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Abstract17

Time-resolved numerical simulations of fluid flows, such as Large Eddy Simula-

tions (LES), have the capability of simulating the unsteady dynamics of large

scale energetic structures. However, they are known to be intrinsically sensitive

to inflow conditions the modelling of which may become a crucial ingredient of

the computational model. The present work reports LES of both reactive and

non-reactive turbulent channel flows. The flow configuration and associated con-

ditions correspond to those associated with a reference experimental database

that has been gathered at the French aerospace Laboratory of Onera. The fo-

cus of our study is placed on the influence of synthetic inlet turbulence in this

experimental geometry, i.e., the principal aim is to investigate the sensitivity of

the flow dynamics and mixing to inflow conditions. The analysis undoubtedly

confirms that, even with properly set mean velocity and turbulence kinetic en-
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ergy profiles as available from experimental data, both non-reactive and reactive

flow fields still remain very sensitive to the choice of the synthetic turbulence

model. This sensitivity is illustrated for four distinct turbulent inflows obtained

from white noise (WN), digital filter (DF) by Klein et al. (2003), random flow

generator (RFG) by Smirnov et al. (2001), and synthetic eddy model (SEM) by

Jarrin et al. (2009). Finally the results obtained for reactive flow conditions

clearly emphasize the influence of the retained model on the chemical reaction

rate statistics. This conclusion confirms how relevant are the developments de-

voted to synthetic turbulence for the computational investigation of turbulent

combustion.

Keywords: Turbulent inflow boundary conditions, Large Eddy Simulation,18

Synthetic inlet turbulence, Low Mach number flows, Reactive flows19

1. Introduction20

It is well known that a subject of great importance for fluid flow numerical21

simulations is the prescription of correct and realistic boundary conditions. For22

outflow conditions, it appears that the use of a buffer zone (Bodony, 2006) or23

an advective boundary condition (Orlanski, 1976), or even a combination of24

both, may adequately describe several flow conditions of practical interest. The25

present work is focused on low Mach number flows and the main difficulty is thus26

concentrated on the settlement of the inlet velocity field. In contrast, for com-27

pressible flows, specifying the fourth variable (pressure, density, temperature or28

characteristic wave) may also become a critical issue which raises a wide range of29

additional specific difficulties. In such conditions, elaborate strategies should be30

used to avoid pressure wave reflections, see for instance Rudy and Strikwerda31

(1980); Thompson (1987); Poinsot and Lele (1992); Albin et al. (2011). The32

specification of inflow boundary conditions may also raise several issues. Most33

flows encountered in real applications are, indeed, spatially developing turbulent34

flows. Hence, they pose a great challenge for numerical simulations due to the35
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need to prescribe time-dependent turbulent inflow data at the upstream bound-36

ary. For steady Reynolds-Averaged Navier-Stokes (RANS) simulations, simple37

analytical or experimental profiles are retained for mean velocity components38

and turbulent characteristics. For LES or Direct Numerical Simulations (DNS),39

however, the inflow data should consist of an unsteady fluctuating velocity sig-40

nal representative of the turbulent velocity field at the inlet.41

A basic technique to generate such a turbulent inflow data consists in taking42

a mean velocity profile with superimposed random noise. The major drawback43

of such a methodology is that the resulting inflow data do not exhibit any spatial44

and/or temporal correlations. The energy generated is, also, uniformly spread45

over all wave numbers and, due to the lack of large scale energy-containing46

structures, turbulence is quickly dissipated (Jarrin et al., 2009).47

In principle it may be possible to predict turbulence via a LES technique48

by starting from a quiescent flow or with the mean flow field obtained from49

RANS simulations. Unfortunately, a very long time is required for a turbulent50

flow to spatially and temporally develop (Smirnov et al., 2001). Ideally, the51

simulation of the upstream flow entering a computational domain would pro-52

vide realistic inlet conditions to the simulation of interest. However, due to the53

computational cost, the domain cannot be extended upstream indefinitely, and54

approximate turbulent inlet conditions must therefore be specified.55

There are several ways to remedy this situation, and the existing methods56

belong to two principal categories: (i) mapping or recycling methods, in which57

some sort of turbulent flow is pre-computed, prior to the main calculation,58

and subsequently introduced at the domain inlet, and (ii) synthetic turbulence59

methods, in which some form of random fluctuation is generated, modulated60

according to experimental data, and combined with mean inflow. Other appeal-61

ing strategies have been introduced in the literature, some of them are based on62

Fourier techniques, and others rely on the Proper Orthogonal Decomposition63

(POD) introduced by Lumley (1967), see for instance Druault et al. (2004).64

The present manuscript is organized as follows: first a brief description of65

recycling methods is provided. Further, synthetic turbulence generators are pre-66
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sented, and the four methods considered in the present work are detailed: (i) the67

white noise (WN), (ii) the digital filter (DF) method proposed by Klein et al.68

(2003), (iii) the Random Flow Generator (RFG) introduced by Smirnov et al.69

(2001) and (iv) the Synthetic Eddy Method (SEM) of Jarrin et al. (2009). The70

synthetic turbulence generators have been implemented in a low Mach number71

Navier-Stokes solver, the main features of which are presented, including a brief72

description of both mathematical and numerical aspects. As a preliminary step73

of verification and validation, the methods are applied to the description of ho-74

mogeneous isotropic turbulence. The computational programs are then further75

assessed by analyzing their capabilities of generating a fluctuating signal which76

reproduces a given stress tensor and features an energy spectrum similar to77

the one associated with a fully developed turbulent flow spectrum. The former78

means that the inflow data generator should be able to reproduce an anisotropic79

turbulent velocity field at the inlet. The paper ends with the application of the80

above-mentioned synthetic turbulence generators to the numerical simulation of81

high speed non-reactive and reactive turbulent mixing layers, which were exper-82

imentally studied by Moreau and Boutier (1977), see also Magre et al. (1988).83

Comparisons with available experimental data are provided.84

2. Literature review85

The specification of realistic turbulent inflow boundary conditions remains86

a challenging issue for both LES and DNS. This is quite a contrast to RANS or87

URANS applications for which a scale separation argument is implied between88

the unsteadiness of the mean flow field and the associated turbulent fluctuations.89

The quantities being computed in RANS or URANS are thus steady or varying90

on a characteristic time scale that is much larger than the computational time91

step. Such a scale separation argument does not hold for DNS or LES which92

therefore require a special treatment of turbulent fluctuations at inlet conditions.93

A review of some of the existent methods that deal with the specification of such94

turbulent inflow conditions is provided below.95
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2.1. Mapping methods96

The most accurate method to specify turbulent fluctuations for either LES or97

DNS would probably consist in running a suitable precursor simulation with the98

purpose of providing the main simulation with accurate boundary conditions.99

However, such a procedure has been used only when the turbulence at the inlet100

can be regarded as a fully developed or a spatially developing boundary layer.101

In these cases periodic boundary conditions in the mean flow direction can be102

applied to the precursor simulation. In general, the simulation of the precursor103

flow is initialized with a mean velocity profile perturbed with a few unstable104

Fourier modes. Instantaneous velocity fluctuations in a plane positioned at a105

fixed streamwise location are extracted from the precursor simulation and pre-106

scribed at the inlet of the main simulation at each time step.107

In practice, periodic boundary conditions can only be used to generate inflow108

conditions for homogeneous flows in the streamwise direction, which restricts109

their applications to simple fully developed flows. A more flexible technique to110

generate inlet conditions, also based on the procedure of recycling the velocities111

in a plane located several boundary layer thicknesses downstream of the inlet,112

has been proposed by Lund (1998). In this framework, the velocity field at the113

re-scaling station is decomposed into mean and fluctuating components; scaling114

is applied to the mean and to the fluctuating parts in the inner and outer lay-115

ers to account for the different similarity laws that govern both regions. The116

scaled velocity is then re-introduced as a boundary condition at the inlet of the117

computational domain. The use of such a methodology results in a spatially118

evolving boundary layer simulation that is capable of generating its own inflow119

data.120

Another strategy has been followed by Li et al. (2000) who proposed a pro-121

cedure to reduce the storage requirement, as well as the computational cost122

associated with a precursor calculation. A spatially developing turbulent mix-123

ing layer, originating from the mixing of a low-speed and a high-speed boundary124

layer flow at the end of a splitter plate, is simulated within the LES context.125

However, instead of simulating the precursor boundary layer flow fields, only a126
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time series of instantaneous velocity planes with duration approximately equal127

to the integral time scale of the flow is extracted from a boundary layer sim-128

ulation. The resulting signal is converted into a periodic one using a classic129

windowing technique, and it is used, as many times as required, to obtain con-130

verged statistics in the main simulation. This methodology is beneficial from131

both the computational and storage points of view, since the precursor sim-132

ulation is run over a short duration only and the data used to generate the133

inflow correspond to a few integral time scales of the flow. For the investigated134

mixing layer simulation, the periodicity involved by the inflow decays rapidly,135

in approximately 25 per cent of the total length of the computational domain.136

However, Li et al. (2000) reported that the resort to this procedure for wall-137

bounded flows, where destabilizing effects remain relatively weak, might require138

a longer transition region to weaken the effects of the periodicity condition that139

is involved in the inflow prescription.140

Finally, Bodony (2006) noted that the method introduced by Lund (1998),141

i.e., random uncorrelated fluctuations superimposed on a mean velocity profile,142

is very sensitive to the initialization of the flow field. Bodony (2006) also stated143

that the generation of fully developed turbulence cannot be obtained from such144

a strategy and, hence, proposed a more robust variant of the original method of145

Lund (1998), where the flow field is initialized thanks to synthetic turbulence146

with prescribed energy spectrum and shear stress profile.147

To conclude it is noteworthy that other mapping techniques have been pro-148

posed in the context of hybrid RANS-LES simulations. For instance, Schlüter149

et al. (2004) fed the LES of a combustor with the Favre-averaged mean velocity150

field ũi issued from a RANS solution together with a fluctuating component151

ui − ũi. The latter is extracted from a database which was generated from152

an auxialliary LES computation and the corresponding turbulent fluctuations153

are rescaled to match mean and fluctuations statistics issued from the RANS154

simulation.155
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2.2. Synthetic turbulence generators156

Methods that do not rely on a precursor simulation, or re-scaling of a157

database obtained from a precursor simulation, synthesize inflow conditions158

using some sort of stochastic procedure. These procedures use random number159

generators to build a fluctuating velocity signal similar to those observed in160

turbulent flows. This is possible based on the assumption that a turbulent flow161

can be approximated from a set of low order statistics, such as mean velocity,162

turbulent kinetic energy, Reynolds stresses, two-point or two-time correlations.163

However, it is worth emphasizing that the resulting synthesized signals remain164

only a crude approximation of turbulence. From a statistical point of view,165

some crucial quantities, such as the dissipation rate, the turbulent transport or166

the pressure-strain term that appear in the Reynolds stresses balance are often167

not well reproduced. The dynamics of the turbulent eddies are not perfectly168

recovered, and the synthesized flow may undergo a transition to turbulence.169

Therefore, synthesized turbulence can have a structure that significantly differs170

from that of the real flow fields (Jarrin et al., 2009).171

2.2.1. White noise based synthetic turbulence generators - WN172

The most straightforward approach to build synthetic fluctuations is to gen-173

erate a set of independent random numbers between zero and unity which can174

mimic the turbulence intensity at the inlet. Indeed, if the turbulent kinetic175

energy level k is known, it can be used to scale a random signal Rui
with zero176

mean and unity variance. Thus, the fluctuations exhibit the correct level of177

turbulent kinetic energy, which yields ui = ũi +Rui

√
2k/3, where Rui

is taken178

from independent random variables for each velocity component at each instant179

and location on the computational inlet plane. This procedure generates an180

isotropic random signal that reproduces both the mean velocity and turbulent181

kinetic energy levels. However, the signal generated does not present any two-182

point nor two-time correlations.183

184

If the Reynolds stresses tensor (Rij) is available, Lund (1998) introduced the185
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following transformation rule to reconstruct correlated velocity components:186

ui = ũi +Ruj
aij , (1)

where (aij) denotes the Cholesky decomposition of the symmetric positive de-187

fined Reynolds stress tensor (Rij),188

aij =


√
R11 0 0

R21/a11

√
R22 − a2

21 0

R31/a11 (R32 − a21a31)/a22

√
R33 − a2

31 − a2
32

 . (2)

This strategy allows the basic random procedure to reproduce the targeted189

cross-correlations between velocity components.190

Although the methods presented above are capable of reproducing some191

characteristics of real turbulent flow fields, such as the anisotropy, they do not192

account for any correlations in either time or space. Therefore, these random193

fluctuations have their energy sprectrum uniformly spread over all wave numbers194

and, as already stated above, this energy will be quickly dissipated downstream195

of the inlet boundary. A more valuable approach for generating synthetic tur-196

bulence therefore consists in creating bins of random data, which can then be197

processed using digital filters, so that the resulting set of processed data will198

display desired statistical properties, such as spatial and temporal correlations199

(Lund, 1998; Klein et al., 2003).200

2.2.2. Digital filters based synthetic turbulence generators - DF201

Klein et al. (2003) proposed a digital filtering (DF) procedure to remedy the202

lack of large-scale correlation in the inflow data generated through the above203

method. In one dimension the fluctuating velocity signal u′m at a point m is204

defined as a convolution or a digital linear non-recursive filtering:205

u′m =

n=M∑
n=−M

bnRm+n, (3)

where Rm is a series of random data generated at point m with Rm = 0,206

RmRm = 1, RmRn = 0 for m 6= n, and bn are the filter coefficients. In the207
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previous expressions, the overbar denotes averaged values obtained from the208

series of random data. Note that, since the ergodic hypothesis is implied, the209

time average of one sequence of events is the same as the ensemble average.210

The integer number M is related to the size of the filter support. The relation211

between the filter coefficients and the two-point velocity correlation function is212

given by:213

j=M∑
j=−M+k

bjbj−k

j=M∑
j=−M

b2j

=
u′mu

′
m+k

u′mu
′
m

(4)

214

This procedure is extended to the time-dependent generation of synthetic215

velocity field on a plane (Ox2x3) by generating a three-dimensional random field216

Rm(i, j, k) for each velocity component m. The indices i, j, and k are associated217

to the x1-direction (or time t by making use of the Taylor hypothesis), the x2-218

direction and the x3-direction, respectively. A three-dimensional filter b(i, j, k)219

is obtained by the convolution of three one-dimensional filters: b(i, j, k) = bi ×220

×bj × bk, in such a manner that the random data Rm(i, j, k) are filtered in the221

three directions x1, x2 and x3,222

Um(j, k) =

i′=Mx1∑
i′=−Mx1

j′=Mx2∑
j′=−Mx2

k′=Mx3∑
k′=−Mx3

bi′ × bj′ × bk′ Rm(i′, j + j′, k + k′) (5)

where j and k denote the location of the computational cell at the inlet223

plane, i.e., j = 1, ..., Nx2
and k = 1, ..., Nx3

. Note that, in the following, we224

will retain an homogeneous filter width N in the three spatial directions, i.e.,225

Mx1=Mx2=Mx3=N .226

In order to generate fluctuations that reproduce exactly the targeted two-227

point correlations, the filter coefficients bk should be computed by inverting Eq.228

(4). However, since the two-point autocorrelation tensor is seldom available,229

Klein et al. (2003) assumed a Gaussian shape depending on one single parameter,230

the length scale L = n∆x (N being such that N ≥ 2n). The coefficients can231

then be computed analytically, without the cost of inverting Eq. (4), bp ≈232
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b̂p/

√(∑j=N
j=−N b̂

2
j

)
where b̂j := exp

(
−πj2/2n2

)
. Once the processed random233

signal is evaluated by using Eq. (5), the final inflow velocity can be written as,234

ui = ũi+aimUm(j, k) thanks to the Cholesky decomposition aij of the Reynolds235

stress tensor Rij .236

Following Klein et al. (2003), it is possible to generate a large amount of data,237

store and convect it through the inflow plane by applying Taylor’s hypothesis.238

However, for the applications considered here, the inflow data will be generated239

on-the-fly. The implementation of the DF synthetic turbulence generator is240

indeed quite efficient and, for the present application, the computational costs241

associated to the database lookup technique were found greater than the online242

generation of the data. We therefore preferred to resort to the latter.243

It should be noted that the main parameters retained to evaluate this method244

are the choice of the length scales, which are directly connected to the DF245

support size, and the dimensions of the control volume. Thus, a given value246

of the characteristic length scale may be reproduced by correctly choosing the247

filter support size as well as the control volumes dimensions. However, as will248

be shown below, the length scales and, consequently, the filter support size249

strongly impact on the computational cost of the method. Finally, since a250

fixed computational grid is used here to assess the different turbulent inflow251

generators, the parameters retained to evaluate the DF method will be the252

support size, only.253

2.2.3. Synthetic turbulence generators based on Fourier techniques - RFG254

In their recent review, Tabor and Baba-Ahmadi (2010) concluded that, since255

turbulence is often analyzed on the basis of a harmonic functions decomposi-256

tion, i.e., Fourier analysis, the fluctuations can be more efficiently represented257

by resorting to a linear sum of trigonometric functions, with the coefficients258

representing the energy contained in each mode.259

To the authors best knowledge, Kraichnan (1970) was the first to use a260

Fourier decomposition to generate a synthetic fluctuating turbulent flow field.261

In Kraichnan’s early work, the flow is initialized with a three-dimensional homo-262
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geneous and isotropic synthetic velocity field to study the diffusion of a passive263

scalar. Since the velocity fluctuations are homogeneous in the three dimen-264

sions, they can be decomposed in the Fourier space, u′(x) =
∑

k û′ke
−ik.x,265

where k is a three-dimensional wave number vector. Each complex Fourier266

coefficient û′k defines an amplitude evaluated from a prescribed isotropic three-267

dimensional energy spectrum E(|k|) and a random phase θk, taken uniformly in268

the [0, 2π] interval (Rogallo, 1981). The synthesized velocity field is thus given269

by u′(x) =
∑

k

√
E(|k|)e−i(k.x+θk). Several adaptations of Kraichnan’s method270

were proposed throughout the years. Among them, Lee et al. (1992) proposed271

one that allows for the application of Kraichnan’s method to spatially evolving272

turbulent flows. They showed that it is possible to generate a synthesized tur-273

bulent time-evolving signal, in which the prescription of a phase shift between274

different time steps allows to obtain a synthesized velocity field at the inlet275

featuring correct temporal correlations. One remarkable advantage of such a276

method is that the generation of the turbulent signal can be performed by using277

Fast Fourier Transform - FFT algorithms, which are computationally very effi-278

cient. The capability of generating an anisotropic random signal was introduced279

by Le et al. (1997). Based on the method of Lee et al. (1992), an isotropic tur-280

bulent synthesized signal is generated and then re-scaled using Eq.(2). In this281

way the reconstructed fluctuations match a prescribed Reynolds stress tensor.282

However, if one is interested in initializing the whole computational domain, the283

method may present some limitations. Indeed, since it is based on direct and284

inverse transforms using FFT algorithms, its application to non-uniform grids285

is possible at the inlet plane only, which considerably reduces its interest for286

practical applications.287

More recently, Smirnov et al. (2001) modified the method of Le et al. (1997)288

in such a manner that it becomes possible to obtain a turbulent velocity field289

by requiring statistical information only. The method of Smirnov et al. (2001)290

is capable of synthesizing non-homogeneous turbulence within a general frame-291

work. It relies on the Fourier decomposition, with Fourier coefficients computed292

from spectral data based on local turbulent time and length scales obtained at293

11



different locations across the flow. This method, called Random Flow Genera-294

tion and denoted RFG hereafter, differs from the original proposal of Lee et al.295

(1992) since it does not make use of Fourier transforms. It is based on scaling296

and coordinates transformation operations only, which, on non-uniform grids,297

are much more efficient.298

The RFG computational routines used here are detailed in Smirnov (2004)299

and a brief description of the procedure retained to generate the turbulent inflow300

data is now provided. According to Smirnov et al. (2001), a three-dimensional301

transient flow field, ui(xj , t), can be obtained from,302

ui(xj , t) =

√
2

n = N

N∑
n=1

[
pni cos

(
k̂nj x̂j + ωnt̂

)
+ qni sin

(
k̂nj x̂j + ωnt̂

)]
, (6)

where the following non-dimensional quantities have been introduced, x̂j =303

xj/lt; t̂ = t/τt; c = lt/τt; k̂nj x̂j = knj x̂jc/c(j), where, pni = εijmζ
n
i k

n
m; qni =304

εijmξ
n
i k

n
m, with, ζni , ξ

n
i , ωn ∈ N(0, 1), kni ∈ N(0, 1/2). Note that N(M,σ)305

denotes a normal distribution with mean M and standard deviation σ. Re-306

peated sub-indexes imply summation, following Einstein’s rule, while parenthe-307

ses around indexes preclude summation. In these non-dimensional expressions,308

lt and τt denote the characteristic length and time scales of turbulence, respec-309

tively, εijk is the permutation tensor used in the vector product operation, ci310

denotes the fluctuating velocity components written in a new system of coor-311

dinates, which is obtained after the application of the transformation tensor312

aij . The numbers knj , ωn represent a sample of n wave-number vectors and313

frequencies of a modeled turbulence spectrum E(k) = 16(2/π)1/2k4 exp(−2k2).314

The final flow field ui is obtained after scaling and orthogonal transformation315

operations: ui = aijwj , where wj = c(j)v(j). It is important to note that the316

tensor aij is such that amianjRij = δmnc
2
(n), and aikakj = δij , where Rij is317

a prescribed velocity correlation tensor, e.g., the Reynolds stress tensor. It is318

also worth noting that this procedure requires specifying the characteristic in-319

tegral length and time scales of turbulence, and the correlation tensor Rij of320

the flow. These quantities can be obtained from experimental data, but some321

of them may also be approximated from preliminary RANS simulations. A322
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similar framework has been retained by Batten et al. (2004) to address the323

couplings between RANS and LES closures. This strategy has been applied324

with some success to the computation of a turbulent channel flow by Keat-325

ing et al. (2004). The corresponding numerical simulation has been conducted326

with N = 200 Fourier modes, see Eq.(6), and a relatively long transition region327

has been required to regenerate fully-developped turbulence downstream of the328

inlet. Finally, assuming a modified von Kármán spectrum, a similar methodol-329

ogy has been also proposed by Davidson and Billson (2004) to generate forcing330

conditions at the matching boundary between the LES and URANS regions of331

hybrid numerical simulations. There is still today a fast-growing literature on332

the interfacing between RANS and LES methods and the present manuscript333

does not allow us to review it in further detail. The interested reader may find334

a rather complete view of this topic in the survey chapter of the book of Sagaut335

et al. (2006) and references therein.336

2.2.4. Synthetic eddy method - SEM337

The synthetic eddy method (SEM), proposed by Jarrin et al. (2009), is based338

on the decomposition of the turbulent flow field into stochastic coherent struc-339

tures. The corresponding eddy-structures are generated at the computational340

domain inlet plane and defined thanks to a shape-function fσ(x), which is in-341

tended to encode turbulence spatial and temporal characteristics.342

The SEM can be introduced using a one-dimensional scheme, in which the343

velocity component is generated within the range [a, b]. The shape-function of344

each turbulent spot features a compact support in [−σ, σ] and it satisfies the345

normalization condition.346

1

∆

∆/2∫
−∆/2

f2
σ(x)dx = 1, (7)

where ∆ = b− a+ 2σ. Each turbulent spot has a position x(n), a length scale σ347

and is assigned a signal ε(n). In other words, the contribution u(n)(x) of a tur-348

bulent spot n to the velocity field, is defined as u(n)(x) = ε(n)fσ(x−x(n)), with349

a location x(n) randomly chosen within the range [a − σ, b + σ] and where ε(n)
350
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denotes a random step of value −1 or +1. The synthetic eddies are generated351

in an interval larger than [a, b]. This larger interval guarantees that the inlet352

points are surrounded by eddies. Finally, the resulting velocity field u(x) at any353

location will be the sum of the contributions of all synthetic eddies located in354

the domain, u(x) =
n=N∑
n=1

ε(n)fσ(x− x(n))/
√
N , where N denotes the total num-355

ber of synthetic eddies. In three-dimensional situations, the generated eddies356

correspond to three-dimensional structures, which feature a compact support357

[−σx1
, σx1

] × [−σx2
, σx2

] × [−σx3
, σx3

], and satisfy a normalization condition358

similar to Eq. (7). Considering an inlet plane of dimensions [0, Lx2 ] × [0, Lx3 ],359

located at x1 = 0, the position
(
x

(n)
1 , x

(n)
2 , x

(n)
3

)
of the synthetic eddy n is ran-360

domly chosen within [−σx1
, σx1

] × [−σx2
, Lx2

+ σx2
] × [−σx3

, Lx3
+ σx3

]. The361

eddies are convected through the inlet plane at a velocity U0 obtained from362

Taylor’s hypothesis x
(n)
1 (t + ∆t) = x

(n)
1 (t) + U0 ∆t. Once x

(n)
1 (t + ∆t) > σx1 ,363

the eddy is re-generated at x1 = −σx1 , and can be convected again. Finally364

the fluctuating velocity field is given by u′j(x, t) =
n=N∑
n=1

ε
(n)
j fj(x−x(n)(t))/

√
N ,365

where ε
(n)
j corresponds to the signal, i.e. −1 or +1, of the eddy n in direction j.366

The final velocity field ui is then obtained from the above synthetic fluctuating367

velocity field u′j , the velocity mean profile ũi, and the Cholesky’s decomposition368

aij of the Reynolds stress tensor: ui = ũi + aiju
′
j , with aij defined by Eq. (2).369

3. Mathematical and computational modelling370

The mathematical and computational framework retained to proceed with371

the numerical simulation is now briefly presented. The interested reader may372

find a detailed presentation elsewhere (Vedovoto et al., 2011). A hybrid ap-373

proach in which the LES methodology is coupled with the transport of the scalar374

probability density function (PDF) is retained to describe the reactive cases.375

The method involves the numerical solution of partial differential equations376

(LES solver) together with stochastic differential equations (PDF solver). From377

the LES approach the Eulerian filtered variables are evaluated while stochastic378

differential equations (SDE) are solved using Lagrangian notional particles to379
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simulate the modelled transport equation of the scalar PDF (Pope, 1985; Colucci380

et al., 1998). The latter yields the one-point, one-time statistics of subgrid-scale381

scalar fluctuations and thus provides the LES solver with the corresponding382

filtered chemical reaction rate.383

3.1. Mathematical model384

The present section is organized as follows: the filtered set of balance equa-385

tions that describes the flows under consideration is first presented. The main386

characteristics of the transported PDF method are then briefly introduced to-387

gether with the equivalent system of stochastic differential equations as well as388

the coupling between the Eulerian and Lagrangian approaches (LES-PDF).389

3.1.1. Set of filtered equations390

The following simplifying assumptions are used: (a) fluid is considered as391

Newtonian, (b) body forces, heat transport by radiation, Soret and Dufour ef-392

fects are not addressed, (c) the model is developed for low Mach number flows,393

(d) we consider unity Lewis number values and equal molecular diffusion coeffi-394

cients for all species, (e) heat losses are neglected. The mathematical model con-395

siders multi-species variable-density reactive flows, in which the primary trans-396

ported variables are the density ρ, the three velocity components ui, the specific397

enthalpy h and the mass fractions Yk of the K chemical species (k = 1, . . . ,K),398

the balance equations are:399

∂ρ

∂t
+
∂ρ ũj
∂xj

= 0, (8)

400

∂ρ ũi
∂t

+
∂ρ ũj ũi
∂xj

=
∂T ij
∂xj

−
∂τ SGS
ij

∂xj
, (9)

401

∂ρ φ̃α
∂t

+
∂ρ ũj φ̃α
∂xj

=
∂Qα,j
∂xj

−
∂QSGS

α,j

∂xj
+ Sα, (10)

where the variable φα denotes the mass fraction of a chemical species or the402

enthalpy of the mixture, (xi, i = 1, 2, 3) are the spatial coordinate, and t is the403

time. Tij = τij − p δij is the tensor of mechanical constraints including both a404

deviatoric (shear stresses τij) and a spheric (pressure p δij) contribution, while405
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Qα,j denotes the component of the molecular diffusion flux of the scalar α in406

the direction j. In the above expression, τ SGS
ij = (ρuiuj − ρ ũi ũj) is the subgrid407

scale (SGS) stress tensor and QSGS
α,j =

(
ρuiφα − ρ ũi φ̃α

)
represents the SGS408

scalar flux components, respectively. Finally, the last term in the RHS of Eq.409

(10), i.e. Sα, denotes the filtered reaction rate. The above system is completed410

by an equation of state: P = P0(t) + p(x, t), with P0(t) the thermodynamic411

pressure.412

The unresolved momentum fluxes are expressed according to the Boussi-413

nesq assumption, τ SGS
ij − δijτ SGS

kk /3 = 2µSGS

(
S̃ij − δijS̃kk/3

)
, where µSGS is the414

subgrid scale viscosity, and S̃ij = (∂ũi/∂xj + ∂ũj/∂xi)/2 is the strain rate ten-415

sor of the resolved field (Ferziger and Peric, 1996; Fureby, 2008). In most of416

the numerical simulation results presented below, the eddy viscosity µSGS is417

obtained from the Smagorinsky closure, i.e., assuming that the small scales418

are in equilibrium, so that energy production and dissipation are in balance,419

which yields, µSGS = ρ̄(Cs∆)2|S̃| = ρ̄(Cs∆)2
(

2S̃ijS̃ij

)1/2

, where Cs denotes420

the Smagorinsky constant. It is known that this closure can be excessively421

dissipative, especially near the walls, which is corrected herein by using a van422

Driest damping function (Ferziger and Peric, 1996). Finally, the SGS scalar423

flux is represented with a gradient law, Qα,j = −ρ̄ΓSGS∂φ̃α/∂xj , where φ̃α is the424

resolved scalar field and ΓSGS denotes the subgrid diffusion coefficient evaluated425

from ΓSGS = ρ̄(Cs∆)2|S̃|/ScSGS with ScSGS a subgrid scale turbulent Schmidt426

number.427

The accurate determination of the filtered chemical reaction rate Sα remains428

one of the most important challenges when applying LES to turbulent reactive429

flows. We retain herein a formulation that accounts for the subgrid scale fluc-430

tuations of the chemical composition through a modelled transport equation431

for the subgrid scale PDF, which provides an effective resolution to the closure432

problems that arise from averaging or filtering the highly nonlinear chemical433

source terms (Haworth, 2010). Since one-point one-time PDF models are used,434

the terms that involve two points information, i.e., some property gradients, are435

not explicitly resolved, hence important effects, such as molecular diffusion and436
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viscous effects, and associated dissipation phenomena require to be modeled.437

The modelled transport equation for the scalar PDF is written as:438

∂

∂t
ρ(Ψ)PΦ(Ψ; x, t) +

∂

∂xj
ρ(Ψ)ũjPΦ(Ψ; x, t)

=
∂

∂xj

[
ρ(Ψ)(Γ + ΓSGS)

∂PΦ(Ψ; x, t)

∂xj

]
+

∂

∂ψα
[ρ(Ψ)Ωm(ψα − 〈φα〉)PΦ(Ψ; x, t)]

− ∂

∂ψα
[Sα(Ψ)PΦ(Ψ; x, t)] , (11)

where the chemical reaction term appears in closed form, thus circumventing439

the difficulties associated with the physical modelling of its filtered contribution.440

The derivation of such a transport equation may be found elsewhere (Haworth,441

2010). The retained hypotheses are: (i) the conditional filtered velocity has been442

decomposed into filtered and subgrid contributions, with the latter closed by a443

turbulent diffusivity approximation, (ii) the conditional mixing term is closed by444

the IEM mixing model Villermaux and Devillon (1972) also often referred to as445

the linear mean-square estimation (LMSE) model (Dopazo and O’Brien, 1974).446

In the above equation, Ωm = Cω(Γ + ΓSGS) /∆2 denotes the turbulent mixing447

frequency, with Cω = 2.0 the mechanical to scalar time scale ratio (Raman,448

2004).449

3.1.2. Lagrangian Monte Carlo approach450

The Lagrangian Monte Carlo approach offers the most classical framework451

to deal with the above PDF transport equation (Pope, 1985; Fox, 2003). In452

this approach, the joint scalar PDF is represented by an ensemble of notional453

particles (Fox, 2003), which evolve according to equivalent stochastic differential454

equations (SDE). A general framework to construct SDEs that are equivalent455

to the PDF transport equation is provided by Gardiner (2009).456

In the present context, the SDEs that describe the trajectory of the particles457

in the physical space, x, and in the sample space of the scalar field, Ψ, can be458

written as:459

dx =

[
ũ(x, t) +

∂ΓSGS

∂xi

]
dt+

√
2ΓSGSdW(t), (12)
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dΨ = [−Ωm (Ψ− 〈Φ〉) + S(Ψ)/ρ(Ψ)] dt (13)

where W(t) denotes the Wiener process, associated with a Gaussian random460

variable featuring zero mean value and a variance dt (Fox, 2003). The evolution461

of each notional particle occurs according to statistically independent increments462

dW(t), with a subgrid scale diffusion coefficient evaluated from the LES solver.463

The possible restrictions associated with the use of such an approach have been464

extensively discussed by Haworth (2010).465

3.2. Numerical model466

This section reports the essential features of the numerical solver FLUIDS 3D467

that has been used to conduct the numerical simulations reported hereafter. The468

reader may refer to Vedovoto et al. (2011) for further insights on the Eulerian469

solver.470

3.2.1. Navier-Stokes equations (NSE) solver471

The numerical method is based on a three-dimensional, conservative, stag-472

gered, finite-volume discretization (Ferziger and Peric, 1996). In the present473

work, a fully implicit scheme is retained, which requires the numerical resolution474

of a large algebraic system; the MSIP - Modified Strongly Implicit Procedure475

(Schneider and Zedan, 1981) is retained to this purpose.476

In the low Mach number flows under consideration, the density is solely477

determined by the temperature and thermodynamic pressure fields P0. The478

energy equation plays the role of an additional constraint on the velocity field,479

which is enforced by the dynamic pressure. This constraint acts onto the velocity480

field divergence, and it is related to the total derivative of the density, see481

Vedovoto et al. (2011). Once the pressure correction is evaluated, the velocity482

field can be updated.483

The present numerical simulations are conducted with a central difference484

scheme (CDS) to represent the spatial derivatives. Time integration is per-485

formed using the backward difference scheme (BDF) with a CFL number value486

set to 0.5. Further information about the available discretization procedures, as487
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well as the verification of the numerical code developed can be found in Vedovoto488

et al. (2011).489

3.2.2. Stochastic differential equations (SDE) solver490

The Lagrangian stochastic particles move through the physical space in-491

dependently of each other. They are assigned spatial coordinates and rep-492

resent mass. Due to the stochastic nature of motion, the number of parti-493

cles present in a given elementary volume changes in time. In order to pre-494

vent particle accumulations in computational cells, and to keep small com-495

putational cells from running empty, particles are ascribed a relative weight496

(Zhang and Haworth, 2004). Following Pope (1985), the SDEs are discretized497

resorting to a fractional step method. For instance, Eq.(12) is re-written as498

dxi = A(X(t))dt + B(X(t))dWi(t). The stochastic nature of this equation is499

associated with the Wiener process Wi. The increments of the Wiener pro-500

cess, dWi(t + ∆t) = Wi(t + ∆t) −Wi(t), with i = 1, ..., Nw, where Nw is the501

number of independent processes, drive the evolution of the particle in physical502

space. According to the model equation (11), the drift, A(X(t)), and diffu-503

sion coefficients, B(X(t)), are defined as, A(X(t)) ≡ [ũi + ∂(Γ + ΓSGS)/∂xi],504

and, B(X(t)) ≡
√

2(Γ + ΓSGS). The most widespread discretization procedure505

retained for such equations is the Euler-Maruyama method (Gardiner, 2009).506

However, such a method, in its explicit formulation, requires very small time507

steps due to stability issues. The present numerical simulations rely on the508

Milstein scheme (Kloeden and Platen, 2000) which has a strong and weak or-509

der of convergence equal to unity. Applying the Milstein scheme to Eq.(12)510

gives rise to the following discretized form dxi = A(X(t))∆t + B(X(t))∆Wi +511

0.5B′(X(t))B(X(t))((∆Wi)
2 − ∆t), where B′(X(t)) is the first derivative of512

B(X(t)) with respect to time.513

3.3. Implementation of the synthetic turbulence generators. Discussion.514

Four distinct turbulence generators have been implemented in the Navier-515

Stokes solver FLUIDS 3D. Among them, the simplest and still most widely-516
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used WN model simply consists in superimposing a white noise onto the mean517

velocity profile. However, its low computational cost and ease of implementation518

unfortunately cannot compensate for its poor representativeness, mainly due to519

its lack of energy at small wavenumbers, which may postpone any transition to520

turbulence.521

As far as more realistic synthetized turbulence procedures are concerned,522

we will now discuss and compare the ease of both implementation and use of523

the DF, RFG and SEM procedures. The first method, i.e., the DF model,524

has been implemented from scratch in the FLUIDS 3D solver. It obviously525

demands a little bit more programming skills than those required to encode526

the WN model. However, its practical use remains quite simple provided that527

a detailed preliminary analysis of the sensitivity to the filter support size is528

conducted for the geometry of interest. In comparison with the WN model, it529

should be noted that the DF, RFG and SEM models all require to be fed with530

the Reynolds stress tensor components. In terms of computational performance,531

the DF method suffers from an important CPU cost, which is the highest among532

the different method that have been considered. This CPU cost increases at the533

power N3 with N the size of the filter support.534

Since it has been performed on the basis of an original set of RFG routines535

written in C programming language, the practical implementation of the RFG536

method was rather simple. Special care must be taken to avoid any misuse of537

data types as soons as C and fortran exchanges are required. The method is of538

very simple use and, if we except the WN model, it was found the most efficient539

among those implemented. It is worth recalling that all simulations carried out540

in this work make use of parallel processing. This is a quite important point541

since the CPU costs of the synthetic turbulence procedures used at the inlet542

of the computational domain may indeed lead to important unbalanced loads.543

This is a serious issue with respect to the use of the DF method. It has been544

noticed that, with the DF method, the computational sub-domains lying at the545

inlet require about 10 per cent more random access memory (RAM) than the546

others.547
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Finally, the last method considered is the SEM method. It has also been548

implemented from scratch in the FLUIDS 3D solver. In terms of complexity549

of implementation we must recognize that, given the amount of information550

available in the literature, this task is very affordable. The computational cost551

of the SEM is found comparable to the one of the RFG method. As shown and552

discussed later on, the capacity of generating an energy spectrum that mimics553

some desirable characteristics, such as an inertial zone featuring a −5/3 power-554

law decay rate as well as the capability of the SEM to recover a prescribed555

anisotropic tensor makes the method very appealing. In addition to this, the556

obtained results display only a rather small dependence on the number of eddies557

generated, which contributes to maintain the CPU costs reasonable.558

4. Application to homogeneous isotropic turbulence559

In the present brief section, we proceed with a preliminary inspection of560

the inflow generator capabilities for the case of a spatially decaying isotropic561

turbulence. The conditions studied herein are very similar to the ones previ-562

ously considered by Jarrin et al. (2009) and the reader may refer to this archival563

publication for futher details. The mean flow is oriented towards the positive564

x1-direction. The computational domain is a three-dimensional box with char-565

acteristic dimensions (20×6×6), discretized with a finite volume mesh featuring566

200 × 60 × 60 cells in the x1, x2 and x3-directions, respectively. The mesh is567

homogeneous in all three directions. Periodic boundary conditions are imposed568

along the x2 and x3-directions. An unsteady advective (also often denoted con-569

vective) boundary condition is applied on the outflow plane (x1 = 20). This570

unsteady boundary condition determines a velocity field that ensures an out-571

flow mass flux equal to the incoming mass flux. The implemented formulation572

is the one proposed by Orlanski (1976). The mean streamwise velocity is set to573

U0 = 20m/s, and the molecular viscosity is ν = 3.5 × 10−4m2/s. The mean574

turbulent kinetic energy at the inlet is k0 = 3/2 m2/s2 and finally, for the sim-575

ulation results presented below, the integral length scale is set to L = 0.4m.576
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It seems worth emphasizing that these values are exactly the same as those577

previously retained by Jarrin et al. (2009). Statistics are averaged over two578

flow-through domain times and over homogeneous periodic directions.579

The set of results gathered in Fig. 1 displays the influence of the inflow tur-580

bulence generators. The energy spectra are extracted at five distinct locations581

in the computational domain. The five probes are located at x1 = 0.05, i.e., in582

the first control volume immediately downstream of the inlet plane, and further583

downstream at positions x1 = 1, x1 = 5, x1 = 9, and x1 = 19. The x2 and584

x3-coordinates of the probes are held constant and equal to 3, i.e., positioned585

in the middle of the computational domain cross-section.586

Figure 1: One-dimensional longitudinal energy spectra (u1-component of velocity). The sub-

figures (a), (b), (c) and (d) correspond to the results of simulations obtained at x1 = 1, x1 = 5,

x1 = 9, and x1 = 19 respectively. WN (blue curve); DF (green curve), RFG (black curve)

and SEM (red curve).

To perform the comparative analysis, the white noise synthetic turbulence587

generator is considered with a fluctuation level of twenty per cent imposed on the588
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streamwise component of the velocity field, while 10 per cent fluctuations are set589

for the components in the x2 and x3-directions. For the simulations conducted590

with the DF method, the size of the filter support is set to 10 while 1, 000 Fourier591

modes are retained for the simulations based on the RFG method. For the592

simulation carried-out with the SEM, 10000 eddies are used. Time integration593

is performed using the Backward Difference Scheme with a CFL number value594

set to 0.5. The advective terms of the transport equations are discretized by595

using the CDS approach. Finally, since the numerical code developed has the596

capability of performing distributed computing, the computational domain is597

divided into 16 sub-domains.598

From Fig. 1, it is clear that, for the probe positioned at x1 = 19, the ef-599

fects associated with the choice of one given inflow turbulence generator are600

minimized. At this position, the energy spectrum is indeed developed, i.e, the601

turbulent flowfield got enough time to forget the influence of the highest fre-602

quencies that were introduced through the synthetic inlet turbulence signals 1.603

This offers quite a remarkable contrast with the spectra observed at the inlet604

(x1 = 0.05) where strong differences may be observed and the effects of the in-605

flow generator are very revealing. In fact, with the exception of the RFG model,606

it is worth noting that the different methods fail to display a satisfactory spec-607

tral behavior just downstream of the inlet. To conclude with this preliminary608

investigation, the values of the velocity derivative skewness are inspected, see609

Fig. 2. This quantity is related to vortex stretching and energy transfer. The610

value obtained at x1 = 19 for the white noise is very small: S = −0.030 . With611

the WN procedure all the energy is dissipated after a few cells downstream the612

inlet. The inflow data indeed does not exhibit any spatial and/or temporal cor-613

relation: two neighbouring points are uncorrelated, which leads to high velocity614

gradients and a quasi-instantaneous dissipation of turbulent kinetic energy at615

the inlet plane. This behavior simply confirms that the small computational616

cost of the WN model cannot compensate for its inability to reproduce even617

1The obtained level of fluctuations still appears to be quite altered with the WN model.
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the simplest statistics of the turbulent flow field. In contrast, we measured618

S = −0.215 at the same location (x1 = 19) for the DF model, S = −0.268 for619

the RFG model and S = 0.161 for the SEM. Such values are comparable to620

those previously documented by Jarrin et al. (2009).621

(a)

dk/dx

(b)

S

x1(m)

Figure 2: Downstream evolution of the (a) turbulent kinetic energy spatial decay rate (top),

and (b) the velocity derivative skewness (bottom) plotted versus the longitudinal coordinate

x1(m); (−.−) WN, (- -) DF, (..) RFG, and (—) SEM.

5. A priori analysis of the turbulent inflow data generators622

The influence of turbulence inlet generators is now investigated in condi-623
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tions relevant to practical applications and we will compare resulting statistics624

in a simplified configuration so as to assess the efficiency of the models. Before625

examining the effect of the inflow generation technique on flowfields computed626

in a representative geometry, we present below comparative analyses of the627

implemented turbulent inflow data generators. The experimental stress tensor628

profile and mean velocity characteristics retained for testing the turbulent inflow629

generation techniques are based on the experimental studies conducted in the630

geometry of Moreau, see Magre et al. (1988). The corresponding experimental631

setup offers a reference test case (Bilger et al., 2005). For instance Andrade632

et al. (2011) performed the LES of the corresponding flowfield by resorting to633

a classical white noise generator and the present investigation may therefore be634

helpful to get a better understanding of the residual differences they observed635

between experiments and computational results. The experimental test section636

permits the development of a high speed turbulent mixing layer, where a pre-637

mixed methane-air flow can be ignited and stabilized by a parallel stream of638

combustion products. Profiles of mean velocity, turbulence intensity and ve-639

locity fluctuations have been characterized for both reactive and non-reactive640

flows. Experimental data make available the R11 component of the Reynolds641

stress tensor only. Andrade et al. (2011), when simulating this configuration,642

assumed that the R22 and R33 components are approximately half of the R11643

component. The components R12 = R21 and R32 = R23 are taken as zero.644

These assumptions are retained here. No information is given about the cross645

component R13, but since it plays a crucial role in the shear layer spreading646

rate, we must satisfactorily approximate such a quantity. Brucker and Sarkar647

(2007) provide a relation in which the non-dimensional width of the shear layer,648

ξ = h/δm, with h varying between [−δm < h < δm], is correlated to the non-649

dimensional quantity R13/∆ū
2
1 in self-similar mixing layers. Once defined the650

velocity difference between two streams, ∆ū2
1, and the width of the mixing layer651

δm = 5 mm, the component R13 = R31 can be evaluated from Brucker and652

Sarkar (2007) data.653

The combustion chamber is a channel with dimensions 800×100×100 mm3
654
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in the directions x1, x2 and x3 respectively. The inlet is divided into two ducts655

separated by a splitter plate. The fresh gases are injected at 65 m/s in the main656

(upper) duct while hot gases, featuring a mean velocity of 130 m/s, are injected657

in an auxialiary duct, see Fig. 3. For the present test, which aims at evaluating658

the variables of interest at the inlet plane only, the two-dimensional grid is659

divided into 50 points in the x2-direction and 50 points in the x3-direction. The660

mean velocity profile used at the inlet is represented by a combination of two661

developed flows at different exit velocities. The analytical function adopted for662

generating the corresponding mean velocity profile is,663

ũ1(x3) = Cin

[
1−

(
x3 − (a/2 + h)

a/2

)γin]
, (14)

where Cin is the mean value of the velocity in the duct, a is the position of the664

bottom part of the duct in the x3-direction, h is the height of the duct, and γin665

is a constant that sets the thickness of the shear layer. The values of the above666

parameters are summarized in Table (1).667

x∗3

x∗3
x∗1

x∗2 ũ1(x
∗
3)

Figure 3: Computational domain retained to perform the numerical simulations (left), and

mean velocity profile imposed at its inlet (right); x∗3 = x3/δm denotes the non-dimensional

coordinate with δm the initial width of the mixing layer

As stressed above, it is important to verify if the procedures implemented668

for generating the turbulent inflow data reproduce a random signal in which669

the energy spectrum distribution corresponds to more energetic scales in the670

smallest wave numbers, and to less energetic scales in the highest wave numbers.671
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Moreover, the capability to generate a prescribed Reynolds stress tensor is also672

of paramount importance.673

Table 1: Values of the parameters associated with the imposed mean velocity profile.

Duct Cin [m/s] h [m] a [m] γin

Main duct 65 0.02 0.08 6.0

Auxiliary duct 130 0.00 0.02 8.0

The DF and RFG methods feature some factors that directly impact both674

the accuracy in reproducing the characteristics of the flows of interest and the675

associated computational cost. Concerning the former, the main factor is the676

filter support size, and for the latter, i.e., the RFG method, the number of677

Fourier modes in Eq. (6). For the SEM, the number of eddies may be expected678

to be the critical parameter. Given a set of initial conditions, e.g., mean velocity679

distribution, size and number of control volumes of the computational domain680

at the inlet, Reynolds stress tensor, characteristic length and time scales of a681

flow, the turbulent inflow generators are used to recover the statistics of the682

flow properties of interest by a classical averaging procedure applied on 5000683

samples. In the present work, to reduce the computational cost, an isotropic684

signal is generated, and then Eqs. (1) and (2) are applied to the resulting signal685

in order to obtain the desired level of anisotropy.686

5.1. WN model687

The first and simplest method is the superimposition of a white noise on688

the mean velocity profile given by Eq. (14). In this case, a random sig-689

nal with zero mean and unity variance is adjusted to yield fluctuations rep-690

resenting 20 per cent of the mean velocity in the x1-direction of the flow,691

i.e., the u1-component of velocity. In the x2 and x3-directions, the fluctua-692

tions levels are set to 10 per cent of the mean velocity. Figure 4 displays a693

one-point temporal spectrum obtained from the energy of velocity fluctuations,694

i.e., k(t) = 1/2
(
u′21 (t) + u′22 (t) + u′23 (t)

)
, which has been sampled from a probe695

placed in the middle of the inlet plane. Note that the corresponding samples696
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were selected in such a manner that they are equally-spaced in time and the697

frequency of data sampling has been optimized to restrict any possible loss of698

information. As illustrated in this figure, the fact that the energy is spread over699

the whole energy spectrum, whatever the fluctuation frequency, contradicts the700

classical Kolmogorov description of turbulent flows.701

Figure 4: Energy spectrum associated with a WN generator.

As expected, the lack of spatial or temporal correlations, added to the702

isotropic nature of this process, leads to rather poor results when the com-703

ponents of the computational stress tensor, as evaluated from the averaging704

process of the inlet signal, are compared with experimental results, see Fig. 5.705

Therefore, it can be foreseen that the use of the WN technique will lead to706

poor results when applied to the full numerical simulation of the corresponding707

experimental benchmark.708

5.2. DF model709

With the DF method, we may expect a certain degree of dependency of the710

results on the filter support size. Since the filter size is directly connected to711

the number of grid points at the inlet, the computational cost associated with712

the number of points in the support, therefore, is an important issue. As it can713
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be seen in Fig. 6, as the support size is increased, the energy spectrum becomes714

more representative of the one associated with a fully developed turbulent flow.715

Figure 5: Stress tensor components evaluated from the white noise superimposition on the

mean velocity profile; symbols •: experimental data from Moreau and Boutier (1977); line:

WN results.

Within the DF framework, the filter support size and the integral length716

scale are interrelated through the expression of the filter coefficients bj , and717
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as expected, with N = 1, the correlation is truncated to zero and the energy718

spectrum thus exhibits little difference from a white noise spectrum. The differ-719

ences become more pronounced for N equal to 5, 10 and 20. For a given level of720

resolution, the influence of an increase in the filter support size is indeed similar721

to an increase of the turbulent length scale.722

Figure 6: Influence of the support size N on the energy spectrum obtained with the DF

method: (a) N=1, (b) N=5, (c) N=10, (d) N=20.

Concerning the computational cost of the DF method, in the tests carried out723

to evaluate the sensivity to the number of points N in the filter support, we ob-724

tain the following results: for N = 1, the code spent approximately one minute725

(using a CPU Intel (R) Xeon (TM) 3.00GHz with 4 gigabytes of RAM memory)726

to perform the 5000 iterations required to evaluate the statistics, whereas, for727

N = 20, for the same number of iterations, using the same computer, approxi-728

mately 14 hours and 30 minutes were necessary.729

Such a disparity can be easily understood by using a very simple example.730

For N = 5, a cubic box of dimensions 5 × 5 × 5 is created for each point at731

the inlet. Since, in the present configuration, the inlet is composed of a grid of732

50× 50 points in x2 and x3-directions, respectively, the total number of points733
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where the filtering process is performed is 50 · 50 · (5 · 5 · 5), or, 312, 500 points.734

For N = 20 this number becomes 2×107 points, which is 64 times larger.735

Figure 7: Stress tensor components evaluated from the DF method ; • experimental data from

Moreau et al (1977); Red curve: N=1; Blue curve: N=5; Magenta curve: N=10 and Black

curve: N=20

Concerning the capability of the DF method to reproduce anisotropic stress736

tensors, it can be seen in Fig. 7 that the support size influence is clearly less ob-737
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vious than the effects previously evidenced in the energy spectrum. It is indeed738

observed that, for filter supports larger than 10 points, no further improvement739

is obtained. From this preliminary analysis it is therefore suggested to retain a740

support size of 10 points for the subsequent numerical simulations.741

Figure 8: Stress tensor components evaluated from the RFG method, influence of the number

of Fourier modes: • experimental data from Moreau and Boutier (1977); Red curve: 50 Fourier

modes; Blue curve: 500 Fourier modes; Magenta curve: 1000 Fourier modes and Black curve:

5000 Fourier modes
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5.3. RFG model742

For the tests presented in the this section, the RFG model is not found to be743

very sensitive to the number of Fourier modes retained, in terms of its ability744

to reproduce the prescribed stress tensor, as well as the shape of a turbulent745

spectrum, as can be seen in Figs. (8) and (9), respectively. Note that N stands746

for the number of Fourier modes retained in one single direction, and the same747

number of modes is considered in the three directions.748

When a turbulent flow is analyzed in terms of Fourier modes, each mode can749

be understood as a particular turbulent scale. From Fig. 8, it is confirmed that,750

even a small number of Fourier modes provides a satisfactory reproduction of751

the prescribed stress tensor. Above 500 Fourier modes the differences observed752

between experimental data and computational results become completely in-753

significant.754

Figure 9: Influence of the number of Fourier modes on the energy spectrum obtained with

RFG method: (a) 50 Fourier modes, (b) 500 Fourier modes, (c) 1000 Fourier modes and (d)

5000 Fourier modes.

It can be noted in Fig. 9 that, as the number of Fourier modes is increased,755

the energy spectrum becomes more representative of that associated with high756
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Reynolds number turbulent flows. Moreover, it is observed in Fig. 9 that only757

very slight differences persist when the number of Fourier modes exceeds 1, 000.758

Figure 10: Stress tensor components evaluated from the SEM model; • experimental data

from Moreau et al (1977); Red curve: 100 eddies; Blue curve: 1000 eddies; Magenta curve:

10000 eddies and Black curve: 100000 eddies

To conclude, we found that obtaining turbulent inflow data featuring rep-759

resentative energy spectra is computationally cheaper using the RFG model760
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than the DF model. For instance, the time spent to perform 5000 iterations,761

with 1, 000 Fourier modes for obtaining computational statistics comparable to762

experimental data, is approximately five minutes. This is similar to the time763

consumed by the DF method, with a support N = 5, on the same Intel (R)764

Xeon (TM) 3.00GHz CPU with 4 gigabytes of RAM memory. Therefore, the765

numerical simulations reported in the next sections are performed with 1, 000766

Fourier modes.767

5.4. SEM model768

As emphasized in section 2.2.4, the results obtained with this method are ex-769

pected to be sensitive to the turbulence characteristic length scale chosen. Such770

a quantity may be evaluated experimentally but, for the present application,771

this characteristic length scale is set to a constant value equal to 0.1m. This772

value was also the input parameter of the RFG method in the previous section.773

Figure 11: Comparison of the effects of the number of eddies on the shape of the energy

spectrum obtained with the SEM model. (a) 100 eddies, (b) 1000 eddies, (c) 10000 eddies,

(d) 100000 eddies.

The SEM is subject to the same preliminary tests as those applied to the774
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DF and RFG methods. We study the capability of correctly reproducing the775

Reynolds stress tensor, and examine the shape of the resulting turbulent energy776

spectrum. It is possible to verify in Fig. 10 that a satisfactory representation777

of the Reynolds stress tensor can be obtained whatever the number of eddies778

initially prescribed, even with a total number of eddies varied between 100 (0.1k)779

and 100,000 (100k) eddies. Such an independence on the total number of eddies780

is also evidenced in Fig. 11. Indeed, the energy spectrum does not seem to be781

influenced by the number of modes, provided that it is larger than 100.782

The computational cost, however, is found to vary linearly with the number783

of eddies. For 100k eddies, for instance, to perform 5000 iterations (using the784

same Intel (R) Xeon (TM) 3.00GHz CPU with 4 gigabytes of RAM memory),785

the time spent was about six minutes, while for 1k eddies, the code requires786

about 3 seconds only. In comparison with the calculations performed with the787

RFG and DF methods, the SEM appears thus to be considerably cheaper.788

In the next sections we proceed with the analysis of the different turbulent789

inflow generators by conducting the LES of the experimental test case of Moreau790

and coworkers. In a first step of the analysis, the corresponding wall bounded791

turbulent mixing layer flows is investigated in non-reactive conditions and then792

attention is focused on the high-speed turbulent and reactive mixing layer.793

6. Application to the numerical simulations of a wall bounded turbu-794

lent mixing layer flow795

6.1. Sensitivity to the synthetized turbulence model796

In order to assess the influence of the synthetic turbulence generators, three-797

dimensional numerical simulations of a high speed mixing layer are now per-798

formed. The obtained results are compared with the experimental data. The799

computational domain is a three-dimensional box with dimensions (800× 100×800

100) mm3, discretized with a finite volume mesh featuring 320×100×100 cells in801

the x1-, x2- and x3-direction, respectively. Since the numerical code developed802

has the capability of performing distributed computing, the computational do-803
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main is divided into 40 sub-domains. No-slip boundary conditions are imposed804

in the x2 and x3 directions. An advective boundary condition is used at the805

outflow. The Smagorinsky model is used with Cs = 0.18, and the Van-Driest806

damping function is applied at the walls. The Reynolds number, based on the807

initial width of the mixing layer, δm = 5 mm, the mean velocity difference808

between the two inlet streams Ur = 97.5 m/s and the value of the kinematic809

viscosity of air at 600 K is Re = 3075.810

811

To perform the comparative analysis, the white noise synthetic turbulence812

generator is considered with fluctuation levels of 20 per cent and 10 per cent im-813

posed on the streamwise and transverse velocity components respectively. For814

the simulations conducted with the DF method the size of the filter support is815

set to 10, whereas 1, 000 Fourier modes are retained for the simulations based816

on the RFG method. For the simulation carried out using the SEM, 10k eddies817

are used. The mean velocity profile at the inlet is given by Eq. (14).818

819

A probe is positioned just downstream of the computational domain inlet, in820

the first control volume along the x1-direction, and at x∗2 = 10 and x∗3 = 4.6. In821

Fig. 12 the normalized longitudinal filtered velocity component, i.e., u∗ = u/Ur,822

is plotted against the normalized time, i.e. t∗ = tUr/δm. In this figure the823

presence of high frequency structures appears to be more pronounced for the824

white noise, while it is less apparent for the velocity signal evaluated from the825

method of Klein et al. (2003). Moreover, one can notice in Fig. 12-(c) that there826

are almost no high frequencies in the velocity signal, which can be explained by827

the lack of energy that has been evidenced at the small scales in the decaying828

part of the energy spectrum, see Fig. 6. The same conclusion applies to the829

SEM.830

Figure (13) displays the time-averaged filtered turbulent kinetic energy (TKE),831

evaluated from the trace of the Reynolds stress tensor, for the different methods832

retained to generate the inflow. The statistics are obtained by time averaging833

the filtered flow field over four flow-through (residence) times, resulting in ap-834
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proximately 15, 000 realizations.835

Figure 12: Temporal evolution of the u1 component of velocity downstream of the flow inlet;

(a) WN, (b) DF, (c) RFG, and (d) SEM.

It is noteworthy that the use of an improved method to generate the turbu-836

lent inflow data drastically changes the flow field structure. For instance, in Fig.837

13-(a) the TKE levels become significant after one half of the total length of the838

computational domain in the x1-direction only, whereas for the DF and RFG839

methods, the flow resembles that observed experimentally, see Fig. 13. Due840

to the high level of turbulent intensity in the incoming ducts that inject fresh841
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and burnt gases streams into the combustion chamber, the turbulence at the842

inlet is fully developed. It is worth noting that in the comparisons henceforth843

shown concerning the Reynolds stress tensor components, the sub-grid contri-844

bution is also accounted for. The turbulent kinetic energy levels for the DF,845

RFG and SEM are also larger downstream of the inlet of the computational846

domain. Again, although a transition to turbulence is observed when the white847

noise generator is used, practically all velocity fluctuations entering the compu-848

tational domain are almost immediately dissipated close to the inlet boundary849

condition, and the first coherent structures are observed only after the first half850

length of the computational domain, along the x1-direction.851

Figure 13: Fields of turbulent kinetic energy for the simulations carried out with the methods:

(a) WN, (b) DF, (c) RFG and (d) SEM.

An instantaneous field of the normalized effective turbulent viscosity, i.e.852

µ∗e = (1 + µSGS/µ), is reported in Fig. 14. It is clear from this figure that the853
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level of turbulence at the inflow is higher in sub-figures (b), (c), and (d). It can854

thus be concluded, that, since the Smagorinsky model is used, and since such855

model relies on the resolved strain rate to evaluate the sub-grid viscosity, the856

values of strain rate in the vicinity of the inlet of the computational domain is857

higher for the DF, RFG and SEM than when the white noise is considered.858

Figure 14: Snapshot of the normalized effective turbulent viscosity µe at t∗ = 19500, for the

simulations carried out with the methods: (a) WN, (b) DF, (c) RFG and (d) SEM at t = 1s

(t∗ = 19500).

Figure 15 displays an isovalue of Q, the second invariant of the velocity859

gradient tensor, which is colored by the velocity magnitude. It shows clearly860

that the WN is subject to a transition in the middle of the computational861

domain. In comparison with the RFG and SEM, it is also evident from this862

figure that there is a more significant turbulent activity just downstream of the863

inlet plane when the DF method is used.864
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Figure 15: Iso values of Q = 2.5 × 106 colored by the filtered velocity magnitude for the

methods (a) WN, (b) DF, (c) RFG and (d) SEM at t = 1s (t∗ = 19500).

Figure 16, which depicts the vorticity component along direction x2, also865

provides a valuable insight into the behavior of the Smagorinsky model. It is866

commonly agreed that the Smagorinsky model is highly dissipative. This is one867

of the reasons that also explains why the white noise generator signal imposed868

at the inlet may be rapidly destroyed. However, provided that a more elabo-869

rated method is retained to generate the inflow turbulence, Fig. 14 confirms870

that a signal featuring large scales introduced in the domain is not so quickly871

dissipated, even when the Smagorinsky model is used.872
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Figure 16: Component in x2-direction of the vorticity as obtained from the simulations carried

out with the methods (a) WN, (b) DF, (c) RFG and (d) SEM at t = 1s (t∗ = 19500).

In order to assess more quantitatively the methods implemented, Fig. 17873

displays comparisons of the averaged u1-component of the velocity with experi-874

mental data at four distinct locations in the computational domain, for x∗2 = 10.875

The results confirm that the different methods provide an acceptable representa-876

tion of the mean velocity field when compared with experimental data. However877

the need for an improved turbulent inflow generator becomes clear to recover878

the levels of velocity fluctuations. Indeed, it can be seen in Fig. 18 that the879

superimposition of white noise on the mean velocity is unable to recover the880

experimental data in the first half of the computational domain along the x1-881

direction - a conclusion that agrees with the previous work of Andrade et al.882

(2011). In contrast, the results obtained with the DF, RFG and SEM display a883

more satisfactory level of agreement with experimental data at the same loca-884
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tion. It is also worth noting the presence of two maximum values on the
√
R11885

profile, featuring a remarkable amplitude for the SEM. The first, positioned886

around x∗3 = 5, is associated with the shear layer growth, whereas the second887

develops in the vicinity of the wall.888

x∗1 = 7.8 x∗1 = 50.2 x∗1 = 87.6 x∗1 = 130

x∗3

ũ1

Figure 17: Mean longitudinal velocity profiles obtained using the classical Smagorinsky model.

(•): Experimental data(−.−) WN, (- -) DF, (..) RFG and (—) SEM.

x∗1 = 7.8 x∗1 = 50.2 x∗1 = 87.6 x∗1 = 130

x∗3

√
R11

Figure 18:
√
R11 stress tensor component profiles obtained using the classical Smagorinsky

model. (•): Experimental data(−.−) WN, (- -) DF, (..) RFG and (—) SEM.
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From the computational cost point of view, it is clear that the better quality889

of the results obtained with the DF, RFG and SEM methods requires a non-890

negligible amount of CPU time. For the present test case, the simulations891

conducted with the DF and RFG methods correspond to approximately the892

same computational cost, i.e., about 40 per cent more than that associated with893

the white noise methodology, for the former, and 35 per cent for the latter.894

The cost associated with the numerical simulations conducted with the SEM895

is 55 per cent higher than that conducted with the white noise. The DF and896

RFG methods therefore, appear as very attractive. Nevertheless, there are897

two crucial differences between the DF and RFG methods. The first does not898

yield temporal correlations, only spatial correlations are guaranteed. Moreover,899

the RFG method generates a divergence-free velocity field at the inlet. This900

confirms that the RFG method is an excellent candidate to impose synthesized901

turbulence.902

6.2. Sensitivity to the SGS closure903

Whatever the intrinsic qualities and limitations of the synthetic turbulence904

generators it should be acknowledged that the overly dissipative nature of the905

Smagorinsky model may significantly alter the comparison performed above906

between the computational results and the experimental data. It is therefore907

proposed in this subsection to analyze the different turbulence generators in908

conjunction with another subgrid-scale closure.909

In practice, many solutions have been proposed to remedy the excessive910

dissipation of the standard Smagorinsky model. For instance, it has been com-911

bined with the similarity subgrid-scale model of Bardina et al. (1980) to obtain912

a mixed model, see Liu et al. (1994). Another solution consists in adjusting913

dynamically the Smagorinsky constant Cs to the flow conditions, following the914

procedure of Lilly (1992), via a double filtering in the physical space (Germano,915

1992). The computational results obtained with such a dynamic Smagorinsky916

closure are compared to experimental data in Figs. 19 and 20. From a general917

point of view, it must be recognized that the quality of the agreement between918
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computations and experiments is only slightly improved. However, the use of919

the dynamic procedure produces significantly better results for the level of fluc-920

tuations obtained at x1 = 7.8, see Fig. 20.921

x∗1 = 7.8 x∗1 = 50.2 x∗1 = 87.6 x∗1 = 130

x∗3

ũ1

Figure 19: Mean longitudinal velocity profiles obtained using the dynamic Smagorinsky model.

(•): Experimental data(−.−) WN, (- -) DF, (..) RFG and (—) SEM.

x∗1 = 7.8 x∗1 = 50.2 x∗1 = 87.6 x∗1 = 130

x∗3

√
R11

Figure 20:
√
R11 stress tensor component profiles obtained using the dynamic Smagorinsky

model. (•): Experimental data(−.−) WN, (- -) DF, (..) RFG and (—) SEM.
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7. Reactive flows simulations922

Although there is already some literature available to describe the impor-923

tance of realistic turbulent inflow data prescription on non-reactive flows, such924

an analysis of the turbulent inflow data effects is much less common for turbu-925

lent reactive flows. In this last section, a set of two-dimensional reactive flow926

simulations is conducted to evidence such effects and then the paper ends with a927

tri-dimensional numerical simulation performed with the RFG synthetic turbu-928

lence model. The procedure followed here is identical to that adopted to impose929

the turbulent boundary conditions in non-reactive flows, i.e., a set of numeri-930

cal simulations was carried out in order to evaluate the effects of the different931

methods for turbulent inflow generation: (i) superimposing white noise on the932

mean velocity profile (WN model), using (ii) the DF method, (iii) the RFG933

method and, finally, (iv) the SEM.934

Table 2: Values for mean velocity profile retained for the simulation of reactive flows.

Duct Cin [m/s] h [m] a [m] γin

Main duct 55 0.02 0.08 6.0

Auxiliary duct 110 0.00 0.02 8.0

7.1. Two-dimensional numerical simulations935

The computational domain is a three-dimensional box with dimensions (800×936

2 × 100) mm3. It is discretized with a mesh of 320 × 1 × 100 control volumes937

in the x1, x2 and x3-direction, respectively. Periodicity and no-slip boundary938

conditions are imposed along x2 the x3-directions respectively. The compu-939

tational domain is divided into 8 parallel regions. The other parameters re-940

main the same as those retained for non-reactive cases. For the simulation941

conducted with the white noise, a fluctuation level of 20 per cent is imposed on942

the streamwise velocity component, while fluctuations of 10 per cent are set for943

the cross stream velocity component. For the simulations performed with the944

DF method of Klein et al. (2003) the filter support size is set to 10, while one945

46



thousand (1, 000) Fourier modes are used for the simulations based on the RFG946

method of Smirnov et al. (2001). Ten thousands (10k) eddies are considered947

in the simulation conducted with the Synthetic Eddy Method (SEM). Magre948

et al. (1988) have provided a large amount of experimental data gathered in949

the geometry previously used by Moreau and Boutier (1977) for different flow950

conditions. The mean velocity profile has the same shape as the one employed951

for the non-reactive flows, see Eq. (14). However, to be consistent with the mea-952

surements performed in reactive conditions by Magre et al. (1988), the mean953

velocity profile is parameterized with the values reported in Tab. (2).954

To proceed with the mathematical modelling of the chemical source term, we955

retain a single step, global, and irreversible reaction that involves the progress956

variable, i.e., a normalized temperature defined by c ≡ (T − Tu)/(Tb − Tu)957

where the subscripts u and b denote fresh reactants and fully burned gases958

conditions respectively. The corresponding chemical reaction rate is given by959

S(c) = AαρṠ, where the pre-exponential constant can be calculated as Aα =960

ΛS2
L/[α exp (−β/α)] and Ṡ = (1−c) exp [−β(1− c)/(1− α(1− c))], see Williams961

(1985). In the previous expressions, α denotes a normalized temperature factor962

α = (Tb − Tu)/Tb and the reduced activation energy is β = α(Ta/Tb), where963

Ta = Ea/R is the activation temperature, Ea is the activation energy and R964

is the universal constant of gases. Here, we set Ea = 8, 000J/mole, which is a965

value representative of CH4-air combustion. The DVODE algorithm of Byrne966

and Dean (1993) is employed to perform the numerical integration of the chem-967

ical reaction rate.968

The initial and boundary conditions for the mean value of the progress vari-969

able at x∗1 = 0, are set with the following hyperbolic profile,970

c̃(x3) =
cq + cp

2
+
cq − cp

2
tanh

(
2h(x3)

δm
− 2hp
δm

)
, (15)

where, cq and cp are the mean values of the progress variable of the auxiliary971

burner (cq = 1; Tb = 2000 K) and of the main duct (cp = 0; Tu = 560 K),972

respectively. The quantity hp is the height of auxiliary duct. Concerning the973

Monte Carlo simulation, 50 particles per control volume are used and the Mil-974
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stein scheme is employed for the numerical integration of the system of SDEs.975

976

Figure (21) shows instantaneous fields of the chemical reaction progress vari-977

able c̃ and the filtered chemical reaction rate S̃(c) for the present set of numerical978

simulations. The method of turbulent inflow data generation clearly influences979

the shear layer spreading rate as well as the position of the instantaneous fil-980

tered flame front. For instance, if we consider the subfigure (a) of Fig. 21, the981

longitudinal span of the turbulent flame front obtained with the white noise is982

larger than the one obtained using the other three methods.983

Figure 21: Instantaneous fields of chemical reaction progress variable c̃ - top, and chemical

reaction rate S̃(c) - bottom. The subfigures (a), (b), (c), and (d) display results of simulations

with the respective inlet boundary condition methods: WN, DF, RFG and SEM.
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Concerning the influence of the inlet boundary condition, we observe in Fig.984

22 that accounting for a turbulence spectrum always gives rise to a shorter and985

thicker flame brush. The length of the 2D flame brush, based on the location986

of the iso-line 〈c〉 = 0.9 in the x1 direction, is found to be 560 mm for the987

simulation carried out with the superimposition of a white noise, while for the988

DF, RFG and SEM methods the lengths are 543, 497 and 414 mm respectively.989

Figure 22: Averaged fields of the progress variable - top, and chemical reaction rate S(c) -

bottom. The subfigures (a), (b), (c), and (d) are results of simulations with the respective

inlet boundary condition methods: WN, DF, RFG and SEM.

Finally, an interesting point that can be evidenced from the present investi-990

gation is to determine how the choice of the method of generation of turbulent991

inflow data may affect the representation of the flame-turbulence interaction.992
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To this purpose, we recall the definition of the Damköhler number, Da = τt/τc,993

which is the ratio of the characteristic turbulent time scale, τt and the chemical994

time scale, τc. This number is one of the quantities that characterizes how tur-995

bulence interacts with chemical reactions. It should be noted that the different996

synthetic turbulence generators may lead to different Damköhler number values.997

Indeed, the characteristic time of turbulence is strongly affected by the dif-998

ferent methods retained to generate inflow data. Considering the white noise999

technique, we observed that the fluctuations lie in the range 1−20 m/s, whereas1000

using the DF, RFG and SEM methods, the maximum value of fluctuations down-1001

stream of the flame brush are about 60, 40 and 70 m/s respectively. Given the1002

grid size and the computational domain retained in the present study, which1003

provide a minimum length of the control volumes of 1 mm, the turbulent char-1004

acteristic times for the WN, DF, RFG and SEM methods are 50µs, 16µs,1005

25µs and 14µs, respectively. For the cases simulated in the present work, the1006

Damköhler number value is found to be 0.11 for the white noise. For the simula-1007

tions performed with the DF, RFG and SEM methods, the Damköhler number1008

is 0.033, 0.055 and 0.03, respectively which clearly confirms how the results of1009

turbulent reactive flow simulations may be sensitive to the methodology used1010

to generate synthetic turbulence at inlet boundary conditions.1011

7.2. Three-dimensional versus two-dimensional numerical simulations1012

The reactive numerical simulations that are reported herein have been per-1013

formed using the PDF closure presented in section 3.1. Large Eddy Simulations1014

should theoretically be performed in 3D, but the present reactive computations,1015

which do involve the resolution of the PDF transport equation with a Lagrangian1016

Monte-Carlo solver, remain quite expensive. This is the reason why we have1017

resorted to 2D simulations so as to evaluate the sensivity of the computational1018

results to the four inlet turbulence generators. However, it is quite relevant to1019

question the use and impact of the 2D approximation. This point is still under1020

investigation but, for one given inlet turbulence generator, a preliminary answer1021

is provided in this last section of the manuscript.1022
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The computational domain is now a three-dimensional box with dimensions1023

(800×50×100) mm3, discretized with a mesh of 320×50×100 control volumes in1024

the x1, x2 and x3-direction, respectively. The computational domain is divided1025

into 256 parallel regions, each featuring 6250 control volumes. No-slip boundary1026

conditions are imposed over x2 and x3-direction while the Orlanski’s advective1027

boundary condition is again used at the outlet. The RFG model is retained to1028

generate the turbulent inflow data.1029

Figure 23: Instantaneous fields of the filtered chemical reaction rate S̃(c) in s−1.

Figures 23 and 24 display the instantaneous fields of the filtered chemical1030

reaction rate and filtered progress variable. Figure 25 illustrates the important1031

flow acceleration that is induced by the thermal heat release. Combustion is1032

initiated just downstream of the channel entrance and further develops along1033

the channel length to reach an anchoring position at the upper channel wall1034

at around x1 = 400 mm downstream of the splitter plate, which is consistent1035

with the data gathered from experimental investigations.The flame is subject to1036

a large turbulence intensity and, as a consequence, the filtered flame structure1037

appears to be strongly wrinkled by the large-scale turbulence. From a qualitative1038

point of view, the filtered flame features a thickness of the order of centimeters.1039

A similar order of magnitude was reported from the experimental observations of1040

Magre et al. Magre et al. (1988). Nevertheless, it is important to emphasize that1041

the LES results cannot be used to provide a statement about possible flamelet1042

broadening. LES provides only space-filtered quantities, in such a manner that a1043

direct comparison between numerical and experimental results can be performed1044
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in a time-averaged statistical sense only. Such a comparison is reported in Fig.1045

26.1046

Figure 24: Instantaneous fields of the filtered progress variable c̃ (bottom).

Figure 25: Instantaneous field of the ũ1 filtered velocity component.

Comparing the temperature profiles obtained numerically with the experi-1047

ment, it is possible to observe in Fig. 26 that a reasonable level of agreement is1048

achieved. From the comparison between 2D and 3D results with experiments,1049

it seems that the 2D approximation offers a rather satisfactory picture of the1050

average temperature field. At the very least, the 3D computational results does1051

not cast doubt on the representativeness of the 2D results. Finally, it should be1052

acknowledged that the limitations associated to the modeling of the chemical ki-1053

netics, i.e., global single-step chemistry, as well as the uncertainties that remain1054

in the closure of micro-mixing terms for premixed conditions (Mura et al., 2003;1055

Mura and Champion, 2009), suffice to explain the residual differences observed1056

between computational results and experimental data.1057
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(a)

x∗3(m)

T̃ (K)
(b)

x∗3(m)

T̃ (K)

Figure 26: Mean temperature profile at (a): x∗1 = 8.4 (top) and (b): x∗1 = 24.4 (bottom); •

Experimental data; (—) 2D results; (- -) 3D results.

8. Conclusion1058

Large Eddy Simulations of both reactive and non-reactive turbulent chan-1059

nel flows of methane/air mixtures have been conducted with special emphasis1060

placed on the influence of turbulent inlet Boundary Conditions. The analysis1061

undoubtedly confirms the sensitivity of the obtained results to the choice of the1062

synthetic turbulence generator retained at the inlet of the computational do-1063

main. For the sake of completeness this sensitivity study is conducted for four1064
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distinct turbulent inflow conditions including white noise (WN), digital filter1065

(DF) by Klein et al. (2003), random flow generator (RFG) by Smirnov et al.1066

(2001), and synthetic eddy model (SEM) of Jarrin et al. (2009). The capability1067

of each method to reproduce a prescribed Reynolds stress tensor at the inlet1068

BC is first evaluated quantitatively. The energy spectrum associated with the1069

corresponding fluctuating velocity field are also examined. This analysis pro-1070

vides some interesting bases to explain the behavior that is observed when the1071

synthetic turbulence generators are used to perform three-dimensional LES of1072

high-speed mixing layers. The computational results of the corresponding LES1073

are investigated in details and the quality of the agreement with experimental1074

data is found to be significantly improved by resorting to elaborated synthetic1075

turbulence generators that accounts for the large scale dynamics and coherence.1076

The results obtained for reactive flow conditions also clearly emphasize the in-1077

fluence of the retained model on the chemical rate statistics, which confirms1078

the importance of this issue for the LES of turbulent reactive flows. From the1079

computational cost point of view, the DF, RFG and SEM methods obviously1080

require longer CPU time than the WN. For the present applications, the addi-1081

tional CPU costs lie between 35 per cent for the method of Smirnov et al. (2001),1082

and 55 per cent for the method of Klein et al. (2003), which remains moderate1083

considering the potential improvements that may be obtained from their use.1084

Finally, in the light of the obtained results, the RFG and SEM frameworks are1085

found to offer the best compromises between computational costs and physical1086

relevance.1087
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