the graph. Finally, the results of the
survey will be compared to those obtained from the algorithm.

II. RISK MANAGEMENT

Real exercises in an evacuation planning are so expensive
(people, resources, logistics...) and sometimes not realistic
: they can not take into account each individual behavior
as the panic effect and initial response to an evacuation
in a dangerous area. Panic generally results from the lack
of coordination and dialog between individuals. Hence the
use of the simulation and in particular Multi-Agent Systems
(MAS) is necessary to model each agent behavior and more
understand the evolution of a critical situation due to inter-
actions between evacuees and the propagation of a danger :
an accident on the road network may cause dangerous traffic
jams especially in a case of a danger that spreads quickly.
Once we understand the evolution of a critical situation, we
try to fight against organizations of vehicles and try to allocate
vehicles on different roads to avoid bottlenecks. Recently,
many researchers tried to couple a MAS with a Geographical
Information System (GIS), especially in risk management
and vulnerability assessment. For computer modelers, this
integration provides the ability to have agents linked to real
geographical locations. For GIS users, it provides the ability
to model the emergence of phenomena by various interactions
of agents in time and space by using a GIS [4]. Thanks
to a GIS, one can combine different vulnerability layers (a
layer per danger : geophysical one, social one, access to
the network...) to construct a global layer which leads to a
better assessment of vulnerability; we think particularly about
the work of [5]. In geography, the representation of a MAS
coexists n levels of organizations and use several classes of
agents (e.g. Level 1: individuals or companies, Level 2 and
three: economic, urban communities).There will be rules at
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every level and the approach is not necessarily a bottom up
one as in the models of self-organization [6]. In [7], the
author modeled the spread of the panic from a group of
individuals in danger situation to non panicked ones. She
used a dynamic system (differential equations) to simulate the
behavior of individuals. Many execution scenarios showed that
the emergence of panic has not occurred in all scenarios when
changing some parameters. The emergence depends on the
rate of transmission from a population susceptible to panic to
a panicked population , the time taken to return to a normal
behavior (the population is more panicked after the disaster)
and the number of initially panicked people. The principle of
resilience was also discussed; it represents the time that the
system makes to return to its initial state after a period of
instability due to a disaster.

At neighborhood scale, many researches where developed
models based on microsimulation. In their paper [8], the
authors have presented a model to estimate the time required
to evacuate a neighborhood according to the population, the
number of vehicles and roads network capacity. The model
is based on optimization in order to find the dangerous area
around a critical point. This model was coupled with a GIS
(ArcInfo) to visualize the results (identifying evacuation plans)
and to establish an evacuation map for the town (Santa Bar-
bara). The same authors [9] opened the way to the study based
on geographic information systems to evacuate people. Their
study identified communities that may face transportation
difficulties during an evacuation. They modeled the city by a
graph to estimate lanes (Lane) occupation by vehicles during
an evacuation. A graph partitioning model was adopted in
order to detect vulnerable neighborhoods around each node of
the graph and to build a vulnerability map around the nodes of
the graph. A constructive heuristic was used to calculate the
best cluster around each node. The result was displayed on a
map with ARCINFO GIS. An area is increasingly vulnerable
according to the number of evacuees per lane (number of
people to evacuate in a neighborhood / number of exit roads).
The author believes that the combining of an evacuation based
vulnerability layer and a hazard one allows to build a general
risk map, so we can explore the various issues related to
risk. However, in this approach, we predefine the maximum
number of nodes in a neighborhood, which may not always
be realistic and does not take into account the traffic evolution
during evacuation. Secondly, the city of Santa Barbara is not
a typical example of urban metropolitan areas in the United
States with an important population facing great difficulties
during a evacuation.

III. DISPLACEMENT SURVEY

Lifestyles and travel practices are changing. Traveled dis-
tances have increased. New infrastructures have been estab-
lished and new services are proposed: these developments
must meet the expectations and new patterns of migration of
our territory inhabitants. That is why a household displacement
survey was conducted, with a standard model developed by
the Center for Studies on networks, transport, urban planning
and public constructions (the CERTU). The survey will pro-

vide shared data on current displacement practices and their
evolution.

A. Survey utility

The last displacement survey occurred in 1992 at Le Havre
agglomeration. Over time, taken paths become more complex
and new infrastructures exist; hence the need to a displacement
survey to respond to the population expectations, this by :

• considering the travel conditions between the city and its
catchment area of life: people come from further far away
to work, study or consume.

• Interview people about their expectations for transport.
• defining the transport policy of the CODAH for the

coming years: how to increase the use of public transport,
where and how to adapt the supply, how to relate the
supply of transport lanes with the rest of the territory,
what are the new flows, new trends, future developments
areas of housing and economy ...

• promote environmental issues, defined in the law of
Solidarity and Urban Renewal. Communities undertake
increasingly the development of a sustainable mobility.

In this work, the main utility of the survey is to localize
the population on the network at any time of the day. This
will help us to detect the congested areas and to estimate the
vulnerability related to the road network use by vehicles.

Fig. 1: zoning the Seine estuary communes

The territory of the survey covers the communities of the
Seine estuary (CODAH, Saint Romain de Colbosc community)
and Tancarville community or a territory of 34 communes.
This territory was divided into 102 zones to meet the survey
needs. Each surveyed person moves from a zone to the same
or another zone. These zones are illustrated in figure1.

B. Survey details

5194 persons representing 2224 households were surveyed
from different zones of CODAH. After a generalization of the
survey, we have around 320000 motorized displacements per
day. The adopted model is illustrated in the following UML
schema (figure 2).
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Fig. 2: UML schema

Each zone has at least a centroid which is a node strongly
connected to other nodes. So each person declaring a dis-
placement from a zone Z1 to a zone Z2 must move from a
centroid of Z1 to a centroid of Z2. The redress coef attribute
in the Household class represents the redress coefficient of the
household. So, if a person p belonging to a household h having
the redress coefficient c moves from a zone a at time t1 to a
zone b at time t2, we must generalize this by moving c persons
from a to b at the same time. Must of people round up their
time of departure and arrival. One declares leaving home at
08h00 while he did it at 07h56. This has caused a problem of
routes saturation because of moving many vehicles from the
same origin to the same destination, at the same time. To face
this problem, we used a normal distribution around departure
time while respecting the duration of a displacement declared
by each person.

C. Environment modeling

The road network is integrated as a layer in the Geographic
Information System (GIS). From this layer, we extract the
data by using the open source java GIS toolkit Geotools. This
toolkit provides several methods to manipulate Geo spatial
data and implements Open Geospatial Consortium (OGC)
specifications, so we can read and write to ESRI shapefile
format. Once data road network are extracted, we use the
GraphStream tool [10] developed within LITIS laboratory
of Le Havre to construct a graph corresponding to the GIS
network layer. This tool is designed for modeling; processing
and visualizing graphs.
The data extracted from network layer contains the roads
circulation direction, roads id, roads type, their lengths and
geometry.

The extracted multigraph G = (V, E) represents the road
network where V is the set of nodes and E the set of arcs.
We deal with a multigraph because we have sometimes more
than one oriented arc in the same direction between two
adjacent nodes due to multiple routes between two points in
the Seine Estuary road network. GraphStream facilitates this
task because it is adapted to model and visualize multigraphs.
In the constructed multigraph:

• The nodes represent roads intersections,
• The arcs represent the roads taken by vehicles,

Fig. 3: Extract the graph and compute vehicles path

• The weight on each arc represents the needed time to
cross this arc. Each arc has a maximum capacity of
vehicles (Arc length / Vehicle length)

D. Compute vehicles paths

In our work, we must repatriate people having their personal
vehicle on the road network. The main goal is to detect routes
with high vehicles density. It helps us in the detection of orga-
nizations and estimation of the vulnerability related to the road
network using. Generally, people tend to choose the shortest
path in time when using their own vehicles. This assumption,
which may seem audacious and even unrealistic, however, is
found in almost all mobility models implemented in most
countries since 1960 [11]. For each person displacement from
a centroid c1 to a centroid c2, we compute the shortest path
between the two nodes by using A-Star algorithm. It has the
advantage to be fastest than Dijkstra algorithm when using
an efficient heuristic. The last is an exact algorithm which
compute the shortest path between a source node to all other
nodes in a graph. In future work, we will use the dynamic
version of A-Star (D-star) to avoid congested routes when
computing paths. Another problem occurred when defining
just one centroid per zone; obviously the must connected one.
In figure 4, taken routes by vehicles are colored in red. At
the left of the figure, we adopt one centroid per zone : we
have 4772 taken routes and those routes are quickly congested.
At the right, we used 15 centroids per zone to overcome
this limitation : 17684 routes was taken. It is the maximum
centroids number per zone if we use a machine having 2GO
of ram. We can conclude that the more routes are taken and
the less maximum roads capacity is violated.
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Fig. 4: Taken routes with one centroid and 15 centroids per zone

IV. LOOKING AT OFTEN USED PATHS IN THE CITY ROAD
NETWORK

We conducted a simple experiment using random walks in-
side the city road network, seen as a graph. In this experiment
we take a given number of entities placed randomly on nodes
of the city graph. Then we run an iterative loop where, at each
step, these entities either traverse a randomly chosen edge or
wait.

Each time an entity crosses an edge e ∈ E, a special variable
enp (number of passes) bound to the edge is incremented. At
the end of such a simulation, the number of passes on each
edge by entities will therefore be stored in these variables.

The entities may either cross an edge or wait because the
displacements must consider road traversing times. The time
an entity waits is proportional to the average time used to
travel on the corresponding road: for two edges of the same
length, an entity will wait longer if the road is a city road than
if it is an highway.

After an entity crossed an edge, it chooses the next edge
to cross randomly, but do not consider any more the edge it
came from. The edges the entity used are stored in a memory,
and the entity tries to avoid reusing them. This memory is a
FIFO stack and ultimately, roads in the memory are forgotten,
so that the entity can reuse them later.

As the road graph we use is bounded, some roads on the
border are cut. If an entity reaches such a dead end (or a real
bag end), it ”jumps” in another position in the graph, chosen
randomly.

In the figure 5 we show one run of this experiment. We in
fact did several runs with a varying random seed, and always
obtained very similar results. Edges are colored using a color
graduation going from blue (almost no pass) to red (a lot of
passes) passing by green, yellow and orange. The scale is
geometric. To pass from blue to green you have to double
the number of passes, and to pass from green to yellow you
anew have to double this number of passes.

There are as many entities as nodes in the network. After
some setup, we set the entity memory to 40 nodes. We stop
the algorithm when a given maximum number of passes is
reached on one of the edges, here 4000. We chosen such a
high number to ensure the exploration of entities is significant
enough.

Fig. 5: Random walks in Le Havre, blueish to greenish roads
are less used and yellowish to reddish roads are the more used.

For a better understanding, the same results are shown on
figure 6 with labels that help to locate roads. The road that
are highly used are labelled and highlighted. They correspond
to town centers and highways. The A29 and A13 are the two
main highways passing by and going to Le Havre. The road
labelled ”main city entry” is one of the most used road when
coming to Le Havre (due to the fact the city is a harbour
and have its south and west sides bordered by water, and at
the north a plateau (”ville haute”) with smaller accesses. The
”Breque” label indicates a very large interchange that is, for
the same reasons, one of the most used section of road when
coming to and leaving Le Havre.

Fig. 6: Figure 5 with labels on important areas.

The number of passes found with this random walk is
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an indication of the roads in the network were vehicles are
inclined to pass, due to the topology of the road graph. This
can be an indicator on areas where vehicle will most probably
pass often.

We also run this simulation anew, but with some roads
removed. Namely, we removed the A29 and A13 highways, as
well as the ”main city entry”. The figure 7 shows the result.
These road ”absorbed” a large part of the traffic, and therefore
all the entities use a lot more other roads. The ”Breque”
interchange is completely saturated. This place is well known
by Le Havre inhabitants for the traffic jams occurring in the
morning and the evening when people go to or leave their
work. ”La Breque” is one of the mandatory road to use in
order to leave or enter the city.

Fig. 7: Random walks in Le Havre, with the A29 and A13
highways removed as well as the main city entry.

If we run the same experiment on figure 8, but only
disabling the ”main city entry”, the results are more similar to
the one without any road removed. This may mean that this
road could be removed and people redirected to adjacent roads
without impacting largely the traffic.

Fig. 8: Random walks in Le Havre, with only the main city
entry removed.

V. CONCLUSION

We have extracted a household survey on the motorized
population displacement in the Seine Estuary. For each dis-
placement from a zone to another one, we computed a shortest
path from a centroid of the first zone to a centroid to the other
zone. We used an A-Star algorithm to do that. Results showed
that the more we have centroids per zone, the more we explore
more routes and the less we violate routes capacity. We also

applied on the Seine estuary graph, a detection of organizations
algorithm based on random walks. The last showed that we can
predict the possibility to have traffic jams in some areas on the
basis of the network structure, this without having any data on
the traffic. In the near future, we will adopt a microsimulation
of the traffic with the use of D-Star algorithm to dynamically
compute paths and to respect the road capacities at any time.
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Abstract

In this paper,we discuss the oscillatory behavior of solu-
tions for a class of second order nonlinear differential equa-
tion with perturbation and establish two theorems which de-
velop and generalize some known results.

1 Introduction

In the past few years, the oscillation problem for the
following second order nonlinear differential equation with
damping

(a(t)ψ(x(t))x
′
(t))

′
+ p(t)x

′
(t)

+q(t)f(x(t)) = 0, ′ =
d

dt

(E1)

has been studied [1,2], and the oscillation of the following
second order nonlinear differential equations

(a(t)ψ(x(t))x
′
(t))

′
+ q(t)f(x(g(t))) = 0 (E2)

and
(a(t)ψ(x(t))x

′
(t))

′
+ q(t)f(x(t)) = 0 (E3)

have been investigated in [3,4]. And Jurang Yan[5] has
given the oscillation theorems for a second order linear dif-
ferential equations with damping

(r(t)x
′
(t))

′
+ p(t)x

′
(t) + q(t)x(t) = 0. (E4)

In this paper,we discuss the oscillatory behavior of the
solutions of the second order nonlinear differential equation
with perturbation of the form

(a(t)ψ(x(t))x
′
(t))

′
+Q(t, x(t))

= P (t, x(t), x
′
(t)), ′ =

d

dt
.

(1)

where we let
(A1) a : [t0,+∞) → R (R = (−∞,+∞)) is posi-

tive continuously differentiable;
(A2) ψ : R → R is continuously differentiable and

ψ(u) > 0 for u 6= 0;
(A3) Q : [t0,+∞)× R → R is continuous, and there

exists a continuous function q(t) and continuously differen-

tiable function f(x) such that
Q(t, x)
f(x)

≥ q(t) for x 6= 0,

where q : [t0,+∞) → R, f : R → R , uf(u) > 0 and
f
′
(u) > 0 for u 6= 0 ;
(A4) P ∈ ([t0,+∞) × R2 → R) ,and there exists

p(t) ∈ ([t0,+∞) → R) such that
P (t, x(t), x

′
(t))

f(x)
≤ p(t)

for x 6= 0.
In the condition that

lim
t→+∞

∫ t

t0

[q(s)− p(s)]ds = +∞ (2)

is not establishment, we discuss the oscillatory behavior of
Eq.(1) and establish two theorems which develop and gen-
eralize some known results.

Throughout by a solution of Eq.(1) we shall mean
a function which exists on [t0,+∞) satisfies Eq.(1) and
x(t) 6≡ 0, t ∈ [T,+∞). As usual, a solution of Eq.(1) is
said to be oscillatory if it has arbitrarily large zeros; other-
wise it is said to be nonoscillatory. A nonoscillatory solu-
tion of Eq.(1) is said to be weakly oscillatory if x

′
(t)

changes sign for arbitrarily large values of t(see [3, 6]).
Eq.(1) is called oscillatory if all its solutions are oscilla-
tory.

With respect to their asymptotic behavior, all the solu-
tions of Eq.(1) can be divided into the following four types:
S+ = {x = x(t) solution of Eq.(1): there exists tx ≥ t0

such that x(t)x
′
(t) ≥ 0 for t ≥ tx};
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S− = {x = x(t) solution of Eq.(1): there exists tx ≥ t0
such that x(t)x

′
(t) < 0 for t ≥ tx};

SO = {x = x(t) solution of Eq.(1): there exists
tn, tn → +∞, such that x(tn) = 0};
SWO = {x = x(t) solution of Eq.(1): x(t) 6= 0 for t

sufficiently large and for all tα > t0 there exist tα1 > tα,
tα2 > tα such that x

′
(tα1)x

′
(tα2) < 0}.

With very simple argument we can prove that
S+, S−, SO, SWO are mutually disjoint. By the above def-
initions, it turns out that solutions in the class S+ are even-
tually either positive nondecreasing or negative nonincreas-
ing, solutions in the class S− are eventually either positive
nonincreasing or negative nondecreasing, solutions in the
class SO are oscillatory, and finally, solutions in the class
SWO are weakly oscillatory.

2 Main Results

In this section, we establish two oscillatory theorems of
Eq.(1).

Lemma 1 If for sufficiently large T such that

lim inf
t→+∞

∫ t

T

[q(s)− p(s)]ds ≥ 0, (3)

then SWO = ∅ for Eq.(1).
Proof Suppose that Eq.(1) has a solution x(t) ∈ Swo.

There is no loss of generality in assuming that there exists
t1 ≥ t0 such that x(t) > 0 for all t ≥ t1.( For x(t) < 0, the
proof is similar.) Thus for all tα > t1 there exist tα1 , tα2 >
tα, such that x

′
(tα1)x

′
(tα2) < 0. Therefore there exists the

sequence {Cn} → +∞ such that x
′
(Cn) < 0. Chozening

sufficiently largeN such that CN satisfies the condition (3).
i.e.,

lim inf
t→+∞

∫ t

CN

[q(s)− p(s)]ds ≥ 0.

Consider the function

W (t) =
a(t)ψ(x(t))x

′
(t)

f(x(t))
, t ≥ t1.

Then it follows from Eq.(1) when t ≥ t1

W
′
(t) = −Q(t, x(t))

f(x(t))
+
P (t, x(t), x

′
(t))

f(x(t))

−a(t)ψ(x(t))f
′
(x(t))

x
′2

(t)
f2(x(t))

≤ −q(t) + p(t)

−a(t)ψ(x(t))f
′
(x(t))

x
′2

(t)
f2(x(t))

≤ −q(t) + p(t),

For all b ≥ t1, integrating the above inequality from b to t1,
we have

a(t)ψ(x(t))x
′
(t)

f(x(t))
≤ a(b)ψ(x(b))x

′
(b)

f(x(b))

−
∫ t

b

[q(s)− p(s)]ds.
(4)

Then for the above CN when t ≥ CN we have

a(t)ψ(x(t))x
′
(t)

f(x(t))
≤ a(CN )ψ(x(CN ))x

′
(CN )

f(x(CN ))

−
∫ t

CN

[q(s)− p(s)]ds.

Therefore

lim sup
t→+∞

a(t)ψ(x(t))x
′
(t)

f(x(t))
≤ a(CN )ψ(x(CN ))x

′
(CN )

f(x(CN ))

+ lim sup
t→+∞

{−
∫ t

CN

[q(s)− p(s)]ds} < 0.

Then for all t ≥ CN we obtain x
′
(t) < 0, which gives a

contradiction since x
′
(tα1)x

′
(tα2) < 0. The proof is com-

plete.
Lemma 2 If∫ +∞

t0

[q(s)− p(s)]ds < +∞ (5)

and

lim
t→+∞

∫ t

t0

1
a(s)

∫ +∞

s

[q(τ)− p(τ)]dτds = +∞, (6)

furthermore
f(u)
ψ(u)

is strongly sublinear,that is ,

∫ +∞

ε

ψ(u)
f(u)

du < +∞,
∫ −ε

−∞

ψ(u)
f(u)

du > −∞, (7)

for all ε > 0, then for Eq.(1), we have S+ = ∅.
Proof Suppose that Eq.(1) has a solution x(t) ∈ S−.

There is no loss of generality in assuming that there exists
t1 ≥ t0 such that x(t) > 0, x

′
(t) ≥ 0 for all t ≥ t1. (

For x(t) < 0, x
′
(t) ≤ 0, the proof is similar.)As in the the

proof of lemma 1 we can acquire (4). From (5) we obtain
(t ≥ b, x′(t) ≥ 0),

0 ≤ a(b)ψ(x(b))x
′
(b)

f(x(b))
−
∫ +∞

b

[q(s)− p(s)]ds.

Thus for all t ≥ b we have∫ +∞

t

[q(s)− p(s)]ds ≤ a(t)ψ(x(t))x
′
(t)

f(x(t))
.
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So we can obtain∫ t

b

1
a(s)

∫ +∞

s

[q(τ)− p(τ)]dτds

≤
∫ t

b

ψ(x(s))x
′
(s)

f(x(s))
ds,

let t → +∞, which contradicts condition (6) and (7). The
proof is complete.

Theorem 1 If the condition (3),(5) and (7) hold and as-
sume that

lim
t→+∞

∫ t

t0

1
a(s)

ds = +∞ (8)

is satisfied. Then Eq.(1) is oscillatory.
Proof It follows from Lemma 1 and Lemma 2, S+ =

SWO = ∅ for Eq.(1). Therefore, to prove Theorem 1, it
suffices to show that S− = ∅ for Eq.(1). Let x(t) be a
solution of class S− of Eq.(1). There is no loss of gen-
erality in assuming that there exists t1 ≥ t0 such that
x(t) > 0, x

′
(t) ≤ 0 for all t ≥ t1.( For x(t) < 0, x

′
(t) ≥ 0,

the proof is similar.) It follows from (3) there exists t2 ≥ t1
such that ∫ t

t2

[q(s)− p(s)]ds ≥ 0

for t ≥ t2. From Eq.(1) , x
′
(t) 6≡ 0 for t ≥ t2. In fact, If

t ≥ t2 then x
′
(t) ≡ 0 , because of (A3) and (A4) we have

q(t) ≤ p(t), which contradicts condition (3). So x
′
(t) 6≡ 0

for t ≥ t2. There exists t3 ≥ t2 such that x
′
(t3) < 0.

Integrating Eq.(1) from t3 to t, we have

a(t)ψ(x(t))x
′
(t) = a(t3)ψ(x(t3))x

′
(t3)

+
∫ t

t3

P (s, x(s), x
′
(s))ds−

∫ t

t3

Q(s, x(s))ds

≤ a(t3)ψ(x(t3))x
′
(t3) +

∫ t

t3

p(s)f(x(s))ds

−
∫ t

t3

q(s)f(x(s))ds.

= a(t3)ψ(x(t3))x
′
(t3)

−
∫ t

t3

[q(s)− p(s)]f(x(s))ds

= a(t3)ψ(x(t3))x
′
(t3)

−f(x(t))
∫ t

t3

[q(s)− p(s)]ds

+
∫ t

t3

f
′
(x(s))x

′
(s)
∫ s

t3

[q(τ)− p(τ)]dτds
≤ a(t3)ψ(x(t3))x

′
(t3) = k (k < 0).

Consequently, for all t ≥ t3,we have∫ x(t)

x(t3)

ψ(u)du ≤ k
∫ t

t3

1
a(s)

ds,

Noting the condition (8)and the fact 0 < x(t) ≤ x(t3),

implies the left of this inequality, that is
∫ x(t)

x(t3)

ψ(u)du has

lower bounded, but the right of it tend towards minus infin-
ity. So a contradiction exists. The proof is complete.

Lemma 3 If the condition (7) hold and

lim
t→+∞

∫ t

T

[q(s)− p(s)]
∫ s

T

1
a(τ)

dτds = +∞ (9)

is satisfied, then S+ = ∅ and SWO = ∅ for Eq.(1).
Proof (I) Suppose that Eq.(1) has a solution x(t) ∈

S+. There is no loss of generality in assuming that there
exists t1 ≥ t0 such that x(t) > 0, x

′
(t) ≥ 0 for all t ≥

t1.(For x(t) < 0, x
′
(t) ≤ 0, the proof is similar.) Consider

the function

W (t) =
−a(t)ψ(x(t))x

′
(t)

f(x(t))

∫ t

t1

1
a(s)

ds, t ≥ t1.

Then it follows from Eq.(1) that

W
′
(t)

=
−(a(t)ψ(x(t))x

′
(t))

′

f(x(t))

∫ t

t1

1
a(s)

ds

+
a(t)ψ(x(t))x

′2
(t)f

′
(x(t))

f2(x(t))

∫ t

t1

1
a(s)

ds

−ψ(x(t))x
′
(t)

f(x(t))

= [
Q(t, x(t))
f(x(t))

− P (t, x(t), x
′
(t))

f(x(t))

+
a(t)ψ(x(t))x

′2
(t)f

′
(x(t))

f2(x(t))
]
∫ t

t1

1
a(s)

ds

−ψ(x(t))x
′
(t)

f(x(t))

≥ [q(t)− p(t) + a(t)ψ(x(t))f
′
(x(t))

x
′2

(t)
f2(x(t))

]

·
∫ t

t1

1
a(s)

ds− ψ(x(t))x
′
(t)

f(x(t))

≥ [q(t)− p(t)]
∫ t

t1

1
a(s)

ds− ψ(x(t))x
′
(t)

f(x(t))
.

So

W (t) ≥
∫ t

t1

[q(s)− p(s)]
∫ s

t1

1
a(τ)

dτds

−
∫ t

t1

ψ(x(s))x
′
(s)

f(x(s))
ds.

(10)

Noting the condition (7) and (9)we obtain

lim
t→+∞W (t) = +∞,
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which contradicts the assumption W (t) < 0 .

(II) Suppose that Eq.(1)has a solution x(t) ∈ SWO.
There is no loss of generality in assuming that there exists
t1 ≥ t0 such that x(t) > 0 for all t ≥ t1 since the proof
is similar if x(t) < 0 for all large t. Since for all tα > t1
there exist tα1 , tα2 > tα, such that x

′
(tα1)x

′
(tα2) < 0.

Proceeding as in the proof of the above (I), we obtain (10),
thus,

lim inf
t→+∞ W (t) ≥ lim inf

t→+∞

∫ t

t1

[q(s)− p(s)]

·
∫ s

t1

1
a(τ)

dτds+ lim inf
t→+∞{−

∫ t

t1

ψ(x(s))x
′
(s)

f(x(s))
ds}.

Noting the condition (7),

lim sup
t→+∞

∫ t

t1

ψ(x(s))x
′
(s)

f(x(s))
ds

has upper bound. In fact, from the condition (7) we know
it has upper bound for x

′
(s) > 0. And for x

′
(s) < 0 we

know 0 is upper bound . Then

lim inf
t→+∞{−

∫ t

t1

ψ(x(s))x
′
(s)

f(x(s))
ds}

has lower bound. Noting the condition (9) we have
x
′
(t) < 0 for all large t, which gives a contradiction since

x
′
(tα1)x

′
(tα2) < 0. The proof is complete.

Theorem 2 If the assumptions (7),(8) and (9) are satis-
fied, then Eq.(1) is oscillatory.

Proof It follows from Lemma 3 that S+ = SWO = ∅.
Therefore,to prove Theorem 2, it suffices to show that S− =
∅ for Eq.(1). Let x(t) be a solution of type S− of Eq.(1).
Without loss of generality, we may assume that there exists
t1 ≥ t0 such that x(t) > 0, x

′
(t) ≤ 0 for all t ≥ t1 . ( For

x(t) < 0, x
′
(t) ≥ 0, the proof is similar.) Consider the

function

W (t) =
−a(t)ψ(x(t))x

′
(t)

f(x(t))

∫ t

t1

1
a(s)

ds, t ≥ t1.

As in the proof of Lemma 3 we obtain (10), i.e.,

W (t) ≥
∫ t

t1

[q(s)− p(s)]
∫ s

t1

1
a(τ)

dτds

−
∫ t

t1

ψ(x(s))x
′
(s)

f(x(s))
ds.

In view of condition (9),W (t) → +∞ for t → +∞. Then
there exists t2 ≥ t1 such that W (t) ≥ 1 for t ≥ t2. There-
fore

ψ(x(t))x
′
(t)

f(x(t))
≤ − 1

a(t)
∫ t
t1

1
a(s)ds

, t ≥ t2.

Let A(t, t1) =
∫ t

t1

1
a(s)

ds, from the above we can acquire

x
′
(t) < 0 for t ≥ t2 and∫ x(t)

x(t2)

ψ(u)
f(u)

du ≤ −
∫ t

t2

1
a(s)A(s, t1)

ds

= − ln
A(t, t1)
A(t2, t1)

→ −∞ (t→ +∞).

Then x(t) → 0 (t → +∞). It also follows from (9) that
there exists t3 ≥ t2 such that∫ t

t3

[q(s)− p(s)]
∫ s

t3

1
a(τ)

dτds ≥ 0, t ≥ t3.

Integrating Eq.(1) we have∫ t

t3

(a(s)ψ(x(s))x
′
(s))

′
∫ s

t3

1
a(τ)

dτds

=
∫ t

t3

P (s, x(s), x
′
(s))

∫ s

t3

1
a(τ)

dτds

− ∫ t
t3
Q(s, x(s))

∫ s

t3

1
a(τ)

dτds.

Then integrating the left and in the same time

a(t)ψ(x(t))x
′
(t)
∫ t

t3

1
a(τ)

dτ

≤
∫ x(t)

x(t3)

ψ(u)du

−
∫ t

t3

[q(s)− p(s)]f(x(s))
∫ s

t3

1
a(τ)

dτds

=
∫ x(t)

x(t3)

ψ(u)du

−f(x(t))
∫ t

t3

[q(s)− p(s)]
∫ s

t3

1
a(τ)

dτds

+
∫ t

t3

f
′
(x(s))x

′
(s)

·
∫ s

t3

[q(u)− p(u)]
∫ u

t3

1
a(τ)

dτduds

≤
∫ x(t)

x(t3)

ψ(u)du.

(11)

Because x(t) → 0 for t → +∞, there exists t4 ≥ t3 such

that x(t) <
x(t3)

2
for all t ≥ t4 . Thus, there exists constant

L > 0, making that∫ x(t)

x(t3)

ψ(u)du < −L.

Therefore, when t ≥ t4, from the above formula (11), we
can obtain

ψ(x(t))x
′
(t) ≤ −L 1

a(t)
∫ t
t3

1
a(τ)dτ

.
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Consequently,∫ x(t)

x(t4)

ψ(u)du ≤ −L ln
A(t, t3)
A(t4, t3)

→ −∞ (t→ +∞).

But the left of this inequality, that is
∫ x(t)

x(t4)

ψ(u)du has

lower bounded. So a contradiction exists. The proof is com-
plete.

3 Examples

In this section, we give two illustrative examples.
Example 1 Consider the equation

(
1

2t2
x−2(t)x

′
(t))

′
+

1
t2
x(t)

+
1

4(1 + t)2
x(t)[x

′
(t)]2 = 0, (t > 0).

(12)

where a(t) = 1
2 t
−2, ψ(u) = u−2, let q(t) = t−2, p(t) =

0, f(u) = u. It is easy to verify that Eq.(12) satisfies the
conditions of Theorem 1. Therefore,Eq.(12) is oscillatory
. However, using any known results, we can not obtain the
conclusion.

Example 2 Consider the equation

(
1

2t
3
2
x−

4
3 (t)x

′
(t))

′
+

1
t

3
2
x

1
3 (t)

+
1

4(1 + t)
3
2
x

1
3 (t)[x

′
(t)]2 = 0, (t > 0).

(13)

where a(t) = 1
2 t
− 3

2 , ψ(u) = u−
4
3 , let q(t) = t−

3
2 , p(t) =

0, f(u) = u
1
3 . It is easy to check that Eq.(13) satisfies all

the conditions of Theorem 2. Therefore, Eq.(13) is oscilla-
tory. However, using any known results, we can not obtain
the conclusion.
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On quasistatic models of contact phenomena
Anna Ochal and Stanislaw Migorski

Abstract—We deal with a quasistatic model for contact prob-
lem which involves general nonmonotone and multivalued laws
and subdifferential boundary conditions. We study the asymp-
totic behavior of a weak solution to an abstract second order
nonlinear evolution hemivariational inequality modeling contact
problems, as the power of the acceleration forces vanishes.

First we prove the existence and regularity result for the
evolution hemivariational inequality. Then the crucial step is to
derive a suitable uniform estimate on the sequence of solutions
and the existence of a limit for this sequence which is a solution
of a parabolic model for a quasistatic hemivariational inequality.
Finally, we present an application of the abstract theorem to a
quasistatic viscoelastic contact problem.

Index Terms—Contact problem, asymptotic behavior, hemi-
variational inequality, solid mechanics.

I. INTRODUCTION

THE aim of this paper is to study the asymptotic behavior
of a weak solution to an abstract second order nonlinear

evolution hemivariational inequality modeling contact prob-
lems when the power of the acceleration forces vanishes. We
consider the following evolution inclusion being an equivalent
form of a hemivariational inequality

εu′′(t) + A(t)u′(t) + Bu(t) + γ∗∂J(t, γu(t)) 3 f(t) (1)

where ε > 0 is proportional to the mass density, A(t) and B
are linear continuous operators from a reflexive Banach space
V into its dual V ∗, γ is a linear continuous operator, γ∗ is
its adjoint, ∂J denotes the Clarke subdifferential of a locally
Lipschitz time-dependent function J(t, ·) and f : (0, T ) → V ∗

is given. Moreover, we associate with (1) appropriate initial
conditions.

The study of this type of inclusions is motivated by many
contact problems of solid mechanics. It is well known that
the dynamic equation of motion, representing momentum
conservation, that govern the evolution of the state of the body,
is of the form u′′ −Div σ = f , where u is a displacement, σ
is the stress tensor, Div is the divergence operator and f is the
density (per unit volume) of applied forces, such as gravity.
This equation is valid for all systems and materials, since
they are derived from the fundamental principle of momentum
conservation.

We are interested in situations in which the system confi-
guration and the external forces and tractions evolve slowly

Manuscript received April 6, 2009. This work was done within the project
Polonium ”Nonsmooth Analysis with Applications to Contact Mechanics” un-
der contract no. 7817/R09/R10 between the Jagiellonian University, Kraków,
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A. Ochal and S. Migorski are with Jagiellonian University, Facul-
ty of Mathematics and Computer Science, Krakow, Poland, (e-mail:
{ochal,migorski}@softlab.ii.uj.edu.pl).

in time in such a way that the accelerations in the system
are rather small and negligible, so that the inertial terms (the
second order time derivative) can be neglected. In this case, we
obtain the quasistatic approximation (equilibrium equation) for
the equation of motion, −Div σ = f . Rigorous mathematical
treatment of quasistatic problems is recent, e.g. Han and
Sofonea [5], Shillor, Sofonea and Telega [13], Sofonea, Han,
Shillor [14] and the references therein. When we assume
that the process is slow and the accelerations are negligible,
mathematically it means that the system changes character,
from being of a hyperbolic type to an elliptic or a parabolic
type.

Our main interest lies in general nonmonotone and mul-
tivalued laws and subdifferential boundary conditions. Such
relations were considered for the first time in the early
eighties by P.D. Panagiotopoulos [11] who introduced the
notion of hemivariational inequality as a generalization of
variational inequality. For examples and applications of hemi-
variational inequalities, we refer to Panagiotopoulos [11], [12]
and Naniewicz and Panagiotopoulos [9].

Our motivation to study the model (1) comes from a
quasistatic viscoelastic contact problem. We deal with a de-
formable viscoelastic body which occupies an open bounded
subset Ω of IRd (d = 2, 3 in applications). The boundary Γ
of Ω is supposed to be Lipschitz continuous and Γ consists of
three mutually disjoint measurable parts ΓD, ΓN and ΓC such
that m(ΓD) > 0. Setting Q = Ω× (0, T ), we are looking for
the displacement field u: Q → IRd which solves the following
mechanical problem

−Div σ(t) = f0(t) in Q (2)

σ(t) = C(t)e(u′(t)) + Ge(u(t)) in Q (3)

u(t) = 0 on ΓD × (0, T ) (4)

σ(t)n = f1(t) on ΓN × (0, T ) (5)

−σν(t) ∈ ∂jν(t, uν) on ΓC × (0, T ) (6)

−στ (t) ∈ ∂jτ (t, uτ ) on ΓC × (0, T ) (7)

u(0) = u0 in Ω. (8)

Here σ and e denote the stress and strain tensors, C and G are
viscosity and elasticity operators, ∂jν and ∂jτ are the Clarke
subdifferentials of prescribed locally Lipschitz functions jν

and jτ . The detailed description of the contact problem (2)–
(8) is given in Section V.

In the paper we start with an existence and regularity result
for the evolution hemivariational inequality. Such a result
holds for every fixed ε > 0 and it is obtained (cf. Theorem 4)
by using the theory of hemivariational inequalities developed
recently in [6], [7], [8]. Then, the crucial step is to derive a
suitable uniform estimate on the sequence of solutions to (1).
The main result concerns the existence of a limit as ε → 0, for
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this sequence. Our asymptotic analysis shows that a parabolic
model for a quasistatic hemivariational inequality of the form

A(t)u′(t) + Bu(t) + γ∗∂J(t, γu(t)) 3 f(t) a.e. t

is solvable as a limit of the dynamical one, as the mass
coefficient in the inertial term tends to zero. We also point
out that the results of this paper can be applicable to several
quasistatic models of contact phenomena. Finally, we remark
that the question of uniqueness of solutions to both dynamical
and quasistatic hemivariational inequality is left open.

II. NOTATION

Let (V, Z, H, Z∗, V ∗) be an evolution fivefold, i.e. V and Z
are reflexive, separable Banach spaces, H is a Hilbert space
and V ⊂ Z ⊂ H ≈ H∗ ⊂ Z∗ ⊂ V ∗ with all embeddings
dense and continuous. Suppose that V is compactly embedded
in Z. We denote by 〈·, ·〉 the duality of V and V ∗ and the
pairing between Z and Z∗ as well, by ‖ · ‖E the norm in a
space E, being, respectively V , Z, Z∗ and V ∗ and by | · |H
the norm in H . Moreover, the notation L(E, F ) stands for the
space of linear bounded operators from a Banach space E to
a Banach space F and w–E denotes the space E endowed
with the weak topology. For U ⊂ E, we also write ‖U‖E =
sup{‖u‖E : u ∈ U}.

Given a fixed number 0 < T < ∞ and 2 ≤ p < ∞, we
introduce the following function spaces V = Lp(0, T ; V ), Z =
Lp(0, T ; Z), H = L2(0, T ; H), Z∗ = Lq(0, T ; Z∗), V∗ =
Lq(0, T ; V ∗) with 1/p + 1/q = 1 and W = {w ∈ V : w′ ∈
V∗}, where the time derivative is understood in the sense of
vector-valued distributions. The latter is a separable, reflexive
Banach space with the norm ‖w‖W = ‖w‖V + ‖w′‖V∗ . We
have

W ⊂ V ⊂ Z ⊂ H ⊂ Z∗ ⊂ V∗

with continuous embeddings, cf. [3], [4]. The pairing of V
and V∗ and also the duality between Z and Z∗ are denoted
by 〈〈·, ·〉〉.

Next, we recall the definitions of the generalized directional
derivative and the generalized gradient of Clarke for a locally
Lipschitz function θ: X → IR, where X is a Banach space
(see [2], [3]). The generalized directional derivative of θ at
x ∈ X in the direction v ∈ X , denoted by θ0(x; v), is defined
by

θ0(x; v) = lim sup
y→x, λ↓0

θ(y + λv) − θ(y)
λ

.

The generalized gradient of θ at x, denoted by ∂θ(x), is a
subset of a dual space X∗ given by

∂θ(x) = {ζ ∈ X∗ : θ0(x; v) ≥ 〈ζ, v〉 for all v ∈ X}.

A locally Lipschitz function θ is called regular (in the sense
of Clarke, cf. [2]) at x ∈ X if for all v ∈ X the one-sided
directional derivative θ′(x; v) exists and satisfies θ0(x; v) =
θ′(x; v) for all v ∈ X .

III. HEMIVARIATIONAL INEQUALITY

We provide a result on the existence of solutions to an
evolution hemivariational inequality of the form{

εu′′(t) + A(t)u′(t) + Bu(t) + γ∗∂J(t, γu(t)) 3 f(t)
a.e. t ∈ (0, T )

u(0) = u0,
√

εu′(0) = u1.
(9)

In this section we suppose that ε > 0 is fixed. We remark that,
by the definition of the Clarke subdifferential, problem (9) is
equivalent to the following inequality{ 〈εu′′(t) + A(t)u′(t) + Bu(t)− f(t), v〉+

+ J0(t, γu(t); γv) ≥ 0 for all v ∈ V, a.e. t
u(0) = u0,

√
εu′(0) = u1,

where J0 stands for the generalized directional derivative of
J(t, ·). For this reason problem (9) is called a hemivariational
inequality.

DEFINITION 1: A function u ∈ V is called a solution to (9)
if and only if u′ ∈ W and there exists η ∈ Z∗ such that{

εu′′(t) + A(t)u′(t) + Bu(t) + η(t) = f(t) a.e. t
η(t) ∈ γ∗∂J(t, γu(t)) a.e. t ∈ (0, T )
u(0) = u0,

√
εu′(0) = u1.

REMARK 2: If u is a solution to (9), then u ∈
W 1,p(0, T ; V ). Since the embeddings W 1,p(0, T ; V ) ⊂
C(0, T ; V ) and W ⊂ C(0, T ; H) are continuous (cf. Proposi-
tion 8.4.14 in [4]), the initial conditions u(0) and u′(0) have
a meaning in V and H , respectively.

Since ε is fixed, we write for simplicity u for the solution uε

of (9). We assume that X is a Banach space and the following
hypotheses hold.

H(A) : A ∈ L∞(0, T ;L(V, V ∗)) is an operator such that
A(t) is coercive, i.e. there is a constant α > 0 such that
for a.e. t ∈ (0, T ), 〈A(t)v, v〉 ≥ α‖v‖p

V for all v ∈ V .

H(B) : B ∈ L(V, V ∗) is nonnegative and symmetric.

H(J) : J : (0, T )×X → IR is a function such that

(i) J(·, x) is measurable on (0, T ) for all x ∈ X ;

(ii) J(t, ·) is locally Lipschitz on X for a.e. t ∈ (0, T );

(iii) ‖∂J(t, x)‖X∗ ≤ c(1 + ‖x‖2/q
X ) for all x ∈ X , a.e. t ∈

(0, T ) with c > 0.

H(γ) : γ ∈ L(Z, X).

(H0) : f ∈ V∗, u0 ∈ V , u1 ∈ H .

(H1) : if p = 2, then α > 2 c T β2 ‖γ‖ max{1, ‖γ‖}, where
β > 0 is an embedding constant of V into Z and ‖γ‖ =
‖γ‖L(Z,X).

The crucial step in the proof of the existence result for (9) is
to derive the following uniform estimate.

LEMMA 3: Let ε > 0 be fixed. Assume hypotheses H(A),
H(B), H(J), H(γ) and (H0), and let u be a solution to (9).
If p > 2, then there exists a constant C > 0 independent of ε
such that

‖u‖C(0,T ;V ) + ‖u′‖V +
√

ε‖u′‖L∞(0,T ;H) + ε‖u′′‖V∗ ≤
≤ C

(
1 + ‖u0‖2/q

V + |u1|2/q
H + ‖f‖2/q

V∗
)

.
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Moreover, this estimate still holds for p = 2 provided (H1) is
satisfied.

The following is the existence result for a hemivariational
inequality (9).

THEOREM 4: If hypotheses H(A), H(B), H(J), H(γ),
(H0) and (H1) hold, then for every fixed ε > 0 the problem
(9) admits at least one solution.

Proof. The idea of the proof follows Theorem 4 of [10].
Using an integral operator K we reduce the problem (9) to an
evolution inclusion of the first order{

f(t) ∈ εz′(t) + A(t)z(t) + BKz(t) + γ∗∂J(t, γKz(t))
z(0) = ũ1,

where ũ1 = u1/
√

ε. We proceed with two cases. First consider
the case u1 ∈ V . By employing the surjectivity result for
the sum of a linear, densely defined and maximal monotone
operator and bounded, coercive and L-pseudomonotone one,
we obtain the existence of solutions of the first order problem.
The crutial point here is to establish the L-generalized pseu-
domonotonicity of corresponding evolution operator. Finally,
by a density argument we remove the restriction u1 ∈ V and
prove the result in the general case u1 ∈ H .

IV. ASYMPTOTIC ANALYSIS

We consider the asymptotic behavior of a sequence of solu-
tions to (9) when a small parameter in the inertial term tends
to zero.

Consider the following evolutionary hemivariational in-
equality of the form:{

A(t)u′(t) + Bu(t) + γ∗∂J(t, γu(t)) 3 f(t) a.e. t
u(0) = u0.

(10)

DEFINITION 5: A function u ∈ L∞(0, T ; V ) is called a
solution to (10) if and only if u′ ∈ V and there exists η ∈ Z∗
such that{

A(t)u′(t) + Bu(t) + η(t) = f(t) a.e. t ∈ (0, T )
η(t) ∈ γ∗∂J(t, γu(t)) a.e. t ∈ (0, T )
u(0) = u0.

If u is a solution to (10), then u ∈ L∞(0, T ; V ) ⊂ V ,
i.e. u ∈ W 1,p(0, T ; V ). Since W 1,p(0, T ; V ) ⊂ C(0, T ; V )
continuously, the initial condition u(0) has a meaning in V .

THEOREM 6: Let the hypotheses H(A), H(B), H(J),
H(γ), (H0) and (H1) hold. For every ε fixed, let uε be
a solution to (9) given by Theorem 4. Then there exists
u ∈ L∞(0, T ; V ) such that u′ ∈ W and

uε → u weakly* in L∞(0, T ; V ),
u′ε → u′ weakly in V ,√

εu′ε → 0 weakly* in L∞(0, T ; H),
εu′′ε → 0 weakly in V∗,

as ε → 0. Moreover, the limit function u is a solution to (10).
Proof. Let {uε} be a sequence of solutions to the evolution

problem (9). From Lemma 3, we deduce that there is a constant
c > 0 independent of ε such that

‖uε‖C(0,T ;V ) + ‖u′ε‖V +
√

ε‖u′ε‖L∞(0,T ;H) + ε‖u′′ε‖V∗ ≤ c.

Hence, taking a subsequence of ε → 0 if necessary, we have

uε → u weakly* in L∞(0, T ; V ), (11)

u′ε → u′ weakly in V , (12)√
εu′ε → ζ weakly* in L∞(0, T ; H), (13)

εu′′ε → ρ weakly in V∗ (14)

with u ∈ L∞(0, T ; V ), u′ ∈ V , ζ ∈ L∞(0, T ; H) and ρ ∈ V∗.
It is clear that (11) implies

√
εuε → 0 weakly* in L∞(0, T ; V )

which together with (13) gives ζ = 0. Consequently from (13)
and (14) we have ρ = 0.

The convergences (11) and (12) entail uε → u weakly in
W 1,p(0, T ; V ), so we may show that

uε(t) → u(t) weakly in V for all t ∈ [0, T ] (15)

and because V ⊂ Z compactly, we have

uε(t) → u(t) in Z for all t ∈ [0, T ]. (16)

Since uε is a solution to (9), we have{
εu′′ε (t) + A(t)u′ε(t) + Buε(t) + ηε(t) = f(t) a.e. t
ηε(t) ∈ γ∗∂J(t, γuε(t)) a.e. t ∈ (0, T )
uε(0) = u0,

√
εu′ε(0) = u1.

From H(J)(iii) and H(γ) we deduce that {ηε} remains in a
bounded subset of Z∗ and we may assume, possibly up to a
subsequence, that

ηε → η weakly in Z∗ (17)

with η ∈ Z∗. Let F : (0, T )×Z → 2Z∗ be defined by F (t, z) =
γ∗∂J(t, γz) for (t, z) ∈ (0, T ) × Z. From Proposition 2.1.2
of [2], H(J) and H(γ), it follows that the values of F are
nonempty, closed and convex subsets of Z∗, for each z ∈ Z,
F (·, z) is measurable, and for a.e. t ∈ (0, T ), F (t, ·) is upper
semicontinuous from Z into w–Z∗. Exploiting (16), (17) and
the inclusion ηε(t) ∈ γ∗∂J(t, γuε(t)) for a.e. t ∈ (0, T ), from
the convergence theorem of [1], we have

η(t) ∈ γ∗∂J(t, γu(t)) a.e. t ∈ (0, T ). (18)

Let A, B:V → V∗ be the Nemitsky operators corresponding
to A(t) and B. From H(A) and H(B) it is obvious that A
and B are linear continuous operators from V to V∗ and thus
also continuous from w–V to w–V∗. Therefore

Au′ε → Au′ , Buε → Bu both weakly in V∗.
Hence, using (14) and (17) we pass to the limit in the equation
εu′′ε +Au′ε+Buε+ηε = f in V∗ and obtain Au′+Bu+η = f
in V∗. This together with (18) implies

A(t)u′(t) + Bu(t) + γ∗∂J(t, γu(t)) 3 f(t) a.e. t ∈ (0, T ).

Finally, from (15), we know that uε(0) → u(0) weakly in V ,
so from uε(0) = u0, we deduce that u(0) = u0. The second
initial condition is equivalent to

εu′ε(0) =
√

εu1. (19)

By (13) and (14), we deduce

εu′ε → 0 weakly* in L∞(0, T ; H),
εu′′ε → 0 weakly in V∗.
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Since L∞(0, T ; H)∩{v : v′ ∈ V∗} ⊂ C(0, T ; V ∗) compactly,
we have εu′ε → 0 in C(0, T ; V ∗) and in particular, εu′ε(0) → 0
in V ∗. Taking the limit in (19), we deduce that the limit initial
condition degenerates. We infer that u is a solution to (10).

From Theorem 6 we immediately have the existence and
regularity result for the quasistatic model (10).

COROLLARY 7: Under hypotheses H(A), H(B), H(J),
H(γ), (H1) and for f ∈ V∗ and u0 ∈ V , the hemivariational
inequality (10) admits at least one solution.

V. QUASISTATIC VISCOELASTIC CONTACT

We study the contact problem (2)–(8) between a viscoelastic
body and a foundation. We assume that the volume forces and
surface tractions change slowly in time so that the acceleration
in the system is negligible. Neglecting the inertial terms in
the equation of motion leads to the quasistatic approximation
for the process. We show that the quasistatic model can be
formulated as a time dependent hemivariational inequality of
the form (10) and the abstract result of Theorem 4 is applicable
in this case.

The mechanical formulation of the process is following.
Recall that the boundary Γ = ∂Ω is supposed to be Lip-
schitz continuous and Γ consists of three mutually disjoint
measurable parts ΓD , ΓN and ΓC such that m(ΓD) > 0.
We are interested in the resulting process of evolution of
the mechanical state on the time interval (0, T ). The body is
clamped on ΓD, the volume forces of density f0 act in Ω and
the surface tractions of density f1 are applied on ΓN . The body
may come in contact with a foundation over a potential contact
surface ΓC . We denote by u: Q → IRd the displacement field,
by σ: Q → Sd the stress tensor and by e(u) = {eij(u)},
eij(u) = 1

2 (ui,j+uj,i) the strain tensor, where Q = Ω×(0, T ),
i, j = 1, . . . , d and Sd is the space of symmetric matrices of
order d.

We assume a linear viscoelastic model with the constitutive
law of the Kelvin-Voigt type

σij = aijklekl(u′) + bijklekl(u) in Q,

where C(t) = {aijkl(t)} and G = {bijkl}, i, j, k, l = 1, . . . , d
are the viscosity and the elasticity tensors, respectively. Denote
by uν and uτ (σν and στ , respectively) the normal and the
tangential components of the displacement u (of the stress
field σ, respectively) on Γ, i.e. uν = u · n, uτ = u − uνn
(σν = (σn) · n, στ = σn− σνn, respectively), where n is the
outward normal vector to Γ.

Concerning the contact conditions, we consider the fol-
lowing subdifferential relations −σν ∈ ∂jν(x, t, uν) and
−στ ∈ ∂jτ (x, t, uτ ). The functions jν : ΓC× (0, T )× IR → IR
and jτ : ΓC × (0, T )× IRd → IR are locally Lipschitz in their
last variables and ∂jν , ∂jτ denote their Clarke subdifferentials.
The initial displacement is denoted by u0. The classical
formulation of the mechanical problem is as follows: find a
displacement field u: Q → IRd such that (2)–(8) are satisfied.
For concrete examples of boundary conditions (6) and (7), we
refer to [5], [8], [9], [11], [12].

In order to obtain a variational formulation of the problem
(2)–(8) we need to define spaces: V = {v ∈ H1(Ω; IRd) :

v = 0 on ΓD}, Z = H1/2(Ω; IRd), H = L2(Ω; IRd) and
X = L2(ΓC ; IRd). On V we consider the inner product and the
corresponding norm given by 〈u, v〉V = 〈e(u), e(v)〉L2(Ω;Sd),
‖v‖V = ‖e(v)‖L2(Ω;Sd) for u, v ∈ V . Moreover, let γ ∈
L(Z, X) be the trace operator, and, for simplicity, p = 2.

We also assume that the viscosity and elasticity tensors have
the usual properties of ellipticity, symmetry and positivity.

H(C) : C: Q × Sd → Sd is a viscosity tensor, C(t) =
{aijkl(t)} such that aijkl = aklij = aijlk ∈ L∞(Q)
and there exists m1 > 0 satisfying C(t)τ · τ ≥ m1‖τ‖2

Sd

for all τ ∈ Sd, a.e. in Q.

H(G) : G: Ω× Sd → Sd is an elasticity tensor, G = {bijkl}
such that bijkl = bklij = bijlk ∈ L∞(Ω) and Gτ · τ ≥ 0
for all τ ∈ Sd, a.e. in Ω.

The body forces, surface tractions and initial displacement
satisfy

H(f) : f0 ∈ L2(Q; IRd), f1 ∈ L2(0, T ; L2(ΓN ; IRd)), u0 ∈
V .

The superpotentials satisfy

H(jν) : jν : ΓC × (0, T )× IR → IR is a function such that
(i) jν(·, ·, r) is measurable for all r ∈ IR, jν(·, ·, 0) ∈

L1(ΓC × (0, T ));
(ii) jν(x, t, ·) is locally Lipschitz for a.e. (x, t) ∈ ΓC ×

(0, T );
(iii) |∂jν(x, t, r)| ≤ cν(1 + |r|) for a.e. (x, t) ∈ ΓC × (0, T ),

all r ∈ IR with cν > 0.

H(jτ ) : jτ : ΓC × (0, T )× IRd → IR is a function such that
(i) jτ (·, ·, ξ) is measurable for all ξ ∈ IRd, jτ (·, ·, 0) ∈

L1(ΓC × (0, T ));
(ii) jτ (x, t, ·) is locally Lipschitz for a.e. (x, t) ∈ ΓC ×

(0, T );
(iii) ‖∂jτ (x, t, ξ)‖IRd ≤ cτ (1+‖ξ‖IRd) for a.e. (x, t) ∈ ΓC×

(0, T ), all ξ ∈ IRd with cτ > 0.

In the hypotheses H(C) and H(G), the inner product and the
corresponding norm on Sd are given by σ · τ = σijτij and
‖σ‖Sd

= (σ ·σ)1/2 for all σ, τ ∈ Sd. In H(jν) and H(jτ ) the
subdifferential is taken with respect to the last variables of jν

and jτ , respectively.

Next, we define the operators A(t), B ∈ L(V, V ∗) by{ 〈A(t)u, v〉 = 〈C(t)e(u), e(v)〉L2(Ω;Sd),
〈Bu, v〉 = 〈Ge(u), e(v)〉L2(Ω;Sd)

(20)

for t ∈ (0, T ) and u, v ∈ V .

Using the equilibrium equation (2) and the Green formula
(assuming the sufficient regularity of the functions involved)
we obtain the weak formulation of the problem (2)–(8):
find u: (0, T ) → V such that u ∈ L∞(0, T ; V ), u′ ∈ V and

∫
ΓC

(
j0
ν (t, uν ; vν) + j0

τ (t, uτ ; vτ )
)

dΓ ≥
≥ 〈f(t)− A(t)u′(t)−Bu(t), v〉

a.e. t ∈ (0, T ), for all v ∈ V
u(0) = u0.

(21)
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Analogously to Lemma 5 of [6], we have
LEMMA 8: Under the hypotheses H(jν) and H(jτ ), the

functional J : (0, T )×X → IR defined by

J(t, v) =
∫

ΓC

(jν(x, t, vν(x)) + jτ (x, t, vτ (x))) dΓ (22)

for a.e. t ∈ (0, T ), all v ∈ X satisfies

(i) J(·, v) is measurable for all v ∈ X and J(·, 0) ∈
L1(0, T );

(ii) J(t, ·) is Lipschitz on bounded subsets of X ;

(iii) ‖∂J(t, v)‖X∗ ≤ c (1 + ‖v‖X) for all v ∈ X , a.e. t ∈
(0, T ) with c = 2

√
2max{cν , cτ} max{1,

√
m(ΓC)};

(iv) for all v, w ∈ X , we have

J0(t, v; w) ≤
∫

ΓC

(
j0
ν(t, vν ; wν) + j0

τ (t, vτ ; wτ )
)

dΓ, (23)

where J0(t, v; w) denotes the directional derivative of
J(t, ·) at a point v ∈ X in the direction w ∈ X . If, in
addition,{

either jν(t, ·) or − jν(t, ·) is regular and
either jτ (t, ·) or − jτ (t, ·) is regular, (24)

then either J(t, ·) or −J(t, ·) is regular, respectively and
(23) holds with equality.

Under our notation we associate with the hemivariational
inequality (21) the following inclusion of type (10):
find u ∈ L∞(0, T ; V ) with u′ ∈ V such that{

A(t)u′(t) + Bu(t) + γ∗∂J(t, γu(t)) 3 f(t) a.e. t
u(0) = u0.

(25)

REMARK 9: We notice that if the hypotheses H(jν) and
H(jτ ) hold, then every solution to (25) is a solution to (21).
The converse holds provided jν and jτ satisfy the regularity
condition (24). These facts follow from the definition of the
Clarke subdifferential and Lemma 8 (iv).

The existence and regularity result for the hemivariational
inequality (21) reads as follows.

THEOREM 10: If H(C), H(G), H(f), H(jν), H(jτ ) hold
and m1 > 2 c T β2‖γ‖max{1, ‖γ‖}, where c is given in
Lemma 8 (iii), β > 0 is the embedding constant of V into
Z and ‖γ‖ = ‖γ‖L(Z;X), then problem (21) admits at least
one solution u ∈ L∞(0, T ; V ) with u′ ∈ V .

Proof. It follows from H(C) and H(G) that the operators
A(t) and B defined by (20) satisfy H(A) with α = m1 and
H(B), respectively. It is a consequence of Lemma 8 (i) –
(iii) that the functional J given by (22) satisfies H(J). Also
H(γ) follows easily by the properties of the trace operator.
The conclusion follows from Corollary 7 and Remark 9.

We conclude this section with short comments on mul-
tivalued boundary conditions (6) and (7) which are met in
solid mechanics. The condition (6) is a generalization of a
normal compliance condition to the nonmonotone setting. Let
the function jν : IR → IR be defined by jν(r) =

∫ r

0 pν(s) ds,
where the function pν ∈ L∞loc(IR) is such that |pν(s)| ≤

p1(1 + |s|) for s ∈ IR with p1 > 0 and limr→s± pν(r)
exist for all s ∈ IR. It is well known (see e.g. [9], [12]) that
∂jν(r) = p̂ν(r) for r ∈ IR, where the multivalued function
p̂ν : IR → 2IR is obtain by filling in the gaps. In this case H(jν)
holds and (6) has the form −σν ∈ p̂ν(uν) on ΓC × (0, T ).

In the friction condition (7), if jτ = 0, we obtain the
frictionless contact. If jτ (x, t, ξ) = S(x, t)‖ξ‖, where S ∈
L∞(ΓC × (0, T )) and S > 0 a.e., then we get a version
of the static Tresca friction law where the friction bound
depends on time. For other examples of functions jν and jτ ,
we refer to [7]. Other two- and three-dimensional nonconvex
superpotential laws are detailed in Section 4.6.1 of [9].

VI. CONCLUSION

In the paper we presented a method to study quasistatic
hemivariational inequalities. The approach is natural and based
on the asymptotic behavior as the mass coefficient in the
inertial term of the evolution problem tends to zero. To our
best knowledge the method is new and has not been considered
in the literature. We also point out that the results of this
paper can be applicable to a large class of quasistatic models
of contact phenomena. It would be also interesting to extend
the result of the paper to a class of problems with nonlinear
viscosity and elasticity operators.
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[3] Z. Denkowski, S. Migórski and N.S. Papageorgiou, An Introduction
to Nonlinear Analysis: Theory. Kluwer Academic/Plenum Publishers,
Boston, Dordrecht, London, New York (2003).
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On an isotropic differential inclusion
Ana Cristina Barroso, Gisella Croce and Ana Margarida Ribeiro

Abstract—Differential inclusions arise in successful models
proposed to describe the microstructures of elastic crystals. In
this paper we are interested in the existence of Lipschitz maps
u : Ω→ R2 satisfying the inclusion{

Du ∈ E, a.e. in Ω

u = ϕ, on ∂Ω

where Ω is an open bounded subset of R2 and E is a compact
subset of R2×2, which is isotropic, that is to say, invariant
under rotations. We will show an existence result under suitable
hypotheses on the boundary datum ϕ.

Index Terms—Differential inclusion, isotropic set, singular
values, rank one convexity.

I. INTRODUCTION

In the last twenty years successful models for studying
the behaviour of crystal lattices undergoing solid-solid phase
transitions have been studied. In such models it is assumed that
the elements of crystal lattices have certain preferable affine
deformations; this is true for example for martensite or for
quartz crystals (see [1], [11]). This physical problem motivates
the mathematical question of the existence of solutions to
Dirichlet problems related to differential inclusions such as
Du ∈ E a.e. in Ω, where Ω is a domain of Rn and E ⊂ Rn×n
is a compact set.

Two abstract theories to establish the existence of solu-
tions of general differential inclusion problems are due to
Dacorogna and Marcellini (see [5], [7]), whose result is based
on Baire’s category theorem, and Müller and Šverák [12], [13],
who use ideas of convex integration by Gromov. In these two
theories special notions of convexity are used. More precisely,
the rank one convex hull of the set E, plays an important role.
We say that a set E ⊆ Rn×n is rank one convex if

A,B ∈ E, rk(A−B) = 1 ⇒ tA+(1− t)B ∈ E,∀t ∈ [0, 1].

Given a set E ⊆ Rn×n its rank one convex hull, denoted
by RcoE, is the smallest rank one convex set that contains
E. We point out that we are following the notation used by
Dacorogna and Marcellini in [7]; the rank one convex hull is
denoted by lc(E) by Müller and Šverák in [12]. The following
characterization of RcoE holds

RcoE =
∞⋃
i=0

RicoE ,
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where R0coE = E and

Ri+1coE =

{tA+ (1− t)B, t ∈ [0, 1], A,B ∈ RicoE, rk(A−B) = 1}.
Provided certain approximation properties hold, if the gradient
of the boundary datum ϕ belongs to the interior of RcoE, then
there exists a solution u ∈ ϕ+W 1,∞

0 (Ω,Rn) to Du ∈ E a.e.
in Ω. However, the approximation properties are different in
each of the two theories.

Using these abstract theorems various interesting problems
related to the existence of microstructures have been solved,
such as the two well problem, where E = SO(2)A∪SO(2)B,
where A and B are two fixed R2×2 matrices (see [6], [7], [9],
[11], [12]).

In this article we study the case where the set E is an
arbitrary R2×2 isotropic set, that is, invariant under rotations.
More precisely, we assume that E is a compact subset of R2×2

such that AEB ⊆ E for every A,B in the orthogonal group
O(2). Let Ω be an open bounded subset of R2. We investigate
the existence of weakly differentiable maps u : Ω → R2 that
satisfy {

Du ∈ E, a.e. in Ω
u = ϕ, on ∂Ω.

(1)

Since E is isotropic it can be written as

E = {ξ ∈ R2×2 : (λ1(ξ), λ2(ξ)) ∈ K} , (2)

for some compact set K ⊂ {(x, y) ∈ R2 : 0 ≤ x ≤ y}, where
we have denoted by 0 ≤ λ1(ξ) ≤ λ2(ξ) the singular values
of the matrix ξ, that is, the eigenvalues of the matrix

√
ξξt,

which are

λ1(ξ) =
1
2

[√
‖ξ‖2 + 2|det(ξ)| −

√
‖ξ‖2 − 2|det(ξ)|

]
λ2(ξ) =

1
2

[√
‖ξ‖2 + 2|det(ξ)|+

√
‖ξ‖2 − 2|det(ξ)|

]
.

Thanks to the properties of the singular values (see [10]),
problem (1) can be rewritten in the following equivalent way:

‖Du(x)‖2 = a2 + b2 a.e. in Ω, (a, b) ∈ K,
|detDu(x)| = ab a.e. in Ω, (a, b) ∈ K,
u(x) = ϕ(x) x ∈ ∂Ω .

In the case where K consists of a unique point these two
equations are the vectorial eikonal equation and the equation
of prescribed absolute value of the Jacobian determinant.

The main result of our article is the following
Theorem 1.1: Let E := {ξ ∈ R2×2 : (λ1(ξ), λ2(ξ)) ∈ K}

where K ⊂ {(x, y) ∈ R2 : 0 < x ≤ y} is a compact set.
Let Ω ⊂ R2 be a bounded open set and let ϕ ∈ C1

piec(Ω,R2)
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be such that Dϕ ∈ int RcoE in Ω. Then there exists a map
u ∈ ϕ+W 1,∞

0 (Ω,R2) such that Du ∈ E a.e. in Ω.
This result was first obtained by Croce in [4] using the theory
developed by Dacorogna and Marcellini and a refinement due
to Dacorogna and Pisante [8]. In this article we treat the same
problem using the theory by Müller and Šverák which leads
to different technical difficulties. We point out that in the case
where K consists of a unique point and K ⊂ Rn, n ≥ 2
the same existence result was obtained by Dacorogna and
Marcellini in [7].

We will use the following characterisation of the rank one
convex hull of E due to Croce [3], [4]. Letting

fθ(x, y) := xy + θ(y − x), x > 0, y > 0, θ ≥ 0 (3)

the following result holds.
Theorem 1.2: Let K be a compact set satisfying

K ⊂ {(x, y) ∈ R2 : 0 < x ≤ y} (4)

and let

E =
{
ξ ∈ R2×2 : (λ1(ξ), λ2(ξ)) ∈ K

}
. (5)

Then RcoE is the set of R2×2 matrices ξ such that

fθ(λ1(ξ), λ2(ξ)) ≤ max
(a,b)∈K

fθ(a, b), ∀ θ ∈ [0, max
(a,b)∈K

b] .

Moreover, int RcoE is the set of R2×2 matrices ξ such that

fθ(λ1(ξ), λ2(ξ)) < max
(a,b)∈K

fθ(a, b), ∀ θ ∈ [0, max
(a,b)∈K

b] .

II. IN-APPROXIMATION

To show theorem 1.1 we will use an existence result due
to Müller and Šverák [12] which requires the following in-
approximation property.

Definition 2.1: (In-approximation) Let E be a compact
subset of Rm×n. We say that a sequence of sets {Ui} is an
in-approximation of E if

1) the sets Ui are open and contained in a fixed ball;
2) Ui ⊆ RcoUi+1;
3) if ξn ∈ Un and ξn → ξ, as n→∞, then ξ ∈ E.
In this section we will show that the set E, defined by (5)

and (4), admits an in-approximation. Since a characterization
of the rank one convex hull of an open isotropic set is not
available, we will construct closed sets Vn from which we
will obtain the open sets Un of the in-approximation.

Definition 2.2: Let εn = 1
n and let rn be a decreasing

sequence such that 0 ≤ rn < εn. For (a, b) ∈ K we define
the sets,

Rn(a,b) = {(x, y) ∈ R2 : a+ εn − rn ≤ x ≤ a+ εn,

ab− εn
a+ εn

− rn ≤ y ≤ ab− εn
a+ εn

}

and Vn :=
{
ξ ∈ R2×2 : (λ1(ξ), λ2(ξ)) ∈ Kn

}
, where Kn =⋃

(a,b)∈K
Rn(a,b).

Proposition 2.3: The function fθ(x, y) defined in (3) satis-
fies the following properties:

i) fθ is strictly increasing in y, for every x > 0 and θ ≥ 0;

ii) fθ is strictly increasing in x, for every y > θ and is
strictly decreasing in x, for every y < θ;

iii) fθ(·, θ) is constant, for every θ ≥ 0;
iv) setting

α
(a,b)
n (θ) = fθ

(
a+ εn − rn, ab−εn

a+εn

)
β

(a,b)
n (θ) = fθ

(
a+ εn,

ab−εn

a+εn

)
one has

max
(x,y)∈Rn

(a,b)

fθ(x, y) = max
{
α(a,b)
n (θ), β(a,b)

n (θ)
}

=


β

(a,b)
n (θ), θ ∈ [0, max

(x,y)∈Rn
(a,b)

y]

α
(a,b)
n (θ), θ ≥ max

(x,y)∈Rn
(a,b)

y ;

v) for every θ ∈ [ max
(x,y)∈Rn

(a,b)

y, max
(x,y)∈Rn+1

(a,b)

y] the following

inequality holds:

α(a,b)
n (θ) < β

(a,b)
n+1 (θ);

for every θ ≥ 0 the following inequality holds:

β(a,b)
n (θ) < β

(a,b)
n+1 (θ);

vi) assume that max
(x,y)∈Rn+1

(a,b)

y < max
(x,y)∈Rn+1

(a′,b′)

y, then for every

θ ∈ [ max
(x,y)∈Rn+1

(a,b)

y, max
(x,y)∈Rn+1

(a′,b′)

y] we have

α(a,b)
n (θ) < α

(a′,b′)
n+1 (θ);

vii) for every θ ∈ [0, max
(x,y)∈Rn+1

(a,b)

y] the following inequality

holds:

max
(x,y)∈Rn

(a,b)

fθ(x, y) < max
(x,y)∈Rn+1

(a,b)

fθ(x, y).

Proof: The first three properties are clear and the fourth
one follows from i), ii) and iii). The second inequality in v)
follows immediately from the fact that

ab− εn
a+ εn

<
ab− εn+1

a+ εn+1
. (6)

Due to the linearity in θ, it suffices to show the remaining
inequalities in v) and vi) for θ belonging to the boundaries
of the respective intervals. This is achieved using (6), i) and
iii). Finally, vii) is a consequence of iv) and v).

Lemma 2.4: Let bM = max
(a,b)∈K

b and aM = max
(a,bM )∈K

a.

Then
max

(x,y)∈Kn

y =
aMbM − εn
aM + εn

,

for all sufficiently large n.
Proof: If (a, b) ∈ K satisfies a ≤ aM then it is easy to

see that
ab− εn
a+ εn

≤ aMbM − εn
aM + εn

.

It remains to show the above inequality for points (a, b) ∈ K
such that a ≥ aM and b < bM . We argue by contradiction
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and assume there exists a sequence (an, bn) ∈ K and εn′ a
subsequence of εn such that

aMbM − εn′

aM + εn′
≤ anbn − εn′

an + εn′
.

Since K is compact and (an, bn) ∈ K, up to a subsequence
(an, bn) → (a, b) ∈ K, so passing to the limit in the above
inequality we obtain b ≥ bM , contradicting b < bM .

We will now prove the following proposition.
Proposition 2.5: The sets Vn introduced in Definition 2.2

satisfy Vn ⊆ int RcoVn+1.
Proof: Due to the compactness of K and to the definition

of the sets Rn(a,b), standard arguments show that the set Kn is
compact. Therefore, by Theorem 1.2, it suffices to prove that
for every θ ∈ [0, max

(x,y)∈Kn+1
y]

max
(x,y)∈Kn

fθ(x, y) < max
(x,y)∈Kn+1

fθ(x, y).

Let θ ∈ [0, max
(x,y)∈Kn+1

y]. Then there exists (a, b) ∈ K

(depending on θ) such that

max
(x,y)∈Kn

fθ(x, y) = max
(x,y)∈Rn

(a,b)

fθ(x, y).

Recall that, by Lemma 2.4,

max
(x,y)∈Kn+1

y =
aMbM − εn+1

aM + εn+1
≥ ab− εn+1

a+ εn+1
.

If 0 ≤ θ ≤ ab−εn+1
a+εn+1

the result follows by property vii) of
Proposition 2.3.

If θ ∈
[
ab−εn+1
a+εn+1

, aMbM−εn+1
aM+εn+1

]
we have, by iv) and vi) of

Proposition 2.3,

max
(x,y)∈Kn

fθ(x, y) = max
(x,y)∈Rn

(a,b)

fθ(x, y)

= α
(a,b)
n (θ)

< α
(aM ,bM )
n+1 (θ)

≤ max
(x,y)∈Rn+1

(aM ,bM )

fθ(x, y)

≤ max
(x,y)∈Kn+1

fθ(x, y).

Theorem 2.6: Let E be given by (5) and (4). Then E admits
an in-approximation.

Proof: Let Vn be the sets considered in the previous
proposition and define the sets Un = intVn.
Step 1) Un are open by definition and it is clear that the
sequence {Un} is uniformly bounded.
Step 2) We will prove the second condition of the definition
of in-approximation. Due to Proposition 2.5, we have Un ⊂
Vn ⊆ int RcoVn+1. We will show that, for every n,

int RcoVn ⊆ RcoUn, (7)

this will imply that Un ⊂ RcoUn+1, as required.
Let ξ ∈ int RcoVn. We will prove that ξ ∈ RcoṼn, where

Ṽn is the set defined by

Ṽn = {ξ ∈ R2×2 : (λ1(ξ), λ2(ξ)) ∈ K̃n},

for a certain compact set K̃n ⊂ intKn. By continuity of the
function ξ → (λ1(ξ), λ2(ξ)) this will entail that Ṽn ⊆ intVn,
therefore

ξ ∈ RcoṼn ⊆ Rco intVn = RcoUn ,

and we will have proved (7). For simplicity of notation we
set (λ1(ξ), λ2(ξ)) = (x, y). Our aim is thus to find a compact
set K̃n ⊂ intKn such that, for every θ ∈ [0, max

(a,b)∈K̃n

b], the

following inequality holds

fθ(x, y) ≤ max
(a,b)∈K̃n

fθ(a, b). (8)

For λ > 0 define K̃λ
n =

⋃
(a,b)∈K

Rn,λ(a,b) where

Rn,λ(a,b) ={(x, y) ∈ R2 : a+ εn − rn + λ ≤ x ≤ a+ εn − λ,
ab− εn
a+ εn

− rn + λ ≤ y ≤ ab− εn
a+ εn

− λ}.

It follows that Rn,λ(a,b) ⊂ intRn(a,b) ⊂ intKn and so K̃λ
n ⊂

intKn. Since ξ ∈ int RcoVn, we have that fθ(x, y) <
max

(a,b)∈Kn

fθ(a, b), so to show (8) it suffices to prove that, as

λ→ 0+,

max
(a,b)∈K̃λ

n

fθ(a, b)→ max
(a,b)∈Kn

fθ(a, b), (9)

uniformly with respect to θ. Notice that, as in the case of Kn,

max
(x,y)∈K̃λ

n

fθ(x, y) = sup
(a,b)∈K

max
{
α

(a,b)
n,λ (θ), β(a,b)

n,λ (θ)
}

where

α
(a,b)
n,λ (θ) = fθ

(
a+ εn − rn + λ,

ab− εn
a+ εn

− λ
)

β
(a,b)
n,λ (θ) = fθ

(
a+ εn − λ, ab− εn

a+ εn
− λ
)
.

Hence (9) will follow from the fact that, as λ→ 0+,

sup
(a,b)∈K

α
(a,b)
n,λ (θ)→ sup

(a,b)∈K
α

(a,b)
n (θ)

sup
(a,b)∈K

β
(a,b)
n,λ (θ)→ sup

(a,b)∈K
β

(a,b)
n (θ),

(10)

uniformly in θ. As

|α(a,b)
n,λ (θ)− α(a,b)

n (θ)| ≤ λ

(
max

(a,b)∈K
a+ 1

)
+ λ

ab+ εn
a+ εn

+λ2 + 2λθ

≤ λ

(
max

(a,b)∈K
a+ 1

)
+ λ2 + 2λθ

+λmax{1, max
(a,b)∈K

b}

and this last expression tends to 0, uniformly with respect to θ
and to (a, b), we conclude the first statement of (10). A similar
argument yields the second one.
Step 3) Given (xn, yn) ∈ Kn there exists (an, bn) ∈ K
such that (xn, yn) ∈ Rn(an,bn). As K is compact, up to a
subsequence, (an, bn) → (a, b) ∈ K, so, by the inequalities
that define Rn(an,bn), (xn, yn)→ (a, b).
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Let us now show the third condition of the definition of in-
approximation. Assume that ξn ∈ Un and that ξn → ξ. Since
ξn ∈ Vn, (λ1(ξn), λ2(ξn)) ∈ Kn so, by the above reasoning,
(λ1(ξn), λ2(ξn)) converges to a point (a, b) ∈ K. On the other
hand, by continuity, λi(ξn) → λi(ξ), i = 1, 2, and therefore
(λ1(ξ), λ2(ξ)) = (a, b) ∈ K. Thus ξ ∈ E.

III. EXISTENCE THEOREM

We are going to prove Theorem 1.1. We will assume that
the boundary datum ϕ is C1

piec(Ω,R2), that is to say, ϕ ∈
W 1,∞(Ω,R2), there exist open sets ωi ⊂ Ω such that ϕ ∈
C1(ωi,R2) and Ω \

⋃
i

ωi is a set of Lebesgue measure zero.

We will use the following abstract theorem of Müller and
Šverák [12]) to prove Theorem 1.1.

Theorem 3.1: Let Ω ⊂ Rn be an open, bounded set and let
E be a compact set which admits an in-approximation by the
open sets Ui. Let ϕ : Ω → Rm be a C1 function such that
Dϕ ∈ U1 in Ω. Then there exists u ∈ ϕ+W 1,∞

0 (Ω,Rm) such
that Du ∈ E a.e. in Ω.
We begin by considering the case where ϕ is an affine function
and to this effect we will need the following proposition.

Proposition 3.2: Let E be the set defined by (5) and (4)
and let ξ ∈ int RcoE. Then there exists an in-approximation
sequence Un for E such that ξ ∈ U1.

Proof: Consider the sequence of sets Vn defined in the
previous section. We will show that there exists N = N(ξ) ∈
N such that

ξ ∈ int RcoVN . (11)

For simplicity of notation set (λ1(ξ), λ2(ξ)) = (x, y). We must
show that if

fθ(x, y) < max
(a,b)∈K

fθ(a, b), ∀ θ ∈ [0, max
(a,b)∈K

b]

then there exists N = N(x, y) such that, letting Kn be the
sequence of sets in Definition 2.2,

fθ(x, y) < max
(a,b)∈KN

fθ(a, b), ∀ θ ∈ [0, max
(a,b)∈KN

b]. (12)

Since, by construction of Kn, max
(a,b)∈Kn

b < max
(a,b)∈K

b, it suffices

to prove that

max
(a,b)∈Kn

fθ(a, b)→ max
(a,b)∈K

fθ(a, b), n→ +∞, (13)

uniformly with respect to θ ∈ [0, max
(a,b)∈K

b]. By Proposi-

tion 2.3, iv)

max
(a,b)∈Kn

fθ(a, b) = sup
(a,b)∈K

max{α(a,b)
n (θ), β(a,b)

n (θ)}

and

| sup
(a,b)∈K

max{α(a,b)
n (θ), β(a,b)

n (θ)} − max
(a,b)∈K

fθ(a, b)|

≤ sup
(a,b)∈K

|max{α(a,b)
n (θ), β(a,b)

n (θ)} − fθ(a, b)|.

Therefore we must show that, as n→ +∞,

|α(a,b)
n (θ)− fθ(a, b)| → 0 , |β(a,b)

n (θ)− fθ(a, b)| → 0,

uniformly with respect to θ and to (a, b). We start with the
first limit. Letting

mn =
ab− εn
a+ εn

− a− εn + rn, qn = (a+ εn − rn) ab− εn
a+ εn

we have α(a,b)
n (θ) = mnθ + qn. Notice that qn − ab→ 0 and

mn− b+a→ 0 uniformly with respect to (a, b). This implies
the result. The same reasoning applies to the second limit.

To complete the proof we notice that, letting Un = intVn,
for every fixed N ∈ N, the sequence

RcoUN , UN+1, UN+2, ...

is an in-approximation of E. Indeed the rank one convex hull
of an open set UN is open and rank one convex. Since, by
construction, UN ⊆ RcoUN+1 and RcoUN is the smallest
rank one convex set that contains UN we conclude that
RcoUN ⊆ RcoUN+1. Moreover, if ξ ∈ int RcoE then
ξ ∈ RcoUN , by (11) and inclusion (7).

Theorem 3.3: Let Ω be an open, bounded subset of R2 and
let E be the set defined by (5) and (4). Let ξ ∈ R2×2 be such
that ξ ∈ int RcoE and let ϕ : Ω→ R2 satisfy Dϕ = ξ in Ω.
Then there exists u ∈ ϕ+W 1,∞

0 (Ω,R2) such that Du ∈ E.
The proof of Theorem 3.3 follows immediately from the

previous proposition and from Theorem 3.1. To obtain our
existence result in the general case we will once again make
use of Proposition 3.2 together with the following result,
proved by Dacorogna and Marcellini in [7] (Corollary 10.15).

Theorem 3.4: Let Ω be an open subset of Rn and A be an
open subset of Rm×n. Let ϕ ∈ C1(Ω,Rm) ∩W 1,∞(Ω,Rm)
be such that

Dϕ(x) ∈ A, ∀ x ∈ Ω.

Then there exists a function v ∈W 1,∞(Ω,Rm) such that v is
piecewise affine in Ω, v = ϕ on ∂Ω and Dv ∈ A a.e. in Ω.

We will now prove Theorem 1.1.
Proof: Assume first that ϕ ∈ C1(Ω̄,R2). We define the

open set A as the set consisting of R2×2 matrices ξ such that

fθ(λ1(ξ), λ2(ξ)) < max
(a,b)∈K

fθ(a, b), θ ∈ [0, max
(a,b)∈K

b].

We apply the previous theorem to ϕ and A, in order to obtain a
map v ∈W 1,∞(Ω,R2) such that v = ϕ on ∂Ω, Dv = ci in Ωi
for some constant ci ∈ A and

⋃
i

Ωi = Ω. Due to Theorem 3.3

we can solve the problem{
Du ∈ E, a.e. in Ωi
u(x) = v(x), x ∈ ∂Ωi

in each set Ωi. Denoting by ui the solution in Ωi, the map
defined by u = ui in Ωi belongs to ϕ + W 1,∞

0 (Ω,R2) and
satisfies Du ∈ E.

Now suppose that ϕ ∈ C1
piec(Ω̄,R2). This means that there

exist open sets ωi ⊂ Ω such that ϕ ∈ C1(ωi,R2) and Ω\
⋃
i

ωi

is a set of Lebesgue measure zero. By the first case, for each
i, there exists wi ∈ ϕ + W 1,∞

0 (ωi,R2) such that Dwi ∈ E
a.e. in ωi. Thus, the function u defined as wi in ωi belongs
to ϕ+W 1,∞

0 (Ω,R2) and satisfies Du ∈ E, a.e. in Ω.
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We conclude this article by pointing out that Theorem 1.1
is not far from being optimal in the case where the boundary
datum ϕ is affine. To explain this, we need some further
notions of convexity given in [7].

Definition 3.5: A function f : R2×2 → R ∪ {+∞} is
polyconvex if there exists g : R5 → R ∪ {+∞} convex such
that f(A) = g(A,det(A)).

A measurable function f : R2×2 → R is quasiconvex if

f(A) ≤ 1
|Ω|
∫

Ω

f(A+Dψ) dx

for every bounded domain Ω of R2, for every A ∈ R2×2 and
for every ψ ∈ W 1,∞

0 (Ω,R2) (|Ω| stands for the Lebesgue
measure of Ω).

A function f : R2×2 → R ∪ {+∞} is rank one convex if
f(tA+ (1− t)B) ≤ tf(A) + (1− t)f(B) whenever t ∈ [0, 1]
and rk(A−B) = 1.

It is well known that, for f : R2×2 → R,

f polyconvex⇒ f quasiconvex⇒ f rank one convex.

Definition 3.6: A set E ⊆ R2×2 is polyconvex if for all

ti ≥ 0 with
5∑
i=1

ti = 1 and all Ai ∈ E with

5∑
i=1

ti detAi = det

(
5∑
i=1

tiAi

)

then
5∑
i=1

tiAi ∈ E.

The polyconvex hull of a given set E is defined as the
smallest polyconvex set that contains E.

Let E ⊂ R2×2. Let P be the set of polyconvex functions
f : R2×2 → R such that fbE≤ 0. We recall the following
characterization of the closure of the polyconvex hull of E

PcoE = {ξ ∈ R2×2 : f(ξ) ≤ 0, ∀ f ∈ P}.
Now, suppose that u is a solution of{

Du ∈ E, a.e. in Ω
u = uξ0 , on ∂Ω

where uξ0 is an affine function with Duξ0 = ξ0. Then there
exists a map ψ ∈ W 1,∞

0 (Ω,R2) such that u = uξ0 + ψ. Let
f ∈ P . Then f is also quasiconvex and thus

f(ξ0) ≤ 1
|Ω|
∫

Ω

f(ξ0 +Dψ) dx =
1
|Ω|
∫

Ω

f(Du) dx ≤ 0

since fbE≤ 0. This implies that ξ0 ∈ PcoE. In the case
where E is an isotropic compact subset of R2×2 is has been
shown in [4] and [2] that RcoE = RcoE = PcoE. Therefore
ξ0 ∈ RcoE.
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On some transmission problems in Hölder spaces
Ahmed Medeghri

We consider some transmission problems written in the form of abstract elliptic equations in Hölder
spaces completing in this way the work in Lp cases. Our approach makes use the concept of
impedance operator which leads to obtain direct and simplified problems. We then use the Dunford
calculus and some techniques in order to prove existence, uniqueness and maximal regularities
results.

Coefficients de singularités géométriques pour des
problèmes d’évolution

Mohand Moussaoui

Il est bien connu que les problèmes posés dans des ouverts à coins présentent des singularités.
Celles-ci se propagent dans le temps avec des coefficients don’t on analysera la régularité.

Sturm-Liouville problems for a complete abstract second
order differential equation of elliptic type in UMD spaces

Stéphane Maingot

We give some new results concerning a complete abstract differential equation of second order with
general Robin boundary conditions. The study is developed in UMD spaces and uses the celebrated
Dore-Venni Theorem. Existence, uniqueness and maximal regularity of the strict solution are
proved: in fact, we furnish an explicit representation formula of the solution, by using Klein’s
reduction order method.

A general decay result in a viscoelastic Timoshenko
system

Salim Messaoudi

The issue of stabilization of Timoshenko systems has attracted a great deal of researchers and
several results concerning the uniform decay of solutions have been established. In this talk, we
establish a generalized stability result for a wider class of relaxation functions.
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On some transmission problems with boundary Dirichlet
conditions

Fatimetou Mint Aghrabatt

In this communication, we will give some new results on a family of transmission problems between
a thin layer and a fixed body. In particular existence, unicity and maximal regularity of solutions
are proved by using the techniques of the abstract differential equations theory.

Complete abstract differential equations of elliptic type
on the half-line : application of Dore-Venni and Da

Prato-Grisvard sum theory in Lp-spaces
Amine Eltaief

We will present here some new results on complete abstract second order differential equations of
elliptic type set in R+. In the framework of UMD spaces, we use the celebrated Dore-Venni Theorem
to prove existence and uniqueness for the strict solution. We will use also the Da Prato-Grisvard
Sum Theory to furnish results when the space is not supposed to be UMD.

On some abstract fourth differential equation with
transmission and boundary conditions

Hassan Diaramouna Sidibe

In this work we consider a transmission problem for the bilaplacian operator set in junction of two
rectangular bodies: a fixed body and a thin layer. The study is performed in Lp-spaces. Then
we prove that there exists a unique solution having a maximal regularity iff some compatibility
conditions are verified. We finish by study completely the limit problem when the thickness of the
thin layer tends to zero.
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Description

The main goal of this special session is to join together physicists, mathematicians and other
scientists interested in new developments of chaotic dynamics in its broader sense, the different
available methods of controlling chaos and their applications in complex systems arising in many
fields of engineering and sciences, and in particular to life sciences such as the analysis of the
dynamics of neurons and genetic regulation networks.

The topics included, but not limited to, in this session are:

• New developments of chaotic dynamics

• Novel methods of controlling chaotic and complex dynamics

• Hamiltonian and dissipative chaotic systems

• Fractal structures in phase space

• Chaotic dynamics of neuronal and genetic models

• Control and synchronization in neuronal and genetic networks
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New developments on partial control of chaotic systems

Samuel Zambrano and Miguel A. F. Sanjuán

Nonlinear Dynamics, Chaos and Complex Systems Group
Departamento de Física

Universidad Rey Juan Carlos
Tulipán s/n,

28933 Móstoles, Madrid, Spain

A chaotic saddle is a zero-measure repelling set where the dynamics is chaotic. This set 
typically  appears  due  to  the  existence  of  a  horseshoe  in  phase  space,  and  it  is 
responsible for the appearance of transient chaos. Sometimes it is desirable to sustain 
transient chaos, i.e. to keep trajectories close to the saddle. Thus, we recently proposed a 
technique  called  partial  control [1,2]  that  allows  one  to  keep  the  trajectories  of  a 
dynamical system close to the saddle even in presence of a environmental noise stronger 
than the applied control.  In this  talk  we present  new results  concerning this  control 
strategy that improve its applicability. We show that this technique can be applied even 
if  we have  just  access  to  one of  the  system's  parameters,  and  that  the  perturbation 
needed is typically smaller than with other control techniques. We also show that this 
“parametric partial control” can be applied even if we have access to just one of the 
system’s variables.  We also discuss the steps given towards a generalization of this 
technique to higher-dimensional dynamical systems.

[1]  Samuel Zambrano, Miguel A. F. Sanjuán, and James A. Yorke, Phys. Rev. E, 77 
055201(R) (2008).

[2] Samuel Zambrano and  Miguel A. F. Sanjuán, Phys. Rev. E, 79, 026217 (2009). 
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Riddled basins in complex physical and
biological systems ∗

Ricardo Luiz Viana †,

Departamento de F́ısica, Universidade Federal do Paraná,
Caixa Postal 19044, 81531-990, Curitiba, Paraná, Brazil

Complex systems have typically more than one attractor, either periodic or chaotic, and their
basin structure ultimately determines the final-state predictability. When certain symmetries
exist in the phase space, their basins of attraction may be riddled, which means that they are
so densely intertwined that it may be virtually impossible to determine the final state, given a
finite uncertainty in the determination of the initial conditions. Riddling occurs in a variety of
complex systems of physical and biological interest 1. We review the mathematical conditions
for riddling to occur, and present two illustrative examples of this phenomenon: coupled
Lorenz-like piecewise-linear maps 2and a deterministic model for competitive indeterminacy
in populations of flour beetles 3

∗This work was partially supported by CNPq, CAPES, FAPESP, and Fundação Araucária (Brazilian
government agencies).

†e-mail: viana@fisica.ufpr.br
1M. A. F. Sanjuán, J. Aguirre, and R. L. Viana, Fractal structures in nonlinear dynamics, Rev. Mod.

Phys. 81, 333 (2009).
2M. C. Vergés, R. F. Pereira, S. R. Lopes, R. L. Viana, and T. Kapitaniak, Riddling and chaotic synchro-

nization of coupled piecewise-linear Lorenz maps, Physica A 388, 2515 (2009).
3R. F. Pereira, S. Camargo, S. E. de S. Pinto, S. R. Lopes, and R. L. Viana, Periodic-orbit analysis and

scaling laws of intermingled basins of attraction in an ecological dynamical system, Phys. Rev. E 78, 056214
(2008).

1
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Synchronization of time varying Networks

R.E.Amritkar

Physical Research Laboratory, Navarangpura, Ahmedabad 380009, India
e-mail: amritkar@prl.res.in

Synchronization  of  dynamical  networks  has  been  investigated  by  many  researchers  with 
static connectivity link between the nodes. However, many networks with dynamical nodes 
change  their  connectivity  with  time.  Synchronization  properties  of  coupled  dynamical 
systems on time-varying networks and also a comparison with time-average networks for a 
general class of coupling matrices, commutating as well as non-commutating cases has been 
discussed  in  this  work.  Some  interesting  relations  of  critical  coupling  constant  for 
synchronization and switching times are derived which are verified by numerical simulations 
and real experiments in electronic circuits.
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A simple way of calculating the topological entropy for 
interval maps

José Amigó1 and Rui Dilão2

1) Operations Research Center, Miguel Hernández University, 
Elche (Spain)

jm.amigo@umh.es

2) NonLinear Dynamics Group, IST
rui@sd.ist.utl.pt; ruidilao@gmail.com; https://sd.ist.utl.pt

Topological entropy as introduced in 1965 by Adler, Konheim and McAndrew, is an 
invariant of topological conjugacy for self-maps of an interval. Milnor and Thurston, in 
their classical paper on kneading invariants for maps of the interval, conjectured that the 
topological  entropy  of  the  logistic  quadratic  family  of  maps  of  the  interval is  a 
monotonically increasing function of a control parameter. Using techniques of complex 
analysis, in 1984 A. Douady proved the conjecture of Milnor for the quadratic map of 
an interval. However, for general families of maps of an interval, in general it is not 
known  how  to  calculate  the  topological  entropy  neither  to  numerically  estimate  it 
efficiently.  Here,  with  techniques  developed  in  1982  by  Dias  de  Deus,  Dilão  and 
Taborda Duarte,  we describe an algorithms that enables to determine the number of 
monotonous  pieces  of  iterates  of  maps  of  an  interval,  enabling  to  calculate 
straightforwardly the topological entropy. As classical bifurcations are associated with 
the lack of topological conjugacy, we use topological entropy in order to predict the 
reversion of bifurcations and the reversion of the Sharkovskii ordering in families of 
maps of an interval. 
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Chimera states in non-locally coupled phase oscillators with 
propagation delays

Abhijit Sen

Institute for Plasma Research, Bhat, Gandhinagar 382 428, India
e-mail: senabhijit@gmail.com

Chimera  states,  where  phase-locked  and  incoherent  activity  can  simultaneously  exist  at 
different spatial locations are a novel collective mode of non-locally coupled systems and 
have potential applications in a number of physical, chemical and biological systems. Unlike 
other collective states such as phase-locked states or traveling waves, chimera states have not 
been investigated a great deal and there are many open questions regarding them. One such 
issue  pertains  to  the  effect  of  propagation  delays  on  their  existence  and  stability.  We 
investigate  this  question  on  a  system of  coupled  phase  oscillators  that  includes  distance 
dependent propagation delays. Our numerical simulations, carried out for a large number of 
coupled oscillators (ranging from 64 to 256), provide the first evidence of the existence of 
chimera states in a time-delayed system. Time delay breaks up the spatial pattern into several 
clusters  of  coherent  regions  interspersed  with  incoherent  regions  and  the  number  and 
distribution of these clusters is a sensitive function of the propagation delay. A wide range of 
system parameters  and  delay  values  are  explored  to  delineate  the  existence  and stability 
regions  of  the  chimera  state.  Our  numerical  results  are  complemented  by  solutions  of 
appropriate self-consistency conditions that are derived analytically for the system.
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Phase control and synchronization in excitable systems 

Jesús M. Seoane 

Nonlinear Dynamics, Chaos and Complex Systems Group 
Departamento de Física 

Universidad Rey Juan Carlos 
Tulipán s/n, 

28933 Móstoles, Madrid, Spain 

 

In this work we study excitable systems paying attention in some aspects concerning to 
their control and  synchronization.  Excitable systems are relevant in neuronal dynamics 
and therefore this method might have important applications. We use as prototype 
model the periodically driven FitzHugh-Nagumo (FHN) model, which  displays both 
spiking and non-spiking behaviours in chaotic or periodic regimes. The phase control 
technique [1] consists of applying a harmonic perturbation with a suitable phase φ  that 
we adjust in search of different behaviours of the FHN dynamics. We compare our 
numerical results with experimental measurements performed on an electronic circuit 
and find good agreement between them [2].  We also study the phenomenon of 
synchronization in uncoupled excitable systems due to common noise. We use as 
prototype model  two identical FHN in presence of both, white and colored noise. We 
obtain, numerically and experimentally, a better synchronization insofar we increase the 
strenght of that common noise [3]. We expect our work might be useful for a better 
understanding of excitable systems and synchronization phenomena in neuronal 
dynamics. This is joint work with S. Zambrano, Inés P. Mariño, Miguel A. F. Sanjuán 
(Spain) and S. Euzzor, A. Geltrude, K. Al Naimee, R. Meucci and F. T. Arecchi (Italy). 
 
 
[1] S. Zambrano, E. Allaria, S. Brugioni, I. Leyva, R. Meucci, M.A.F. Sanjuán, and F. 
Arecchi, Chaos 16, 013111 (2006). 
 
[2] S. Zambrano, J. M. Seoane, Inés P. Mariño,  Miguel A. F. Sanjuán, S. Euzzor, R. 
Meucci, and  F.T. Arecchi,  New Journal of Physics 9, 073030 (2008). 
 
[3] S. Zambrano, Inés P. Mariño, J. M. Seoane, Miguel A. F. Sanjuán, K. Al Naimee, A. 
Geltrude, S. Euzzor, R. Meucci, and  F.T. Arecchi, Phys. Rev. E (To be submitted). 
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Avoiding escapes in open dynamical systems using phase 
control 

 
Miguel A.F. Sanjuán 

Nonlinear Dynamics, Chaos and Complex Systems Group 
Departamento de Física 

Universidad Rey Juan Carlos 
Tulipán s/n, 

28933 Móstoles, Madrid, Spain 
 
A trajectory of an open dynamical system has the possibility to escape from a region in 
phase space where typically an initial condition is taken. In this talk, we analyze the 
problem of avoiding escapes in open dynamical systems by using a control method 
developed by the author and his collaborators which is called phase control [1,2,3]. For 
this purpose, we use as a prototype model the Helmholtz oscillator, which is the 
simplest nonlinear oscillator with escapes when the energy is typically above a 
threshold value.  For some parameter values, this oscillator presents a critical value of 
the forcing for which all particles escape from its single well. By using the phase 
control technique, weakly changing the shape of the potential via a periodic perturbation 
of suitable phase φ, we avoid the escapes in different regions of the phase space. We 
provide numerical evidence, heuristic arguments, and an experimental implementation 
in an electronic circuit of this phenomenon.  The ideas developed here are suitable to be 
applied for avoiding escapes in more complicated physical situations. This is joint work 
with J.M. Seoane and S. Zambrano (Spain) and S. Euzzor, R. Meucci and  F. T. Arecchi 
(Italy). 
 
 
References: 
 
[1] S. Zambrano, E. Allaria, S. Brugioni, I. Leyva, R. Meucci, M.A.F. Sanjuán, and F. 
Arecchi, Chaos 16, 013111 (2006). 
 
[2] S. Zambrano, I. P. Mariñoo, F. Salvadori, R. Meucci, M.A.F. Sanjuán, and F.T. 
Arecchi, Phys. Rev. E 74, 016202 (2006).   
 
[3] J. M. Seoane, S. Zambrano, S. Euzzor, R. Meucci, F.T. Arecchi, and M.A.F. 
Sanjuán, Phys. Rev. E 78, 016205 (2008). 
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Targeting synchronized response in chaotic oscillators

Syamal Kumar Dana

Indian Institute of Chemical Biology
Jadavpur, Kolkata 700032, India

e-mail: skdana@iicb.res.in; sdana_ecsu@yahoo.com

Defining an appropriate  coupling function and thereby targeting  a desired synchronized 
response in chaotic oscillators and its controlling is important for real applications. A general 
approach is described here to derive such a coupling function for any chaotic oscillator. For 
unidirectionally coupled chaotic oscillators, the coupling function is easy to define and then 
to realize complete synchronization, antisynchronization or generalized synchronization and 
even to induce an amplitude death as a response state. Defining such a coupling for mutual 
synchronization  is  also  possible  as  shown  in  numerical  simulations.  Controlling  such 
synchronized states is another important issue which is addressed here by inserting a control 
parameter  in  the  definition  of  the  coupling.  The  coupling  is  basically  nonlinear  and  its 
complexity  depends  upon  the  order  of  nonlinearity  that  exists  in  the  original  system. 
However, a physical  realization of the coupling function is not difficult  as shown in real 
experiments  using  electronic  circuits.  The  controllability  of  the  synchronized  states  has 
potential application in digital encoding and others. The coupling is applicable for identical as 
well as mismatched chaotic systems where mismatch in parameters is a practical reality. In 
the process, we find an interesting route to synchronization with parameter mismatch that 
follows a new scaling law.

This approach of defining a coupling function is extended to induce a hybrid or mixed type 
synchronization  where  separate  state  variables  can  attain  different  form of  synchronized 
states  in  two  coupled  chaotic  oscillators:  two similar  state  variables  can  be  at  complete 
synchronized state, another pair of state variables can attain antisynchronization state, even a 
third  response  can  cease  to  oscillate.  The  results  are  further  extended  to  induce 
synchronization and antisynchronization in dynamical networks. 
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SYNCHRONIZATION IN CHAINS OF OSCILLATORS

I.Grosu1 , M.Hasler2 and A. Birzu3

1 Faculty of Bioengineering, University of Medicine and Pharmacy "Gr.T.Popa" ,  
Iasi,Romania

2 LANOS, EPFL, Lausanne , Switzerland
3 Adrian Birzu , Faculty of Chemistry, University"Al.I.Cuza" , Iasi,Romania

Synchronization is a fascinating phenomenon in nature and a useful one in science and 
engineering.  Using  the  OPCL(  Open-Plus-Closed-Loop  )  method  of  control  [1]  we 
developed a method of synchronization both in master-slave (unidirectional) [2,3,6] and 
mutual (bidirectional) coupling [4,5]. These results are extended from two oscillators to 
several oscillators in a chain. 
Let’s  consider  a  chain  of  N  oscillators  in  a  chain  (i=1,2,….N).  For  the  sake  of 
concreteness we work with FitzHugh-Nagumo model [7] :
du/dt=  u-u3/3 –w +I      ,  dw/dt=φ(u+a-bw)                                                          (1)
with I=0,a=0.7,b=0.8,  φ=0.08
We see that the model has one nonlinearity in the first equation. The proposed coupling 
for the oscillator  “i”  in the chain is : 
dui/dt= ui-u i

3/3-wi +I  +(p-1+s2 i)(ui-si)   ,dwi/dt=φ(ui+a-bwi)
where si are calculated as certain averages among the neighbors of the oscillator  “i “  and 
p<0. For unidirectional coupling we have :
 s1=u1,s2=(u1+u2)/2,…….., si=  (ui-1+ui)/2,……,  sN=(uN-1+uN)/2
For bidirectional coupling  we have :
        s1=(u1+u2)/2 , s2=(u1+u2+u3)/3,….., si=(ui-1+ui+ui+1)/3,…., sN=(uN-1+uN)/2 
In the following we present numerical results for N=4 oscillators and N=128 oscillators.
We see that the synchronization is achieved in both cases. We hope to use these results in 
investigating  the transmission of information along the chains [8].
References
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[4]  A.I.Lerescu,S.Oancea,I.Grosu,”Collection  of  Mutually  Synchronized  Chaotic 
Systems” Physics Letters A,352, 222-226, 2006
[5] I.Grosu,”General Coupling for Synchronization of 3 Identical Oscillators”, Int. J. of 
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Simple discrete 3-dimensional stirring models
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We investigate some simple 3-dimensional stirring models. The models are idealized 
and volume-preserving, and we believe they mimic stirring in tanks. We study them 
from both rigorous and computational viewpoints. This is joint work with Barry Peratt.
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The partial  control technique [1,2] allows one to keep the trajectory of a dynamical 
system with a horseshoe inside a square where there is a horseshoe-like mapping (and 
thus  close  to  the  nonattractive  chaotic  set  that  is  due  to  this  kind  of  mapping)  in 
presence  of  environmental  noise.  The  main  advantage  of  this  technique  is  that  by 
making use of certain  zero-measure  safe  sets,  this  goal can be achieved even if  the 
control applied is smaller than the effect of noise in the system. Here we explore the 
relation between these safe sets and the sets of points with different escape times that 
can be found in the square, the escape time sets. We show that the safe sets are a subset 
of those escape time sets. Furthermore,  we give the criteria that  allow one to select 
certain points of these escape time sets, the nonzero measure extended safe sets, that can 
play the role of the original safe sets in the partial control technique. We also analyze 
the advantages and the drawbacks of using these new “extended safe sets” instead of the 
original ones. 

[1] Samuel Zambrano, Miguel A. F. Sanjuán, and James A. Yorke, Phys. Rev. E, 77 
055201(R) (2008).

[2] Samuel Zambrano and Miguel A. F. Sanjuán, Phys. Rev. E, 79, 026217 (2009). 
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Point-vortex interaction in an oscillatory deformation field: 
Hamiltonian dynamics, harmonic resonance and transition to chaos
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We study the Hamiltonian system of two point vortices, embedded in external strain and rotation 
(see figure 1). This external deformation field mimics the influence of neighboring vortices or 
currents in complex flows. When the external field is stationary, the equilibria of the two vortices, 
symmetric with respect to the center of the plane, are determined. The stability analysis indicates 
that two saddle points lie at the crossing of separatrices, which bound streamfunction lobes having 
neutral centers.

When the external field varies periodically with time, resonance becomes possible between the 
forcing and the oscillation of vortices around the neutral centers. A multiple time-scale expansion 
provides the slow-time evolution equation for these vortices, which, for weak periodic deformation, 
oscillate within their original (steady) trajectory. These analytical results accurately compare with
numerical integration of the complete equations of motion. As the periodic deformation field 
increases, this vortex oscillation migrates out of the original trajectories, towards the location of
the separatrices. With a periodic external field, these separatrices have given way to heteroclinic 
trajectories with multiple self-intersections, as shown by the calculation of the Melnikov function.

Chaos appears in vortex trajectories as they enter the 
aperiodic domain around the heteroclinic curves. In 
fact, this chaotic domain progressively fills out the 
plane, replacing KAM tori and cantori, as the periodic 
deformation field reaches finite amplitude. The 
appearance of windows of periodicity is illustrated (see 
figure 2).

Figure 1 ; Position of the two vortices and external flow

Figure 2 : Islands of periodicity inside the chaotic 
domain (Poincare section of the flow at the forcing 
frequency)
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Permutation  entropy was introduced in  [1]  as  a  complexity  measure  of  time series. 
Permutation  entropy  replaces  the  probabilities  of  length  L  symbol  blocks  in  the 
definition  of  Shannon's  entropy by the  probabilities  of  length-  L ordinal  patterns,  a 
digest of the ups and downs of L consecutive elements of the time series. Since then 
permutation  entropy  and  ordinal  patterns  have  found a  number  of  other  interesting 
applications. One important challenge now is to expand the field of applications from 
time series and `time' dependent dynamical systems, to spatially extended systems, so 
that one can also apply this approach to the study of space-time dynamics and space-
time chaos. In order to tackle the viability of this program, the authors have studied two 
simple systems:  Cellular automata (CA) and coupled map lattices (CML) [2], both in 
one space dimension. The formal similarity between such CA and CML is evident. If, 
furthermore, one discretizes the continuous dynamics of a CML, thus going over to the 
symbolic dynamics of the oscillators, then the similarity is almost complete. This allows 
eventually a unified treatment of both space-time systems. In our presentation we shall 
apply tools developed in the analysis of time series analysis via ordinal patterns [3], to 
(i) the classification of CA (ii) the phenomenology of CML, and (iii) the topological 
entropy calculation of both. The results are satisfactory and support the capabilities of 
our ordinal pattern-based approach in the study of spatially extended systems. 

[1] C. Bandt and B. Pompe. Permutation entropy: A natural complexity measure for 
time series. Phys. Rev. Lett. 88 ,174102. (2002).

[2] J.P.  Crutchfield  and  K.  Kaneko.  Phenomenology  of  spatiotemporal  chaos.  In: 
Directions in Chaos (World Scinetific, Singapore). 1987.

[3]  J.M.  Amigó,  S.  Zambrano  and  M.A.F.  Sanjuán.  Combinatorial  detection  of 
determinism in noisy deterministic time series. Europhys. Lett. 83, 60005 (2008).
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ABSTRACT 
 

In the recent times, there has been renewed interest in transport phenomena and in particular 
directed transports of nonlinear non-equilibrium dynamical systems modelled by ratchet 
systems due their varieties of applications in several natural systems such as asymmetric 
crystals, semiconductor surfaces under light radiation, vortexes in Josephson junction arrays, 
micro-fluidic channels, and others. However, many outstanding problems regarding transport 
in ratchet systems remains un-resolved. One fundamental question is ‘How does the ratchet 
transport mechanism behave if two or more ratchets interact via a specific coupling?’ 
Recently, some attempts have been made to proffer possible answers through systematic 
investigations of the synchronization dynamics based on varieties of coupled ratchets. 
Notwithstanding, the transport properties of coupled ratchets in the multi-stable stable states 
are still far from well-understood. In this paper, we consider the dynamics of two elastically 
coupled inertia ratchets in a perturbed asymmetric potential. We investigate the coupled 
ratchets in the bi-stable states, where (i) two non- identical attractors, corresponding to a 
binary mixture of non-identical particles; and (ii) two identical attractors, corresponding to a 
binary mixture of identical particles co-exist in phase space - the dynamics being more 
complex unlike the mono-stable state - transporting currents in opposite directions. We show 
that the particle-particle interactions could lead to transports reversal in either direction as the 
strength of the interaction between the ratchets is progressively increased up to the fully 
synchronized state where optimal and enhanced transports could arise. Using Lyapunov 
stability theory and the linear matrix inequalities, we obtain sufficient criteria for full 
synchrony and hence, enhanced transport.  
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We present the analog circuit implementation of a novel method for the control of an 
unstable  chaotic  transient  dynamics  in  presence  of  noise.  The  circuit  simulates  the 
dynamics of a discrete time tent map where the trajectories diverge to infinity for all the 
initial conditions. It is known that the presence of an unstable chaotic saddle in phase 
space causes all trajectories to diverge after a chaotic transient. A theoretical control of 
such  class  of  systems  in  the  presence  of  noise  has  been  proposed in  [1]  and  later 
generalized for higher dimensions in [2, 3]. With such a strategy the system can be 
maintained on a chaotic transient even when the noise applied exceeds the control. We 
present the analog circuit implementation of the control method applied to the discrete 
time tent map circuit.  These encouraging results validates the theory and opens new 
perspectives  for  the  application  of  the  control  technique  in  higher  dimensions  and 
continuous time dynamics. 

[1] Jacobo Aguirre, Francesco d'Ovidio, and Miguel A. F. Sanjuán.  Controlling chaotic 
transients: Yorke's Game of Survival. Phys. Rev. E, 69:016203, 2004.

[2] Samuel Zambrano, Miguel A. F. Sanjuán, and James A. Yorke.  Partial Control of 
Chaotic Systems. Phys. Rev. E, 77:055201(R), 2008.

[3] Samuel Zambrano and Miguel A. F. Sanjuán. Exploring Partial Control of Chaotic 
Systems. Phys. Rev. E, 79:026217, 2009.
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A Hindmarsh-Rose type silicon neuron

Takashi Kohno† and Kazuyuki Aihara†
† Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505

Abstract

Silicon neuron is electrical circuit designed to repro-
duce electrophysiological functions of a neuronal cell.
It is utilized not only as a tool for some studies on the-
oretical neuroscience that require real-time emulation
of neural network but also as an element of neuromor-
phic hardwares. Most of the silicon neuron circuits
are based on either phenomenological or conductance-
based models. The former abstracts some of various
behaviors of a neuronal cell that seem to be important
in information processing in nerve system. It does not
take their mechanisms into account and may lack some
critical properties of the neuronal cell. Because the
model is highly abstracted, we can implement it with
very simple circuit. The latter describes the dynamics
of ionic channels on the membrane of a neuronal cell.
It requires hard elaboration and large device resources
to be implemented by electrical circuit not only be-
cause it is a set of complex nonlinear differential equa-
tions but also because there tends to be incompatibil-
ity between the characteristics of electrical device and
lipid and protein.

We proposed a new type of silicon neuron [1] that
is based on the results of mathematical analyses on
conductance-based neuron models. They have been
studied from the viewpoint of nonlinear dynamics to
elucidate the essence of the mechanism lying behind
various behaviors of neuronal cells. The analytical
techniques including dimension reduction and phase-
plane and bifurcation analyses successfully revealed
the essence of various neuronal phenomena such as
overshoot, threshold, refractoriness, and Hodgkin’s
classification. Our silicon neuron is designed to re-
produce mathematical structures in phase plane and
bifurcations of equilibria and limit cycles. We can use
any curves that are easily realized by electrical devices
to construct such mathematical structures instead of
the curves described in the equations of conductance-
based neuron models. This allows us to simplify cir-
cuitry maintaining dynamics in neuron models.

Based on previous works, we designed a burst sil-
icon neuron circuit. It is three-dimensional ordinary
differential equations of membrane potential, recov-
ery variable, and very slow negative-feedback variable.
It has the same topological structures in the phase
plane and the bifurcation diagram as the square-wave
burster such as Hindmarsh-Rose model [2] and an ex-
tended Morris-Lecar model [3] . The first two variables
in our system compose a basic excitable system, which
has bistability between an equilibrium and a limit cy-

(a)

(b)

(c)

Figure 1: (a) Bifurcation diagram of the basic ex-
citable system in our silicon neuron model. Examples
of time waveform of membrane potential for (b) regu-
lar bursting and (c) chaotic bursting.

cle as shown in their bifurcation diagram (see Fig. 1
(a)). The last (very slow negative-feedback) variable
makes the system to transfer back and forth between
these two stable states, which leads to burst firing in
the same way as the square-wave burster. In numerical
simulation of our model, we observed tonic, chaotic,
burst, and chaotic burst firings dependent on the scale
of the last variable (see Fig. 1 (b) and (c)) , which are
quite similar to the other square-wave burster mod-
els. The right-hand side of our model are composed of
the characteristic functions of differential pair circuits.
These functions are modified hyperbolic tangent be-
cause our circuit is designed for metal-oxide semicon-
ductor field-effect transistor (MOSFET) process that
is driven in subthreshold operating condition. MOS-
FET consumes very low power in this condition and
our circuit is estimated to consume about a few micro
watts. In HSpice simulation of a layout mask data,
we observed very similar patterns except for chaotic
firing. We have already completed fabrication of our
circuit by TSMC .35µ CMOS process and planning
circuit experiments.

Keywords: Silicon neuron, Hindmarsh-Rose model,
Burst neuron
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Estimation of the control parameter of a map through the analysis of its order
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The study of the order patterns associated to a map is very useful to establish how far its orbits are to be considered
as source of white noise [1]. In this work we show that order patterns can also be used to infer an estimation of the
parameter controlling the dynamics of certain maps.

Given a closed interval I ⊂ R and a map f : I → I, the orbit of (the initial condition) x ∈ I is defined as the set
Of (x) = {fn(x) : n ∈ N0}, where N0 = {0} ∪ N = {0, 1, ...}, f0(x) = x and fn(x) = f

(
fn−1(x)

)
. Orbits are used

to define order L-patterns (or order patterns of length L), which are permutations of the elements {0, 1, ..., L − 1},
L ≥ 2. We write π = [π0, π1, . . . , πL−1] for the permutation 0 7→ π0, ..., L− 1 7→ πL−1.

Definition 1 (Order pattern). The point x ∈ I is said to define (or realize) the order L-pattern π = π(x) =
[π0, π1, . . . , πL−1] if

fπ0(x) < fπ1(x) < . . . < fπL−1(x). (1)

Alternatively, x is said to be of type π. The set of all possible order patterns of length L is denoted by SL.

In general, if fλ is a family of self-maps of the closed interval I ⊂ R parameterized by λ ∈ J ⊂ R, and the set Pπ
is defined as

Pπ = {x ∈ I : x is of type π} , (2)

where π ∈ SL, then Pπ depends on fλ and, consequently, on λ. Moreover, we will assume that fλ is ergodic for
J ⊂ R so as the orbits of fλ can be used to build up statistics independently from the value of the initial condition.
According to Birkhoff’s ergodic theorem [2, p.34], if fλ is ergodic with respect to the invariant measure µ, then the
orbit of x ∈ I visits the set Pπ with relative frequency µ (Pπ), for almost all x with respect to µ. As a result, it is
possible to study the dependence of Pπ on λ by counting and normalizing the occurrences of π in sliding windows of
width L along Ofλ(x), x being a ‘typical’ initial condition. Since we are primarily interested in the relation between
the probabilities µ(Pπ) (or relative frequencies) of order patterns π ∈ SL and the control parameter λ of the map
considered, we will refer to it as the λ-distribution function (in short: λ-DF) of π, considering their relation to the
probability distribution functions (we fix π instead of fixing λ). If a map fλ leads to λ-DF being a one-to-one or a
few-to-one relation to the control parameter, then it is possible to get an estimation of λ. This is the case of the skew
tent map defined as

fλ(x) =
{
x/λ, if 0 ≤ x < λ,
(1− x)/(1− λ), if λ ≤ x ≤ 1. (3)

In this work we show that the rate of occurrences of the order pattern [0, 1, . . . , L − 1] in an orbit of the skew tent
map leads to an estimation of λ. The methodology used for the skew tent map can be applied to any map with the
ergodic property, a continuous invariant measure, and a bijective or quasi bijective λ-DF.

1 J. M. Amigó, S. Zambrano and M. A. F. Sanjuán, “True and false forbidden patterns in deterministic and random dynamics,”
Europhysics Letters 79, 50001–p1, –p5 (2007).

2 P. Walters, An Introduction to Ergodic Theory, vol. 79 of Graduate Texts in Mathematics (Springer-Verlag, New York, 1982).
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Abstract

One of the principal causes of the failure of chemotherapeutic treatment of cancer is its
resistant development. There are, in general, two types of resistance, acquired resistance,
which comes from cellular mutations, and induced resistance coming from the chemother-
apeutic use. The two types of resistant tumors cells are physically completely different,
and hence differently modeled. In this work, we are interested in induced resistance.
We examine a nonlinear impulsive mathematical model, describing the dynamics of a
heterogeneous tumor, constituted by two compartments, the sensitive cells and the drug
resistance cells. We consider the case of use of several drugs with instantaneous effects
described by impulses. We take into account the interactions between sensitive and drug
resistance cells drug, described by terms contained in the nonlinear terms of the differen-
tial equation system. We are interested by the stability of the disease. The stability of
the trivial solution correspond to the eradication of the disease, and loss of stability with
bifurcation of nontrivial solutions, correspond to persistence of the disease.
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Recently a technique has been proposed to keep the trajectories of a dynamical system 
with transient chaos close to  a chaotic saddle and far from coexisting attractors. This 
technique  is  the  partial  control  technique  [1],  and  it  can  be  used  when  there  is  a 
horseshoe-like map in phase space. On the other hand, the existence of fractal basins of 
attraction in a dynamical system can be related in some cases to the existence of this 
type of mapping [2]. Taking the Duffing oscillator as a paradigm [3], we show here how 
the  partial  control  technique  can  be  implemented  on  a  continuous-time  dynamical 
system with different coexisting attractors whose basins are fractalized. It is also shown 
how this technique allows one to keep the trajectories far from those attractors, even in 
presence of a noise stronger than the applied control. 

[1] Samuel Zambrano, Miguel A. F. Sanjuán, and James A. Yorke, Phys. Rev. E, 77 
055201(R) (2008).

[2] Jacobo Aguirre, Ricardo L. Viana, and Miguel A. F. Sanjuán. Fractal Structures in 
Nonlinear Dynamics. Rev. Mod. Phys., 81(1):333-386 (2009).

[3] Jacobo Aguirre and Miguel A. F. Sanjuán. Unpredictable behavior in the Duffing 
oscillator: Wada basins. Physica D, 171:4151 (2002).
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We propose and analyze a new interaction mechanism between oscillators leading to 
exact anti-phase and in-phase synchronization of pendulum clocks, and we determine a 
sufficient condition for the existence of an exact anti-phase synchronous state. We show 
that exact anti-phase and in-phase synchronous states can coexist in phase space, and 
the  periods  of  the  synchronous  states  are  different  from  the  eigen-periods  of  the 
individual oscillators. We analyze the robustness of the system when the parameters of 
the individual pendulum clocks are varied, and we show numerically that exact anti-
phase  and  in-phase  synchronous  states  exist  in  systems  of  coupled  oscillators  with 
different individual parameters.
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On the basis of the three-body problem a new type of orbit in the five body 
problem is constructed. It is analytically shown that along with the well known chaotic 
and regular orbits in the five-body problem there also exists a qualitatively different 
type of orbit which we call “stabilized”. To show that we consider the Sitnikov problem 
[1] that consists of two equal masses M (called primaries) moving in circular or elliptic 
orbits about their common center of mass and a third, test mass μ moving along the 
straight  line  passing  through the  centre  of  mass  normal  to  the  orbital  plane  of  the 
primaries. 

Using the Melnikov method the existence of transverse homoclinic orbits could 
be shown. For the Sitnikov problem it was proved [2] that for all but a finite number of 
values of the eccentricity e the system is non-integrable, i. e. chaotic. We consider only 
small values of e. Hence due to the KAM-theory [3], since our system has 3/2 degrees 
of freedom the invariant tori bound the phase space and chaotic motion is finite and 
takes place in a small vicinity of a separatrix layer. 

The main objective of our work is to show through analytical  and numerical 
methods the existence of the stabilized orbits in this special case of five-body problem. 
In  general,  this  is  related  to  the  stabilization  and  control  of  unstable  and  chaotic 
behaviour of dynamical systems by external forces [4, 5]. Recently [5] for a case that is 
useful for many physical applications we have shown that the dynamics of the system 
with the split separatrices (chaos) can be regularized by a series of “kicks”. 

In  summary,  on  the  basis  of  the  elliptic  Sitnikov problem we constructed  a 
configuration  of  five  bodies  which  we  called  the  extended  Sitnikov  problem  and 
analytically showed that in this configuration along with chaotic and regular orbits a 
new type of orbit (stabilized) could be realized.
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Mesoscopic organization, e.g., into modules and hierarchical structures, is ubiquitous among 
complex  networks,  occurring  in  systems  as  diverse  as  cellular  networks involved  in 
metabolism and signaling, to cortico-cortical  networks, human society,  food webs and the 
internet. We show that many of the empirically observed "small-world" networks seen, e.g., 
in the brain, may owe their properties to a modular topological structure. We demonstrate that 
their dynamics (including spin-ordering, diffusion and synchronization behaviors) may differ 
significantly from the conventional models of small-world networks. We also investigate the 
dynamical implications of hierarchical ordering, and, the existence of modules, by looking at 
how the stability  of arbitrary equilibria  and synchronized states  changes as a function of 
increasing hierarchy and modularity. Further, we explore the reasons behind why so many 
networks evolve such mesoscopic organization by noting that such systems are often subject 
to multiple structural and functional constraints. We show that hierarchy and modularity can 
emerge as a result of simultaneously satisfying several conflicting constraints.
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State Space of a Rotating Rotor

V.M. Sokol, Israeli Independent Academy for Development of Sciences

Abstract
The method of continuous complex systemic measure-

ment of dynamic parameters of a rotating rotor (taking into 
account nonlinearity of its characteristics) is offered. The 
method provides identification (calculation) of instant po-
sitions of a symmetry axis and a rotation axis of rotor by 
results  of measurements  of  sensors  system, and also the 
subsequent systemic measurement and calculation of me-
chanical parameters of a rotor in discrete time points dur-
ing each rotor revolution and during all work cycle [1, 2]. 
At that, instant magnitudes of such parameters, as instant 
magnitude of angular speed, amplitude of radial and angu-
lar oscillations, damping coefficient, mass eccentricity and 
unbalance parameters, the inertia moment and inertia ten-
sor of a rotor, the mechanical characteristic (dependence of 
the rotating moment on angular speed), resistance to rota-
tion, rotor diameter and non-round form of its shaft, and 
also parameters of vibration of a rotor [3 - 9] may be iden-
tified in real time on the basis of the fundamental equa-
tions of a rotor movement.

Aggregate of the measured instant  magnitudes of the 
enumerated parameters of a rotor may be considered as a 
multidimensional vector describing dot mappings of a ro-
tor state [10].

Multiple recurrence of measurement and calculation of 
rotor  parameters  during  each  revolution  and  during  all 
work cycle allow to receive sequence of dot mappings and 
to identify state space of a rotor. The analytical description 
of movement of a rotor within the differential  equations 
may be received with the help of Poincare sections.

Identification of dot mappings and state spaces of a ro-
tor is a basis for carrying out (in real time) the bifurcation 
analyses and detection of rare attractors.

Index Terms: measurement of mechanical parameters, 
dot mappings, bifurcation analysis, rare attractors.
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Description

The development of models based on fractional-order differential systems has recently gained popu-
larity in the investigation of dynamical systems. Fractional derivatives provide an excellent instru-
ment for the description of memory and hereditary properties of various materials and processes.
The real objects of objects of the fractional-order systems are that we have more degrees of free-
dom in the model and that a “memory” is included in the model. Recently, the chaotic dynamics
of fractional-order systems began to attract much attention in recent years. It has been shown
that the fractional-order systems, as generalizations of many well-known systems, can also behave
chaotically, such as the fractional Chen, Chua, Rossler, Lorenz and Arneodo systems. Furthermore,
recent work based on numerical simulations show that chaotic fractional-order systems can also be
synchronized. The main topics of interest for this session include:

• Chaos in fractional order systems

• Synchronization of fractional order systems

• Control in fractional order systems

• Fractional order systems modeling

• Numerical methods for fractional order systems
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A Note on Chaos Control and Synchronization of
Fractional Order Systems

Zaid M. Odibat∗

Faculty of Science and Technology, University of Le Havre
76058 Le Havre Cedex, France

z.odibat@gmail.

Abstract—The dynamics of fractional order systems have
attracted a great deal of attentions in recent years. In this paper,
we study the chaos synchronization of two identical fractional
order systems with a suitable feedback controller applied to the
response system. Based on the stability results of linear fractional
order systems, sufficient conditions for chaos synchronization are
derived. The numerical results show that fractional order chaotic
systems can be synchronized.

Index Terms—Chaos synchronization, Fractional order system,
Caputo fractional derivative, Stability, Control.

I. INTRODUCTION

THE development of models based on fractional order
differential systems has recently gained popularity in

the investigation of dynamical systems. Fractional derivatives
provide an excellent instrument for the description of memory
and hereditary properties of various materials and processes.
The main reason for using the integer-order models was
the absence of solution methods for fractional differential
equations. The advantages or the real objects of the fractional
order systems are that we have more degrees of freedom in
the model and that a “memory” is included in the model.

Recently, the chaotic dynamics of fractional order sys-
tems has been investigated and studied in mathematical and
physical communities in the last few decades. The research
efforts have been devoted to the chaos control and chaos
synchronization problems in many dynamical fractional order
systems. It has been shown that the fractional order systems, as
generalizations of many well-known systems, can also behave
chaotically, such as the fractional Duffing system [1], the
fractional Chua system [2,3], the fractional Rössler system [4],
the fractional Chen system [5-7], the fractional Lorenz system
[8], the fractional Arneodo’s system [9] and the fractional Lü
system [10]. In [3-6] it has been shown that some fractional-
order systems can produce chaotic attractors with order less
than 3.

Recent studies show that chaotic fractional order systems
can also be synchronized. In many literatures, synchronization
among fractional order systems is only investigated through
numerical simulations. A simple method for chaos synchro-
nization of fractional order systems based on the stability
criteria of linear differential systems is presented in [11-13].

∗On sabbatical leave from Prince Abdullah Bin Ghazi Faculty of Science
and IT, Al-Balqa’ Applied University, Salt-Jordan

Numerical algorithms for chaos synchronization of fractional-
order systems based on Laplace transform theory are presented
in [14-17]. In the present paper, using the master-slave syn-
chronization scheme and based on the stability results of linear
fractional order systems, we study the synchronization of two
coupled fractional order chaotic systems.

There are several definitions of a fractional derivative of
order α > 0 [18-20]. In this work, Caputo fractional derivative
is considered. The fractional differential operator in the sense
of Caputo [21] is defined as,

Dαf(t) = Jm−αDmf(t). (1)

Here Dm is the usual integer differential operator of order m,
m − 1 < α ≤ m, and Jµ is the Riemann-Liouville integral
operator of order µ > 0, defined by

Jµf(t) =
1

Γ(µ)

∫ t

0

(t− τ)µ−1f(τ)dτ, t > 0. (2)

Caputo’s definition has the advantage of dealing properly with
initial value problems in which the initial conditions are given
in terms of the field variables and their integer order which is
the case in most physical processes.

II. STABILITY ANALYSIS

Stability analysis of fractional order systems, which is of
main interest in control theory, has been thoroughly inves-
tigated where necessary and sufficient conditions have been
derived [22-25] (see also references therein). In this section,
we recall the main stability results. For this object, we consider
the following n dimensional fractional order system,

dα1x1

dtα1
= f1(x1, x2, · · · , xn),

dα2x2

dtα2
= f2(x1, x2, · · · , xn),

...
dαnxn

dtαn
= fn(x1, x2, · · · , xn),

(3)

where αi is a rational number between 0 and 1 and dαi

dtαi
is the

Caputo fractional derivative of order αi, for i = 1, 2, · · · , n.
Assume that αi = ki/mi, (ki,mi) = 1, ki,mi ∈ IN , for
i = 1, 2, · · · , n. Let m be the least common multiple of the
denominators mi’s of αi’s.
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First, if the system (3) is a linear system, that is
[f1(x), f2(x), · · · , fn(x)]T = [aij ]ni,j=1x = Ax, where x ∈
IRn, then we have the following results:
• If α = α1 = α2 = · · · = αn, then the fractional order

system (3) is asymptotically stable iff |arg(spec(A))| >
απ/2. In this case the components of the state decay
towards 0 like t

−α

[22].
• If αi’s are rational numbers between 0 and 1, then the

system (3) is asymptotically stable if all roots λ of the
equation det

(
diag(λmα1 , λmα2 , · · · , λmαn) − A

)
= 0

satisfy |arg(λ)| > γπ/2, where γ = 1/m [23].
Second, if function fi has second continuous partial derivatives
in a ball centered at an equilibrium point x∗ = (x1, x2,
· · · , xn), that is fi(x1, x2, · · · , xn) = 0, for i = 1, 2, · · · , n,
then we have the following results:
• If α = α1 = α2 = · · · = αn, then the equilib-

rium point x∗ of system (3) is asymptotically stable if
|arg(spec(J |x∗))| > απ/2, where the matrix J is the
Jacobian matrix of the system (3) that is defined as
J = [ ∂fi

∂xj
]ni,j=1 [24].

• If αi’s are rational numbers between 0 and 1, then the
equilibrium point x∗ of system (3) is asymptotically sta-
ble if all roots λ of the equation det

(
diag(λmα1 , λmα2 ,

· · · , λmαn)− J |x∗
)

= 0 satisfy |arg(λ)| > γπ/2, where
γ = 1/m [25].

The previous stability results play an important role in study-
ing the existence of chaotic attractors and the synchronization
between fractional order systems.

III. SYNCHRONIZATION OF FRACTIONAL ORDER SYSTEMS

Chaotic attractors for fractional order 3D systems has been
demonstrated based on numerical simulation results. In [26],
based on stability results, a necessary condition for fractional
order systems to exhibit chaotic attractors similar to its integer
order counterpart is persented. This necessary condition is
equivalent to,

min
i
{|arg(λi)|} ≤ γπ/2, (4)

where γ = 1/m and λi’s are the roots of the equation
det
(
diag(λmα1 , λmα2 , λmα3) − J |x∗

)
= 0, for every equi-

librium point x∗. Otherwise, one of these equilibrium points
becomes asymptotically stable and attracts the nearby trajec-
tories.

Now, based on the stability results of fractional differential
equations, we briefly discuss the issue of controlling fractional
order chaotic systems to realize synchronization with error
feedback control. In order to observe synchronization behavior,
we construct the master (drive) system and the slave (response)
system as,

M :



dα1xm

dtα1
= f1(xm, ym, zm) + g1(xm, ym, zm),

dα2ym

dtα2
= f2(xm, ym, zm) + g2(xm, ym, zm),

dα3zm

dtα3
= f3(xm, ym, zm) + g3(xm, ym, zm),

(5)

S :



dα1xs

dtα1
= f1(xs, ys, zs) + g1(xm, ym, zm) + u1(t),

dα2ys

dtα2
= f2(xs, ys, zs) + g2(xm, ym, zm) + u2(t),

dα3zs

dtα3
= f3(xs, ys, zs) + g3(xm, ym, zm) + u3(t),

(6)

where α = (α1, α2, α3) indicates the fractional orders, dαi

dtαi
is

the fractional differential operator in Caputo sense, 0 < αi ≤
1, fi is a linear function and gi is a nonlinear function for
i = 1, 2, 3. Subscripts m and s stand for the master system and
slave system, respectively, u(t) = [u1(t), u2(t), u3(t)]T is the
controller to be designed such that these two chaotic systems
can achieve synchronization. Defining the synchronization
error as e1(t) = xs(t) − xm(t), e2(t) = ys(t) − ym(t),
e3(t) = zs(t)− zm(t), then we get the error system,

dα1e1

dtα1
= f1(e1, e2, e3) + u1(t),

dα2e2

dtα2
= f2(e1, e2, e3) + u2(t),

dα3e3

dtα3
= f3(e1, e2, e3) + u3(t).

(7)

Our aim is to determine the controller u(t),

u(t) =

 u1(t)

u2(t)

u3(t)

 =

 k1e1

k2e2

k3e3

 , (8)

where k1, k2, k3 ∈ IR, such that the drive system (5) and the
response system (6) are synchronized (‖e(t)‖ −→ 0, as t −→
+∞).
An idea of synchronization is to use a controller to make
the output of the slave system copy in some manner the
master system one. Obviously, the synchronization between
(5) and (6) is equivalent to the asymptotical stability of the
zero solution (zero equilibrium point) to error system (7).

According to the stability results, the drive system (5) and
the response system (6) are synchronized if all roots λ of
the characteristic equation det

(
diag(λr1 , λr2 , λr3) − J) = 0

satisfy |arg(λ)| > γπ/2, where γ = 1/m, ri = mαi, i =
1, 2, 3, and J is the Jacobian matrix for the error system (7)
at the origin.
To demonstrate this technique, some examples of synchro-
nization for two identical fractional order chaotic systems are
discussed in the following sections.

IV. FRACTIONAL CHEN SYSTEM

Chen and Ueta [27] introduced, in 1999, the chaotic Chen
system which is similar but not topologically equivalent to the
Lorenz system. The fractional version of Chen system reads
as, 

dα1x

dtα1
= a(y − x),

dα2y

dtα2
= (c− a)x− xz + cy,

dα3z

dtα3
= xy − bz,

(9)
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where 0 < α1, α2, α3 ≤ 1. Integer order Chen system displays
chaotic attractors, for example, when (a, b, c) = (35, 3, 28).
Simulations are performed to obtain chaotic behavior of the
fractional order Chen system for different fractional orders
α when (a, b, c) = (35, 3, 28). For example, chaotic at-
tractors are found in [12] when α = (0.95, 0.95, 0.95). In
[6] chaotic behaviors are found when α = (0.9, 0.9, 0.9).
Moreover, in [14] and [26], it is found that for the parameters
α = (0.985, 0.99, 0.98) and α = (0.8, 1, 0.9), respectively, the
fractional order Chen system can display chaotic attractors.
According to our approach, the master and the slave fractional
order Chen systems are described as,

M :



dα1xm

dtα1
= a(ym − xm),

dα2ym

dtα2
= (c− a)xm − xmzm + cym,

dα3zm

dtα3
= xmym − bzm,

(10)

S :



dα1xs

dtα1
= a(ys − xs) + u1(t),

dα2ys

dtα2
= (c− a)xs − xmzm + cys + u2(t),

dα3zs

dtα3
= xmym − bzs + u3(t),

(11)

where ui(t) = kiei, i = 1, 2, 3. Then the error system gives,

dα1e1

dtα1
= a(e2 − e1) + k1e1,

dα2e2

dtα2
= (c− a)e1 + ce2 + k2e2,

dα3e3

dtα3
= −be3 + k3e3.

(12)

The Jacobian matrix for the error system (12) is

J =

 −a + k1 a 0

c− a c + k2 0

0 0 −b + k3

 , (13)

and so, the characteristic equation det
(
diag(λr1 , λr2 , λr3) −

J
)

= 0 can be written as,

((λr1 +a−k1)(λ
r2 − c−k2)+a(a− c))(λr3 + b−k3) = 0. (14)

Now, in case of (a, b, c) = (35, 3, 28) and α1 = α2 = α3 =
α, the systems (9) and (10) are synchronized if k1, k2 and k3

satisfy the control laws,
k1 + k2 − 7∓ w < 0, if A = w ∈ IR∣∣ w

k1+k2−7

∣∣ < tan(απ/2), if A = iw ∈ iIR
(15)

k3 < 3, (16)

where A =
(
(7− k1 − k2)

2 − 4(245− (35− k1)(28 + k2))
)1/2.

For example, when (a, b, c) = (35, 3, 28), taking α =
(0.95, 0.95, 0.95) and (k1, k2, k3) = (20,−15, 2) or α =
(0.9, 0.9, 0.9) and (k1, k2, k3) = (25,−18,−2), then in both
cases the controller u(t) = (k1, k2, k3)e(t) satisfies the control

1 2 3 4
t

-60

-40
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40

e1, e2, e3

(a) α = (0.95, 0.95, 0.95) and (k1, k2, k3) = (20,−15, 2)

1 2 3 4
t

-100

-50

50

100

e1, e2, e3

(b) α = (0.9, 0.9, 0.9) and (k1, k2, k3) = (25,−18,−2)

Fig. 1. Synchronization of the fractional order Chen system (9).

laws (15) and (16). Therefore, the drive system (10) and the
response system (11) are synchronized. The error functions
evolution, in these cases, is shown in Fig. 1. The eigenvalues
for the Jacobin matrix in the first case are λ1 = −1 + 7 i,
λ2 = −1 − 7 i and λ3 = −1, and in the second case are
λ1 = 12.04159 i, λ2 = −12.04159 i and λ3 = −5.
From Fig. 1, it is obvious that the components of the error
system (12) decay towards zero as t −→ +∞. So, we can
numerically conclude that the designed controller, u(t) =
(20,−15, 2)e(t) in the first case or u(t) = (25,−18,−2)e(t)
in the second case, can effectively control the chaotic fractional
order Chen system to achieve synchronization between the
drive system (10) and the response system (11).

Also, in case of (a, b, c) = (35, 3, 28) and α = (0.985, 0.99,
0.98), the systems (9) and (10) are synchronized if the roots
of the equation,

((λ197 +35−k1)(λ
198−28−k2)+245)(λ196 +3−k3) = 0, (17)

lie in the region |arg(λ)| > π/400. For example, if we take
(k1, k2, k3) = (35,−28, 2), then we can show that all roots
of Eq. (17), that becomes (λ395 + 245)(λ196 + 1) = 0, lie
in the region |arg(λ)| > π/400. Therefore, the drive system
(10) and the response system (11) are synchronized. The error
functions evolution, in this case, is shown in Fig. 2. It is clear,
from Fig. 2, that the components of the error system (12) decay
towards zero as t −→ +∞. So, we can numerically conclude
that the designed controller, u(t) = (35,−28, 2)e(t), can
effectively control the chaotic fractional order Chen system
to achieve synchronization between the drive system (10) and
the response system (11).
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Fig. 2. Synchronization of the fractional order Chen system (9), when
α = (0.985, 0.99, 0.98) and (k1, k2, k3) = (35,−28, 2).

V. FRACTIONAL CHUA SYSTEM

Now, we consider the Chua system, which is found by Chua
[28], [29] in 1986. The fractional version of Chua system reads
as, 

dα1x

dtα1
= a(y − x− f(x)),

dα2y

dtα2
= x− y + z,

dα3z

dtα3
= −by − cz,

(18)

where f(x) = m1x + 1
2 (m0 − m1)(|x + 1| − |x − 1|),

0 < α1, α2, α3 ≤ 1. Simulations are performed to obtain
chaotic behavior of fractional order Chua system for different
fractional orders α. For example, chaotic attractors are found
in [12] when α = (0.98, 0.98, 0.94) and (a, b, c,m0,m1) =
(10.1911, 10.3035, 0.1631,−1.1126,−0.8692). Moreover, in
[6] it is found that for the parameters α = (0.93, 0.99, 0.92)
and (a, b, c,m0,m1) = (10.725, 10.593, 0.268,−1.1726,
−0.7872), the fractional order Chua system can display
chaotic attractors.
According to our approach, the master and the slave fractional
order Chua systems are described as,

M :



dα1xm

dtα1
= a(ym − xm − f(xm)),

dα2ym

dtα2
= xm − ym + zm,

dα3zm

dtα3
= −bym − czm,

(19)

S :



dα1xs

dtα1
= a(ys − xs − f(xm)) + u1(t),

dα2ys

dtα2
= xs − ys + zs + u2(t),

dα3zs

dtα3
= −bys − czs + u3(t),

(20)

where ui(t) = kiei, i = 1, 2, 3. Then the error system gives,

dα1e1

dtα1
= a(e2 − e1) + k1e1,

dα2e2

dtα2
= e1 − e2 + e3 + k2e2,

dα3e3

dtα3
= −be2 − ce3 + k3e3.

(21)

The Jacobian matrix for the error system (21) is

J =

 −a + k1 a 0

1 −1 + k2 1

0 −b −c + k3

 , (22)

and so, the characteristic equation det
(
diag(λr1 , λr2 , λr3) −

J
)

= 0 can be written as,

(λr1 + a− k1)((λ
r2 + 1− k2)(λ

r3 + c− k3) + b)

−a(λr3 + c− k3) = 0. (23)

Now, in case of α = (0.98, 0.98, 0.94) and (a, b, c,m0,m1)
= (10.1911, 10.3035, 0.1631,−1.1126,−0.8692), the systems
(18) and (19) are synchronized if all roots of the equation,

(λ49 +10.1911−k1)((λ
49 +1−k2)(λ

47 +0.1631−k3)+10.3035)

−10.1911(λ47 + 0.1631− k3) = 0. (24)

lie in the region |arg(λ)| > π/100. For example, if we take
(k1, k2, k3) = (2, 2,−3) then all roots of Eq. (24) lie in the
region |arg(λ)| > π/100. We use Mathematica to verify that
the 145 roots of Eq. (24) lie in the region |arg(λ)| > π/100.
Therefore, the drive system (19) and the response system (20)
are synchronized. The error functions evolution, in this case,
is shown in Fig. 3. From Fig. 3, for the given parameters,
we can conclude that the components of the error system (21)
decay towards zero as t −→ +∞. So, we can numerically
conclude that the designed controller u(t) = (2, 2,−3)e(t)
can effectively control the chaotic fractional order Chua sys-
tem to achieve synchronization between the systems (19) and
(20).

Also, in case of α = (0.93, 0.99, 0.92) and (a, b, c,m0,m1) =
(10.725, 10.593, 0.268,−1.1726, −0.7872), the systems (18)
and (19) are synchronized if all roots of the equation,

(λ93 + 10.725− k1)((λ
99 + 1− k2)(λ

92 + 0.268− k3) + 10.593)

−10.725(λ92 + 0.268− k3) = 0. (25)

lie in the region |arg(λ)| > π/200. For example, if we
take (k1, k2, k3) = (5,−3, 1) then all roots of Eq. (25),
using Mathematica, lie in the region |arg(λ)| > π/200.
Therefore, the drive system (19) and the response system (20)
are synchronized. The error functions evolution, in this case,
is shown in Fig. 4. From Fig. 4, for the given parameters,
we can conclude that the components of the error system (21)
decay towards zero as t −→ +∞. So, we can numerically
conclude that the designed controller, u(t) = (5,−3, 1)e(t),
can effectively control the chaotic fractional order Chua sys-
tem to achieve synchronization between the systems (19) and
(20).

If α1 = α2 = α3 = α, then the systems (19) and (20) are
synchronized if k1, k2 and k3 satisfy the control law that the
three roots of Eq. (23), when r1 = r2 = r3 = 1, lie in the
region |arg(λ)| > απ/2.
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Fig. 3. Synchronization of the fractional order Chua system (18),
when (a, b, c) = (10.1911, 10.3035, 0.1631), α = (0.98, 0.98, 0.94)
and (k1, k2, k3) = (2, 2,−3).
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Fig. 4. Synchronization of the fractional order Chua system (18),
when (a, b, c) = (10.725, 10.593, 0.268) α = (0.93, 0.99, 0.92) and
(k1, k2, k3) = (5,−3, 1).

VI. CONCLUSION

In this paper, we study the master-slave synchronization,
based on the stability results of linear fractional order systems,
of coupled fractional order chaotic systems. We establish
theoretical results for chaos control and choas synchronization
of fractional order systems, such as the fractional extension
of Chen and Chua systems. The designed controller that
applied to the response system affects the system dynamics to
realize synchronization. The controller is designed such that
the components of the error system decay towards zero as the
time variable, t, tends to infinity. The numerical simulations
show the effectiveness and the feasibility of the proposed
scheme.
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A special kind of synchronization of different
chaotic discrete-time systems

Yong Chen, Yiliang Jin, and Xin Li,

Abstract—This paper presents a special kind of the generalized
synchronization of different discrete-time systems, proved by Lya-
punov asymptotical stability theorem. With the aid of symbolic-
numeric computation,we use the scheme to realize the synchro-
nization between 3D Rössler discrete-time system and Hénon-
like discrete-time system (The goal system for synchronization
is a function), as well as between 3D discrete-time hyperchaotic
system and Hénon-like map(The goal system for synchronization
is the Rössler system) via three scalar controllers.This discrete-
time chaotic system synchronization developed may be applied
to the design of secure communication.

Index Terms—discrete-time chaotic system, symbolic-numeric
computation, the generalized synchronization, backstepping de-
sign.

I. INTRODUCTION

Since Lorenz [1] presented the well-known Lorenz chaotic
system and Rössler [2] first introduced the Rössler hyperchaotic
system, many chaotic systems have been reported in nonlinear
field. In particular, since the pioneering works [3−6], Chaos
(hyperchaos) synchronization have played significant roles
because of its potential applications in secure communica-
tion. Up to now, many types of chaos synchronization have
been presented, such as complete synchronization, partial
synchronization, phase synchronization, lag synchronization,
projective synchronization, generalized synchronization, etc
[7−14]. For a particular chaotic system, the drive system,
together with an identical or a different system, the response
system, our goal is to synchronized them via coupling or
other method. Amongst all kinds of chaos synchronization,
the generalized synchronization is proposed in the continuous-
time systems[15−20]. It means there exists a functional relation-
ship between the states of the drive system and those of the
response system. A special kind of generalized synchroniza-
tion y = x + F is studied, where x, y are the state vectors
of the drive system and the response system respectively, F
is a given vector function, which may take various forms.
When F = 0, it reduces to a complete synchronization.Many
powerful methods have been reported to investigate some
types of chaos (hyperchaotic) synchronization in continuous-
time systems. In fact, many mathematical models of neural
networks, biological process, physical process and chemical
process, were defined using discrete-time dynamical systems
[21,22]. Recently, more and more attentions were paid to the

Y. Chen is with Shanghai Key Laboratory of Trustworthy Comput-
ing, East China Normal University, Shanghai, 200062 China e-mail:
(ychen@sei.ecnu.edu.cn

Y. Jin and X. Li are with Nonlinear Science Center and Department of
Mathematics of Ningbo University.

chaos (hyperchaos) control and synchronization in discrete-
time dynamical systems [23−28].
In this paper, we will use the scheme of the discrete-time
dynamical systems generalized synchronization and the back-
stepping design to realize our goal. A systematic and automatic
algorithm is set up to achieve successfully synchronization.
The numeric computation between 3D Rössler discrete-time
system and Hénon-like discrete-time system (The goal sys-
tem for synchronization is a function), as well as between
3D discrete-time hyperchaotic system due to Wang [29] and
Hénon-like map (The goal system for synchronization is the
Rössler system) are used to verify the effectiveness of the
proposed scheme.
The rest of paper is arranged as follows: In section A, we
first introduce generalized synchronization in discrete-time
systems; In section B, we give the numeric results of the
generalized synchronization between 3D Rössler discrete-time
system and Hénon-like discrete-time system; In section C, we
investigate the scheme between the 3D discrete-time hyper-
chaotic system and Hénon-like map; Finally, some conclusions
and discussions are given.

A. Generalized synchronization of discrete-time chaotic sys-
tems

Firstly we introduce the generalized synchronization in
discrete-time systems, and then we use Lyapunov stability
theory to realize our scheme.
Definition: For two discrete-time (chaotic or hyperchaotic)
dynamical systems (i) x(k + 1) = M(x(k)) and (ii)
y(k + 1) = H(y(k)) + u(x(k), y(k)), where (x(k), y(k)) ∈
Rm+m, k ∈ Z/Z−, and u(x(k), y(k)) ∈ Rm, let (iii)E(k) =
(E1(k), E2(k), ..., Em(k)) = (x1(k)−y1(k)+F1(k), x2(k)−
y2(k) + F2(k), ..., xm(k) − ym(k) + Fm(k)) be bound-
ary vector functions, if there exists proper controllers
u(x(k), y(k)) = (u1(x(k), y(k)), ..., um(x(k), y(k)))T such
that limk→∞(E(k)) = 0, we say that there exist generalized
synchronization between these two discrete-time chaotic sys-
tems.
Remark: It is necessary to point out that the controller
u desponds on the synchronization method chosen. When
Ei(k) = 0, (i = 1, ...,m), u = M(x) − H(y) + F is the
situation when all the error functions equal to zero and the
corresponding controller is trivial situation. For Ei(k) = 0,
we need only to solve the equations
E(k) = (E1(k), E2(k), ..., Em(k)) = (x1(k) − y1(k) +
F1(k), x2(k)−y2(k)+F2(k), ..., xm(k)−ym(k)+Fm(k)) =
(0, 0, ..., 0) to get the trivial controller ”u”. So here we just
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consider the general condition limk→∞(E(k)) = 0.
Based on the Lyapunov stability theory, for the error discrete-
time (iii) generated by drive system (i) and response system
(ii), let L(E1(k), E2(k), ..., Em(k))|Ei(k)≡0(i=1,2,..,m) = 0, if
4L(k) = L(k + 1) − L(k) ≤ 0, with the equality holding if
and only if Ei(k) ≡ 0(i = 1, 2, ..,m), it is said that systems
(i) and (ii) are generalized synchronized.
In this letter based on the backstepping design method, we
would like to present a systematic, generalized and construc-
tive scheme to seek the controllers such that 3D Rössler
discrete-time system and Hénon-like discrete-time system, as
well as between 3D discrete-time hyperchaotic system and
Hénon-like map via three scalar controllers are generalized
synchronized.

B. Numeric results of the generalized synchronization between
3D Rössler discrete-time system and Hénon-like discrete-time
system

In the following, using the beckstepping method and based
on Lyapunov stability theory, generalized synchronization of
3D Rössler discrete-time system and Hénon-like discrete-time
system is realized step by step.
Consider Rössler discrete-time system

x1(k + 1) = 3.8x1(k)(1− x1(k))− 0.05(x3(k) + 0.35)
∗(1− 2x2(k)),

x2(k + 1) = 3.78x2(k)(1− x2(k)) + 0.2x3(k),
x3(k + 1) = 0.1(1− 1.9x1(k))[(x3(k) + 0.35)

∗(1− 2x2(k))− 1],
(1)

and Hénon-like system with controllers u(x, y) y1(k + 1) = −by2(k) + u1(x, y),
y2(k + 1) = 1 + y3(k)− ay2(k)2 + u2(x, y),
y3(k + 1) = by2(k) + y1(k) + u3(x, y),

(2)

as the drive system and response system, respectively.
Firstly we give out the figures (Fig.1(a) and Fig.1(b)) of the
two systems with initial valuables [x1(0) = 0.1, x2(0) =
0.2, x3(0) = −0.5] and [y1(0) = 0.2, y2(0) = 0.7, y3(0) =
0.06], respectively. Here a = 1.07, b = 0.3.
(I): Let the error states beE1(k) = x1(k)− y1(k) + tanh(x1(k)),

E2(k) = x2(k)− y2(k) + tanh(x2(k)),
E3(k) = x3(k)− y3(k) + tanh(x3(k)),

(3)

Based on the backstepping design method and Lyapunov
stability theory, we can get the controllers .Here we omit the
concrete process. Finally, with the aid of symbolic computa-
tion, from

E1(k) = x1(k)− y1(k) + tanh(x1(k)), (4)

E2(k) = E1(k + 1)− c11E1(k), (5)

E3(k) = E2(k + 1)− c21E1(k)− c22E2(k), (6)

E3(k + 1)− c31E1(k)− c32E2(k)− c33E3(k) = 0, (7)

a
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Fig. 1. (a) Rössler discrete-time attractor; (b) Hénon-like discrete-
time attractor

Let the Lyapunov function be L(k) = |E1(k)|+ d1|E2(k)|+
d2|E3(k)|, d2 > d1 > 1. Then from (4), (5), (6) and (7), we
obtain the derivative of the Lyapunov function L(k)

∆L(k) = L(k + 1)− L(k)
≤ (d2|c31|+ d1|c21|+ |c11| − 1)|E1(k)|+ (d2|c32|

+d1(|c22| − 1) + 1)|E2(k)|
+(d2|c33|+ d1 − d2)|E3(k)|.

If we set these constants c11, c21, c22, c31, c32, c33 satisfy

d1|c21|+ d2|c31|+ |c11| < 1,
d1|c22|+ d2|c32| < d1 − 1,
|c33| < d2−d1

d2
,

then ∆L(k) is negative definite which denotes that the result-
ing close-loop discrete-time system

E1(k + 1)
E2(k + 1)
E3(k + 1)

 =


c11 1 0

c21 c22 1

c31 c32 c33


E1(k)
E2(k)
E3(k)



is globally asymptotically stable and limk→+∞Ei(k) = 0,
that is to say, Rössler 3D discrete-time hyperchaotic system
(1) and the Hénon-like map (2) are function projective syn-
chronized.
Then with the aid of symbolic computation, from the above
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equations (1) and (2) we obtained the controllers

u1(x, y) = 3.8x1(k)− 3.8x1(k)2 − 0.05x3(k)
+0.1x3(k)x2(k)− 0.0175− 0.965x2(k)
+by2(k)− tanh(−3.8x1(k) + 3.8x1(k)2

+0.05x3(k)− 0.1x3(k)x2(k) + 0.0175
−0.035x2(k))− c11x1(k) + c11y1(k)
−c11 tanh(x1(k)) + y2(k)− tanh(x2(k)),

u2(x, y) = 3.78x2(k)− 3.78x2(k)2 − 0.8x3(k)
−1 + ay2(k)2 + tanh(3.78x2(k)− 3.78x2(k)2

+0.2x3(k))− c21x1(k) + c21y1(k)
−c21 tanh(x1(k))− c22x2(k)
+c22y2(k)− c22tanh(x2(k))− tanh(x3(k)),

u3(x, y) = 0.1x3(k)− 0.2x3(k)x2(k)− 0.065
−0.07x2(k)− 0.19x1(k)x3(k)
+0.38x1(k)x3(k)x2(k) + 0.1235x1(k)
+0.133x1(k)x2(k)− by2(k)− y1(k)
+ tanh(0.0005(−10 + 19x1(k))(−20x3(k)
+40x3(k)x2(k) + 13 + 14x2(k)))
−c31x1(k) + c31y1(k)− c31 tanh(x1(k))
−c32x2(k) + c32y2(k)
−c32 tanh(x2(k))− c33x3(k)
+c33y3(k)− c33 tanh(x3(k)).

(8)

In the following we use numerical simulations to verify the
effectiveness of the obtained controllers u(x, y). Here take
c11 = 0.3, c21 = 0.02, c22 = 0.4, c31 = 0.05, c32 = 0.1, c33 =
−0.2, d1 = 4, d2 = 6, and the initial values of system (1)
and (2) respectively. The graphs of the error states are shown
in Fig.2 (a)-(c), and the attractors of the two systems with
controllers are displayed in Fig.3.

C. Generalized synchronization of 3D discrete-time hyper-
chaotic system and Hénon-like map

In this section, we would like to realize the generalized
synchronization of 3D discrete-time hyperchaotic systemx1(k + 1) = 0.5δx2(k) + (−2.3δ + 1)x1(k),

x2(k + 1) = 0.2δx3(k)− 1.9δx1(k) + x2(k),
x3(k + 1) = 2δ − 0.6δx2(k)x3(k) + (−1.9δ + 1)x3(k),

(9)
and the 3D Hénon-like discrete-time map y1(k + 1) = −by2(k) + u1(x, y, z),

y2(k + 1) = 1 + y3(k)− ay2(k)2 + u2(x, y, z),
y3(k + 1) = by2(k) + y1(k) + u3(x, y, z),

(10)

as the drive system and response system, respectively.
Firstly we give out the figures (Fig.4) of the discrete-time hy-
perchaotic system due to Wang with initial valuables [x1(0) =
0.05, x2(0) = 0.03, x3(0) = 0.02], [y1(0) = 0.2, y2(0) =
0.7, y3(0) = 0.06], and δ = 1.
The goal system for synchronization is the Rössler system

z1(k + 1) = 3.8z1(k)(1− z1(k))− 0.05(z3(k) + 0.35)
∗(1− 2z2(k)),

z2(k + 1) = 3.78z2(k)(1− z2(k)) + 0.2z3(k),
z3(k + 1) = 0.1(1− 1.9z1(k))[(z3(k) + 0.35)

∗(1− 2z2(k))− 1],

.

(11)
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Fig. 2. the orbits of the error states: (a) the orbit of e1; (b) the orbit
of e2; (c) the orbit of e3.
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Fig. 3. the two attractors after being synchronized (the dark one is
the response system with the controllers, and the other is the drive
system).

with the initial valuable [z1(0) = 0.1, z2(0) = 0.2, z3(0) =
−0.5].
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Fig. 4. the discrete-time hyperchaotic system due to Wang attractor

(I): Let the error states beE1(k) = x1(k)− y1(k)/2 + 1
32 tanh(x1(k))2 tanh(z1(k))2,

E2(k) = x2(k)− y2(k)/2 + 1
32 tanh(x2(k))2 tanh(z2(k))2,

E3(k) = x3(k)− y3(k)/2 + 1
32 tanh(x3(k))2 tanh(z3(k))2,

(12)

Based on the backstepping design method and Lyapunov
stability theory, we can get the controllers. Here we omit the
concrete process. Finally, with the aid of symbolic computa-
tion, from

E1(k) = x1(k)− y1(k)/2 +
1
32

tanh(x1(k))2 tanh(z1(k))2,
(13)

E2(k) = E1(k + 1)− c11E1(k), (14)

E3(k) = E2(k + 1)− c21E1(k)− c22E2(k), (15)

E3(k + 1)− c31E1(k)− c32E2(k)− c33E3(k) = 0, (16)

Let the Lyapunov function be L(k) = |E1(k)|+ d1|E2(k)|+
d2|E3(k)|, d2 > d1 > 1. Then from (13), (14), (15) and (16),
we obtain the derivative of the Lyapunov function L(k)

∆L(k) = L(k + 1)− L(k)
≤ (d2|c31|+ d1|c21|+ |c11| − 1)|E1(k)|
+(d2|c32|+ d1(|c22| − 1) + 1)|E2(k)|
+(d2|c33|+ d1 − d2)|E3(k)|.

If we set these constants c11, c21, c22, c31, c32, c33 satisfy

d1|c21|+ d2|c31|+ |c11| < 1,
d1|c22|+ d2|c32| < d1 − 1,
|c33| < d2−d1

d2
,

then ∆L(k) is negative definite which denotes that the result-
ing close-loop discrete-time system

E1(k + 1)
E2(k + 1)
E3(k + 1)

 =


c11 1 0

c21 c22 1

c31 c32 c33


E1(k)
E2(k)
E3(k)


is globally asymptotically stable and limk→+∞Ei(k) = 0,
that is to say, the discrete-time hyperchaotic system (9) and
the Hénon-like map (10) are function projective synchronized.

Then with the aid of symbolic computation, from the above
equations (9) and (10) we obtained the controllers



u1(x, y) = δx2(k)− 4.6δx1(k)
+2x1(k) + by2(k)
+0.0625 tanh(0.5δx2(k)
−2.3δx1(k) + x1(k))2

tanh(−3.8z1(k) + 3.8z1(k)2

+0.05z3(k)− 0.1z3(k)z2(k) + 0.0175
−0.035z2(k))2 − 2c11x1(k) + c11y1(k)− 0.0625c11
tanh(x1(k))2 tanh(z1(k))2 − 2x2(k) + y2(k)
−0.0625 tanh(x2(k))2 tanh(z2(k))2,

u2(x, y) = 0.4δx3(k)− 3.8δx1(k) + 2x2(k)
−1 + ay2(k)2 + 0.0625 tanh(0.2δx3(k)
−1.9δx1(k) + x2(k))2 tanh(3.78z2(k)
−3.78z2(k)2 + 0.2z3(k))2 − 2c21x1(k)
+c21y1(k)− 0.0625c21 tanh(x1(k))2 tanh(z1(k))2

−2c22x2(k) + c22y2(k)
−0.0625c22 tanh(x2(k))2 tanh(z2(k))2

−2x3(k)− 0.0625 tanh(x3(k))2 tanh(z3(k))2,
u3(x, y) = 4δ − 1.2δx2(k)x3(k)− 3.8δx3(k)

+2x3(k)− by2(k)− y1(k)
+0.0625 tanh(−2δ + 0.6δx2(k)x3(k)
+1.9δx3(k)− x3(k))2

tanh(0.0005(−10 + 19z1(k))(−20z3(k)
+40z3(k)z2(k) + 13 + 14z2(k)))2

−2c31x1(k) + c31y1(k)− 0.0625c31
tanh(x1(k))2 tanh(z1(k))2 − 2c32x2(k)
+c32y2(k)− 0.0625c32 tanh(x2(k))2

tanh(z2(k))2 − 2c33x3(k) + c33y3(k)
−0.0625c33 tanh(x3(k))2 tanh(z3(k))2.

(17)

In the following we use numerical simulations to verify the
effectiveness of the obtained controllers u(x, y, z). Here take
c11 = 0.3, c21 = 0.02, c22 = 0.4, c31 = 0.05, c32 = 0.1, c33 =
−0.2, d1 = 4, d2 = 6, and the initial values of system (9),
(10) and (11) respectively. The graphs of the error states are
shown in Fig.5 (a)-(c), and the attractors of the two systems
with controllers are displayed in Fig.6.
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Fig. 5. the orbits of the error states: (a) the orbit of e1; (b) the orbit
of e2; (c) the orbit of e3.
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Fig. 6. the two attractors after being synchronized (the dark one is
the response system with the controllers, and the other is the drive
system).

II. CONCLUSION

In summary, based on backstepping method and Lyapunov
stability theory, a systematic and automatic scheme is devel-

oped investigate the generalized synchronization between the
discrete-time drive systems and response systems: between the
3D Rössler discrete-time system and Hénon-like discrete-time
system (The goal system for synchronization is a function),
as well as between 3D discrete-time hyperchaotic system
and Hénon-like map (The goal system for synchronization
is the Rössler system) via three scalar controllers. Numerical
simulations show the effectiveness of the proposed scheme.
Some interesting figures are drown to show the generalized
synchronization between different discrete-time system. In
addition, the scheme can be also applied to investigate the
tracking problem in the discrete-time systems and to generate
automatically the scalar controller in computer with the aid of
symbolic-numeric computation.
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Abstract— One would expect a discretized difference equation to 

exhibit dynamical behavior similar to its differential counterpart. 

The Mickens non-standard discretization method effectively 

preserves the dynamical behavior of nonlinear ordinary and 

partial differential equations. In this article, we apply this method 

to fractional differential equations and thereby increase the 

accuracy of the solutions. 

 

Keywords—Fractional differential equations, dynamical systems, 

limit cycle, nonstandard schemes. 

 

 

I. INTRODUCTION 

The goal of any discretization process is to produce a 

difference equation whose dynamics are as close as possible to 

those of the original differential equation, but this is often 

difficult, particularly when we are dealing with nonlinear 

components in a differential equation. Thus the choice of 

discretization schemes that produce difference equations 

whose dynamics resemble those of their continuous 

counterparts poses a major challenge in numerical analysis. 

Mickens has introduced two such schemes for asymptotically 

stable systems [1] and Kahan has introduced another for 

periodic systems [2]. These and some other similar numerical 

methods for both differential equations and fractional 

differential equations are widely used, and the resulting 

difference equations are dynamically consistent with their 

continuous counterparts [3-8]. 

We shall apply Mickens’ non-standard method to fractional 

differential equations, which are increasingly used to model 

problems in a number of research areas including dynamical 

systems, mechanical systems, signal processing, control, chaos, 

chaos synchronization, and others. Some of these applications 

may be found in [9, 10] and the refrences therein. 

The most important advantage of using fractional differential 

equations in these and other applications is their non-local 

property. 
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It is well known that the integer order differential operator is a 

local operator but the fractional order differential operator is 

non-local. This means that the next state of a system depends not 

only upon its current state but also upon all of its historical 

states. This is more realistic and it is one reason why fractional 

calculus has become more and more popular. On the other hand, 

the integer order differential operator is indifferent to its history. 

Because of this, and because of some other significant 

properties of fractional differential equations, a great deal of 

effort has been expended over the past decade in attempting to 

find robust and stable numerical and analytical methods for 

solving these equations.  Numerical and analytical methods 

have included the finite difference method [11], the Adomian 

decomposition method [12-14], the variational iteration method 

[15-17], and the homotopy perturbation method [17, 18]. 

Among these, variational iteration and Adomian decomposition 

method are the most transparent because they provide 

immediate and visible symbolic terms of analytic solutions, as 

well as numerical approximate solutions to both linear and 

nonlinear differential equations without linearization or 

discretization. He [19, 20] has also proposed a new perturbation 

technique, the homotopy perturbation method, which has been 

applied to various nonlinear problems and particularly to 

oscillator equations. For more details, see [21-28] and the 

refrences therein. 

We shall see that the non-standard discretization is another 

numerical way to solve the fractional differential equations 

while preserving their crucial non-local property. Specifically, 

we apply the Mickens non-standard discretization scheme [1] 

to the Grunwald-Letnikov discretization process for fractional 

differential equations. We will see in section 3 that for some 

non-linear fractional differential equations, this leads to faster 

convergence and more accurate results when compared by 

standard alternative methods.  

 

 

II. GENERALIZING THE MICKENS METHOD OF NON-STANDARD 
DISCRETIZATION 

The forward Euler method is one of the simplest 

discretization schemes. In this method the derivative term 
dt

dy
 

is replaced by
h

tyhty )()( −+
, where h is the step size. 

However, in the Mickens schemes this term is replaced 

by
)(

)()(

h

tyhty

ϕ
−+

, where )(hϕ is a continuous function of step 
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size h . In addition to this replacement, if there are nonlinear 

terms such as )(2 ty  in the differential equation, these are 

replaced by )()( htyty + or )()( tyhty − . In dimensions two and 

above, nonlinear terms such as )()( txty  are either replaced 

by, )()( htxty + , )()( txhty +  or left untouched depending 

upon the context of the differential equation.  While we know 

of no appropriate general method for choosing the function 

)(hϕ or for choosing which nonlinear terms are to be replaced, 

some special techniques may be found in [1] and [29]. 

Applying this scheme to the first order ODE  

0)0()),(,( yytytf
dt

dy
==  

yields the difference equation 

0011 )()),(),(,()()()( ytytytytFhtyty nnnnn =+= ++ ϕ  

where ))(,())(),(,( tytftytytF = , nhtn = , hntn )1(1 +=+ and 

h is the step size. 

 Now we generalize this scheme to fractional differential and 

integral equations. We begin with the single fractional 

differential equation  

                                             

0)),(,()( ≥≥= tTtytftyDα and ,)( 00 yty =    (1)                     

where 0>α and αD denotes the fractional derivative in the 

Caputo sense [30], defined by 

)()( tyDJtyD nn αα −= . 

Here nn ≤<− α1 , Nn∈ and nJ is the thn -order Riemann–

Liouville integral operator defined as 

∫ −−
Γ

=
t

nn dyt
n

tyJ

0

1 )()(
)(

1
)( τττ , 

with .0>t  A limited number of methods have been used to 

solve the initial value problem (1). We have chosen to use the 

Grunwald-Letnikov method to enable us to apply Mickens' 

scheme. This method approximates the one-dimensional 

fractional derivative as follows [31]: 
[ ]

))()1(lim)(
0

0
jhty

j
htyD

ht

j

j

h
−








−= ∑

=

−

→

ααα ,    (2) 

where [ ]t  denotes the integer part of t and h is the step size. 
Thus equation (1) is discretized as  

 
[ ]

))(,()(
0

n

ht

j

njnj tytftyc
n

∑
=

− =α , ...,3,2,1=n ,     (3) 

where nhtn =  and α
jc  are the Grunwald-Letnikov coefficients 

defined as 

...,2,1,0,)1( =







−= −

j
j

hc
j

j

ααα
, 

or recursively by 

αα −= hc0   and ...,3,2,1,
1

1 1 =






 +
−= − jc

j
c jj

αα α
.   (4)                          

 We will now apply the Mickens discretization scheme to the 

above results by replacing the step size h  by a function 

of h , )(hϕ , and by changing any nonlinear term to the 

corresponding one defined above. In the next section we will 

present some examples to demonstrate the accuracy and 

efficiency of our approach. 

 

III. NUMERICAL RESULTS 

Our first example is the fractional order logistic equation 

)1()(D yyty −=α ,  10 ≤αp , 00 )( yty = .    (5) 

Using the Grunwald-Letnikov discretization method, equation 

(5) is discretized as 
[ ]

))(1)(()(
0

∑
=

− −=
ht

j

nnjnj

n

tytytyc
α , 00 )( yty = .    (6) 

Replacing h  by )(hϕ  and )(2 nty  by )()( 1−nn tyty  and doing 

some algebraic manipulation (6) yield 

)7(,)(,)(

))(()()())(()()))((()(

00

2

11

ytytyc

htytyhtyhty

N

j

jnj

nnnn

=

−−+=

∑
=

−

−+

α

ααα ϕϕϕα

where α
jc  is defined in equation (4). Now we must choose a 

reasonable )(hϕ . First, it is easy to see that the exact solution of 

(5) for 1=α is
0

0

)1(1
)(

ye

ye
ty

t

t

−+
= . Also, using the Euler 

discretization method, we have ))(1)((
)()(

0
0 tyty

h

tyty
−=

−
, 

so if we replace h  by 1)( −= hehϕ , we get the same solution as 

in the exact case. Therefore it is reasonable to choose 

1)( −= hehϕ in (7). We have used the recursive formula (7) to 

solve the logistic fractional differential equation for various 

values of α  and the results are illustrated in Figure 1-b. As 
expected, all of the solutions for different initial values 

and 1=α  converge to the stable fixed point of the equation, 

1=y . This convergence is faster than the convergence under 

the standard Grunwald-Letnikov method (see Figure 1-a).  We 

also compare the convergence of solutions for different values 

of ]1,0(∈α  using the standard Grunwald-Letnikov method 

(Figure 1-a) and using the Mickens non-standard method 

(Figure 1-b).  

   For our second example we have chosen the Brusselator 

system of fractional differential equations. As discussed 

elsewhere [32, 33] the integer differential order of this system 

has extensive dynamics. Indeed, the periodic solutions of this 

system are very sensitive to the parameters in the system.  The 

fractional order of this system is stated as 

                






−=

++−=

,)(D

)1()(D

2

2

112

2

2

111

2

1

yyyty

yyyaty

µ

µ
α

α

        (8) 

where ]1,0(∈iα  for 2,1=i . It is well known that this system 

has a unique limit cycle for 121 == αα  and 12 +> aµ . 

Furthermore, this limit cycle is stable 

whenever 12)1(2 +≤<− aa µ . Here, to compare our results 

with those found in [33], we fix 1=a  and 4=µ . It was shown 

in [33] that 0.97 is an upper bound on the so-called efficient 

dimension 21 ααα += on which the limit cycle exists. 
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Fig. 1. Different solutions of the Logistic fractional differential equations. In 

both figures Series 1 to 5 (from top to bottom) shows the solutions for α  
equal to 1.0, 0.8, 0.6, 0.4 and 0.2, respectively. (a) shows the results found by 

standard Grunwald-Letnikov method and (b) shows the results, with faster 

convergence, found by nonstandard Grunwald-Letnikov.  

 

 

Now we will show that this upper bound is reduced to 0.85 

by utilizing the non-standard discretization method. First, by 

applying the Grunwald-Letnikov method and replacing 

)( 1

2

1 −nty by )()( 1121 −− nn tyty , system (8) is discretized as 
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Note that there are some other similar terms such as 

)()()( 12111 −− nnn tytyty for replacing the non-linear term 2

2

1 yy in 

(8), but this makes no different in finding )( nty  or 

)( 1+nty recursively.  

 Following our previous example, we choose 

1)(1 −= hehϕ and heh −−= 1)(2ϕ . Also, to be consistent with 

the conditions in [33], we choose 2.0)( 01 =ty  and 

03.0)( 02 =ty  as our initial conditions with 025.0=h . 

Moreover, in searching for a lower bound on the efficient 

dimension 21 ααα +=  for which the limit cycle exits, we use 

the same algorithm as Wang and Li. That is, we first fix 1α  and 
change 2α by multiples of 0.1 or 0.01 up to the point that the 

limit cycle of the system (8) exists. Then we fix 2α and change 

1α in the same manner. Our numerical results show the rapid 

convergence for various values of 1α and 2α in ]1,0( . As we see 

in Figure 2 for 121 ==αα , the results found by our method and 

the ones found by the standard Grunwald-Letnikov method, 

using the dynamical system software Phaser [34], are in 

complete agreement. To find the limit cycle for smaller values 

of iα , such as 56.01 =α and 48.02 =α , we need more 

iterations. Indeed, for such smaller values we choose N =5000 

to obtain reasonable convergence. Finally, as mentioned above, 

we decrease the possible smallest efficient dimension on which 

the limit cycle exists from 0.97, found by Wang and Li [33], 

to 85.040.045.0 =+=α . The limit cycle for this case is 

illustrated in Figure 2. 

 

 

IV. CONSEQUENCES 

Obviously, a central issue in the numerical integration of any 

differential equation is determining a reasonable method of 

discretizing the equation. This issue is complicated in the case 

of fractional differential equations due to the existence of long 

series of computations. As we have seen in this article, using 

the Mickens non-standard discretization method can improve 

the accuracy of computation, particularly when the fractional 

differential equation is nonlinear. This method can be used for 

either individual or systems of fractional differential equations. 

In particular, by applying this method to the Brusselator 

system of fractional differential equations, we reduced the 

efficient dimension for the existence of the limit cycle to 0.85. 

Finally, we observe that we can use the Mickens non-standard 

discretization method in conjunction with not just the 

Grunwald-Letnikov method, but also with any other 

discretizing process for fractional differential equations. 
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Fig. 2. Limit cycle for the Brusselator fractional differential equations using the 

nonstandard Grunwald-Letnikov method. The values of ),( 21 αα are (1.0, 1.0), 

(0.56, 0.48), (0.50, 0.40) and (0.45, 0.40), respectively in figures (a)-(d). In all 

these figures the initial value is )03.0,02.0(),( 21 =yy with 025.0=h , and just 

1000 of the last iterations are illustrated. 
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Abstract—Fractional actionlike variational approach with 

time-dependent dynamical fractional dimensions on multifractal sets 
of time and space is constructed. Fractional Euler-Lagrange 
equations are derived and discussed in some details. The case of 
harmonic oscillators with time-dependent mass and time-dependent 
frequency is explored and many interesting consequences are 
revealed, in particular the emergence of complexified dynamical 
systems from the real fractional action.1 

 
Index Terms—fractional action-like variational approach, 

multifractal sets, fractional Euler-Lagrange equations, complexified 
harmonic oscillators 

I. INTRODUCTION 

Fractional Calculus (FC) is a particular field of applied 
mathematics which dates back to the late part of seventeenth 
century and grows out of the conventional definitions of the 
calculus integral and derivative operators in much the similar 
way fractional exponents is a consequence of exponents with 
integer value. It is defined as a generalization of differentiation 
and integration to an arbitrary order with a broad range of 
applications in different research areas. It plays a vital role in the 
understanding of complex classical and quantum (conservative 
and dissipative) dynamical systems with holonomic as well as 
with nonholonomic constraints. Physicists and mathematicians 
have begun to investigate the territory of applications of 
fractional calculus with ever new developments speedily taking 
place in the field of statistical and nonlinear physics including 
hydrology (identification of the instantaneous unit hydrograph), 
seismic exploration (viscoelasticity), heat conduction and 
diffusion (super and subdiffusion with growth rate or shape of 
the particle distribution different than Gaussian), polymer 
physics, biophysics and thermodynamics, Brownian random 
walks with memory, modeling dispersion and turbulence, 
oscillating vortex chain, automatic control theory, transfer 
equation in a medium with fractal geometry, stochasting 
modeling for ultraslow diffusion, kinetic theories, far-from 
equilibrium statistical models manifesting scale invariance and 
scaling processes, dispersive transport in amorphous 
semiconductors, glasses, liquid crystals, biopolymers, proteins, 
biosystems, ecosystems, finance and economics, non-local 
correlations and extensive symmetry breaking, plasma physics, 
modeling mechanical and electrical properties of real materials, 
description of rheological properties of rocks, dynamics in 
complex media, wave propagation in complex and porous 
media, astrophysics, cosmology, quantum field theory, potential 
theory, financial time series, signal processing, fluctuations in 
solids, telecommunications, generation of artificial landscapes,, 
reservoir engineering (poroelasticity), environmental 
geophysics (modeling of ground-penetrating radar), 
geophysical fluid dynamics (parameterization of turbulence in 
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meteorology and oceanography), to ecology and climatology 
(relationship between forests and greenhouse gases) and so on 
[1,2,3,4,5]. We refer the reader interested on fractional theory to 
the comprehensive book [2]. The FC is very rich and abundant 
applications and physical materializations have been found. 
However, these applications and the mathematical settings 
surrounding fractional calculus are far from ironic. While the 
physical significance is tricky to grasp, the fractional definitions 
themselves are no more rigorous than those of their integer 
order counterparts. The fractional derivatives and integrals 
portray more precisely the non-trivial behavior of complex 
physical systems whose dynamics are distant from equilibrium, 
i.e. dealing with fractional derivatives is not more complex than 
with usual differential operators. Dynamical equations in 
fractional derivatives describe normally the evolution of 
physical systems with loss, the fractional exponent of the 
derivative being a measure of the fraction of the states of the 
dynamical system that are preserved during the evolution time. 
Moreover, a growing body of empirical evidence supports the 
importance of fractional integral in quantum dynamics where 
important data series might be fractionally integrated. The 
definition of the fractional order derivative and integral are not 
unique where several definitions exist ranging from 
Grunwald-Letnikov fractional derivative, Caputo, Weyl, Feller, 
Erdelyi-Kober, Riesz fractional derivatives, etc., but the 
Riemann-Liouville (RL) and Caputo operators are still the most 
frequently used and have been popularized when fractional 
integration is performed.  
 
The Fractional Calculus of Variations (FCV) based on 
fractional calculus was proved lately to be a practical device for 
description of physics beyond the standard model with 
holonomic as well as with nonholonomic constraints. Diverse 
forms of fractional Euler-Lagrange equations were obtained in 
literature depending on the action and type of fractional 
derivative used [6]. The main trouble with nearly all of these 
approaches is the presence of non-local fractional differential 
operators and the adjoint of a fractional differential operator 
used to describe the dynamics is not the negative of itself. 
Further, the derived fractional Euler-Lagrange equations 
depend on left and right fractional derivatives, even when the 
dynamics depend only on one of them. Other complicated 
problems occur during the mathematical manipulations as the 
manifestation of a very complicated Leibniz rule (the derivative 
of product of functions) and the absence of any fractional 
analogue of the chain rule. One successful method to model 
non-conservative field theories was proposed by the author in 
2005 and is entitled the Fractional Action-Like Variational 
Approach (FALVA) and is based on the notion of left 
Riemann-Liouville fractional integral functionals with one 
parameter α  but not on fractional-order derivatives of the same 
order [7,8]. The derived fractional Euler-Lagrange equations 
are analogous to the standard one but with the company of 
fractional external force acting on the physical system. Many 
encouraging results were obtained and discussed ranging from 
classical dynamics to quantum field theories and high energy 
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physics. It is note-worthy that the formulation of the fractional 
problems of the COV still needs more amplification as the 
problem is strongly linked to the fractional quantization process 
and to the presence of non-local fractional differential 
operators. Our main aim in the present work is to extend the 
FALVA in order to describe the dynamic characteristics of 
Lagrangian systems defined on multifractal time and space sets, 
in particular when the fractional dimensions of time and space 
are dynamical, e.g. 1 ( )i id xε= +

r
. This notion is based on the 

ideas of the fractal geometry of nature and is expected to work 
on a small multifractal intervals set iS  which is build from 
multifractal subsets ( )iS x

r
[9,10]. It is moreover connected to the 

generalization of the Riemann-Liouville fractional derivatives. 
Each of them consists in fact of a continuous, but not 
differentiable bounded set of small elements. Furthermore, both 
time and space are considered as the only material fields 
existing in the Universe and hence generating all other physical 
fields. In this work, we suppose that the fractal dimensions are 
slightly differs from unity, i.e. 1ε <<  and hence valid for small 
densities of Lagrangians in points ix

r
. The function ( )i id d x=

r
is 

expected to be continuous and describes the fractional 
dimensions. The method and the theory are developed to 
describe dynamics of functions defined on multifractal sets of 
time and space with fractional dimensions and many interesting 
and appealing consequences are revealed [11-22]. It is 
remarkable that fractional calculus is based on rational numbers 
while fractals are irrational in general. As naturally rational 
numbers are just a special case, fractals and fractal spacetime 
came first. Historically it is also that way. It is striking that in 
fact, fractals in quantum mechanics are equally legitimate as in 
the classical theory.  
 
The paper is organized as follows: In Sec. II, we construct the 
fractional Euler-Lagrange equations for the fractional 
action-like variational appraoch with time-dependent fractional 
dimension. In Sec. III, we discuss the real and complexified 
cases of harmonic oscillators. The paper concludes in Sec. IV 
with a brief summary of main results and future challenge and 
perspectives. We follow the rationale of [13] where it is 
assumed that at least one stationary point for the fractional 
functional exists. We introduce the main notations, conventions 
and assumptions that underlie the remainder of the present work 
1. In the notation ( )t f t→ , t is a dummy variable. 
2. Exactly, the same function can be written, for example 

( , , ) ( , , )q q f q qτ τ→& & ; , ,q q τ& are here dummy variables. 
3. For ( , , ) ( , , )q q f q qτ τ→& & , the partial derivative of f with 

respect to the first argument is denoted by L q∂ ∂ & . 
4. Following our previous work, we use in this paper the left 

fractional Riemann-Liouville integral which is the most 
widely used definition of an integral of fractional order is 
via an integral transform defined as 

               
( )

1

0

1
( ) ( )( )

t

a t
t

I f t f t dα ατ τ τ
α

−= −∫
Γ

, 0 1α< < . 

5. No fractional-order derivatives will be introduced.  

 

 

 

II-FRACTIONAL EULER-LAGRANGE EQUATIONS WITH 

TIME-DEPENDENT FRACTIONAL DIMENSIONS 

 

In order to build the theory, it is needed to characterize the 
functionals determined on the functions, given on a multifractal 
sets. For this, we suggest the following problem [7,8]: 
 
Problem II-1: Find the stationary points of the integral 
functional on multifractal time and space sets 

[ ]
( ) 1 ( ) 1

0 0

( ) ( )( )
( ( ), ( ), ) ( ( ), ( ), )

( ( )) (1 ( ))

t t

L
t t

t t
S q L q q d L q q d

α τ α ττ α τ τ
τ τ τ τ τ τ τ τ

α τ α τ

− −− −
= =∫ ∫

Γ Γ +
& &  

                           ( ) 1

0

( ( ), ( ), ) ( )( )
t

t

L q q t dα ττ τ τ α τ τ τ−≈ −∫ & ,                    (1) 

under the initial condition ( ) aq a q= .  
Here q dq dτ=& , ( ( ))α τΓ is the Euler gamma function defined by  
                               ( ) 1

0
( ( )) exp( )dα τα τ τ τ τ∞ −Γ = −∫ ,  

τ  is the intrinsic time and t  is the observer time, t τ≠ . 

{ } 1in α= + and { }iα  is the integer part of iα  with 0iα ≥  for 
1 in nα− ≤ <  and 0n =  for 0iα < . The smooth Lagrangian 

function  
                                    [ ]: , n nL a b × × →� � � ,  
is a 2C -function with respect to all its arguments. It is 
noteworthy that time-dependent fractional dimension plays a 
leading role in different branches of dynamical systems 
including self-affine time-sequential data [23], blast furnace 
iron making process and so on [24].  
 
Remark II-1: In equation (1), we recognized the 
Riemann-Liouville operator of fractional integration in 
Lebesgue integrable space: 

                    11
( ) ( )( )

( )

t

a t
a

I f t f t dα ατ τ τ
α

−= −∫
Γ

, ( ) 0αℜ > ,                 (2) 

                                 ( )
n

n
a tn

d
I f t

dt

α += , ( ) 0,n nα− < ℜ ≤ ∈� .           (3) 

Since we have defined fractional differentiation through 
integration, fractional derivatives are no longer local 
operations. They are defined over an interval. This may be why 
Leibnitz believed it was a paradox since his aspiration is to 
obtain a unique and local derivative. Moreover, because the 
Euler-Gamma function is defined for all C\{0, −1, . . .}, we can 
still define fractional calculus of complex order, however, in 
this particular case the power function requires a branch cut 
typically chosen to be a ray originating from a and passing 
through the origin. Furthermore, due to the fact that the 
absolute continuity is known to be a sufficient condition to 
fractional integration, the space of functions chosen above 
corresponds to the absolutely continuous functions. 
 
Remark II-2: The fractional operators are in reality global 
(non-locals) operators and limits in the sense of ultra-long time. 
For that main reason, dynamical systems with fractional order 
are non-conservatives and hence fractional calculus of 
variations is extensively used for describing intermediate 
physical processes and critical phenomena in non-equilibrium 
complex non-linear systems.  
 
Theorem II-1: If ( )q � are solutions to the previous problem, i.e. 
( )q � are critical points of the function (1), then ( )q � satisfy the 

following fractional Euler-Lagrange equation: 

               
( ( ), ( ), ) ( ) ( )

ln( )
k

d L q q d n
t

d q d t

τ τ τ α τ α τ
τ

τ τ τ
 ∂ −+ − +  ∂ − 

&

&
 

          
1 ( ( ), ( ), ) ( ( ), ( ), )

( ( )) 0
( ( )) k k

d L q q L q q

d q q

τ τ τ τ τ τ
α τ

α τ τ
 ∂ ∂

− Γ − =Γ ∂ ∂

& &

&
.   (4) 
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Proof: We let 0( )kq τ  be the minimum solution and write 
0

k k kq q σ= +  where ( )kσ τ  describes the deviation of ( )kq τ  from 
the minimum path 0( )kq τ . Now insert into equation (2) gives: 

            [ ]
( )

0 0

0

( )
( ( ) ( ), ( ) ( ), )

( ( ))

nt

L k k k k
t

t
S q L q q d

α ττ
τ σ τ τ σ τ τ τ

α τ

−−
= + +∫

Γ
& &                       

Performing Taylor expansions to first order in ( )kσ τ&  and ( )kσ τ , 
yields: 

      [ ] ( )
( )

0 0

0

( )
( ( ), , ) ( ) ( )

( ( ))

nt

L k k k k
t k k

L L t
S q L q q d

q q

α ττ
τ τ τ σ τ σ τ τ

α τ

− ∂ ∂ −
= + +∫  

∂ ∂ Γ 
& &

&
                         

After integrating easily the term in ( )σ τ  by parts, we obtain 
easily: 

                    [ ] ( )
0

( )
0 0 ( )

( ( ), , )
( ( ))

nt

L k k
t

t
S q q q d

α ττ
τ τ τ τ

α τ

−−
= ∫

Γ
&      

        ( )
0

( )
( )( ) 1

( )
( ( )) ( ( ))

nt
n

k kt

t d L d L
t

d q d q

α τ
α ττ

σ τ τ
α τ τ τ α τ

−
−    − ∂ ∂

− + −∫    Γ ∂ Γ ∂    & &
            

   
( )

( )1 ( ) ( )
ln( ) ( )

( ( )) ( ( ))

n
n

k k

d n L L t
t t d

d t q q

α τ
α τα α τ τ

τ τ τ
α τ τ τ α τ

−
− − ∂ ∂ − + − + − −  Γ − ∂ ∂ Γ   &

  

from which we get the required results.  

 
Remark II-3: We may substitute into equation (4) the third term 
inside the bracket by the digamma function which is defined as 
the logarithmic derivative of the gamma function as [25]: 

                     
1

( ( )) ln ( ( )) ( )
( ( ))

d d

d d
α τ α τ ψ τ

α τ τ τ
Γ = Γ =

Γ
,                  (5) 

which it is the first of the polygamma functions and has the 

integral representation: 

                               
1

1 1
( )

( )k k k
ψ τ γ τ

τ τ

∞

=
= − − + ∑

+
.                             (6) 

where γ  is the Euler-Mascheroni constant defined by:        

                    
1

1
lim log 0.57721566490153286....

n

n k

n
k

γ
→∞ =

 = − ≈∑ 
 

.        (7) 

Corollary II-1: The fractional Euler-Lagrange equation in 
terms of the polygamma function is written as follows: 

                         
( ( ), ( ), ) ( ( ), ( ), )

k k

L q q d L q q

q d q

τ τ τ τ τ τ
τ
 ∂ ∂

−  
∂ ∂ 

& &

&
 

        
( ) ( ) ( ( ), ( ), )

ln( ) ( ) Gen
i

k

d n L q q
t F

d t q

α τ α τ τ τ τ
τ ψ τ

τ τ
− ∂ = − + − − ∂ 

&
�

&
.        (8) 

Here Gen
iF  is the extended modified frictional force which is a 

common type of non conservative force. It is note-worthy that 
for ( )α τ α= = constant and 1nα = = , equation (8) reduces to the 
standard Euler-Lagrange equation.  
 
Remark II-4: For a one-degree of freedom non-conservative 
dynamical system described by the Lagrangian  

                              21
2

( ( ), ( ), ) ( ) ( ( ))L q q q V qτ τ τ τ τ= −& & ,  

the equation of motion is clearly given by: 

                  
( ) ( )

( ) ln( ) ( ) ( )
d n V

q t q
d t q

α τ α τ
τ τ ψ τ τ

τ τ
− ∂ + − + − = − − ∂ 

&& & .    (9) 

III-FROM REAL TO COMPLEXIFIED HARMONIC 

OSCILLATORS 
In order to exemplify, we discuss the harmonic oscillator case. 
In fact, for the case of a harmonic oscillator with quadratic 
Lagrangian with time-dependent mass and time-dependent 
frequency, i.e.  

                          2 2 21 1
2 2

( ( ), ( ), ) ( ) ( ) ( )L q q m q m qτ τ τ τ τ ω τ= −& & , 

 equation (8) is reduced to: 

        2( ) ( ) 1
( ) ln( ) ( ) ( ) ( ) 0

d n dm
q t q q

d t m d

α τ α τ
τ τ ψ τ τ ω τ

τ τ τ
− + − + − + + = − 

&& & ,    (10) 

which may be rewritten like: 

               ( )( ) 2( ) ln( ) ( ) ( ) ( ) ( ) 0nd
q t m q q

d

α ττ τ τ ψ τ τ ω τ
τ

− + − − + =  
&& & .  (11) 

If for instance ( ) 1( ) [ln( ) ] ( )nm t dα ττ τ ψ τ τ− −∝ − ∫ , equation (11) is 
reduced to: 

                                        2( ) ( ) ( ) 0q qτ ω τ τ+ =&& .                           (12) 

It is interesting to have a harmonic oscillator with 
time-dependent mass ( )m τ function of the dynamical fractional 
dimension. It is noteworthy that if for instance t τ< , we may 
substitute the logarithmic term inside equation (11) by     
                                2ln( ) ln( ) ln lnt T i T i Tτ π− = − = = +  
( 0T tτ= − > and 1i = − ) and therefore equation (11) takes the 
particular form: 

            ( )( )( ) 2( ) ln ( ) ( ) ( ) ( ) 0
nd

q i T m q q
d

α ττ π τ ψ τ τ ω τ
τ

− + + − + =  
&& & , (13) 

with ( )q T dq dT=&  and consequently for  
                                  ( )( ) ( ln ) ln ( ( ))nm i T α ττ π α τ−= + Γ ,  
equation (12) holds. This mass is complexified in the sense that 
one can rewrite it in the form: 

                          ( )( ) ln ln ( ( )) ln ( ( ))nm T iα ττ α τ π α τ−= Γ + Γ .            (14) 

It is as well appealing to have a complexified harmonic 
oscillator mass emerging from a non-complexified action. This 
fact could have motivating consequences in high energy physics 
and gauge field theories [26]. If in contrast ( )( ) ln( )nm t α ττ τ −∝ − , 
then equation (11) is reduced to:  

                                 2( ) 2 ( ) ( ) 0q q q
η

τ τ ω τ
η

+ + =
&

&& & ,                         (15) 

where 2 ( ) ( ( ))η τ α τ− ∝ Γ . The term ( )η τ may be identified to the 
square-root of an effective mass ( )M τ , i.e. ( ) ( )Mη τ τ= .  
Hence 2 1( ) ( ) ( ( ))M τ η τ α τ−= = Γ . It is an easy exercise to prove that 
the solution is given by [19,27]: 

                             [ ]( ) ( ) cos( ( )) sin( ( ))x A Bτ ρ τ β τ β τ= + ,              (16) 

where ( ) ( ) ( )ρ τ χ τ η τ=  and ( )β τ  refers to the phase and 
amplitude of the oscillators and ( , )A B  are constants which can 
be determined by imposing the conditions ( )x xτ ′ ′=  and 
( )x xτ ′′ ′′= , then: 

                                   2 2( ) ( ( ) ) 0η χ χβ χ ω τ η η− + − =&&& && ,                 (17) 

                                               
2

0
χβ

β
χ

+ =
&&

&& .                               (18) 

It is noteworthy that the wave function for a harmonic 
oscillator with time-dependent mass ( )m m τ= and frequency 

( )ω ω τ=  described by the fractional Euler-Lagrange equations 
is given by [28]: 

                    
1 ( ) ( ) 1

( , ) exp ( )
22 !

n n

m
x i n

n

τ β τ
ψ τ β τ

π
  = − +  

  

&

h
 

        2(( )) ( ) ( ) ( ) ( )
exp ( )

2 ( ) ( )
n

im m
i x H x

τ χ τ η τ τ β τ
β τ

χ τ η τ

   
 × − + ×        

&& &
&

h h
.(19) 

nH  being the Hankel function. The fractional evolution of 
strongly pulsating mass and quantum damped harmonic 
oscillator as well as their stationary states could then be 
deduced from our fractional action-like variational approach.  
 

Remark III-1: In fact, using the substitution  ( ) ( ) ( )q qτ τ η τ=  with 
1 2( ) ( ) ( ( ))Mη τ τ α τ−= = Γ , equation (15) takes the form: 

                        
2

2 1 ( ) 1 ( )
( ) ( ) 0

4 ( ) 2 ( )

M M
q q

M M

τ τ
τ ω τ

τ τ

  
 + + − = 
   

& &&
&& ,        (20) 
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which can be rewritten in the form: 

  
2 2

2 2

2

1 1 1 1
( ) ( ( )) ( ( )) ( ) 0

4 ( ( )) 2 ( ( ))

d d
q q

d d
τ ω α τ α τ τ

τ α τ α ττ

    
+ + Γ − Γ =   Γ Γ    

&& . (21) 

Hence we have a particular harmonic oscillator with a 
time-dependent frequency ( )τΩ  identified to: 

                        
2

2 2 1 ( ) 1 ( )
( )

4 ( ) 2 ( )

M M

M M

τ τ
τ ω

τ τ
 

Ω ≡ + − 
 

& &&
 

                
2 2

2 2

2

1 1 1 1
( ( )) ( ( ))

4 ( ( )) 2 ( ( ))

d d

d d
ω α τ α τ

τ α τ α ττ

   
= + Γ − Γ   Γ Γ   

.    (22) 

The general solution is given by [19,27] 

                           [ ]( ) ( ) cos( ( ) sin( ( ))q A C Dτ τ σ τ σ τ= + ,              (23) 

C  and D  are constants which  may be determined by using two 
conditions on the classical trajectory and where the amplitude 
( )A τ  and the phase ( )σ τ satisfy equations 

                           3 2 4 2( ) ( ) ( ) ( )A A A Eτ τ ω τ τ+ =&& ,                         (24) 

                                      2( ) ( )A Eσ τ τ =& ,                                      (25) 

0 E< ∈�  and can be taken equal to one.  
Accordingly, we have a fractional description of a harmonic 
oscillator with time-dependent mass and time-dependent 
frequency exhibiting diverse types of behavior and which may 
be practical in quantum dynamical systems. Generally the 
quantum-mechanical behavior of various damped harmonic 
oscillators is done making use of the path-integral method and 
second quantization methods. The fractional approach 
elaborated here offers a novel approach.  
 
More exemplification could be done if we consider merely a 
simple pendulum of length l  attached to the circumference of 
a body of small radius and mass M  assumed to be time-
dependent. The linear kinetic energy is 2 21

2
( ) ( )K M lθ τ θ= &  and 

the potential energy for small oscillations is 21
2

( ) ( )V M glθ τ θ= . 
Here θ  is the angular coordinate. The Lagrangian of the 
dynamical system is then given by L K V= − . As a result, 
equation (8) yields the following non-linear differential 
equation: 

            2( ) ( )
( ) ln( ) ( ) ( ) ( ) 0

d n
t

d t

α τ α τ
θ τ τ ψ τ θ τ ω θ τ

τ τ
− + − + − + = − 

&& & ,   (25) 

which for ( ) ln( )n tα τ τ= − − , takes the special form: 

                               2( ) ( ) ( ) ( ) 0θ τ ψ τ θ τ ω θ τ− + =&& & .                           (26) 

where time-derivative is done with respect to τ , 2 g lω = and g  
being the gravity constant. Equation (25) may be identified to 
equation (15) if for instance 2 1( ) ( ( ))η τ α τ−= Γ .  
The term ( )η τ may be identified here to the square-root of an 
effective complexified mass ( )M τ% , i.e. ( ) ( )Mη τ τ= − % . Hence 

2 1( ) ( ) ( ( ))M τ η τ α τ−= − = −Γ . 

 
Remark III-2: Making use of the substitution ln( ) lnt i Tτ π− = + , 
we may rewrite equation (8) like: 

                       
( ( ), ( ), ) ( ( ), ( ), )

k k

L q T q T T d L q T q T T

q dT q

 ∂ ∂
−  

∂ ∂ 

& &

&
 

      
1

( ) ( ) 1 1 ( ( ), ( ), )
( ln )

( )k k

d T T n L q T q T T
i T T

dT T k T k q

α α
π γ

∞

=

 − + ∂
= + + + − ∑ + ∂ 

&

&
. (27) 

The presence of the complex number inside equation (26) 
motivates us to propose the following conjecture: “In fact, we 
may start with a real Lagrangian system with N-degrees of 
freedom and a Lagrangian depending analytically on the 
dynamical variables, then complexified the system and 

subsequently reconsidered as a Lagrangian system with 2N- 
real degrees of freedom”.  
 
For this, we make the dependent variable complex and write 

1 2( ) ( ) ( )q q iqτ τ τ= + . Naturally, under complexification, the 
potential becomes complex, i.e. 1 2 1 1 2 2 1 2( , ) ( , ) ( , )V q q V q q iV q q= +  
where 1 1 2( , )V q q and 2 1 2( , )V q q satisfy the Cauchy-Riemann 
condition: 

                                           1 2

1 2

V V

q q

∂ ∂
=

∂ ∂
,                                    (28)  

                                           1 2

2 1

V V

q q

∂ ∂
= −

∂ ∂
.                                   (29) 

Similarly the Lagrangian takes the special form: 

         [ ]2 2
1 2 1 2 1 1 2 1 2 2 1 2

1
( ) ( ) ( , ) ( , )

2
L q L iL q q V q q i q q V q q

 → + = + − + −  
& & & & , (30) 

with 

                                           
1 2

1

2
i

q q q

 ∂ ∂ ∂
= − 

∂ ∂ ∂ 
.                         (31) 

Therefore equation (27) is splitted into two equations (real and 

complex parts respectively): 

  
1 1 1 2

( ) ( ) ( )
ln ( )

L d L d T T n L d T L
T T

q dT q dT T q dT q

α α α
ψ π

 ∂ ∂ − ∂ ∂ − = + − +   ∂ ∂ ∂ ∂  & & &
,(32) 

 
2 2 2 1

( ) ( ) ( )
ln ( )

L d L d T T n L d T L
T T

q dT q dT T q dT q

α α α
ψ π

 ∂ ∂ − ∂ ∂ − = + − −   ∂ ∂ ∂ ∂  & & &
.(33) 

To illustrate, we reconsider the simple pendulum of length l  
attached to the boundary of a body of small radius and mass 
M  assumed to be time-independent. The linear kinetic energy 
is 2 21

2
( )K Mlθ θ= &  and the potential energy for small oscillations 

is 21
2

( )V Mglθ θ= . Here 1 2iθ θ θ= +  is the angular coordinate. 
Hence we are dealing with a complexified harmonic oscillator 
model. It is noteworthy that complexified harmonic oscillators 
play a crucial role in Crypto-gauge invariant models related to 
PT-symmetric models [29], e.g. Lotka-Volterra predictor-prey 
model and the Euler equations for the free rotation of a rigid 
body [30]. In fact, there exist quantum mechanical models with 
specific complex terms in the Hamiltonian that admit real 
spectra and unitary evolution. In a general context, it was 
observed that the real part of the Hamiltonian can generate the 
dynamics in a real phase space and that the imaginary part, 
treated as a constraint, can generate symmetry transformation. 
The Lagrangian of the dynamical system is then given by: 

       2 2 2 2 21
1 2 1 2 1 2 1 22

( ) ( )L K V M l g iM l gθ θ θ θ θ θ θ θ   = − = − − − + −   
& & & & .(34) 

As a result, equations (32) and (33) yield the following non-
linear differential equations: 

          2
1 1 2 1

( ) ( ) ( )
ln ( ) 0

d T T n d T
T T

dT T dT

α α α
θ ψ θ π θ ω θ

− + + − − + = 
 

&& & & ,    (35) 

           2
2 2 1 2

( ) ( ) ( )
ln ( ) 0

d T T n d T
T T

dT T dT

α α α
θ ψ θ π θ ω θ

− + + − + + = 
 

&& & & .  (36)                       

Here d dTθ θ=& . Numerical analyses of these coupled non-linear 
differential equations are under progress. However, it is 
remarkable that, if for instance, 1( ) , ( , )mT QT m Qα −= ∈� , then 
equations (35) and (36) may be rewritten as: 

    2
1 1 2 12

ln (1 )
(1 ) ( ) 0

m m m

T Q n Q m
m Q T

TT T T

π
θ ψ θ θ ω θ

+

− + − + − − − + = 
 

&& & & ,(37) 

  2
2 2 1 22

ln (1 )
(1 ) ( ) 0

m m m

T Q n Q m
m Q T

TT T T

π
θ ψ θ θ ω θ

+

− + − + − − + + = 
 

&& & & . (38) 

Therefore, for 0 1m< < which corresponds for an increasing 
fractional dimension with time, equations (37) and (38) are 
simplified for very large time to: 
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                   2
1 1 1

ln
(1 ) ( ) 0

m

T n
m Q T

TT
θ ψ θ ω θ + − − − + = 

 
&& & ,                  (39) 

                   2
2 2 2

ln
(1 ) ( ) 0

m

T n
m Q T

TT
θ ψ θ ω θ + − − − + = 

 
&& & .                 (40)                                   

If, in contrast, 1m > which corresponds for a decreasing 
fractional dimension with time, then equations (37) and (38) are 
simplified for very large time to:   

                              2
1 1 1( ) 0

n
T

T
θ ψ θ ω θ − + + = 

 
&& & ,                          (41) 

                              2
2 2 2( ) 0

n
T

T
θ ψ θ ω θ − + + = 

 
&& & .                        (42) 

The previous equations require numerical solutions and it is the 
author’s speculation that they may play important role on 
complexified oscillatory dynamical systems with 
time-dependent mass and time-dependent frequency. Work in 
this direction is also under progress.  
 

IV-CONCLUSIONS AND PERSPECTIVES 
To the best of our knowledge, this work represents the first 
attempt to explore the complexified Euler-Lagrange equations 
for a dynamical systems starting from a real fractional 
action-like integral approach. That will be the beginning, we 
believe, of new exciting investigations. Our contribution is, 
however, only theoretical and, in that sense, more modest. The 
emerging complexified fractional theory is still an open 
problem under development, and up to this point, many of the 
theories and formulations presented in this work are only 
mathematical exercises. We anticipate they will open up in the 
future a new stimulating research area in different branch of 
mathematical physics and provide us by a powerful tool to 
understand many fundamental problems in the area of 
complexified dynamical systems. Future research efforts may be 
directed towards formulating predictions that can be tracked 
tested numerically. Since in our framework we argued that 
time-dependent fractional dimensions could have appealing and 
interesting consequences in classical dynamical systems, it 
follows naturally that it should also attractive features in 
quantum field theory with complexified gauge as by itself, 
Nature is fractal. Therefore, it is not a big surprise that quantum 
spacetime and consequently quantum field theory (in particular 
the particle physics classification) could be as well and 
supplementary accompanied with a time-dependent fractional 
dimension. For all these stated reasons, it seems for us 
indispensable to incorporate in a future work the fractional 
formalism based on fractional operators and in particular the 
fractional problems of the Calculus of Variations with 
time-dependent fractional dimensions within the context of 
chaos, fractals, scale relativity [31], a Cantorian-fractal 
spacetime [32] and complexification of gauge theories [33]. 
Concurrent research efforts are needed to confirm or falsify, 
develop or disprove the fractional dynamics discussed here 
including our preliminary findings.  
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Designing modified projective synchronization for
fractional order chaotic systems

Runzi Luo, Shucheng Deng, Zhengmin Wei

Abstract—In this paper, we investigate the modified projective
synchronization of fractional order chaotic systems between the
drive and response systems. A new method for constructing
modified projective synchronization of fractional order systems
is presented based on the stability criterion of linear systems.
Numerical simulations of modified projective synchronization
between the fractional order Lorenz chaotic system and fractional
order Lü-chen chaotic system show the effectiveness of the
proposed method.

Index Terms—Keywords: Modified projective synchronization;
Fractional order; Lorenz chaotic system

I. INTRODUCTION

FRACTIONAL calculus is a generalization of ordinary
(integer order) integration and differentiation to its non-

integer (fractional) order counterpart. It has many applications
to physics, engineering and control processing [1-3]. Many
systems in interdisciplinary fields, such as dielectric polariza-
tion, electrode-electrolyte polarization, electromagnetic waves
and viscoelastic systems are known to display fractional order
dynamics[3]. It is known that some fractional-order differential
systems behave chaotically, for example, the fractional-order
Duffing system [4], the fractional-order Chua system [5],
the fractional-order Chen system [6], the fractional-order Lü
system [7], the fractional- order unified system [8]. Recently,
due to its potential applications in secure communication
and control processing, synchronization of chaotic fractional
systems starts to attract increasing attention [9-16]. However,
most of research efforts mentioned above have concentrated
on studying complete synchronization (CS), generalized pro-
jective synchronization where the drive and response systems
could be synchronized up to a scaling factor α.

In the present paper, we consider modified projective syn-
chronization (MPS), where the responses of the synchronized
dynamical states synchronize up to a constant scaling matrix.
Based on the stability criterion of linear systems, a new
approach for constructing modified projective synchronization
of fractional order systems is attained. Numerical simulations
show the effectiveness of the proposed method.

The rest of this paper is organized as follows. In Section 2
the definition of modified projective synchronization is intro-
duced and the synchronization criterion is given. In Section
3, numerical simulation is given to show the effectiveness of
the proposed method. Finally, some conclusions are given in
Section 4.

R. Z. Luo, S. C. Deng and Z. M. Wei are with the Department of Mathe-
matics, Nanchang University, 330031, P. R. China, E-mail: luo rz@163.com

II. MODIFIED PROJECTIVE SYNCHRONIZATION SYSTEMS
DESIGN

First, we review the fractional derivatives. Many authors
formally use the Riemann-Liouville fractional derivatives, de-
fined by

Dαx(t) =
dm

dtm
Jm−αx(t), α > 0,

where m = dαe, i.e., m is the first integer which is not less
than α. Jβ is the β-order Riemann-Liouville integral operator
with expression:

Jβy(t) =
1

Γ(β)

∫ t

0

(t− τ)β−1y(τ)dτ, β > 0,

here Γ stands for Gamma function. In this paper, the following
definition is used

Dαx(t) = Jm−αx(m)(t), α > 0,

where m = dαe, and the operator Dα is generally called ”α−
order Caputo differential operator”.

Now, we introduce the modified projective synchroniza-
tion(MPS) of fractional order chaotic systems. For simplicity,
we take the notation Dq(.), which is described as Dqx(t) =

Dq1x1(t)
Dq2x2(t)
· · ·

Dqnxn(t)

 , where x(t) = (x1(t), x2(t), · · · , xn(t)), and

q = diag(q1, q2, · · · , qn)T , 0 < qi ≤ 1, i = 1, 2, · · · , n.
Consider the following chaotic systems:{

Dqx = f(x, t)← drive system,
Dqy = g(x, y, t)← response system, (1)

where y = (y1, y2, · · · , yn). If there exists a constant matrix
α = diag(α1, α2, · · · , αn), such that lim

t→+∞ ‖x − αy‖ = 0,
then we regard that y synchronize to x up to scaling ma-
trix α, and call such synchronization ”modified projective
synchronization”. Obviously, CS and generalized projective
synchronization are the special cases of MPS where α1 =
α2 =, · · · ,= αn = 1 and α1 = α2 =, · · · ,= αn, respectively.

Assume the fractional order chaotic drive system under
study can be written as:

Dqx =
dqx

dtq
= f(x, t) = Ax+ [f(x, t)−Ax] = Ax+ h(x, t)

(2)
where x ∈ Rn, f : Rn → Rn and h : Rn → Rn are nonlinear
functions, A is an n × n constant diagonal matrix, i.e., A =
diag(a1, a2, · · · , an), where ai < 0, i = 1, 2, · · · , n.
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Suppose the controlled response system is

Dqy =
dqy

dtq
= g(y, t)+u = Ay+[g(y, t)−Ay]+u = Ay+S(y, t)+u,

(3)
where y ∈ Rn and S : Rn → Rn is nonlinear functions, u is
a controller to be designed below. Then we have the following
main result.

Theorem 1. For an invertible diagonal matrix α, if u =
α−1h(x, t)−S(y, t), then modified projective synchronization
between systems (2) and (3) will occur.

Proof. Define the error e = x − αy between systems (2)
and (3). Then one can obtains Dqe = dqe

dtq = dq(x−αy)
dtq =

A(x− αy) + αS(y, t) + αu−R(x, t) = Ae. Thus the above
equation can be rewritten as

Dq1e1 = a1e1,
Dq2e2 = a2e2,
· · ·
Dqnen = anen,

For equation Dqiei = aiei, i = 1, 2, · · · , n, since a1 is
negative, according to the stability criterion of linear system
we have lim

t→+∞ e(t) = 0. Therefore the state vectors x(t) and

y(t) of different systems (2) and (3) are modified projective
synchronized.

III. MODIFIED PROJECTIVE SYNCHRONIZATION BETWEEN
FRACTIONAL ORDER LORENZ CHAOTIC SYSTEM AND

FRACTIONAL ORDER Lü-CHEN SYSTEM

The Lü-chen system was first introduced by Lü and
Chen[17], which can be described by three-dimensional
quadratic autonomous ordinary differential equations and can
simultaneously display two 1-scroll chaotic attractor with only
three equilibria, and two 2-scroll chaotic attractors with five
equilibria. This system is given by

ẋ = − ab
a+bx− yz + c,

ẏ = ay + xz,
ż = bz + xy,

(4)

where a, b, c are real constants and x, y, z are state variables.
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Figure 1: The 1-scroll chaotic attractor with a=-10,b=-4 and c=18.1.
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Figure 2: The 2-scroll chaotic attractor with a=-10,b=-4 and c=0.

The Lü-chen system is found to be chaotic in a wide range
of parameters and has many interesting complex dynamical
behaviors. For example, it is chaotic for the parameters a =
−10, b = −4 and |c| < 19.2. In particular, it displays 1-scroll
chaotic attractor when a = −10, b = −4, c = 18.1 as shown
in Fig. 1. and 2-scroll chaotic attractors when a = −10, b =
−4, c = 0 as shown in Fig. 2.

The fractional order version of Lü-chen system is given as
follows:


dq1x
dtq1 = − ab

a+bx− yz + c,
dq2y
dtq2 = ay + xz,
dq3z
dtq3 = bz + xy,

(5)

its order qi is subject to 0 < qi ≤ 1, i = 1, 2, 3. Figure 3 and
4 display the chaotic attractors of system (5) with different
qi, i = 1, 2, 3.
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Figure 3: The 1-scroll chaotic attractor of fractional order Lü-chen system
with a=-10,b=-4, c=18.1 and q1 = 0.985, q2 = 0.99, q3 = 0.995.
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Figure 4: The 2-scroll attractor of fractional order Lü-chen system
with a = −10, b = −4, c = 0 and q1 = 0.85, q2 = 0.9, q3 = 0.95.

The fractional order Lorenz chaotic system is
dq1x1
dtq1 = δ(x2 − x1),
dq2x2
dtq2 = rx1 − x1x3 − x2,
dq3x3
dtq3 = x1x2 − dx3,

(6)

where δ, r, b are three positive real constants. System (6) is
chaotic when q1 = 0.985, q1 = 0.99, q1 = 0.995 and δ =
10, r = 28, d = 8

3 . The chaotic attractor of fractional order
Lorenz chaotic system is depicted in Figure 5.
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Figure 5: The chaotic attractor of fractional order Lorenz chaotic system
with q1 = 0.985, q2 = 0.99, q3 = 0.995 and δ = 10, r = 28, d = 8

3
.

Suppose system (6) is the drive system, which can be rewrit-

ten as: d
qx
dtq = Ax+h(x, t), where A =

 −δ 0 0
0 −1 0
0 0 −d

 ,

h(x, t) = [δx2, rx1 − x1x3, x1x2]T .
Let system (5) be the response system, then the controlled

response system can be read as:
dq1y1
dtq1 = − ab

a+by1 − y2y3 + c+ u1,
dq2y2
dtq2 = ay2 + y1y3 + u2,
dq3y3
dtq3 = by3 + y1y2 + u3.

(7)

System (7) can be described as: dqy
dtq = g(y, t) +

u = Ay + S(y, t) + u, where u = [u1, u2, u3]T is
a controller. Assume α = diag(2, 1,−1), then u = −δy1 + ab

a+by1 + y2y3 − c+ δ
2x2

−y2 − (ay2 + y1y3) + rx1 − x1x3

−dy3 − (by3 + y1y2)− x1x3

. By Theorem 1,

systems (6) and (7) will achieve modified projective synchro-
nization. In our simulation, the initial states of the drive system
(6) are x1 = 1, x2 = 1, x3 = 3 and initial states of the
response system (7) are y1 = 1, y2 = 2, y3 = 2. The numerical
simulation results with q1 = 0.985, q2 = 0.99, q3 = 0.995
and δ = 10, r = 28, d = 8

3 are shown in Figures 6 and 7,
respectively. Figure 6 displays the evolution of state variables
of systems (6) and (7), Figure 7 shows the error signals
between systems (6) and (7). It is easy to see that systems
(6) and (7) can achieve modified projective synchronization
quickly.
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Figure 6: The evolution of state variables of systems (6) and (7) with
q1 = 0.985, q2 = 0.99, q3 = 0.995 and δ = 10, r = 28, d = 8
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Figure 7: The error signals between systems (6) and (7) with q1 = 0.985,
q2 = 0.99, q3 = 0.995 and δ = 10, r = 28, d = 8

3
.

IV. CONCLUSION

In this paper, we have investigated the modified projective
synchronization of fractional order chaotic systems with a
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general kind of proportional relationships between the drive
and response systems. Based on the stability criterion of linear
systems, a new approach for constructing modified projective
synchronization of fractional order systems is attained. From
theory and numerical simulation we have shown that the
different fractional order chaotic systems can be globally
asymptotically synchronized by utilizing the proposed scheme.
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Abstract— This work investigates some stability conditions and 

hyperchaos in the new fractional order hyperchaotic Chen system 
which shows hyperchaos with order less than 4. The lowest order 
found to yield chaos for the new fractional order hyperchaotic Chen 
system is 3.76. The analytical conditions for achieving 
synchronization in this system via linear control are investigated 
theoretically by using the Laplace transform theory. Numerical 
simulations are used to verify the existence of hyperchaos and to 
show the effectiveness of the proposed synchronization technique. 
 

Index Terms—fractional order, Routh-Hurwitz, hyperchaotic 
Chen system, synchronization  
 

I. INTRODUCTION 
The idea of fractional calculus has been known since the 

work of Leibniz and L’Hopital in 1695 [1]. It has useful 
applications in physics, engineering [2], mathematical biology 
[3-4] and finance [5]. 

The fractional order derivatives have many definitions. The 
Caputo definition of fractional derivative [6] is used throughout 
this paper and is given as follows: 

 
    ,0),()( )( >= − ααα xfIxfD mm                                             (1)                                                                                                  

 
where )(mf  represents the m -order derivative of )(xf , 

][α=m  is the first integer which is not less than α , and 
 

    ,0,)()(
)(

1)(
0

1 >−
Γ

= ∫ − qdttgtx
q

xgI
x

qq                           (2)                                                                           

 
is the q -order Riemann-Liouville integral operator, where 

)(qΓ  is the gamma function. The operator αD  is called the 

“α -order Caputo differential operator”. The geometric and 
physical interpretation of the fractional derivatives was given in  
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Ref. [7]. On the other hand, studying chaos and hyperchaos in 
fractional order systems has recently a particular interest by 
scientists. A regular chaotic system has one positive Lyapunov 
exponent. However, a hyperchaotic system has more than one 
positive Lyapunov exponent which shows more complex 
behaviors and abundant dynamics than chaotic system. 
Therefore, hyperchaotic systems have better applications in 
secure communications [8] than chaotic ones. Recently, some 
fractional order hyperchaotic systems have been investigated, 
such as the fractional order hyperchaotic Rössler system [9], 
the fractional order hyperchaotic Lü system [10], the fractional 
order hyperchaotic Lorenz system [11] and the new fractional 
order hyperchaotic system [12]. 

In this study, some Routh-Hurwitz conditions are derived to 
discuss local stability in some fractional order hyperchaotic 
systems. The proposed conditions are applied successfully to 
the new fractional order hyperchaotic Chen system. Numerical 
results show that hyperchaos does exist in the proposed system 
with order less than 4 and Lyapunov exponents are also 
calculated for this system. Moreover, the Laplace transform 
theory is used to achieve synchronization between two identical 
new fractional order hyperchaotic Chen systems via linear 
control technique.  

 

II. SOME ROUTH-HURWITZ CONDITIONS FOR THE FRACTIONAL 
ORDER HYPERCHAOTIC SYSTEMS 

Consider the 4-dimensional fractional order hyperchaotic 
system 
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where the fractional derivative in Eq. (3) is in the sense of 
Caputo and 10 <≤ α . If ),,,( 4321 xxxxE =  is an equilibrium 
solution of (3) then E  is locally asymptotically stable if all the 
eigenvalues λ  of the Jacobian matrix 
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evaluated at E  satisfies the Matignon’s condition [13]: 
 

).4,3,2,1(,2/)arg( => ii απλ                                                     (4)                                                                                                                             

 
According to the Matignon’s conditions (4), the stability 

region of the fractional order system with order α  is illustrated 
in figure 1. In this figure one sets ωσ ,  to denote the real and 
imaginary parts of the eigenvalues respectively and 1−=j . 
The eigenvalues equation of the equilibrium point E  is given 
as 
 

,0)( 43
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1
4 =++++= aaaaP λλλλλ                                         (5)                                                                                      

 
 whose discriminant )(PD  is given by:                                                                                                                          
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Theorem 1. 
 

(i) If  321 ,, ccc  are Routh-Hurwitz determinants which 
are defined as follows: 

 
   ,,, 2

34
2
13213321211 aaaaaacaaacac −−=−==                   (7)                        

 
then for 1=α , the equilibrium point E  to is locally 
asymptotically stable if and only if  
 
 0,0,0,0 4321 >=>> accc .                                               (8)                                                                                    
 
Also, the conditions (8) are sufficient conditions for the 
equilibrium point E  to be locally asymptotically stable for all 

).1,0[∈α  
 

(ii) If 0,0,0)( 21 <>> aaPD  and 3/2>α  then the 
equilibrium point E  is unstable. 

(iii) If  ,0)( <PD ,0,0,0,0 4321 >>>> aaaa  and 

3/1<α , then the equilibrium point E  is locally 
asymptotically stable. Also, if  

,0)( <PD ,0,0,0,0 4321 ><>< aaaa  then the 
equilibrium point E  is unstable. 

(iv) If ,0)( <PD ,01 >a 0,0,0 432 >>> aaa  and 

1

3

3

41
2 a

a
a
aaa += , then the equilibrium point E  is 

locally asymptotically stable, for all )1,0(∈α . 

(v) 04 >a , is the necessary condition for the equilibrium 
point E  to be locally asymptotically stable. 

 
Proof. To prove the case (i), assume that the conditions (8) are 
satisfied, then all real eigenvalues and all real parts of complex 
conjugate eigenvalues of equation (5) are negative (this is 
shown clearly from the case when 1=α  which is proved in the 
classical Routh-Hurwitz theory [14]), hence, these conditions 
(8) implies that all the eigenvalues of (5) lie in the left-half 
plane of figure 1 (the stable region). Therefore E  is locally 
asymptotically stable. 

To prove (ii), notice that if 0)( >PD  then there exists 4 
distinct real roots or two pairs of complex eigenvalues 

,2,1 jts ±=λ  and jqp ±=4,3λ   where 1−=j . In the case of 

real roots, 02 <a  implies that the equilibrium point E  is 
unstable. In the other case: 

042222
2 <++++= sptsqpa then ,4sec 2222 sptsp −<++θ

where 
4,3arg λθ = . Using the condition 01 >a  then 

222 44sec pspp <−<θ . This implies that 3/πθ < . Hence, (ii) 
is proved. 

To prove (iii), notice that if 0)( <PD  then there exist two 
real roots 2211 , rr == λλ , and one pair of complex eigenvalues 

114,3 jqp ±=λ . Then the conditions 0,0,0,0 4321 >>>> aaaa   

implies that 21, rr  are negative and the condition 02 >a  
implies that 2121

22 )(2sec rrrrpp −+−>θ , where 
4,3arg λθ = . 

Using the condition 01 >a   implies that ,2)( 21 prr >+−  
therefore 2

21
22 4)(sec prrp +−>θ . Since 03 >a  then 

21
221 sec

2
)( rrprr

−<
+ θ , thus, 222122 4sec

2
sec pprrp +

+
> θθ , 

again using the condition 01 >a , the last inequality is reduced 
to 222 4sec3 pp >θ  which implies that 3/4sec2 >θ  

6/πθ >⇒ . Then the first part of (iii) is proved. On the other 
hand, if the conditions 0,0,0,0 4321 ><>< aaaa  are 
satisfied then using Descartes’ rule of signs, it follows that 
there is no negative real roots for the characteristic polynomial, 
this implies that 0, 21 >rr  and therefore the equilibrium point 
E  is unstable. 
To prove (iv), notice that the two real roots are negative and the 
condition 

1

3

3

41
2 a

a
a
aaa +=  implies that the other two 

eigenvalues lie on the imaginary axis.  Consequently, all the 
roots of (5) lie in the stable region, and (iv) is now proved.  
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The part (v) is proved in [15] for general n, which includes 

our current case. □ 
 

III. THE NEW FRACTIONAL ORDER HYPERCHAOTIC CHEN 
SYSTEM 

In the following, we investigate the stability conditions and 
hyperchaos in the new fractional order hyperchaotic Chen 
system. This system will be integrated numerically to show 
hyperchaos using an efficient method for solving fractional 
order differential equations that is the predictor-correctors 
scheme or more precisely, PECE (Predict, Evaluate, Correct, 
Evaluate) technique which has been investigated in [16-17], 
and represents a generalization of the 
Adams-Bashforth-Moulton algorithm. It is used throughout 
this paper. 

Now, we consider the new fractional order hyperchaotic 
Chen system as follows: 
 

    
.,

,,)(
duyzuDbzxyzD

cyxzxyDuxyaxD
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αα

αα γ                                     (9)                                                                              

 
The integer order form of system (9) is studied in [18]. 

System (9) has only one equilibrium point )0,0,0,0(0 =E . At 
the parameter values )7,3.0,12,3,35(),,,,( =γdcba  and 

97.0=α , system (9) has two positive Lyapunov exponents 
214.11 ≈λ  and 138.02 ≈λ  which are calculated using the 

algorithm given in [19]. Figure 2 shows the hyperchaotic 
attractor of system (9) for the previously mentioned parameter 
values and fractional order α . However the lowest fractional 
order at which system (9) exhibits chaotic attractor is 94.0=α , 
i.e., the lowest order found to yield chaos for system (9) is 

76.3 . 
The characteristic polynomial for the equilibrium point 0E  

is given from 
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 Equation (10) has the roots bd −== 21 , λλ  and 

2
4)( 2

4,3
γ

λ
acaac ++±−

= . If all these eigenvalues satisfy 

the conditions )4,3,2,1(,2/)arg( => ii απλ , then system (9) 

is locally asymptotically stable at the equilibrium point 0E . 
Moreover, using the above-mentioned parameter values, it is 
easy to verify that 0,0,0,0)( 421 ><>> aaaPD . Thus, 
Theorem 1 part (ii) implies that the equilibrium point 0E  is 
unstable for 3/2>α . 
 

IV. SYNCHRONIZATION OF THE NEW FRACTIONAL ORDER 
HYPERCHAOTIC CHEN SYSTEM 

In the following, our aim is to achieve chaos 
synchronization of the new fractional order hyperchaotic Chen 
system. The drive and response systems are given as follows:   
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where 321 ,, vvv  and 4v  are the controllers. Define the error 
variables as follows: 
 
   .,,, 4321 msmsmsms uuezzeyyexxe −=−=−=−=           (13)                   
 

By subtracting (11) from (12) and using (13), we obtain: 
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Fig. 1. Stability region of the fractional order system. 

 
Fig. 2. 3-D plot of the new fractional order hyperchaotic Chen attractor in 
x-y-z space. 
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Now, by letting 
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where  0,,, 4321 ≥kkkk , the error system (14) is reduced to 
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By taking the Laplace transform in both sides of (16), 

letting )}({)( teLsE ii =  where )4,3,2,1( =i , and applying 

)0()(}/{ 1
iii essEsdtedL −−= αααα , we obtain: 
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Theorem 2. If )(),( 21 sEsE  are bounded, 02 ≠− ck  and 

04 ≠− dk , then the drive and response systems (11) and (12) 
will be synchronized under a suitable choice of 321 ,, kkk  and 

4k . 
 

Proof. By rewriting equation (17) as follows: 
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According to the Final-value theorem of the Laplace 

transform, it follows that 
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Since )(),( 21 sEsE  are bounded, 02 ≠− ck  then 

0)(lim)(lim 21 ==
∞→∞→
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tt

. Now, owing to the attractiveness of the 

attractor, there exists 0>ε  such that 
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where i  refers to the subscript of the drive or response 
variables. Consequently, 0)(lim 3 =
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provided that 04 ≠− dk . Hence, we have proved that 
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Thus, the synchronization between the drive and response 

systems (11) and (12) is achieved. □ 
  

A. Numerical results 
 Based on the PECE scheme, the drive and response 

systems (11) and (12) are integrated numerically using the 
above-mentioned parameter values and fractional order 

 
Fig. 3. Synchronization errors between the drive and response systems tend to 
zero when using fractional order 97.0=α  and feedback control gains 

30,1,100,100 4321 ==== kkkk . 
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97.0=α , with the initial values ,30)0( =mx  ,7)0( =my  

,10)0( =mz  40)0( =mu  and ,15)0( −=sx  ,25)0( =sy  

,25)0( =sz  30)0( =su . From figure 3, it is clear that 
synchronization is achieved when 1,100,100 321 === kkk  and 

304 =k . 
  

V. CONCLUSION 
Some stability conditions in fractional order hyperchaotic 

systems have been derived and applied to the new fractional 
order hyperchaotic Chen system. Numerical simulations and 
Lyapunov exponents have been used to show that hyperchaos 
exists in this system with order less than 4. It has been shown 
that according to the Laplace transformation theory, one 
achieve synchronization of the new fractional order 
hyperchaotic Chen system when choosing suitable linear 
controllers.  
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Abstract- In this paper, chaos and its control is studied in 
fractional-order chaotic systems. Backstepping method is 
proposed to synchronize two identical fractional-order Chen 
systems. The simulation results show that this method can 
effectively synchronize two identical chaotic systems.

I. INTRODUCTION

Fractional calculus is an old mathematical topic, which has 
been originated from 17th century. Nowadays, some fractional-
order differential systems such as Chua circuit [1], Duffing 
system [2], jerk model [3], Chen system [4], the fractional-
order Lü system [5], Rossler system [6], Arneodo system [7] 
and Newton–Leipnik system [8] have been found to 
demonstrate chaotic behaviors. Sensitive dependence on initial 
conditions is an important characteristic of chaotic systems. 
For this reason, chaotic systems are difficult to be controlled or 
synchronized. Control of these systems has been considered as 
an important and challenging problem [9]. Control of chaotic 
systems would have been supposed impossible with 
uncontrollable and unpredictable dynamic.
The problem of designing a system, whose behavior mimics 
that of another chaotic system, is called synchronization. Two 
chaotic systems are usually called drive (master) and response 
(slave) systems respectively. Different control technique e.g. a 
chattering-free fuzzy sliding-mode control (FSMC) strategy for 
synchronization of chaotic systems even in presence of 
uncertainty has been proposed in [10]. In [11] authors have 
proposed an active sliding mode control to synchronize two 
chaotic systems with parametric uncertainty. An algorithm to 
determine parameters of active sliding mode controller in 
synchronizing different chaotic systems has been studied in 
[12].  In [13] an adaptive sliding mode controller has also been 
presented for a class of master–slave chaotic synchronization 
systems with uncertainties.

Over the past decade, Backstepping has become the most 
popular design method for adaptive nonlinear control because 
it can guarantee global stabilities, tracking, and transient 
performance for a board class of strict feedback systems. In 
[14-16], it has been shown that many well-known chaotic 

systems as paradigms in research of chaos, including Duffing 
oscillator, Van der Pol oscillator, Rossler system, Lorenz
system, Lü system, Chen system and several type of Chua’s 
circuit, can be transformed into a class of nonlinear system in 
the so-called nonautonomous form, and the backstepping and 
tuning functions control schemes have been employed an 
extended to control these chaotic systems with key parameters 
unknown. Global stability and tracking have been achieved. In 
particular, the output of the controlled chaotic system has been 
designed to asymptotically track any smooth and bounded 
reference signals generated from a known reference model 
which may be a chaotic system.
In the following section, the basic definition and numerical 
methods of solving fractional-order systems is studied. 
Backstepping method is applied to synchronize the fractional-
order chaotic system (Chen) in Section 3. Finally, our findings 
are summarized in the Conclusion.

      The paper is organized as follows; the basic definition 
and numerical methods of solving fractional-order systems is 
studied in the next section. Backstepping method is applied to 
synchronize tow identical fractional-order chaotic system 
(Chen system as a case study) in Section III. Finally, Our 
findings are summarized in the Conclusion.

II. FRACTIONAL DERIVATIVE AND ITS APPROXIMATION 
METHODS

The differ-integral operator q
a tD , a combination of 

differentiation and integration operator, is commonly used in 
fractional calculus. This operator represents both the fractional 
differential equation and the fractional integral in a single 
expression; [17] defines it:

0

1 0

( ) 0

q

q

q
a t

t q

a

d
q

dt
D q

d q 




 






(2.1.1)

There are several definitions for fractional differential 
equations [17]. The three most commonly used definitions are 
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the Grunwald-Letnikov, Riemann–Liouville, and Caputo 
definitions. 
Definition 1. A real function ( ) , 0f x x  , is said to be in the 

space
C , R if there exists a real number p  such 

that 1( ) ( )pf x x f x ,where 1( ) [0, )f x   .Clearly C C  if   .

Definition 2. A function ( ) , 0f x x  , is said to be in the space 

, {0},mC m N   if ( )mf C .

Definition 3. The Grunwald-Letnikov fractional differential 
equation operator of order q [17]:

1

0

( )
( )

( )

lim ( 1) ( )

q
q

a t q

q N
j

N
j

d f t
D f t

d t a

t a t a
f t j

N N

 




 


           


. (2.2)

Definition 4. The left sided Riemann–Liouville fractional 
differential equation of order 0q  , of a function 

, 1,qf C q   is defined as [17]:

11
( ) ( ) 0

( )

( ) ( ) 0

( ) 0

t q

a

q
a t

n q n
a t

t f d q
q

D f t f t q

D D f t q

   



    
     



(2.3)

where, n is the smallest integer larger than q, i.e., 1n q n  

and  is the Gamma function:
1

0
( ) .z tz t e dt

     (2.4)

For a wide class of functions, the Grunwald-Letnikov and the 
Riemann–Liouville definitions are equivalent [17].
Definition 5.  Let 1,

mf C m N  . Then the (left sided) Caputo 

fractional differential equation of ( )f x  is defined as [17]:

1

0

0

1 ( )
( ) , 1

( )
( )

( , )
,

m
t m q

m
q
t m

m

d f
t d m q m

m q d
D f t

d u xt
q m N

dt

 


 
    

  


            (2.5)

where, m is the smallest integer larger than q. Primarily, the 
Caputo fractional differential equation computes an ordinary 
differential equation followed by a fractional integral to 
achieve the desired order of fractional derivative and then the 
Riemann-Liouville fractional differential equation is computed 
in the reverse order.  The Caputo fractional differential 
equation allows traditional initial and boundary conditions to 
be included in the formulation of the problem, but for 
homogeneous initial condition assumption, these two operators 
coincide. For more details on the geometric and physical 
interpretation for fractional differential equations of both the 
Riemann-Liouville and Caputo types, see [17].
Unlike the numerical procedure in ordinary differential 
equations, the numerical evaluation of fractional differential 
equations is quite complex. One of the approximation methods 

of solving FDEs is based on frequency domain which 
completely discussed in many papers such as [3, 18], so that 
we withhold to explain it again. The other algorithm to find an 
approximation for fractional-order systems is based on the 
predictor–correctors scheme [18]. This method is in essence an 
improved version of Adams–Bashforth–Moulton algorithm 
[19-21]. It is based on the predictor–correctors scheme [21, 
22]. Although the following proposed numerical procedure has 
been used to solve some specific problems, it will certainly be 
used for similar equations. As a practical experience, this 
method is found as a fundamental algorithm for these types of 
problems. The method will be explained systematically 
through some examples. Consider the following fractional 
differential equation:

D ( ) ( , ( ))y t r t y t  ,
0 t T  ,  

,1 mm  
(2.6)

( ) ( )
0(0)k ky y ,

0,1,..., 1k m  .

The solution of the above differential equation is equivalent to 
Volterra integral series [23]:

1
( ) 1
0

0 0

1
( ) ( ) ( , ( )) .

! ( )

tk
k

k

t
y t y t s r s y s ds

k






  




  
  (2.7)

The step size is equally spaced by h = T/N where, nt nh (n = 

0, 1, . . . , N). Then equation (7) can be rewritten as follows:
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(2.2.3)

where,
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.                    (2.10)

The error of this approximation is of order p, which can be 
described [18] by following relation

0,1,...,
( ) max ( ) ( )p

j h j
j N

O h y t y t


                      (2.11)

where, min(2,1 )p  

III. BACKSTEPPING CONTROL OF FRACTIONAL ORDER 
CHAOTIC SYSTEMS

In this section we apply a novel method based on the 
backstepping method to synchronize two identical fractional-
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order Chen systems which has been already synchronized via 
Active Sliding Mode Control in [24].
The Chen system was introduced by Chen and Ueta in 1999 
[25]. Some researchers [26-28] have investigated chaotic 
behavior of the fractional-order Chen system that is described 
by:

1 2 1

2 1 1 3 2

3 1 2 3

( )

( )

q

t

q

t

q

t

D x a x x

D x c a x x x cx

D x x x bx

  
    


 


                  (3.1)

Considering Eq. (3.1) as master system, slave systems are 
defined as follows:

1 2 1 1

2 1 1 3 2 2

3 1 2 3 3

( )

( )

q

t

q

t

q

t

D y a y y u

D y c a y y y cy u

D y y y by u

   
     


  


            (3.2)

Define the track error as:

i i ie y x                             (3.3)
The error dynamic is described by

1 2 1 1

2 3 1 2 3 1 1 2

3 1 2 2 1 1 3 3

( )

( ) ( )

( )

q

t

q

t

q

t

D e a e e u

D e c a x e ce e e x u

D e e x e e x be u

   
       


    


     (3.4)

In this section, the backstepping design technique is applied to 
obtain control law of error system (3.4). The design procedure 
is divided into there steps shown as follows.

Step 1: In this step we consider the stability of the first 
equation of Eq. (3.4)

1 2 1 1( )
q

tD w a e w u                        (3.5)

where 

1 1.w e   

and 2e and 1u are controllers.
Choose the first Lyapunov functional candidate as follow

2
1 1

1
0

2
V w                            (3.6)

The time derivative of 1V along trajectories of error dynamic 
(3.6) is

1

1 1 1 1 1

1

1 2 1 1

( )

( ( ) )

q q

t t

q

t

V w w w D D w

w D a e w u





 

  

 
           (3.7)

Assuming controllers, 2 1 1( )e w , 
1

1 1 1 1
q

tu aw k D w


  , Eq. 

(3.7) can be written as:
12

1 1 1 1 11
( ) . ( )

q
tV e k w w D a


                       (3.8)

where 1k is a positive constant. If 1 1( ) 0w  , Eq. (3.8) can be 

rewritten as
2

1 1 1 1
( )V e k w                             (3.9)

This means that the zero solution of Eq. (3.6) is asymptotically 
stable.

Step 2: When 2e is considered as controllers, 1 1( )e is 

estimative function. Defining

2 2 1 1( )w e w                         (3.10)

In this step we consider the stability of study ( 1 2,w w ) system

1 2 1 1

2 3 1 2 3 1 1 2

( )

( ) ( )

q

t

q

t

D w a w w u

D w c a x w cw e w x u

   

       

(3.11)

Substituting 
1

1 1 1 1
q

tu aw k D w


  in Eq. (3.11) we obtain
1

1 2 1 1

2 3 1 2 3 1 1 2( ) ( )

q q

t t

q

t

D w aw k D w

D w c a x w cw e w x u

  

       

(3.12)

where 3e and 2u are controllers. Now, we candidate the second 

Lyapunov function as

2
2 1 2 1 1 2

1
( , ) ( ) 0

2
V w w V w w                 (3.13)

The time derivative of 2V along trajectories of error dynamic 
(3.9) is

12
2 1 2 1 2 21

12
1 2 3 11

2 3 1 1 2
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. (( )
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q q

t t

q

t
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cw e w x u





  

    

   

(3.14)

Assuming controllers  
1

2 1 3 2 2 2 3 2 1 2( ) , ( , )
q
tu w c a x cw k D w e w w


       , Eq. (3.14) 

can be written as:

12 2
2 1 2 1 2 2 2 2 1 11
( , ) . ( ( ))

q
tV w w k w k w w D x w


      (3.15)

where 2k is a positive constant. If 2 1 2( , ) 0w w  , Eq. (3.15) can 

be written as

2 2
2 1 2 1 2 21
( , ) 0V w w k w k w                (3.16)

This will guaranty that the zero solution of Eq. (3.13) is 
asymptotically stable. 

Step 3: When 3e is considered as controllers in Eq. (3.12), 

2 1 2( , )w w is estimative function. Defining

3 3 2 1 2( , )w e w w                    (3.17)

we study ( 1 2 3, ,w w w ) system 
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1 2 1 1

2 3 1 2 3 1 1 2

3 1 2 2 1 1 3 3
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t
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t

D w a w w u
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Substituting
1

1 1 1 1
q

tu a w k D w


  and 
1

2 1 3 2 2 2( )
q
tu w c a x cw k D w


      in Eq. (3.18) we obtain:
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where 3u is controller. Finally, we candidate the third 

Lyapunov function as

2
3 1 2 3 1 1 2 1 2 3

1
( , , ) ( ) ( , ) 0

2
V w w w V w V w w w    (3.20)

Its time derivative is

12 2
3 1 2 3 1 2 3 31 2
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(3.21)

Assuming controller, 
1

3 1 2 2 1 1 3 3 3( )
q
tu w x w w x bw k D w


      , 

Eq. (3.21) can be rewritten as:

2 2 2
3 1 2 3 1 2 2 3 31
( , , ) 0V w w w k w k w k w                 (3.22)

where 3k is a positive constant. The Eq. (3.22) 
guaranties that the controllers i.e. 1 2,u u ,  and 3u will stabilize 
the Eq. (3.4). We applied Backstepping control to synchronize 
two fractional-order Chen systems in the following two cases: 
Case 1: order of chaotic systems is 2.85 (   0.95q  ) 
and ( ,  ,  )  (40,  3,  28)a b c  ; Case 2: order of chaotic systems is 
2.7 (   0.9q  ) and ( ,  ,  )  (35,  3,  28)a b c  . The controller 
parameter in Case 1, and Case 2, are chosen as 

1 2 3( , , ) (20,10,10)k k k  and 1 2 3( , , ) (10,10,10)k k k  respectively. 
Initial conditions are chosen 10 20 30( , , ) (3, 6,9)x x x  
and 10 20 30( , , ) (1,1,1)y y y  . Numerical simulations have carried 
out using the SIMULINK based on the frequency domain 
approximation. To solve the sets of fractional- order 
differential equations related to the master and slave systems, 
the CRONE Toolbox is used and Runge-Kutta solver with 
fixed step size 0.0001 is used. Fig. (3) shows simulation results 
of Case No. 1. Simulation results of Case No. 2 are given in 
Fig. (4). As it can be seen from Figs. (3.a) and (4.a), the 
designed controller is successfully able to synchronize two 
identical fractional-order Chen systems. It has been shown that 
all of the state variables of the slave converge to that of the 

master. The simulation results verify the performance of the 
Backstepping controller.
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Fig. (3) Simulation Results of synchronization of two identical Chen systems 

(Case 1)

IV. CONCLUSION

In this paper we applied a proposed controller based on 
backstepping method to synchronize fractional order Chen 
systems. The simulation results show that this method can 
easily control fractional-order systems. As it can be seen from 
figures all of the control signal are feasible and can be applied 
to the other fractional-order systems such as fractional-order 
Hyperchaotic systems.
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Abstract- In order to control Genesio-Tesi and Chen chaotic 
systems, a fractional controller has been presented. This 
controller has been composed of a combination of fractional 

derivative and an integer derivative in form of s s . This kind 
of controller, the system with integer derivatives is turned into a 
system with fractional ones. The idea is to expand the stability 
region of fractional system because of using the fractional 
derivative. A proper range of the fraction parameter will also be 
designed to stabilize the closed loop system. The performance of 
the proposed idea is shown through the simulation.

I. INTRODUCTION

Fractional calculus is an old mathematical topic from 17th 
century. Nowadays, It has been found that in interdisciplinary 
fields, many systems can be described by fractional differential 
equations. For example: the fractional-order Chua circuit [1]
Duffing system [2] jerk model [3] Chen system [4]
Lu dynamic [5] RÖssler system [6] and Newton–Leipnik 
system [7] demonstrate  a chaotic behaviour. Chaotic systems 
have recently been much considered due to their potential 
usage in different fields of science and technology particularly 
in electronic systems [8] secure communication [9] computer 
[10]. To develop the chaotic theory, a control approach of 
chaotic systems has been considered as an important problem 
[11]. It was initially assumed that, control of chaotic systems is 
impossible and they have uncontrollable and unpredictable 
dynamic. The imagination was changed when three researchers 
[12] have shown other vice. The Endeavour has been 
proceeded to control the chaos using different approach, e.g. 
feedback linearization [13-15] Delayed feedback control [16]
OPF [17] and TDFC [18]. 
Recently, some scientist applied the fractional-order controller 
to control fractional and integer order dynamics of chaos. In 
[19, 20] an Adaptive fractional control is proposed to control 
and synchronize chaos [19, 20], and controller parameter is 
updated based on a proper adaptation mechanism the. A sliding 
mode control and active control is presented to synchronize the 
fractional-order chaotic system [21,22]. In [23], a simple 
fractional controller has been proposed to control such chaotic 
systems. In this method, a system with integer derivative turns 
in to a system with fractional derivatives. Thereafter a proper 
interval for  will be designed to stabilize the closed loop 
system. This method will be applied to control Genesio-Tesi
and Chen chaotic systems, in this paper.

This paper is organized as follows:
In section II, basic stability requirement for fractional systems 
will be shortly described. A brief description of fractional 
controller will be presented in section III. Section IV is 
devoted to implement the proposed method on Genesio-Tesi
and Chen chaotic systems. Ultimately, the work will be 
concluded at section V.

II. STABILLITY ANALYSIS OF FRACTIONAL-ORDER SYSTEM

A fractional order linear time invariant (FO-LTI) system can
be represented by the following state-space format:

D x Ax Bu

y Cx

  



(1)

where, nx  , ru  and py  denote  states, input and 

output vectors of the system. The appropriate coefficients will 

be shown by n nA  , n rB  and p nC  respectively

whilst  is the fractional commensurate order. Fractional 
order differential equations are at least as stable as their integer 
orders counterparts. This is because; systems with memory are 
typically more stable than their memory-less alternatives [24-
26]. It has been shown that an autonomous 

dynamic 0, (0)D x Ax x x   is asymptotically stable if the 

following condition is met [27]:

arg( ( )) / 2eig A  , (2)

where, 0 1  and ( )eig A represents the eigenvalues of 

matrix A. This means each component of states decays towards 

0, like t  .  In addition, this system is stable 

if arg( ( )) / 2eig A  . Those critical eigenvalues which 

satisfy arg( ( )) / 2eig A  have geometric multiplicity of 1. 

The equality holds when the dynamic has not geometric 
multiplicity of 1.

242 ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France





i

/2

/2

Fig. 1.  Stability region of the FO-LTI system with fractional order, 

0 1 

The stability region for 0 1  are shown in Figure 1. Now, 
consider the following autonomous commensurate fractional 
order system:

( )D x f x  , (3)

where, 0 1  and 2
nx R . The equilibrium points of 

system (3) are calculated when:

( ) 0f x  . (4)

These points are locally asymptotically stable if all eigenvalues 
of Jacobian matrix /J f x   , which are evaluated at the 
equilibrium points- satisfy the following condition [27-28]:

arg( ( )) / 2eig J  . (5)



III. A FRACTIONAL CONTROLLER, S S

A controller is often used to stabilize the system or improve the 
performance indices. A classic stabilizing treatment may be 
found by a pole placement approach. This may be achieved 
when a state feedback controller assuming availability of the 
state is applied. An alternative fractional controller [23], 
expands the effective range of stability according to equation 
(5). In this case, there is no need to locate the poles in other 
places explicitly. A normal integer type controller will be 
substituted with a fractional derivative. In Figure (2) a 
schematic diagram of the proposed closed loop fractional 
controller is shown. 

S

S

Fig. 2.  schematic diagram of closed loop fractional controller

Consider a chaotic system can be represented by the following 
dynamic:

(6)( )x f x u 

A fractional controller alters the dynamic in (6) into the 
following autonomous dynamic:

(7)( )D x f x 
To stabilize the overall system, a proper interval for  can be 
established. If i shows the ith eigenvalues of system, an upper 

bound for 
i

 can be written as [27-28]:

(8)1Im( ) Im( )2
tan( / 2) tan

Re( ) Re( )
i i

i i

 
 

  
  

In the following section, this controller is implemented on a 
Genesio-Tesi and Chen chaotic systems.                   

IV. IMPLEMENTATION OF THE FRACTIONAL
CONTROLLER ON CHAOTIC SYSTEMS

IV.I. CONTROL OF CHEN CHAOTIC SYSTEM

Chen system was originally introduced by in [29]. Some 
researchers [30-31] have used the results and also investigated 
the chaotic behaviour of the fractional-order. Chen system that 
is described by:

1
2 1

2
1 1 3 2

3
1 2 3

2

( )

( )

dx
A x x

dt
dx

g A x x x gx
dt

dx
x x Bx

dt

y x

  

    



 




(9)

Parameters , andA B g are chosen respectively as 40, 3 and 31. 

In order to investigate the stability of the system, Jacobian 
matrix and corresponding Eigenvalues have to be found. These 
in return also require the equilibrium points, which are as 
follows:

1 2 3

1 2 3

1 2 3

( , , ) (0,0,0)

( , , ) (8.12,8.12,22)

( , , ) ( 8.12, 8.12,22)

e e e

e e e

e e e

x x x

x x x

x x x


 
   
The appropriate Jacobian matrix is as follows:

3 1

2 1

40 40 0

9 31

3
e e

e e

J X X

X X
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The corresponding Eigenvalues at each equilibrium points are 
evaluated as:

(25.5,-34.5,-3)

( -20.2,4.1 +15.5i,4.1 -15.5i)

( -20.2,4.1 +15.5i,4.1 -15.5i)







It is seen that first set of eigenvalues show instability of the 
system and therefore instability of the corresponding 
equilibrium point i.e. the origin. Therefore, according to 
equation (8), must satisfy 0.83  to maintain the stability 
of the system. A fractional controller for 0.8  together with 
initial states equal to 1(0) 1.0032X   , 2 (0) 2.3545X  and

3(0) .087X  is chosen. This controller is applied on Chen

chaotic system. Corresponding results are shown in Figures 3 
to 5. The controlled states and control input are shown in 
Figure (3) and (4) respectively. The control action is triggered 
at t=5 s. As it can be seen, the states are got settled and 
stabilized soon after. To show the effectiveness of the 
controller, the states are also shown in the phase plane in 
Figure (5). It can be seen that the states are converged to the 
stable equilibrium point, i.e. 1( (0) 20,X  

2 3(0) 10, (0) 6)X X   .Similarly, the performance of the 

proposed controller will also be verified on other chaotic 
system e.g. Genesio-Tesi.
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Fig. 3.  The states of Chen chaotic system under a fractional controller
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Fig. 4.  Control Input in Chen Chaotic system
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Fig. 5.  Phase portrait of Chen chaotic system under a fractional controller

IV.I. CONTROL OF GENESIO-TESI CHAOTIC SYSTEM

The effectiveness of the controller will be shown when it is 
applied on the other system i.e. Genesio-Tesi. Consider the 
following Genesio-Tesi chaotic system [32]:

1
2

2
3

23
1 2 3 1

dx
x

dt
dx

x
dt

dx
cx bx ax x

dt

 

 



    


(10)

Corresponding parameters are selected as: 
1.2, 2.92, 6a b c   . The same procedure will be done to the 

system. To investigate the stability, equilibrium point, Jacobian 
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matrix and corresponding Eigenvalues are computed. 
Equilibrium point are found as:

1 2 3

1 2 3

( , , ) (0,0,0)

( , , ) (6,0,0)
e e e

e e e

x x x

x x x


 
Then Jacobian matrix is found as:

1

0 1 0

0 0 1

6 2 2.92 1.2e

J

x

 
   
     

Corresponding eigenvalues are then found at the equilibrium 
point as:

( -1.64,0.22 +1.89i,0.22 -1.89i)

( 1.1,-1.15 +2.03i,-1.15 -2.03i)




The stability range for  is found using equation (8) 
as 0.92  . A simple fractional controller assuming 0.8 
and 1(0) 1.0032X   , 2 (0) 2.3545X  , 3 (0) .087X   is 

implemented on the chaotic system. Controlled states and 
control input are shown in Figure (6) and (8) respectively, 
when the control takes action at t=10 s. The phase portrait is 
also plotted in Figure (7). From this graphs, the stability of the 
controlled system and therefore the effectiveness of the 
proposed controller can be seen. 
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Fig. 6.  The state transient behaviour of Genesio-Tesi when the control is 
triggered at t=10 s.
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Fig. 7.  Phase portrait of Genesio-Tesi chaotic system under a fractional 
controller
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Fig. 8.  Control Input in Genesio-Tesi Chaotic system

V. CONCLUSION

Significance of a fractional controller is shown on two Chen
and Genesio-Tesi chaotic systems. In addition of simplicity of 
the controller, maintaining the stability are the advantages of 
the proposed controller. The range of the stability is increased 
without need for a pole placement. This is achieved using a 
simple fractional controller. The convergence and the stability 
of the closed loop are shown achieved on two chaotic systems, 
through simulation.
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Abstract- The main objective of this study is to investigate on 
Chaotic behavior of fractional-order modeled Coullet system and 
its controllability. It has been shown that this problem could lead 
to synchronization of two master and slave systems with the same 
or different fractional-order. The proposed method which is 
based on active sliding mode control (ASCM), has been developed  
to synchronize two chaotic systems with the same or partially
different attractor. The numerical simulation results, verify the 
significance of the proposed controller even for chaotic 
synchronization task.

I. INTRODUCTION

Although Fractional Order Calculus (FOC) has 300-year of 
history, its applications in physics and engineering have just 
begun [1].  In many systems, such as viscoelastic systems [2], 
dielectric polarization, and electromagnetic waves, FOC 
models exhibited better utility. Furthermore, emergence of 
effective analytical and numerical methods in differentiation 
and integration of non-integer (fractional) order equations, in 
recent years, makes FOC more attractive for the control 
systems community.
Recently the interest of chaotic synchronization has been 
extensively growth [3-7]. The fact that [8] nonlinear chaotic 
systems may keep their natural chaotic behavior when their 
models become fractional has a critical effect in this manner.
A pioneering work on the concept of “chaotic synchronization”
is presented in [9]. Another's work has been continued through 
presentation of a method to synchronize two identical chaotic 
systems with different initial conditions [10]. Different types of 
chaotic synchronization methods in terms of complete 
synchronization, generalized synchronization, phase 
synchronization and lag synchronization have been reported.
[11-16]
Recently, some researchers applied the fractional-order 

controller to control fractional and integer order dynamics of 
chaotic systems. In [17,18] an adaptive fractional controller is
proposed to control and synchronize chaos, and controller 
parameter is updated based on a proper adaptation mechanism. 
A sliding mode control and active control is presented to 
synchronize the fractional-order chaotic system in [19,20]. 
Fractional sliding mode is proposed to control chaos in [21],
and a fractional controller in combination with state feedback 
is proposed in [22]. In [23] Bifurcation in fractional order 

Newton-Leipnik system was investigated. The projective 
method is used to synchronize fractional order rigid body 
system in [24].
Also synchronization of chaotic fractional order Coullet 
systems has already studied in [20]. In this paper the 
synchronization of this system will be developed via active 
sliding mode control with the novelty of synchronizing of two 
master and salve systems with different fractional orders. This 
case attracts the designers, particularly in coding and decoding 
applications.
Active sliding mode control technique is a discontinuous 
strategy that relies on two stages of designation. The first step
is to select an appropriate active controller to facilitate the 
design of sequent sliding mode controller. The second stage is 
to design a sliding mode controller to achieve the 
synchronization. Although, this method is already applied to 
synchronize fractional order chaotic Lü and Chen systems [25], 
there has been a lack of report in fractional order chaotic 
Coullet system.
This paper is organized as follows:
Coullet system will be described in section 2.  Active sliding 
mode control will be presented in section 3. This controller is 
applied to synchronize two identical fractional-order Coullet 
systems in section 4. In section 5, the proposed method will be 
developed to synchronize two master and slave systems with 
different fractional-orders. Ultimately, the work will be 
concluded at section 5.

II. SYSTEM DESCRIPTION 

Some of nonlinear systems represent deterministic treatment
called chaotic behavior. These systems are very sensitive to 
initial conditions. This means two identical distinct systems but 
with a minor deviation in their initial condition, may result 
completely different. In the other words, having bounded initial 
conditions known, would not guarantee to predict the behavior
correctly. 
Consider the following Arnéodo–Coullet dynamic equation 
[26]: 

This system has exhibited chaotic dynamics for various values 
of four parameters [26,27]. To investigate the chaotic behavior 
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2

of the system, simulation with the following set {a=0.8, b=-1.1, 
c= -0.45, d=-1} has been considered.

The system in (1) will be written in the state space format as:

1 2

2 3

3
3 3 2 1 1

x x

x x

x cx bx ax dx

 



    







(2)

The phase portrait of the system, represented in Fig.1, shows 
the chaotic behavior. This would cause the synchronization 
task to be hard and complex.
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Fig. 1. Phase portrait of Chaotic Coullet system

  

Although some works have been reported on chaotic Coullet 
system, there is still less report on fractional order Coullet 
system[20]. In this research, an active sliding mode controller 
is proposed on fractional order chaotic system.  
To construct the fractional order Coullet chaotic system model, 
equation (3) will be used, in which q, the fractional 
commensurate factor will be changed in accordance to system
behavior in practice. It can be shown that for some range of q, 
the fractional order Coullet system is unstable [28]. A 
resonance property of fractional order Coullet chaotic system is 
shown in Fig.2 for different values of q=0.97, 0.95, and 0.9.
Based on the type of practical chaotic behavior of system, the 
appropriate value of q could be chosen in modeling stage.
The numerical simulations have carried out based on the 
frequency domain approximation.

1 2

2 3

3
3 3 2 1 1

q

q

q

D x x

D x x

D x cx bx ax dx

 
 
    







(3)

The primary task of this research is to stabilize system, (as it 
will be shown) using an active sliding mode control design.

III. ACTIVE SLIDING MODE CONTROLLER DESIGN

This method has already been applied to synchronize fractional 
order chaotic Lü and Chen systems [25]. 
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Fig.2. Phase portrait of chaotic Coullet system vs. different vslues of the 
fraction parameter

The subsequent objective is to show the efficiency the 
fractional modeling of dynamic. The method is basically a 
combination of an active and sliding mode controller. The 
designation procedure of active sliding mode controller is 
primarily given and then the stability issue of the proposed 
method is proven. Consider the following nonlinear in-
commensurate chaotic fractional system of order q assuming 

(0<qi<1):

( )qD x Ax g x  (4)

Where 3x  denotes 3-D state vector, 3 3A  represents 

the linear part of the dynamic and 3 3  :   g   is the 

nonlinear part of the system. The procedure description uses a 
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synchronization architecture where equation (4) represents the
master dynamic. Meantime, the slave dynamic is defined
inclusion of a control signal 3u(t)     by:

( ) ( )qD y Ay h y u t   (5)

where 3y   is the slave 3-D state vector, A is the same 

parameter matrices as the master has, and 3 3h :    simply 
has the same role as g in the master. Synchronization means 
finding the appropriate control signal 3u(t)     to derive states 

of the slave system to evolve as the states of the master. The 
synchronization goal will be achieved through the error 
definition which is as follows:

( ) ( ) ( )qD e Ae h y g x u t    (6)

where e y x  . The controller law ( 3u(t)     ) should cause:

lim ( ) 0
t

e t


 (7)

In accordance with the active control design procedure [29-31], 
nonlinear part of the error dynamic is eliminated by the 
following choice of the input vector:

( ) ( ) ( ) ( )u t H t h y g x   (8)
The error in (6) can be rewritten as:

( )qD e Ae H t  (9)

Equation (9) describes the error with a recently defined control 
input ( )H t . In active sliding mode control, ( )H t is designed 

based on a sliding mode control law, as:
( ) ( )H t KW t (10)

where 1 2 3  [   ]  TK k k k is a constant gain vector and 

   W (t)   is the control input that satisfies in:
+

-

(t), ( ) 0
(t)=   

(t), ( ) <0

W S e
W

W S e

 



(11)

in which S =S(e) is a switching surface that describes the 
desired dynamic. The resultant error is then written by:

( )qD e Ae KW t  (12)
The sliding surface can be defined as:

1 1 2 2 3 3( )S e Ce c e c e c e    (13)

An equivalent control is found when ( ) 0S e  which is a 

necessary condition for the state trajectory to stay on the 
switching surface ( ) 0S e  . Hence, the controlled system 

satisfies the following conditions in the steady state:

( ) 0 and ( ) 0S e S e  (14)

Based on equation (12) to (14), It could be deduced:

1

1

( ) ( )
( ) ( )

[ ( )] 0

q q

q

s e s e
S e e D D e

e e

CD Ae KW t





 
  

 
 

 
(15)

Hence,
1 1 1( ) ( ) ( )q qD W t CK CAD e t    (16)

The equivalent control eqW is a solution of equation (16):
1( ) ( ) ( )eqW t CK CAe t  (17)

which is realizable whenever CK takes non-zero value. 
Replacing ( )W t in equation (12) from ( )eqW t in equation (17), 

the error dynamic will be determined by the following relation:
1( ( ) )qD e I K CK C Ae  (18)

As a classic work, the constant plus proportional rate reaching 
law will be considered [32-37]. Accordingly the reaching law 
is obtained as:

sgn( )qD S p S rS   (19)

Where sgn(.) denotes the sign function. Gains p>0 and r>0 are 
determined such that the sliding condition is met and the 
sliding mode motion occurs. From equations (12) and (13), one 
may find that:

[ ( )]q qD S CD e C Ae KW t   (20)
However, from equations (19) and (20), the control input will 
be provided by:

1( ) ( ) [ ( ) sgn( )]W t CK C rI A e p S    (21)
According to Theorem 1, as long as all eigenvalues of 

1( ( ) ( )]A K CK C rI A  ( ' 1, 2,3i s i  ) satisfy the 

condition arg( ) / 2i q  , the system in (18) is asymptotically 

stable [25].

IV. ACTIVE SLIDING MODE SYNCHRONIZATION OF 
COULLET SYSTEM 

In this section, the described method will be used to 
synchronize two identical fractional orders Coullet system with 
the following initial conditions: 10 20 30( , , ) (1, 1,0)x x x  
, 10 20 30( , , )y y y  (0.2,0.2,0.2) . 

Consider two fractional order Coullet systems as master and 
slave systems respectively:

(22)  
1 2

2 3

3
3 3 2 1 1

q

q

q

D x x

master D x x

D x cx bx ax dx

 
 
    

  

)23(  
1 2 1

2 3 2

3
3 3 2 1 1 3

q

q

q

D y y u

slave D y y u

D y cy by ay dy u

  
  
     

  

Applying described method, matrix A, nonlinear part g(x) and 
h(y) are achieved accordingly:

3 3
1 1

0 1 0 0 0

0 0 1 , ( ) 0 , ( ) 0A g x h y

a b c dx dy

     
            
          

(24)

The error is defined as the discrepancy of the relevant states 
i.e. i i ie y x  for 1, 2,3i  . 

Deducing the master dynamic from the slave, leads to:

( ) ( )qD e A e h y g x U    (25)

Finally, a desired input control is calculated as (27):
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1 1
1 3 1 1 2 2 3 3

2

1 3 1 1 2 3 2

2 3 3

( ) ( )

[ ( ) sgn( )]

( ) ( )

( ( ) sgn( )

B CK c k c k c k

B C rI A e p S

c r c a e c c r c b e

c c c r e p S

     

   
    

  

(26)

1 1 1 2

2 2 1 2

3 3
3 3 1 2 1 1

( )

( )

( )

u t k B B

u t k B B

u t k B B dy dx

  


 
    

(27)

Assume that orders of the master and the slave are q=0.9 and 
parameters of system as ( , , ) (5, 10, 3.8)a b c    . Parameters of 

the controller are chosen as (0.1,0.3,0.4)K  , 

(10,3,4)C  and 0.5p  . This selection of parameters results 

in eigenvalues 1 2 3( , , ) ( 10,  -0.5793  1.3602i)      which 

located in a stable region ( arg( ) 0.9 * / 2i  ). Numerical 

simulations for this case have carried out based on ode45 
solver . Fig.3 shows the effectiveness of the proposed 
controller to synchronize two fractional-order modeled
systems. It should be noted that control ( )u t , has been 

activated at 0t  .

V. SYNCHRONIZATION OF TWO DIFFERENT FRACTIONAL-
ORDER COULLET SYSTEM VIA ACTIVE SLIDING MODE 

CONTROL

In this section two fractional order master and slave with 
different fractional order will be synchronized via proposed 
method. This method can be useful in synchronizing two 
systems with partially different attractor, which may usually 
happen in coding and decoding applications.
Consider master and slave system as :

(28)  1

1

1

1 2

2 3

3
3 3 2 1 1

q

q

q

D x x

master D x x

D x cx bx ax dx

 

 


   

  

)29(  2

2

2

1 2 1

2 3 2

3
3 3 2 1 1 3

q

q

q

D y y u

slave D y y u

D y cy by ay dy u

  

  


    

  

the error dynamic can be written as:

(30)  1 1 2

1 1 2

1 1 2

1 2 1 1

2 3 2 2

3 3
3 3 2 1 1 1 3 3

q q q

q q q

q q q

D e e D y D y

D e e D y D y

D e ce be ae dy dx D y D y

   

   


      

  

Again matrix A, nonlinear part g(x) and h(y) are described 
accordingly as:

1 2

1 2

1 2

3
1

1 1

2 2

3
1 3 3

0 1 0 0

0 0 1 , ( ) 0 ,

( )

q q

q q

q q

A g x

a b c dx

D y D y

h y D y D y

dy D y D y

   
       
      

 
 
  
 

   

(31)
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Fig.3 :a) Simulation Results of ASM synchronization of two identical 
fractional order Coullet systems for 0.9q  , p=0.5, 

[10,0.3,0.4]Tk  and [10,3,4]C  . b) Control signal for states 1 2,  x x and 3x .
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The objective is to find suitable controllers ui (i = 1, 2, 3)
which made the error dynamic asymptotically stable.

Assuming 1 2,B B the same as (26), the suitable controllers

can be defined as:

1 2

1 2

1 2

1 1 1 2 1 1

2 2 1 2 2 2

3 3
3 3 1 2 1 1 3 3

( )

( )

( )

q q

q q

q q

u t k B B D y D y

u t k B B D y D y

u t k B B dy dx D y D y

    
    


     

(32)

Assume two different fractional order Coullet system with the 
initial conditions as master and slave. The fractional order of 
master is q1=0.9 with initial condition as 

10 20 30( , , ) (1, 1,0)x x x   and for slave system are q2=0.88 and 

10 20 30( , , )y y y  (0.2,0.2,0.2) . Assume the parameters of 

system as ( , , ) (5, 10, 3.8)a b c    . Parameters of the controller 

are chosen as (0.1,0.3,4)K  , (10,4,0.5)C  and 0.5p  . 

This selection of parameters results in eigenvalues

1 2 3( , , ) ( 10, -2.3649  2.1492i)      which satisfy the

stable condition ( 1arg( ) * / 2i q  ).

In Fig.4 the results of proposed method and its effectiveness in
synchronizing two different fractional-order Coullet¨ systems
are shown. 

VI. CONCLUSION

In this paper, synchronization of two chaotic Coullet system 
with fractional orders models (as master and slave) with the 
same order, is investigated. Active sliding mode method has 
been developed to imply the task. It has been shown that by 
proper selection of the control parameters (Ki., ci, p, r), the 
master and slave systems are synchronized. Furthermore all 
eigenvalues ( ' 1, 2,3i s i  )of synchronized system will 

satisfy the suffusion condition i.e arg( ) / 2i q  . This 

means the error is stabilized so in the long term analysis, the 
synchronization would be guaranteed. 
The proposed method has also been developed to synchronize 
two master and slave system with different fractional-order. 
Numerical simulations have shown the efficiency of the 
proposed controller in the mentioned task.
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Fig.4 :a) Simulation Results of ASM synchronization of two fractional order 
Coullet systems with different orders. Parameters of the systems and controller 
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Abstract— In this paper, some dynamical behaviors of the 

fractional order Liu system are investigated. It is found that chaos 
exists in this system with order less than 3. Chaos control and 
synchronization are achieved by using linear control technique. 
Simulation results are used to visualize and illustrate the 
effectiveness of the proposed control and synchronization 
methods. 
 

Index Terms—fractional order Liu system, stability conditions, 
chaos, chaos control, synchronization, linear control technique 
 

I. INTRODUCTION 
Although fractional calculus is such an old topic that it was 

introduced in the early 17th century, it has been extensively 
studied in the last decade by scientists, engineers and physicists 
[1-2]. 

There are many definitions of fractional order derivatives. 
The Riemann-Liouville definition [3] which is given by 
 

),()( tfJ
dt
dtfD l

l

l
αα −=                                                               (1)                                                                                                           

 
where θJ  is the θ -order Riemann-Liouville integral operator 
which is given as 
 

.0,)()(
)(

1)(
0

1 >−
Γ

= ∫ − θτττ
θ

θθ duttuJ
t

                                  (2)                                                                          

  
Another one is the Caputo definition of fractional 

derivatives [4], which is often used in real applications: 
 

,0),()( )(
* >= − ααα tfJtfD ll                                                     (3)                                                                                                 

 
where )(lf  represents the l -order derivative of )(tf  and 

][α=l , this means that l  is the first integer which is not less  
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than α . The operator α

*D  is called the “Caputo differential 
operator of order α ”. In [5], F. Ben Adda studied the geometric 
and physical interpretation of the fractional derivative.    

On the other hand, studying chaos in fractional order 
dynamical systems is very interesting topic and has much 
increasing attention in the past few years. Chaotic attractors 
have been found in the following fractional order systems, 
Lorenz [6], Chua [7], Chen [8] and Lü [9]. Chaos in fractional 
order autonomous systems has also interesting phenomena that 
is it can occur for orders less than three and this can’t happen in 
their integer order counterparts according to 
Poincaré-Bendixon theorem. Chaos control and 
synchronization in integer order differential systems are well 
understood [10-11], but they are still in the beginning in the 
case of fractional order chaotic systems. Recently, many papers 
about chaos control and synchronization in fractional order 
chaotic systems have been published by authors [12-13]. 

In this work, I study stability, chaos, control and 
synchronization in the Liu system [14] with same fractional 
order. I use the Routh-Hurwitz conditions given in [15] to study 
the stability conditions in this system. It is found that the lowest 
order for chaos to exist in such system is 2.55. The sufficient 
conditions for chaos control are derived analytically using 
linear feedback control technique. Conditions for achieving 
chaos synchronization via linear control method are studied 
using the classical Laplace transformation theory. The 
analytical results are verified by numerical simulations.  
  

II. THE FRACTIONAL ORDER LIU SYSTEM 
The fractional order Liu system with same fractional order 

is given as follows 
 

,,),( 2
*** hxczzDkxzbxyDxyaxD +−=−=−= ααα                  (4) 

 
where α  is the fractional order and ]1,0(∈α . The parameters 
a, c, k, h are all positive real parameters and b∈R. When 1=α  
system (4) is the original integer order Liu system which 
exhibits chaotic behaviors at the parameter values a = 10, b = 
40, c = 2.5, h = 4 and k = 1. 

    The equilibrium points of system (4) are ),0,0,0(0 =E  

),,(),,( 21 k
b

hk
bc

hk
bcEand

k
b

hk
bc

hk
bcE −−== . 

Dynamical behaviors, linear feedback control 
and synchronization of the fractional order Liu 

system 
Ahmed E. Matouk ba,  
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III. CONDITIONS FOR STABILITY IN 3-DIMENSIONAL 
FRACTIONAL ORDER SYSTEMS 

The stability conditions of fractional order systems given in 
[15] are shown in the following: 
Consider the 3-dimensional fractional order system 
 

),,,()(),,,()(),,,()( *** zyxhtzDzyxgtyDzyxftxD === ααα (5)                                                 
 
where ]1,0(∈α  and ),,( zyx  is an equilibrium solution of (5). 
The eigenvalues equation of the equilibrium solution ),,( zyx  
is given as 
 

,0)( 32
2

1
3 =+++= aaaP λλλλ                                               (6)                                                                                           

 
 whose discriminant )(PD  is given by  
 

.)(27)(4)(4)(18)( 2
3

3
2

3
13

2
21321 aaaaaaaaaPD −−−+=      (7)                                                          

 
Then ),,( zyx  is locally asymptotically stable if all the roots of 
equation (6) satisfy the condition .2/)arg( απλ >  

Consequently, we have the following stability conditions: 
(i) If 0)( >PD , then the necessary and sufficient 

conditions for the equilibrium point ),,( zyx  to be 
locally asymptotically stable is  

 
0,0,0 32131 >−>> aaaaa . 

 
(ii) If 0)( <PD , 0,0,0 321 >≥≥ aaa  then ),,( zyx  is 

locally asymptotically stable for 3/2<α . However,  
if 0)( <PD , 3/2,0,0 21 ><< αaa  then all roots 
of equation (6) satisfy the condition .2/)arg( απλ <  

(iii) If 0)( <PD , 0,0,0 32121 =−>> aaaaa  then 
),,( zyx  is locally asymptotically stable for all 
)1,0(∈α . 

(iv) 03 >a , is the necessary condition for the equilibrium 
point ),,( zyx  to be locally asymptotically stable. 

 

A. Stability conditions of the equilibrium point 0E  

The eigenvalues equation of the equilibrium point 0E  is 
given by 
 

.0)()( 23 =−−+++ abcabacca λλλ                                          (8)                                                                                    
 

When 0<b  and 0)( >PD  then using the stability 
condition (i), the equilibrium point 0E is locally 
asymptotically stable for all ]1,0(∈α . However if 0)( <PD  
then 0E  is locally asymptotically stable for 3/2<α  or if 

0)( <PD   and 
a

accb )( +
=  then 0E  is locally asymptotically 

stable for all )1,0(∈α  (using the stability conditions (ii) and 
(iii) respectively). 

    When 0>b  then 03 <a , and by using the condition (iv) 
we can easily see that 0E  is unstable. 

 

B. Stability conditions of the equilibrium points 1E and 2E  

When 0>b , two other equilibrium points 1E  and 2E  
appear, and they have the following eigenvalues equation: 
 

.02)( 23 =++++ abcacca λλλ                                                   (9)                   
 

If 0)( >PD  then the necessary and sufficient condition for 
the equilibrium points 1E ( 2E ) to be locally asymptotically 

stable for all ]1,0(∈α  is 
2

cab +
<  (from the stability condition 

(i)). However, if 0)( <PD  then 1E ( 2E ) are locally 
asymptotically stable for 3/2<α  or if 0)( <PD   and 

2
)( cab +

=  then 1E ( 2E )  are locally asymptotically stable for 

all )1,0(∈α  (using the stability conditions (ii) and (iii) 
respectively). Now, the following Lemma is proved: 
 
Lemma 1 For 3/2<α , system (4) undergoes a pitchfork 
bifurcation at 0=b . Moreover, when 0<b  the unique 
equilibrium point 0E  is locally asymptotically stable, and when 

0>b , 0E  becomes unstable and two other equilibrium points 

1E  and 2E  appear and they are locally asymptotically stable 
(near 0=b ).         
                       

IV. CHAOS IN FRACTIONAL ORDER LIU SYSTEM 
An efficient method for solving fractional order differential 

equations is the predictor-correctors scheme or more precisely, 
PECE (Predict, Evaluate, Correct, Evaluate) technique which 
has been investigated in [16], and represents a generalization of 
the Adams-Bashforth-Moulton algorithm. It is used throughout 
this paper.  

For the parameter values a = 10, b = 40, c = 2.5, h = 4 and k 
= 1, it follows that 0)( <PD  and therefore the equilibrium 
points 1E ( 2E ) are locally asymptotically stable for 3/2<α . 
For this choice of the parameter values, the integer order form 
of system (4) exhibits chaotic behavior and has the three 
equilibria )0,0,0(0 =E , )40,5,5(1 =E  and )40,5,5(2 −−=E . The 
eigenvalues of these equilibrium points are given as follows: 

 
For 0E :         .5000.2,6155.15,6155.25 321 −==−= λλλ  

For 1E :         I3673.105307.2,5614.17 3,21 ±=−= λλ . 

For 2E :         I3673.105307.2,5614.17 3,21 ±=−= λλ , where 

.1−=I  
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Now, according to [17] the equilibrium point )0,0,0(0 =E  is 
saddle point of index 1, however the other equilibrium points 

1E  and 2E  are saddle points of index 2. Thus, the necessary 
condition for the fractional order Liu system (4) to remain 

chaotic is 










>

)Re(
)Im(

arctan2

3,2

3,2

λ
λ

π
α . Consequently, the 

maximum fractional order α  for which the fractional order Liu 
system (4) demonstrates chaos for the above given parameters 
is 85.0≈α . Since the order of the fractional order chaotic 
system is the sum of the orders of all involved derivatives, 
hence, we show that the lowest order for the fractional order 
Liu system given by equations (4) to show chaos is 2.55. 

Simulations are performed for 9.0=α using the above- 
mentioned parameter values at which system (4) shows 
Lorenz-like attractor. When 85.0=α , system (4) is still 
chaotic. However below the value 85.0=α , system (4) 
becomes non chaotic. 
 

V. CHAOS CONTROL OF FRACTIONAL ORDER LIU SYSTEM 
A 3-dimensional fractional order chaotic system is 

described as 
 

)(* XFXD =α ,                                                                        (10)                                                                                                             

where 3RX ∈ . The controlled system is given as  
 

),()(* eXXKXFXD −−=α                                                      (11)                                                                                               
 
where 0,,),,,( 321321 ≥= kkkkkkdiagK  and ),,( eeee zyxX =  
is an equilibrium point of (10). Now, by selecting the 
appropriate feedback control gains 321 ,, kkk  such that the 
eigenvalues of the linearized equation of the controlled system 
(11) satisfy one of the above-mentioned Routh-Hurwitz 
conditions, then the trajectories of the controlled system (11) 
asymptotically approaches the unstable equilibrium point eX  

in the sense that 0lim =−
∞→ et

XX , where .  is the Euclidean 

norm. 
Now, consider the controlled fractional order Liu system 

which is given by 
 

),(

),(),()(

3
2

*

2*1*

e

ee

zzkhxczzD
yykkxzbxyDxxkxyaxD

−−+−=

−−−=−−−=
α

αα
   (12) 

 
where 1k , 2k  and 3k  are all positive feedback gains. By a 
suitable choice of these feedback gains according to the 
stability conditions mentioned above, one can drive the 
system’s trajectory to any of the three unstable equilibrium 
points 10 , EE and 2E . 

 

A. Stabilizing the equilibrium point 0E  

The eigenvalues equation of the controlled system (12) at 
)0,0,0(0 =E  is given as 

 

,0)(
)()(

221

222121
2

221
3

=−+
−++++++

abkss
abkskssskss λλλ                     (13)                   

 
where 031 >+= kcs  and 012 >+= kas . 
    By choosing the feedback gains 1k , 2k  and 3k  such that 

0)( >PD , then using the stability condition (i), we find that the 
necessary and sufficient condition for the equilibrium solution 

)0,0,0(0 =E  of the controlled system (12) to be locally 

asymptotically stable is .
1

2 ka
abk
+

>  

 

B. Stabilizing the equilibrium points 1E and 2E  

The eigenvalues equation of the controlled system (12) at 
the equilibria )( 21 EE  is given by 
 

.02
)()(

221

222121
2

221
3

=++
++++++

abckss
kskssskss λλλ                       (14)                   

 
    By choosing the feedback gains 1k , 2k  and 3k  such that 

0)( >PD , the stability condition (i) ensures that the 
equilibrium solutions )( 21 EE  of the controlled system (13) are 
locally asymptotically stable if and only if 
 

Fig. 1.  3-D plot of the fractional order Liu attractor in the x-y-z space using 
fractional order 9.0=α . 
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,2
4

)(
2

2
31

2 g
abccakkgk +

−+−
+−>                                     (15)  

                                                                            
where cakkg +++= 31 . 
 

C. Numerical results 
Simulation procedures are coded and executed using PECE 

method. The system (12) is then numerically integrated with 
parameter values; a = 10, b = 40, c = 2.5, h = 4 and k = 1. The 
feedback control gains )1,40,1(),,( 321 =kkk  satisfy the 
conditions of the stability of the equilibrium point 0E . The 
simulation results show that this controller stabilize the 
fractional order Liu system to this equilibrium point with order 

9.0=α  (see figure 2). However, the feedback gains 
)1,120,2(),,( 321 =kkk  satisfy the stability conditions of the 

equilibrium points )40,5,5(1 =E  and )40,5,5(2 −−=E . Figures 
3a and 3b show the trajectories of the controlled fractional 
order Liu system with order 9.0=α  converge to the 
equilibrium points 1E  and 2E  respectively.  
 

VI. SYNCHRONIZATION VIA LINEAR CONTROL METHOD 

In this section, our goal is to study chaos synchronization in  
 
the fractional order Liu system (4) by applying linear control 
technique. Let the drive and response systems be given as 
follows: 

 
,,),( 2

111*1111*111* hxczzDzkxbxyDxyaxD +−=−=−= ααα          (16) 
                                                                                                                  
and, 
 

,
),(),(

2
222*

122222*222*

hxczzD
yyzkxbxyDxyaxD

+−=

−−−=−=
α

αα ρ              (17) 

 
where ρ  is feedback control gain and 0>ρ . Assume that  

 
123122121 ,, zzeyyexxe −=−=−= . By subtracting (16) from 

(17) we obtain 
 

.)(

,)(

),(

11233*

31311122*

121*

exxhceeD
ekeekxekzebeD

eeaeD

++−=

−−−−=

−=

α

α

α

ρ                                       (18) 

 
By taking the Laplace transform in both sides of (18), 

letting )}({)( teLsE ii =  where )3,2,1( =i , we obtain 
 

}.{}{)()0()(

),()(}{}{)()()0()(

)),()(()0()(

111233
1

3

31311122
1

2

121
1

1

ehxLehxLscEessEs
sEskEekxLekzLsEbessEs

sEsEaessEs

++−=−

−−−−=−

−=−

−

−

−

αα

αα

αα

ρ

                                                                                             (19) 
 
Theorem 1 If ρ≠b , ξ≤)(1 sE  and ξ≤)(2 sE , the drive and 
response systems will be synchronized under suitable choice of 
the feedback control gain ρ . 
Proof. By rewriting equation (19) as follows 
 

 
(a) 

 
(b) 

Fig. 3.  The trajectories of the controlled system (12) are stabilized to the 
equilibrium point (a) )40,5,5(1 =E , (b) )40,5,5(2 −−=E after the controllers 

1,120,2 321 === kkk  are activated. 

 
Fig. 2.  Shows the trajectories of the controlled system (12) are stabilized to the 
equilibrium point )0,0,0(0 =E  after the controllers 1,40,1 321 === kkk
are activated. 
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                                                                                             (20) 
Using the Final-value theorem of the Laplace 

transformation, it follows that 
 

}.{lim}{lim)(lim)(lim

),(lim).(lim}{lim

}{lim)(lim)(lim

),(lim)(lim)(lim)(lim

11
0

12
0

3
0

3

3111
0

31
0

2
0

2

22
0

1
0

1

exsL
c
hexsL

c
hssEte

tete
b

kezsL
b

k

exsL
b

kssEte

tessEssEte

ssst

tts

sst

tsst

+++

+

++

++

→→→∞→

∞→∞→→

→→∞→

∞→→→∞→

+==

−
+

−
+

−
==

===

ρρ

ρ                  

                                                                                             (21) 
If )(1 sE , )(2 sE  are bounded and ρ≠b , then 

0)(lim)(lim 21 ==
∞→∞→

tete
tt

. Now, owing to the attractiveness of the 

attractor, there exists 0>η  such that 
∞<≤∞<≤ ηη )(,)( tytx ii

 and ∞<≤η)(tzi
 where ).2,1( =i   

 
Therefore, 0)(lim 3 =

∞→
te

t
. Finally, we get 

 
3,2,1,0)(lim ==

∞→
jte jt

.                                                      (22)                                                                                              

 
Consequently, the synchronization between the drive and 
response systems is achieved. 
 

A. Numerical results 
The drive and response systems (16) and (17) are integrated 

numerically using the PECE scheme with the initial values 
29)0(,20)0(,15)0( 111 === zyx , ,15)0(,10)0( 22 == yx  

25)0(2 =z  and fractional order 9.0=α . From figure 4 it is 
clear that the drive and response systems are synchronized 
when using 100=ρ . 
 

VII. CONCLUSION 
Some dynamical behaviors of the fractional order Liu system 

have been analyzed. Some stability conditions have been used 
to study the local stability of the equilibria. Chaos has been 
shown to be existed for this system with order less than 3. 
Analytical conditions for feedback control of the fractional Liu 
system have been derived. Chaos synchronization has also been 
achieved analytically and numerically using linear control 
method. 
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Chaotic Synchronization of Fractional-Order 
Chua’s System with Time-Varying Delays 

Shangbo Zhou, Xiaoran Lin, and Hua Li 

 
Abstract—Chaos in fractional-order Chua’s system with 

time-varying delays is illustrated by presenting its 
waveform graphs, states patriots and bifurcation graphs. 
Chaotic synchronization system for such system is 
constructed. the bifurcation graph with respect to the 
linear coupled parameter k is presented, and the 
numerical experiments are presented. The study shows 
that the chaos in such fractional-order Chua’s system with 
time-varying delays can be synchronized. Furthermore, 
several different coupled systems are constructed, and the 
synchronization characteristics are compared. 

Index Terms—Chua’s system, fractional-order, varying 
time delays, chaotic synchronization. 

I. INTRODUCTION  
H
fr

genera

ERE is an increase in the number of applications where 
actional calculus has been used. The real objects are 
lly fractional. In the past three decades, more interest 

has been devoted to fractional-order circuits and systems (FO-
CAS), fractional-order signal processing (FO-SP) and 
fractional-order control systems (FO-CS) fields, among which 
complex behaviors such as bifurcations and chaos in electric 
and electronic circuits, networks, as well as nonlinear 
dynamic systems have attracted more attention in research [1-
8].  

Chaos, as a nonlinear phenomenon, has been widely 
researched and reports in both of theoretical and practical 
investigations, have appeared a huge amount in number [9-17].  
Recently, Chaos in fractional-order system also attracts many 
researchers to investigate. Based on Chua’s System, Tom T.  

Harthey(1995) et al introduced the fractional-order Chua’s 
system, studied the effect of fractional derivatives on the 
dynamics system. The bifurcation diagram of fractional-order 
Chua’s system also was shown [9]. Wajdi M. Ahmad and J.C. 
Sprott(2003) discussed the chaotic behavior in a fractional 
jerk model, which is used to determine the time derivative of 
acceleration of an object [5]. In ref.[18], Li(2004) discussed 
the chaos in Chen’s system and its control. 

Since the pioneering works by Pecora and Carroll, various 
effective methods for chaos synchronization have been 
reported, especially chaotic synchronization of Chua and 
Chen circuit system [19-31]. In ref. [30], C. Cruz-Herna′ndez 
and N. Romero-Haros(2008) applied the Generalized 
Hamiltonian forms and observer approach to synchronize 
time-delay-feedback Chua’s circuits to transmit encrypted 
confidential information, and had enhanced the level of 
encryption security. Researching results shown that chaos 
have promising applications in secure communication. In ref. 
[31], a stochastic extended fractional Kalman filter is used for 
state reconstruction in a noisy environment. The chaotic 
communication scheme proposed by Arman Kiani-B et al is 
totally different from the traditional cryptosystems, due to 
employing different chaos states for synchronization and 
encryption. Chen proposed a new synchronization called 
“generalized projective synchronization” [26]. 

A time-delayed Chua’s system can be described as 
following [30]: 

( ( )),

,

sin( ( )),

dx y x f x
dt
dy x y z
dt
dz y z x t
dt

α

β γ βε σ τ

= − −

= − +

= − − − −

                      (1) 

where α, β, δ >0, and  

1( ) ( )(| 1| | 1|), , 0.
2

f x bx a b x x a b= + − + − − <  

 In this paper, the time delay is considered being varying 
and the fractional-order Chua’s system we will investigate 
is given as follows: 

T 
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1

1

2

2

3

3

( ( )),

,

sin( ( ( ))),

d x y x f x
dt
d y x y z
dt
d z y z x t t
dt

δ

δ

δ

δ

δ

δ

α

β γ βε σ τ

= − −

= − +

= − − − −

           (2) 

where τ(t)>0 is  delays with time varying. The chaotic 
phenomena and the chaotic synchronization of Eq. (1) will be 
studied in this paper. 

II. CHAOTIC     PHENOMIUN 
Now we discuss chaotic phenomena in a fractional-order 

Chua’s system with varying time delay. The fractional-order 
Chua’s system is given as Eq. (2). If εσ≠0, then system (1) is 
an explicit time-delayed system. We have illustrated that the 
time delay have affected the behavior of a dynamics system 
significantly [24]. 

By the definition of fractional-order derivative： 

∑
−

=

−

→
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

]/[

00
)()1(lim)(

hat

j

j

hta jhtf
j

htfD
ααα ,            (3) 

we take calculus step h such that τ/h is an integer number. 
Then the discrete form of system (2) can be written as follows: 

1 1

2 2

3 3

( )

0

( )

0

( )

0

( ( )),

,

sin( ),

m

j m j m m m
j

m

j m j m m m
j

m

j m j m m m
j

h x y x f x

h y x y z

h z y z x

δ δ

δ δ

δ δ
τ

ω α

ω

ω β γ βε σ

−
−

=

−
−

=

−
−

=

= − −

= − +

= − − −

∑

∑

∑

         (4)  

where mx τ  is the value of x at ( )t tτ+ . 

From (4), we have 

1 1

2 2

3

3 3

( )

1

( )

1

( )

1

{ [ ( ( ))] }/(1 ),

{ [ ] }/(1 ),

{ [ sin( )]

}/(1 ),

m

m m m m j m j
j

m

m m m m j m j
j

m m m m

m

j m j
j

1

2

x h y x f x x h

y h x y z y h

z h y z x

z h

δ δ

δ δ

δ
τ

δ δ

α ω

ω

β γ βε σ

ω

−
=

−
=

−
=

= − − − +

= − + − +

= − − −

− +

∑

∑

∑

δ

δ

2δ

|

  (5) 

1, 2, .m =  

Formula (5) are implicit nonlinear algebraic equations respect 
to xm,  ym and zm , respectively.  From (5), we can construct 
iteration algorithms to solve them as follows:  

1

1 1

2 2

3

3 3

( ) ( 1) ( 1) ( 1)

( )

1

( )( ) ( 1) ( 1) ( 1)

1

( ) ( 1) ( 1)
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l l l l
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m
l l l l

m m m m j m j
j

l l l
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j m j
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x h y x f x

x h

y h x y z y h

z h y z x

z h

δ

δ δ

δ δ

δ
τ

δ δ

α

ω

ω

β γ βε σ

ω

− − −
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− −

−
=

= − −

− +

= − + − +

= − − −

− +

∑

∑

∑

   (6) 

1, 2, , 1, 2,l m= = ， 

where l is the iteration number. When 
( ) ( 1) ( ) ( 1) ( ) ( 1)| | | | |l l l l l l
m m m m m mx x y y z z δ− − −− + − + − < (given error, 

e.g. δ=10-6), we would obtain the solution of the Eq.(2) at 
time t as  )( ) ( ) (, ,l l l

m m mx y z

2

/
hδ

. If the eigenvalues λi (i=1,2,3) of the 
Jacobi matrix  

( 1)
1 1

2 2

3 3 ,

(1 ( )) / / 0
1/ 1/ 1/

0 /

l
mf x h h

h h
h h

δ δ

δ δ

δ δ

α α

β γ

−′⎡ ⎤− +
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

1 1
1( /(1 )h h hδ δ

δ = + , ) 2 2
2 /(1 )h h hδ δ

δ = + 3 3
3 /(1 )h h hδ δ

δ = +
satisfy |λi|<1, then iteration (6) is convergent. So just the 
calculus step h being taken smaller enough, the iteration (6) 
will be convergent. 

We set the calculus step as h=0.005 for our numerical 
simulation. The phase portraits and the bifurcation diagram 
with α =10.725, β =10.593, γ=0.268, δ1=0.93, δ2=0.99, δ3 
=0.92, ε=0.5, σ=0.05, are shown as in Fig.1 and Fig.2. 
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Simulation results imply that the system exhibits chaotic 
phenomena, which also indicating complex behaviors are 
found in time-delayed system.  

9.5 10 10.5
-3

-2

-1

0

1

2

3

 
 
    

The bifurcation diagram which across y =0 of system (1) is 
as in Fig.3, and which of system (2) as α is used as the 
bifurcation parameter is shown in Fig. 4. Comparing Fig.3 
with Fig.4, it is clearly  that the dynamic behaviors of time-
delayed Chua’s system is more complex than that of the 
ordinary one. We can get that system (2) exhibits chaotic 
phenomena at α=10, while system(1)at about  α=10.3. 
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III. CHAOTIC SYNCHRONIZATION OF FRACTIONAL-ORDER 
CHUA’S SYSTEM 

A.   Synchronization Model 
Now, we employ (2) as the drive system, and the response 

system is as follows: 

1

1

2

2

3

3

1
1 1

1
1 1 1 2 1

1
1 1

3 1

( ( )) (

( ),

sin( ( ( ))) ( ),

d x y x f x k x x
dt
d y x y z k y y
dt

d z y z
dt

1),

x t t k z z

δ

δ

δ

δ

δ

δ

α

β γ

βε σ τ

= − − + −

= − + + −

= − −

− − + −

             (7) 

 Defining the synchronization error as ex(t)=x(t)-x1(t), 
ey(t)=y(t)-y1(t), ez(t)=z(t)-z1(t), then we can obtain the 
following error system: 
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The Jacobi  matrix of system (8) is  
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Suppose M is the lowest common multiple of the 
denominators uis of δi s, where δi = vi /ui , (ui, vi ) = 1, ui, vi  ∈
Z+, i=1,2,3, then if all the roots λis of the equation 

Fig. 3. The bifurcation diagram for system (1) 
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satisfies  |arg(λi)|>π/2M, the coupled system is synchronized 
[32]. 

B.   Numerical Simulations 
For calculus step h, we can not guarantee that τ(t)/h is 

an integer number. So for time t, we take approximate values 
of xτ =x(t-τ(t)) as follows: 
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where [τ/h ] stands for the largest integer number which does 
not bigger than τ/h. 

Then the discrete form of the response system can be 
written as follows: 
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We set the calculus step as h=0.001 for our numerical 
simulation. Taking α =10.725, β =10.593, γ=0.268,δ1=0.93, 
δ2=0.99, δ3 =0.92, τ=0.5+sin2(4.3t), and the activation 
function as ( ) 0 .5 ( ) ( 1 1 )f x b x a b x x= + + + − − , then 

Fig. 4. the bifurcation diagram for system (2) 
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if a=-1.1726, b=-0.7872, the original system exhibit chaos 
phenomena (see Fig.1 to 4). Setting k1 =7 and 10, the 
waveform diagrams are shown as in Fig.7 and 8, respectively.  
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If we take the response system as follows: 
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where 3 1)x t t k z zβε σ τ− +

1

−  is replaced by 

1 3sin( ( ( ))) ( ),x t t k z zβε σ τ− + −  in the response system. 
Setting k=12, the waveform diagrams of the coupled system 
(14) is shown as in Fig.9.  

   From Fig. 7 to 9, we see that the convergence situations of 
system (9) and (14) are almost the same, i.e. the nonlinear 
terms of 3 1sin( ( ( ))) ( )x t t k z zβε σ τ− + − or 

1 3sin( ( ( ))) ( )1x t t k z zβε σ τ− + − , affects the coupled system 
weakly. 
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 Replacing f(x) by f(x1) in the response equation of the 
coupled system (7), we obtain following response system: 

Fig. 9. Waveform diagram of system(11)  with k1=10, k2=0, k3=0 
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Fig. 7. Waveform diagram of system (7) with k1=7. k2=0, k3=0 
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Fig. 11. Waveform diagram of system(11)  with  k1=16, k2=0, k3=0 

Fig. 8. Waveform diagram of system (7) with k1=10, k2=0, k3=0 

         ex
         ey
         ez

t 

Fig. 10. Waveform diagram of system(11)  with  k1=14, k2=0, k3=0 
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Setting k=14 and 16, the waveform diagrams are shown as 
in Fig.10 and 11, respectively. From the simulation results, 
we can see that the coupled system is not convergent when 
t<30 with k <14. By doing some simulation, we come out that 
when the parameter k>16, the synchronization system is 
convergent.  

Furthermore, x(t-τ(t)) and  is replaced by xx 1(t-(τ)), 1x in 
the response equation of the coupled system (12), coupled 
system be changed into as Eq.(13). The  waveform diagrams 
of the coupled system with k=7 is shown as in Fig. 12. 
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From above discussion and simulation results, we see 
that, for system (2), when the synchronization is linear, 
the parameter k is rather large for system to convergence; 
If the synchronization is nonlinear as system (9), k is 
smaller. But nonlinear system is more complex than 
linear one, and the system is hard to be complemented 
when the parameter k is large. The simulations results 
also show that the delay terms somewhat affect the 
behaviors of the system. Fig. 13. is the bifurcation 
diagram for synchronization of system (13) .The system 
achieve the synchronization at k1=7. 
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IV. CONCLUSIONS 
In this paper, chaotic phenomena in a time-varying delayed 

fractional-order Chua’s system are discussed. A numerical 
simulation algorithm for fractional-order dynamics model 
with explicit delays is presented. By comparing several 
synchronization models, we conclude that the chaos in such 
fractional-order system could be synchronized by several 
ways. How to depress limit of parameter k1 in the linear 
coupled system and multi-delays coupling ways will be 
considered in our further researching. Chaotic synchronization 
can be studied by Laplace transformation theory. But the 
characteristic equation is a high order one and the eigenvalue 
is hard to be obtained. So how to obtain stability condition for 
a fractional-order system should be investigated in the further 
work. 
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Abstract—In the present paper, the approximate analytical 

solutions of general diffusion equation with fractional time 

derivative in the presence of an absorbent term and a linear 

external force are obtained with the help of powerful Homotopy 

Perturbation Method (HPM). By using initial value, the 

approximate analytical solutions of the equation are derived. The 

results are deduced for different particular cases. The present 

method is extremely simple, concise and highly efficient as a 

mathematical tool in comparison with the other existing 

techniques. 

 

I. INTRODUCTION 

HE HPM is an approach for finding the approximate 

analytical solution of linear and nonlinear problems. The 

method was proposed by He ([1], [2]) and was successfully 

applied to solve linear and nonlinear equations by He ([3] - 

[13]). The fundamentals of the method can be found, for 

example, in He ([14], [15]). The basic difference of this method 

from the other perturbation techniques is that it does not require 

small parameters in the equation which overcomes the 

limitations of traditional perturbation techniques. 

 

We focus our attention to find the solution of the equation ( chot 

et al. [16] ) 
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where, D  is a diffusion coefficient, )(xF  is an external force, 

)(tα  is a time-dependent absorbent term which may be related 

to a reaction diffusion process.  

The diffusion equations have been widely studied due to their its 

various applications in Physics and engineering, but the study 

related to diffusion equations with nonlinear terms and 

fractional time derivatives are few in number. Lenzi et al. [17] 

presented some classes of solutions of a general nonlinear 

fractional diffusion equation with absorbations. The similar 

study was made by Assis et al. [18]. Recently Das [19] has used 
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Variational Iteration Method to find the analytical solution of a 

fractional diffusion equation of order )10( ≤< αα  only in 

the presence of external force. Schot et al. [16] has given an 

approximate solution of the equation with absorbent term and a 

linear external force in terms of Fox H-function . Zahran [20] 

has given a closed form solution in Fox H-function of the 

generalized fractional reaction-diffusion equation subject to an 

external linear force field to describe the transport processes in 

disorder systems.  

In this paper the Homotopy Perturbation Method is used to 

solve the fractional diffusion equation problem in the presence 

of both linear external force and an absorbent term. Using the 

initial condition, the approximate analytical expressions of 

),( txu for different Brownian motions are obtained. The effect 

of external force and absorbent term in the solution is obtained 

for different particular cases. The elegance of this method can 

be attributed to its simplistic approach in seeking the 

approximate analytical solution of the problem. 

 

II. SOLUTION OF THE PROBLEM 

 

Our aim is to solve the analytical fractional diffusion equation 

(1) for 1=D and xkxF −=)( i.e., the equation now 

becomes  
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with initial condition  

                                   )()0,( xfxu =                                         (3) 

Equation (9) can be written in operator form as 
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∫ −−+
t

dxuttxuk
0

),(.)(),( ξξξα                    (4) 

Solution of the Fractional Diffusion Equation 

with Absorbent Term and External Force 

Subir  Das* 

Department of Applied Mathematics, Institute of Technology 

Banaras Hindu University, Varanasi - 221 005, INDIA 

T 

264 ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France



 

 

 where, β

β
β

t
Dt ∂

∂
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According to the homotopy perturbation method, we construct 

the following homotopy 

      

)),((),([),( txuxDktxuDptxuD xxxt +=β
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  where the homotopy parameter p  is considered as a small 

parameter ( ]1,0[∈p ). Now applying the classical 

perturbation technique, we can assume that the solution of 

equation (2) can be expressed as a power series in p as given 

below: 
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When 1=p , equation (5) corresponds equation (4) and (6) 

becomes the approximate solution of (4) i.e., of equation (2). 

The convergence of the method has been proved in   [2]. 

Substituting equation (6) for equation (5), and equating the 

terms with the identical powers of p, we can obtain a series of 

equations: 
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and so on. 

The method is based on applying the operator 
βJ ( the inverse 

of Caputo operator
β
tD ) on both sides of the equations (7) – 

(11), we obtain the solutions of 0i,t)(x, ≥iu  
for different 

expressions of )(tα . 

Here we will discuss when the Absorbent term is 
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where, )()(')('')(1 xfkxfxkxfx ++=φ , 

            )()()()(1 xkxxkxx rrrr φφφφ ++=+ ,   
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r

∂

∂
= ,   1≥r   

Proceeding in this manner the components 0, ≥nun  of the 

Homotopy Perturbation Method can be completely obtained, 

and the series solutions are thus entirely determined. 
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Finally we approximate the analytical solution of ),( txu by the 

truncated series  

                      ),(lim),( txtxu N
N

Φ=
∞→

                                     (17) 

where .),(),(
1

0

∑
−

=

=Φ
N

n

nN txutx

 

The above series solutions generally converge very rapidly.  

III. PARTICULAR CASES 

 

Case I :  If 1,0,)( === kxxf α i.e., in the presence of 

only external force, the expression of the displacement 

becomes, 
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Case II:   If 0,1,)( === kxxf α  i.e., in the presence of 

the absorbent term, 
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Case III :  If 1,1,)( === kxxf α  i.e., in the presence of  

both the linear external force and absorbent term, 
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where, )1( += rK r

                                                                

 

IV. CONCLUSION 

There are two important goals that have been achieved for this 

study. First one is employing the powerful HPM to investigate 

the general diffusion equation for different particular situations. 

HPM is a powerful mathematical tool which reduces the 

nonlinear problems to a set of ordinary differential equations to 

get the approximate analytical solution easily. Moreover it does 

not require small parameters in the equations which overcome 

the limitations of traditional perturbation techniques. This 

method is very effective, convenient, supplies quantitatively 

reliable results. 

Another important point of this study is to derive the 

expressions of u(x,t) in the presence of external force, source 

term and also both the terms simultaneously for the fractional 

diffusion equation. The author strongly believes that the 

approximate analytical expressions of displacement for 

different particular cases discussed in this article will provide 

significant change from the usual approach to the engineers and 

physicists working in this area of research.  
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Abstract— In this paper the author has solved the vibration 

equation for large membrane with the help of a powerful 

mathematical tool called Homotopy Analysis Method .By using 

initial values, the explicit solutions of the equations for different 

particular cases have been derived. The examples prove that the 

method is extremely effective due to its simplistic approach and 

performance. The numerical results so obtained are discussed in 

Section 3 and depicted graphically.  

 
Index Terms—, Homotopy analysis method, Initial value 

problem ,Vibration equation .  

 

I. INTRODUCTION 

Homotopy Analysis Method (HAM) was first proposed by 

Liao [1], by employing the basic ideas of homotopy in topology   

to produce an analytical method for solving various nonlinear 

problems. This method has been successfully applied by (for 

example, please refer to [2]-[5]) to solve different classes of 

nonlinear problems.  
 

Recently, Das [6] has used Modified decomposition method 

(MDM) to find the numerical solution of a vibration equation 

for large membrane. The main disadvantage of this method is 

that the solution procedure for calculation of Adomian 

polynomials is complex and difficult as pointed out by many 

researchers.  

 

 In this article HAM is used to obtain the approximate analytical 

solutions of the vibration equation for very large membrane. 

The expressions of the displacement for different time and radii 

of the membrane and also for various wave velocities of free 

vibration using the initial conditions are deduced which shows 

that the proposed method gives much better approximations 

than those given by non perturbative methods like MDM and 

other existing traditional techniques and does it in a simplistic 

manner too.   

II. SOLUTION OF THE PROBLEM  

The vibration equation of a very large membrane is governed by 

the equation  
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of  Management & Technology, Kolkata,Poddar Vihar, Kolkata - 700052, 

W.B. , INDIA (phone: +91-33-25739609/10; fax: +91-33-2573-9401; e-mail: 

sudipta_ch1@rediffmail.com).  
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where ),( tru  represents displacement of the particle at the 

point r  and at time t , c  is the wave velocity of free vibration. 
To solve equation (1) by means of HAM, we choose the initial 

approximation 
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where 1C  and 2C  are integral constants. Furthermore, 

equation (1) suggests that we define the equation of nonlinear 

operator as  
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Now, we construct the zeroth-order deformation equation 
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If the auxiliary linear operator, the initial guess and the auxiliary 

parameter h  are properly chosen, the above series is 

convergent at 1=q , then one has 

            ∑
∞

=

+=
1

0 ),(),(),(
m

m trZtrZtru , 

which must be one of the solutions of the original nonlinear 

equation. Now we define the vector 
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Then the mth-order deformation equation is  
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where the integrating constants 1C  and 2C  are determined by 

the initial conditions (9).  
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  and so on.  

Then the series solution expression by HAM can be written in 

the form 
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The convergence of the solution series is determined by h  
pointed out by Liao [1,7], and thus one can get a convergent 

series solution by chosen value of h . 

 

 

III. NUMERICAL RESULTS AND   

                                       DISCUSSION 

 

In this section, numerical values of ),( tru for various values 

of radii of the membrane and time are presented for the initial 

condition 1)()( == rgandrrf through Figs. 1-2. It is 

observed from the Fig. 1 that the ),( tru decreases with the 

increase in r and increases with the increase in t at 6=c . It is 

also seen from Fig.2 that the ),( tru  increases with the 

increase in t and c both at a fixed value of the radius of the 

membrane (for 20=r ). The Numerical Calculations and 

Figures are made using Mathematica software (Version 5.2). 
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Fig. 1. Plot of u(r , t) with respect to  r  and  t  at  c = 6 
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Fig. 2. Plot of u(r ,t) vs. t  for different values of  c at  r = 20 
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Abstract— The process of containerization and the development 

of intermodal transportation networks have caused increased 
competition in the port sector and have interfered in areas of 
influence of ports (hinterlands) worldwide. These hinterlands are 
no longer captive to a particular port to be of multiple influence of 
two or more ports. This paper presents a study whose objective is 
to characterize the port dynamics in the light of containerization, 
to map the discussion about the concept of hinterlands and to 
present methodologies for its delimitation. This conceptual and 
methodological contextualization is illustrated with an application 
to the case of the container terminal of the port of Rio Grande 
(Brazil) with support of Geographic Information Systems (GIS). It 
follows that the delimitation of hinterlands is essential to allow 
proper planning of port development by the Port Authorities and 
Private Terminals in a world of increasing competition. 
 

Index Terms— Hinterland, ports, maritime transportation, 
Geographic Information Systems  
 

I. INTRODUCTION 

T he introduction and development of the container as a 

means of unitization and efficiency gain in cargo movement has 
added an additional challenge for the planning of the maritime 
transportation activity, which dramatically changed the 
operation both of shipping companies as of ports. For the 
former, the main consequence was the concentration of the 
maritime transportation activity in the hands of few companies 
in view of the massive need of capital for investments in ships 
larger and larger and more modern as a means of reducing the 
transport unit cost, and for the latter, the challenges is the proper 
offer of infrastructure and efficient services, at low cost.  

 Additionally, ports should implement a strategic 
development planning in order to meet the challenges of a 
complex and changing competitive environment in function of 
the current accelerated technological, economic, political and 
social development. Also, the precise knowledge of its market, 
the service levels required by its customers, and the business 
opportunities that can leverage its cargo movement are also 
necessary, as well as the knowledge of the relative advantages of 
its direct competitors, in order to anticipate actions and ensure 
the expansion of the port activity. 

 In this context, the objective of this work is to characterize 
the port dynamics in the light of containerization, in the 
mapping and discussion about the concept of area of influence, 
internationally known as hinterland, and in the analysis of 
methodologies for the delimitation of hinterlands. The paper 
also includes a case study to illustrate the delimitation of the 
hinterland in the container terminal at the Brazilian Port of Rio 
Grande with the support of GIS.  

 The research method related to conception and 
methodologies to delimitate hinterlands included a literature 
review concerning the issue and the performance of in situ 
unstructured interviews in two consulting companies that have 
developed projects related to ports in Brazil in which the issue 
of hinterlands was strategically discussed. The elaboration of 
the case included a database provided by the Brazilian National 
Center for Transatlantic Navigation (CNNT) related to the 
movement of containers in municipalities from the state of Rio 
Grande do Sul (south of Brazil) and with a geo-referenced 
graphical basis of this state obtained from the Brazilian Institute 
of Geography and Statistics (IBGE) for application in the 
Geographic Information Systems (GIS) ArcView software 
(version 3.3). 

 The article is divided into 5 sections, being the first one 
introductory. Following, Section II presents the concept of 
hinterland, Section III provides a survey of proposed 
methodologies for its determination, Section IV presents the 
case study, and Section V summarizes the conclusions of the 
work.  

II. HINTERLANDS 

The concept of hinterland is known since the beginning of the 
twentieth century and has been discussed both in the academic 
literature and by market professionals, but there is no 
standardized definition for the concept. Among the definitions 
offered in the academic literature, the following should be 
emphasized: Bird (1971), Takel (1976), Kesic et al. (1998), Van 
Klink and Winden (1998), Van Klink and Van den Berg (1998), 
Van Cleef, apud Amoyaw (1999), Degrassi (2001), Yap et al. 
(2006) and Tan (2007). Analyzing these definitions, it could be 
observed that, over time, due to various historical and 
technological contexts, the definitions for hinterland have been 
improved. 
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Hinterlands and an Application in a Container 

Terminal 

Nélio D. Pizzolato, Luiz F. Scavarda and Rodrigo Paiva, Industrial Engineering Department, Pontificia 
Universidade Catolica de Rio de Janeiro – Rua Marquês de São Vicente, 225 sala 950L – 22453-900, 
Rio de Janeiro - Brazil Email: lf.scavarda@puc-rio.br, ndp@puc-rio.br and rtp@hotmail.com 

ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France 273



 

 

 This article adopts the definition used in Slack (1993). 
According to this author, the area of influence of a port is the 
port's market area in land from which or to which the port ships 
and receives cargoes. It is an area where the port sells its 
services and interacts with its customers. The area of influence 
can be represented as a market share that a port has in relation to 
the other ports that serve the same geographical region. This 
vision links the port as a center that offers logistics services. 
Slack (1993) defines hinterland as the effective market of a port, 
or the geo-economic space in which it sells its services and 
interacts with its customers. This definition seeks to treat the 
port as a logistic link within a competitive market, where it 
should act commercially and technologically in a pro-active 
way to ensure its market. Thus, the hinterland is treated as 
something dynamic and changing, which may be disputed by 
various ports as they can offer their services in a competitive 
way in market.  

 The concept of hinterland has faced criticism in the academic 
world particularly in relation to two aspects: the growing 
containerization of general cargo and the development of 
intermodal transportation networks. McCalla (1999), 
Haezendonck and Notteboom (2002) and Lacerda (2004), for 
example, argue that the intensification of the use of containers 
has increased the geographic performance for the capture of 
cargoes by ports, making the understanding of traditional 
definitions of hinterlands difficult. Song (2003) and Lacerda 
(2004) also mention that intermodality allows containers to 
travel increasing distances. This facilitates the decentralization 
of the packaging of cargoes in containers, which could be 
performed at the origin of goods in factories, or through 
specialized services, away from areas of ports, thus expanding 
their hinterlands. Lacerda (2004) also emphasizes the increase 
of transshipment related to the increased size of container ships, 
since shipping companies seek to focus cargoes in a main port of 
each region (hub) in order to obtain large quantities of cargo to 
transport in the long routes on larger ships. The larger the ships 
are, the lower the costs of transporting the containers will be, 
which means that the activity presents economies of scale. In 
this context, the concept of area of influence of a port has 
become more complex (Fageda, 2000). Different ports may 
share the same hinterland, whose borders now depend also on 
the development of intermodal transportation corridors and not 
exclusively on the port market. This allows a direct competition 
between ports away from each other. Additionally, competition 
between ports is not limited to the increase in their area of 
influence traditionally defined, but also on their role in 
transshipment, i.e., to attract movement whose origin or 
destination is not the port itself or its surrounding area.  

 Despite the criticism, the concept of hinterland, whether in 
its traditional sense or in its contemporary sense, remains 
critical to the port development (Amoyaw, 1999). The 
delimitation of the port hinterland and the analysis of its nature 
and extent are basic steps in assessing the development of a port 
or port terminal.  

 The definition of hinterland through the static view 

characterizes it as a continuous area behind the port. With the 
development of the concept, functional relations were inserted 
between the maritime area and its functional locations outside 
the port such as industrial areas and logistics centers. According 
to Hayuth (1982) the dynamic concept of a port hinterland 
makes it possible to identify factors that influence the expansion 
and reduction of the size of the port hinterland. The possibility 
of modifying the port hinterland over time presupposes the 
existence of variables that influence its delimitation. The main 
factors in this delimitation are:  

- The nature of goods: general cargo, containers, bulk, etc. 
(Takel, 1976; Kesic et al., 1998; Degrassi, 2001);  
- The structure of maritime shipping in relation to the types of 
ships, to the organization of ship owners and to the frequency 
of scale of ships (Van Klink and Winden, 1998, McCalla, 
1999; Degrassi, 2001);  
- The structure of the transportation network in land linking 
the port and its market and consequently the transportation 
cost associated with this network (Takel, 1976, Slack, 1993; 
Kesic et al., 1998, McCalla, 1999; Hoyle, 2000; Degrassi, 
2001);  
- The influence of economic policies (Kesic et al., 1998; 
Degrassi, 2001);  
- The entry of new port competitors in the market (Van Klink 
and Winden, 1998); 
- The labor organization in the port activities (Takel, 1976; 
Kesic et al., 1998);  
-The port infrastructure (Takel, 1976; Kesic et al., 1998);  
- The port competitiveness in terms of appropriate fees when 
compared to other ports (Takel, 1976; Kesic et al., 1998);  
-Natural causes such as climate and seasonal factors 
(Degrassi, 2001);  
-Factors and political events (Degrassi, 2001).  

III. M ETHODOLOGIES FOR THE DELIMITATION OF HINTERLANDS  

The need to delimit the port hinterland and its analysis to 
allow the proper port planning, either by port authorities or by 
port terminals, brings to light the question of how areas of 
influence of ports should be defined. This section presents 
several methods proposed for the definition of port hinterlands, 
identified both in literature and in real cases, and discusses 
practical situations in which they were conducted. These 
methods are classified into two groups according to their 
purposes: 

- Methodologies for identifying the current hinterland of a 
port; and  
- Methodologies for defining the potential hinterland of a 
port.  
 Both groups of methods can be used in an independent way, 

depending on the objectives to be achieved. However, the ideal 
situation is their use together to perform analysis and 
comparisons between the areas of real and potential influence of 
a port. Certainly, what the administration of a port should expect 
is that its potential area of action is actually achieved. The next 
sub-sections present methodologies for each one of the two 
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groups offered by the academic literature, specialized literature 
and two consulting companies, which have implemented 
methodologies to real cases.  

A. Methodologies for identifying the current hinterland of a 
port  

The methodologies for the identification of the port actual 
hinterland perform an analysis of its effective market. These 
types of methodologies can be used only for terminals in 
operation, once it is impossible to calculate the actual hinterland 
in case there are no historical movement data. 

  One of the first methodologies in literature for this purpose 
was proposed by Morgan in 1948, apud Degrassi (2001). This 
methodology defines the area of influence of a port from the 
analysis of the movement of cargo in a particular geographical 
region to / from a particular port. This identification establishes 
the classification of this region based on its current movements, 
seeking to classify municipalities according to an ABC curve of 
importance of participation. Thus, the identified areas can be 
classified on three levels: primary Hinterland (large movement), 
secondary Hinterland (intermediate movement) and marginal 
Hinterland (small movement). It is worth mentioning that the 
literature offers other classifications for hinterlands, and the 
contributions of Kesic et al. (1998), Amoyaw (1999), Elliot, 
apud Degrassi (2001) and Degrassi (2001) are the most 
important. 

 The second methodology, proposed by McCalla (1999), 
consists of the analysis of statistics of the movement of 
containers in the region of interest. This methodology proposes 
the collection of data featured in the cargo bills. From these 
data, the author calculates the market share of each port from the 
region analyzed in relation to the cities of origin and destination 
on land and in relation to the foreland region, to where the 
containers moved by ports were designated or from where they 
were received, which allows plotting the regions in a map, 
delimiting the actual ports hinterlands.  

 Based on the methodology of McCalla, a market survey was 
conducted by a consulting company to determine the area of 
influence of a terminal of a port operator in Brazil. To this end, 
data corresponding to the movement of containers were used 
and the municipalities of origin and destination of containers 
moved for exports and imports were surveyed. Then, the 
participation of the port terminal in the movement of containers 
of each municipality was calculated, which allowed the 
identification of three classifications for the municipalities 
analyzed according to three levels of activity, namely:  

- The municipality is area of influence of a single port if at 
least 70% of its cargo is moved to / from the port;  

- The municipality is area of influence of two ports if 80% of 
its cargo is moved to / from two ports;  
- The municipality is area of influence of three ports if 90% of 
its cargo is moved to / from three ports.  
From the determination of the port hinterland, a planning to 

attract cargoes from municipalities where there is the 
occurrence of other ports was elaborated. 

 In another similar research, Neto and Santos (2005) 

conducted a study to attract cargo to the Port of Santos 
(Southeast of Brazil). The main objective of the study was to 
conduct a detailed and reflected analysis of the main products 
moved by the port and to define the area of influence for each 
product of identified commercial interest. In this study, several 
methodologies for the delimitation of the port of Santos 
hinterland were proposed. The first sought to establish the 
importance, from the economic point of view, of products 
exported and imported through the port of Santos, which 
represented about 60% of all products exported / imported by 
this port. The next step was to determine the destination or 
origin, as the case, of each product per municipality and per unit 
of the federation. Thus, this methodology allowed a preliminary 
definition of the area of influence of the port. The study 
suggested the value of five million dollars as the minimum value 
of each unit of the federation to be considered as belonging to 
the area of influence of the port of Santos. The application of 
this criterion resulted in the area of influence of the port 
covering 16 states of Brazil of the total of 27 federal units.  

 Since this first proposal presented a disability, when 
considering only absolute values as a criterion for defining the 
area of influence, Neto and Santos (2005) incorporated in the 
second proposal, all products exported and imported through 
the port of Santos, and exports and imports per municipality, 
which allowed the aggregation per state of the country. 
Combining the results, per state, exports and imports, the values 
were generated in U.S. dollars from the international trade in 
each state. Then, participation data from the port of Santos in 
the international trade of each state were generated. It was 
defined that, if 10% of the international trade of each state used 
the port of Santos, this would show that the port has an impact 
on the economy of the state. For this methodology, the port of 
Santos hinterland was considered for eight Brazilian states.  

 The third methodology proposed, called by Neto and Santos 
(2005) as a hybrid methodology, considers not only the 
importance of the port in the economy of the states, but also the 
relevance in terms of monetary value in the trade balance due to 
the port. In this case, the cutting criterion included the units of 
the federation that moved, through that port, values greater than 
or equal to one hundred million dollars in the year under review. 
Within the area of intersection of the two previous criteria, five 
states were identified. These states were classified as the 
primary hinterland of Santos. The study also conceptualized the 
secondary port hinterland, formed by five states that moved 
through Santos values exceeding U$ 100 million, but that did 
not meet the previous criterion, i.e., the participation of the port 
of Santos in the international trade of the state higher than 10%.  

 As critical evaluation, it could be said that the methodology 
proposed by McCalla (1999) shows similarity to that proposed 
by Morgan, apud Degrassi (2001), since it uses real movement 
data for the delimitation of areas of influence of ports. However, 
McCalla does not consider the amount moved as a key factor in 
defining which region includes the port hinterland. The 
methodology proposed can be considered an improvement of 
that of Morgan, in which the author highlights the need to 
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analyze the market share of these ports, both on land and in 
relation to its foreland.  

 On the other hand, the first methodological proposal 
developed by Neto and Santos (2005) adopts the absolute value 
of goods as a delimiting parameter, which consists of an 
innovation in relation to any other methodology examined. The 
second proposal considers the importance of the port to the 
international trade in the region of origin / destination of goods. 
The third proposal of these authors is the adoption of the two 
parameters presented in the first two proposals, with the aim of 
not only inserting a region important for the port in terms of 
trade in the area of influence, but also to ensure that the port is 
important in relative terms to the international trade of a 
particular region. 

B. Methodologies for defining the potential Hinterland  of a 
port  

There is another set of methodologies primarily aimed at 
performing a prospective analysis of the potential port market, 
in other words, they calculate the ideal delimitation of its area of 
influence using technical, economic, political and social 
variables. Their results indicate the potential hinterland of a port 
or port terminal, where the geographic area identified cannot be 
the same as that of its operation.  

 Van Klink and Winden (1998) propose a methodology for 
delimitating the potential area of influence of a port based on the 
monetary transportation costs. A geographical region will be the 
port hinterland if the transportation costs for this port are lower 
than for any other port. If the transportation costs between the 
region and two or more ports are equal, this would be a region of 
multiple influence of ports, since it could move its cargo by any 
of the ports.  

 A work conducted by the second consultancy company was 
aimed at studying the capture of cargo from a new port terminal 
specialized in the movement of containers in the southeastern 
region of Brazil used the following steps of the methodology 
proposed by Van Klink and Winden (1998): i) identify the main 
customers of the ports closest to the new terminal, within a 
radius of 500 km, with the municipalities of origin / destination 
of containers moved by these ports, ii) to budget the 
transportation cost between ports and municipalities of origin / 
destination of cargoes and also between origins / destinations 
identified and the new terminal, iii) to compare the 
transportation costs to identify the locations where the costs up 
to the new terminal would be more competitive, then marked as 
potential markets for the terminal, while the localities with 
similar costs were identified as areas of competition and those 
with higher costs were discarded, and iv) from this 
identification, to draw a commercial planning for the attraction 
of cargoes for the new port.  

 In another work of similar nature, the Secretariat of 
Infrastructure of the Brazilian State of Bahia developed a study 
published in SEINFRA (2004) that, when considering the 
impact of logistic alternatives in transportation costs in the state, 
used a methodology to identify the area of influence of the ports 
of the state. The impact of logistic alternatives has been 

previously analyzed based on the comparison of transport costs 
in the current situation and in the hypothetical situation of 
supply of alternatives (such as the use of the São Francisco 
River waterway, improvements to the existing railroad, among 
others). The area of influence of each port was estimated based 
on the criterion of minimum cost, i.e., a municipality 
encompasses the area of influence of a port if the transportation 
cost to that port is smaller than for any other port. For both 
alternatives, isocost lines were drawn, and when superposed, 
show the delimitation of areas of influence of ports from the 
state of Bahia. 

IV. CASE STUDY 

 The purpose of this section is to illustrate the importance of 
working with the concept of hinterlands for a port planning, 
either in regard to the identification of the port market (or port 
terminal), or in regard to the identification of the market 
potential of this port. This goal is achieved through an analysis 
of a real case that consists of the delimitation of the market of 
the port of Rio Grande in the exportation of containers from 
municipalities belonging to the state of Rio Grande do Sul. The 
current market of this port and its potential market are both 
analyzed, as well as the delimitation of its primary and 
secondary hinterlands through the analysis of participation of 
this port in the market of municipalities from the state of Rio 
Grande do Sul compared to other ports in southern Brazil. In 
this sense, it will be used the premise that the exportation of 
container belonging to municipalities from the state of Rio 
Grande do Sul by Brazilian ports other than ports of Rio 
Grande, Sao Francisco do Sul, Itajaí and Paranaguá are 
irrelevant. The consistency of the premise is that the ports above 
are the most representative in the southern region of Brazil to 
work with general containerized cargo. Figure 1 presents a map 
of the region. 

To achieve the goal, the following were necessary:  
i) methodologies for the delimitation of the port hinterlands;  
ii) a database for the southern region from the Brazilian 

National Center for Transatlantic Navigation (CNNT) with the 
movement of containers from the port studied and its 
competitors, which allowed identifying the municipality of 
origin, and, 
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Fig. 1.  Main ports in the south of Brazil. 
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iii) a geo-referenced graphic base of the region studied 
obtained from the Brazilian Institute of Geography and 
Statistics (IBGE, 2005), for application in the Geographic 
Information Systems (GIS) ArcView software.  

The case study reported below is divided into three distinct 
stages. The first refers to the survey of cargoes exported in 
containers by municipalities from the state of Rio Grande do Sul 
and the identification of the market of the port of Rio Grande 
through the analysis of the amounts moved by using the 
methodology of Morgan, apud Degrassi (2001).  

The second stage identifies the market share of the port of Rio 
Grande, with the methodology proposed by McCalla (1999), 
establishing the primary and secondary port hinterlands in 
function of the relative market share of this port in these 
municipalities. 

In the third stage, which corresponds to the desired 
identification of the potential hinterland of the Port of Rio 
Grande, it was chosen for developing a new methodology able 
to identify municipalities potentially important in terms of 
attracting cargoes; however, without the need to calculate 
freights, whose data are not available, but using real movement 
data from  municipalities and port, for confrontation and 
delimitation of the municipalities to be subject to a more intense 
commercial activity.  

A. Exportation of containers of municipalities from the state 
of Rio Grande do Sul through the port of Rio Grande  

The aim was firstly to check the exportation of containers, via 
one or more of the four container terminals of ports from 
Southern Brazil (Rio Grande, Sao Francisco do Sul, Itajaí and 
Paranaguá), with origin in municipalities belonging to the State 
of Rio Grande do Sul. This step uses the methodology proposed 
by Morgan, apud Degrassi (2001). In this sense, database from 
CNNT (CNNT / Datmar, 2006) was searched to check the 
movement of containers for exportation, with origin in 
municipalities from this state, via the four ports in the southern 
region for 2003. The year is not considered very relevant to the 
research, since the prime objective is to illustrate the importance 
of the study that delimitates hinterlands and not the current issue 
of the terminal itself. The variables searched and separated 
were:  

- Direction of the traffic: exportation;  
- Name of the municipality of origin, located in the state of 

Rio Grande do Sul of cargoes to each of the four ports in the 
southern region; 

- Port (terminal) of destination: Rio Grande, Sao Francisco do 
Sul, Itajaí and Paranaguá;  
- Total amount moved, measured in capacity of Twenty 
Equivalent Unit (TEU).  
From the data obtained in the database query, the 

municipalities were listed in decreasing order of movement and 
prioritized into three categories using the ABC classification, 
according to data presented in Table 1.  

The number of municipalities that moved containers in 2003 
through one or more of the four ports in southern Brazil was 
135, totaling an export movement of 137,388 TEUs. Table 2 

shows this number according to port with the respective 
percentages. 

Of these 135 municipalities, ten can be classified as of large 
movement and only ten as of intermediate movement. Figure 2 
presents the results presented in GIS (Arcview) for 2003.  

The next step was to identify municipalities from that state 
using the port of Rio Grande in the exportation of containers in 
order to delimit the market of this port, using methodology 
proposed by Morgan, apud Degrassi (2001), and the same 
classification of municipalities as of large, intermediate and 
small movement presented in Table 1.  

 The analysis shows that from the 135 municipalities in the 
state of Rio Grande do Sul using the ports from southern Brazil 
in 2003 for the exportation of containers, only 7 have not used 
the Port of Rio Grande.  

 Only seven municipalities in the state of Rio Grande do Sul 
that moved containers through the port of Rio Grande were 
classified as of large movement and eighteen other 
municipalities were categorized as of intermediate movement, 
as shown in Figure 3.  

B. Port of Rio Grande actual Hinterland  

 This step aims to delimit the area of influence of the Port of 

TABLE I 
CLASSIFICATION OF EXPORTING MUNICIPALITIES 

Classification Volume in TEUs 
Large Movement > 4.961 TEUs 
Intermediate Movement 641 – 4.960 TEUs 
Small Movement 1 – 640 TEUs 

 

TABLE II 
EXPORTATION OF CONTAINERS FROM THE STATE OF RIO GRANDE DO SUL 

THROUGH PORTS (CONTAINER TERMINALS) FROM THE SOUTHERN REGION OF 

THE COUNTRY 
Port No. in TEUs 

Rio Grande 114.479 83.3% 
São Francisco do Sul 6.806 5.0% 

Itajaí 14.713 10.7% 
Paranaguá 1.390 1.0% 

Total 137.388 100% 

Source: adapted from the CNNT/Datamar database (2006) 
 

 
Fig. 2.  Movement of containers from municipalities from the state of Rio 
Grande do Sul through the four ports in the southern region.. 
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Rio Grande through the analysis of its market share. The 
elaboration of this phase used methodology proposed by 
McCalla (1999), using container movement data from these 
municipalities and calculating the market share of the port of 
Rio Grande for each of these municipalities. This survey 
allowed the geo-referenced identification of municipalities that 
compose the port hinterland and the primary and secondary 
hinterlands, according to classification proposed by Degrassi 
(2001), based on the following criteria:  

- If the Port of Rio Grande moves 70% or more of the total 
containers moved by a given municipality in the southern ports, 
this municipality is its Primary Hinterland;  

- If the Port of Rio Grande moves between 40% and 70% of 
all containers moved by a given municipality in the southern 
ports, this municipality is its Secondary Hinterland, which can 
also be understood as area of multiple influence, as described in 
Slack (1993) and Kesic et al. (1998).  

Since all classifications and identifications of municipalities 
that compose the primary and secondary hinterlands of the port 
of Rio Grande, as well as the compatibility of databases have 
been conducted, these areas of influence were plotted in the 
ArcView software in a geo-referenced way, as shown in Figure 
4. 

Most municipalities in the state of Rio Grande do Sul that 
moved cargoes through the port of Rio Grande in 2003 were 
defined as primary port hinterland, with only 16 municipalities 
defined as secondary hinterland. However, the municipalities of 
Porto Alegre (State capital and most important city) is among 
these 16 municipalities, which in spite of moving much of its 
cargo through the port of Rio Grande, still has high movement 
through other ports in the southern region. 

 The delimitation of the port of Rio Grande hinterland 
through the study of the market share in the municipalities 
belonging to the state of Rio Grande do Sul shows the 
consolidated position of the port in relation to this market. As 
shown in Table 2, the port moved over 80% of containers 
exported by these municipalities. Thus, the study confirms this 
diagnosis at this stage, as the analysis of each municipality alone 

shows that most municipalities comprises the area of primary 
influence of the port, exporting more than 70% of their 
containers through the port of Rio Grande.  

C. Potential hinterland of the port of Rio Grande 

 The objective of this stage is to find out which municipalities 
are characterized as potential market of the port of Rio Grande, 
i.e., which municipalities have containers not yet moved 
through this port and their commercial importance.  

 Since the methodologies studied for the delimitation of the 
potential hinterland of a port use the transportation cost between 
the place of origin of the cargo and port as main variable for 
analysis, and since this variable is not available in databases 
obtained, a new methodology for the performance of this stage 
of the study was elaborated. This third stage of the case study is 
characterized as a complementary analysis to that performed in 
stage 1, since to find municipalities with potential movement in 
the port of Rio Grande, the total movement of containers of 
these municipalities and also the total cargo of these 
municipalities already absorbed in the port of Rio Grande were 
analyzed. Based on this information, the potential market of the 
port in the state of Rio Grande do Sul could be obtained. The 
operation performed for defining the potential movement of 
containers in the port of Rio Grande is shown in Figure 5  

This operation allows verifying graphically which 
municipalities located in the State of Rio Grande do Sul that 
move containers through the four ports in southern Brazil are 

 
Fig. 3.  Municipalities in the state of Rio Grande do Sul with movement of 
containers through the Port of Rio Grande.  
 

 
Fig. 4.  Primary and Secondary Hinterland of the Porto of Rio Grande.  
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Fig. 5.  Definition of the Potential Movement.  
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characterized as a potential market of the Port of Rio Grande.  
 Once municipalities with potential cargo to the Port of Rio 

Grande were identified, they were classified into municipalities 
of large, intermediate and small potential, based on the same 
criteria in Table 2.  

 With support from the ArcView software, Figure 6 
characterizes municipalities as potential markets of the Port of 
Rio Grande for 2003. 

The analysis of the potential Port of Rio Grande hinterland 
shows that the municipality to be given more commercial 
attention is Porto Alegre, since, although already moving 
cargoes through Rio Grande, it also offers great potential for 
this port, being the only municipality of great potential in the 
state, with a possible amount of additional attraction of 9,360 
TEUs. Its cargoes through other ports in the southern region of 
the country: 5,877 TEUs for Itajaí, 3,380 TEUs for São 
Francisco do Sul and 102 TEUs for Paranaguá.  

 Yet, due to the high participation of the Port of Rio Grande in 
the exportation of containers from these municipalities, the 
potential to attract new cargoes to this port is very limited. 
However, it should be given special attention to municipalities 
of large and intermediate potential, and to municipalities from 
neighboring states.  

V. FINAL REMARKS AND CONCLUSIONS  

 The competitive environment in which ports are 
contextualized requires the proper planning of port 
development to provide appropriate infrastructure and services 
to the current reality. This reality is the result of the use of 
containers as a transportation tool and the development of 
intermodal transportation networks, especially in developed 
countries. These facts, combined with the growing market of 
shipping firms worldwide and to the transportation logistics of 
containers, marked by the use of megacarriers that arrive in a 
few hub ports, cargo hubs, fed by small-size feeder lines, 
significantly decreased the position of the port as cargo 
monopolist operator of a particular region. In this context, an 
important tool for the strategic planning of a port is the 

identification of its area of influence, which process also 
includes the evaluation of the analogous area of influence of its 
main port competitors.  

The present study of methodologies for the delimitation of 
port hinterlands shows that, despite the discussion in literature 
on this subject is still scarce; ports and consulting firms in the 
sector have used this concept and developed new methodologies 
for delimitation and knowledge, which allows port authorities 
and port terminals to elaborate port development plans. The 
present study identified several methodologies for this 
delimitation, which were classified into methodologies aimed at 
identifying the current hinterland for a port, and methodologies 
aimed at delimiting the potential hinterland for a port.  

The case conducted at the Container Terminal of the Port of 
Rio Grande analyzed, for the State of Rio Grande do Sul, the 
market of this port terminal through a combination of two 
methodologies found in literature (McCalla, 1999, and Morgan, 
apud Degrassi, 2001) and with the elaboration of a new one by 
the authors of this article. The delimitation of hinterlands was 
visualized in geo-referenced maps, elaborated by means of the 
use of the ArcView software. Based on this case, it was found 
that areas of multiple influence are not yet a reality, and the port 
terminal still has the domain of the container exportation market 
in the state of Rio Grande do Sul, with market share exceeding 
80%. Probably, the analogous analysis of other Brazilian ports 
in the south such as Itajaí and São Francisco do Sul, and even 
the port of Santos, could reveal results different from those 
found for the port of Rio Grande and offer guidelines for their 
planning and competitive development, showing the importance 
of the study of areas of multiple influence for these ports. The 
determination of the terminal hinterland as an analysis tool of its 
market revealed to be important to identify its area of operation 
and expansion, as well as its cargo attraction potential, allowing 
its planning to meet the competition of new markets and mainly 
for the maintenance of its customers, as a form of sustainable 
development of the port terminal. 
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Abstract—The Shopping Center industry has recently shown 

an impressive but disordered development, creating in some cities 
overlapping problems relative to the population distribution, since 
the profile of these ventures has been largely disregarded. Several 
public facility location studies are currently used mostly directed 
to planning health services and the basic education network. 
Predominantly, these studies use the p-median model, associated to 
exact and heuristic methods for solution, but no similar study for 
locating shopping centers has been identified in the literature. This 
article examines the various kinds of shopping centers and studies 
the location of those called Neighborhood Shoppings as applied to 
the district of Barra da Tijuca in Rio de Janeiro, Brazil. The study 
uses local census tract data, to accumulate the population in 
discrete points, but the geography of the region and the 
condominium style of occupation has suggested the use of a simpler 
heuristics that remembers the Voronoi diagrams. The study 
proposes six neighborhood shopping centers and suggests the 
points for their location. 
 
 

Index Terms—Location, Shopping Center, p-median 

I. INTRODUCTION 

Location is a theme of permanent practical and academic 
interest that permeates several sciences, such as mathematics, 
economy, engineering, operational research and so on. Specific 
studies of location have always been in the interests of human 
beings as a strategy to preserve safety and welfare. Any 
historical survey shall identify Archimedes as the first inventor 
revered by western history. Among his brilliant inventions, the 
defense of Syracuse from invading Roman ships have required 
accurate location studies for displaying mechanical levers and 
mirrors for concentrating solar rays on those moving ships. 

Certainly, the old Greek geometricians, such as Euclides, 
pioneered studies for determining centers of gravities and for 
identifying properties of physical order. However, Drezner et al 
(2002) affirm that precursory studies about identifying points in 
the plan endowed with certain properties are usually credit to 
Fermat (1601-1665) and, with almost equal frequency, to 
Torricelli (1608-1647).   

Concretely, the location analysis applied to industrial 

 
 

activities, using measures of utility as production or costs, is 
regularly attributed to Weber (1909) who, looking for 
minimizing transport costs and reducing costs for the consumer, 
studied the positioning of an industrial installation, with several 
inputs and a single marketing consumer.  

According to ReVelle and Eiselt (2005), the location analysis 
refers to the modeling, formulation and solution of a class of 
problems which could be described as positioning facilities in a 
space. Based on our experience, studies on the theme are usually 
made under three perspectives: practical, applied, and academic 
studies.   

Practical studies concern the location of a specific industrial 
or commercial activity. In this perspective, the factors that 
should be considered in a preliminary evaluation include: 
materials availability and location; distance and dimensions of 
the marketing consumer; means of transport; land availability; 
climate; pluvial standards, infrastructure, topographical data; 
power, water and sewerage systems; labor availability and its 
costs, life conditions, laws and regulations, tax structures, etc. 
Certainly, a mistaken decision would cause an unrecoverable 
cost. Evaluations of that nature constitute a favorable 
knowledge area for specialized consultants whose knowhow is 
not often made public. 

Applied studies would be those in which the complexity of 
the inter-relationships are of such order that the development of 
explicit modeling is recommended. The model would 
emphasize the most relevant elements and ignore a mass of 
other pertinent information by using what are called simplifying 
hypotheses. The produced model will be useful only if it is 
capable of pointing out good solutions. Notable examples of 
applied studies related to locating public services overflow in 
the modern society, such as schools, maternities, health centers, 
leisure areas, firemen, ambulances, post offices, water 
networks, sewer systems, and so on, inspired in some societies’ 
basic needs, as well as, radars, communication networks, 
distribution centers, oil platforms, etc, inspired in commercial 
demand or military defense. In fact, the problem object of this 
work is framed in this domain of the applied studies, and a 
minimum sample of this may be found in Galvão et al (2002), 
Pizzolato et al (2004), Pires et al (2004), Monteiro and Pascoal 
(2005), and Teixeira and Antunes (2008) who examined, 

Normative location of Neighborhood´s Shopping 
Centers: A case study in the district of Barra da 

Tijuca, Rio de Janeiro, Brazil 

Márcio Rozental and Nélio Domingues Pizzolato, Industrial Engineering Department, Pontifical 
Catholic University of Rio de Janeiro. Rua Marquês de São Vicente, 225 sala 950L, Brasil Email: 

Rozental@uol.com.br and ndp@puc-rio.br.  

ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France 281



 

 

respectively, the location of perinatal units, of public schools, of 
condensers in electric networks and the location of an hierarchy 
of facilities, illustrated with an application to school location.  

In the third perspective, academic studies would be 
associated to the development of methods and processes 
directed to the resolution of complex models, not necessarily 
concerned with any explicit application. Typically, theoretical 
studies focus on the modeling of more complex problems, on 
the quality of the solution, on the processing time, on the 
development of computer resources, and so on. It is a 
fundamental area with remarkable relevance, as noted by the 
number of articles, congresses and journals dedicated to the 
topic.  

Taking management science as its base, or operational 
research as a more restricted expression, the available literature 
on location is unlimited, but the foremost prestige stay with the 
theoretical studies, followed by the applied, and with less 
prominence, the practical ones. The first methodologies were 
concerned with the location of a single installation, but, with 
computer and modeling resources advances, the methodologies 
became directed to the development of methods for the 
simultaneous location of several facilities. The immense 
literature on the subject turns frustrating any attempt to a 
general literature review, even if labeled as representative. In 
any case, we would mention ReVelle and Eiselt (2005) and 
Reese (2005), that present extensive bibliographical reviews. 
Besides these references, in any search system, the word 
location will point out an unlimited number of thesis, 
dissertations, scientific articles, editorials, and books, 
highlighting the importance of the theme for administration, 
economy, engineering, computer science, etc.  

The present work aims to study the location of 
Neighborhood’s Shopping Centers, which are designed to 
support shoppers living around limited geographical areas that, 
according to our investigations, would never have been the 
object of published research. Certainly, the shopping center, as 
a general concept, grew in the United States, and its location 
seems to follow the geography of the highways, while the 
practical perspective as discussed above, would emphasize 
customer’s needs, family income, accessibility, traffic flow in 
neighboring highways, etc. However, this intuitive concept 
applies to locating one single venture which might ignore the 
existence of several kinds of shopping centers and does not 
address the question of locating a network of shoppings.  

This study is organized as follows: section 2 presents the 
several types of shopping centers and highlights the importance 
of the Neighborhood Shopping Centers; section 3 summarizes 
some of the technical procedures for public facility location; 
section 4 describes the Barra da Tijuca neighborhood, 
highlighting its physical, demographic and urban 
characteristics, and proposes the ideal location based on a 
heuristic methodology; while section 5 synthesizes the 
conclusions of the study.   

   

II. SHOPPING CENTERS   

A. Development of Trade  

A possible definition for a shopping center, not fully 
endorsed by the present work, as justified further on, may be 
found in the wikipedia: "a shopping center is a business 
establishment specifically built to cover a center of purchases 
that presents a diversified market, feeding area, leisure area, 
parking and high comfort level services, such as: air conditioned 
area, lifting stairs, elevators, safety, etc. The kind of anchor 
stores, the amount of stores and the fact of existing owned stores 
with rented stores also characterize that category."    

Going a step back along the history, the early merchants 
initially used to walk towards the clients or would check their 
own conveniences to choose his business point without much 
worries about his neighborhood. With the growth of the cities, 
however, he noticed the advantages of establishing at certain 
places which presented a high concentration of activities. 
Grouped, the merchants could attract more buyers, jointly 
benefiting consumers and their own trade. As an old example of 
this relationship are the medieval fairs, that were usually located 
in large cities of easy access.  

The evolution determined permanent constructions in order 
to shelter the local trade. In the beginning, this grouping of 
stores was not planned to work in an integrated way, operating 
disorderly, just differentiated from traditional trade because 
they were located inside appropriate places. Later, those 
constructions developed to assume the form of galleries, usually 
located in the center of the cities, a place that would propitiate 
commercial growth, forming streets and internal yards that 
allowed the access to the stores. The galleries, although 
appropriately designed, still did not offer an organization or 
planning to promote the operation in an integrated way. (Blay & 
Sucupira 1962, p.81-95)   

As the trade begins to develop in organizational and 
administrative terms, the great merchants began to build their 
own commercial facilities in large buildings, introducing the 
department stores that, in a same place, have a great 
diversification of products. The consumer begins to have more 
comfort in their purchases, avoiding long displacements and the 
visit to many different and distant stores in order to acquire what 
he wanted.   

At the beginning of the twentieth century two scenarios 
appeared in the capitalist world, specially in the United States, 
that would be at the origin of the current expansion of the 
Shopping Centers, namely the intense urbanization and the 
widespread use of the automobile. The traditional place where 
the trade was located begins to experience heavy traffic on their 
streets, due to the urban growth. The progressive deterioration 
of the urban centers and the consumers' preference for parking 
their cars in places near to the trade, brought new challenges for 
assisting the clients.  In this way, the purchase centers have 
appeared, and have developed until the creation of the shopping 
centers, a place that aims to offer comfort, parking easiness, 
safety, leisure and several types of services (Hirschfeldt, 1986, 
p.15-19) .  

282 ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France



 

 

The precise origin of the shopping centers is certainly 
controversial, considering the kind of business model that is 
known today, but the first building with characteristics close to 
the current ones began in the USA in 1907, by Edward H. 
Bouton, showing architectural uniformity, centralized 
administration by the entrepreneur, congregation of stores of 
different branches and a parking for carriages. In the 1920´s  
appeared another similar enterprise, called the Country Club 
Plaza in Kansas City, USA, that presented an unified 
administrative policy and place for parking the automobiles.  

In 1931 appears in Dallas, USA, the first enterprise in the 
same style of the current shopping centers. It was the Highland 
Park Village that, in agreement with the Urban Land Institute 
(ULI), became a standard for shopping centers for America. 
That enterprise had a centralized administrative control, and, in 
agreement with the local needs, offered to their users a certain 
number of vacancies for parking,  

At the end of the Second World War, the shopping centers 
industry has shown great progress, as demonstrated by the 
Lijnbaan Shopping in Roterdam - Holland. In the fifties, the 
malls have appeared, which have as their main difference the 
consumers' circulation inside the building, different from the 
previous conceptions, where the shop windows faced the street. 
On October 7, 1956, the Southdale Center in Edina, Minessota – 
USA was built, having an all closed construction due to the 
rigorous winter; its architectural model was adopted by all 
future shopping centers, not only in the architecture, but in the 
vacancies for parking which turned until now to be a pattern. 
Regarding the open mall, its pioneer was the King of Prussia, in 
Philadelphia, built in 1958, whose success was attributed to the 
perfect alignment of the architecture content with the place. In 
the sixties, architectural variations and innovations appear in the 
market, with a great expansion in the European countries.    

Certainly, the great urban agglomerates of Brazil are not 
equivalent to those in North America, because the car is not 
accessible to all, and the congested roads do not stimulate long 
displacements for the routine shopping. However, Barra da 
Tijuca, in Rio de Janeiro, is an area of fast urbanization, with a 
town planning project addressed to the high middle classes 
while most of the dwellers own at least one car. The area is 
geographically isolated from the remaining of the city by the 
ocean, by mountains, forests, and lagoons. Its occupation has 
started at the beginning of the seventies, after the construction of 
a fine-looking system of tunnels and viaducts coasting the sea. 
In order to organize the urban development of the area, Lucio 
Costa, the same town planner responsible for the project of 
Brasília was called. A Master Plan of neighborhood occupation 
has taken place, influenced by the perspective of increasing use 
of private cars as a mean of transport. The highway design 
included a longitudinal road with six tracks in each direction 
and an avenue coasting the beach, with two tracks in each 
direction. The growth of the district was felt in an accelerated 
way, becoming the area in the city of Rio de Janeiro in which 
more buildings are built in every year. The planned occupation 
has reserved housing areas for great condominiums and 

business areas in which magnificent shopping centers of several 
types, named by many as consumption temples, have been 
continuously built. However, the explosive population growth, 
the general increase in the middle classes income, the 
widespread access to automobiles, the attraction that beaches 
and the mentioned consumption temples exercise on the 
residents of other parts of the city, are bringing a progressive 
saturation in their highways, not only the internal ones but also 
the access roads, tunnels, and viaducts. These difficulties are 
discouraging long displacements for routine activities and 
encouraging the use of the referred Neighborhood Shopping 
Centers. 

For ABRASCE (Brazilian Association of Shopping Centers), 
the definition of a Shopping Center requires six characteristics, 
as follows:    

1) It is constituted by a set of planned stores, operating in an 
integrated way under one unique centralized administration;  

2) It is composed of shops for exploring diversified or 
specialized branches of trade and services; 

3) The tenant shopkeepers are subject to standardized 
contract rules, and, for most of the stores, such contracts shall 
state a variable rental clause according to the monthly revenue 
of the shopkeepers; 

4) It has anchor stores, and special structural or marketing 
features, that operate as an attraction force to the Shopping 
Center in order to ensure the continuous influx of consumers 
essential for the proper performance of the venture;    

5) It provides parking space consistent with the area the of 
shops and the corresponding influx of vehicles to the shopping 
center; and  

6) It is under administrative control by individuals or groups 
of proven reputation and recognized entrepreneurship. 

The ALSHOP (Brazilian Association of Shopping Centers’ 
Shopkeepers) is another organization involved in the same 
matter which does not make distinction among rented and sold 
shops. The ALSHOP produces statistics based on 
questionnaires sent to many enterprises, while ABRASCE only 
works with numbers supplied by their associates. That 
differentiation explains the disagreement among the data 
supplied by both societies, as shown by Table 1. 

Table 1: Source ABRASCE and ALSHOP, Brazil 2007 

Item ABRASCE ALSHOP 

Nº of Shoppings 333 577 

Revenue R$ 44,0 billions R$ 53,4 billions 

Employment  524,090 2,500,000 

B. Types of Shopping Centers 

In the popular understanding, there are many types of 
shopping centers, according to the kind of shoppers or the kind 
of merchandise sold. So, the terminology currently used 
includes: shopping center outlet; thematic shopping center; 
discount shopping center; wholesale shopping center etc. 
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However, in the line of the present study, we prefer to adopt the 
proposal of Hirschfeldt (1986), ULI that takes into account the 
physical size and the population attracted to shopping. 
According to the cited author (institution?), the shopping 
centers can be classified according to three patterns: 
Neighborhood, Community and Regional. Basically, the 
difference among them is linked to the type of anchor store, the 
physical area, and the diversification of the commercial project. 
Illustration 1, complemented by Table 1, indicates the area of 
influence of each of those models. Illustration 1 displays the 
influence upon the neighboring population, implies that a 
Regional Shopping Center reaches the resident population up to 
25 km; a Community Shopping Center attracts the population 
up to 8 km, while the Neighborhood Shopping Center reaches 
the population up to 5 km apart. 

 

Ilustration 1-Source:U.L.I. (1977) 

 

Table 2 complements Illustration 1, specifying some of the 
general characteristics that each type of shopping center should 
have. Thus, for each type of shopping, Table 2 lists the kind of 
anchor stores, the rentable gross area, including higher and 
lower limits, the minimum area of the land, and the necessary 
support population, which is an element of particular interest. 
Certainly, for the largest shoppings a much larger support area is 
expected.  

 a) Neighborhood Shopping Center: More than 2/3 of the 
total number of Shopping Centers existing in the USA fall in this 
category. The attended population nears approximately 10,000 
to 50,000 inhabitants. The total number of shoppings of this 
kind are responsible for a revenue of 75% to 90% of the total 
volume of sales in USA. The displacement time of a typical 
customer is, at most, seven minutes by car, and the distance is no 
more than 5 km of the residence. The RGA (Rentable Gross 
Area) of a Neighborhood Shopping Center is about 3,000 m² to 
10,000 m²; 

 b) Shopping Center of Community: Enterprise in which the 
RGA is between 10,000 m² to 30,000 m². It attracts clients 
located up to 8 km of distance, serving a population of 50,000 to 
250,000 inhabitants. The anchor store is usually a junior 

department store and a supermarket. This kind of shopping 
includes convenience goods, personal services, feeding area, 
with a large diversification of products and activities; 

 c) Regional Shopping Center: Constitute the most common 
type of shopping center in Brazil. Its RGA is between 30,000 to 
100,000 m². The area of influence is around 15 to 25 km, and 
may reach more according the easiness of access, the quality 
and the amount of stores and anchors stores. The served 
population will be larger than 250,000 inhabitants. This kind of 
shopping is anchored by complete department stores, i.e, stores 
with a built area of approximately 9.000 m² , that offer different 
products, such as clothes, furniture, utensils, etc. 

 

 

 

Table 2 - Shopping Centers´characteristics 

Types of 

Shoppings 

Anchor 

Stores 

Rentable 

Gross Area- 

RGA (m²) 

Limits of  RGA  

(m²) 

Minimum 

area of the 

lands (m²) 

Necessary 

population 

Neighborho

od 

Supermarket 5,000 3,000 a 10,000 12,000 10,000 a 

50,000 

Community Variety and 

Department 

Stores  

15,000 10,000 a 30,000 40,000 50,000 a 

250,000 

Regional Complete 

department 

store (One or 

more)   

40,000 30,000 a 

200,000 

120,000 a 

200,000 

More than 

250,000 

Source: .L.I.(1977) 

In fact, the district under study has experienced a disordered 
proliferation of multiple types of shopping centers which 
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KM 
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resulted in the high vacancy index observed in many of those 
ventures. In this way, the present work proposes a normative 
study for planning the location of such shoppings. 

 

C. The Shopping Centers Industry in Brazil 

The common judgment considers the luxurious Iguatemi, 
inaugurated in Sao Paulo in 1966, as the first shopping built in 
the country. The numbers generated by the shopping Centers' 
industry, as shown in Table 3, based on the data of ABRASCE, 
the most conservative entity, show that this industry answers, in 
the year 2007, for 18% (eighteen percent) of the national sales, 
excluded the sales of automobiles.   

   
Table 3 - Shoppings Centers’ Characteristics, Brazil 2007 

Total # of Shoppings: 
Operating 

Under construction 

346 
333 
13 

Rentable Gross area (m2) 7,452,171 

Occupied area (m2) 55,658,000 

Places for cars 440,000 

Satelite stores 52,712 

Anchor stores 1,300 

Cinema / Theater 1,315 

Employment level (in 
thousands) 

524,090 

Revenue (in billions R$) 44,0 

Sales in comparison to 
National Wholesale (Except 
Automotive sales) 

18% 

Source: ABRASCE, 2006. 
 
Location Model 
One of the main objective of this work is concerned with 

locating Neighborhood Shopping Centers. One of the most 
popular location model is the p-median model, which chooses 
the p medians or locations in order to minimize the weighted 
sum of distances from the population centered in every node to 
its closest service location. These vertices concentrate the 
population that lives in a relatively small space, the census tract, 
as defined by the National Census Bureau which offers reliable 
information, and revises the problem to a discrete location. The 
p-median model is used in cases in which each user frequently 
travels the distance between his/her home and the place that 
offers the needed services. This is typically the case of the daily 
home-school-home travel of the student but also the eventual 
but successive displacement home-shopping for attending the 
daily needs. Assuming that all nodes or vertices can be elected 
as medians, the p-median model can be modeled as the 
following binary integer-programming problem:  
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where: 
[dij]nxn is the symmetric matrix of distances, with dii = 0, ∀ 

i; 
[xij]nxn is the allocation matrix, with xij = 1 if the vertice i is 

allocated to the vertice j, and xij=0 otherwise;  
xjj = 1 if the vertice j is a median and xjj = 0, otherwise; 
p is the number of service positions, or medians to be located; 
N = {1, ..., n} is the set of vertices; and 
wi represents the weight of vertice i; 
 The objective function indicates the minimization of the 

weighted distances between the customers' population and the 
places that offer the service; the restriction (1) indicates that 
each vertice i is allocated to only one vertice j; the restriction (2) 
establishes that only p vertices offer the proposed service; the 
restriction (3) says that the customer only goes to one vertice 
that must be a vertice or location that offers the service; and the 
restriction (4)  imposes binary decisions. 

III. A CASE STUDY: LOCATION OF NEIGHBORHOOD SHOPPING 

CENTERS AT BARRA DA TIJUCA – RIO DE JANEIRO, BRAZIL 

Since the late seventies, Barra da Tijuca, a district of Rio de 
Janeiro, presents an explosive population expansion, with an 
ever increasing annual number of licenses granted for 
constructing new housing units. In 2005, for instance, the 
district concentrated nearly 50% of the newly built apartments 
in the whole city. On the other hand, the district has 
approximately the form of a rectangle, that remained for a long 
time isolated from the rest of the town, because of its 
geographical topography. In fact, in the south there is the ocean; 
to the east and north there are the Tijuca Mountains and also 
some lagoons; and to the west an ecological reserve. The urban 
development of Barra da Tijuca has started in the 60’s and 
comply with the Lucio Costa´s Master Plan, the same urbanist 
responsible for planning of Brasilia, the capital of the country. 
The design included two longitudinal avenues, one close to the 
sea and another in its interior, along which most of the shopping 
centers, commercial centers and supermarkets have being 
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located. The traditional small trade is restricted to two 
population streets that existed previously to the Plan, located at 
the doorway of the district on the east side, at the time only 
accessible by mountain roads. Illustration 2 shows a 2001 year 
map of the district, with the lagoons and mountains to the north, 
the ocean to the south, and the ecological reserve to the east. In 
the black dots we can notice the location of some commercial 
ventures, currently but improperly denominated as shopping 
centers. 

 
Illustration 2: Map of the district object of the case 

study showing the location of all shoppings 

A. 4.1- Location Methodology. 

The location methodology parallels similar studies that apply 
the p-median model, as those public facilities applications 
mentioned before, according to the logic of minimizing of the 
average distance user-installation. The methodology considers 
each census tract, whose population is periodically counted 
during the national Census. These tracts are small geographical 
units defined by the national institute responsible for the 
demographic census. Illustration 3 portrays the census tracts 
used in the districts pertaining to the case study. For each census 
tract, the referred institute makes public several information 
such as the population, age groups, average income, and so on. 
Based on both maps and data, the gravity center of each census 
tract is calculated, and the weighted network becomes available, 
according to the standard procedures.  

Due to the many condominiums composed by residential 
buildings and houses, some simplifications and adaptations 
became convenient for the purposes of the present study. Most 
often, one condominium has inside its limits several other 
census tracts, constituted by one or more residential buildings. 

The region encompassed by the case study also possesses 
extensive preserved land, large speculative areas awaiting 
valorization, and some areas of disordered occupation, most of 
them established before the Master Plan. Given those different 
nucleus, some simplifying hypotheses became reasonable, in 
order to reduce the number of centroids considered in the study. 

 
 
 

 
 
 
 
 

Source: IBGE (2000) 

Illustration 3 –Census section generated by Estatcart 
 
 
This was done in the following way:  
a) For each census tract in the interior of a large 

condominium, its center of gravity has been identified;  
b) The centroid of each large condominium was calculated, 

but disregarding the census tracts that might be inside it;  
c) The center of gravity of a group of centroids has been 

found through the simplified calculation:  
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where i varies from 1 up to the number of tracts that are 

grouped, iw
 is the population of each studied area; 
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 are the Cartesian coordinates 

of the gravity center of each area, and nx
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the coordinates 
of the centroid of the collective census tracts; 

d) In many cases small neighboring census tracts have also 
been consolidated in a single and larger census tract, to form a 
new centroid, calculated in the same way as before, 
agglutinating census tracts and the residents in the areas;   

After these simplifications, the p-median model was applied. 
It is important to says that, according to the Census of year 
2000, there was  172 census tracts in the district, with a total 
population of 89,142 people. Given the simplifications 
described before, those 172 tracts were reduced to 51, as shown 
in Illustration 4. On the one hand, about 94 tracts had large 
population aggregated in a relatively small space composed by 
blocks of buildings, suggesting the reduction of 94 to 16 tracts. 
On the other hand, among other 71 tracts, 28 were internal to 
other tracts, due to the many condominiums, resulting in the 
incorporation of these internal sections to their respective 
external tracts. So, there was a drastic reduction in the problem 
size, without any major loss on precision. 

 

Illustration 4- Centroid Vertices location of each section 
In this way, with 51 vertices and 89,142 inhabitants, the 

purpose of the model was to find the best location for installing 
some Neighborhood Shopping Centers, to support the 
commercial demands of the population. Taking into account the 
recommendations of ULI (Urban Land Institute) that the 
population support to make possible a Neighborhood Shopping 
Center would be from 10,000 to 50,000, this study has assumed 
a value of about 15,000 people, resulting in the proposal of p = 6 
shopping centers of the kind for the studied area.  

It would be the moment to apply the p-median model but, 
given the typical limitations of Barra da Tijuca, a simpler and 

very logic heuristic solution was chosen, that, in a certain way, 
reminds the diagrams of Voronoi. In words, the idea of this 
diagram can be so explained: suppose a given location is 
designed to hold a facility and to satisfy the public demand in its 
proximity. Its area of influence corresponds to a bubble, that 
expands according to a growing circle until it touches one of the 
neighboring circles produced by similar bubbles generated at 
the same pace by the other proposed locations. The process 
finishes when all the centroids are reached by one of the 
bubbles.  

In the present case, we started from the east part of the 
district, which was at the origin of the occupation, and we tried 
to create connected areas, with about 15,000 inhabitants, but 
taking into account the local geographical restrictions, as 
lagoons, bridges, restricted accesses, and so on. Advancing to 
the left and following the same procedure, the area was divided 
in six regions, as shown in Illustration 5, in which the positions 
of the six proposed shopping centers are marked. 

   

 
Figure 5 - Subset of sectors, each with approximately 15,000 

people 
As a location study, the work would be considered complete 

at this point, however, since the objective was to propose a 
normative solution seeking public implementation, one more 
step was given taking into account two relevant items. The first 
was to verify the zoning for multi-commercial buildings and for 
commercial areas as defined by the Master Plan. On the other 
hand, it is  important to notice that any shopping center is a 
generator of traffic, and its success is also linked to the easiness 
or difficulty for a customers' entrance/exit. So, the location 
proposal should consider the street map and the flow of 
vehicles. Therefore, moving from the right to the left in 
Illustration 5, the first shopping center would be located in a 
cross road, and the four others along the main longitudinal road 
that crosses the district.  

The Illustration 6 displays the main roads of traffic in the 
district, including the two longitudinal roads and the most 
important cross roads. So, the proposal is to locate the 
shoppings in those main roads as long as the location is close to 
the main traffic flows. As a final phase of this location study, the 
subsequent stage has to involve the micro location, in which 
costs of land as well as their availability near the selected points 
ought to be chosen, before the construction project is 
elaborated.   

As a critical evaluation of the study, at least three affirmatives 
might be stated: i) the current situation differs significantly from 
the present proposal, because the real estate’ boom in the area 
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has impelled constructions of commercial centers of all kinds 
without any appropriate study, generating a situation of high 
vacancy levels and frustrations for the investors; ii) the 
demographic growth, that shall remain intense, may justify in 
the near future an increasing number of shopping centers; and 
iii) the use of a population supports inferior, 10,000 people for 
instance, still within the limits suggested by the ULI, would 
recommend an increase in the number of Neighborhood 
Shopping Centers from six to nine.   

 

Figure 6 – Location of main highways in the district. 

IV. CONCLUSIONS. 

The location of shopping centers seems to be an important 
issue but rarely if ever addressed in the technical literature. 
There may two reasons for this: one is that shoppings are rarely 
planned to compose a network but rather are individual 
decisions about a single venture. On the other hand, by the same 
token, the technicalities involved in the decision process belong 
to the knowledge of consultants which prefer not to openly share 
their findings and knowhow. 

This research has produced a brief overview of the 
development of the shopping industry from the early times of 
trading up to the present magnificent shopping centers, or 
temples of consumption. A number of technical studies has been 
found which categorize the main types of shopping centers and 
evaluates the shoppers’ behavior. This has led to the concept of 
Neighborhood Shopping Center which satisfies the routine 
demand of the public living in their proximity. 

The case study developed has considered a pleasant area 
made recently accessible by way of tunnels and roads coasting 
the ocean. The area is experiencing a very fast inhabitation with 
dwellers mostly from the upper classes of Rio de Janeiro, 
tending to rely on cars for their displacements. An obvious 
consequence has been the real estate valorization which has 
resulted in a few millionaires in a short period.  

The resulting speculation and the perspective of continuous 
opportunities for capital gains has determined an uncontrolled 
expansion in all kinds of constructions including housing, 
business, and shopping areas. However, the present world crisis 
has shown a number of contradictions that might be attributed to 
the significant excess of commercial enterprises. Points (a) 
through (d) highlight some of the consequences from the excess 
of optimism and the general mistakes made: 

a) Enterprises Overlap - a large number of enterprises 
overlap, suggesting a demand inferior to the one necessary to 

sustain the feasibility of the projects.  
b) Lack of studies for the implementation of the enterprises. 

The installed shoppings were in their great majority sold, i. e., 
the initial entrepreneur sold the units for a third person. For 
ABRASCE, nor either for ICSC (International Council of 
Shopping Centers), organ to which the first is affiliated, this sale 
no longer characterizes the enterprise as an actual shopping.   

c) The mistakes listed on items (a) and (b) above result in 
vacancy for many enterprises. It might be noticed that, while the 
first installed shops are kept relatively well busy, the ones that 
followed have several empty units. The existence of empty units 
led their owners, in order to minimize their losses, to lease such 
units to any activity, causing a vicious cycle where the failure in 
the mix of units to be located, carries a lower frequency of 
consumers, causing new empty units, and so forth. That cycle is 
eventually compensated by the enterprises in which the units are 
under the control of a group, which only open concessions for 
leasing units considered strategic, and eventual losses in these 
units are compensated by leases of other stores.  

d) Inexistence of new releases. Over the recent past, even 
preceding the international crisis, no new shoppings areas in the 
district have been initiated, only the construction of residential 
buildings and commercial offices. Clearly, there is no 
justification for new releases of shopping centers in the district, 
suggesting a partial validation of the present study. In face of the 
certain economical loss, the owners who acquired units in those 
enterprises expect the following events, in order to compensate 
for their investments: i) other residential releases and 
commercial offices are established close to their enterprises; ii) 
that the accelerated population growth remains, in a way to 
create new flows of consumers; iii) that the new releases of 
commercial centers are built but supported by location studies 
ordered by their entrepreneurs or the public authorities 
following the normative character proposed in the present study.  
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Abstract—The CALAS project consists in a laser measure
system allowing to localize precisely straddle carriers in a
container terminal. The information given by such a tool makes
an optimization possible. In fact, a box terminal is an open system
subject to dynamics, in which many events can occur. Among
others, they concern container arrivals and departures. Within
the terminal, straddle carriers are trucks which are able to carry
one container at a time in order to move it through the terminal.
We aim to optimize the straddle carrier handling in order to
improve the terminal management. Moreover, missions come into
the system in an unpredictable way and straddle carriers are
handled by humans. They can choose to follow the schedule or
not. For these reasons, the exact state of the system is unknown.
The optimization process that we try to build must be fail-safe
and adaptive. In this context, we propose an approach using
a meta-heuristic based on Ant Colony to resolve the problem
of assigning missions to straddle carriers. We built a simulator
which is able to test and to compare different scheduling policies.

Index Terms—swarm intelligence, colored ant colony system,
dynamic graph, multiple criteria optimization, vehicle routing
problem, container terminal.

I. SYSTEM DESCRIPTION

The CALAS project aims at localizing precisely handling
trucks on a box terminal. It uses a laser localizing system
and software which allows to deal with the data sent by laser
sensors. This project is the result of a collaboration between
Laser Data Technology Terminal company and the Terminaux
de Normandie company. The goal of the CALAS project is
to know the state of the terminal in real time, meaning both
containers and vehicles location.

A container terminal is divided into three main areas (see
Fig. 1). Each part is a set of box rows where containers can be
stacked up and these areas are linked by oriented roads. The
first area is the quayside. It is beside a channel where ships
can tie to the dockside. It is an area bound to prepare the ship
(un)loading. The second area, the landside, is used to load
or unload trucks and trains. The third part is a storing area
linking the two others. Containers are moved into this area
when a ship, a truck or a train is unloaded, and containers are

∗ Corresponding author.

moved from this area when a ship, a truck or a train is loaded.
Managing a box terminal involves three kinds of tasks:

• Preparing a ship (un)loading;
• Preparing a truck (or a train) (un)loading;
• Optimizing storing area.
In order to accomplish these tasks, containers are moved

from one position to another. Such moves are called missions.
Each mission is assigned to a straddle carrier.

Fig. 1. Terminal de Normandie, Le Havre, France1.

The container terminal is an open system subject to dynam-
ics. Though a subset of missions is known before starting the
schedule, new missions arise when the schedule has already
been established and its execution has started. Moreover,
trucks arriving time is not known precisely enough to forecast
container delivery. If a truck is late, the straddle carrier which
has to load or unload it, could be assigned to another mission
instead of staying idle and waiting for the truck. Human
behavior also affects the system because straddle carriers are
handled by human drivers who can choose to follow the
schedule or not.

II. RELATED WORK

In such a system, the turn around time of both vessels and
trucks/trains has to be as small as possible. Three different
ways have already been used to solve this real problem.

1source: http://www.t-n.fr/tn.htm
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First, the analytical approach is based on a study of interre-
lated factors which have to be taken into account to improve
the efficiency of the system. In [1], an integrative decision
support system is described. It has been created by studying
inter-related decisions made daily in a container terminal. The
authors evaluated the system at a terminal in Hong Kong and
measured a reduction of 30% of the ships turn around time
and the costs of container handling have dropped by 35%.

The second approach is the simulation. It consists in build-
ing a simulator which is able to test several methods of
optimization. In [2], the authors have used both a genetic
algorithm and a neural network system for the regulation of
container yard operations. With 2 berths, 64 blocks, a planning
period of 24h and a forecast period of 3 days, their simulation
had shown a reduction of the total ship waiting time from 64h
to 46h. In [3], the authors tried to improve the performance of
the Rotterdam’s Maasvlakte port area in studying its design.
Their simulation gives information about quay length, storage
capacity and handling and transport equipment of the terminal.
Their results are useful for designing the next terminals.

The last approach is the multi-agent system (MAS).
Thurston and Hu [4] aimed at improving the performance of
the terminal by a dynamic and cooperative rescheduling of
quay cranes and straddle carriers. Here each part of the system
is considered as an autonomous agent able to take decisions
according to the information of its own environment. Henesey
et al. [5]–[8] have developed this idea. Their agents try to reach
their own goal by searching, coordinating, communicating,
and negotiating with other agents. They take their decisions
according to a market based mechanism. Like in an auction,
they bid for winning a task. Their system allows to test several
policies of berthing, stacking or sequencing. They figured out
that good decisions about stacking and berth allocation impact
positively on the vessel turn around time.

According to these last conclusions, it appears that optimiz-
ing the performance of a container terminal means handling
the vehicles’ moves and their missions allocation. In this
context, we deal with a vehicle routing problem.

III. VEHICLE ROUTING PROBLEMS

Vehicle routing problems (VRP) are largely studied and
represent practical interest since they appear in many industrial
processes. In general, VRP can be formulated as follows.
One or many vehicles must start from a depot, visit a set
of customers, delivering (or picking-up) some goods, and
come back to the depot. The aim is to minimize the vehicles’
routes. Many different subproblems belong to the VRP class,
such as Capacitated Vehicle Routing Problem (CVRP) or
Vehicle Routing Problem with Pickup and Delivery (VRPPD)
for instance. Every subproblem contains a little variation of
the main one, for example, there can be many depots, or
vehicles must respect time windows... We distinguish static
and dynamic instances of these problems because the methods
to solve them are different.

A. Vehicle Routing Problem with Time Windows (VRPTW)
The Vehicle Routing Problem with Time Windows [9]

(VRPTW) consists in visiting a set of cities by a set of

capacitated vehicles, optimizing overall path length. For
instance, an Italian factory produces toys. It has to deliver
a set of stores spread all over the country and goods are
carried by trucks. Trucks capacity is restricted and they all
start from the factory depot. Deliveries can only be done
during a defined time interval. If a truck comes too early, it
will have to wait. A solution to this problem should minimize
the global length of the trucks runs.

The Dynamic VRPTW (DVRPTW) includes dynamics of
the new orders. For the above example, if the stores can ask
for deliveries when an already scheduled plan is running, then
this problem belongs to DVRPTW class.

B. Pickup and Delivery Problem (PDP)

According to [10], PDP contains three subclasses:

1) Many to Many Pickup and Delivery Problems (M-
MPDP) : Here, the vehicles have to pickup many objects to
many locations. This kind of problem still relatively neglected
because it is not frequently present in real situations.

2) One to Many to One Pickup and Delivery Problems
(1-M-1PDP) : In this class, there are two different directions
for the goods. They are first delivered to the customer. When
the customer has done with them, he will ask for bringing
back the goods to the depot. These problems may be with
single or combined demands. In the first case, each customer
asks either for a delivery or a pickup. With combined
demands, the same customer can ask for both a delivery and
a pickup.

3) One to One Pickup and Delivery Problems (1-1PDP) :
This is the main subclass of Pickup and Delivery Problem,
meaning the most frequently encountered problem in real
life. It deals with picking-up one object at one location
and delivering it to one destination. The main problem of
this class is the Vehicle Routing Problem with Pickup and
Delivery (VRPPD). In this problem, we have to compute the
best routes for a fleet of vehicles in order to move objects
on a graph. Every route has to start and to end at the depot.
The difference to a 1-M-1PDP is that here, each object has
its own pickup and delivery location.

When the problem deals with people, it is called Dial-
A-Ride Problem (DARP). Some particular cases of VRPPD
problems like the Stacker Crane Problem (SCP) are also
common in practical life. This is a single vehicle with
unit capacity problem. In another subproblem, vehicles are
allowed to temporarily drop their loads on specials locations
called transshipment points to be able to answer customers
demands faster. This is called Vehicle Routing Problem with
Pickup, Delivery and Transshipment.

When some requests are not known in advance the
above static problems may become dynamic. Those Dynamic
Pickup and Delivery Problems [11]–[13] (DPDP or DVRPPD)
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consist in optimizing vehicles routes in order to pickup a
load somewhere, then to deliver it to its destination, adapting
these routes to the new incoming orders without recomputing
from scratch. Most of the time, DVRPPD has to handle time
windows (DVRPPDTW). Indeed, to start a mission, vehicles
have to wait the beginning of its time window. If it is not
respected, the vehicle will have to wait for the right time and,
meanwhile this vehicle becomes useless.

As we have just seen, the Vehicle Routing Problem class
contains a lot of different subproblems. It becomes very
important to exactly identify our own problem.

C. Identification of our problem

In our problem [14], several vehicles (straddle carriers)
of unit capacity must accomplish missions (by moving
containers within the container terminal). They can also use
transshipment location to make the tasks more efficient. A
very specific aspect of our system is that the straddle carriers
can start from anywhere, i.e. they do not have to start from
the depot. Moreover, every mission has a time window in
which the container must be delivered. If a vehicle comes
too early for picking up or delivering a container, it will
have to wait the beginning of the missions time window.
Furthermore, if a straddle carrier is late, meaning its time
window is already closed, in some cases, the mission must
be aborted and a new one dealing with the same container
will appear into the system.

For all these reasons, our problem belongs to the Dynamic
Vehicle Routing Problem with Pickup and Delivery and Time
Windows (DVRPPD-TW).

Three interconnected problems must be solved:

• Minimize straddle carriers moves: shortest path problem
• Minimize resources: clustering problem
• Minimize customers delays: scheduling problem

In order to construct a good schedule, the system must
integrate the shortest path concept. In the same time, schedul-
ing shortest paths tends to reduce straddle carriers moves.
Moreover, we have to define a quality of service level to satisfy
customers while lowering operation costs. This is a dynamic
large scale problem which requires a real time solution. We
propose an on-line algorithm based on Ant Colony Optimiza-
tion [15], [16] and more precisely on a colored version of this
swarm algorithm [17].

IV. ANT COLONY AND STRADDLE CARRIER HANDLING

Ant Colony [15], [16] is a meta-heuristic which makes a
solution appear thanks to the run of artificial ants into the
solution space. The system is self-regulated. In fact, ants
spread pheromone according to the solution quality (positive
feedback) but the pheromone tracks evaporate progressively
(negative feedback). The positive feedback makes the algo-
rithm converge to a quality solution, and the negative feedback
prevents it to trap into a local extremum.

Ant Colony with one colony provides a sorted list of
missions to accomplish [18]–[20]. The problem is to set a
mission to a specific straddle carrier.

We propose to employ a solution using colored ants [17].
In our model, every straddle carrier represents a colony with
its own color. Convergence is assured by the fact that ants are
attracted by the pheromone of their own colony and repulsed
by the pheromones of foreign colonies. This approach simu-
lates a mechanism of collaboration and competition between
colonies and will provide a sorted list of missions for each
straddle carrier.

A. Modelling

1) Graph construction: Our algorithm uses a graph
representation of the problem. In this oriented graph, every
vertex represents a mission. We first build a precedence
graph. We say that a mission is prior to another if its time
window starts before the one of the other mission. Once this
precedence graph has been built, a colored node is added to
the graph for each straddle carrier. Those vertices are linked
to every compatible mission by an arc of the same color. Next,
the arcs added during the precedence graph construction are
colored according to the compatibility between the straddle
carrier and the missions. In fact, if two missions, linked by an
arc in the precedence graph, match with the straddle carrier
of color c, then we color the edge between them with the
color c. If there is already a colored arc between these two
nodes, then instead of changing the color of this arc, we add
a new one colored with the color c. At the end, if uncolored
arcs remain, they are removed from the graph. So we obtain a
multi-graph allowing to run our colored ant colony algorithm.

• Straddle Carriers:

Name Color
s0 green
s1 blue

• Missions:

Name Start End Matching vehicles
m0 5:00 6:00 s0, s1
m1 5:30 6:00 s0
m2 7:00 9:00 s0
m3 6:00 7:30 s0, s1

Fig. 2. Example of a simple instance of our problem

2) Example: Consider a simple instance of our problem
where two straddle carriers have to execute four missions.
The compatibility between these vehicles and the missions
are as in Fig. 2. So we first build the precedence graph (see
Fig. 3). Then we add the straddle carriers nodes (see Fig.
4). Finally we color the arcs as described above. The Fig. 5
shows the multi-graph obtained using this procedure.
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Fig. 3. Precedence graph of the problem described in 2

Fig. 4. The vehicles nodes are added to the precedence graph

Fig. 5. Mission graph for 2 straddle carriers and 4 missions

3) Arcs weighting: We introduce arc weights which influ-
ence the ants when moving in the graph. The weight of an
arc measures how efficient it is to assign the two missions
connected by the arc to the same carrier. This part of our model
provides flexibility and allows to test different weighting
policies.

Our policy takes into account both the cost of the mission
execution and the time windows proximity. Indeed, if two
missions have time windows which are too close, and if they
are assigned to the same straddle carrier, then the execution

of the first mission will cause the overrunning of the time
window of the second mission. It is really important to
prevent these phenomena by modelling the linking penalty.
We also define a concept of priority. The more the end of
the time window is close, the more the priority is high. The
weighting function of the arcs takes into account also the
distance between the delivery location of the first mission
and the pickup location of the second one.

B. Colored Ant Colony Algorithm

In this algorithm, each straddle carrier has a corresponding
colony of the same color. Each colony starts from the node
representing its straddle carrier. Then, the ants move in the
graph using only the arcs of their color. When an ant is in
a node, it chooses the next node to visit according to three
factors:

• the pheromone rate of its own color
• the pheromone rate of foreign colors
• the weight of the arc

The ant is attracted by the pheromone of its color and repulsed
by the pheromone of different colors. Once an ant have
reached the chosen node, it spreads pheromone according to
the quality of this choice. When a straddle carrier of color c
asks for a new mission, it chooses the mission which has the
highest rate of pheromone of color c. The overall description
of algorithm is shown on Fig. 6.

1: for all colony c do
2: for all ant of colony c do
3: choose an unvisited destination
4: move towards it according to the ant speed
5: spread pheromone
6: end for
7: end for
8: evaporation

Fig. 6. Colored Ant System main algorithm

Our ant colony approach is relevant for solving the consid-
ered problem because of its dynamic nature, the large size of
the solution space and the real time constraint.

The main asset of ant colony is to provide an anytime
solution. It is an on-line algorithm which adapts easily to the
changing environment. Indeed, ants reinforce the pheromone
rates to get closer to the best solution. At the same time,
evaporation process provides a feedback control of the
algorithm by preventing it to get stuck into a local optimum
and allowing dynamic events to be handled.

Ant colony deals with many parameters such as evaporation,
solution evaluation, ants quantity and speed, dynamic events,
etc... Here is the major weakness of this metaheuristic. Solu-
tion quality strongly depends on these interdependent settings.
We have tried to make these parameters self-adaptive. We use
a local method to adapt some of these parameters on-line.
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C. Division of labor

As there are several distinct colonies and each ant has only
a local vision of its environment, there is no way to use a
pheromone spreading process based on a global characteristic.
In fact, in this architecture, a colony cannot compare the
quality of its own solution to the solutions of the other
colonies. So, we must use the same pheromone spreading
process for each colony. However, we are able to adapt the
quantity of pheromone spread by ants of a colony according to
the corresponding vehicle skill for a task. Indeed, we observed
that we can reduce the serving time of mission by specializing
the vehicles into a kind of missions.

We can increase the quantity of pheromone spread by
a given vehicle for tasks concerning a specific area in the
container terminal and decrease the quantity spread for the
tasks located into the other areas. At the same time, we do
the opposite for all other vehicles. In this way, we try to
specialize the vehicle in a kind of tasks and we are able
to regulate these quantities by taking into account both the
preference and the distance criteria.

This regulation keeps the benefit of allowing a vehicle to
take a mission for which it is not specialized. It is really
important in some cases where the number of missions is
high because this regulation prevents the system from having
unused vehicles in an area of the terminal and unaffected
missions, close of the end of their time window, in an other
area.

This original approach has a limit. In fact, the time needed
by the adaptive system for affecting a vehicle to a mission
which does not belong to its specialization may be consider-
able. For this reason, the system may become less responsive
than with no specialization.

D. Reducing resources

Always in a cost lowering purpose, we try to decrease the
number of straddle carriers in the system. Our current solution
to the entire problem tends to distribute the missions upon all
the vehicles. So, every vehicle has almost the same activity
rate. But if this rate is under a defined lower threshold, it
is possible to conclude that a vehicle could be removed.
Otherwise, if the rate is greater than the upper threshold, it is
possible to say that a new vehicle should be added to the fleet.

The thresholds must be computed by taking into account
several facts. First, it has to deal with the quality of service.
Indeed, the system must answer the requests before the end
of their time windows. Furthermore, if a vehicle is ready
to serve several missions before the beginning of their time
windows, it means that this vehicle is maybe superfluous, and
the thresholds must be modified accordingly. On the other
hand, the target rate has to deal with other criteria like the
covered distance of a vehicle per mission or the ratio between
the number of vehicles and the number of missions, and it
has to set these criteria against the penalties of transcended
time windows. Measuring the time of inactivity of every

straddle carrier may also lead the optimization. Concerning
this last criterion, we must interrelate the time of inactivity
with the penalties of transcended time windows.

So, as for the missions arrivals into the system, the number
of vehicles is subject to dynamicity. A vehicle can break down
and then must be sent to the maintenance. In function of the
failure seriousness, we can estimate the time needed to repair
the vehicle and so make it available for routing. We take a rate
of fault into account for optimizing the number of vehicles into
the system because if this number is as low as possible without
transcending some time windows, it will become too low if
one vehicle of the fleet breaks down.

V. SIMULATOR

The simulator has two main parts. The first one is the
terminal simulation (see Fig. 7), and the second one is the
Colored Ant Colony Optimization System (see Fig. 8). The
first part contains an implementation of the terminal structure
and components. Roads and crossroads provide the network
of the terminal on which straddle carriers will be able to
go. Some of these roads may contain containers. Quay crane
locations are represented by these specials roads, as well as
the trucks handling locations. This terminal is built at the
very beginning of the simulation. A scenario file is read
to set the terminal configuration. The second part of the
simulator contains the algorithmic view of the simulation,
i.e. the dynamic mission graph. In this way, it shows how
the missions are chosen by the vehicles. This part of the
simulator uses GraphStream2 toolkit which allows to handle
dynamic graphs easily [21].

The simulator uses a discrete time engine which has to
iterate every object of the simulation on every time step.
During the simulation, the scenario file is read and some
dynamic events are sent back to both terminal and Ant Colony
views. In this way, the system can simulate the dynamicity
of the incoming missions and of the vehicles availability.

In order to have relevant tests and results, we have to
define several levels of dynamicity. In [22], Allan Larsen
points out two main ways to measure the degree of dynamicity.

First, the degree of dynamism (dod) [23] is the ratio
between the number of dynamical requests and the total
number of requests. The main weakness of this measure is
that it does not take into account the arrival time of these
requests into the system. Indeed, with dod if the requests
come into the system at the beginning of the day, the system
is as dynamic as if they come late in the day. Yet, the
later these requests are known, the shorter is the delivery
delay. This lateness impacts on the performance of the system.

For this reason, Larsen et al. in [22] defined the effective
degree of dynamism (edod) by the following formula:

2http://graphstream-project.org/
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Fig. 7. Terminal view in the simulator

edod =
∑ηd

i=1
ti
T

ηd + ηs
(1)

Here, ηs and ηd are respectively the number of static and
dynamic requests, ti is the arrival time of request i (with 0 <
ti < T ) and T is the time of the simulation end. This measure
takes into account the average of the incoming time of the
requests into the system. The more the dynamical requests
come late, the more edod will be high. If edod = 0, then the
system is totally static. Else, if edod = 1, then the system is
purely dynamic.

Every straddle carrier on the terminal simulation receives
a schedule from the Colored Ant Colony System. Then they
act in function of it and move to their pick-up location.
Once they have picked-up their container, they move to the
delivery location to achieve their mission. At the same time,
the mission graph is dynamically updated and the colored
ants keep colonizing it.

Simulator gives information about each mission like its
length, container, straddle carrier, pickup and delivery time
windows, etc. and about other parts of the terminal like the
state of the roads for instance.

VI. PRELIMINARY RESULTS

As we are still collecting real data from our partners, we
are just able to test the relevance of our modelling and of our
algorithm on simulated data. For this purpose, we have first
run a simulation with a static context, which means that every
mission is known at the very beginning of the simulation and
that the resources are always available. In a second time, we
have added dynamic events such as new incoming missions.
For each simulation we have measured the global time needed
for achieving all the missions, the number of overrun time
windows and the global overrun time. We consider that a
time window has been overrun if the non respect of this time

Static Half Dynamic Dynamic
dod 0 0.5 1
edod 0 0.25 1
End time 22693 22276 22693
Number of overrun tw 3 5 7
Overrun time penalty 6467 8477 12485

Fig. 9. Results of simulations

window represents a penalty for the container terminal. Indeed,
if we overrun the time window of a mission in which we have
to move a container from or toward a truck for instance, then
the truck will ask for a compensation.

Figure 9 shows the results of three instances containing 12
missions and 3 straddle carriers. The only difference between
these instances is their degree of dynamicity. Indeed, we have
only changed the arrival time of these missions into the system
to make them more or less dynamic.

As we can see in Fig. 9, our algorithm seems to act as
expected. It means that the more the missions are known in
advance, the better is the performance. The worst case occurs
when the mission is known at the very beginning of its time
window. These are preliminary results and we have not tested
all the parameters of the ant algorithm yet.

VII. CONCLUSION

The problem considered in this paper belongs to the Dy-
namic Pickup and Delivery Problem with Time Windows class.
However, it does not exactly fit. So it is an original unsolved
problem. We propose to solve it using swarm intelligence
method. An Ant Colony System is being developed. It uses
colored ants and a graph modelling in order to plan a schedule.
Moreover, we are trying to minimize the number of vehicles
into the fleet in order to both maintain a sufficient quality
of service and reduce costs. A simulator able to reproduce
the behavior of such a system and to handle dynamic events
is being developed. The preliminary results confirm that our
algorithm is able to handle dynamicity and we are actually
collecting data in order to compare the performance of our
system into a container terminal environment with the current
scheduling methods used in a terminal of the seaport of Le
Havre in France.
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Abstract— We describe in this article a multiagent urban 

traffic simulation, as we believe individual-based modeling is 
necessary to encompass the complex influence the actions of an 
individual vehicle can have on the overall flow of vehicles. We 
first describe how we build a graph description of the network 
from purely geometric data, ESRI shapefiles. We then explain 
how we include traffic related data to this graph. We go on after 
that with the model of the vehicle agents: origin and destination, 
driving behavior, multiple lanes, crossroads, and interactions 
with the other vehicles in day-to-day, “ordinary” traffic. We 
conclude with the presentation of the resulting simulation of this 
model on the Rouen agglomeration. 

 
 

Index Terms— multiagent systems, traffic simulation, 
geomatics, multiscale 

I. INTRODUCTION 
F traffic modeling is nearing a century of age, most of these 
models belong to Operational Research problems – finding 

an optimal solution balancing various constraints. In these 
models, roads and road users were abstracted and aggregated, 
so as to become a flow problem that could then be optimized. 
They can answer interesting questions in urban or public 
transport planning [1]. 

Sometimes considering average response to a problem is 
not enough for the scientific problem at hand. We are 
interested in a dynamic modeling of urban traffic. In this kind 
of problem, the actions of a few can have a definite impact on 
the global traffic. An accident implicating half a dozen 
vehicles in a strategic crossroads of a town can create a traffic 
jam wave that can affect thousand vehicles. This is the kind of 
complex phenomenon we would like to be able to model and 
simulate. Classic OR tools aren’t well suited to the task. 

Although we aren’t the first to make this statement [2,3], 
models that tried to alleviate this too-large-scale limitation, 
have mainly tried to use cellular automata for the task. They 
added some level of individual-based components to their 
modeling, but still failed to encompass all that could be 
needed. Cellular automata are eulerian methods – intelligence 
is in one place, rules describe the behavior of bits of space. 
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Values linked to the cells seem to simulate the entities of the 
modeled system, the same way alternatively lit crystals in an 
LCD display can give the illusion an object moves around a 
screen. This contrasts with lagrangian descriptions, where 
entities of an environment are distinguished, and their spatial 
coordinates are but one of their describing characteristics. 
Unlike what can be easily simulated in a CA, lagrangian 
entities have a trajectory: even in a discretized space a la CA, 
they can for example act according to something that 
happened n time steps and m space steps before or away, or 
according to a plan. This can’t practically1 be done in a CA. 
Multiagent systems belong to this latter category of modeling. 
As we try to build a model with a grain fine to the level of 
geometrically correct individual vehicle behavior, from which 
at least town-quarters-level flow disturbance can arise, we 
believe this technique is the right one for the task. 

II. FROM GEOMETRY TO TOPOLOGY 

A. Geographical databases 
A Geographical Information System is a system designed 

for creating, storing, analyzing and managing spatial data and 
associated attributes. Although it contains a relational 
database, it needs to go beyond what is needed for classical 
alphanumerical databases to manage geometrical information, 
which is continuous by nature, as opposed to the discreteness 
of usual databases. Indeed for example the database cannot 
contain all the points of two segments in order to compute a 
possible intersection: other storing and managing methods 
must be used for the geometric data of the system. 

A geographic database is generally comprised of layers or 
coverage overlapping on a same spatial domain. Each layer 
contains homogeneous spatial features such as the limits of a 
city, the course of a river, the geometry of a road etc. Each 
feature is described in two different ways. First the geometric 
and optionally topological information is stored in different 
binary files in the base. Second the record description is a line 
in the record table; it contains different attributes and 
descriptions of the feature (generally text or numbers). 

B. ESRI shapefiles 
The first step of the constitution of our system is the 

constitution of a basic layer of geographic database. This layer 
is built from the importation of shapefiles, a GIS file format 
popularized by ESRI [4]. In order to build a traffic simulation, 

 
1 As opposed to theoretically, as cellular automata are universal calculators 
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we will build our model from data relative to the road network 
and optionally from other localized information such as living 
or working areas. 

A shapefile is mainly constituted of three files: one contains 
the attribute table (.dbf), another contains the geometric data 
(.shp) and the third is an index allowing matching entries of 
the first with those of the second. 

A shapefile contains only the geometric description of 
objects through a collection of 2D or 3D coordinates that 
represents, according to the layer type, a cloud of points, open 
polygon lines (for networks or closed polygon lines to 
describe the boundary of surfaces. The topological 
information, which describes in geomatics the relationships 
between the geometric entities, such as connections of edges 
with nodes in a graph or the adjacency between zones in a 
surface partition, is absolutely not present in a shapefile, and 
must therefore be computed by our application form the raw 
geometry of the imported data. 

To build a realistic representation of the traffic network of 
an important urban agglomeration able to simulate the 
circulation of tens of thousand of vehicles, we had to conceive 
a network layer structure both complex and efficient. 
Furthermore, the importation of data coming from existing 
data provider such as IGN, NAVTEQ or Tele Atlas, we had to 
deal with the way each modeled things in their solutions. 

C. Urban network structure specifications 
A road network is modeled according to specifications that 

are in part common to any network and in part dependent on 
decisions made by the data producer. 

1) General specifications 
A road network shares the properties of any geographic 

network. It is constituted of two main geometric entities: lines, 
linear components, comprised of several shape points, and 
nodes, point components that join or terminate lines. 

These two entities are joined in an oriented multigraph 
 where S is the set of vertices, associated to the 

geometric nodes, while the set A of edges is associated to the 

geometric lines, while function  associates to 
each edge one initial and one final vertex. 

Unlike most other geographic information layer, a road 
network may not be planar: two lines can intersect in their 
planar projection without modeling an intersection in the real 
world. This happens when these lines are at different altitudes 
such as in bridges, tunnels, or motorway embranchments. 

Furthermore, geographic graph are topological graph differ 
from usual graph in that they are associated to one geometric 
representation, called the embedding of the graph. Only 
vertices of degree 3 or more are considered to be true vertex, 
those of degree 2 being seen as shape points, useful for the 
geometric information they bring, but not “true” connectors. 
The geometric representation of the graph is always present to 
the mind of the geographer, which may create 
misunderstandings with other scientists more used to a more 
abstract representation of graph, with planar graph rather than 
plane graph. As previously said, it is also sometimes extended 

to non planar graph: the geometric information in the shapefile 
represents in that case the projection on a connected compact 
2-manifold of a graph embedded in a connected compact 3-
manifold (intuitively: a 3D graph is drawn on a surface). 

The attribute table associated to the network will contain all 
the traffic related information, such as the number of lanes, 
speed limits, sense of travel etc. Nonetheless this information 
may not be associated to elementary lines or nodes. For 
example major roads may contain different lines and 
important roundabout may contain different nodes and lines. 
We therefore defined the notion of super-nodes that relate to 
several nodes (and the assorted sub-graph) and super-edges 
that relate to several edges (and the assorted sub-graph). G is 
therefore a hypergraph in these conditions. Whether these are 
met or not depend on modeling decisions made by the data 
provider. 

2) Geographic data based specifications 
There are different ways of structuring the geographic 

information in a shapefile to model a network. 
For example NAVTEQ chose in its Navstreets product to 

create a node for each intersecting link, even if the road they 
model are not connected. Another layer represents the relative 
elevation of the entities of this first layer. Both must therefore 
be used to correctly build the road network in our simulation. 
Another example is the orientation of the edges, as the links 
are oriented following another convention (called “Reference 
nodes”) than what could be used in a shapefile, and the edge 
must therefore be computed following this convention. 

D. Building the topology from the geometry. 
Building a topology from the geometric information 

contained for example in a shapefile depends on the kind of 
spatial organization we want to represent. 

1) Planar mesh 
In the case of a surface mesh (ex: limits of countries, of 

urban areas, of town quarters etc.), we aim at rebuilding the 
boundaries and the junction nodes between them from closed 
polygonal chains (aka polylines). The layer we produce is 
thereafter structured around a planar multigraph of vertices, 
edges and faces, and with each oriented edge associated to 2 
vertices (initial and terminal) and to 2 faces (left and right). 

The building algorithm uses a quadtree and a tree 
connecting each point, in which all the points of the shapefile 
are organized. Each leaf of the quadtree contains a point Pi 
and 4 branches for the 4 quadrants of space (NE, SE, SW, 
NW) surrounding Pi. When a branch is a leaf, it contains a 
point belonging to right quadrant relatively to its father, and 
vice versa. This structure allows for a quick detection of the 
multiplicity of points. For example, a point with a multiplicity 
of 3 or more will be associated to a vertex, while a point of 
multiplicity of 2 will be a shape point of an edge. Furthermore, 
the connection tree allows the quick detection of adjacent 
points along a polyline, and detecting the superposition of two 
lines forming the boundaries of two zones, or the succession 
of angular sectors around a vertex common to three polygons 
or more. 
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2) Network 
In order to build the structure of a planar network (for 

example hydrographic or of roads), we do not store faces but 
the polar order of succession in the edges. Each edge stores 
the next edge turning left and the prior edge turning right. This 
structure is known as DCEL, Doubly Connected Edge List [5]. 
The algorithm to generate this topology uses the same 
dynamic quadtree structure to build the DCEL. 

The road network often exists in 3D, although despite the 
existence of this possibility, most shapefiles only contain a 2D 
geometric representation. The data provider must in that case 
model the altitude differently, and our algorithm must be 
adapted to this. For example NAVTEQ’s Navstreets [6] uses 
another layer called z-levels that must be consulted to know 
whether a point corresponds to a node or not. 

At the end of this step, we have a topological graph that is 
structured like the road network, but without its semantics. We 
will now build from it and from the database part of the 
shapefile a non-topological graph that models this ontology. 

 

E. From static topology to traffic-oriented network 
1) Traffic oriented graph 

Our traffic model is individual-based: each vehicle will be 
modeled as an agent. This implies the creation of an adapted 
environment for them, in terms both suitable to their ontology 
and adapted to the geographic data we reaped. For that a graph 
will be built, a transport graph that will contain the necessary 
structures and values. 

This first version of our models is only interested in 
simulating motor vehicle: pedestrians and bicycle are ignored. 

The database contains the sense of travel and the traffic 
restrictions for each topological edge. One oriented edge is 
created for each sense of direction allowed for motor vehicles. 

Edges and vertices of the transport graph are called 
elements. To each element is associated a data container and a 
vehicle transporter. 

The data associated to an edge are for example its 
geometric length, its number of lanes, its speed limits etc. 

The data associated to a vertex is notably the size of the 
container of its transporter, depending on the number and the 
sizes of the edges connected to him. 

Transporters are non-mobile agents associated to elements. 
They handle parts of the collective behavior of the vehicles. 
They will be described in more depth in the following section. 

2) Routes in the graph 
Mobile agents will try to reach destinations in the graph. As 

we intend to simulate a realistic traffic of tens of thousand of 
vehicles, we want to facilitate their computing of their 
trajectory. To do that, we build a set of “shortest” path stored 
in the traffic graph. 

We compute a weight on the edges that combines different 
parts of its data: its length, the speed it can reasonably be 
driven upon, its estimated width based on the number of lanes 
etc. to model the attractiveness of this edge. After that we 
compute Dijkstra’s algorithms [7] from each vertex to all the 
others, which we store in each vertex. This data takes 

(numberOfVertices)2 bytes of data, which is important, but 
allows the computation of a good path by an agent in constant 
time, which is a good thing as hundreds of agents are 
generated at all time in the simulation (simulating vehicles 
entering the road network of the simulated urban 
agglomeration). 

III. MOBILE AGENTS OF THE NETWORK 
Our agents are mainly so far car agents, trying to go from 

one place to another. 

A. Strategic behavior 
Modeling in details the various detailed trajectories of car 

users is a research problem in itself [8]. Nonetheless we are 
not interested in who did what or why, but only in what are the 
fluxes in our network in typical scenarios. When an agent is 
injected in the network, a starting point and a destination are 
randomly chosen.  

 

 
Fig. 1.  3 different scenarios of source/destination pseudo-random choice 
 

This randomness is not necessarily uniform. If we suppose 
the agglomeration centered on its main town, like the 
agglomeration of Rouen that we simulated more than others, 
we can shape different distribution, favoring the likelihood of 
drawing rather a inner or an outer edge for example. Traffic 
between 8:00 AM and 9:00 AM for example starts mainly on 
the border or outside the agglomeration and ends to the same 
distance to the center (outer edges): we can simulate traffic 
that do that. When shops close in the town center, we have a 
traffic that is mainly outer bound, with a more important 
center generation: we can simulate that. We do not have to 
know what this car and its driver did in the morning, we don’t 
have to simulate realistically its history, as long as we model 
the actual traffic fluxes right. 

Once the agent knows where it is, and what its destination 
is, it can use the best paths stored in the traffic network to plan 
a trajectory. It then drives here, adapting his path through its 
tactical behavior, and managing its immediate surroundings 
through its operational behavior. 

B. Operational behavior 
The planned trajectory of an agent is a succession of edges. 

Once in an edge the agent tries to drive to its end, the next 
connection, where it will be able to choose the next planned 
edge. 

When it enters an edge, the agent first chooses a lane if 
several are available, based on the traffic density in each, with 
a bias for the rightmost lane. As we have a good geometric 
description of the lane, the driving behavior is fairly detailed, 
incorporating the length of the car, its capacity/will to 
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accelerate and brake, the taste of its driver for long/short 
safety distance, its taste for following or breaking speed limits 
etc. All this is incorporated in a driving model inspired by 
Martin Treiber’s Intelligent Driver Model [9]. IDM is a 
longitudinal traffic model, so we had to expand it to handle 
multiple lanes and crossroads – the original IDM works for an 
unlimited one-way, one-lane road – we did not use Treiber’s 
MOBIL lane changing model as it is better adapted to 
motorways than to urban lane changing decisions. 

The data provided by geographic providers does not include 
right of passage or traffic lights at crossroads. We therefore 
had to develop our own model aiming at the simulation of 
crossroads in a heavy traffic. 

When a vehicle reaches a crossroad, it slows down and acts 
according to the fluidity of traffic in the crossroad, in the edge 
it is currently upon and in the edge it whishes to go to.  If they 
are encumbered, it will more often wait in its way, but it may 
enter the crossroad and wait here, thus encumbering it (with a 
more or less strong individual tendency to do so). If the edge it 
is aiming at has multiple lanes, it will watch both of them, to 
see if it could fit in one. 

C. Tactical behavior 
Although vehicles have an original plan, they will adapt it 

to what they perceive of their environment. When stuck in 
what they perceive is a jam, they will try to find alternate 
routes out of it to their destination. 

The first method we used is the simpler one. When a 
vehicle doesn’t move enough to its liking – this saturation is 
variable amongst agents – it tries to take alternate paths as 
soon as possible, favoring the roads with least dense 
circulation – although this is not absolute, so as to avoid loops. 
Once it estimates it’s far enough from the jam that sprang this 
alternate behavior, it resumes using the best path table to find 
a suitable one to its destination. 

The second one is more sophisticated, as it will have uses 
beyond mere traffic avoidance. Its intelligence is modeled 
more in the Transporter agents than in the vehicles. 
Transporters estimate their encumbrance. To do that, they 
employ direct measure – how many vehicles do they contain 
over how many vehicles can they contain in average – but also 
statistics on the proportion of vehicles they contain that are 
annoyed by the traffic – as described in the first method – and 
information from the Transporters around them. If based on 
this they decide they are encumbered they also warn the 
Transporters around them of their perception. This will lower 
the threshold for them to feel encumbered. 

Once encumbered, the nodes they are connected to will 
recompute their best path table, using a huge weight for the 
encumbered edges. When a vehicle arrives to one of these 
nodes and wants to go to one of the jammed edges, it is 
informed of the edge state, and it can recompute a route 
around it, or take the edge anyway. 

This mechanism is also theoretically interesting, as it is an 
implementation of an emergent property: the interactions of 
individual behavior affect the behavior of an agent of an 
higher scale, who alters his behavior, which in turns 

transforms the behavior of the lower level vehicles. This 
reifies the perception an individual driver can have of the state 
and dynamics of the traffic he is plunged in as a whole. 

A Transporter can also be barred, because of an accident 
for example. In that case the same mechanism is used, except 
that this time circumnavigating is mandatory. 

The mechanism of these two states is especially useful in 
what was the original purpose of our model and its main 
application: simulating urban important accidents – such as 
industrial accident – as the modeler can bar the edges it wants 
as part of his scenario, and see how the traffic adapts to it in 
simulation real time, as the vehicles discover the evolving 
road network and fluxes. This is the application that will be 
developed in the part 2 of our article. 

 

 
Fig. 2.  A screenshot of our simulator, loaded with Rouen agglomeration 
 

 
Fig. 3.  In green vehicles in an example of running traffic, in a zoom on Rouen 
itself. 

IV. CONCLUSION 
This article is more technical than thematic. We tried to 

write the kind of article we would have liked to read when we 
started on this work. We have nonetheless done thematic 
validation. 

One of the problems for the validation is that modeling as 
seldom been taken to such a detail level. This level is 
necessary because of the multi-level nature of traffic: the 
decision of one driver can start a jam or jams for thousands of 
drivers, half a town away, half an hour later, a la butterfly 
effect. Macro model of fluxes, which dominate the field of 
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traffic simulation, cannot do that. Their validation for example 
is often based on the fundamental diagram of traffic flow of a 
few selected axes, for hourly traffic. We can compute second 
by second fundamental diagrams of each edge of our network. 
We can therefore be an order or two of magnitude more 
precise in our measure, but what to do of all this information? 
Indeed, if we describe in details the behavior of vehicles, one 
must not lose sight that they are not what we are trying to 
model, the traffic is what we are trying to model, that is their 
behavior as a group. We fine-tune individual behavior to have 
the emerging group behavior right. 

What we have ascertained so far is that: 
• Most edges comply with the Fundamental Diagram 

made over 5 minutes of time, most of the time. 
This remains the case even once the measure-time 
unused edges are taken out of the count 

• We simulated our university home agglomeration 
of Rouen with up to 50 000 vehicles, and traffic 
specialists find the results subjectively very 
satisfying 

We tried to compare the results of our simulations with data 
we had about the traffic of the Rouen agglomeration. The data 
dated from 2001, while the geographic data we had for the 
network dated from 2006-2007. The western part of the road 
network had changed too much during this period for any 
solid conclusions to be drawn from it, despite superficial 
resemblances in other parts of the networks. We have 
contacted the road management of the agglomeration for more 
recent data. 

Finally, as we will describe in further details in part 2 of this 
article, we have a toolbox to simulate urban industrial accident 
and its effect on traffic with a realistic level of traffic volume. 
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Abstract—Vehicle Routing problems are highly complex prob-
lems for which different Artificial Intelligence techniques have
been used. In this paper, we propose an agent-oriented self-
organization model for the dynamic version of the problem
with time windows. Our proposal is based on a space-time
representation of the Action Zones of the agents, which is able to
maintain a good distribution of the vehicles on the environment.
This distribution answers the objective of the dynamic problem,
since it allows the agents to take their decisions while anticipating
future changes in the system’s parameters.

Index Terms—Self-organization, Multi-agent Systems, Appli-
cations, Planning, Scheduling

I. INTRODUCTION

The deliveries of goods to stores, the routing of school
buses, the distribution of newspapers and mail etc. are in-
stantiations of theoretical problems called the Vehicle Routing
Problems (VRP). The VRP have been an intensive research
area in the last decades because of their large applicability in
real life problems. Several constrained variants were proposed
in order to meet specific operational applications. Constraints
concern vehicle capacity, time restrictions, requests configu-
ration etc. One of the most widely studied problem is the
time (and capacity) constrained version: the Vehicle Routing
Problems with Time Windows (VRPTW henceforth). VRPTW
and their variants (Pickup and Delivery Problem with TW,
Dial A Ride Problem with TW ...) are hard combinatorial
optimization problems met in many industrial applications. It
can be formally stated as follows:

Let G = (V,E) be a graph with node set V = N ∪ 0
and edge set E = (ij)|i ∈ V, j ∈ V, i 6= j, N = 1, 2..., n is
the customer set with node 0 is the depot. With each node
i ∈ V is associated a customer demand qi(q0 = 0), a service
time si(s0 = 0), and a hard service-time window [ei, li] i.e.
a vehicle must be at i before li but can be at i before ei and
must wait until the service starts. For every edge (i, j) ∈ A,
a distance dij ≥ 0 and a travel time tij ≥ 0 are given.
Moreover, the fleet of vehicles is homogeneous and every
vehicle is initially located and end its route at a central depot.
Each customer demand is assumed to be less than the vehicle
capacity Cap. The objective is to find an optimal set of routes
(with the minimal cost) such that:
(1) All routes start and end at the depot;

(2) each customer in N is visited exactly once within its time
window;
(3) the total of customer demands for each route cannot exceed
the vehicle capacity Cap. The performance criteria are in
general (following this order):
1. The number of vehicles used,
2. the total distance traveled,
3. the total waiting time.

Since the problem is NP-hard, exact approaches are only
of theoretical interest, and heuristics are performed in order
to find good solutions, not necessarily optimal, within rea-
sonable computational times. VRPTW can be divided into
two sets: static problems and dynamic problems. In the static
problems, all the problem data are available before the start
of the execution. In order to meet the reactivity requirement
of operational applications, the most promising category of
problems is the dynamic version where some data could be
not initially available, and especially the amount of available
customers, before the start of execution. Indeed, operational
vehicle routing problems are rarely fully static, and we can
reasonably say that today a static system cannot meet the
mobility needs of the users. In operational settings, and even
if the whole number of customers to be served is known, there
is still some elements that makes the problem dynamic. These
elements include breakdowns, delays, noshows, etc. It is thus
always useful to consider a problem that is not fully static.

A multi-agent modeling of the dynamic VRPTW is relevant
for the following reasons. First, since it’s a hard problem,
choosing a design allowing for processing distribution can be a
solution to propose short answer times to customers requests.
Second, with the technological developments, it is reasonable
to consider vehicles with onboard calculation capacities. In this
context, the problem is, actually, distributed and necessitates
an adapted modeling to take profit of the onboard equipments
of the vehicles. Finally, the consideration of a multi-agent
point of view allows to envision new measures, new heuristics,
not envisaged by centralized approaches.

In this paper, we propose a distributed version of an
insertion heuristic with a special focus on the insertion cost
of a customer in the route of a vehicle. Several multi-agent
proposals in the literature have been proposed to distribute
insertion heuristics, consisting in inserting the customers fol-
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lowing their revealing order, and by choosing the vehicle that
has to make the minimal detour to visit the new customer. But
Very few proposals in the literature propose new measures of
the insertion cost of a customer in the route of a vehicle,
instead of the detour. In the present work, we do propose
such a new measure, based on a space time representation
of Vehicle agents’ action zones. The objective is to allow the
MAS to self-adapt exhibiting an equilibrated distribution of
his Vehicle agents, and to decrease this way the number of
vehicles mobilized to serve the customers.

The remainder of this paper is structured as follows. In
section II, we briefly discuss previous proposals for the dy-
namic VRPTW w.r.t our approach. Section III presents the
architecture of the MAS that we propose. In the section IV,
we detail the space-time representation of the Action zones of
the vehicles and its use as a measure for the insertion decision
of the customers. We report our experimental results in section
V before to conclude.

II. RELATED WORK

As we said in the introduction, exact approaches can-
not meet operational settings, and interested readers in the
optimization approaches can refer to [2] for a survey. In
fact, most of the proposed solution methods are heuristic or
metaheuristic methods. Artificial Intelligence metaheuristics
have shown better performances than heuristics in average with
benchmarking problems; for instance local search [8], genetic
algorithms [5], simulated annealing [1], tabu search [11], ant
colony [4] etc. (see [12] for various heuristics with artificial
intelligence based techniques). Note that these approaches
generally need several parameters, which values are closely
dependent of the input data and are set after several system
runs. That is why we are trying, in order to assess the impact
of our approach, to minimize the necessary parameters to run
the system.

These approaches perform well with static problems. How-
ever, the final solutions they provide are very constrained
(tight spatiotemporal gap between customers in a route), and
the insertion of new requests probably leads to new vehicles’
creation, or to incoming requests rejection. Generally speak-
ing, two approaches can be envisioned to deal with dynamic
requests. We can solve a static problem every time a change
in the problem data occurs, which is obviously very expensive
and is not realistic in operational settings. The other approach,
which is in fact one of the most popular approaches in solving
the dynamic versions is insertion methods. Insertion methods
are greedy algorithms, meaning that they do not cancel a
previous decision to insert a certain request in a specific route.
Two versions are possible, sequential and parallel insertion.
Parallel in this context means that several routes are created
in parallel, in opposition with the sequential version which
constructs only one route until no customers can be inserted.
In [7], the authors show that parallel insertion procedures
outperform sequential approaches.

The ADART [3] system is based on an a priori geographical
segmentation of the network, by allowing each segment to
some vehicles. For the dynamic management of customers

arrival, the communication is established between the customer
that has called the service and the onboard computer of the
vehicle. Vehicles of the same regional zone negotiate the
insertion of the customer, and the one with the minimal cost is
chosen. In [13] and in [6], the authors propose a multi-agent
architecture. The principle is the same: distribute an insertion
heuristic, followed by a post-optimization step. In-Time [6] is
a system composed of Customer agents and Vehicle agents.
The Customer agent announces himself and all the Vehicle
agents calculate his insertion cost in their routes. As usual,
the Customer agent selects the cheapest offer.

From a protocol and an architecture point of view, our
system sticks with the systems we have just described, since
we propose a distributed version of insertion heuristics. But the
traditional insertion cost of a customer in the route of a vehicle,
based on the incurred detour of the vehicle, is the measure
that is widely used. We propose a new insertion cost measure,
focused on the space-time coverage of the vehicles that aims
at counterbalancing the myopy of the traditional measures by
privileging an insertion process that is future-centered.

III. MULTI-AGENT SYSTEM FOR THE DYNAMIC VRPTW

Our system is composed of a dynamic set of agents which
interact to solve the dynamic VRPTW. A solution consists of
a series of vehicles routes, each route consist of a sequence
of customers with their associated visit time. We define three
categories of agents. Customer agents, which represent users
of the system (persons or goods), Vehicle agents, which
represent vehicles in the MAS and Interface agents which
represent an access point to the system (Web server, GUI,
simulator, etc). When a user logs in the MAS, the data he
provides are verified (existing node, valid time windows, etc.)
and, if the data are correct, a Customer agent representing him
and described by the data he provided is created.

In [16], we have designed, implemented and compared three
possible architectures to model the dynamic VRPTW problem:
a centralized architecture, a decentralized architecture and a
hybrid architecture. We present them briefly in the following
sections.

A. Centralized architecture

In this architecture, all the requests are treated by the
same “agent”. He has all the required information about each
vehicle and each customer: the occupancy rate of vehicles,
their current positions and the traffic conditions in real time.
Having all these information, he assigns to each customer the
most appropriate vehicle for the service, i.e the one having
the minimal overcost related to the customer insertion. Fig. 1
illustrates this architecture, in which, besides the three agents
described above, we add a Planner agent which represent the
decision-making center, he has in charge the routes computa-
tion and vehicles notification of his decision.

The scenario that we have proposed to study is the follow-
ing: At a given moment, a user interacts with the Interface
agent, which creates a Customer agent to represent him in the
system. Once created, the Customer agent sends his request to
the Planner agent which tries to insert him in each vehicle’s
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Fig. 1. Centralized architecture

route, and retains the one with the minimal additional cost.
If there is no Vehicle agent which can insert the customer, a
new vehicle is created. Finally, the Planner agent sends the
current route to each vehicle and informs the Customer agent
of his vehicle and his visit times. The Vehicle agents don’t
execute any operation, thus, they merely receive their current
route and update their information. The centralized approach
poses obvious problems. Indeed, sequential treatment of the
customer requests slow down the system response time, which
goes against the requirement of fast response to dynamic
customers. Moreover, the failure of the Planner agent leads
to a blackout at the global level. Nevertheless, the centralized
architecture has the advantage of minimizing communications
and updates at the agent level.

B. Decentralized architecture

The decentralized architecture is illustrated in Fig. 2. In this
architecture, there is no bottleneck for the routes computation.
Each Vehicle agent tries to insert the new customer in his
route, proposes a cost for its insertion, and the vehicle with
the minimal additional cost is selected. At each appearance of
a new customer, the Customer agent broadcasts his request to
all the vehicles in the system. Vehicle agents exchange their
overcosts via messages. Each Vehicle agent compares his own
cost with other agents’ costs, and stops bidding if the cost
that is being offered to him is better than hers. Finally, the
winner agent (the Vehicle agent with the minimal insertion
cost) communicates with the Customer agent and both (the
Vehicle agent and Customer agent) update their information.
This architecture offers the advantage of a distributed pro-
cessing and to be fault-tolerant. However, the communication
costs explode with this architecture: the number of messages
exchanged between Vehicle agents is of quadratic complexity.

C. Hybrid architecture

The hybrid architecture (cf. Fig. 3) is a compromise between
the centralized and the decentralized approach. A new agent
Dispatcher is inserted between the Customer and Vehicle
agents and he has the role of dispatching the customer’s
request, collecting bids from the Vehicle agents and choosing
the one offering the minimal cost. The process describes a
CNP (Contract Net Protocol) [9] where, in each occurrence

Fig. 2. Decentralized architecture

Fig. 3. Hybrid architecture

of a Customer agent, the Dispatcher agent receives a set of
proposals and selects those with a minimal cost.

Our proposal is based on this architecture. In the previous
description, we use the additional cost related to the customer
insertion to make a decision to include the new customer in the
vehicle route. This cost is function of the detour made by the
vehicle to integrate the new customer. We propose the variation
of Vehicle agents’ action zones as a cost for customers’
insertion, as an alternative to the traditional measure.

IV. SELF-ORGANIZATION MODEL

The self-organization model that we propose has the ob-
jective of allowing the Vehicle agents to cover a maximal
space-time zone of the transportation network. A space-time
pair 〈n, t〉 - with n a node and t a moment - is said to be
“covered” by the Vehicle agent v if v can be in the node
n at moment t. In the context of the dynamic VRPTW, to
maximise the space-time coverage of the Vehicle agents is to
give them the maximum chances of satisfying the demand of
a new customer in the future. This measure breaks with the
logic of traditional measures which focus on the increase of the
traveled distance, neglecting the impact of the current decision
on future insertions.

A. Action Zone of a Vehicle Agent

Following the description provided above, the Dispatcher
agent chooses between several Vehicle agents the one with
the minimal proposed insertion cost. The systems that are
based on this kind of heuristics - said insertion heuristics -
utilise generally the measure used by Solomon [10] as an
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insertion cost. This measure consists in inserting the customer
that result in a minimal increase of the general cost of the
vehicle (function of the detour to be made by the vehicle). This
measure is simple and is the most intuitive but unfortunately
it suffers from an obvious drawback, because the insertion of
the current customer might induce the insertion impossibility
of a great number of future customers. Its problem is that
it generates vehicle routes that are very constrained in time
and space, i.e. routes that offer very few insertion possibilities
between every pair of adjacent customers in the route of a
vehicle. The appearance of new customers might mobilise new
vehicles to serve them. With the modeling of Vehicle agents’
action zones, we propose a new measure of the insertion
cost of a customer in the route of a vehicle, and therefore a
new choice criterion between candidate vehicles for the same
customer. We propose a measure which objective is to choose
the Vehicle agent for whom “the decrease in the probability
of participating to future insertions is minimal”. We use the
variation of the action zone of the Vehicle agent as an insertion
cost of a customer in his route.

B. Intuition of the Action Zones

Consider a Vehicle agent v that has an empty route. In order
for this agent to be able to insert a new customer c described
by n a node, [e, l] a time window, s a service time, and q a
quantity, l has to be big enough to allow v to be in n without
violating his time constraints. More precisely, the current time
t, plus the travel time between the depot and n has to be less
or equal to l (cf. Fig. 4).

Fig. 4. Feasible insertion

Starting from this observation, we define the Action Zone
of a Vehicle agent as the number of potential customers that
satisfy this constraint. To do so, we define “the physical
environment” as a set of pairs 〈node, time〉, and the Action
Zone of a Vehicle agent as the number of pairs that remain
valid given his current route. When a Vehicle agent inserts a
customer in his route, his Action Zone is recomputed, since
some 〈node, time〉 pairs become not valid because of his
insertion. The associated cost to an offer from a Vehicle agent
v for the insertion of a Customer agent c corresponds to the
hypothetical decrease of the action Zone of v following the
insertion of c in his route.

The idea is that the chosen Vehicle for the insertion of
a customer is the one that loses the minimal chance to be
candidate for the insertion of future customers. Thus, the

criterion that is maximized by the society of Vehicle agents is
the sum of their Action Zones, i.e. the capacity that the MAS
has to react to the appearance of Customer agents, without
mobilizing new vehicles.

To illustrate the Action Zones and their dynamics, we
present the version of the measure that is related to an
Euclidean problem, i.e. where travel times are computed
following the Euclidean metric. The following paragraphs
detail the measure as well as its dynamics.

C. The Computation of Action Zones

In the Euclidean case, the transportation network is a plane,
and the travel times between two points i (described by
(xi, yi)) and j (described by (xj , yj)) is equal to√

(xi − xj)2 + (yi − yj)2
Therefore, if a vehicle is in i at the moment ti, he cannot be
in j earlier than ti +

√
(xi − xj)2 + (yi − yj)2.

We can compute at any time, from the current position
of a vehicle, the set of triples (x, y, t) where he can be in
the future. Indeed, considering a plane with an X-axis in
[xmin, xmax] and a Y-axis in [ymin, ymax], the set of space-
time positions is the set of points in the cube delimited
by [xmin, xmax],[ymin, ymax] and [e0, l0] (e0 and l0 are the
minimal and maximal values for the time windows). Consider
a vehicle in the depot (x0, y0) at t0. The set of points
(x, y, t) that are accessible by this vehicle are described by
the following inequality:√

(x− x0)2 + (y − y0)2 ≤ (t− t0)
The (x, y, t) satisfying this inequality are those that are
positioned inside the cone C of vertex (x0, y0, t0) and with
the equation

√
(x− x0)2 + (y − y0)2 = (t− t0) (c.f Fig. 5).

This cone represents the Action Zone of a Vehicle agent in

Fig. 5. Initial Action Zone

the Euclidean case. It represents all the possible space-time
positions that this Vehicle agent is able to have in the future.

We use the Action Zone of the Vehicle agents when a Cus-
tomer agent has to choose between several Vehicle agents for
his insertion. We have to be able to compare the Action Zones
of different Vehicle agents. To do so, we propose to quantify
it, by computing the volume of the cone C representing the
future possible positions of the vehicle:

V olume(C) =
1
3
× π × (l0 − e0)3

This is the quantification of the initial Action Zone of any
new Vehicle agent joining the MAS. When a new Customer
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agent appears, a Vehicle agent computes his new Action Zone,
the cost that he proposes to the Dispatcher agent is the
difference between his old Action Zone and his new one.
The new Action zone computation is detailed in the following
paragraph.

D. Dynamics of the Action Zones

Consider a customer c2 (of coordinates (x2, y2) and with a
time window [e2, l2]) that joins the system, and suppose that
v is temporarily the only available Vehicle agent of the system
and has an empty route. The agent v has to deduce his new
space-time action zone, i.e. the space-time nodes that he can
still reach without violating the time constraints of c2. The new
action zone answer the following questions: “if v had to be in
(x2, y2) at l2, where would he have been before? And if he
had to be there at e2 where would he be after e2 + s2 ?”. The
triples (x, y, t) where the Vehicle agent can be before visiting
c2 are described by the inequality [a], and the triples (x, y, t)
where he can be after visiting c2 are describe by the inequality
[b]. √

(x− x2)2 + (y − y2)2 ≤ (l2 − (t+ s)) [a]

√
(x− x2)2 + (y − y2)2 ≤ (t− (e2 + s2)) [b]

The new Action Zone is illustrated by the Fig. 6: the new
measure consists in the intersection of the initial cone C with
the union of the two new cones described by the inequalities
[a] and [b] (denoted respectively by C1 and C2). The new
measure of the Action Zone is equal to the volume of the
intersection of C with the union of C1 and C2. The complete
computation of the volume of the intersection of these two
cones is reported in [15].

Fig. 6. Space-Time Action Zone after the insertion of c2

The cost of the insertion of a customer in the route of
a vehicle is equal to the measure associated with the old
Action Zone of the vehicle minus the measure of the new
Action Zone, after the insertion of the customer. The quantity
measured represents the space-time positions that the vehicle
cannot have anymore, if he had to insert this customer in his
route. The retained Vehicle agent to visit a given customer is
the one for which the insertion of the customer causes less loss
in his space-time Action Zone. This corresponds to choosing
the vehicle that looses the minimal possibilities to be candidate
for future customers.

The physical environment in the non-Euclidian case is not a
space-time cube, but a space-time network. In [14], we propose

∆ Distance
Number of vehicles Distance

25 6.4 637.1
50 10.7 1203.7
100 19,1 1968.4

∆ Action Zones
Number of vehicles Distance

25 6.3 679.3
50 10.6 1286.7
100 18.8 2149.7

TABLE I
EXPERIMENTAL RESULTS WITH ON CLASS R1 WITH 25, 50 AND 100

CUSTOMERS

a method for the self-organization of the MAS in the general
case, where each Vehicle agent associates with each node n
of the network an interval defining the moments where he can
be in n, which represents his Action Zone.

V. RESULTS

Marius M. Solomon [10] has created a set of different prob-
lems for the dynamic VRPTW. In the Solomon benchmarks,
six different sets of problems have been defined : C1, C2, R1,
R2, RC1 and RC2. The customers are uniformly distributed
in the problems of type R, clustered in the problems of type
C, and a mix of the two is used in the problems of type RC.
We have used instances from both the classes R and C.

When the size of the fleet of vehicles is fixed in advance, the
central concern with a dynamic VRPTW system is the amount
of rejected requests, which should be limited. However, since
we create vehicles dynamically when no vehicles can serve a
new customer, our system does not reject any request; hence,
our central concern becomes the size of this fleet. We have
implemented a system which behavior is similar to ours. The
only difference is the cost computed by a Vehicle agent, which
is equal to the increase of the traveled distance, and not the
loss of Action zone as we do. Table I reports the results with
files of the class R1 where we consider successively 25, 50
and 100 customers, while Table II reports the results with files
of the class C1.

The results show, with both classes of the problem, that
the use of our measure mobilizes less vehicles than the
traditional measure, and this is the case whatever the number
of considered customers. Note that we had a different result -
the traditional measure behaving better than our measure w.r.t
the number of vehicles used - with only one file, the file 5
with 100 customers of the C1 class. This result validates the
intuition of the measure which consists on the maximization
of future insertion possibilities for a Vehicle agent. However,
since our measure focuses exclusively on insertion feasibilities,
the total distance traveled by all the vehicles with our measure
is superior to the distance traveled with the traditional measure.
We think that a compromise between the two measures, e.g.
a weighted sum of the increase of the distance and the loss of
Action Zones is able to give better results w.r.t the two criteria.
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∆ Distance
Number of vehicles Distance

25 3.4 316.6
50 6 671.2
100 12.1 1601.3
200 21.6 6315.5

∆ Action Zones
Number of vehicles Distance

25 3.3 347.9
50 5.9 731.5
100 11.9 1774.4
200 21.4 6979.8

TABLE II
EXPERIMENTAL RESULTS WITH ON CLASS C1 WITH 25, 50 AND 100

CUSTOMERS

VI. CONCLUSION ET PERSPECTIVES

In this paper, we have proposed an agent-oriented self-
organization model for the dynamic VRPTW based on the
agents’ action zones. The action zones of the Vehicle agents
reflect their space-time coverage of the environment. We use
the variation of these action zones as a new metric between
Vehicle agent to reduce the myopic behavior of traditional
metrics. By optimizing the space-time coverage of the envi-
ronment by the Vehicle agents, our model allows the MAS to
self-adapt by exhibiting an equilibrated space-time distribution
of the Vehicle agents, and to lessen this way the number
of vehicles mobilized to serve the customers. Our current
works are oriented towards taking into account historic data of
customers requests on the network nodes. We use these data
as a weighting of the action zones of the Vehicle agents that
concern the nodes frequently requested, and this to make them
converge towards high density zones.

REFERENCES

[1] Z. J. Czech and P. Czarnas, “A parallel simulated annealing for the
vehicle routing problem with time windows,” in Proceedings of the
10th Euromicro Workshop on Parallel, Distributed and Network-based
Processing, Canary Islands (Spain), 2002, pp. 376–383.

[2] M. Desrochers, J. Lenstra, M. Savelsbergh, and F. Soumis, “Vehicle
routing with time windows: Optimization and approximation,” in Vehicle
Routing: Methods and Studies. Amsterdam (Netherlands): B.L. Golden,
A.A. Assad (Eds.), 1988, pp. 65–84.

[3] R. B. Dial, “Autonomous dial-a-ride transit introductory overview,”
Transportation Research Part C: Emerging Technologies, vol. 3, pp.
261–275(15), October 1995.

[4] L. M. Gambardella, E. D. Taillard, and G. Agazzi, “MACS-VRPTW:
A multiple ant colony system for vehicle routing problems with time
windows,” New Ideas in Optimization, pp. 63–76, 1999.

[5] J. Homberger and H. Gehring, “Two evolutionary metaheuristics for the
vehicle routing problem with time windows,” INFOR, vol. 37, no. 6, pp.
297–318, 1999.

[6] R. Kohout and K. Erol, “In-Time agent-based vehicle routing with
a stochastic improvement heuristic,” in Proceedings of the sixteenth
national conference on Artificial intelligence and the eleventh Innovative
applications of artificial intelligence (AAAI’99/IAAI’99). Menlo Park,
CA (USA): AAAI Press, 1999, pp. 864–869.

[7] F. Liu and S. Shen, “A route-neighborhood-based metaheuristic for
vehicle routing problem with time windows,” European Journal of
Operational Research, vol. 118, pp. 485–504, 1999.

[8] Y. Rochat and E. Taillard, “Probabilistic diversification and intensifica-
tion in local search for vehicle routing,” Journal of Heuristics, vol. 1,
pp. 147–167, 1995.

[9] R. G. Smith, “The contract net protocol: High-level communication and
control in a distributed problem solver,” IEEE Trans. on Comp., vol.
C-29, no. 12, pp. 1104–1113, December 1980.

[10] M. Solomon, “Algorithms for the vehicle routing and scheduling with
time window constraints,” Operations Research, vol. 15, pp. 254–265,
1987.

[11] E. D. Taillard, P. Badeau, M. Gendreau, F. Geurtin, and J.-Y. Potvin,
“A tabu search heuristic for the vehicle routing problem with time
windows,” Transportation Science, vol. 31, pp. 170–186, 1997.

[12] K. Tan, L. Lee, and K. Ou, “Artificial intelligence heuristics in solving
vehicle routing problems with time window constraints,” Engineering
Applications of Artificial Intelligence, vol. 14, pp. 825–837, 2001.

[13] S. R. Thangiah, O. Shmygelska, and W. Mennell, “An agent architecture
for vehicle routing problems,” in Proceedings of the 2001 ACM sympo-
sium on Applied computing (SAC ’01). New York, NY (USA): ACM
Press, 2001, pp. 517–521.

[14] M. Zargayouna, “Une représentation spatio-temporelle de
l’environnement pour le transport À la demande,” in Atelier:
Représentation et raisonnement sur le temps et l’espace, Plate-
forme AFIA 2005, Nice (France), 2005.

[15] ——, “Modèle et langage de coordination pour les systèmes multi-
agents ouverts. application au problème du transport à la demande,”
PhD Dissertation, University of Paris-Dauphine, Paris (France), 2007.

[16] B. Zeddini, A. Yassine, M. Temani, and K. Ghédira, “Collective intelli-
gence for demand-responsive transportation systems: a self organization
model,” in Proceedings of the 8th international conference on New
technologies in distributed systems (NOTERE’08). New York, NY
(USA): ACM Press, 2008, pp. 1–8.

Besma Zeddini is Ph.D Student in le Havre University (France) and in the
ENSI School of Computer Science (Tunisia). She is also a Computer Science
Lecturer in Evry University (France). Her research interests are Multi-agent
Systems and Vehicle Routing Problems.

Mahdi Zargayouna is Research Assistant in the French National Institute for
Transport and Safety Research (INRETS) and currently Visiting Researcher in
TU-Delft University (The Netherlands). His research interests are the formal
specification of Multi-agent Systems and transportation problems such as
Traveler Information and Dial A Ride Problems.

Adnan Yassine is Professor in Le Havre University and is Head of the LMAH
Laboratory. His research interests are centered on the numeric analysis,
convex and nonconvex analysis, convex and nonconvex optimization, global
optimization, etc. with varied application domains such as image processing,
finance and transportation problems.

Moncef Temani is Head of the Computer Science Institute (ISI) in Tunis
(Tunisia) and member of the LI3 Laboratory. His research interests concern
mainly Artificial Intelligence Techniques and Multi-agent Systems for routing
and scheduling. He’s also interested in Web Services and Security.

ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France 307



French Ports Reform: reasons and perspectives 

Sidi Mohamed. OULD MOHAMED MOCTAR 
PhD Student 

Laboratory: Centre for Study and Research in Economics and Logistics Management 
University of Le Havre 

25 rue Philippe Lebon – 76600 France 
E – mail: sidimohamedammah@yahoo.fr 

I. Introduction 

Globalization returns the world small a village and creates interdependences between the 

nations. This interdependence the ones with the others poses the problem of investment which 

includes a question of management of transport and logistics. 

The economic globalization, consequence of this globalization, exerts strong pressures on the 

harbor authorities to answer with more flexibility, and in real-time at the worldwide markets 

which change quickly, and to acquire a modern system of transport and telecommunications 

which facilitates the international business.  

The port is a link of a chain of transport. It is thus a node of a total supply chain. Its 

interaction with this chain requires efforts as regards investment. The port deals with the 

reception and the operation of the ships, the transshipment, storage and close and post routing 

of the traffic. The ships and the cargo tend to increase their size, the port must have the 

characteristics nautical and terrestrial suitable as well as rather vast storage spaces. All its 

activities require an installation of territory whose cost is often very high, and make that the 

harbor authority collaborates with other private partners in the research of the economic 

optimum. 

The Course of the Accounts in its 2006 report and the stressed the overall degradation of 

market shares of the French ports and lack of competitiveness compared to competing ports in 

the North Sea and the Mediterranean and particularly in terms of container. Then a French 

port reform is necessary to ensure their competitiveness.  

In this context the Supervisory Board at the Port Harbor has adopted the strategic project of 

Greater seaport that will be renamed "Havre Port. The strategic project comes from the port 

reform passed by parliament last summer. The project wants to be very ambitious; it sets to 

reach the cap of 6 million containers in 2015. To achieve this objective, the project foresees 

the realization of investment. "By 2013, underlines Laurent Casting, the chairman of the 
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Board, the investment represents a total of around 700 million euro" (LE HAVRE PRESSE, 

Friday April 10 2009).  

In this context why is this reform necessary? What are its main features? And how to explain 

theoretically the lack of competitiveness of French ports? 

 

ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France 309



II. Harbor Reform 

In his report/ratio of January 15th, 2008 on the harbor reform of the ports, the Minister for 

Ecology, the Development and Durable Installation (MEDAD) underlined the total 

degradation of market shares of the French ports and the insufficiency of their 

competitiveness compared to the large competiting ports of the Mediterranean and North Sea 

and more particularly in terms of container. 

Also the Course of the Accounts in his ratio of 2006 and the General advice of the Highways 

Departments addressed statistics alarming: 

o Between 1989 and 2006, the market share of the French ports dropped by 3,9% 

passing from 17,8% to 13,9%; 

o The market share of the French ports in terms of containers went from 11,7% to 6,2%; 

whereas in Europe the market of containers knew a growth of more than 5%; 

o Particularly the market share of wearing of Marseilles, which according to the 

report/ratio is the largest French port in tonnage, dropped by 8% and more particularly 

by 13,3% in the containers; 

o Compared to the European competitor ports, the French ports record the lowest 

productivity except for the new terminals of “Port 200”. For a gantry, when the 

wearing of Marseilles records 46000 annual movements, Valence record 76 000, 

whereas Antwerp records between 100 and 150 000 movements. 

 

A reform of the ports is essential. For Jean Chapon (2007) four reasons justify a reform of the 
ports:  

 
� Effects of globalization: fierce competition to which are exposed the French 

ports obliges them to exploit the couple costs/quality. 

A charger when it chooses a port, it seeks before all that which offers “the 

totality of the cost/quality of the routing from beginning to end”. The French 

ports should not be satisfied with their geographical proximity with national 

industries and trade, because the pre one and terrestrial post-routing constitutes 

a factor among others of the cost total of the carriage of the goods; 
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� In terms of operation of the ports, the industrial activities and commercial must 

be entrusted to the private ones, because they are better to manage by 

professionals. The harbor authority when with it, deals then “with the mission 

of organizing the public service which constitutes the harbor passage for the 

international economy”. this redistribution of mission makes it possible to 

organize in an effective way the harbor passage or the harbor authority will 

ensure not only one role of supervisor but also of actor in the investment in 

infrastructure; and the private ones carry out the industrial and commercial 

acts; 

� To act vis-a-vis the constraints of space for the ports: the French ports must 

obligatorily adapt vis-a-vis the change and the evolution of technology. The 

ships are increasing harls and increasingly specialized. That requires on behalf 

of the harbor authorities to acquire new tools and to adapt its infrastructure, but 

also to have the land fields allowing infrastructures creation or the extension of 

those existing. The harbors authorities have also needs for space to open new 

sites or to extend the sites exist. But they are obliged to face constraints 

environmental; 

� The rarefaction of the public resources obliges the States to call upon private 

for the realization of expensive equipment in highly powerful terms of tools 

but also in terms of infrastructure like the terminals and the quays. As a Mr. 

Chapon (2007), the harbor authority must have the possibility “of utilizing 

private operators who will deal with the financing of the equipment, or, at the 

very least, can quickly begin in Partnership Public Private, which will be often 

the only way that the private companies launch out in financially heavy 

operations of creation of terminals”. for Li the recourse to private is all the 

more necessary as the State does not fill its engagements envisaged by the law 

of 1965 which stipulates that the State must take part to a total value of 80% in 

the financing of the quays, and of 60% in machines and repair and 100% in the 

maintenance of the maritime accesses. 

Mr. Chapon (2007) concludes that: 

� The harbor authority must concentrate its financial means and the participation of the 
State on the operations of common interests  (works of access, basins…) ; 

� To continue to call upon the territorial collectivities which are concerned with their 
activities; 
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� To encourage the private ones to invest in the ports. 

 

The reform is articulated with the turn of four main axes which is appropriate to specify the 

methods of their operation: 

1. The heart of the reform is the transfer of the activities of tools: it is a question of 

transferring to private as well as the material of tools as the employees working on this 

material. Such a transfer will make the port more effective because it will relate to the 

whole of its financial means on the infrastructure. The private one on its side will 

control the superstructure. 

2. Centring of the ports on specific missions namely the kingly missions as the police 

force of the port. Infrastructures and works of access and their maintenance, the 

installation of the harbor field. The port will assume the responsibility for service road 

terrestrial (MEDAD, Reform of the ports, 2008). 

3. Modernization of the governorship of the ports: it is about the creation of a 

council of sustainable development associating the whole of the recipients of the ports 

(economic actors, communities, employee representatives, ONG). This council aims at 

the implementation “of the integrated policies fascinating of account the economic 

aspects, social and environmental of the development of the ports” (MEDAD, Reform 

of the ports, 2008). 

4. To establish a capital spending program: 

� Maintenance of the maritime accesses: the State promises to reinforce: 

� Its participation in the financing of the maintenance of the maritime 

accesses; 

� Effort of productivity for the dredging of the maritime accesses through 

a multiannual program. 

� The investment in the ports: The objective is to align the French ports with their 

competitors of Northern Europe which invest massively in the infrastructure. 

Thus the reform envisages a policy of investment by each harbor place within 

the framework of what it calls “strategic project” aiming at developing “new 
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infrastructure of international scale by 2020”. the reform envisages the 

completion of port 2000, the project Fos 3XL and the future extensions of the 

container terminals of Marseilles-Fox. 

It should be recalled that in the contract of project 2007-2013, the State already 

envisaged to take part in the harbor investment in height of 245 million euro. 

� The terrestrial investment of service road: it is a question of improving the river 

service roads and particularly that of the port 2000. When to the railway 

service road, after the ports took its control, the State provides the required 

investments to the implementation of an optimized exploitation of the harbor 

railways. But to carry out all that the State needs the funds. The port, taking 

into account the promises of the State, must work out a strategy of financing. 
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III. Microeconomic base of the specificity of infrastructure assets 

The question is to know if the harbor infrastructures are specific assets or not? 

According to J. M. Josselin (1997) the infrastructures are assets little redeployable and thus 

specific. It justifies its point of view by: 

� the weak development of the markets secondary relative or associated with its 

infrastructures. That is with the difficulty of resale of the assets which is due to the 

non adaptability of the assets to external uses  at the firm; 

� the specific features to its infrastructures return them specific assets; 

� the design of its infrastructures is related to very specific projects; 

� often its projects of infrastructure are not numerous what compromised a reassignment 

of the infrastructures is necessary alternative processes. 

In terms of investment, the irreversibility is the result of the combination of three factors 

(McDonald and Siegel, 1986): 

� the company must pay an irremediable cost for the implementation of the project; 

� the flow of income associated with the project is random; 

� the investment can undergo a delay of with the need for extra information. 

 

The decision of investment is then irreversible and the credit is not redeployable and thus the 

costs of the infrastructure are irremediable. 

Moreover “like the main part of the heavy investments, the projects of infrastructure generate 

particularly high initial costs, which increases the weight of the irreversibility at the time of 

decision making. However these irremediable costs are often dubious, sometimes even more 

than the future net incomes of the project” (J.M.Josselin, 1997). 

 

IV. Costs of the harbor investments 
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According to Michel Loir (1980) these costs can be subdivided into: 

� Capital costs in infrastructure: it is about digging of channels, construction of mole, 

construction of the quays, coating of surfaces, creation of the roadway systems; 

� Capital costs in superstructure: its costs relate to the machines of handling or 

transport, the hangars, the systems of indication; 

� Costs of exploitations: “the additional employment whose recruitment proves to be 

essential, additional supplies, new operations such as dredging of maintenance in the 

channel lately created” (Michel Loir, 1980). 

 

V. Advantages of the harbor investment 

According to Michel Loir (1980) the benefit of the harbor investment can be appreciated 

starting from the following elements: 

 

5.1. Maritime economy  

The harbor investment makes it possible to increase the productivity of the ships by 

accelerating its rotations or by allowing its recourse to new technologies, or by giving the 

access to ships of greater dimension.  

 

5.2. Harbor economy  

The effects depend on the fact that the investment is an investment of capacity or productivity. 

The increase in the capacities could reduce the costs of handling by limiting the distances 

from extrapotage, by reducing the constraints of intensives storage on a rarefied space, or by 

decreasing the proportion of overtime, the hours of night or the production bonuses. The 

investment of productivity like the opening of a container terminal. “Of the productivity gains 

will be to measure on the level of the costs of infrastructure per ton and with that of the costs 

of equipment and material of handling”. 
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VI. Theoretical corpus 

Several theories can be mobilized to explain the lack of competitiveness of the French ports.  

 

6.1. The theory of efficiency-X 

For Leibenstein (1966) the external absence of pressure constitutes the first factor of inefficiency 

in the public organizations. For the author these companies are often in situation of monopoly, 

which would support a “quiet life” and would not incite those with a permanent effort of search of 

competitiveness, efficiency and effectiveness, contrary to the private sector.  

 
The other argument evoked by Leibenstein (1966) is to explain the bad performance of the state 

enterprises which is due to their immortality. Indeed “the state enterprises are immortal, at least 

when the monetary policy and financial is sufficiently large to limit the probabilities of their 

failure” (Patrick Plane, 1994). 

According to the theory of efficiency-X, the sources of inefficiency in the public organizations are 

justified by the unsuited behaviors of the State and its agents, on the one hand, and on the other 

hand by the strongly bureaucratized organizational structure of those. “Leibenstein (1966) evokes 

in the end the incidence of the multiplicity of the economic and social objectives that the political 

directors are carried to entrust to the state enterprises” (Patrick Plane, 1994). 

 “This is why, the theorists of efficiency-X support that the partnerships public-private (PPP) 

could contribute to reduce in a substantial way the sources of inefficiency-x in the public 

organizations, thus making it possible to make up again with the performance and 

competitiveness” (Hachimi Sanni Yaya, 2005). 

 

6.2. The theory of Public New Management 

It is a management style aiming at the introduction of the values and operating processes of 

the firm deprived in the public administration. The principal idea of the NMP is that “the 

public sector is considered to be ineffective, excessively bureaucratic, rigid, expensive, is 

centered on its own development, not innovating and having a too centralized hierarchy” 

(Anne Amar and al.). 

For much, and as a reform, New Public Management precipitated the birth of the PPP. Thus 

New Public Management is a will “To modernize the State, to reinvent it, modernize the 
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public services, to improve management of the public organizations until the reform of the 

State, to found contracts of performance which are in fact the links of the new public 

managerial ideology, such is in a few words, the objective of New Public Management” 

(Hachimi Sanni Yaya, 2005). 
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VII. Conclusion  

Various reports have highlighted the deteriorating global market share of French ports and 

lack of competitiveness compared to competing ports in the North Sea and the 

Mediterranean, particularly in terms of container. The port reform is necessary to ensure 

their competitiveness. This reform will certainly transfer to the private sector both 

hardware tools that employees working on this equipment by refocusing ports on specific 

missions to missions such as the sovereign of the port police, for the modernization of 

governance ports but also through the investment of land and river services as it has been 

because of "the battle of the Sea to gain ground." 
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Abstract— Whatever the company, inventory disruption is a 

costly situation. To help reduce disruption risks, simulation 

stands out as a very efficient tool, as it gives the possibility to 

analyze the sensitivity of inventory levels to the variation of 

different internal and external factors. This paper describes the 

successive stages of building and then operating a 

simulation-based decision-support system dedicated to raw 

material supply management in the case of a semi-continuous 

production process. This decision-support system uses the 

Industrial Dynamics modeling framework. 

 

Index Terms— decision-support systems, industrial dynamics, 

supply chain management, simulation. 

 

I. INTRODUCTION 

For many years now, companies have led, and are still 

leading, offshoring strategies, sourcing their raw materials and 

components from one part of the world, manufacturing their 

products in some other and selling these products on markets 

again located elsewhere. Furthermore, and although the trend 

is in some contexts slowing or even reversing, companies have 

also had for some time a growing tendency to outsource what 

they consider as non-core activities, within the supply, 

production and/or distribution processes. 

 

Consequently, logistics, defined as the design, control 

and operation of demand-driven networks of actors, has gained 

an unprecedented share of contribution to the optimization of 

the performance of these companies. 

 

To help improve company’s global performance 

through the improvement of its logistics-based performance, 

research should be conducted addressing such issues as the 

design and implementation of logistics-aware decision-support 

systems and performance measurement systems [1], [2], [3]. 

 

This paper follows this line of thought in dealing with 

raw material process optimization in a building industry, SME 

environment: 
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Whatever the company, would it be from the 

production or the retailing industry, inventory disruption is a 

costly, and therefore unacceptable, situation of which this 

company must try to minimize the probability of occurrence. 

This necessity is all the stronger as companies are leading 

continuous or semi-continuous production activities: there, 

interrupting the process may have extremely disturbing 

consequences. Raw material and/or component inventories 

must therefore be sufficiently high to ensure continuous 

feeding of the activities in progress. 

 

So as to reduce, hopefully eliminate, disruption risks, 

a given company will try to identify as precisely as possible the 

variables likely to influence the increase or the decrease of their 

inventories. To this end, simulation stands out as a very 

efficient tool, as it gives the possibility to analyze the sensitivity 

of the modeled system to the variation of different internal and 

external factors, therefore helping in pointing out the most 

influential. 

 

In such a context, this paper describes the successive 

stages of building and then operating a simulation-based 

decision-support system dedicated to raw material supply 

management in the case of a semi-continuous production 

process. This decision-support system uses the Industrial 

Dynamics modeling framework, which has re-emerged in the 

mid-90’s as a powerful, well-suited way of modeling logistics 

systems [4], [5], [6]. Beyond a certain level of complexity, the 

feedback loops encountered within logistics systems cannot be 

handled through mathematics, and their dynamic behavior can 

only be described through non-linear models [7], [8]. 

 

 

II. MODEL BUILDING 

 

 

When designing a decision-support system (DSS), 

first step is to define the purpose of this tool, through the 

specification of the questions it is supposed to help answer. 

 

 

Industrial Dynamics as applied to raw material 

supply process modeling: the case of a small 

company from the building industry 

Ch.H. Fredouet 
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21 – DSS purpose 

 

The company retained as a case-study for DSS 

development belongs to the building industry; more 

specifically, it produces ready-to-use concrete, following a 

process which may be labeled as semi-continuous: as soon as a 

“production at the plant – delivery to the customer” set of 

activities begins, this set must be performed right to its end 

with no interruption. During this time-period, it is therefore 

necessary that raw materials are available in quantities 

sufficiently large to satisfy the needs of the on-going production 

process. 

 

Solution presently implemented consists in 

maintaining high inventories of all raw materials needed, 

through frequent and systematic deliveries to the plant: while 

production is on its way, raw material usage is such that 

applying a classical order-point supply method would be too 

risky. Therefore, raw material suppliers automatically 

replenish inventories according to contractually pre-defined 

quantities and frequencies. However, this solution is obviously 

all the costlier as average inventories maintained are higher. 

Company’s top executives have consequently shown some 

interest in knowing whether inventory levels could be lowered 

while still avoiding disruption. 

 

The DSS described in the following lines has been 

designed and implemented to help answer this question. As 

inventory levels depend upon multiple fixed (e.g.: maximum 

output capacity) or variable (e.g.: sales) factors, the global 

purpose of the tool can actually be extended to the analysis of 

inventory levels’ sensitivity to the variations of these factors. 

 

 

22 – DSS content 

 

To fulfill its purpose, the DSS must describe 

 

- the various raw material inventories in the company, 

- the variables likely to influence the evolution of their 

respective levels, 

- the relationships between these variables. 

 

Once identified, these data are then structured 

following the principles of Industrial Dynamics: 

 

 

221 – raw material inventories: 

 

Inventories may easily assimilated to those tanks the 

levels of which are depending upon incoming (supply) and 

outgoing (usage) flows, and which are described by J.W. 

Forrester in his best-selling book on Industrial Dynamics [9]. 

 

Graphically, each raw material inventory has 

therefore been modeled in the hereunder format (fig.1): 

 

 
 

Fig.1: basic Industrial Dynamics modeling 

 

Mathematically, the level of a given inventory S at a 

given time K is calculated from the level of S at immediately 

preceding time J, the inbound flow during the JK period, and 

the outbound flow during this same JK period: 

 

LEVEL.S(K) = LEVEL.S(J) + DT(INBOUND FLOW(JK) – 

OUTBOUND FLOW(JK)), 

 

where DT is the value of the selected time interval 

between two consecutive evaluation of the state of the system. 

 

 

222 – inventory level variation factors: 

 

The level of a raw material inventory is changing 

given the deliveries received from the suppliers and the 

quantities needed for the production of concrete. 

 

a) inbound flows from suppliers: 

 

For each raw material, determinant variables 

identified in this case-study are the supplier’s delivery unit and 

the frequency of delivery. Considering the systematicity of 

deliveries, neither the order point nor the safety stock nor the 

delivery lead-time are formally described as such; however, 

they are implicitly taken into account when specifying the rate 

at which deliveries are made by the supplier. 

 

- Delivery unit: it corresponds to the capacity of the truck 

used by the supplier of a given raw material. In fact, as 

for obvious reasons of cost-effectiveness the truck is 

always running FTL, delivery unit cannot be 

considered as an actual decision variable; but when 

performing simulation scenarios, it may be used to test 

the inventory level’s sensitivity to variations of the 
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inbound flow in a more precise way (ton by ton) than 

only through the rate of delivery (truck by truck, that 

is 25 tons at a time). 

 

- Frequency of delivery: contractually pre-defined by the 

company and its supplier there again for a given raw 

material, and notwithstanding contextual adjustments 

due to variations in the daily demand from the 

production system, the frequency of delivery depends 

upon 1) the usual rate of usage of the raw material, 2) 

the combination of delivery unit and geographical 

proximity of the supplier, and 3) the inventory level 

which the company wishes to maintain to ensure the 

continuity of its production activity. 

 

b) outbound flows to production plant: 

 

For the rate of a raw material outbound flow, all 

determinant variables are formally described in the DSS: 

 

- Sales: estimated on a daily basis, sales feature three 

components, which are 1) the number of orders placed 

by the customers and to be delivered within a given 

day, 2) the share held by each concrete mix in the 

company’s sales structure, and 3) the quantity to be 

produced per order and per mix. 

 

- Customer order handling lead-time: in-between order 

reception at the plant and actual delivery to the 

customer, it is one-day long. Thus, the level of 

production of a given day, and therefore the rate of 

usage of raw materials, are determined by the nature 

and volume of orders received the previous day. 

 

- Respective raw material usage of the different concrete 

mixes: as they are rather standardized, concrete mix 

compositions should be considered as parameters of 

the DSS rather than actual simulation variables. 

However, it happens that (very) large orders for 

specific building projects require unusual concrete 

mixes; so it should be possible to modify the 

compositions accordingly to estimate the impact of 

such or such future sales contract on raw materials’ 

inventory levels. 

 

 

223 – relationships between variables: 

 

The main ambition of Industrial Dynamics-based 

models is to describe systems the operation of which is 

characterized by feedback loops between (some of) their 

components. 

 

Here, raw material inventory levels reached at time J 

determine the nature and volume of customer orders likely to be 

satisfied during JK period: the rate of satisfaction retained will 

be the smaller of the one calculated from orders received and 

the one calculated from available raw material inventories; if 

the latter are too low for all orders to be satisfied, a backlog of 

orders will start to build up, and will keep growing as long as 

suppliers’ deliveries and/or demand reduction won’t have 

brought inventories back to such levels that demand may be 

met. 

 

The hereunder diagram, roughly sketching the model 

described in the present paper, shows this type of “loop” 

structure (fig.2). Built from the main variables and 

inter-relationships of the raw material supply system, this 

diagram serves as a basis for the actual development of the 

computerized simulation decision-support system. 

 

 
 

Fig.2: rough sketch of the model 

 

 

III. MODEL IMPLEMENTATION 

 

 

The first step in the implementation of the Industrial 

Dynamics model has been the development of a relevant 
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computer-based decision-support system, using a dedicated 

programming language. 

 

Then, once the program was properly running, a 

number of simulation scenarios have been performed, to 

analyze the sensitivity of the raw material inventory levels to 

various evolution hypotheses in the supply strategy and/or the 

commercial activity of the company. 

 

 

31 – DSS programming 

 

Choosing the programming language, and 

activity-level generation, have been the two most important 

issues to be addressed during this first step of model 

implementation. 

 

 

311 – choosing of the programming language: 

 

An Industrial Dynamics-based model features three types of 

equations: 

 

a) level equations: 

 

They describe the evolution of variables (inventories, 

order backlogs, …) the value of which, as it would be for a tank, 

changes from one period to another due to the action of other 

variables. 

 

b) flow equations: 

 

They describe the evolution of those variables (sales, 

supplies, …) which increase or conversely decrease the various 

levels identified in the system. 

 

c) auxiliary variable equations: 

 

They calculate the value of other system variables or 

the value of some inbound / outbound flows. 

 

Each iteration of the model must bring out the state of 

the system at time K, depending upon its preceding state at time 

J and the events having occurred during the JK time interval; to 

this end, the equations are processed in the following order 

(fig.3): 

 

 
 

Fig.3: equation evaluation process 

 

For optimal programming of such a specific DSS, with 

its multiple iterations and feedback loops, a dedicated language 

has been sought for. Among other available solutions, the 

language which has been opted for is the Fortran-based 

DYNAMO, as it fitted so well within the programming 

constraints and kept alive the link with Industrial Dynamics 

and the research work of J.W.Forrester. However, a 

Vensim-based version should be implemented in a near future, 

among other reasons for improved end-user friendliness. 

 

 

312 – activity-level generation: 

 

The company’s level of activity is evaluated through 

its volume of sales, which is itself measured in cubic meters of 

finished product. This volume of sales must be disaggregated to 

identify the quantities sold per each composition of concrete 

mix, as they have led to different usages of raw materials. 

 

Daily sales have therefore been analyzed into three 

components: 

 

- the total number of orders (TNBO(K)) 

- the relative share of each mix X in total sales 

(SXTS(K)) 

- the amount of cubic meters per each order of each mix 

X (QSOX(K)) 

 

The total volume sold of a given mix X (TQSX(K)) is 

then calculated as follows: 

 

TQSX(K) = TNBO(K) * SXTS(K) * QSOX(K) 

 

where 1<=X<=N and N is the number of different mixes sold 

 

Thanks to a function randomly generating, on each 

iteration of the model, a number comprised between 0 and 1 

(included), as well as the availability of a long time-series of the 

company’s daily sales, probabilities have been associated to the 

determinant TNBO(K), SXTS(K) and QSOX(K) variables. 
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The tables hereafter give some instances of values actually 

implemented (tables 1, 2 & 3): 

 

 

Table 1: values for TNBO (K) 

 

Day of the week Values for 

TNBO (K) 

Probability of 

occurrence 

Mon., Tues., 

Wed. 

24 

 

14.8 

0.33 

 

0.67 

 

Thurs., Fri. 

 

18.33 

 

28.29 

0.30 

 

0.70 

 

Table 2: values for SXTS (K) for concrete mix 1 

 

Values for S1TS (K) Probability of occurrence 

19% 0.03 

32% 0.15 

61% 0.40 

86% 0.42 

 

 

Table 3: values for QSOX (K) for concrete mix 1 

 

Values for 

QSO1(K) 

Probability of 

occurrence 

2 m
3
 0.05 

3 m
3
 0.13 

4.5 m
3
 0.15 

6 m
3
 0.67 

 

 

If the random number generated at time K is for instance 0.8, 

then 

TNBO(K) will be 14.8 or 28.29 orders depending upon the day 

of the week, 

S1TS(K) will be 61%, 

QSO1(K) will be 4.5 m3 

and TQS1(K) will be 14.80 * 0.61 * 4.5 = 40.62 

                            or 28.29 * 0.61 * 4.5 = 77.65 

depending upon the day of the week. 

 

Sales per mix thus obtained lead to the calculation of 

raw material needs, and therefore inventory outputs for 

production. Obviously, full order satisfaction cannot be 

attained if available inventory levels are not high enough. 

Besides, supplier deliveries are performed according to actual 

volumes and frequencies. Finally, these outbound and inbound 

flows make for the inventory levels, targeted by the simulation. 

 

 Once the program is reliably operational, simulation 

sessions may start. 

 

 

32 – DSS operation 

 

 The time frame presently in use within the DSS is set to 90 

days (18 weeks). Considering the system is evaluated every two 

hours, (a quarter of a day), it implies 360 model iterations, 

which has been validated as satisfactory by the company’s chief 

operating executives. 

 

 Simulation may then now lead to a better knowledge of raw 

material inventories’ behavior, and identify the conditions 

leading to an improved balance between high inventory costs 

and risks of disruption. 

 

To this end, two sets of simulation operations have 

been performed: one pertains to the level of sales; the other, to 

the level of supplies. 

 

 

321 – simulating the sales level: 

 

Question to be answered here was “What if … sales 

increase?”, more specifically “How much time do the inventory 

levels give the company to adjust its suppliers’ delivery rates?”. 

 

A simulation has therefore been run where monthly 

sales were increased by 10% from the “normal” level of 

activity, standing at 2400 cubic meters of concrete mix. 

 

Keeping to the corresponding rate of delivery from the 

suppliers, it takes 10 days for all inventory levels but one to 

reach a steady state, where the level is equal to the delivery unit, 

that is the full truck load capacity. Disruption occurs only, 

every two days, for the cement inventory, due to its lower 

delivery rate: 3 trucks every two days instead of one every 

half-day, or even one every hour, for the other raw materials. 

 

Of course, disruption is avoided at the cost of a sharp 

increase in order backlog. Average inventory levels are 

therefore not that high that the company can easily absorb the 

simulated change in its sales volume. However, they give a time 

buffer of nearly two weeks to help adjust to the new level of 

activity, and, considering the (close) geographic proximity and 

(high) delivery flexibility of the suppliers, this buffer does not 

need to be that long. 

 

The next simulation to be run was then dedicated to 

answering another question: “to what extent the time buffer, 

and therefore global volume and cost of inventories, may be 

reduced without going disrupt?”. 

 

 

322 – simulating the supply levels: 

 

 While delivery rates remained unchanged, raw material 

delivery units have been progressively reduced from one 

simulation to the next, leading to the design of a new delivery 
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rate / unit supply policy, compared to the present one in the 

following table (table 4): 

 

 

Table 4: supply policies comparison 

 

Type of 

raw 

material 

Delivery 

rate 

Present 

delivery 

unit (P) 

Suggested 

delivery 

unit (S) 

(P) – (S) 

difference 

Coarse 

gravel 

Every 3h 25 25 0 

Fine 

gravel 

Every 4h 25 25 0 

Coarse 

sand 

Every 1h 7 5.75 1.25 

Fine 

sand 

Every 4h 25 17 8 

Cement Every 2 

days 

80 66 14 

 

 

Such a decrease in volumes leads to purchasing cost 

reductions. For a 20-working days, 8h per day, reference 

month, the suggested supply policy would result in total 

savings of around 15,000 euros, detailed in the hereunder table 

(table 5): 

 

 

Table 5: purchasing cost savings 

 

Type of raw 

material 

Unit cost 

(in euros) 

Monthly 

volume 

reduction 

(in tons) 

Monthly cost 

savings 

(in euros) 

Coarse 

gravel 

8 0 0 

Fine 

gravel 

8 0 0 

Coarse 

sand 

9 200 1800 

Fine 

sand 

11 320 3520 

Cement 75 140 10500 

 

 

The enhanced cost-effectiveness of the raw material 

supply policy has no impact on the reliability of the production 

process: at no time during the whole simulation period have the 

inventories suffered from disruption. 

 

To measure the available time-safety margin, and 

incidentally the sensitivity of inventory levels to variations in 

the supply policy, delivery units have been further reduced by 

one ton / one half-ton at a time from one simulation to another, 

starting from the newly defined values. As a consequence, all 

inventories have gone disrupt within one month. 

 

More specifically, would the company decide to adopt 

the suggested new raw material supply policy, longest intervals 

between two deliveries would be 

 

- 1 truck every 6 days for coarse gravel, 

- 1 truck every 16 days for fine gravel, 

- 1 truck every 3 days for coarse sand, 

- 1 truck every 12 days for fine sand, 

- 1 truck every 53 days for cement 

 

IV. CONCLUSION 

 

Those latter results bring an end to the simulation process 

dedicated to answering the initial question asked by the 

company’s top executives. 

 

 From an operational standpoint, this decision-support 

system may however be used more extensively by companies 

from the building industry for any set of simulations of the 

impact of a given determinant variable on such or such 

inventory level. For instance a table could thus be fed which 

would give, for each monthly sales level, the optimal delivery 

unit / rate supply policy to be conducted accordingly. 

 

From an academic standpoint, this paper should be viewed as 

another contribution to the revival of Industrial Dynamics as a 

basis for the design and implementation of logistics-dedicated, 

simulation-based decision-support systems, would it be on 

operational or on strategic issues. 
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Description

Nonlinear time series analysis is the practical spin-off from complex dynamical system and chaos
theory. It allows one to characterize, or even make predictions of, dynamical systems in which
nonlinearities give rise to a complex temporal evolution by analyzing signals measured from these
dynamics. Importantly, this concept allows extracting information which cannot be resolved using
classical linear techniques such as for example the power spectrum or spectral coherence. In recent
years, the framework nonlinear time series analysis has been extended to also comprise methods
derived from statistical physics, information theory, statistics and computer science. Application
of nonlinear time series analysis can be found in many fields, ranging from biology, neuroscience,
engineering, to geophysics and economics. This session will cover some recent advances in the
methodology of nonlinear time series analysis and provide examples for applications to a variety of
real-world experimental dynamics.

Contents

Localizing epileptic foci using surrogate-baseline corrected nonlinear syn-
chronization measures
Ralph Gregor Andrzejak , Daniel Chicharro , Florian Mormann , Klaus Lehnertz 331

Using a nonlinearity detection as a prior step for global modeling
Ubiratan S. Freitas , Christophe Letellier . . . . . . . . . . . . . . . . . . . . . 333

Improvement of symbolic transfer entropy
Dimitris Kugiumtzis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

Assessing the degree of synchronization in time series using symbolic rep-
resentations
Roberto Monetti , Wolfram Bunk , Thomas Aschenbrenner , Stephan Springer 343

Characterization of pre-seizure states by a multi-signal analysis of scalp
EEG and ECG signals during slow wave sleep
Stavros Nikolopoulos , Mario Valderrama , P. Milani , V. Navarro , Michel Le

Van Quyen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Complex networks as a tool for nonlinear time series analysis

Michael Small , Xiaoke Xu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Non-Gaussian signal processing of biological signals

Max Little . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

330 ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France



 

Localizing epileptic foci using 
surrogate-baseline corrected nonlinear 

synchronization measures 
Ralph G. Andrzejak, Daniel Chicharro, Florian Mormann, and Klaus Lehnertz.  

  
Abstract—We applied bivariate nonlinear time series analysis 

techniques to electroencephalographic (EEG) recordings from 
epilepsy patients. In particular, we combined a novel bivariate 
synchronization measure with bivariate surrogates. We tested the 
discriminative power of this surrogate-baseline corrected 
nonlinear synchronization measure to detect the 
seizure-generating hemisphere in medically intractable medial 
temporal lobe epilepsy. For this purpose, we analyzed intracranial 
EEG recordings from the seizure-free interval of 29 patients. Our 
results demonstrate that the surrogate-baseline correction is 
essential for a successful characterization of the spatial 
distribution of the epileptic process. 
 

Index Terms—Nonlinear time series analysis, Synchronization 
measures, Surrogate time series, Electroencephalography, 
Epilepsy, Focus localization.  
 

HE disease epilepsy is characterized by sudden and 
recurrent malfunctions of the brain that manifest 

themselves as epileptic seizures. During epileptic seizures large 
groups of neurons discharge hyper-synchronously. In 
consequence, the electroencephalogram (EEG) recorded 
during epileptic seizures is characterized by rhythmic 
oscillations of high amplitude. During the seizure-free interval 
only intermittent short bursts of hyper-synchronous activity of 
local neuron groups occur, resulting in so-called interictal 
epileptiform activity in the EEG. Except for these -mostly 
brief- episodes of interictal epileptiform activity, the EEG 
recorded during the seizure-free interval often appears 

unspecific with regard to the epileptic process. It can be 
conjectured, however, that even in the absence of evident 
interictal epileptiform activity, the epileptic process causes an 
elevated level of neuronal synchronization.  
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Indeed there is growing evidence that this elevated level of 

synchronization can be detected from EEG recordings of the 
seizure-free interval using different nonlinear time series 
analysis techniques. In particular, nonlinear synchronization 
measures based on instantaneous phases (e.g. [1]), 
reconstructed state spaces (e.g. [2]) or techniques derived from 
information theory (e.g. [3]) have been used to analyze 
intracranial EEG recordings from patients with medically 
intractable unilateral medial temporal lobe epilepsy. The 
particular recordings studied in [1-3] offer well-defined 
conditions since the EEG was measured using electrodes 
symmetrically implanted in the hippocampal formations in the 
left and right brain hemispheres. Furthermore, based on these 
diagnostics, one hippocampal formation was identified as the 
seizure-generating structure (epileptic focus), while no seizures 
originated from the opposite brain hemisphere. These studies 
[1-3] congruently showed that the mean level of 
synchronization between recording sites within the focal 
hemisphere is higher than the one between recording sites 
within the opposite hemisphere. In none of these studies, 
however, were the synchronization measures combined with 
the concept of surrogates. In the context of univariate nonlinear 
time series analysis, surrogates were shown to substantially 
improve the localization of the epileptic focus [4, 5]. The 
combination of nonlinear bivariate synchronization measures 
and bivariate surrogates in application to EEG recordings from 
epilepsy patients is therefore tested in the present study. 

 
From two simultaneously recorded time series a pair of 

bivariate surrogates is constructed such that the surrogate time 
series share, for example, the linear cross- and autocorrelation 
with the original time series, but are otherwise random (e.g. [6, 
7] and references therein). Accordingly, bivariate surrogates 
can be used to estimate the value of the nonlinear 
synchronization measures expected for a bivariate linear 
stochastic process. A surrogate-baseline corrected nonlinear 
synchronization measure can then be defined as the difference 
between the synchronization measure’s value obtained for the 

T 
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original time series and the one obtained for the surrogate time 
series. 

  
For the present study we used a novel nonlinear state space 

based synchronization measure (L), which was introduced 
recently in [8] and was shown to detect couplings between 
dynamical systems with higher sensitivity and specificity as 
compared to previously published nonlinear state space based 
techniques [8]. We here combined this measure with bivariate 
surrogates that were constructed to preserve the 
cross-correlation, autocorrelation, and also the amplitude 
distribution of the original time series [6]. Except for these 
constraints, the surrogates were random, and were used to 
define a surrogate-baseline corrected measure ΔL, as described 
above. 

 
We analyzed intracranial EEG recordings from the 

seizure-free interval of 29 patients with medically intractable 
medial temporal lobe epilepsy. A total of 84 EEG recordings 
with an average length of 130 min per patient were analyzed 
using a moving window technique. (These datasets were 
previously analyzed using univariate time series analysis 
measures in [5] and overlap with the recordings studied using 
bivariate synchronization measures in [1-4]).   

 
Increased values of the measure L allowed us to correctly 

determine the side of the focal hemisphere in 22 of 29 cases. 
This performance is comparable to the one obtained by other 
synchronization measures in previous studies [1-4]. The 
surrogate-baseline corrected version ΔL allowed us to correctly 
determine the focal hemisphere in 26 of 29 cases. Extending 
results obtained by univariate time series analysis techniques 
[5], our results further demonstrate the importance of the 
concept of surrogates for a successful characterization of the 
spatial distribution of the epileptic process. 
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Using a nonlinearity detection
as a prior step for global modeling

U. S. Freitas & C. Letellier

Abstract—Identifying chaos from experimental data remains
a very challenging problem for which conclusive arguments are
still very difficult to provide. One possible answer is to findand
validate a a global model, although this could prove a rather
challenging task. In an attempt to address this question, Poon
and Barahona introduced a numerical titration procedure based
on a nonlinearity detection method. We show that such numerical
titration procedure fails to distinguish non-deterministic signals
from low-dimensional deterministic chaos and, therefore, is
unable to reliably detect chaos from time series.

Nevertheless, we show that the nonlinearity detection method
can be used to browse the identification parameter space before
applying a global modeling technique. Used in this way, the
nonlinearity detection method can serve as a pre-test to ease
the more complex global modeling techniques.

Index Terms—Chaos, time series, global modeling, nonlinear-
ity.

I. I NTRODUCTION

When one investigates time series from the real world, one
necessarily faces an underlying dynamics which most often
results from a complex interplay between deterministic and
stochastic components. A special attention is thus devotedto
detect or to identify the deterministic component. Sometimes
this aim consists in a detection technique that is supposed
to prove the existence of an underlying chaotic component.
Many techniques were proposed to detect chaos but none of
them is fully reliable. All of them rely on certain topological
or information measures of attractors reconstructed from the
data and present some problems of specificity and reliability
[1], [2]. It is known that the Largest Lyapunov exponent fails
to distinguish chaotic behaviors from noise [3].

Let us be precise to what a chaotic behavior corresponds.
First of all, a chaotic behavior is deterministic, that is,
governed by a process which can be described by a set of
ordinary differential or difference equations. It might also be
described by a delay-differential equation since a delay isoften
required before the answer to a given event is provided by the
system, as usually observed in biology, for instance. Typically,
determinism is the paradigm in which future events are a
consequence of past and present events combined with the
law of nature. Such determinism dates back from the Laplace’s
thought experiment [4]. What blurred the image provided by
Laplace is that when there is chaos, it is no longer possible to
foresee the future for an infinite time. Predictions of chaotic
dynamics can only be made for short time. Due to this latter
property, identifying a determinism underlying experimental

CORIA UMR 6614 — University of Rouen, Saint-Etienne du Rouvray,
France, e-mail: freitas@coria.fr

Manuscript received May 22, 2009.

data is quite a complicated problem, necessarily because
deterministic chaotic behaviors cannot be distinguished from
randomness using statistical analysis [5]. As clearly written
by Glass [6], prior to asserting that some dynamics is chaotic,
there should be clear evidence that deterministic equations
govern the dynamics.

Implicitly, this underlying determinism is considered in
terms of low-dimensional determinism, just because when the
system dimension is too large, such a determinism can no
longer be distinguished from a stochastic process. Usually,
low dimensional dynamics means that the behavior can be
described in a phase space whose dimension is roughly less
than ten. Proving that the dynamics underlying a noise contam-
inated short time series corresponds to a “low-dimensional”
chaotic behavior is one of the most difficult problem to
address. This is mainly why surrogate data analysis have been
so often used [13]. Unfortunately, this technique only test
whether the investigated dynamics can be distinguished from a
linear stochastic process, or not. This is therefore not a direct
— and definite — answer to the original question, that is,
identifying an underlying determinism.

Once the deterministic character of the dynamics is evi-
denced (or assumed), in order to assert its chaotic nature, one
has to show that that the measured time series results from
a dynamical process which issensitive to initial conditions,
boundedand recurrent. The fact this measured data set was
produced by a bounded process is certainly the less risky
assumption which can be made about the underlying dynamics.
Then remains the sensitivity to initial condition and the recur-
rence property of the dynamics. To show that the dynamics
is sensitive to initial conditions can been done by computing
the largest Lyapunov exponent, although such a computation
is still a great challenge when the available time series is short
and noise contaminated [14]. Now the recurrence property
can only be tested, by definition, from long enough time
series. Such a property is related to the population of unstable
periodic orbits around which chaotic behaviors are organized
[15]. The relative organization of these periodic orbits leads
to the architecture of chaotic attractors [16]. Getting periodic
orbits from short time series necessarily requires the estimation
of a global model which can then be integrated over a long
time (see [19] among others). Moreover, possessing a validated
global model corresponding to the investigated data set is
one of the best proofs for the underlying determinism. When
the measured data is long enough, global models are ideally
validated by a topological analysis [19] but this is no longer
possible when the time series is short (typically around 10 or
20 cycles).

Although finding a valid global model is the ultimate test
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for determinism, it is also a complex procedure. It requires
some experience of its user and can fail for several reasons.
Therefore, a good screening procedure that is able to detect
cases where the global modeling would fail could be a
invaluable tool.

In 2001, Poon and Barahona [17] proposed a method for
detection of chaos in time series. This method uses a non-
linearity detection procedure introduced by the same authors
on a previous paper [11]. The chaos detection method proved
to be unreliable. It will erroneously classify as chaotic time
series produced by pure stochastic systems. This shows that
the nonlinearity detection procedure cannot be used as a chaos
detector, at least not directly. Instead, we propose to use the
nonlinearity detection method as a pre-test procedure for the
identification of global models.

II. N UMERICAL TITRATION AND NONLINEARITY

DETECTION

Poon and Barahona’s method of chaos detection [17] is
composed by two principles: a nonlinear detection method [11]
and gradual addition of noise.

The nonlinear detection method is based on the comparison
between one-step ahead prediction performances of linear
and nonlinear models. The linear models are autoregressive
discrete-time structures like

yk =
∑

i

θiyk−i , (1)

where the signal at an instantk, yk, is considered as a linear
combination of the same signal at previous instants. Nonlinear
models are also autoregressive, but include polynomial com-
binations of the of the time-delayed terms. A structure like
eq. (1) is a one-step ahead predictor if theyk−i on the right-
hand side contain only values taken from the time series. The
coefficients,θi, are computed from the time series using a least
squared method. Several linear and nonlinear models are tried,
varying the number of terms in each model. The nonlinearity is
detected if a nonlinear model has smaller one-step prediction
error than any linear model in a statistical sense.

The chaos detection procedure is as follows. The nonlinear
detection method is applied to the time series under test.
Then, white or linear correlated noise is gradually added to
the data until the nonlinear detection method fails to see
any nonlinearity. The standard deviation of the added noise,
divided by the standard deviation of the time series, at this
point, is called the noise limit (NL) and is claimed to be a
measure of chaos in the data. The conditionNL > 0, that
is, nonlinearity is detected and noise of a significant variance
must be added for the detection to fail, is claimed to be
sufficient to deduce the presence of chaos in the data.

Unfortunately, this technique does not provide a definite
answer in the sense that, in some cases, it provides incorrect
positive answers. Let us give an example with a nonlinear
colored noise. In order to do that, a nonlinear moving average
filter is applied to random noise according to

xn+1 = aνn + bνn−1(1− νn) (2)

where νn is a uniform i.i.d. random variable with values
between 0 and 1. This is a purely random signal (Fig. 1)
which can be considered as a sort of nonlinear colored noise.
Its stochastic character is well evidenced when a first-return
map is computed (Fig. 2). No deterministic structure (like a
parabolic shape or other) can be evidenced from this first-
return map.
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Fig. 1. 1000 points of a stochastic solution to map (2). Parameter values:
a = 3 andb = 4.
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Fig. 2. First-return map computed from a trajectory produced by (2).

Applying noise titration leads to a noise limit NL=35%.
Thus this technique would erroneously conclude in favor
of a chaotic deterministic behavior although the underlying
dynamics is clearly not deterministic. The reason is that this
nonlinear colored noise is predicted more accurately (one-
step ahead) with a nonlinear model than with a linear one.
Moreover, we search for a purely chaotic dynamics for which
the noise limit was also about 35%. In order to do so, the
Logistic map

xn+1 = µxn(1− xn) (3)

was investigated with increasing values for parameterµ. It
was finally found that withµ = 3.62, the noise limit was
about 35%. For thisµ-value, the first-return map looks like a
2-banded parabola (Fig. 3). This means that in a blind test, the
noise titration does not make difference between a nonlinear
colored noise (Fig. 2) and a purely chaotic behavior (Fig.
3)[12].

III. A PERIODIC GLOBAL MODEL DOES NOT MEAN

UNDERLYING DETERMINISM

Since the pioneering paper by Crutchfield and McNamara
[7], it is known that it is also possible to get a set of differential
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Fig. 3. First return map computed from a trajectory producedby the Logistic
map (3). Parameter value:λ = 3.62.

or difference equations which produces a chaotic attractor
equivalent to the experimental one. It is important to note that
a single model is thus used to describe the whole underlying
dynamics. Global models are thus opposed to “patchwork-
models” which result from collection of local models. Global
modeling thus refers to getting a single model for reproducing
chaotic dynamics. In this paper, the global models obtained
can be written as

yk = f(yk−1, yk−2, yk−3, ...)

where{yk} is the measured time series [8], [9]. This is the so-
called Nonlinear Auto-Regressive Moving Average (NARMA)
model. ARMA, therefore, refers to the “ingredients” used
to explain (predict) the datayk and N indicates that such
ingredients are combined in a nonlinear way. One possible
nonlinear way of combining such variables is using a polyno-
mial to approximatef , although many other alternatives exist.
Usually finding a global model is a signature of an underlying
determinism. Nevertheless, when the obtained model produces
a limit cycle, this is not always the case.

Let us start from data which have no underlying nonlinear
dynamics, that is, surrogate data [10]. Surrogate data were
produced from the smoothedx-time series of the noise-
contaminated Rössler system [18]

ẋ = −y − z

ẏ = x + ay

ż = b + z(x− c)
(4)

with a = 0.3, b = 2 and c = 4. The corresponding phase
portrait (Fig. 4a) does not provide any regularity that could
suggest us an underlying determinism. In particular, thereis
no folding on this portrait, a relevant ingredient for producing
chaos [16]. When a first-return map to a Poincaré section of
the surrogate phase portrait is computed a simple cloud of
points without any structure is identified (Fig. 4b). From the
surrogate data, it was not possible to obtain a single stable
model that would settle (whenever stable) to anything but a
limit cycle. This results from the type of surrogate data used in
the present case. Only phases were shuffled to remove the non

linear contribution within the dynamics. As a consequence,
only the “linear” cycling around the inner fixed point was left
in the surrogate data. The “linearized” deterministic dynamics
cannot provide anything more complicated than a period-1
limit cycle. Consequently, getting a model that only produces
a limit cycle isnot an evidence for determinism.
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(b) First-return map
Fig. 4. Surrogate data computed from the smoothedx-time series of the
noise-contaminated Rössler system. Phases are shuffled insuch a way that
the power spectrum is preserved. Parameter values:a = 0.3, b = 2 and
c = 4.

IV. N ONLINEARITY DETECTION AS A SCREENING

PROCEDURE FOR GLOBAL MODELING

Testing for nonlinearity is a simpler task than identifying
and validating global models. The former is easily automated
while the later needs user interaction, specially in the valida-
tion part. We therefore propose to use the technique to detect
nonlinearity as a first step before applying a global modeling
technique. We apply this procedure on the Rössler system
with parameter values asa = 0.398, b = 2 and c = 4. The
ability to obtain a global model from a time series produced
by a system can be evaluated using observability indices as
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introduced in [20], [21]. In the case of the Rössler system,it
has been shown that variabley provides the best observable
since there exists a diffeomorphism between the original phase
space and they-induced differential embedding spanned byy
and its successive derivatives [21]. Conversely, variablez is the
worst and roughly, it is nearly impossible to get a 3D global
model without a strong structure selection [22]. Since we do
not want to test the observability of the Rössler dynamics via
a given variable but rather how it is possible to discriminate
times series that are good candidates for applying a global
modeling technique, the time series measured will correspond
to the time evolution of they variable of the Rössler system.

To simulate a realistic case, i.i.d. gaussian noise is added
to the time series. Depending on the noise levelη (standard
deviation of noise normalized by standard deviation of timese-
ries), the original dynamics is more or less perturbed (Fig.5).
When the noise level is too high, it becomes impossible to
extract the deterministic component from the measured time
series and, consequently, the global modeling technique fails.
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(c) η = 0.05 (d) η = 0.08
Fig. 5. Delay embedding induced by variabley of the Rössler system.
Parameter values:a = 0.398, b = 2, c = 4 and embedding delay1.0s.

As we saw in the previous section, getting a global model
producing a limit cycle does not mean there is an underlying
determinism. It is therefore required to obtain a global model
producing a chaotic attractor. In our attempt to obtain global
model from noise-contaminated data, we will only select those
producing chaotic behaviors. Two parameters were varied
during the global modeling procedure: i) the noise level (0.01,
0.02, 0.05 and 0.08) added to the time series and ii) the
sampling numberτ (1,4,8,10 and 20) used to create the time
series. Forτ = 1, every point from the original time series,
sampled at 0.05s, is used. Forτ = 4, only a point every
4 is taken; for τ = 8, only a point every 8 and so on.
Depending on values of these two parameters, it was possible
or not to identify a global chaotic model. For each set of

parameters, the result of the nonlinear detection algorithm,
that is, the probability for having a better prediction with
nonlinear models than with linear models was computed. Our
results are reported in Tab. I. As expected, the nonlinearity
becomes difficult to detect as the noise level is increased. As
a consequence, it becomes nearly impossible to get a chaotic
global model from too noisy data.

TABLE I
PROBABILITY p FOR HAVING BETTER ONE-STEP AHEAD PREDICTION BY A

NONLINEAR MODEL THAN BY A LINEAR ONE . CASES FOR WHICH A
CHAOTIC GLOBAL MODEL WAS OBTAINED ARE MARKED WITH AN

ASTERISK.

Noise level 0.01 0.02 0.05 0.08

τ = 1 0.0148 0.0018 0.0008 0.0007
τ = 4 1.0000 0.9997∗ 0.7083 0.2809
τ = 8 1.0000∗ 1.0000∗ 0.9999 0.9615
τ = 10 1.0000∗ 1.0000∗ 1.0000 0.9997
τ = 20 1.0000∗ 1.0000∗ 1.0000∗ 1.0000

An interesting feature is that, for a given noise level, our
ability to obtain such a chaotic global model increased asτ is
increased. As an example, the last chaotic model we obtained
(Fig. 6) was for the largest delay (η = 0.05).

An important thing to note is that all chaotic global models
obtained correspond to a probabilityp greater than 0.99 to have
better predictions by nonlinear models than by linear ones.
This threshold, 0.99, is the one proposed for the nonlinearity
detection [11]. This suggests that a negative nonlinear detec-
tion is a sign that the probability to find a chaotic model is low.
Since the procedure to detect nonlinearity in time series can
be automated, the parameter space — in the present case, the
delay versus the noise level — could intensively investigated to
select potential values at which the global modeling procedure
could be attempted.

V. CONCLUSION

Identifying determinism underlying data from the real world
that are resulting, most often from a combination of a
deterministic component with a stochastic process remains
quite challenging. We showed that noise titration failed to
discriminate some nonlinear stochastic processes from chaotic
behaviors. Nevertheless, comparison between one-step ahead
predictions by nonlinear and linear models can be used to
detect nonlinearity in noisy time series. A positive detection
can be considered thus encouraging us to attempt a global
model since a negative detection was always associated with
a failure in applying a global modeling technique.
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-6 -4 -2 0 2
y

t

-6

-4

-2

0

2

y t+
δ

(b) Interpolated trajectory

-6 -4 -2 0 2
y

t

-6

-4

-2

0

2

y t+
δ

(c) Original system
Fig. 6. (a) Chaotic attractor solution to the global model obtained from a
y-time series contaminated with a noise level equal to 0.05 and usingτ = 20
(equivalent to a sampling time equal to 1.0s). (b) The trajectory (continuous
line) is reconstructed through frequency-domain interpolation of the output of
model simulation (circles). (c) Original noiseless attractor. These three figures
are time delay plots.
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Improvement of Symbolic Transfer Entropy
Dimitris Kugiumtzis

Abstract—A number of measures have been proposed for the
direction of the coupling between two time series, and transfer
entropy (TE) has been found in recent studies to perform
consistently well in different settings. Symbolic transfer entropy
(STE) has been very recently proposed as a variation of the
transfer entropy operating on the ranks of the components of the
reconstructed vectors rather than the reconstructed vectors them-
selves. Here, an improvement of STE is proposed. Specifically, the
ranks of the samples of the response system for given time steps
ahead are computed with regard to the current reconstructed
vector. The grounds of this modification are given and the new
measure, called Transfer Entropy on Rank Vectors (TERV), is
compared to STE and TE on different settings of state space
reconstruction, time series length and observational noise. The
results on two simulated systems have shown that the detection
of the direction and strength of coupling is improved with TERV
over both STE and TE.

Index Terms—bivariate time series, coupling, information mea-
sures, transfer entropy, rank vectors

I. INTRODUCTION

The fundamental concept for the dependence of one variable
Y measured over time on another variable X measured
synchronously is the Granger causality [1]. While Granger
defined the direction of interaction in terms of the contribution
of X in predicting Y , many variations of this concept have
been developed, starting with linear approaches in the time and
frequency domain (e.g. see [2], [3]) and extending to nonlinear
approaches focusing on phase or event synchronization [4],
[5], [6], comparing neighborhoods of the reconstructed points
from the two time series [7], [8], [9], [10], [11], [13], [14],
and measuring the information flow between the time series
[15], [16], [17], [18], [19].

Among the different proposed measures we concentrate here
on the last class of measures, and particularly on the transfer
entropy (TE) [15] and the most recent variant of TE operating
on rank vectors, called symbolic transfer entropy (STE) [18]
(see also [20] for a similar measure). Other information
measures, such as mean conditional mutual information [19]
and coarse-grained transinformation rate [16] are rather similar
to transfer entropy and are therefore not included in this
study. There have been a number of comparative studies of
information flow measures and other coupling measures giving
varying results. In all the studies where TE was considered, it
performed at least as good as the other measures [21], [22],
[28]. The STE is proposed as an improvement of TE in real
world applications, where noise may mask details of the fine
structure, that can be better treated by coarse discretization
using ranks instead of samples.

D. Kugiumtzis is with the Department of Mathematical, Physical and
Computational Sciences, Faculty of Engineering, Aristotle University of Thes-
saloniki, Thessaloniki 54124, Greece, e-mail: (see http://users.auth.gr/dkugiu).

We have studied STE and propose here a modification of
it in order to improve the correct detection of the direction
as well the strength of coupling when it is present. In the
following, the TE and STE are presented briefly in Section II,
and the proposed measure is described in Section III. Then
the results of a simulation study comparing the proposed
measure to TE and STE are presented in Section IV, and
finally conclusions are given in Section V.

II. INFORMATION MEASURES

Transfer entropy (TE) is a measure of the flow of infor-
mation from the driving system, denoted X , to the response
system, denoted Y [15]. Supposing a representative quantity
of system X is measured in terms of a scalar time series
{xt}Nt=1 and respectively {yt}Nt=1 for Y , TE for the direction
from X to Y can be defined in terms of the Shannon entropy
H(x) =

∑
p(x) log p(x) as

TEX→Y = (1)
−H(yt+1,xt,yt) +H(xt,yt) +H(yt+1,yt)−H(yt),

or directly in terms of distribution functions as

TEX→Y =
∑

p(yt+1,xt,yt) log
p(yt+1|xt,yt)
p(yt+1|yt) , (2)

where p(yt+1,xt,yt), p(yt+1|xt,yt), and p(yt+1|yt) are the
joint and conditional probability mass functions (pmf). The
summation is over all the cells of a suitable partition of the
joint variable vectors appearing as arguments in the pmfs
or H . The points xt and yt appearing as arguments in
eq.(1) and eq.(2) are reconstructed with the method of delays,
so that we have xt = [xt, xt−τx , . . . , xt−(mx−1)τx

]′ and
yt = [yt, yt−τy , . . . , yt−(my−1)τy

]′, allowing different delay
parameters τx, τy and embedding dimensions mx, my for the
systems X and Y , respectively.

The estimation of TE requires the estimation of the pmfs
in eq.(2), or the probability density functions assuming the
integral form and no binning. The pmfs are estimated directly
by the relative frequency of occurrence of points in each cell,
so the only complication is to choose a suitable binning [24],
[23]. However, for high-dimensional reconstructions, the bin-
ning estimators are data demanding, and therefore estimators
of the probability density functions are more appropriate for
TE estimation, such as kernels [25], nearest neighbors [26],
and correlation sums [27]. Using the latter approach, the TE
estimator is given as

TEX→Y = log
C(yt+1,xt,yt)C(yt)
C(xt,yt)C(yt+1,yt)

, (3)

where C(yt+1,xt,yt), C(yt), C(xt,yt) and C(yt+1,yt)
are the correlation sums, which estimate the probability of
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inter-points distances less than some given radius for the
points of the form [yt+1,xt,yt], yt, [xt,yt] and [yt+1,yt],
respectively. The corresponding vector dimensions are 1 +
mx +my,my,mx +my and 1 +my . We use the Euclidean
norm for the distances and define the radius as the product
of 0.1, multiplied with the standard deviation of the data,
and the square root of the vector dimension at each case
(the latter is used to standardize the Euclidean norm). The
use of 0.1 is a trade-off of having enough points within a
radius to assure stable estimation of the point distribution
and preserving neighborhoods to retain details of the point
distribution. Still, for high-dimensional points, even this radius
may be insufficient to provide stable estimation.

A. Symbolic transfer entropy

The authors in [18] derived the so-called symbolic transfer
entropy (STE) as the transfer entropy defined on rank vectors
formed by the reconstructed points. For each point yt, the
ranks of its components in ascending order assign a rank vector
ŷt = [r1, r2, . . . , rmy ], where rj ∈ {1, 2, . . . ,my} for j =
1, . . . ,my , is the rank order of the component yt−(j−1)τy

(for
two equal components of yt the smallest rank is assigned to the
component appearing first in yt). Substituting yt+1 in eq.(1)
with the rank vector at time t+ 1, ŷt+1, STE is defined as

STEX→Y = (4)
−H(ŷt+1, x̂t, ŷt) +H(x̂t, ŷt) +H(ŷt+1, ŷt)−H(ŷt),

or equivalently and with regard to eq.(2)

STEX→Y =
∑

p(ŷt+1, x̂t, ŷt) log
p(ŷt+1|x̂t, ŷt)
p(ŷt+1|ŷt) . (5)

The estimation of STE from eq.(4) or eq.(5) is straightforward
as the pmfs are naturally defined on the rank vectors and no
binning or advanced estimator of probability density function
is involved. There is a great advantage of using a rank
vector ŷt over a binning of yt, say using b bins for each
component: the possible vectors from binning are bmy while
the possible combinations of the rank vectors are my!. For
example, for b = my = 4, there are 256 cells from binning
and only 24 combinations of rank vectors. Still, the estimation
of the probability of occurrence of a rank vector becomes
unstable as the dimension increases. Especially, for the joint
vector of ranks [ŷt+1, x̂t, ŷt] the dimension is 2my +mx, for
which the equivalent of TE is [yt+1,xt,yt] and has dimension
1 +mx +my.

III. MODIFICATION OF SYMBOLIC TRANSFER ENTROPY

The conversion of the scalar yt+1 to the rank vector ŷt+1

was chosen rather arbitrarily by the authors in [18] in order to
express yt+1 in terms of ranks. Under this conversion, STE is
not the direct analogue to TE using ranks instead of samples.
The problem is not the use of yt+1 instead of yt+1 in the
definition of TE in eq.(1) or eq.(2) because p(yt+1,xt,yt) =
p(yt+1,xt,yt), as all components but yt+1 of the vector yt+1

are also components of yt. The same holds for the conditional
pmfs (and the same holds also for the two correlation sums in
which yt+1 appears in eq.(3)).

yt
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^
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Fig. 1. Sketch of a position of samples yt−3, yt−2, yt−1, yt and the possible
rank position of yt+1 together with the corresponding rank vector ŷt+1

defined for STE and the actual rank of yt+1 considering all 5 samples.

Let us first assume that τy = 1. A first problem lies in
the fact that when deriving the rank vector ŷt+1 associated
with yt+1, the rank of the last component of yt, yt−my+1,
is not considered. As an example, consider the vector yt =
[yt, yt−1, yt−2, yt−3]′ with a corresponding rank vector ŷt =
[1, 2, 3, 4], i.e. the samples decrease with time. If the decrease
continues at the next time step, then ŷt+1 = [1, 2, 3, 4], if
yt+1 is between yt and yt−1 then ŷt+1 = [2, 1, 3, 4], if it is
between yt−1 and yt−2 then ŷt+1 = [3, 1, 2, 4], and finally
if yt+1 is larger than yt−2 (the largest of all components in
yt+1) then ŷt+1 = [4, 1, 2, 3]. The 4 possible scenarios are
shown in Fig. 1.

The definition of rank vector ŷt+1 accounts only for the
possible rank positions of yt+1 with respect to the last my−1
samples, ignoring the sample yt−my+1, here yt−3. With regard
to the same example, ŷt+1 = [4, 1, 2, 3] assigns to both cases
yt−2 < yt+1 < yt−3 and yt−3 < yt+1 (see Fig. 1). Indeed
there are 5 possible rank positions of yt+1 in the augmented
vector [yt+1, yt, yt−1, yt−2, yt−3], as shown in Fig. 1. Thus
for my = 4 there are 5! = 120 different rank orders for the
joint vector [yt+1,yt], but when forming the joint rank vector
[ŷt+1, ŷt] (as in the computation of STE) there are only 4! ·
(4!/3!) = 96 possible rank orders. In general, there are (my+
1)! possible rank orders for the joint vector [yt+1,yt], but
STE estimation represents them in my! · my !

(my−1)! rank orders
of [ŷt+1, ŷt].

The pmf of the rank vector derived from [yt+1,yt] and the
rank vector [ŷt+1, ŷt] are shown in Fig. 2 for uniform white
noise data and my = 3. There are (my+1)! = 24 equiprobable
rank orders for [yt+1,yt] (see Fig. 2a) but only my!· my!

(my−1)! =
18 different vectors [ŷt+1, ŷt] are found, where my! = 6 of
them have about double probability, each corresponding to two
distinct rank orders that could not be distinguished. As a result,
the Shannon entropy is underestimated here. Using n = 1016

samples and the ranks of [yt+1,yt] we found H = 4.5846 bits
and using [ŷt+1, ŷt] we found H = 4.0865 bits, while the true
Shannon entropy is H = − log2(1/24) = 4.5850.

The situation changes if a further time step ahead is used.
In general, allowing for yt+T , where T ≥ 1, the possible rank
orders of [yt+T ,yt] are again (my + 1)!, but for [ŷt+T , ŷt]
are my! · my !

(my−T )! . For example, my = 3 and T = 2 gives 36
possible rank orders [ŷt+T , ŷt], while the possible rank orders
for 4 samples are 24. This increase holds in general for T > 1.
For uniform white noise data, this results in overestimation of
the true H = 4.5850 using the rank orders of [ŷt+T , ŷt], H =
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Fig. 2. (a) Estimated pmf for the ranks of [yt+1,yt] with my = 3
(probabilities are in ascending order), where the samples yt are from a uniform
white noise time series of length n = 1016. (b) Same as in (a) but for the
rank vector [ŷt+1, ŷt].

4.9736 (n = 1016) while using the rank orders of [yt+T ,yt]
we estimated H = 4.5849.

Thus we propose the following modifications to STE:
1) If T = 1, then in the definition of STE replace ŷt+1

by ŷt+1, i.e. the rank of yt+1 in the augmented vector
[yt+1,yt].

2) If T > 1, then replace ŷt+T by ŷTt = [ŷt+1, . . . , ŷt+T ],
the ranks of yt+1, . . . , yt+T in the augmented vector
[yt+T , yt+T−1, . . . , yt+1,yt].

For T > 1, the proposal is to use all the ranks for times
t + 1, . . . , t + T in order to keep track of the effect of X
on the evolution of the time series of Y up to T time steps
ahead. Similar reasoning for T > 1 was used for the measure
of the coarse-grained transinformation rate [22] and we have
used T > 1 also for TE [28]. Thus the proposed measure of
transfer entropy with rank vectors (TERV) for T steps ahead
is

TERVTX→Y = (6)
−H(ŷTt , x̂t, ŷt) +H(x̂t, ŷt) +H(ŷTt , ŷt)−H(ŷt),

The TERV measure is the direct analogue to TE using ranks
and extends the measure of information flow from X at time
t to Y for a range of T time steps ahead t.

We note that when a lag τy > 1 is used for the state space
reconstruction of yt, there are up to my! ·my! different rank
vectors [ŷt+T , ŷt] in the computation of STE. On the other
hand, for TERV there are (T + my)! different rank vectors
[ŷTt , ŷt]. Thus for τy > 1, the distortion of the domain of the
rank vectors by STE may be large, e.g. for τy = 2 and T = 1,
the pmfs and entropies are computed on (my + 1)! different
rank orders for TERV and my! ·my! for STE.

IV. ESTIMATION OF INFORMATION MEASURES FROM
SIMULATED SYSTEMS

As it was shown for the example of uniform white noise
the distortion of the domain of the rank vectors [ŷTt , ŷt] using
the rank vectors [ŷt+T , ŷt] instead has a direct effect on
the estimation of entropy. While for uncoupled systems X
and Y the entropy terms involving [ŷt+T , ŷt] cancel out in
the expression of TERV (and respectively for STE), in the
presence of coupling some bias is introduced in the estimation
of the coupling measure by STE. Using TERV instead this bias
is removed.
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Fig. 3. (a) Median (solid line), 10% and 90% percentiles (dashed lines) of TE
computed on 100 noise-free realizations of length n = 1024 from the system
of two unidirectionally coupled Henon maps for varying coupling strengths.
The other parameters are T = 1, τx = τy = 1 and mx = my = 2. The
direction X → Y is shown with black lines and Y → X with grey (online
cyan) lines, as shown in the legend. (b) Same as (a) but for STE. (c) Same
as (a) but for TERV. (d) AUROC computed on the 100 realizations for each
of the two directions and for the measures TE, STE and TERV, as given in
the legend.

We compare the estimation of coupling (strength and di-
rection) in a system of two unidirectionally coupled Henon
maps

xt+1 = 1.4− x2
t + 0.3xt−1

yt+1 = 1.4− cxtyt + (1− c)y2
t + 0.3yt−1

with coupling strengths

c = 0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6.

The results on the coupling measures TE, STE and TERV for
T = 1, τx = τy = 1 and mx = my = 2 are shown for 100
noise-free time series of length n = 1024 in Fig. 3. For TE the
correlation sums are used to estimate the entropies (see eq.(3)).
TE seems to give the best detection of the correct direction of
coupling even for very weak coupling, whereas STE performs
worst. To quantify the level of discrimination of the correct
direction of information flow, X → Y , people often use the
net information flow, defined as the difference of the coupling
measure in the two directions. Here, we assess the level of
discrimination in a statistical setting by computing the area
under the receiver operating characteristic (ROC) curve on the
samples of 100 realizations for each direction (e.g. see [29]).
We denote the measure AUROC. For uncoupled systems, we
expect that AUROC derived from a coupling measure is close
to 0.5. For a measure to detect coupling with great confidence
AUROC has to be close to 1. In Fig. 3d, the AUROC shows
that TE detects coupling with great confidence for as low
coupling strength as c = 0.1, followed by TERV reaching
the same level of confidence at c = 0.15, while STE fails to
provide confident discrimination of the two information flow
directions unless the coupling gets strong (at c = 0.5).
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Fig. 4. As Fig. 3, but with 20% Gaussian white noise added to the data.
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Fig. 5. (a) AUROC computed for different my (mx = my) on 100
realizations of the weakly coupled Henon system (c = 0.1) for each of the
two directions, for the measures TE, STE and TERV and for time steps ahead
T as given in the legend. The time series are noise-free and n = 1024. (b)
As in (a) but for n = 4096 and 20% additive Gaussian white noise.

The performance of the coupling measures changes in the
presence of noise. For the same setup as that in Fig. 3, but
adding to the bivariate time series 20% Gaussian white noise,
we observe that TERV performs best, followed by STE, while
TE has larger variance and fails to detect the correct direction
of coupling when it is weak (see Fig. 4). It is notable that the
discriminating power of TERV has not been affected much
by noise. The AUROC for TERV increases faster with c than
for the other two measures and reaches the highest level for
c = 0.2, while both TE and STE reaches this level when
coupling gets strong (c = 0.5).

We have estimated TE, STE and TERV on the coupled
Henon system for different settings of embedding dimensions
(keeping mx = my), time steps ahead T , time series length
n and noise level. For n small and my large and mostly for
noisy time series, the computation of TE was not possible
due to the lack of points within the given radius. Therefore
the performance of TE was worse than for STE and TERV.
This can be seen in Fig. 5, where the AUROC is shown for
the three measures as a function of my for two settings of
noise-free short time series and noisy but longer time series.
It seems that estimating the information flow for T = 3 time
steps ahead increases the detection of correct direction of weak
coupling (e.g. c = 0.1 in the results of Fig. 5) for all but
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Fig. 6. (a) AUROC computed for different my (mx = my) on 100
realizations of the weakly coupled Rössler – Lorenz system (c = 0.5) for
each of the two directions and for the measures STE (T = 1) and TERV
(T = 1 and T = 3), as given in the legend. The time series are noise-free
and n = 1024. (b) As in (a) but when 20% Gaussian white noise is added
to the data.

the STE measures. For the noise-free data, the differences
in AUROC among the three measures are small, and TERV
for T = 3 performs best giving AUROC=1 for all my (see
Fig. 5a). TERV for T = 3 performs best also for the noisy
data (see Fig. 5b) and generally the AUROC for TERV was
almost always higher than for STE, which in turn was higher
than for TE.

Similar simulations have been run on a Rössler system
driving a Lorenz system given as (subscript 1 for Rössler,
2 for Lorenz)

ẋ1 = −6(y1 + z1) ẋ2 = 10(x2 + y2)
ẏ1 = −6(x1 + 0.2y1) ẏ2 = 28x2 − y2 − x2z2 + cy2

1

ż1 = −6(0.2 + z1(y1 − 5.7)) ż2 = x2y2 − 8
3z2

for different coupling strengths c. In all parameter settings,
TERV was improving the results of STE, especially when
T > 1 was used (we tested for T = 2 and T = 3). An
example is shown in Fig. 6 for weak coupling, c = 0.5.
While STE and TERV score about the same in AUROC
when T = 1, the use of a longer time horizon for the
information flow (T = 3) in the estimation of TERV gives
perfect detection of coupling direction for all but insufficient
embeddings, mx = my = 2 (a small decrease is observed for
my = 7). This high performance of TERV and T = 3 holds
also when noise is added to the data, while in this case STE
and TERV with T = 1 fail to detect the coupling direction
also for my = 3.

V. CONCLUSION

The use of ranks of consecutive samples instead of samples
themselves in the estimation of the transfer entropy (TE)
seems to gain robustness in conditions often met in real world
applications, i.e. the presence of noise and the use of large
embedding dimensions. This was confirmed by our results
in this simulation study. Given that TE based on ranks can
be a useful measure of information flow and direction of
coupling, we have studied the recently proposed rank–based
transfer entropy, termed symbolic transfer entropy (STE), and
suggested a modified version of STE, which we termed TERV.
The first modification is to use the rank of yt+1 (one time
step ahead for the response time series) in the augmented
reconstructed state vector yt including also yt+1, instead of
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considering a whole rank vector for yt+1 as done in STE. We
showed that indeed this correction gives accurate estimation
of the true entropy of the rank vector derived from the joint
vector of yt and yt+1. Further, we suggested to allow the time
step ahead to be T > 1 and use the ranks of all samples at the
T future times (yt+1, . . . , yt+T ) derived from the augmented
vector containing the current vector yt and these future sam-
ples. The proposed TERV measure was compared to TE and
STE on two synthetic systems, a coupled map and a coupled
flow, and the level of detection of the coupling direction was
assessed by the area under the receiver operating characteristic
curve (AUROC). TERV gave consistently higher AUROC than
STE, and when the data were noisy also higher than TE. In
particular, the use of T > 1 improved the performance of
TERV.

There are other issues that have not been addressed in this
study, such as the use of other settings of state space recon-
struction (e.g. delays larger than one and different embedding
dimensions for the driver and the response system). Also,
there are problems in the estimation of the measures, including
TERV, that have not be discussed here, such as the statistical
significance of a measures when the systems are uncoupled,
and the increase of a measure also for the opposite (wrong)
coupling direction when the coupling strength increases. This
study is by no means extensive or complete and the measures
should also be compared in many different systems (identical
and non-identical).

REFERENCES

[1] J. Granger, “Investigating causal relations by econometric models and
cross-spectral methods,” Acta Physica Polonica B, vol. 37, pp. 424 –
438, 1969.

[2] L. Baccala and K. Sameshima, “Partial directed coherence: a new con-
cept in neural structure determination,” Biological Cybernetics, vol. 84,
no. 6, pp. 463 – 474, 2001.

[3] M. Winterhalder, B. Schelter, W. Hesse, K. Schwab, L. Leistritz,
D. Klan, R. Bauer, J. Timmer, and H. Witte, “Comparison of linear
signal processing techniques to infer directed interactions in multivariate
neural systems,” Signal Processing, vol. 85, no. 11, pp. 2137 – 2160,
2005.

[4] M. Rosenblum and A. Pikovski, “Detecting direction of coupling in
interacting oscillators,” Physical Review E, vol. 64, no. 4, p. 045202,
2001.

[5] R. Quian Quiroga, T. Kreuz, and P. Grassberger, “Event synchronization:
A simple and fast method to measure synchronicity and time delay
patterns,” Physical Review E, vol. 66, no. 4, p. 041904, 2002.

[6] D. Smirnov and B. Bezruchko, “Estimation of interaction strength and
direction from short and noisy time series,” Physical Review E, vol. 68,
no. 4, p. 046209, 2003.

[7] A. Cenys, G. Lasiene, K. Pyragas, J. Peinke, and J. Parisi, “Analysis
of spatial correlations in chaotic systems,” Acta Physica Polonica B,
vol. 23, no. 4, pp. 357 – 365, 1992.

[8] S. Schiff, P. So, T. Chang, R. Burke, and T. Sauer, “Detecting dynamical
interdependence and generalized synchrony through mutual prediction
in a neural ensemble,” Physical Review E, vol. 54, pp. 6708 – 6724,
1996.

[9] J. Arnhold, P. Grassberger, K. Lehnertz, and C. Elger, “A robust method
for detecting interdependences: Application to intracranially recorded
EEG,” Physica D, vol. 134, pp. 419 – 430, 1999.

[10] R. Quian Quiroga, J. Arnhold, and P. Grassberger, “Learning driver-
response relationships from synchronization patterns,” Physical Review
E, vol. 61, no. 5, pp. 5142 – 5148, 2000b.

[11] R.G. Andrzejak, A. Kraskov, H. Stögbauer, F. Mormann, and T. Kreuz,
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Assessing the degree of synchronization in time
series using symbolic representations
Roberto Monetti, Wolfram Bunk, Thomas Aschenbrenner and Stephan Springer

Abstract—We extend a recently proposed methodology to
characterize synchronization in time series using symbolic repre-
sentations (R. Monetti et al., Phys. Rev. E 79, 046203 (2009)). In
this approach, we define symbols which are expected to contain
information of the system at different time scales. Here,, a feature
vector is created at every position in the time series using a set
of local filters. Every feature vector is subsequently mapped into
a symbol through the rank-order of its values. A representation
of a time series results after mapping all feature vectors into
symbols. The dynamics of coupled systems is analyzed using
a transcription scheme which allows us to assess the degree
of synchronization. A prototype non-linear system is used as
a test bed for our method. This approach is also employed in
a longitudinal case study of a child with frontal lobe epilepsy
(FLE) and tested against an age-matched control group.

Index Terms—Time Series, Synchronization, Symbolic Repre-
sentations, Transcription Scheme, Information measures.

I. INTRODUCTION

SYNCHRONIZATION of oscillatory systems is a phe-
nomenon broadly discussed in different fields of science

and technology. It is also observed in chaotic oscillators where
the states of complete, generalized and phase synchronization
have been described theoretically [1]. Experimental observa-
tions of the various synchronization states can be found in
the cardiorespiratory system [2], in the cells of paddlefish [3]
and extended ecological systems [4]. In the human brain, syn-
chronization plays an important role in epileptic seizures and
its quantitative description is relevant for diagnostic purposes
([5], [6], [7], [8]). It has been argued that chronic epilepsy
modifies the brains state even in interictal periods revealing
altered anatomical, biochemical and functional properties [9].
Interictal EEG, even without epileptiform abnormalities, has a
number of characteristic differences from the EEG of healthy
subjects. These discrepancies should vanish under a successful
medical therapy. Hence, an important aspect of interictal EEG
assessment is the evaluation of spatio-temporal synchroniza-
tion.

Here, we introduce a method to characterize synchronization
in coupled systems where information measures are obtained
using symbolic representations of feature vectors. The present
approach is a variant of the methodology introduced in [11].
Section II is devoted to the description of symbolic feature
vector representations, the transcription scheme, the concept

R. Monetti, W. Bunk, and T. Aschenbrenner are with the Max-Planck-
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of order classes, and the information measures to quantify the
degree of synchronization. The application of the method to
a coupled chaotic system and to EEG data in the context of
epilepsy is presented in section III.

II. METHOD

Let x be a time series and consider a set of operators Fi
suitable to extract local features of the signal at different time
scales, i.e. B = {Fτ1 ,Fτ2 , . . .Fτp} where τi indicates a time
scale. Every point in the time series can be represented by
a feature vector ~vi = (Fτ1(xi),Fτ2(xi), . . .Fτp(xi)) where
local coarse-grained information at different time scales is
compiled. Now, a symbol V is defined as the rank-ordered
indices of the components of ~vi. For instance, for ~v =
(1.6, 1.3, 1.4, 1.5), the symbol associated is V = (3, 0, 1, 2).
In contrast to the ordinal time series analysis introduced by
Bandt et al. [12] and also applied in [11] where sequences
of length p extracted from time series are transformed into
symbols, the symbolic representation proposed in this work
points to describe changes in local features when evaluated at
different time scales.

A relevant issue for the application of this method is
to obtain representative feature vectors which provide local
information of the system at different time scales. Thus, the
choice of the operator F and the time scales must be guided
by a previous knowledge of the system under consideration
and its typical time scales. Here, we extract from the time
series p local features at different time scales using the fourth
order Gaussian wavelet W , i.e. the normalized 4th derivative
of the Gaussian function. Figure 1 indicates how a symbolic
representation of a signal is constructed. The signal (lower
curve) is analyzed using a set of fourth order Gaussian wavelet
(see Fig. 1 middle curves). Then, for every time t the set
of five wavelet coefficients defines a feature vector which is
subsequently mapped into a symbol as explained above. The
resulting symbolic representation is shown in Fig. 1 (upper
curve).

The concept of transcription between symbols A1 and A2

was already introduced in [11] and refers to the permutation
T which satisfies T [A1] = A2, where the operation must
be interpreted as a composition. The action of symbol T is
defined as follows. Let A1 = (j0, j1, . . . , jp−1) and T =
(k0, k1, . . . , kp−1). Then,

T [A1] = (jk0 , jk1 , . . . , jkp−1). (1)

The set of symbols form a finite non-Abelian group of order
p! with operation T known as the symmetric group Sp.
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Fig. 1. Example of a piece of an EEG signal (lower curve), the corresponding
five wavelet transform (middle curves), and the symbolic representation (upper
curve) for p = 5 using the fourth order gaussian wavelet at time scales
τ = 0.02 (full line) , τ = 0.06 (dotted line), τ = 0.12 (dashed line),
τ = 0.2 (dashed-dotted line), and τ = 0.4 (dashed-tri-dotted line).

Thus, for every symbol T in Sp an integer number N can
always be found such as the composition TN = I where
I = (0, 1, . . . , p−1) is the identity symbol (neutral element of
Sp). Since N is not unique, we will always refer to N as the
smallest integer which satisfies the above mentioned power
relation. A group of symbols which satisfy the same power
relation defines an order class CN . A detailed discussion about
the properties of order classes can be found in [11].

We generate symbolic representations for the time series
as explained above and focus on the probability density of
transcriptions between symbolic representations (called in the
following source and target symbolic representations). The
probability density of transcriptions PT (p) can be written as
follows

PTk
(p) =

∑
Ω={(i,j): Tk[Xi]=Xj}

PC(Xi, Xj), (2)

where Xi (Xj ) is a symbol belonging to the source (target)
symbolic representation and PC(Xi, Xj) is the joint proba-
bility density. Let P (1)(Xi) and P (2)(Xj) be the marginal
probability densities of the symbols Xi and Xj , respectively.
The matrix Mi,j = P (1)(Xi)P (2)(Xj) is the probability
density matrix of transcriptions for two independent processes.
In this case, the probability density of transcriptions P eT (p) can
be evaluated as follows

P indTk
(p) =

∑
Ω={(i,j): Tk[Xi]=Xj}

Mi,j , (3)

The aim is to find an information measure to assess how
much PT deviates from P indT . A natural choice to quantify the
contrast between probability densities is the Kullback-Leibler
(KL) entropy

EKL(P, P ind) =
∑
i

PTi(p) log(PTi(p)/P
ind
Ti

(p)). (4)

Since the EKL is not a symmetric quantity, we use the

following symmetrized form [13]

SKL(p) =
EKL(P, P ind)EKL(P ind, P )
EKL(P, P ind) + EKL(P ind, P )

. (5)

One can demonstrate that SKL(p) remains always finite and
that SKL(p) ≤ min(EKL(P, P ind), EKL(P ind, P )). Other
properties are discussed in [13]. It can be shown that T and
T−1 belong to the same order class [11]. Thus, SKL(p) for
transcriptions inside a class is a suitable invariant measure
under the interchange of source and target time series. In the
following, we will refer to SKL obtained using the probability
density of transcriptions in order class CN as SNKL.

III. APPLICATIONS

We apply the method to a bi-directionally coupled Roessler-
Roessler system [10] defined by the following set of equations

ẋ1,2 = −w1,2y1,2 − z1,2 + k(x2,1 − x1,2),
ẏ1,2 = w1,2x1,2 + 0.165y1,2, (6)
ż1,2 = 0.2 + z1,2(x1,2 − 10).

where w1 = 0.99 and w2 = 0.95 are the mismatch parameters.
All time series were generated using a fourth-order Runge-
Kutta method with an increment δt = 0.001 and the following
initial conditions: x1(0) = −0.4, y1(0) = 0.6, z1(0) = 5.8,
x2(0) = 0.8, y2(0) = −2, and z1(0) = −4. Results
were saved at intervals ∆t = 0.01. This chaotic system
exhibits a rich synchronization behavior which ranges from
phase (k ≈ 0.036) to lag (k ≈ 0.14) and finally complete
synchronization as the coupling parameter k is increased
[10]. The results presented here were obtained using the
x-components of the Roessler subsystems. We considered
time series of length L = 219 (∼ 775 orbits) For every
time series, we generate p-dimensional feature vectors ~vi =
(Wτ1 [x(ti)],Wτ2 [x(ti)], . . . ,Wτp [x(ti)]) (i = {0, 1, . . . , L −
1 − τp}) for p = 6 and then the symbolic representation.
We have chosen wavelet scales which approximately cover
the time span of one orbit of the Roessler system (676∆t),
namely τ1 = 10, τ2 = 21, τ3 = 43, τ4 = 87, τ5 = 175, and
τ6 = 350.

Figure 2 shows the Kullback-Leibler entropies for all tran-
scriptions SKL and transcription in different order classesSNKL
for p = 6. For small values of the coupling constant k, the time
series behave independently since the Roessler subsystems are
almost uncoupled. For k ∈ [0, 0.036], all Kullback-Leibler
entropies indicate that the actual dynamics hardly deviates
from that of the independent processes. All curves increase at
k ∼ 0.036 due to the transition to phase synchronization and
display a peak at k ≈ 0.061 which corresponds to period three
window [10]. For stronger coupling k, curves increase again
rather monotonically till k ∼ 0.11. For k ∈ [0.11, 0.145], SKL,
S3
KL, S5

KL, and S6
KL display strong fluctuations revealing

the presence of ’intermittent-lag-synchronization’. This par-
ticular synchronization regime is characterized by synchro-
nization periods interrupted by bursts of non-synchronized
activity [10], [11]. The strong fluctuations displayed by these
Kullback-Leibler entropies sharply vanish at the onset of lag-
synchronization (k ∼ 0.145). Lag-synchronization is defined
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Fig. 2. Kullback-Leibler entropy for all transcriptions SKL and for tran-
scriptions in the order classes SN

KL using a sequence length p = 6. Vertical
full lines from left to right indicate transitions to phase-synchronization (k ∼
0.036), intermittent-lag-synchronization (k ∼ 0.11), and lag-synchronization
(k ∼ 0.145), respectively. Vertical dashed lines at k ∼ 0.061 and k ∼ 0.11,
and hatched areas (k ∈ [0.232, 0.256]) indicate periodic windows. The values
of the coupling constant for the onset of phase synchronization and the first
periodic window were taken from [10].

through the condition x1(t+ τ0) = x2(t), i.e. the coincidence
of the time series when shifted in time by a constant time lag
τ0. Curves increase rather monotonically in the interval k ∈
[0.145, 0.30] reflecting stronger synchronization. This trend is
only interrupted within the coupling range k ∈ [0.232, 0.256]
where a period five window occurs. It should be noted that
some order classes are better suited than others to reveal
particular features of the system as periodic windows (see Fig.
2). In this sense, different order classes provide complementary
information of the coupled system. The results obtained using
this new symbolic approach are in complete agreement with
those reported in [10], [11].

A. Application to EEG

In this study, the single case results of the analysis of several
EEG recordings covering two years of a child (patient A) are
compared with the outcome of an age-matched control group.
The first four EEG of patient A which entered this study,
are taken at an age of 12.1 years and the whole follow-up
spans a period of almost two years of successful therapy. The
age-matched control group consists of three patients whose
EEG recordings cover an age range from 10.6 to 14.4 years.
All EEG recordings of the control group were classified as
normal. These three patients showed seizure freedom for more
than five years of follow-up. The positioning of the electrodes
followed that of the standardized 10-20-International System
of Electrode Placements. Every EEG recording consists of 21
synchronously obtained time series. Our data base is made up

Fig. 3. Time course of the spatial mean of the Kullback-Leibler entropy for
transcriptions in order class 2 S2

KL for an EEG recording of patient A. At
about 6.7 min (vertical line) an epileptic seizure starts. The seizure attack is
initiated by a loss of synchronization, while during the seizure the correlation
is generally increased, thus S2

KL values are higher. The horizontal full lines
mark the mean values of the cloud of points before and after the epileptic
attack and the dashed lines indicate the corresponding standard deviations.

by a number of twenty multichannel EEG recordings: Eight
EEG are recorded from patient A (age range 12.06-13.96 y).
Twelve EEG are derived from the control group (three patients,
age range 10.61-14.37 y). Every EEG record measures brain
activity for at least 10 minutes at a sampling rate of 250 Hz and
a signal depth of 16 bits. Using the same EEG data sample,
Bunk et al. [?] have recently presented a detailed description
of interictal EEG in pediatric frontal lobe epilepsy, where the
performance of a variety of synchronization measures was
compared.

To obtain a time dependent characterization of brain activity
the data has been analyzed with a sliding window technique
using a window size of slightly more than two seconds. The
consecutive windows overlap by half the window size, which
results in more than 900 separate windows for a typical EEG
recording of 15 minutes and a time resolution of ∼ 1 second.

In the case study of the patient suffering from frontal
lobe epilepsy (FLE) we find that the synchronization level
is significantly increased during its clinical manifestation. In
fact, Fig. 3 shows the time evolution of the spatial mean of
the Kullbak-Leibler entropy < S2

KL > for patient A where a
seizure episode occurs. The vertical full line in Fig. 3 indicates
the onset of the seizure. A comparison of the mean values
of < S2

KL > before and after the epileptic seizure reveal a
stronger synchronization during the seizure attack (see Fig. 3)

Figure 4 shows the temporal mean of the spatial averaged
Kullback- Leibler entropies calculated only during interictal
activity of the FLE patient and for the control group versus
patient age. We define the contrast, i.e. the discriminative
power of an information measure S between the control group
and the acute phase of patient A as

C =
(< S >CG − < S >A)2

σCG(S)2 + σA(S)2
. (7)

The best contrast (C = 1.85) is obtained using S4
KL. Figure

4 indicates that after successful medical suppression of the
acute epileptic state the clinical picture still points to the
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Fig. 4. Mean Kullback-Leibler entropy < SKL > evaluated for transcrip-
tions in different order classes for patient A (acute phase: grey diamonds,
non-acute phase: light grey triangles) and control group (black squares). The
filled circles denote the averaged mean < SKL > and the error bars indicate
the variability for single EEG recordings. The horizontal lines label the mean
< SKL > for patient A and control group and the dashed lines label the
respective standard deviations. C indicates the values of the contrast between
the acute phase of patient A and the control group.

presence of a frontal lobe syndrome (see grey diamonds). As a
consequence of a long term effective therapy these symptoms
disappeared. In the course of the two year lasting follow up
of the patient, the synchronization measures converge to the
values obtained for the members of the control group (see Fig
4 light grey triangles).

IV. CONCLUSION

We presented a variant of the methodology proposed in
[11] to analyze synchronization in time series using symbolic
representations. In this approach, symbols were defined via
rank-ordering of a sequence of local features extracted using
a suitable operator. The relationship between the time series
is studied by means of a transcription scheme applied to
the symbolic representations. The synchronization strength
is quantified using information measures of the probability
density of transcriptions belonging to different order classes.
Our results indicate that some order classes may highlight
particular features of the coupled system. Thus, they provide
complementary information of the synchronization dynamics.
We demonstrated the applicability of our method to EEG in
the context of epilepsy. The newly introduced information
measures proved to be sensitive to changes in the brain activ-
ity induced by a effective therapy. Symbolic representations
generated using local signal features can easily be generalized
to higher dimensional signals and are expected by construction
to be robust against noise.
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Characterization of pre-seizure states by a multi-signal
analysis of scalp EEG and ECG signals during slow

wave sleep
Stavros Nikolopoulos , Mario Valderrama , P. Milani , V. Navarro , Michel Le

Van Quyen

The slow wave sleep (SWS) increases the mean density of electroencephalographic paroxysmal
activities whatever the epileptic syndrome. These observations have raised the possibility that
SWS, well characterized by slow oscillations (0.5-1 Hz) in scalp EEG, may provide a new window
into preictal modifications in the epileptic brain. In particular, the presence of specific changes
in heart rate variability (HRV) during sleep, not correlated with seizures, have been reported by
several studies in the past, and both ictal and interictal modifications of heart rate regulation
have been described. Here, based on the known interactions between brain and cardiac activities,
we combined analysis of scalp EEG and ECG signals during SWS for 8 healthy subjects and 15
epileptic patients suffering from partial epilepsy (4 frontal lobe, 8 temporal lobe, 3 cryptogenic
epilepsy). Sleep was polygraphically recorded and a series of 5-min epochs were chosen from sleep
stages 3 and/or 4. Electrocardiographic signals were analyzed for automatic detection of R-waves
and, subsequently, a series of time- and frequency-domain measures were calculated. Furthermore,
HRV and slow EEG waves was also characterized by the approximate entropy and a modified
root mean square analysis of a random walk, named detrended fluctuations analysis (DFA), which
proved efficacy as a diagnostic tool and advantages over existing linear methods. In a first stage,
we compared the measures between healthy subjects and the patients and observed that epileptic
subjects tended to show an overall lower HRV in both time-and frequency-domain parameters.
Among the different bands, this decrease was most evident for the high-frequency band (HF)
absolute power, reflecting altered cardiac vagal activity. In a second stage, we have analyzed ECG
and EEG during SWS in continuous long-term recordings during at least 7 days duration including
SWS periods and a sufficient number of clinically manifest seizures (a least 4). Each seizure was
classified according to subject group, sleep/wake state, and time of day of seizure occurrence based
on video-EEG-monitoring. Analysis of spectral and dynamical measures of HRV and EEG slow
waves showed variable patient-specific fluctuations across the different nights and, for a majority of
patients (10/15), changes were more pronounced during the nights before seizures. In conclusion,
our findings suggest that easily obtainable noninvasive EEG-ECG can provide during SWS useful
information for detecting relative changes in brain dynamics of epileptic patients. We speculate
that the SWS represent a cyclic modulation of cortical gross excitability, inducing neuronal and
automomic cardiovascular fluctuations that may provide a new characterization of epileptic seizure
susceptibility.

This work is funded by the europeean FP7 project “Evolving Platform for Improving Living
Expectation of Patients Suffering from IctAl Events” (EPILEPSIAE) on advanced ICT for Risk
Assessment and Patient Safety.
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Complex networks as a tool for nonlinear time
series analysis

Michael Small Member, IEEE, and Xiaoke Xu

Abstract—Several algorithms have been recently proposed to
generate complex networks from time series. In each case the
basic idea is to generate a geometric object that accurately rep-
resents certain properties of the dynamics. Then, by estimating
features of that geometric object it is possible to learn something
about the complex nonlinear dynamics that generated the original
time series. We describe the relevant features of these methods
and show how they can be applied to real experimental time
series. We apply these methods to a time series of Canadian lynx
numbers and show that these methods can reliably differentiate
and classify dynamics as either chaotic, periodic or noisy.

Index Terms—complex networks from time series, nonlinear
time series analysis, chaos, Canadian lynx time series

I. INTRODUCTION

THREE methods have recently been proposed to generate
complex networks from time series. The first method,

proposed by Zhang and Small [13] maps individual cycles
in a pseudo-periodic (i.e. roughly cyclic or oscillatory) time
series to nodes in a complex network, with links being drawn
between nodes which correspond to cycles which are close.
The method was based on earlier work by the same authors
[12] and was shown to allow one to differentiate between low-
dimensional chaotic flow dynamics and a noisy periodic orbit.
Based on this method, Lacasa and colleagues [3] described
a new method to map individual time series points to nodes
of a complex network with nodes being connected based on
a scale invariant “visibility” criterion. By construction, this
method was therefore effective in identifying fractal or self-
similar process. Finally, Xu, Zhang and Small [10] extended
their previous work [13] and proposed a more generic method
applicable to arbitrary time series. It is this method which will
be the focus of the current paper.

In the next section (Sec. II) we describe the basic algorithm
and discuss the application of this method to idealised signals.
In Sec. III we demonstrate the application of this method to
short and noisy experimental population dynamical time series.
Finally, in Sec. IV we provide some brief concluding remarks.

II. NETWORKS

The algorithm proposed in [13] is limited to time se-
ries exhibiting a clearly oscillatory dynamics. The method
is therefore well suited to situations where low-dimensional
chaos is a plausible model of the observed dynamics, but
not otherwise. One of the greatest strengths of this method is
that by comparing cycles of the time series directly, one need

M Small is with the Department of Electronic and Information Engineering,
Hong Kong Polytechnic University, e-mail: small@ieee.org.

X. Xu is with the School of Communication and Electronics Engineering,
Qingdao Technological University, Qingdao, China.

not be concerned with embedding and delay reconstruction.
In fact, the most obvious ways to compare cycles of such
candidate systems are also very robust to (observational) noise
[12]. In contrast, the method proposed in [10] is applicable
to any time series data, provided a suitable delay embedding
can be found. However, the examples given in [10] required
extremely long (around 104 embedding data) time series and
were demonstrated (in the case of chaos) only for situations
with minimal noise. In this communication we demonstrate
one method to overcome these issues. First we specify the
basic principle of the algorithm [10].

We assume that a successful (or at the very least, robust)
embedding can be obtained from the time series data. Let xt ∈
Rde denote the vector time series of points in the time delay
reconstruction. Each point xt maps to a corresponding node nt

in the network. The adjacency matrix A = [aij ] is constructed
such that aij = 1 iff xi is one of the K closest neighbours of
xj or vice versa. In case xi is one of the K closest neighbours
of xj and xj is one of the K closest neighbours of xi, then
we select another node nk, corresponding to xk which is the
2K-th closest neighbour of either xi or xj . In this way, we can
ensure that each node contributes K links to the network, and
the mean node degree is 2K (because the links are undirected).
Of course, the distribution of links between nodes need not be
uniform.

This transform from time domain, via an embedding, to the
network structure introduces a new assortment of measures
related to the adjacency matrix A which we can study to
unravel information related to the original dynamical systems.
In [10] we examined the motif frequency distribution. That
is, we looked at the relative frequency of different sets of
M connected nodes, for fixed M . In particular for M = 4
we list all the different ways in which four nodes may be
connected to one another (discounting any arrangements with
isolated nodes) and then compute the number of times that
each arrangement occurs for a specific network. We found
that for networks generated from time series which originated
from chaotic flows the sequence of motif frequency is distinct
from that for hyper-chaotic systems, or for periodic or noisy
dynamics. In [10] we detail the varying frequency with which
these patterns occur and the dynamical origin of this variabil-
ity. Of course, there are many other network-based statistics
which one could estimate. However, for now we limit our
attention to these motif quantities.

In [10] we consider only M = 4 (M = 3 is relatively
trivial, and M > 4 is computationally difficult) and K = 4
(the choice of M and K are unrelated, and actually we obtain
equivalent results for a wide range of values of K). We then
show that this method allows us to consider distinct motif
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Fig. 1. The network constructed from a trajectory of the chaotic Lorenz system according to the algorithm described in Sec. II. Each node of the network
corresponds to a point in the embedded system, and links are drawn between nodes if the corresponding embedded points are near neighbours. Below this
we depict the motif frequency distribution (most to least common from left to right) for motif-4. This same Motif superfamily structure is observed in a wide
variety of low dimensional chaotic systems: including all the textbook three dimensional flows.

superfamilies. Two networks (and hence the corresponding
time series) are members of the same superfamiliy if different
motif of size M (for example, the six different motifs of
size 4 are shown in Fig. 1) occur with the same relative
frequency. In Fig. 1 we illustrate the results of this method with
a depiction of the network constructed from a clean trajectory
of the chaotic Lorenz system, along with the motif frequency
distribution typical of low-dimensional chaotic dynamics.

A weakness of this method, as presented in [10] is that the
algorithm only works for very long (O(104)) time series. In
the next section we illustrate the application of this technique,
in conjunction with a nonlinear time series modelling routine
to study the asymptotic dynamics of models built from a much
shorter time series.

III. LINKS FROM LYNX

Figure 2 depicts the ecological time series data which we
analyse in this communication. The data depicts the annual
number of Canadian lynx pelts harvested by the Hudson Bay
company between 1821 and 1935. Annual reported capture
is available for each year excluding the period between 1892
and 1896. For these missing years we complete the data set
following an ad hoc procedure detailed in [4]. The raw data
therefore consists of 113 observations. The data has then been
interpolated, following a procedure described in [4] which

preserves the power spectrum while increasing the sampling
rate by a factor of ten. The resultant data was provided to us
by the authors of [4] and is shown in Fig. 2.

This data is still insufficient to analyse with the network
based methods of [10]. Instead, we build nonlinear models
from this data and analyse the dynamics of these models.
This provides a form of meta-analysis of the original data. Of
course, dynamics observed in the models provide only heresay
evidence of the actual dynamics in the data. But, this is to be
expected. Any dynamics we infer from the data is based on
some a priori assumptions (that is, a model) concerning the
expected form of those dynamics. By building models we are
only making these assumptions more explicit.

The modelling procedure is detailed in [6]. The scalar time
series data xt is subjected to a variable time delay embedding
to attempt to capture the various relevant time scales in the
system

zt = (xt, xt−5, xt−10, xt−15, xt−20, xt−25, xt−90) (1)

where the pseudo-period of the system is around 96. The
choice of embedding strategy is both ad hoc and arbitrary.
Various alternative strategies produced similar results provided
that the embedding lags span the same range of values.
From the vector time series we employ radial basis models
to approximate the function f such that ‖zt+1 − f(xt)‖ is
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Fig. 2. Annual number of Canadian lynx pelts reported by the Hudson Bay
company (1821-1935). Data for the years 1892 to 1896 are missing and filled
in following an ad hoc procedure. The data set has been interpolated by a
factor of 10 (increasing the amount of available data while preserving the
power spectra). The original values are shown as open circles.

minimised subject to a fixed model size d

f(x) =
d∑

i=1

λiφi

(‖x− ci‖
ri

)
(2)

where the weights λi are determined by least-mean-squares
fit, the nonlinear parameters ci and ri are chosen with a
combination of random search and steepest descent, and φi

is one of the following functional forms:

φi =


exp(− 1

2x2)

exp
(
− 1−p

p

∣∣∣x
p

∣∣∣p)
(2x2 − 1) exp(−x2)

(3)

that represent Guassian, “tophat” (a modified Gaussian) or a
Mexican hat wavelet. The remaining parameter d is selected
according to the minimum description length principle. The
description length is the computational cost (in terms of
number of bits) required to describe a particular model and
the model prediction errors of that model, rather than just
describing the raw data. The “best” model is deemed to be
the one which affords the shortest description of the data (that
is, it achieves the greatest compression as measured with the
smallest value of description length).

For a fixed model size d the model which minimises the
mean-squares prediction error is deemed to be best, but by
selecting model size based on description length we avoid
overfitting without the need for validation data. The idea
behind minimum description length is detailed in [5] and the
application to radial basis and neural network models which
we utilise here is described in [2], [14], [8], [7]. Note that,
since the optimisation problem is nonlinear, and the algorithm
is stochastic, repeated application of the modelling procedure
will yield a different solution.

From an ensemble of 100 models we generate trajectories
of each model for the same initial conditions (taken from
the original data). Representative trajectories are illustrated in
Fig. 3. For each trajectory we apply the network transform
and motif super-family techniques described above to identify
the frequency of various motifs of size four. We find that the
motif pattern provides an accurate and succinct summary of
the underlying dynamics in each case.

In total, from 100 models we identified four distinct super-
families corresponding to periodic trajectories. In every case
the asymptotic dynamics was a dense one dimensional set (i.e.
not a periodic map but points on a periodic flow sampled at
a frequency incommensurate with the underlying period). We
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Fig. 3. Typical trajectories corresponding to different motif superfamilies.
The vertical scale is the same as Fig. 2, but not the horizontal axis. In each
case a transient of 1000 points has been removed. The first two trajectories
(models 60 and 63) correspond to models from distinct periodic superfamilies.
The third model (36) is typical of the“almost-periodic” trajectories of a third
superfamily (in this case, the model exhibited intermittent “periodic” bursts).
The fourth and fifth trajectories (models 7 and 56 respectively) correspond
to distinct chaotic superfamilies (the most prevalent among all the models).
Finally, all systems which exhibited a stable fixed point (focus or node) are
captured in yet another distinct superfamily (represented here by a trajectory of
model 85). The numerical identifiers on the y-axis correspond to the particular
models (see discussion).

find no difference between these trajectories and attribute the
distinct groupings to transient dynamics. Trajectories of model
60 and 63 are representative of two of these groups and are
shown in Fig. 3. A relatively large proportion of models belong
to a separate super-family, typified by apparently chaotic but
almost periodic dynamics. A trajectory of model 36 is typical
of these as illustrated in Fig. 3. In this case the trajectory exhib-
ited intermittent bursts of almost periodic dynamics (of course,
the system state can not be intermittently exactly periodic) and
otherwise irregular bounded and aperiodic behaviour.

Trajectories of models 7 and 56 are typical examples of
chaotic dynamics and are representative of two separate super-
families. By far the most commonly occurring superfamily is
represented by model 7 and is the same as that identified in
Fig. 1: low dimensional chaos. Sample attractors reconstructed
from the trajectories in Fig. 3 are illustrated in Fig. 4. In Fig.
5 we contrast the various dynamics of each motif superfamily

350 ICCSA 2009, June 29 – July 2, Le Havre, Normandy, France



0 2 4 6

x 10
4

0

1

2

3

4

5

6

7
x 10

4 63

0 2 4 6

x 10
4

0

1

2

3

4

5

6

7
x 10

4 36

0 2 4 6

x 10
4

0

1

2

3

4

5

6

7
x 10

4 7

0 2 4 6

x 10
4

0

1

2

3

4

5

6

7
x 10

4 56

Fig. 4. Time delay embedding (de = 2, τ = 20) of four of the trajectories shown in Fig. 3. Trajectory 63 (top left) is periodic, the other three (36,
7, and 56) are increasingly disordered and correspond to different motif superfamilies. The third model (36) (of Fig. 3) is typical of the“almost-periodic”
trajectories of a third superfamily (in this case, the model exhibited intermittent “periodic” bursts). The fourth and fifth modes (of Fig. 3, numbered 7 and 56
respectively) correspond to distinct chaotic superfamilies (the most prevalent among all the models). In each plot the horizontal and vertical axes are equal,
and each trajectory comes from a completely independent model of the data in Fig. III.

by computing the correlation dimension using the Gaussian
kernel algorithm described by Diks [1], [11]. The distinction
between the periodic asymptotic behaviour of the various
superfamilies, and the corresponding distinction between the
different chaotic superfamilies is not clear for estimates of
correlation dimension. Nonetheless, the distinction between
the various broader dynamical categories is clear.

We note that the motif family groupings are extremely good
at classifying the dynamics correctly based on the asymptotic
behaviour. Even in cases with a very long and atypical
transient the dynamics are correctly identified. For example, in
model 85 (See Fig. 3) the system exhibits apparently chaotic
behaviour for over 104 time steps before converging to a fixed
point. Although the first 1.3× 104 points appear chaotic (i.e.
they are deterministic, bounded and aperiodic), this does not
taint the motif superfamily classification. Of course, for both
periodic and chaotic dynamics we do observe more than one
superfamliy, while it is not clear at this stage which family is
most appropriate.

IV. CONCLUSION

The network construction method introduced in [10] pro-
vides a new way to look at time series data. The method relies
on one being able to reliably reconstruct the system attrac-
tor with a time delay embedding, or some other technique.
Nonetheless, from the network structure one immediately
has an ensemble of network analysis tools which effectively
provide a new set of statistics for the analysis of complex
networks. In this paper, and in [10] we have only considered
the prevalence of various motifs of size 4. The choice of this
particular statistic was deliberate as it gives a tool to analyse
the complex network (and therefore the original time series)
which has no clear analogue in nonlinear time series analysis.

Of course, the adjacency matrix of the complex network
is in some ways similar to the recurrence matrix produced
for recurrence plots. One can therefore consider the tools of
complex network analysis as a new set of statistical measures
to be applied to time series, in just the same way as recurrence
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Fig. 5. Estimates of correlation dimension (results for de = 10 and
τ = 2 are shown, but are representative) for periodic superfamily trajectories
(blue, upper panel), chaotic superfamilies (red, upper panel) and the “almost
periodic” superfamily as typified by the trajectory of model 36 of Fig.
3 (yellow, lower panel). Similar results were obtained for calculations of
correlation dimension with other methods, and from calculations of entropy
and complexity.

plots allowed for the introduction of recurrence quantification
analysis. However, unlike recurrence quantification analysis,
the most commonly applied tools from complex network
analysis (measures such as path length, network diameter,
degree distribution, betweenness, centrality and so on) are
dependent on higher order properties of the adjacency matrix,
rather than geometric features of the recurrence matrix (such
as the mean length of diagonal and vertical components of
the matrix). In the case of recurrence matrix, statistics are
computed from the geometric structure of that matrix. For
complex networks, it is iterates (or other more complicated
functions) of the adjacency matrix which are important.

Although we have yet to fully explore the potential of
these network analysis tools, this paper has applied complex
network transform of [10] to analyse the motif superfamily
behaviour in an ensemble of models of an apparently (or at
least “plausibly”) chaotic ecosystem. In addition to observing
models which exhibit a wide range of interesting dynamic
behaviour (which is discussed in more detail in [6]) we
show that the models are categorised into one of four basic
dynamical behaviours. By comparing the behaviours of these
various models, and the corresponding motif superfamilies to
data using surrogate type techniques [9] we can now provide
an analysis which allows us to determine which dynamical
description is most suitable for this data. We can test whether
the chaotic dynamics of the models which is apparently
plausible is also statistically likely.
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Non-Gaussian signal processing of biological signals
Max Little

Digital signal processing is dominated by concepts from classical linear systems theory first sys-
tematically described in the early 20th century. Despite the enormous success of digital signal
processing based on these concepts in practical problems, there are many systems and signals for
which the linear-Gaussian theory is inappropriate, in particular signals arising from natural con-
texts such as in biology and biomedicine. Here, we are faced with signals that show unexpectedly
common large fluctuations, multimodality, long memory, and discrete transitions. For such signals,
non-Gaussian techniques show improvements such as increased precision, sparseness and selectivity.
In this talk, I will describe some of the ways in which non-Gaussian signal processing has advanced
in recent years, and demonstrate some example applications which have particularly benefited from
these advances.
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A Survey of Connectivity in Mobile Ad Hoc

Networks

Cédric Aboue Nze, Frédéric Guinand

2009

1 Introduction

Mobile Ad hoc networks are networks without centralized infrastructures in
which stations can move permanently in a given environment. One of the main
issues in this domain is evaluation of communication algorithms which are used
there. An approach to study this problem consists in studying communication
graphs induced by mobile ad hoc networks. In these graphs, stations become
nodes and when two stations are able to communicate, an edge is automatically
created between the two corresponding nodes. Then, the study of the communi-
cation of the ad hoc networks is limited to the study of the connectivity of their
connection graphs. Most studies on connectivity of ad hoc networks go in this
direction. A graph is connected if there exists at least a way connecting any pair
of nodes in this graph. Connectivity is the estimate of this connexity. Several
studies on the connectivity of mobile ad hocnetworks have been undertaken for
a few years. These studies are mainly divided into two categories.

The first category concerned the study of the K-connectivity of ad hoc net-
works. According to the theorem of menger, a graph is k − connected if and
only if, for any pair of nodes u, v, there are k internal ways of disjoined nodes
connecting u to v. In other words, a graph is K-connected if this graph remains
connected after the removal of any subset of k − 1 nodes. It is possible to not
consider nodes but edges of graph. In this case, a graph is K-connected by edges
if this one remains connected after suppression of any subset of k − 1 edges of
the graph. K-connectivity gives an additional information about the connexity
of the graph in particular the mean degree of node. When k = 1 the graph is
quite simply connected.

The second category of study is the evaluation of the critical transmission
range of the signal of stations allowing to guarantee the connexity of the ad hoc
network. These studies are used in sensors networks in order to optimize the en-
ergy expenditure of the sensors whose the emitted signal power is proportional
to the length of the ray of coverage of the signal.

1
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We present in this article a survey of the various studies undertaken on
these three fields whose objective is to estimate the connectivity of the ad hoc
networks.

2 Preliminaries

To study the connectivity in mobile ad hoc networks, we characterize each
ad hoc network according to three parameters : environment, signal transmis-
sion ray of stations and stations mobility.

The environment is the surface where stations are located. They can be var-
ious types according to the size, the form, the dimension of space considered.
we classify the environment according to five criteria : the first criterion is the
form (square, circle). The second criterion concern the borders quality which
can be closed (any station cannot come in or goes out the considered zone ) or
opened (the stations can move in or move out the considered zone). The third
criterion specifies if the environment is limited (i.e. if the considered zone is a
torus) or not. The fourth criterion is the size of the environment. It is limited if
it is not infinite and it is not limited in the contrary case. The last criterion is
the obstacles. We will specify if the environment contains or not obstacles. An
obstacle is a zone of the environment where stations cannot access.

The model of the signal transmission of stations is a very important pa-
rameter in the study of the connectivity of connections graphs because results
obtained depend directly on the model chosen. Two models were mainly mod-
elled by Hekmat and P. Van Mieghem in [10] in particular the pathloss model
and the lognormal model. The Pathloss model simulates the behavior of the sig-
nal on large scales. It describes the existing dependence between signal power
received by a receiver and distance which separates it of the transmitter. The
coverage of the signal of a node is represented by a circle. The lognormal model
(more realistic) captures the random variations of the radio signal on average
distances to various positions. It presents the fact that the power of the radio
signal received at a fixed distance from the transmitter varies considerably ac-
cording to the positions around the transmitter. The coverage of the signal is
deformed. The deformation of the signal can be related to interferences intro-
duced into the model. Connectivity in this last case is evaluated in [10] [11] [15].
The majority of works study the pathloss model because it is easier to model
mathematically. We will thus consider only studies using this model and we will
specify if the coverage ray of the stations is homogeneous (the same one for all)
or heterogeneous and if it signal crosses or not obstacles.

There exist two ways to consider the mobility of stations in order to evalu-
ate the connectivity of the connexions graphs of modile ad hoc networks. In the
first, mobility is considered implicitly. The mobility is represented as a change
of topology of the graph at every moment what can involve modifications of

2
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connections between nodes. In this case the graph is static and the localization
of stations in the environment is obtained by the distribution of density of prob-
ability in the environment [3] [2]. The second way to consider the mobility of
stations is explicit. When stations move in the environment, the existing edges
between each pairs of nodes can disappear and other edges can appear. Then
time is important for the evaluation of connectivity in particular by considering
periods of connexity and nonconnexity of the graph. Several models of mobility
of stations were developed these last years [1] [12]. More studied being the model
random waypoint. In this model the stations choose randomly a destination in
the environment. They move in straight line of their position towards this des-
tination. Arrived at destination the stations make a pause and the cycle starts
again. A large majority of the studies are relate to the first case of figure.

We will specify for each study parameters used to evaluate the connectivity
of the considered ad hoc networks

3 Study of Connectivity in Mobile Ad Hoc Net-
works

The studies on connectivity and more generally of K-connectivity on mo-
bile ad hoc networks are especially related to the networks which mobility is
supposed to be implicit. The difficulty for explicitly dynamic ad hoc networks
(influence of time in the connectivity computation) resides in the fact that to
study them they should be simulated before. Consequently the results obtained
can to be skewed by parameters of the simulation. The approach commonly
used consists in studying the connectivity of the static graphs with a discrete
time which corresponds to a sequence of consecutive snapshots studied sepa-
rately. This approach is divided into two main categories : on the one hand the
study of the asymptotic connectivity of connection graph i.e. when the number
of nodes in the environment tends to the infinity and on the other hand the
study of the connectivity in finite mobile ad hoc networks (when the number of
nodes in the environment is weak).

3.1 Connectivity in Asymptotic Ad Hoc Networks

3.1.1 Connectivity of a paire of nodes

In this study, an environment closed, bounded and limited is considered.
The signal coverage is circular (pathloss model) and the network is homoge-
neous (the length of signal coverage ray is the same for all the nodes). The
form of the environment can be a square (or a rectangle) or a circle in order to
facilitate computing. As the network is static, a knowledge of the distribution
stations in the environment must be known, i.e. the spatial node distribution in
the environment. There are many spatial node distributions (uniform, Poisson,
Gauss, etc). The most used is the uniform distribution where any node has the

3
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same probability to be at any position of the environment. From the spatial
node distribution, we can deduce the probability density function (pdf) for a
given environment. This function indicates the probability for a station to be
at a precise position in the environment. Thus, at every position of the environ-
ment we have thus a probability of presence of stations. Christian Bettstetter
et. al. have determined the probability density function of a homogeneous net-
work whose stations move according to the model Random Waypoint [6] [5] and
within the framework of a heterogeneous network [4]. Esa Hyytiä et. Al. have
widened the field on other forms of environments (circle, polygon and triangle)
in [13].

To evaluate connectivity, the probability density function is known in ad-
vance [3] [2]. Once the density probability function known, one determines the
probability that two stations randomly located are connected. Connectivity be-
tween a station a and a station b is only possible if the station b is in the signal
coverage area of the station a. Thus if the distance between a and b is lower
than the ray of the signal transmission, these two stations are connected [2].
The probability that the station a is connected to any other station in the envi-
ronment equal to the number of stations located in the coverage area of a (the
whole of the positions of its coverage area) on the full number of stations of the
environment (the whole of the positions of the environment). That corresponds
to an integration of the probability density function of the station coverage a.

Let f the probability density function of stations in the environment, the
probability of connectivity of a station with coverage a0 at the position x in the
environment is :

p0(x) =
∫∫

a0(x)

f(x)dx

There are two manners to apprehend the computation of the connectivity of
a static ad hoc network. Firstly, from a local point of view, the connectivity is
evaluated on each position of the environment. That corresponds to a distribu-
tion of connectivity in each positon of the environnment. Then by an integration
on the whole of environment, a global value of connectivity is obtained. Secondly,
the ad hoc network can be seen as a total entity. The probability to have a iso-
lated node is computed in the ad hoc network. An isolated node is a node which
is connected to none of its neighbors. The connectivity is evaluated by comput-
ing the probability that the connection graph does not contain an isolated node.

3.1.2 Ad Hoc Networks Local Connectivity

From the local point of view, it is supposed that there are n nodes in the
environment and these nodes are independent to each other. As a node can
be connected or not to its neighbor, connectivity between two stations can be
interpreted like a binary random variable (0 or 1). In this case the probability

4
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that the node degree at every position x of the environment (dx) is equal to k
(k is a constant) follows a binomial probability law [3] :

p(dx = k) =
(
n− 1
k

)
(p0(x))k(1− p0(x))(n−1−k)

The local mean degree µ0(X) is deducted by computing the degree expectation
at each position x of the environment

µ0(x) = E(dx) = (n− 1).p0(x)

On the large environments, when p0 is very small, the binömiale distribution
can be approximated by a the Poisson distribution. Pasi Lassila et. Al. use
Binomial and Poisson laws to estimate connectivity in a circular environment,
closed, bounded, limited of a homogeneous network [14]. they are obtained :

p(dx = k) ≈ µ0(x)k

k!
e−µ0(x)

The probability for the node to have in more k neighbors is gived by :

p(dx ≤ k) ≈
k∑

dx=0

µ0(x)dx

dx!
e−µ0(x)

It is possible to determine the distribution of K-connectivity in the environment.
The probability that the node has at least k neighbors at the position x is :

p(dx ≥ k) = 1− p(dx ≤ k − 1)

Finally the estimate of K-connectivity (when the connection graph has at least
k neighbors) on the whole of environnment is :

p(d ≥ k) =
∫∫

p(dx ≥ k)f(x)dx

3.1.3 Ad Hoc Networks Total Connectivity

From the total point of view, the ad hoc network is perceived like a single
component. The connexity of the graph depends at the same time on the cov-
erage ray r0 of stations and the number of stations n in the environment. The
study of connectivity (contrary to the local point of view) consists in evaluating
the connectivity of the network according to these two parameters. Let G the
connection graph resulting from the ad hoc network, the probability that there
is no node isolated in the graph is estimated in order to approach the probabil-
ity of connectivity of the graph G (close to 1). The probability that a node is
isolated at the position x by using a Poisson distribution is :

p(ix) = p(dx = 0) ≈ e−µ0(x)

The probability to have a isolated node on the environment is :

5
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p(i) =
∫∫

p(ix)f(x)dx

The probability that there are no isolated nodes in the graph G is not a sufficient
condition to have this graph connected :

p(Gconnexe) ≥ p(i)
The probability that a node is isolated among n other nodes is :

p(¬i) = (1− p(i))n
By approximating with the Poisson law we obtain :

p(¬i) = e−n
RR

e−µ0(x)f(x)dx

The estimate of K-connectivity (when the graph of connection has at least k
neighbors) on the whole of environnment is :

p(dmin ≥ k) ≈ (p(d ≥ k))n ≈ e−np(d≤k−1)

3.2 Connectivity in Finite Ad Hoc Networks

Results obtained of the asymptotic study of the connectivity of the ad hoc
networks are not reliable when the number of nodes in the environment is finite
and weak. An other method is to study the connectivity of the ad hoc net-
works empirically. In the Monte Carlo method in [19], n stations are randomly
distributed with a density D in an square, closed, bounded and limited envi-
ronment. The network is homogeneous. By using the Dijkstra algorithm, it is
determined if the network is entirely connected or not . The process is repeated
M time including the number of times m that the network is connected. It is
deduced the probability of connectivity of the ad hoc network over the whole of
the experiment period :

p(Gconnexe) =
m

M

In the same idea, Bettstetter approximates connectivity by the path probability
computation in [3]. Time is discrete. It is computed the probability ppath that
two stations chosen randomly in the connection graph Gi are connected.

ppath(Gi) =
number of pair of connected nodes

number of pair of possible nodes

If ppath(Gi) = 1 then the graph Gi is complete and connected and if ppath(Gi) =
0 then all nodes of the graph Gi are insolated. The path probability of a graph
G over one discretized period omega is :

ppath(G) = lim
ω→∞

1
ω

ω∑
i=1

ppath(Gi)

6
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Bettstetter proposes an approximation of the connectivity of the graphGconnected
compared to the path probability below :

ppath(G) ≥ p(Gconnexe)
Ao Tang and Al propose an empirical formula in [19] to estimate the proba-

bility of connectivity of an ad hoc network whose environment is homogeneous,
closed, bounded and limited. They are interested to know if the number of sta-
tions is finished (no more 125). Their formula is reliable only if the probability
of connexity between two stations is closed to zero or one. The probability for
the graph to be connected is given below.

p(Gconnexe) ≈ eR−Rc/E

1 + eR−Rc/E

R is the stations coverage ray, Rc and E are parameters of the model and depend
on the length of the environment border.

Rc ≈ (1.0362
√

ln(n)
n − 0.073)L

E ≈ ( 0.3743n−0.3331
n.ln2(n) )L

they propose an upper limit of the probability of connexity of two stations ran-
domly choosen in a square, closed, limited and homogeneous ad hoc network
with the stations uniform distribution. If L is the border length of the environ-
nment., n is the number of stations, r is the signal coverage ray of stations and
sigma = l/3 then :

p ≤ 1− e−n2r2/4σ2

In the same way, Madhav Desai and D. Manjunath in [8] propose an approxi-
mation of the limit upper of the probability of connectivity of an entire ad hoc
network where the environment is in two dimensions closed, limited, limited
uniform distribution according to the ray of cover of the signal r, length of with
dimensions of the environment and amongst stations in environnment the n.

p(Gconnexe) ≤
(
n−1∑
k=0

(
n− 1
k

)
(−1)k

(z − kr)n
zn

u(z − kr)
)2

When the network is not entirely connected, Ao Tang et. Al. propose an index
of connectivity which estimate the connectivity according to the number of
connected component in the environment eta and the number of nodes in each
component ni.

η =
∑
i ni(ni − 1)∑

i ni(
∑
i ni − 1)

7
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The stations mobility can be taken into account by considering the index of
connectivity at each discretized time interval etai. Then, the probability of
connecticity between two stations becomes :

p = 1−
k∏
i=1

(1− ηi)

Wang Hanxing, Liu Guilin and Zhao Wei compute analytically the connectivity
of an ad hoc networks uniformly distributed in an environment closed, bounded,
limited and homogeneous according to a F-node of a connected graph [20]. A
f-node is a node of a connected graph whose the deletion returns the graph
disconnexe and divides it into several components. Wang Hanxing et. Al. com-
pute the probability of connexity of two stations in this graph according to the
number of connected component and show that this graph is composed of more
five components.

4 Study of Critical Transmission Range for con-
nectivity

The second way studied is the critical transmission range (critical coverage
ray) necessary to the stations to connect the whole network. Two options are
possible : the case where the ad hoc network coverage is homogeneous and the
case where it is heterogeneous. However the way currently studied concern the
homogeneous ad hoc networks.

4.1 Critical Transmission Range of asymptotic connected
Networks

P. Gupta and P.R. Kumar [9] have determined a sufficient condition on
the coverage ray of stations r to connect the whole ad hoc network when the
number of nodes tends to the infinity. The environment is normalized, lim-
ited, closed, bounded and without obstacles. The stations are uniformly and
independently distributed in the environment. Two stations can communicate
only if the distance separating them is lower or equal to the coverage ray r.
If pir2(N) = logn+c(N)

N then the graph G(n, r(n)) is asymptotically connected
with a probability 1 when n tends to the infinity if and only if c(n) to+ infty.
Mobility is not taken into account however it can be perceived as a change of
topology of the ad hoc network in which computations are repeated when the
topology change.

Paolo Santi and Douglas Mr. Blough have extended the result for square en-
vironment in 1 , 2 or 3 dimensions [18]. They suppose that if n nodes uniformly
and independently distributed are in an area R = [0, l]d with d = 2 or d = 3,
if rdn = kldln(l) for any constant k > 0, r very small compared to l, n very

8
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large compared to 1, then if k > d.kd or k = d.kd with r very large compared
to 1 (kd = 2ddD/2), then the communication graph is connected when n tends
to infinity the

According to Penrose et. al. in [16], the value of common minimal transmis-
sion such as the communication graph is connected is equivalent to the longest
edge length of an Euclidean minimal spanning tree. Paolo Santi has established
that this longest edge of a minimal spanning tree depends only on the mini-
mal value of the probability density function [17]. If M is a model of mobility
of nodes in a square environment standardized R = [0.1]2, closed limited and
without obstacles. By supposing that the probability density function of nodes
in the environment fm is continuous on borders and the minimum of fm on R
is higher than zero, then when the constant c Ge1 we have :

lim
n→∞ rM = c

√
lnn
πn

In the preceding formula, the problems consist in evaluating the constant c when
n tends to the infinity. However it is possible to compute probability density
function of the nodes moving according to random waypoint mobility model
within an environment closed, bounded, limited and without obstacles [17]. The
critical range of transmission depends on pause time p of the stations and their
travel velocity (vmin = vmax = v). The minimal value of the probability density
function is reached on the borders of the environment. It is equal to the pause
probability of Pp = p

p+ 0.521405
v

and the critical coverage ray of stations is :

lim
n→∞ r

w
p =

(
p+ 0.521405

v

p

)√
lnn
πn

si p > 0

Evaluation of the probability of pause of stations moving according to the Ran-
dom Waypoint mobility model was studied in [5] :

ppause =
E[tpause]

E[tpause] + E[tdeplacement]

Guanghui Zhang et Al. compute the probability of pause pp according to the
pause time tpause, maximum speed vmax and minimal speed vmin in order to
measure the effects of the mobility on the critical transmission range for con-
nectivity of ad hoc networks [21].

ppause =
tpause(vmax − vmin)

tpause(vmax − vmin) + 0.521(ln vmax − ln vmin)

4.2 Critical transmission range of Finite Ad Hoc Net-
works

A fundamental result in the study of critical signal coverage of nodes in finite
ad hoc networks wa presented by Penrose and Al in [16]. Indeed, the common

9
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minimal transmission value such as the communication graph is connected is
equivalent to the length of the longest edge of Euclidean minimal spanning
tree. Miguel Sanchez et al. in [7] use this idea in order to compute the critical
transmission range of ad hoc networks by considering different types of mobility
models (Random Waypoint, Random Gauss-Markov, Random direction model).
Their results obtained show that there does not exist strong dependence between
the mobility model and the critical coverage ray of the station.

5 Conclusion

We have presented in this article different studies undertaken these last years
on connectivity for stations in the ad hoc mobile networks. Two fields were
mainly studied. the probability computation of connectivity of a graph and the
computation of critical transmission range of the signal of stations. The prop-
agation model of the signal is supposed to be circular, however recent studies
propose a model of the signal propagation which integrates the interferences
(model lognormal). This model remains difficult to formalize mathematically as
well as the interferences of environnment. Another field which was not studied
in this article concern the heterogeneous ad hoc networks. However, certain ar-
ticles tackled the subject. Although most these studies concern the static ad hoc
networks, the ad hoc networks integrating the stations mobility explicitly start
to show interest. Connectivity is very dependant of environment. however, the
majority of the studies presented in this article does not integrate the obstacles
in the environment (except borders).

10
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On the use of social agents for image segmentation
Richard Moussa, Marie Beurton-Aimar, and Pascal Desbarats

Abstract—In the literature, there are a lot of methods for
image segmentation. Unfortunatelly, they are often limited in
their capacity to treat image odtained by an acquisition system
(Optical, X-Ray, IRM, . . .). Thus, many of them are dedicated to
particular solutions and there is no generic method for solving the
image segmentation problem. In this paper, we present a way to
implement segmentation methods which use models coming from
biology: social spiders and social ants which are implemented by
a multi-agent system. After a presentation of the principles of
these two methods, we will quickly present two another ones:
Region Growing and Otsu thresholding methods, in the aim to
compare their results. The simulation of these methods shows
results that are promising. Some perspectives have been retained
in order to overcome agent-based methods for having a robust
segmentation technique.

Index Terms—Image segmentation, Social spiders, Social ants,
Multi-agent system, Articial life.

I. I NTRODUCTION

I MAGE SEGMENTATION consists on partitioning an im-
age into a set of regions that covers it. After this process,

each pixel is affected to a region and each region corresponds
to a part of the image. The discontinuity between the regions
constructs the contour of the object. The segmentation ap-
proaches can be divided into three major classes [6]. The first
one corresponds to pixel-based methods which only use the
gray values of the individual pixels. The second one is the
edge-based methods which detect edges, for example, this
can be done by computing a luminacy function. The last
one, the region-based methods which analyze the gray values
in larger areas for detecting regions having homogeneous
characteristics, criteria or similitude. Finally, The common
limitation of all these approaches is that they are based only on
local information. Sometimes, only a part of the information
is necessary. Pixel-based techniques do not consider the local
neighborhood. Edge-based techniques look only for disconti-
nuities, while region-based techniques only analyze homoge-
neous regions. Robust, automatic image segmentation requires
the incorporation and efficient utilization of global contextual
knowledge. However, the variability of the background, the
versatility of the properties of the regions to be extracted
and the presence of noise make it difficult to accomplish this
task. Considering this complexity, one often applies different
methods during the segmentation process according to the
specifities of the images.

A MAS1 is composed of heterogeneous unembodied agents
carrying out explicitly assigned tasks, and communicatingvia
symbols. On the contrary, many extremely competent natural

Richard Moussa is a Phd student in the laboratory Labri, 351,cours de la
Libération F-33405 Talence cedex e-mail: richard.moussa@labri.fr.

Marie Beurton-Aimar and Pascal Desbarats are associated professor in the
laboratory Labri, 351, cours de la Libération F-33405 Talence cedex.

1Multi-Agent System.

collective systems of multiple agents (e.g. social spidersand
social ants) are not knowledge based, and are predominantly
homogeneous and embodied; agents have no explicit task
assignment, and do not communicate symbolically. A common
method of control used in such collective systems is stigmergy,
the production of a certain behavior in agents as a consequence
of the effects produced in the local environment by previous
behavior [11].

Social insects like ants are one of the most diverse and
ecologically important organisms on earth. As superorganisms,
they live in intricately governed societies that rival our own
in complexity and internal cohesion. For example, they are
particularly well suited to post-genome biology age because
they can be studied at multiple different levels of biological
organization, from gene to ecosystem, and much is known
about their natural history [19].

Social spiders belong to spider species whose individu-
als form relatively long-lasting aggregations. Whereas most
spiders are solitary and even aggressive toward conspecifics,
hundreds of species show a tendency to live in groups and
to develop collaborations between each other, often referred
to as colonies. For example, spiders of 5mm in body length
are capable to fix silks up to a volume of 100m3 [2]. This
technique is used to trap preys having big forms.

Ramos et al. have explored the idea of using a digital image
as an environnement for artificial ant colonies. They observed
that artificial ant colonies could react and adapt appropriately
their behavior to any type of digital habitat [17]. He also
investigated ant colonies based data clustering and developed
an ant colony clustering algorithm which he applied to a digital
image retrieval problem. By doing so, he was able to perform
retrieval and classification successfully on images of marble
samples [10]. Liu et al. have conducted similar works and have
presented an algorithm for grayscale image segmentation using
behavior-based agents that self reproduce in areas of interest
[12]. Hamarneh et al. have shown how an intelligent corpus
callosum agent, which takes the form of a worm, can deal with
noise, incomplete edges, enormous anatomical variation, and
occlusion in order to segment and label the corpus callosum
in 2D mid-sagittal images slices in the brain [13]. Bourjot et
al. have explored the idea of using social spiders as a behavior
to detect the regions of the image. The principle is to weave
a web over the image by fixing silks between pixels [8].

In this paper, two methods based on an Ant System and a
Spider System are described and compared with two classical
methods. The first method consists on travelling on the pixels
of the image and lays down a pheromone where each pixel
validates our criteria: morphologic gradient. The second is
a region-based technique which tries to fix silks between
homogeneous pixels to construct webs.

This paper is organized as follows. Section II describes
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the two types of MAS with an explanation of the usage of
such systems in the image segmentation domain. Section III
presents the experimentation of our implementation by using
comparison criteria with two segmentation techniques: Region
Growing and Otsu thresholding. Finally, our implementation
is discussed and we conclude with further expected improve-
ments and perspectives for these systems.

II. SEGMENTATION WITH SOCIAL AGENTS

A MAS is a distributed system composed of a group
of agents, which interact between themselves through an
environnement. Agents are classified into two categories:
cognitive and reactive. Cognitive agents have a global view
of the environment, they know the task for which they work.
Conversely, reactive agents only know a restricted part of
the environment. They react to environment stimulus and can
modify this environment by adding or removing informations.
Reactive agents do not know the complex task for which they
work: they have a restricted set of simple features and they
only apply them. Spiders or ants colonies are an example of
reactive agents: each one knows locally what it has to do, but
no one knows the more complex task for which they work.

Multi-agent systems are composed of an environment and
a set of agents. For segmentation purpose, environment is
created from a given grayscale picture: it is a matrix of gray
pixels. The system and its agents have a life cycle. A cycle of
the system consists in executing the life cycle of each agent.
This life cycle is transposed to a step. The number of steps
to be executed is given by the user. Two methods will be
presented here: social ants and social spiders.

A. First MAS model: social ants

As previously mentioned, ants are social insects. They
exhibit very good organization and construction abilitiesby
colony behaviors. One of the important ones is their object
searching behavior, in particular, how they can find the path
to the object of interest from their nest. While walking from
their nest to the object to be detected, ants leave on the way
a kind of substance calledpheromone whose concentration
becomes weaker with time due to evaporing, forming in this
way a pheromone trail. During their route, ants smell the
pheromones deposited and when choosing their way, they tend
to choose the most pheromoned direction. And the more the
ants choose the same direction, the stronger the pheromone
concentration is. Thus, this pheromone concentration helps
the ants in choosing their shortest movement to the object of
interest. Such algorithm is called ACO2 algorithm [7] [18] [5].
In image segmentation domain, lots of proposed multi-agent
methods have been inspired from this concept to elaborate a
robust edge-based method [4] or region-based method [3].

For segmentation purpose, from the behavior explained
above, we have chosen to use the act of deposing pheromones
to perform our image segmentation task. This segmentation
uses a number of ants that are injected randomly through
the environnement and guides them with a morphological

2Ant Colony Optimization.

gradient. The kernel used here to compute the gradient is a
3x3 pixels as shown in figure 1. If the pixel passes the test
then an ant leaves a pheromone on it and steps to the pixel
having the highest gradient in its neighborhood.

Fig. 1. Gradient computation kernel.

The pixels in the environnement are classified into three cat-
egories: marked, visited and free. Figure 2 shows an example
of the environnement having these categories and where an ant
is trying to move to another pixel. Firstly, each ant computes
the morphological gradient on its own pixel. Then, the pixel
is classified as visited or marked depending on the condition
established by the user. This ant has the capability to move on
its 8-neighborhood. Thus, an ant looks to the free pixels and
moves to the one having the highest gradient. If not, the ant
in question passes to an impasse status.

Fig. 2. Ants movement.

Algorithm 1 presents the description of the conditions
presented above. The user has to fix three parameters: the
percentage of pixels visited, the morphological gradient thresh-
old and the number of agent. After that, the process begin
trying to visit the percentage done by the user and marking
pixels which passed the gradient condition. The complexityof
this algorithm isO(Nbagent ∗ NbT ) whereNbagent is the
number of agents fixed by the user andNbT is the number
of times the process passes the condition in line 2.

1) Optimization: In order to optimize the number of pa-
rameters to be delivered by the user, we have decided to fix
the percentage of pixels to 100% to ensure that all the pixels
were evaluated. For the morphological gradient threshold,we
compute it as the minimum difference between two locals
maxima of the histogram of the image having the highest
distribution of pixels between them. The number of agent
depends linearly from the maxima. Therefore, there is no
absolute optimum value for theNbagent parameter but this
problem can be bypassed by a numerical solution such as
injecting one hundred times the number of local maxima.

B. Second MAS model: social spiders

Social spiders have been defined by the biologists to present
stigmergic process like social insects. The characteristics of
these societies and the importance of the silk in the various
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Algorithm 1 Ants method

Require: Pixels: Matrix of pixels∈ N2, PerV: Percentage of
pixels visited and Grad: Morphological gradient threshold
∈ R and Nbagent: number of agents∈ N.

1: NbVisited← 0.
2: while PerV > Per(NbVisited)do
3: for Each agent sdo
4: G1 ← ComputeGrad(Pixel(s)).
5: if G1 ≥ Grad then
6: Mark(Pixel(s)).
7: end if
8: G2 ← ComputeGrad(Neighborhood(Pixel(s))).
9: Move(s, Position(Max(G2))).

10: NbVisited← NbVisited + 1.
11: end for
12: end while

behavior have created a different model from the social insects
one. During their cycle, social spiders have the abilities to
fix silks, move forward and move back. This model have
characteristics which sufficiently distinguishes the levels of the
realized spots, the society organization and the communication
supports. Indeed, social spiders correspond to an interest
model for three reasons [9]:

1) social spiders do not present any specialization in mor-
phology and ethology;

2) an isolated social spider presents behavioral character-
istics very close to lonely species;

3) social spiders show spectacular organization and coop-
eration forms, in particular, the web construction and the
prey capture or its transportation phenomenon.

As mentioned before, Bourjot et al. have proposed a method
using social spiders as a model of behavior to detect the
regions of the image [8]. Its principle is to weave a web over
the image by fixing silks between pixels using probabilistic
movement. This method has been implemented and evaluated
by Bourjot et al. and Moussa et al. [1]. It has given good results
on synthetic images but failed on more complex images such
as MRI3 images. Thereby, we have decided to built a new
method by using some ideas from that described above.

Following the model previously described, we can design
spiders as agents. Spiders are reactive agents. They are defined
by an internal state composed of a set of parameters values,
a current position and the last pixel where a spider has
silked. These spiders have also an ability to move in the
environnement, to fix a silk4 and to come back5. Spiders which
detect the same region can be grouped in a set called a colony.
Spiders of a same colony share the same set of parameters
values.

Spiders try to move through their 8-neighborhood, they
prioritize the non-silked pixels and try to fix silks on them.
If they fail, they move back to the last fixed silk. At the end
of the process, groups of spiders are formed and are called

3Magnetic Resonance Imaging.
4Weave a dragline between two pixels.
5Return to the last fixed pixel.

regions. Figure 3 presents an example where a spider try to fix
a silk or move back using the intensity variation as a condition.

Fig. 3. Spiders movement.

Algorithm 2 performs as follow: for a number of steps
delivered by the user, agents try to move through pixels for
fixing silks and therefore detecting regions. The number of
agents is also fixed by the user and a threshold allowing
the spider to fix a silk and therefore to move forward or to
move back. Its complexity is aboutO(Nbagent∗Nbit) where
Nbagent is the number of agents fixed by the user andNbit
is the number of steps that the spiders should do.

Algorithm 2 Spiders method

Require: Pixels: Matrix of pixels∈ N2, Nbagent: number
of agents∈ N, NbIt: Iteration number∈ N and Thres:
grayscale Threshold∈ N.

1: while Ite – > 0 do
2: for Each agent ado
3: T ← computeInt(Pixel(a)).
4: if T ≤ Thresthen
5: Move(a, Position(Pixel(T))).
6: Silkfixing(Position(Pixel(a)), Position(Pixel(T))).
7: LastFixedSilk(a)← Pixel(a).
8: else
9: Moveback(a, LastFixedSilk(a)).

10: end if
11: end for
12: end while

1) Optimization: In this case, only the threshold has been
optimized. Its computation consists on the minimum variation
of two locals maxima. But for the other two parameters, at
present, we are not able to compute them automatically due
to their dependency between each other.

III. M ETHODOLOGY USED FOR COMPARISON

In this section, we compare the social spiders method with
other segmentation methods while the social ants method is
interpreted separately. We do not search for counting the con-
tours but to evaluate the result of the social ants segmentation.
These comparisons allow us to determine whether the social
spiders and ants methods brings something positive compared
to traditional segmentation methods.

We use these comparisons on two other methods:

• a classification method by thresholding: the Otsu method
[15];

• a region-based method: the Region Growing method [16].
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To compare these methods, we need to establish criteria to be
used on all test images. We compare the results on several
points:

1) the number of regions;
2) correspondence between the regions of the model and

the segmentation result;
3) execution time.

Definition Let Γ be an image and∆ its segmentation result.
We call Γi the region i of the image and∆j the region j of
the result.

The number of regions allows us to determine whether the
method considered detects a number of regions close to reality.
In the case of noisy images, it is possible that some methods
detect regions with insignificant size. That is why we add to
the total number of regions, the number of regions having
insignificant size. For our output segmentation, we consider a
region as insignificant if its size is less than 10 pixels.

The computation of the number of regions is done on the
segmentation method result on which a labeling is added to
the connected components to consider the regions connected.

The correspondence between initial image and its result
enables us to determine if the regions identified by the method
correspond to the regions defined in the initial image. This is
only possible in the case of synthetic images.

To compute the accuracy, it is necessary to determine which
region ∆j matches the most the regionΓi. This region is
determined by:

ni =
the total number of pixels

the pixels of Γi

nj =
the total number of pixels

the pixels of ∆j
(1)

ni
j =

the total number of pixels

the common pixels between ∆j and Γi

Thus, it is possible to computeδi,j = ni
j

ni andγi,j = ni
j

nj
rep-

resenting respectively the proportion of pixels ofΓi belonging
to ∆j and the proportion of pixels of∆j belonging toΓi. We
have two ways to choose the region that corresponds to∆j

corresponding the most toΓi:

1) ∆k as the value ofδi,k is maximum: in this case, we
prefer the fact thatΓi and∆j have a maximum of pixels
in common;

2) ∆k as δi,k + γi,k is maximum: same as above, but we
add the requirement that∆k must have a minimum of
pixels in other regions thanΓi.

In our results, we indicate two points,accuracyδ and
accuracyδ+γ , which corresponds respectively to the two
choices of∆k described above. In both cases, the accuracy
will be the average values for all regions of the model.

A. Region Growing

The Region Growing method consists on building a region
from one chosen pixel and then adding recursively neighbors
whose grayscale difference with the original pixel is belowa
threshold [16].

This method tries to grow an initial region by adding to this
region the connected pixels that do not belong to any region.
These pixels are the neighborhood pixels already in the region
and whose grayscale is sufficiently close to the area. When it
is not possible to add pixels, we create a new region with a
pixel that has not been selected yet, then we grow the region.

The method ends when all the pixels were chosen by a
region.

B. Otsu

Otsu has developed a multi-level thresholding method [20].
Its aim is to determine, for a given number of regions, the
optimum values of different thresholds based on the variance
of subdivisions created.

The basic method consists on separating the foreground
from the background. In this case, we search the optimal
threshold to split the pixels in two regions. For a threshold
t, it is possible to computethe between-class variance σ2(t).
This measure is derived from the average intensityµ1, µ2

and µ of classes [0; t], [t + 1; L] and [0; L] where L is the
maximum intensity.

The Equation 2 introduce the computation ofσ2, wherew1

and w2 represent the proportion of pixels in the class [0; t]
and [t + 1; L] compared to the total number of pixels.

σ2(t) = w1(t)(µ1(t)− µ)2 + w2(t)(µ2(t)− µ)2 (2)

The Otsu method shows that the optimal thresholdt∗ is
obtained for a between-class variance. The method consists
on computing the variance for all possible thresholds (t∈ {1;
. . .; L - 1}) and determining its maximal value.

This method could be extended easily to the computation of
M classes with M - 1 thresholds{t1; t2; . . .; TM−1 − 1} (t1
< t2 < . . . < tM−1). The between-class variance is defined
then as follows:

σ2(t1, . . . , tM−1) =
M∑

M−1

wk(µk − µ)2 (3)

where wk represent the proportion of pixels in the class
[tk−1; tk]6, µk the intensity average of this same class andµ
the intensity average of the class [0; L].

For each M-1-uplet, we compute thresholds of the between-
class variance. The optimal thresholds, (t∗, . . ., t∗M−1), corre-
spond to the maximum value of the between-class variance.

Chen et al. propose an algorithm that minimizes the number
of necessary computation to obtain a faster algorithm [15].
This method had been implemented for our evaluations tests.

C. Experimentations

Now, we will present the results of the experimentation
on 2D images with and without noise. Firstly, we will see
the results of segmentation obtained with a non-noisy image
to ensure the functioning of the different methods, then we
will see the results on a noisy-image to determine the noise-
resistance of the spiders and ants methods. For the spiders

6t0 = 0 andtM = L.
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method, the non-detected pixels are colored. Therefore, they
will be seen as a noise in the image segmentation results.

The execution time to be given comes from the simulation of
the methods on a machine equipped with an Intel Quad Q9550
(4 cores having 2.83GHz) and 4GB of RAM. The operating
system of this machine is a Linux kernel 2.6.21 x8664. The
synthetic and the brain images are respectively composed of
10 and 94 regions. The size of the test images is 256x256
pixels.

Figure 4 and 5 presents respectively the results of the dif-
ferent image segmentation techniques applied on a non-noisy
synthetic and brain image. Their informations are exploredin
table I and II.

(a) (b) (c)

(d) (e)

Fig. 4. 2D segmentation of synthetic image: a) Original image b)Social
spiders, c) Social ants, d) Region Growing, e) Otsu.

Social spiders Social ants Region Growing Otsu
Region 11 x 10 10

Region > 10px 11 x 10 10
Accuracyσ 98.3 % 95.5 % 100 % 100 %

Accuracyσ+γ 98.3 % 93.2 % 100 % 100 %
Time 318 s 0.2 s 0.4 s 15 s

TABLE I
2D RESULTS: SYNTHETIC IMAGE WITHOUT NOISE.

(a) (b) (c)

(d) (e)

Fig. 5. 2D segmentation of Brain image: a) Original image b) Social spiders,
c) Social ants, d) Region Growing, e) Otsu.

Social spiders Social ants Region Growing Otsu
Region 223 x 8670 1703

Region > 10px 56 x 456 376
Accuracyσ 71.4 % 95.1 % 65.5 % 91.2 %

Accuracyσ+γ 65.8 % 92.6 % 59.7 % 89.7 %
Time 323 s 0.3 s 0.5 s 14 s

TABLE II
2D RESULTS: BRAIN IMAGE WITHOUT NOISE .

For the synthetic image, the results of Region Growing
(threshold = 25) and Otsu (thresholds = 60, 127, 178 and 204)
methods have a maximum accuracy with a number of regions
that corresponds to the image. The spiders method (iterations
= 100000, spiders = 10000 and threshold = 25) has a region
that corresponds to the extra pixels that have been detected
by any spider. This region is not connected, the pixels that
compose it are scattered throughout the image. These pixels
are merged with the most likely region. The processing time is
bigger than the other methods with less accurate results. The
ants method (ants = 10000, gradient = 51) has delivered a
good accuracy for the detection of the contours with the same
number of contours for the original image. The supplement
region discussed above on the segmentation image obtained
by social spiders is composed of scattered contours. These
contours are found by the social ants segmentation with a
good precision and a fast computation time.

In the case of the brain image, the Region Growing method
(threshold = 13) has the lowest accuracy and the biggest
number of regions. Otsu method (thresholds = 15, 44, 76
and 95) produced the highest number of insignificant regions
which leads an oversegmentation of the image. Same as above,
The social spiders method (iterations = 100000, spiders =
10000 and threshold = 25) has pixels not selected by any
spider (ie. they are colored by black in the image and spreaded
like noise). It is therefore possible to perform a post-treatment
that would link these pixels to the colony that have a strong
presence in their neighborhoods. Its accuracy is better the
the other methods. As for the social ants method (ants =
10000, gradient = 26), it has approximatively recovered all
the contours with good accuracy.

Despite the fact that the difference between region-based
segmentation methods is small, the accuracy of the results
of the spiders and the ants methods are worse than the
other methods for the synthetic image case and better for
the brain case. However, as the spiders and the ants methods
are stochastic methods, we do not expect to get maximum
accuracy. Let us test that this accuracy will remain stable when
adding noise.

For that, we added noise to the original images (20%). The
results of the different image segmentation techniques applied
on the synthetic and brain noisy images are respectively
presented in figure 6 and 7 . Their statistics are mentioned
in table III and IV.
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(a) (b) (c)

(d) (e)

Fig. 6. 2D segmentation of synthetic image with noise: a) Original image
b) Social spiders, c) Social ants, d) Region Growing, e) Otsu.

Social spiders Social ants Region Growing Otsu
Region 425 x 89 3096

Region > 10px 51 x 10 580
Accuracyσ 84.6 % 75.2 % 99.9 % 50.1 %

Accuracyσ+γ 81.5 % 73.3 % 99.9 % 34.6 %
Time 327 s 0.2 s 0.5 s 18 s

TABLE III
2D RESULTS: SYNTHETIC IMAGE WITH NOISE.

(a) (b) (c)

(d)

!
(e)

Fig. 7. 2D segmentation of Brain image with noise: a) Original image b)
Social spiders, c) Social ants, d) Region Growing, e) Otsu.

Social spiders Social ants Region Growing Otsu
Region 223 x 1846 3096

Region > 10px 56 x 93 580
Accuracyσ 75.3 % 60.2 % 65.4 % 72.2 %

Accuracyσ+γ 70.1 % 59.4 % 43.3 % 65.9 %
Time 388 s 0.4 s 0.5 s 15 s

TABLE IV
2D RESULTS: BRAIN IMAGE WITH NOISE .

In the case of synthetic noisy image, adding noise caused a
decrease in the accuracy of the results of all methods except
Region Growing (threshold = 50) which presents a robustness
to noise. The result of the spiders method (iterations = 100000,

spiders = 10000 and threshold = 50) has decreased in term of
accuracy. Furthermore, the difference between the accuracy
of the non-noisy image and the noisy one is minimal for the
spiders method. These two points allow us to say that the spi-
ders method is less sensitive when adding noise to the image.
The number of regions has increased for the three methods
compared to the non-noisy image segmentation. However, a
number of regions rather high can be explained by a number of
pixels non-detected more important, leading to disconnection
of the regions. We note that the Otsu method (thresholds
= 15, 64, 134 and 200) produces the most regions. This
method, unlike Region Growing and social spiders method,
have produced an important number of insignificant regions
which implies oversegmentation of the image. As for the social
ants method (gradient = 102), the accuracy has decreased due
to noise effect.

For the noisy brain image, the Region Growing (threshold
= 25) and the Otsu (thresholds = 17, 52, 90 and 117) have
oversegmentated the image despite the fact that the Region
Growing method obtained a number of significant region
closer to the reality. The accuracy of the social spiders method
(iterations = 100000, spiders = 10000 and threshold = 25)
has decreased the less and became the best one in term of
performance. The accuracy of the social ants method (gradient
= 84) has made an important decrease due to noise effect.

The execution time of all methods remained stable. There-
fore, it appears that the social spiders segmentation is robust
to noise effect. This robustness has however led to a light
oversegmentation of the image without influencing the time
process.

IV. CONCLUSION AND PERSPECTIVES

In this paper, we have presented two methods of segmen-
tation. The first corresponds to a contour-based technique,
the social ants, which has produced a good segmentation
where the method has recovered the contours of the non-noisy
images. As for the noisy ones, the contours are scattered for
an accuracy less important. On the contrary, the social spiders
method, a region-based method, has produced a non neligeable
time processing in the case of non-noised image with a result
less important than the others. And when noise is added, the
processing time remained stable but with a better accuracy
than for the other region-based methods. Note that the results
of social spiders method are influenced by the repartition of
the agents on the matrix and the number of step to do.

We have made comparisons between the results of the social
spiders, social ants, Region Growing and the Otsu methods.
These comparisons focused on the accuracy, the number of
regions produced and the time processing of the methods.
They are not exhaustive comparisons where all aspects of
segmentation are not taken into account.

Through these comparisons, we have put forward some
drawbacks on the social spiders method. Particularly, we have
seen that this method produced a significant number of areas
and that the execution time was particularly long as discussed
above.

As we can see from the results in table I, the social
spiders method produces a new region constructed by pixels
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non-silked. These pixels are composed of scattered contours.
Therefore, the social spiders and the social ants have comple-
mentary roles and merging the two methods will produce a
new segmentation having accurate contours on the resulting
images.
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Abstract—The aim of this talk is to present a mathematical
framework for the modeling of agent networks called dynamical
system based on dynamic graphs. The agents have local interac-
tions and their behavior obeys a dynamical system. The network
evolves, during time. Agents and links between agents can be
added or removed thanks to local deterministic transformation
rules. This framework have been implemented in the software
called DynSys.

I. INTRODUCTION

A dynamical system is a fixed rule that describes what future
states follow from the current state. Its evolution is described
by a fixed phase space and it is supported by a static graph.

But in many applications, including communication net-
works, embedded systems or biological behaviors (such as
collaboration or communication between ants, behavior of a
set of cells which share local information, etc.) graphs are
subject to discrete changes, such as additions or deletions
of agents or links. In the last decade there has been a
growing interest in such dynamically changing graphs [1]. The
difficulty of such structures is to deal, simultaneously, with the
evolution of a number of agents (or nodes), the number of links
between agents, the states of agents, and eventually, the states
of links.

For biological problems, specific particular models have
been developed such as L-systems [6], [7], adaptive dynamics
[3], TreeGCS (hierarchical Growing Cell Structures) [2] and
DS2 (Dynamical System with a Dynamic Structure) [4]. On
the other hand, for robotic problems, graph grammar theory
has been used [5].

In this paper, we propose a framework called Dynamical
system based on dynamic graphs such that agents and links
between agents correspond, respectively, to nodes and edges
of a graph.
• Each node of the graph obeys a dynamical system.
• Each edge of the graph obeys a dynamical system.
• The evolution of nodes and edges is determined thanks

to the state of there neighborhood.
• Under specific conditions, the graph evolves Nodes and

edges can be added to or removed from the graph.
The graph evolution is determined thanks to local trans-

formation rules. Our aim is to model agent reactions due
to local informations. Consequently, transformation rules are
function of a node and its neighborhood, or, of an edge and
its neighborhood.

We have implemented the framework of Dynamical system
based on dynamic graphs in a program called DynSys.

First we define the framework of dynamical systems based
on dynamic graph. Secondly, the graph dynamic is presented.
Finally, the DynSys program is shortly presented and an
example is proposed.

II. MODELING OF A DYNAMICAL SYSTEM BASED ON
DYNAMIC GRAPH

Let G = (VG, EG) be a graph. VG is the set of vertices of
G and EG the set of edges. n(VG) and n(EG) respectively
denote the cardinal of VG and EG. Let us suppose that the
values of the nodes and the edges of G belong to some sets
respectively V and E ( V and E could be a finite set, a finite
field, R, etc).
S(G) is the state space of the system and is equal to S(G) =

Vn(VG)×En(EG). A dynamic on G will be described by a flow

ΦG : R× R× S(G)→ S(G)

t, t0, XG(t0), YG(t0)→ XG(t), YG(t)

Now, in order to define dynamical system based on dynamic
graphs, we introduce some subsets of S(G) where we can
applied ΦG: D(G,ΦG) ⊂ S(G) is the subset where ΦG is the
legal dynamic. Of course (XG(t0), YG(t0)) has to belong to
D(G,ΦG).

The dynamical system based on dynamic graphs mechanism
is as follow :
• While (XG(t), YG(t)) ∈ D(G,ΦG) apply ΦG
• If (XG(t1), YG(t1)) /∈ D(G,ΦG) then apply a discrete

transition.
A discrete transition arises from a set of rules. It depends

on the exiting point of the domain.
We denote F the set of flows and we denote P(E∞) the

set of parts of E∞. ( E∞ = ∪n∈NEn.) A discrete transition is
defined by:

T : G × V∞ × E∞ → G × V∞ × E∞

G,XG(t∗), YG(t∗)→ G′, XG′(t∗), YG′(t∗)

the discrete transition induces a dynamic on the graph. The
new graph G′ can have a different size and connections can
change.

III. GRAPH DYNAMIC

A. Basic definitions

Basic graph-theory definition are reminded in this section.
Let G be a connected graph with vertices u and v. The

distance d(u, v) between u and v is the length of a shortest
u − v path in G. The eccentricity e(v) of a vertex v is the
distance from v to a vertex furthest from v. The radius of
G is min{e(v); v ∈ V (G)}, while the diameter of G is
max{e(v); v ∈ V (G)}.
Notation III.1. Let G1 be the set of graphs of radius equal to
1. Let G2 be the set of graphs of diameter less or equal to 3.
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For any nonempty subset S of vertices in G, the induced
subgraph < S > is the maximal subgraph of G with the
vertex set S.

Let σi be the set of neighbors of node i and σ̄i = σi ∪ {i}.
The sub-graph of G centered on the node i is the sub-

graph ∆i such that: V∆i
= σ̄i and E∆i

= {(j, k) ∈ EG, j ∈
V∆i

, k ∈ V∆i
}.

The sub-graph of G centered on the edge (i, j) is the
sub-graph ∆(i,j) such that : V∆(i,j) = σ̄i ∪ σ̄j and E∆(i,j) =
{(j, k) ∈ EG, j ∈ V∆(i,j) , k ∈ V∆(i,j)}.

∆i belongs to G1 and ∆(i,j) belongs to G2.

B. Local transformation rules

The graph dynamic models agent reactions based on local
informations. Consequently transformation rules are function
of a node and its neighborhood, or, of an edge and its
neighborhood.

The neighborhood of a node i not only means the nodes
of σi but also the edges of the induced sub-graph < σi >.
Consequently, ∆i is the neighborhood of i. In the same way,
∆(i,j) is the neighborhood of the edge (i, j).

We propose two kinds of local transformation rules, the first
one based on a node and the second one based on an edge.

Notation III.2. Let H be an induced subgraph of G, XH is
the dynamic state of the nodes of VH and YH is the dynamic
state of the edges of EH .

Definition III.3. A local transformation rule based on a node
is a function:

Rn: G1 × V∞ × E∞ −→ G × V∞ × E∞
∆i, X∆i(t

∗), Y∆i(t
∗) −→ N,XN (t∗), YN (t∗)

such that σi ⊂ VN .

A rule Rn is applicable to a subgraph ∆i if a constraint of
the following type is verified:

FRn(X∆i , Y∆i) = true.

This constraint corresponds to one of the boundary of the
subset D(G,ΦG).

When Rn is applied to a sub-graph ∆i of G, G is trans-
formed to a new graph G′ = (VG′ , EG′) defined by:

• VG′ = (VG \ V∆i) ∪ VN
• EG′ = (EG \ E∆i) ∪ EN
• The node states and edge states of N are determined by

reset function Z∆i
included in Rn :

Z∆i
: S(∆i) −→ S(N)

X∆i
, Y∆i

−→ XN , YN
The node states of VG\V∆i

remains unchanged. The edge
states of EG \ E∆i

remains unchanged also.

Definition III.4. A local transformation rule based on an edge
is a function:

Re: G2 × V∞ × E∞ −→ G × V∞ × E∞
∆(i,j), X∆(i,j)(t∗), Y∆(i,j)(t

∗) −→ N,XN (t∗), YN (t∗)

such that σi ⊂ VN and σj ⊂ VN . This kind of transformation
rule occurs when a constraint of the following type is verified:

KRe(X∆(i,j) , Y∆(i,j)) = true.

When Re is applied to a sub-graph ∆(i,j) of G, G is
transformed to a new graph G′ = (VG′ , EG′) defined by:
• VG′ = (VG \ V∆(i,j)) ∪ VN
• EG′ = (EG \ E∆(i,j)) ∪ EN
The node states and edge states of N are determined by the

reset function Z∆(i,j) included in the rule:

Z∆(i,j) : S(∆(i,j)) −→ S(N)
X∆(i,j) , Y∆(i,j) −→ XN , YN

The node states VG \ V∆(i,j) remains unchanged and the
edge state of EG \ E∆(i,j) remains unchanged also.

The discrete transition T is a composition of local transfor-
mation rules.

IV. THE DYNSYS PROGRAM AND AN EXAMPLE

DynSys is a program dedicated to the modeling and the
simulation of dynamical systems based on dynamic graphs.

Each agent and link of the graph obeys a dynamical system
which depend on there neighborhood.

Agents and links between agents can be added to or re-
moved from the graph thanks to transformation rules described
below.

Let us consider a simple example. The state of nodes and
edges are one-dimensional variables, X and Y respectively.
The dynamic function of the nodes is Ẋi = 6

]σ(i) where ]σ(i)
denotes the number of neighbors of the node i. Let Yij be the
age of the edge (i, j). Its dynamic is Ẏij = 1.

At a given time t∗, a node i and one of its neighbors j create
a new node k (see figure 1) when the constraint Xi(t∗) +
Xj(t∗) ≥ 12 is verified.

i j i j

k

Fig. 1. Local transformation

The value of Xk(t∗) is defined and the values of Xi(t∗) and
Xj(t∗) are modified thanks to the reset functions: Xk(t∗) =
Xi(t

∗)+Xj(t∗)
2 , Xi(t∗) = Xi(t

∗)
2 and Xj(t∗) = Xj(t∗)

2 . The
edge (i, j) tenses and the nodes i and j merge when the
constraint Yij(t∗) ≥ 5 is verified. The reset function of the
node i is then Xi(t∗) = Xi(t

∗)+Xj(t∗)
2 .

At each step, DynSys specifies the time variable t, the
number of nodes Ns, the number of edges Es, the maximal
degree of the graph d and the number of local transformation
rules which have been applied Tr.

Four steps of the example are drawn bellow thanks to
DynSys.
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Fig. 2. t=0, Ns=2, Es=1, d=1, tr=0.

Fig. 3. t=4.625, Ns=18, Es=33, d=6, tr=13.

Fig. 4. t=6.2093, Ns=29, Es=53, d=7, tr =28.

Fig. 5. t=11.0242,Ns=153, Es=289, d=38, tr=188.
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The graphs are generally used to model systems. They make it possible to
highlight the deep structures of such systems. Hence the complexity of the
graph depends directly on the complexity of these systems. The changing
nature, of some systems, gives rise to dynamic graphs (which we add or delete
vertices and/or edges over time). Thus, a dynamic graph is a graph which
is structurally unstable making it difficult to be handled especially when it
has an important number of nodes and edges.

Explicitly,A dynamic graph G is a collection of graphs
G = {Gi = (Vi, Ei, ti)/ ti ≥ 0, i ∈ A ⊆ N} such that :

G0 = (V0, E0, t0) is called initial graph .
Gi+1 is obtained from Gi by performing one of the following operations:

• Addition of nodes (Vi ⊂ Vi+1)

• Deletion of nodes (Vi+1 ⊂ Vi)

• Addition of edges or arcs (Ei ⊂ Ei+1)

• Deletion of edges or arcs (Ei+1 ⊂ Ei)

ti is a positive real number relating to the situation of G0 after the ith
operation.
Between ti and ti+1 the dynamic graph has the structure of the graph Gi, ∀
i ∈ A.
F. Harary and G. Gupta suggest two approaches to study a dynamic graph:
1. Modelling a dynamic graph as a sequence of static graphs and studying
the properties of this sequence.
2. Modelling a dynamic graph using a logic programming. The properties
of dynamic graph can be determinate by executing the logic program that
models it.
We can also study the dynamic graph by specifying the classes of graphs that
remain invariant with time. For example let G be a C4(cycle of length four)
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to which we added a vertex connected to all the vertices of C4.
By deleting any edge from G, the resulting graph contains a C5.

our approach is based on the following observation:
Generally Gi and Gi+1 have not the same properties. For instance, let
Gi+1 = Gi − x0. If Gi is connex and if x0 is an articulation point then
Gi+1 is not connex. Hence the idea to transform G to H such that H is more
stable than G. The procedure of transformation consists in reducing the sets
of the nodes and edges. The graph, thus obtained, is an edge weighted
graph. The introduction of the new graph makes it possible to use matric
techniques in order to study the properties of a graph G through those of
its reduced graph H. In particular the shortest paths and Matching problems.
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