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Abstract 

Compared to other simulation approaches utilized for modeling turbulent reacting 

flows with detailed chemistry, probability density function (PDF) methods offer several 

advantages. This is because the changes in fluid composition due to convection and 

reaction processes can be treated exactly. PDF methods require however closure models 

for the mixing process representing the transport of the PDF owing to molecular 

diffusion. Over the years several mixing models with different degrees of complexity 

have been developed. A review of the main Lagrangian mixing models for turbulent 

combustion developed so far is presented in this work. This review includes models 

where the composition of a particle changes (i) essentially independently of the 

composition associated with the other particles, and (ii) through direct interaction with 

other particles. The main advantages and shortcomings of the mixing models reviewed 

are highlighted accordingly. Because Lagrangian Monte Carlo techniques are usually 

used for solving PDF transport equations, a particular emphasis is put on their 

corresponding particle implementation. The mixing models review is preceded by a 

section highlighting the mathematical formulation associated with the use of PDF 

methods for turbulent reacting flows. In the last part of the article both comparative 

results of mixing models performance and prospects for the mixing models are 

discussed. Despite the effort that has been devoted to the development of more capable 

mixing models, currently there is no mixing model presenting all desirable 

characteristics. Even more, there are significant differences in the results obtained when 

different mixing models are utilized, especially when higher order scalar statistics are 

accounted for. Therefore work still needs to be carried out in order to develop a mixing 

model satisfying all desirable characteristics expected from these models. Several 

avenues can be further explored in order to achieve this goal. These potential routes 

include those accounting for spatial scalar structures and both scalar length and 

turbulent frequency scales distributions. Other approaches based on competitive mixing, 

manifold-based features and Lagrangian coherent structures have also the potential to 

further improve upon existing mixing models. The development of a sound mixing 

model will allow eventually removing one of the largest sources of modeling 

uncertainty in PDF-based computations. 
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Nomenclature 

Physical constants 

  

R0 Universal gas constant 

  

Variables 

  

         Model parameter 

A Stochastic particle acceleration (model) 

         Model parameter 

B Rate of attraction of stochastic particles 

           υ
th
 spanning tree edge coefficient 

c Reaction progress variable 

     
   Model parameters 

       Model parameters 

 ̂           Normalized distance 

 ̃           Reference space location 

‹f(x,t)›l Filtered value of f(x,t) 

‹f(x,t)›L Favre filtered value of f(x,t) 

F(x´,x) Filter function 

           Joint composition probability density function 

         Joint velocity-composition probability density function 

       Joint frequency-velocity-composition probability density function 

g(η) Standard Gaussian density function 

h Random parameter 

Ji
α
 Scalar flux of species α 

k Subgrid scale kinetic energy 

Lf Reference (space) characteristic scale  

Lx Physical (space) characteristic scale 

       Stochastic particles corresponding to υ
th
 spanning tree edge 

Mij Stochastic particles interaction matrix 

Np Total number of stochastic particles 

  
         Number of stochastic particles 

Ns Chemical species total number 



p Dynamic pressure 

P Pressure 

P0 Thermodynamic pressure 

R Shadow particle displacement 

Sα Chemical source term of species α 

t Time 

t-, t+ Time stamp parameters 

T Temperature 

TL Lagrangian integral time scale 

u Velocity vector 

ui Velocity vector component 

w Stochastic particle weight 

W Wiener–Lévy process 

Wα Molecular weight of species α 

x Position vector 

xi Position vector component 

X Logarithm of turbulence frequency 

Y Residence to chemical time scale ratio 

Yα Mass fraction of species α 

Z Shadow particle position 

Residence to turbulence time scale ratio 

  

Greek-letter variables 

  

p Model parameter or mixing extent 

Γ Molecular diffusion coefficient 

Γt Turbulent diffusion coefficient 

δ Dirac delta function 

δij Kronecker delta 

            Fine-grained density 

η Sample space coordinate (Gaussian density function) 

θ Turbulence frequency sample space 

Θ Turbulence frequency model (stochastic particles) 

 Relative localization parameter or one dimensional profile length scale 

μ Fluid dynamic viscosity 

            Mixture fraction 

         Mixture fraction root mean square 



 Density 

           Root mean square velocity 

Standard deviation 

            Local anisotropy parameter 

            Turbulence time scale 

τij Viscous stress tensor 

          Residence time 

          Mixing time 

           Mixing time scale 

υ Velocity sample space 

 Composition vector 

 ̂           Weighted two-particle average scalar value 

Φ Mixing model (stochastic particles) 

ψ Composition sample space 

ω Turbulence frequency 

 ̂           Local turbulence frequency 

Ω Subgrid scale mixing frequency 

  

Subscripts 

  

c Weighted average 

 Chemical species or composition vector component 

- One dimensional profile minimum value 

+ One dimensional profile maximum value 

  

Superscripts 

  

t Time 

(p), (q) Stochastic particle p or q 

 Chemical species or composition vector component 

* 
Any stochastic particle 

(i) i
th
 stochastic particle 

  

Abbreviations 

  

BI Burning indexes 

CD Coalescence and dispersion (mixing model) 



CDF Cumulative density function 

CFD Computational fluid dynamics 

CMC Conditional moment closure 

DNS Direct numerical simulation 

EIEM Extended IEM (mixing model) 

ELM Extended Langevin (mixing) model 

EMST Euclidean minimum spanning tree (mixing model) 

FDF Filtered density function 

FMDF Filtered mass density function 

FP Fokker-Planck 

IECM Interaction by exchange with the conditional mean (mixing model) 

IEM Interaction by exchange with the mean (mixing model) 

ISAT In situ adaptive tabulation 

LCS Lagrangian coherent structures 

LES Large eddy simulation 

LM Langevin (mixing) model 

LMSE Linear mean-square estimation (mixing model) 

MC Mapping closure (mixing model) 

MCD Modified CD (mixing model) 

MMC Multiple mapping conditioning 

PaSR Partially stirred reactor 

PDF Probability density function 

PSP Parameterized scalar profile (mixing model) 

RANS Reynolds-averaged Navier Stokes 

RAS Reynolds-averaged simulation 

RHS Right hand side 

RIEM Refined IEM (mixing model) 

RMS (rms) Root mean square 

SDE Stochastic differential equation 

SGS Subgrid scale 

SIEM Stochastic IEM (mixing model) 

SLM Simplified Langevin model 

SPMM Shadow-position mixing model 

VCIEM Velocity conditioned IEM (mixing model) 

VSPMM Velocity-shadow-position mixing model 
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1 Introduction 

Global economy is expected to grow in the following years, which implies that the 

world demand for energy will augment as well. Indeed, compared to the amount 

corresponding to 2011, global energy demand is expected to increase near one-third by 

2035 [1]. The so-called clean energy should be however the main driver due to the 

increasing public awareness about the anthropogenic contribution to global warming. 

Under clean energy denomination is understood here both energy efficiency, and clean 

energy supply options such as those based on renewable energy sources. The fact that 

combustion processes are responsible for more than 80% [1] of the energy used by 

humanity suggests that they are and will continue to be vital for world economy and 

crucial in our daily activities. Designing practical combustion systems that are both 

efficient and environmentally friendly requires, in general, an in-depth knowledge of the 

tight coupling between turbulent fluctuations, chemical reactions and mixing. 

Probability density function (PDF) methods offer compelling advantages for 

modeling chemically reacting turbulent flows. They provide indeed an effective solution 

to the closure problems that arise from averaging/filtering, in the instantaneous 

governing equations, both nonlinear chemical source terms and terms corresponding to 

other one-point physical processes (e.g. radiative emission) [2]. For details about 

averaging/filtering processes and closure problems associated with transport equations 

governing turbulent reacting flows, the reader is referred to [3,4]. Despite the on-going 

progress in computational fluid dynamics (CFD) modeling for inert-scalar transport, the 

treatment of turbulent reacting flows offers unique challenges. While turbulent transport 

of a chemically inert scalar can often be successfully described by a small set of 

statistical moments, the same is not true for scalar fields strongly coupled through the 

chemical source term, which appears in the reacting scalar transport equations [3,4]. 

Even so, because the chemical source term depends only on the local molar 

concentrations and temperature, knowledge of the one-point, one-time composition PDF 

at all points in the flow could suffice to predict the mean chemical source term [5]. A 

particular formulation used for the modeling of turbulent reacting flows is that known as 

‘transported PDF’ method. This approach involves solving a transport equation for the 

joint-scalar PDF in which the chemical source term appears in closed form. Specifically, 
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one models and solves a transport equation that governs the evolution of the one-point, 

one-time PDF for a set of variables that determines the local thermochemical and/or 

hydrodynamic state of the reacting system [2]. 

The PDF transport equation solved is in general high-dimensional requiring thus 

the use of Monte Carlo techniques. Both Lagrangian and Eulerian Monte Carlo 

approaches have been utilized for solving this PDF transport equation. Lagrangian 

methods [5], the current mainstream approach, rely on the use of notional particles that 

evolve according to stochastic ordinary differential equations. In Eulerian Monte Carlo 

approaches [6-8], the notional particles are replaced by notional Eulerian fields that 

evolve according to stochastic partial differential equations. In addition to these 

stochastic approaches, deterministic Eulerian field PDF methods [4], based on 

sophisticated assumed PDF shapes, have been used as well to solve modelled PDF 

transport equations [9,10]. The advantages and disadvantages of each of these PDF 

methods in terms of accuracy and computational requirements are discussed in [9,10]. 

Regarding specifically to stochastic particle-based Lagrangian schemes, the two main 

approaches commonly utilized, in the case of low Mach number reacting flows, involve 

composition PDF and velocity-composition PDF methods [4]. When the particular PDF 

method does not include information about the turbulent velocity fields (as in the case 

of the joint composition PDF), a separate flow model is required. Hybrid grid/particle 

approaches [11-13] are often used in these situations. In these schemes the (grid-based) 

Eulerian flow model – involving large eddy simulation (LES), for example [14,15] – 

provides the velocity and turbulence fields, and the (particle-based) Lagrangian scheme 

evolves the reactive scalars. The coupling between the Eulerian and Lagrangian 

schemes is achieved by transferring the mean fields used to advance the respective 

equations. This type of hybrid approach has been successfully used for studying several 

experimental configurations [16-19]. 

In turbulent reactive flows, the fluid composition at a point changes with time due 

to convection, mixing (i.e., molecular transport) and reaction [20,21]. PDF methods 

have proved successful mainly because, in these modeling approaches, the last of these 

processes can be treated exactly. In addition in velocity PDF or velocity-scalar PDF 

methods convection is also in closed form. In PDF transport equations nevertheless, 

mixing requires a closure model. Mixing models, the main subject of this work, are used 

thus for the purposes of closing the PDF transport equations. Over the last 50 years or 
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so several mixing models with different degrees of complexity have been developed. 

For brief reviews on some of the early mixing models the reader is referred to [22-25]. 

As it will be shown in Sections 3 and 4, despite the efforts made in this direction, there 

is no mixing model satisfying all requirements usually associated with these models. In 

this work a review of the main mixing models developed so far for turbulent reacting 

flows is presented. The main advantages and shortcomings of the mixing models 

reviewed are highlighted accordingly. Because Lagrangian Monte Carlo techniques are 

commonly used for solving PDF transport equations, a particular emphasis is put on 

their corresponding particle implementation. The mixing models review (Section 3) is 

preceded by a brief recall of the mathematical formulation associated with the use of 

Lagrangian PDF methods for turbulent reacting flows (Section 2). In the last part of the 

article both comparative results of mixing models performance (Section 4) and 

prospects for mixing models development (Section 5) are discussed. 

2 Mathematical Formulation 

In order to emphasize the context in which mixing models are utilized, the 

mathematical formulation associated with the use of PDF methods for the modeling of 

turbulent reacting flows is summarized in this section. The transport equations 

governing this type of flows are initially indicated. This is followed by a description of 

the transported PDF equations utilized when using this approach. Finally the Lagrangian 

particle equations, which govern the evolution of the stochastic particles yielding the 

same one-point, one-time Eulerian PDF as the real fluid particle system, are described.  

2.1 Governing Equations 

Low Mach number turbulent reacting flows with variable density are considered 

here for the sake of simplicity. These flows are governed by the following transport 

equations (summation convention applies over repeated indices within a term) [26,27], 

  

  
 

    

   
    (1) 
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                   (3) 

which, along an equation of state (where    is the universal gas constant,   temperature 

and    the molecular weight of species α), 

       ∑
  
  

  

   

 (4) 

form a closed set of equations when supplemented by the adequate boundary conditions. 

These transport equations describe the spatial                and temporal 

    variations of the fluid density       , velocity          , pressure        – 

expressed as the sum of the thermodynamic       and dynamic pressures       , and 

composition vector          . The composition vector is given by the mass fractions 

   of the    chemical species compounding the gas-phase reacting system and enthalpy 

              . For a Newtonian fluid, with Fick’s law of diffusion and equal 

molecular diffusion coefficients  , the viscous stress tensor     and the scalar flux   
  are 

given by, 

     (
   

   
 

   

   
)  

 

 
 
   

   
     (5) 

  
     

   

   
  (6) 

where   is the fluid dynamic viscosity. Finally the source terms   , which are functions 

of the composition vector  , are directly related to both the chemical production rates of 

the corresponding species, and the thermal radiation heat transfer. In these governing 

equations it is considered that Soret and Dufour effects are negligible, as well as 

external heat source terms and volume forces. In the following radiative heat transfer is 

not accounted for as well. 

Computational power has continuously increased over the years so nowadays it is 

possible to model more accurately turbulent reacting flows than in the past. This has 

enabled the use of LES-based approaches over RAS (Reynolds-averaged simulation) 



13 

 

 

based ones for describing increasingly complex reacting systems. Transport equations in 

LES are usually filtered using a spatial filtering operation of the form [3], 

〈      〉  ∫        
  

  

            (7) 

where 〈      〉  is the filtered value of        and         represents the filter 

function. Accordingly a Favre filtered value of        can be defined as 〈      〉  

〈  〉 〈 〉 ⁄ . The filtered form of the governing equations is similar to the unfiltered one, 

Eqs. (1)-(3), so they are not explicitly indicated here but may be found elsewhere 

[2,3,28]. The only differences are related to the appearance of subfilter terms, also 

known as subgrid scale (SGS) terms, which are associated with the stress tensor and the 

scalar fluxes. PDF methods – or their analogues filtered density function (FDF) ones as 

they are often referred to in LES contexts – account for these SGS effects using 

probabilistic approaches. 

2.2 PDF Transport Equations 

Common practice currently involves the use of PDF methods in LES contexts so 

the form of the PDF transport equations described in this section corresponds to these 

particular situations. Notice however that, in order to reduce the proliferation of 

nomenclature, FDF methods accounting for SGS effects in a probabilistic manner will 

continue to be referred to as PDF methods. More specifically, the PDF-based 

formulation described in this section relates to filtered mass density function (FMDF) 

schemes [29] – an extension of FDF approaches for variable density flows – involving 

joint frequency-velocity-scalar, velocity-scalar or scalar PDFs. Accordingly, when using 

PDF methods for modeling turbulent reacting flows, PDFs that can be transported 

include joint frequency-velocity-composition PDFs, velocity-composition PDFs and 

composition PDFs. Each of these transported PDFs involves different levels of 

complexity and requirements. The joint frequency-velocity-composition PDF,     , 

which includes a complete SGS statistical information, is formally defined as [3,28], 
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where 

 [                          ] 

  [        ]∏ [          ]

 

   

∏  [          ]

    

   

 
(9) 

is the fine-grained PDF [30,31] and   the Dirac delta function. In these equations  ,   

and   represent, respectively, the sample spaces variables corresponding to turbulence 

frequency ( ), velocity and composition. The filtered value of any function of 

frequency, velocity, and/or scalars,  ̂, is then obtained by integration over the 

corresponding sample spaces as follows,  

〈      〉 〈      〉  

 ∬ ∫  ̂       
  

  

                       
(10) 

The exact transport equation for      is obtained by both (i) replacing in the 

temporal derivative of the fine-grained PDF,  

  

  
  (

  

  

  

  
 

  

   

   

  
 

  

   

   

  
)  (11) 

the time derivatives of velocity and scalars, Eqs. (1)-(3), and (ii) performing an Eq. (8)-

based filtering operation. The final expression takes the form [28],    
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(12) 
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where    ⁄  represents a material derivative. In Eq. (12) the conditional filter terms, 

⟨ |     ⟩ , are unclosed [28], which implies that models are required for modeling 

them. These open terms represent, specifically, from left to right, the PDF transport in 

(i) composition space due to molecular processes, (ii) velocity space due to pressure 

gradients and molecular process, and (iii) turbulence frequency space. By contrast the 

first RHS (right hand side) term of Eq. (12), which is associated with the chemical 

source term, appears in closed form. This implies that even complex chemical kinetics 

schemes can be treated by PDF methods without major difficulties. Hence their 

usefulness for modeling turbulent reacting flows.  

A corresponding exact transport equation for the joint velocity-composition PDF, 

   , 

             ∫                
  

  

    (13) 

is obtained by integrating Eq. (12) over the frequency sample space [32], 
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(14) 

Similarly, after Eq. (14) partial integration in velocity space, the transport equation for 

the joint composition PDF,   , is expressed as [33] 

   

  
 

 

   
[⟨  | ⟩
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[       ]  

 

   
[⟨

 

    

   
 

   
| ⟩

 

  ]  

(15) 

As highlighted by Eq. (6), the second RHS terms of Eq. (12), (14) and (15), dealing 

with the joint PDF transport in composition space, require the knowledge of the 
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transported scalar gradients conditional averages. The PDF transport equations 

described here are however formulated for one-point, one-time statistics so as to contain 

no gradient information. Mixing models are thus required for closing these specific 

open PDF (transport equation) terms. Additional information regarding the 

methodologies followed for deriving PDF transport equations can be found in [2,3,5]. 

2.3 Lagrangian Particle Equations 

As it can be observed from the corresponding expressions shown in the previous 

section, PDF transport equations have a large number of dimensions. This high 

dimensionality is directly related to the number of scalars (chemical species plus 

enthalpy) transported, which can be of the order of tens and even hundreds when 

detailed chemical mechanisms are accounted for. These equations are seldom solved 

using conventional finite volume or finite difference methods. Monte Carlo techniques 

are often used for these purposes. In Lagrangian Monte Carlo simulations the 

computational domain is usually discretized (in physical space) into a number of cells in 

order to extract local mean quantities that characterize the evolution of particles. Within 

each cell at any given time  , the joint PDFs are represented by an ensemble of 

stochastic particles [24], whose evolution yields the same one-point, one-time Eulerian 

PDF as the real fluid particle system [2]. Solving therefore for the evolution of these 

particles effectively corresponds to solving a modeled PDF transport equation. 

Particles are in general characterized by their position, velocity and composition, 

which at time   can be denoted by      ,      ,      , respectively. Additionally a 

particle property including turbulence timescale information, i.e., turbulence frequency 

     , can also be considered. The stochastic particle system is governed by a set of 

stochastic (ordinary) differential equations (SDEs). Accordingly the evolution of the     

stochastic particle properties can be written as (following a generic representation 

similar to that used in [24]), 

       

  
         (16) 

       

  
         (17) 
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     )  (18) 

       

  
         (19) 

where        represents a model for the particle acceleration,   
     

 is the mixing model, 

    
       the reaction rate corresponding to the     scalar, and        is a model 

representation for the turbulence frequency. It is worth noticing that Eqs. (16)-(19) 

correspond to a generic representation of the set of SDEs utilized. As it will be shown 

later on in this section then, the models referred to in these equations include in general 

both closed and open terms. Accordingly, once the stochastic particle system aims to 

represent the fluid system, the Fokker–Planck equation [34] describing the transport of 

the joint PDF of      ,      ,       and       is made to correspond with the PDF of 

SGS fields [28]. The implied closure for the SDEs, Eqs. (16)-(19), is then obtained by 

comparing this Fokker–Planck equation with the exact joint PDF transport equations 

described in the previous section. As a result different sets of SDEs, involving different 

models as well, are solved for different joint PDF transport equations.   

For joint frequency-velocity-composition PDFs, for instance, a set of SDEs that has 

been utilized involves [28], 
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            (        ̂)   (23) 

where   terms represent Wiener–Lévy processes [35] and   and   are, respectively, 

the SGS kinetic energy and mixing frequency. In these SDE equations, particle 

velocities have been modeled using the simplified Langevin model (SLM) [3,36], 

whereas the interchange by exchange with the mean [37] model is utilized for modeling 

the mixing process. In SLM     is modeled as a function of the SGS mixing frequency 

 .   ,    and    are in turn model parameters. Notice that the frequency model, Eq. 

(23), involves here a relaxation equation that causes the stochastic frequency to relax to 

the local frequency  ̂ evaluated on the grid points [28]. 

Except for the last equation dealing with the modeling of turbulence frequency, the 

same set of SDEs described by Eqs. (20)-(23) have been used for the case of joint 

velocity-composition PDFs [32]. The only difference is that no frequency model is 

utilized in this case. Information on flow scales needs thus to be obtained here from 

additional ad hoc models. 

A further reduced set of SDEs is associated with joint composition PDF 

formulations. In these particular situations, the expression corresponding to the transport 

of the PDF in composition space, Eq. (22), as it is, together with an equation governing 

the trajectory of particles in physical space of the form [33], 

   
      [〈  〉  

       

   
]    [       ]

  ⁄    
     (24) 

complete the set of SDEs required for this case. In Eq. (24)    represents the turbulent 

diffusion coefficient. Notice that in these sets of SDEs, the PDF transport due to 

molecular diffusion has been modeled by (i) a random walk in physical space (last RHS 

terms of Eqs. (20) and (24)), and (ii) a mixing process (first RHS term of Eq. (22)). It 

has been argued that this approach gives rise to spurious production of scalar variance 

that does not vanish as the LES filter width becomes small [38]. Modifications proposed 

to correct this issue involve modeling the PDF spatial diffusive transport by a mean drift 

term in the scalar evolution equation (Eq. (22)) [39]. 

All three types of joint PDFs usually transported, i.e., frequency-velocity-

composition, velocity-composition and composition PDFs, require models for scalar 

mixing,   
     

, because the corresponding transport equations are formulated for one-
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point, one-time statistics. One way of avoiding these mixing models would involve the 

use of multiple-point, multiple-time statistics. Nevertheless this is not commonly done 

in practice due to the complexity involved when using these formulations. For details 

about multi-point descriptions, see for example references [4,40-42].   

Finally it is worth highlighting that joint frequency-velocity-composition PDF 

formulations are sometimes referred as self-contained PDF methods. This occurs 

because the corresponding PDFs include turbulence timescale information that allows 

forming a complete turbulence model. The closed system thus formed requires no 

further information except for fluid properties and initial and boundary conditions [43]. 

Although they can initially appear very attractive, self-contained methods require a 

relatively large number of particles per computational cell [44], thus limiting their use 

for the simulation of complex turbulent reacting flows. Hybrid Euler/Lagrange 

approaches requiring fewer particles per cell have been preferred for modeling this type 

of flows. Hybrid methods seek to take advantage of the strengths of particle-based and 

grid-based procedures, which include, respectively, exact treatments of advection in 

physical space and of one-point source terms in PDF transport equations [45]. 

3 State-of-the-art of Mixing Models 

The single most important, and probably the weakest, element in hybrid 

Euler/Lagrange approaches – used for the simulation of turbulent reacting flows – is the 

modeling of the term that physically represents the transport of the PDF by the action of 

molecular diffusivity [2]. It is worth highlighting here that there are two different 

physical effects that may be distinguished, (i) transport in physical space and (ii) 

transport ('mixing') in composition space [38,39]. It has been said that the lack of a 

general and accurate mixing model is a major source for uncertainties in turbulent 

combustion simulations [46]. Hence the great importance of developing accurate mixing 

models able to adequately model the interactions between turbulence and chemical 

reaction processes. 

There are several requirements that mixing models must fulfill in order to yield the 

results expected from these models. One of the foremost prerequisites associated with 

these models relates to their physically based simplicity, as they should both reflect a 

physical phenomenon and be simple enough to allow their use in practical applications. 
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Several other requirements for mixing models, coming essentially from the nature of 

molecular diffusion, are discussed in literature [4,47,48]. The most essential of these 

imply that [2]: (i) mean scalar quantities should not change as a result of mixing, (ii) 

scalar variances should decay at the correct rate (i.e., scalar dissipation rates should be 

correct), and (iii) scalar quantities should remain bounded or in the allowable region 

(e.g., mass fractions should remain between zero and unity and sum to unity). In 

addition to these three requirements, there are others [2,4,47-48] involving the fact that, 

for example, mixing models should have characteristics of linearity and independence, 

the mixing process should be local in composition space, the PDF of conserved scalars 

should relax to a Gaussian distribution in statistically homogeneous systems, and 

mixing models should include dependencies on Reynolds, Schmidt and Damköhler 

numbers. 

In addition, for velocity-composition PDF approaches, it has been argued that 

scalar mixing models should include an explicit dependence on velocity [49]. Indeed the 

effect of neglecting velocity-conditioning in mixing models has been investigated 

previously [50,51] and has been found to be significant. Most mixing models do not 

consider differential diffusion (the phenomenon in which different scalars with different 

molecular diffusivities evolve differently from each other [52]), neither a direct 

influence on mixing of turbulence length scales and chemical reactions [2]. It is worth 

noticing that most mixing models have been initially developed for constant density 

turbulence and later on applied to variable density reacting flows. Significant thermal 

expansion occurring in the latter case might cause large differences on how scalar 

gradients or, equivalently, scalar fluctuation dissipation rates are enhanced or destroyed. 

So the presence of chemical reactions needs to be accounted for if mixing models for 

turbulent combustion resting on sound physical grounds are to be developed. Although 

much effort has been devoted to the development of mixing models that improve upon 

the existing ones, no mixing model completely satisfies all of the desirable properties 

indicated above [4,48]. In general all current models have certain shortcomings with 

respect to these requirements. The main reason for this is that, generally speaking, most 

mixing models are based on simple physical arguments. Indeed most often only vague 

mechanistic notions of the turbulent mixing process and some guiding rules have been 

used in mixing model development. It seems that this has been a rather unproductive 

way of operating, with limited improvements and understanding after 50 years of 
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efforts. If more accurate mixing models are to be developed then, a better physical 

understanding of the molecular mixing process is mandatory. 

Particle-based mixing models for turbulent combustion originate in the work of 

Flagan and Appleton [53], who developed a stochastic model of turbulent mixing where 

mixing was represented by random fluid particle interactions. Most mixing models have 

been developed for RANS (Reynolds-averaged Navier Stokes) based simulations, i.e., 

in a RAS context. In this work mixing models are then reviewed in this context. 

Nevertheless it is worth highlighting that, with the advance of computational power, 

hybrid Euler/Lagrange approaches based on LES/FDF formulations are being preferred 

nowadays for the modeling of turbulent reactive flows. Since FDF and PDF transport 

equations have a similar structure, they have been solved with similar stochastic particle 

methods. Desirable characteristics of diffusion models used in LES/FDF contexts are 

thus similar to those discussed above corresponding to RAS/PDF ones [38]. 

Accordingly the same mixing models have been utilized in both cases [16,17,54]. 

Nevertheless, as highlighted in [55], there are some open questions about the 

performance of mixing models in LES/FDF calculations. These questions include the 

effect of both small scales and molecular diffusion on the mixing processes, the optimal 

value of the scalar-to-mechanical timescale ratio, and the proper modeling of the 

turbulent mixing process [55]. 

One key aspect to emphasize relates to fact that in LES/FDF contexts the model 

formulation must reduce to a Direct Numerical Simulation (DNS) in the limit of 

vanishing filter width (DNS limit [38]). Additionally it has been observed from 

numerical studies that LES/FDF results tend to be less sensitive to the details of mixing 

models compared to RAS/PDF results [56]. This agrees with the argument that 

relatively simple mixing models (dealing with SGS fluctuations only) should suffice for 

LES/FDF, in contrast to RAS/PDF where mixing models must represent the effects of 

all fluctuations [2]. This is one of the reasons why, when utilized in RAS contexts, early 

mixing models do not perform well for high Damköhler numbers where molecular 

transport and chemical reactions are tightly coupled [2]. As it will be discussed in the 

following sections, this problem of high Damköhler number has been recognized for 

years and several approaches have been proposed to address it. The way in which the 

composition of a particle changes, i.e., (i) essentially independently of that of the other 

particles or (ii) through direct interaction with other particles [2], defines two broad 
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categories of particle-based scalar mixing models. A review of some of the most widely 

known mixing models used in hybrid Euler/Lagrange formulations and belonging to 

both categories is presented below. 

3.1.1 Interaction by Exchange with the Mean (IEM) 

The Interaction by Exchange with the Mean (IEM) model [37], also known as 

Linear Mean-Square Estimation (LMSE) model [57], is the simplest model belonging to 

the category of models where the composition of a particle changes essentially 

independently of the corresponding ones associated with the other particles. Because of 

the simplicity of its numerical implementation, this mixing model is the most widely 

used in hybrid Euler/Lagrange simulations. As originally proposed, when using the IEM 

model, the scalar values of the     particle evolve according to,  

     

  
  

 

 

  

 
(     ⟨ |    ⟩)  (25) 

where    is a model parameter (known as scalar-to-mechanical time scale ratio),   the 

turbulence time scale (inverse of the mean turbulence frequency), and ⟨ | ⟩ is the mean 

of   conditional upon  . For the sake of clarity the superscript 
*
 denoting particles is 

dropped in this section. Notice that in Eq. (25) it has been assumed that the mixing time 

scale,   , is proportional to the turbulence time scale, 

   
 

  
  (26) 

with proportionality constant equal to the model parameter    [5]. This parameter 

cannot be regarded as a universal constant. Accordingly different values have been 

reported in literature [2,58]. Usually different mixing models require different    values 

as well, so choosing an optimal value for    is an ad hoc process and depends on the 

particular mixing model utilized [59]. Indeed    is expected to vary with the 

characteristic length scales of the scalar fields considered [60]. More sophisticated 

models for the mixing time scale have been also reported in previous works [4,59]. 

The IEM model possesses the three most essential characteristics of a mixing 

model indicated above. However, in homogenous turbulence, due to the absence of 

mean scalar gradients, IEM preserves the shape of the scalar PDF, which never relaxes 
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[4]. When used as originally proposed – Eq. (25) – in joint velocity-composition PDF 

calculations, the IEM model presents another limitation, as it does not include an 

explicit dependence on velocity. In other words, as most scalar mixing models, it 

assumes that molecular mixing is independent of the instantaneous velocity. However, 

since in joint velocity-composition PDFs the velocity is known, this assumption is 

unnecessary and leads to a lack of local isotropy in the scalar field [61]. IEM variants 

that include a dependence on velocity have been proposed in the past as follows. The 

problem of lack of local isotropy was noted by Pope [49] through high Reynolds (Re) 

number analyses, using turbulent dispersion theory, of the scalar flux evolution that is 

implied by the IEM model. This led to an IEM extension, known as Interaction by 

Exchange with the Conditional Mean (IECM) model,  

     

  
  

 

 

  

 
(     ⟨ |         ⟩)  (27) 

where the relaxation is towards the mean conditioned on velocity as well as on position 

(rather than on position only). 

Even though local isotropy should prevail as Re → ∞, at moderate Re numbers 

local anisotropy may be significant [61]. In order to account for this aspect, Fox [61] 

introduced a local anisotropy parameter   giving rise to the so called velocity-

conditioned IEM (VCIEM) model, 

     

  
  

 

 

  

 
[        ⟨ |    ⟩       ⟨ |         ⟩]  (28) 

where     corresponds to local isotropy and       represents the degree of local 

anisotropy. The local anisotropy parameter exhibits a Reynolds number dependence that 

is determined using experimental or DNS data. 

Other IEM extensions include those based on Fokker-Planck equations for joint 

velocity-composition PDF and FDF formulations, e.g., Refined Interaction by Exchange 

with the Mean (RIEM) [62,63] and Stochastic Interaction by Exchange with the Mean 

(SIEM) models [60]. In the Extended IEM (EIEM) model proposed by Sabel’nikov and 

co-workers [64-66], in order to account for a turbulent frequency scale distribution, the 

single mean scalar frequency used in the original IEM model is replaced by a 

distribution of scalar frequencies. This representation of a whole distribution of scales is 

interpreted as fluid particles possessing their own frequency and behaving as if 
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belonging to different structures [65]. Both classical [64] and modified [65] log-normal 

laws have been used for characterizing the stochastic process evolution associated with 

the distribution of scalar frequencies utilized. EIEM allows for the scalar PDF to relax 

towards a Gaussian distribution in statistically homogeneous systems. Analytical 

solutions exist for this model in simplified situations [67]. In general the IEM model 

assumes a linear relaxation of the scalars towards their mean value. Moreover, as given 

in Eq. (25)-(28), it implies that all scalars mix at the same rate so differential diffusion is 

not accounted for in the model [4]. Another significant IEM limitation relates to fact 

that it is non local in composition space. 

3.1.2 Coalescence and Dispersion (CD) 

Curl’s Coalescence and Dispersion (CD) model [68] represents the simplest model 

belonging to the group of models where the composition of a particle changes through 

direct interaction with other particles. This model, which served later on as inspiration 

for the works of Janicka et al. [22] and Dopazo [69] dealing with turbulent mixing 

phenomena, was originally intended to describe droplets interactions in a two-liquid 

phase chemical reactor. Its name is fully adequate then when describing droplet 

interactions (Curl’s original application), but it could be misleading when used for 

gaseous systems. Even so in this work the coalescence-dispersion denomination is used 

for referring to this mixing model since it is the most frequently used form found in the 

literature. In this model, in each mixing event, pairs of particles are randomly selected 

and their resulting individual concentrations are identical and equal to their average 

value (coalescence-dispersion process). A mass conservative generalization of Curl’s 

formulation, for unequally weighted particles, can be expressed as [24,25], 

                        
                     

         
  (29) 

More specifically Eq. (29) highlights the scalar values of a pair of mixing particles   and 

  after a given mixing event or time step (     ). 

In the CD model the mixing rate is controlled by the fraction of participating 

particle pairs that is given by the total weight of all particles considered during the 

mixing process [25]. Similarly to the IEM model, CD possesses the three most essential 

characteristics required in a mixing model. However, in contrast to IEM, CD does not 
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preserve the shape of the scalar PDF and neither relaxes towards a Gaussian distribution 

in statistically homogeneous systems [2]. 

Several modifications have been introduced to the original CD model over the 

years in order to remediate some of its main deficiencies. One of the early modifications 

corresponds to the Modified Coalescence and Dispersion (MCD) model proposed by 

Janicka et al. [22]. In contrast to the results obtained from Curl’s model, MCD yields 

continuous PDF’s. This is achieved by introducing an additional random parameter   

with a continuous PDF that controls the extent of mixing on each mixing event, 

                 (         )  (30) 

                 (         )  (31) 

Here   varies between 0 and 1 so when     no mixing occurs, and for     

Curl’s model is recovered. Although MCD is successful in producing a continuous 

PDF, it does not relax towards a Gaussian distribution. An attempt in this direction is 

the model described in [70], where the selection of particles for mixing is biased. The 

bias utilized depends upon the age of the particle, which is defined as the time since it 

last participated in a mixing event. Results obtained with age biasing show PDF 

distributions that relax to near-Gaussian shapes for passive scalars in homogeneous 

turbulence [70]. 

The most significant limitation of Curl’s model and variants (involving random 

selections of particles for mixing) is that they are non local in composition space. This 

occurs mainly because of the random selection procedure utilized, which yields 

discontinuous jumps in particle compositions that violate the localness requirement. 

Since mixing models are used for mimicking molecular diffusion, a continuous process 

in space and time, jumping in composition space over an infinitesimal time interval is 

inherently unphysical [4]. This aspect may be critical in combustion regimes where the 

reaction rate is significant over a thin region in composition space only. In these 

situations such models could allow fluid particles to mix across the reaction zone 

without burning [2]. This is one of main reasons why these models are not preferred 

nowadays for transported PDF simulations of reacting flows [4]. It is worth noticing 

however that, over a finite time interval, physical fields could make jumps in 

composition space. This means that a priori jumps in composition space need not be 
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unphysical. The issue with mixing models here is how to handle the integrated effect of 

such jumps, in terms of scalar values, over a finite time interval. 

3.1.3 Mapping Closure (MC) 

The Mapping Closure (MC) model [20] is a particle implementation of the model 

described by Chen et al. [71] involving Gaussian reference fields. MC is based on the 

use of three elements: (i) a specified statistically homogeneous, isotropic, time-

independent Gaussian field, where all multipoint statistics are known in terms of its 

mean, variance and two-point correlation function; (ii) a surrogate field, whose known 

statistics are the same as those associated with the stochastic field of interest; and (iii) a 

mapping, which is used to map the Gaussian reference field to the surrogate one. The 

condition of uniqueness of the mapping used in MC requires that particles are first 

sorted in non decreasing order of composition values [24]. This process of ordering of 

scalars leads to some difficulties when the MC model is to be extended for multi scalar 

mixing applications. 

Given an ensemble of single-scalar    particles, the evolution of the scalar values 

according to MC proceeds as follows (after a generalization for unequally weighted 

particles) [25], 

     

  
 

 

 

  
 

 
[     ⁄ (           )       ⁄ (           )]    (32) 

where   
  is a model constant. In this model each particle evolves by interaction with its 

neighbors in composition space with a rate of attraction,      ⁄ , equal to (   ⁄  

      ⁄   ), 

     ⁄  
   (     ⁄ )

       
               (33) 

In this last expression,      represents the standard Gaussian density function and   the 

sample space coordinate, which is related to particle weights through the Cumulative 

Density Function (CDF) corresponding to  .  

This model is local in composition space because only neighbor particles are 

considered during the mixing processes. It also possesses the three most essential 

features required in mixing models, i.e., it satisfies mean conservation, variance decay 
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and the boundedness principle. One advantage of MC-based models is that the PDF of 

conserved scalars relax towards a Gaussian distribution in statistically homogeneous 

systems [2]. It should be stressed though that problems arise when the MC model is 

extended to multiple reactive scalars, owing to mappings that are non unique and 

expensive to compute [24]. This and other issues have been addressed in the 

formulations based on mapping closures developed more recently [24]. 

3.1.4  Euclidean Minimum Spanning Tree (EMST) 

Since IEM and CD models are non local in composition space they do not perform 

well for high Damköhler numbers [2]. One of the early approaches proposed for solving 

this problem involves the ordered pairing model [21]. In this model, in order to respect 

the localness principle, particles selected for mixing are firstly ordered. Because of the 

nature of the problem analyzed (turbulent diffusion flame in flamelet regime), the 

particle ordering process is carried out according to their mixture fraction. Particle 

mixing is then performed by using an adjacent pairing scheme where adjacent order 

particles are selected as mixing partners. Although this model yields good results in 

terms of locality, the mixture fraction PDF does not approach the desired Gaussian 

distribution. Because of the ordering process utilized, the ordered pairing model 

resembles the MC model. This procedure is carried out in both models such that the 

results are in better agreement with the notion of locality under discussion. 

A more general approach involving a bias for selecting particle pairs for mixing – 

in such a way that particles closer in composition space are more likely to mix than 

those further away – constitutes the Euclidean Minimum Spanning Tree (EMST) [24] 

model. EMST is an extension of the MC model [20] for multiple scalars, where the one-

dimensional ordering in scalar space is replaced by an Euclidean minimum spanning 

tree [25]. In one-dimensional mapping closures for instance, each particle has two 

neighbors, except those particles located at the ordering list extremes, which have one 

only. Similarly, in the EMST model each particle has at least two spanning tree edges 

incident on it, except those at the extremes. Edge weights are defined as a function of 

particle weights, such that they have minimum values at the extremes of the distribution 

and increase as they approach the median. 
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Specifically, for an ensemble of    particles   
   

 with a       -dimensional 

composition space               , the matrix form of the EMST model evolution 

is expressed as [24], 
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where the elements of the interaction matrix     are given by 
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In these last two expressions,    represents the edge coefficient associated with the     

spanning tree edge connecting particles    and   . This coefficient is defined as a 

linear function of the edge weight, which is directly related to the weights of the 

particles that belong to the two subtrees resulting from the removal of edge   from the 

set of EMST edges.    is in turn a model parameter controlling the rate of variance 

decay of the scalars, and   represents the Kronecker delta. Notice that at any given time 

only a subset,         
 , of the total ensemble of particles    participates in the 

mixing process. Particles belonging to the mixing subset are determined by a non 

dimensional particle age property, which determines how long a particle mixes and or 

not. The time a particle spends in the mixing/non mixing states is required to correspond 

with the turbulence timescale in the grid cell. 

EMST has been developed focusing on localness preservation. As such it is local in 

composition space and possesses the three most essential characteristics of a mixing 

model. It does not fully satisfy however the linearity and independence properties 

[2,24]. In addition, the lack of information concerning the joint scalar dissipation rates 

in the EMST model can also lead to spurious results, which implies that while localness 

is a desirable property, it is not sufficient for ensuring physically realistic predictions 

[4]. The description of other EMST shortcomings can be found in [72]. 



29 

 

 

3.1.5 Multiple Mapping Conditioning (MMC) 

A different generalization of the mapping closure concept constitutes the Multiple 

Mapping Conditioning (MMC) model [73]. Although usually referred to as a model, 

MMC is in fact an entire framework where different specific models can be formulated 

[25,73,74]. This methodology for mixing and reaction effectively unifies the joint PDF 

[2,5] and Conditional Moment Closure (CMC) [75] approaches in such a way as to 

account for their advantages. When MMC is formulated stochastically it becomes a 

PDF model where mixing is local or conditioned within a reference space [74]. MMC as 

a PDF method is similar to the EMST model [24] because both models use the MC 

concept and search the neighborhood of particles to define their interactions [76]. In 

contrast to EMST, however, MMC uses one or more reference variables to enforce 

locality in composition space. 

The original MMC model [73] requires the reference variables to be modeled by 

Markov processes. This restriction has been removed in a more general understanding 

of MMC [76], so that reference variables currently may be other known quantities, 

including data interpolated from Eulerian LES or DNS results [74]. In terms of mixing, 

MMC effectively unites many existing models [77], including IEM [37] or VCIEM 

[61], CD [68] and CMC [75]. For instance, using a two-particle interaction Curl-like 

model, at each time step the mixing of a pair of particles,   and  , proceeds according to 

[74,76] 

                  ( ̂
            )  (37) 

                  ( ̂
            )  (38) 

where  ̂      is the weighted two-particle average, and    the mixing extent (   

[   ]). In MMC localness is preserved by enforcing mixing interactions of particles that 

are close in both reference and physical space. Thus particles that are close in both 

spaces are allowed to be mixed only. The selection of particle pairs is thus an important 

step in the mixing process. Pairs of particles (e.g.,   and  ) are selected such as to 

minimize the normalized square distance given by [74,76] 
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In Eq. (39)    and    are characteristic physical and reference scales, and λ is a 

parameter determining, respectively, the relative localization in physical and reference 

spaces.   and  ̃ represent in turn particle physical and reference locations, respectively. 

Notice that, depending on the values of λ, localization can be in physical space only (0) 

or in reference space only (∞). MMC possesses the three most essential features 

expected of a mixing model [2]. Particularly, in this model, locality in composition 

space is achieved, boundedness of scalars is preserved, linearity and independence 

principles are also fulfilled, and when required the resulting PDF tends to a Gaussian 

distribution [73]. 

Recent work developed about MMC [74,76] describes a novel numerical method 

for solving PDF transport equations with MMC closures, which is referred to as sparse-

Lagrangian simulations. In this type of simulations fewer Lagrangian particles than 

Eulerian cells are utilized, in contrast to the commonly used intensive-Lagrangian 

simulations employing many Lagrangian particles per Eulerian cell. The use of sparse-

Lagrangian schemes greatly reduces, as expected, the computational time associated 

with the simulations of turbulent reacting flows. For instance, a simulation of a partially 

premixed jet diffusion flame (Sandia Flame D), using realistic chemical kinetics 

containing 34 reactive species and 219 reactions, took about 50 hours on a single dual-

core workstation, only [76]. 

It is worth noticing that the rigorous consistency and tight two-way coupling 

between Eulerian and Lagrangian representations, usually required in hybrid intensive-

Lagrangian simulations, has been relaxed in the sparse-Lagrangian ones. In addition, the 

filtered density field at the grid scale cannot be extracted using this last approach [2]. 

Likewise intensive approaches [16,78,79], in sparse formulations, Eulerian/Lagrangian 

density coupling is achieved by solving an Eulerian transport equation for equivalent 

enthalpy. However, the source term of this equation is modeled, in contrast to intensive 

simulations, where it may be obtained from particle properties. This source term 

modeling involves the evaluation of conditional means calculated from an ensemble of 

particles in the near-neighborhood of a given position [80].  
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3.1.6 Shadow-Position Mixing Model (SPMM) 

One of the most recent efforts in the development of mixing models is the Shadow 

Position Mixing Model (SPMM) [72]. This model has been constructed in such a way 

that it is consistent with turbulent dispersion theory and local in composition space. 

Mixing is modeled as a relaxation of the composition to its mean conditioned on a new 

variable, the shadow position  . This new variable corresponds to the position of a 

“shadow” particle associated with each of the Lagrangian particles transported. The 

evolution of the shadow position   proceeds according to a SDE of the form 

      ⟨    |    ⟩   
  

  
(         )            

  ⁄        (40) 

which includes terms related to its movement due to the local mean velocity, relaxation 

towards the Lagrangian particle position and a random walk (Wiener process). In Eq. 

(40)    is the Lagrangian integral time scale proportional to the ratio of turbulence 

kinetic energy and mean dissipation rate,    and    are positive model coefficients and 

  is the root mean square velocity. Expressed in terms of the so called shadow 

displacement  , defined as               , whose SDE is given by (from Eqs. (16) 

and (40))  

      
  

  
       (     ⟨    |    ⟩)            

  ⁄        (41) 

the composition in the SPMM evolves according to 

     

  
  

  

  
(     ⟨ |         ⟩)  (42) 

where    is a model constant. 

SPMM possesses the three most essential characteristics associated with a mixing 

model. It has been constructed to be consistent with turbulent dispersion theory and 

local in composition space, as only conditioning space neighbor particles are allowed to 

mix. Additionally, it satisfies linearity and independence principles, as well as it yields 

Gaussian PDF distributions in statistically homogeneous systems [72]. It has been 

shown that, when applied to a turbulent non premixed flame (reactive scalar mixing 

layer configuration), SPMM correctly yields stable combustion, in contrast to both IEM 

[37] and IECM [49] models which incorrectly lead to extinction under the same 
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circumstances. Because of the use of conditioning variables, SPMM involves some of 

the ideas of MMC [73] modeling. Moreover for different limiting values of its 

coefficients, SPMM reduces to IEM, IECM or MMC mixing models. 

In numerical terms, SPMM uses a mesh free, near neighbor implementation. As 

such, at each time step, computational particles are ordered so adjacent particles in the 

ordering are near neighbors in the conditioning space      . Even though the use of 

other conditioning variables adds more complexities, SPMM has been extended – e.g., 

Velocity Shadow Position Mixing Model (VSPMM) – such as conditioning is 

performed on particle velocity as well. The advantage of VSPMM is that it exactly 

satisfies dispersion consistency, and can satisfy localness, either exactly or 

approximately, according to the values of the model coefficients characterizing the 

VSPMM. 

3.1.7 Parameterized Scalar Profile (PSP) 

A simple interpretation of the IEM mixing model [37] points out that its use implies 

that scalars evolve as if all fluid particles were located on one dimensional sinusoidal 

scalar profiles with both same length scale and same profile center value. The 

Parameterized Scalar Profile (PSP) [46] mixing model involves then a general 

parameterization of these one dimensional scalar profiles; i.e., instead of using the same 

length scales and center values for all profiles, these parameters are modeled. 

Considering that the scalar profiles have a sinusoidal shape, the profile parameterization 

is carried out as follows. For the     particle its associated one dimensional scalar 

profile is characterized by a minimum value   
   , a maximum value   

   
 and a length 

scale     . According to PSP, the scalar evolution is then given by [46] 
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In Eq. (44)   represents the turbulence frequency,   is the diffusion coefficient and    a 

model constant. The turbulence frequency, which is directly related to the profile length 
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scale  , evolves according to a SDE such as the gamma distribution-based one 

highlighted in [81]. 

Profile (minimum and maximum) boundaries are represented by the scalars of other 

two particles belonging to the same cell where the     particle is located. In addition the 

following condition 

(  
        )(  

        )     (45) 

is enforced. Profiles are considered degenerated as soon this condition is violated. In 

this case new representatives for the profile boundaries are randomly selected. In order 

to account for spatial decorrelation of particle triplets (consisting of the on-profile 

particle and the two particles representing the profile boundaries) with time, profile 

boundaries are also reinitialized using an intermittent aging process. Each particle 

carries two decreasing time stamps,   
    and   

   
, for this purpose. There are certain 

similarities between the PSP and the Fokker-Planck (FP)-based model proposed by Fox 

[82]. Compared to this model, some of the differences of PSP relate to the use of 

stochastic processes for the evolution of the profile boundaries and length scale. PSP 

possesses the three essential features required in mixing models, although boundedness 

in multi scalar formulations may be weakly violated. Linearity and independence 

principles are fulfilled approximately only, and the model is non local in composition 

space. 

Several extensions of the original PSP mixing model have been proposed over the 

years. Two of which, for inhomogeneous mixing, relate to (i) multiple computational 

grid cells and (ii) unequally weighted particles [25]. In order to replace profile boundary 

representatives, which no longer belong to the same grid cell as the on-profile particle, a 

deterministic IEM-like model has been used to evolve profile boundary values. Particles 

weights have also been used as proportionality constants for selecting particles at the 

beginning of profile-boundary life cycles. PSP has also been extended in such a way 

that it provides joint scalar-scalar dissipation rate PDFs [83] and better reproduces the 

behavior of fluid particles [48]. Profile boundary representatives, or drift compositions, 

have been more recently modeled using IECM [49] and their lifetimes initialized based 

on gamma-distributed random numbers [50]. A latter attempt involves an alternative 

generalization of the original PSP model [46] that does not rely on conditional means, 

and where drift compositions remain constant during their lifetimes [51]. Recent 
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versions of PSP [48,50,51] fulfill the three most important requirements in mixing 

models, and predict additionally a correct decay to a Gaussian distribution for 

chemically inert scalars. The scalar trajectories are continuous in time and multiple inert 

scalars evolve independently. These versions of PSP honor joint velocity-scalar 

statistics but compromise with respect to localness. It has been argued then that the PSP 

model [48,51] satisfies almost all mixing models requirements. 

3.1.8 Other Mixing Models  

Several other mixing models have been proposed in the past including those based 

on Langevin [84] and FP equations [82,85]. The Langevin model (LM) adds a PDF 

dissipation term to the IEM model PDF transport equation, which leads to a 

decorrelation of phase space trajectories while ensuring the scalar boundedness [86]. 

Boundedness in this case is achieved through the use of a limiting function, which 

specification could be a complex task for multiscalar situations [65]. Similarly to the 

IEM model, LM has been also modified to account for a distribution of scalar time 

scales, giving rise to the so-called Extended LM (ELM) [64,65]. The FP-based models 

[82,85] assume in turn that scalar mixing may be modeled by considering scalar 

diffusion in one-dimensional layer-like lamellar structures. A different stochastic 

mixing model is that described in [87] in which, in decaying turbulence, the variance 

decay rate of a scalar is modeled according to a power law. Other models [88] involve 

the use of scalar spectral information for the modeling of the scalar dissipation rate. 

As a closure to this section, Table 1 summarizes the extent in which the main 

requirements associated with mixing models seem to be fulfilled by the models 

discussed in this work. Data shown in this table has been obtained from critical 

assessments of the information available in literature. The fulfillment of the 

requirements refers to those mixing model versions most frequently used in practice or 

those including the latest improvements.  As it can be observed from Table 1, all mixing 

models reviewed present the three most fundamental characteristics required in mixing 

models; i.e., they satisfy mean conservation, variance decay and boundedness 

principles. From these three main requirements, the prediction of correct scalar variance 

decay rates is the most challenging as it results from the interaction of several physical 

phenomena. As it will observed in Section 4, different mixing models usually lead to 



35 

 

 

different both variance decay rates and scalar PDFs. The following two requirements, 

Gaussianity and localness characteristics, are not satisfied by classical models such as 

IEM and MCD. More recent models developed for multi scalar applications include 

Gaussianity features in a weak (EMST and PSP) and strong (MMC and SPMM) senses. 

Localness in composition space has been the basis for the development of some of the 

latest mixing models, including EMST, MMC and SPMM, so these models satisfy this 

requirement. The remaining two requirements, involving dependences on scalar length 

scales and Reynolds (Re), Schmidt (Sc) and Damköhler (Da) numbers, have been found 

to be more difficult to satisfy by mixing models. Indeed IEM and MCD do not 

explicitly treat these requirements, although in these models scalar length scales 

dependences could be accounted for by using spectral models, for instance. Advanced 

mixing models, such as EMST, MMC, SPMM and PSP, attempt to fulfill at least 

partially these last two requirements. Nevertheless the extent in which these 

requirements are satisfied by these models need to be further verified by carrying out 

simulations involving a broader set of flow conditions than those already performed. 

Other analyses of the degree of fulfillment by mixing models of their associated 

requirements can be found in [48]. 

Table 1. Mixing models and degree of fulfillment of their associated requirements. Symbols ■, ◘ 

and □ refer to, respectively, requirements that are completely, partly and not fulfilled by mixing 

models. 

Requirement/Mixing model IEM MCD MC EMST MMC SPMM PSP 

Conservation of scalar means ■ ■ ■ ■ ■ ■ ■ 

Decay of scalar variance ■ ■ ■ ■ ■ ■ ■ 

Realizability (allowable region) ■ ■ ■ ■ ■ ■ ■ 

Gaussianity characteristics □  □  ■ ◘ ■ ■ ◘ 

Localness in scalar space □  □  ■ ■ ■ ■ ◘ 

Scalar length scales dependence □  □  ◘ ◘ ◘ ◘ ■ 

Re, Sc and Da effects □  □  ◘ ◘ ◘ ◘ ◘ 

4 Mixing Models Comparative Results 

Several comparisons of the mixing models performance have been carried out over 

the years. Both premixed and diffusion flames have been utilized for these purposes. 
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The results obtained with the various mixing models have been validated using 

analytical solutions, DNS data and/or experimental results. Some of the results 

associated with the main comparative analyses of mixing models performed during the 

last decade are reviewed in this section. The main purpose of this review process is to 

emphasize the differences in the results found when using different mixing models. It is 

worth noticing that the illustrations containing mixing models comparative results are 

reproduced here exactly as they were published. This means that the nomenclature 

utilized in the original works has been kept in the figures discussed in this section. 

When required then the proper correspondence between the original nomenclature and 

that one used in this work is highlighted in figure captions. 

Using an idealized partially stirred reactor (PaSR), Ren and Pope [89] investigated 

the performance of three mixing models, namely IEM [37,57], MCD [22]  and EMST 

[24]. A detailed mechanism for hydrogen oxidation, involving 9 species and 19 

reactions, and the in situ adaptive tabulation (ISAT) algorithm [90] were utilized in the 

simulations. A range of residence (    ) and mixing times (    ) was studied. The 

performance of the mixing models was evaluated based on the resulting mixture fraction 

PDFs, extinction behaviors and scatter plots that characterize the PaSR statistical 

stationarity. Chemical equilibrium was considered for all particles as initial condition. 

The mixture fraction PDFs obtained for the three different mixing models are quite 

different. In particular, the EMST model results in a relatively higher probability around 

stoichiometry as the mixture fraction variance increases. The mean temperature 

conditional on the mixture being stoichiometric is considered as a measure of the 

approach to flame extinction. Accordingly, the results show that (i) except for small 

values of    (mixture fraction root mean square), the three mixing models exhibit 

substantially different extinction behaviors; and (ii) the EMST model is more resistant 

to global extinction than the IEM and MCD models. 

Scatter plots of temperature against mixture fraction, such as those shown in Fig. 1, 

illustrate the qualitatively different behavior of the three mixing models. Solid lines in 

these scatter plots correspond to chemical equilibrium. From Fig. 1a, the reaction zone 

in mixture fraction space lies approximately between 0.24 and 0.50. The IEM model 

results (Fig. 1a) indicate that particles with composition values outside the reaction zone 

relax to the mean composition and are drawn away from their initial condition 

(equilibrium line). In addition, particles in the reaction zone react back close to their 
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equilibrium values due to fast reactions. Since all particles do not lie close to the 

equilibrium line, it follows then that IEM fails to reproduce the expected physical 

behavior [89]. It is observed in Fig. 1b that the MCD [22] model mixes cold fuel with 

cold oxidant, thus producing unphysical cold, nonreactive mixtures within the reaction 

zone. Once the EMST model [24] results in all compositions being close to equilibrium 

(Fig. 1c), it follows that EMST produces the expected physical behavior, whereas the 

IEM and MCD models do not [89]. The corresponding mixture fraction PDFs are also 

shown in Fig. 1 and they are quite different. 

 

Fig. 1. Mixing models performance assessed through the use of partially stirred reactors [89]. 

Scatter plots of temperature (T) against mixture fraction (η), and the corresponding mixture 

fraction PDFs obtained for     = 2×10
−3

 (s) and         ⁄ = 0.35. In this figure MC represents the 

MCD [22] model discussed in the present work. 

The same three mixing models, i.e., IEM [37,57], MCD [22]  and EMST [24], were 

in turbulent diffusion flames by Mitarai et al. [91], using DNS data specifically obtained 

for studying local flame extinction and reignition. The tests were designed to analyze 

the performance of mixing models in both RAS and LES contexts. The analyses were 

carried out comparing mean temperature profiles, scatter plots and mixture fraction 

PDFs. In order to better assess the mixing models performance, the mixing frequency 

exact value was directly taken from the DNS results. The physical problem analyzed 

involved a single-step chemical reaction taking place in incompressible, isotropic, 

decaying turbulence. The numerical simulations were performed on a three-dimensional 

computational domain with periodic boundary conditions. 

In RAS contexts, as illustrated in Fig. 2, the EMST mixing model reasonably 

accurately predicts the mean reduced temperature, whereas the IEM and MCD models 

tend to significantly underestimate it. It is speculated [91] that this underestimation may 

be related to the conserved scalar mixing frequency utilized, i.e., for reactive scalars. 

These mixing models do not distinguish between the mixing of passive and reactive 

scalars, but use identical mixing frequencies in both cases. Fig. 2 also includes CMC 

[75] results for comparison purposes. The overestimation of mean temperatures in this 

case is attributed to the fact that the CMC neglects the large temperature fluctuations 

observed during simulations. 
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Fig. 2. Mean reduced temperature characterizing single step, nonpremixed reactions developing 

in incompressible, isotropic, decaying turbulence [91]. Left and right sides correspond to, 

respectively, mean (volume averaged) temperature and average temperature near the 

stoichiometric surface. IEM (dark circles), MCD (empty circles), EMST (asterisks). CMC [75] 

results (dotted line), fast chemistry limit (dashed line), DNS data (solid line). 

Despite the reasonably accurate predictions of mean quantities and likewise IEM 

and MCD, EMST fails to reproduce the scatter plot of temperature as a function of 

mixture fraction. Additionally, the appearance and disappearance of cold particles, 

which characterizes local flame extinction and reignition, is not realistically described 

by any of the mixing models tested [91]. In general, the EMST mixing model yields 

better results than the IEM and MCD, given the mixing frequency exact values, in both 

RAS and LES contexts. It is believed [91] that the relative good predictions reported in 

literature using simple models may come from the adjustment of the mixing frequency. 

Merci and co-workers performed a comparative study of the performance of mixing 

models in both bluff body ('Sydney Flames HM1-3') [92] and piloted jet ('Delft Flame 

III') [93] diffusion flames. Bluff body studies involved the Sydney flames HM1 to HM3 

[94,95], which include increasingly different levels of turbulence-chemistry interaction. 

MCD [22] and EMST [24] were the mixing models chosen for these studies, whose 

performance was evaluated using scatter plots and conditional profiles (conditioned on 

mixture fraction). Surrounded by a co-flow air stream, the central fuel jet simulated 

features a mixture of hydrogen and methane (50-50% by volume). Two different values 

of the empirical proportionality constant    (1.5 and 2.0), dealing with the scalar-to-

mechanical time scale ratio – Eq. (26), have been studied. It has been recognized that 

predictions are sensitive to the choice of   , so ad hoc choices of its value may be 

required [96]. This is one of the reasons why sometimes different values of this model 

parameter are analyzed, when comparing the performance of mixing models. In order to 

isolate the influence of   , mixing frequency exact values are also used when possible 

[91]. 

From the series of flames considered, HM3 features the strongest turbulence-

chemistry interaction. However no stationary solution was obtained for this case with 

the use of the MCD model [22]. With EMST [24], a statistically stationary flame was 

obtained, but it was not possible to compare the results obtained with both mixing 
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models. Results obtained from the simulations of flame HM2 illustrate that the mean 

mixture fraction and rms (root mean square) value of the mixture fraction fluctuations 

reasonably agree with the corresponding experimental data.  For this particular flame, 

Fig. 3 shows the mean and fluctuation of temperature conditioned on mixture fraction. 

At the first axial position analyzed, the agreement with experimental data of the 

conditional mean temperature is good for all models. This agreement is better than for 

HM1, where the conditional temperature fluctuations obtained from experiments are 

much higher (presence of a slight flame lift-off). Further downstream, in terms of 

conditional temperatures, MCD agreement is still good, whereas an overprediction is 

observed around stoichiometry with the EMST model. This is due to the 

underprediction of the amount of local extinction associated with the EMST localness 

principle, made evident from the underestimation of the temperature fluctuations. 

Notice in Fig. 3 that there is a clear increase in conditional fluctuations around 

stoichiometry when the MCD model is utilized. This higher level of conditional 

fluctuations associated with MCD is because of its intrinsic property of random 

selection of particle pairs for mixing [92]. Shortly the results shown in Fig. 3 highlight 

the fact that differences are observed when different mixing models are utilized, 

especially when higher order statistics are accounted for. 

 

Fig. 3. Results corresponding to bluff body studies, involving the Sydney flame HM2, performed 

to evaluate the performance of mixing models [92]. Mean (left) and rms values (fluctuation) of 

temperature (T) conditioned on mixture fraction ( ). CD in this figure translates to MCD [22] 

model in this work. 

When dealing with piloted jet diffusion flames ('Delft Flame III'), in addition to the 

MCD [22] and EMST [24] mixing models, Merci et al. [93] studied the IEM [37,57] 

model. These models were applied to a nonpremixed turbulent diffusion flame, 

featuring a strong turbulence-chemistry interaction including local extinction and 

reignition, known as Delft Flame III [97,98]. Particularly, the influence on the results 

obtained of the mixing model parameter   , Eq. (26), and the representation of pilot 

flames was analyzed. The analyses focused initially on the influence of    and the pilot 

flame thermal power on prediction of flame attachment. The results of this preliminary 

analysis showed that, when the experimental pilot flame power is applied, the IEM 
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leads to global flame extinction, the MCD to flame lift-off (  =2) and the EMST to the 

qualitatively correct attached flame. Artificial increases in the pilot flame thermal power 

did not solve the IEM global extinction problem, neither led to an attached MCD-based 

flame. IEM was thus considered inadequate for the test case studied. The MCD flame 

attachment problem was corrected with a higher   (=3) value. EMST was hardly 

affected by any of these modeling operations. 

Results involving radial profiles of rms values of mixture fraction fluctuations show 

that, in general, MCD and EMST lead to an overprediction of the mixture fraction 

variance. An increase in    from 2 to 3 results in a decrease of mixture fraction rms 

values and better agreement with experimental data. This leads however to a slight 

deterioration of the EMST mean temperature profiles.  These EMST results show that 

choosing a    value on the basis of best agreement for the mixture fraction fluctuations 

does not imply a similar agreement in terms of mean temperature profiles. Further 

analyses of the results obtained indicate that the mixture fraction variance 

overprediction is due to an overprediction of the turbulent diffusion transport (in 

physical space), which was modeled based on the gradient diffusion hypothesis. 

Furthermore, based on characteristic time scales, it was identified that there is much 

more mixing of particles from outside into a computational cell or vice versa (due to 

macroscopic inhomogeneity), than there is mixing within a cell (due to inhomogeneity 

on the molecular level). This explains the overestimated variance of mixture fraction 

observed. Mixture fraction rms values are influenced by the combination of production 

(turbulent diffusion transport) and dissipation (micromixing) processes. It is then 

concluded by Merci et al. [93] that it is not necessarily a good option to force agreement 

for mixture fraction variance by tuning the dissipation, because this may lead to 

unwanted enhanced local mixing and thus to poor local extinction predictions. 

Local extinction was analyzed in [93] by considering scatterplots of temperature 

and species mass fractions versus mixture fraction, as shown in Fig. 4. From this figure 

it is evident that the variance of these parameters (temperature and species mass 

fractions), conditioned on mixture fraction (scatter in vertical direction), obtained using 

EMST is too low when compared to the experimental and MCD results. This EMST 

feature is attributed to its characteristics of localness in composition space. For the 

results shown in Fig. 4, typical mixture fraction rms values are equal to 0.15, which 

implies that the particle ensembles from each computational cell cover a significant 
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width (in mixture fraction direction) in the scatterplot. In this case the differences 

between the EMST and MCD mixing models are therefore relevant. Because of its 

localness characteristics, the EMST model shows some scatter around the zone with the 

highest temperatures only. On the other hand, the MCD nonlocal mixing rule allows 

that this model has more chance to move particle compositions away from the burning 

region than the EMST. This is reflected in the large scatter of results observed in this 

case. In particular, when   =2, a strong decrease of the particle temperatures is seen to 

lead to local flame extinction and flame lift-off. These results seem to indicate that the 

failure of the MCD model with   =2 to predict an attached flame can be linked to the 

overprediction of the mixture fraction variance. As highlighted above, this MCD issue 

was solved when a higher value of this model parameter (  =3) was utilized. 

The Barlow and Frank piloted methane/air jet flames D, E and F [99,100] were 

utilized by Cao et al. [101] in order to investigate the performance of three mixing 

models, namely IEM [37,57], MCD [22] and EMST [24], and their dependence on the 

specified value of the mixing model parameter   , Eq. (26). In order to minimize the 

uncertainty in the accuracy of the chemical mechanism, the detailed GRI3.0 mechanism 

[102] was utilized in the simulations. Although calculations were performed for all three 

flames, only results for flame E, which has a significant amount of local extinction, 

were presented and discussed in [101]. The    values analyzed ranged from 1.5 to 4.0. 

The statistics examined include conditional and unconditional mean and rms values, 

scatter plots and burning indexes. 

 

Fig. 4. Mixing models comparative results obtained from piloted jet diffusion flames ('Delft Flame 

III') [93]. Scatterplots of temperature (T) and water mass fraction (Y(H2O)) at a given axial 

position (x=100 mm) (experimental pilot flame power). CD in this figure means MCD [22] mixing 

model. 

For all    values studied, flame E calculations using the EMST model yielded 

'burning solutions', i.e., flames in which essentially all the fuel is converted to products 

far downstream the fuel injection point. In contrast, when IEM and MCD are 

considered, burning solutions are obtained for    values greater than or equal to 3.3 and 

3.8, but global extinction occurs for    values less than 3.0 and 3.5, respectively. In the 

results shown in Fig. 5, the standard value   =1.5 is used with EMST, whereas with 
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IEM and MCD the smallest values yielding burning solutions are utilized, namely 

  =3.3 and 3.8, respectively. Specifically Fig. 5 illustrates a comparison of the 

measured and computed burning indexes (BI) based on temperature and species mass 

fractions. In this context, BI are considered as the ratio of the conditional mean of a 

given parameter, in a mixture fraction interval around stoichiometry, to the 

corresponding value in a mildly strained nonpremixed laminar flame. Therefore, for 

product species, BI equal to 0 and 1 correspond to no burning and complete combustion, 

respectively [101]. 

It can be seen from in Fig. 5 that all three mixing models generally result in a 

reasonable agreement with the measured temperature (T) and carbon monoxide (CO) 

BI, i.e., BI(T) and BI(CO). Nevertheless, the hydroxyl BI, BI(OH), computed using 

IEM and MCD, are significantly higher than those obtained from EMST and 

measurements. Notice that the    values used for producing Fig. 5 results are those 

which yielded the closest agreement with the measured BI. The mixing model 

parameter    affects both the BI values and the level of scalar fluctuations. For these    

values, the mean and rms mixture fraction values computed using EMST are in good 

agreement with experimental data. However the IEM and MCD mixing models 

significantly underpredict the rms mixture fraction at all locations. Based on the 

computed BI, and even though this is achieved with different    values, Cao et al. [101] 

concluded that all three mixing models are capable of yielding levels of local extinction 

comparable to the experimental observations. This outcome is in line with what is 

highlighted in [91], where it is believed that the relative good predictions obtained using 

simple models may be associated with the adjustment of mixing frequency-related 

parameters. 

 

Fig. 5. Axial variation of BI in Barlow and Frank flame E obtained using IEM, MCD and EMST 

with different    values [101]. Solid circles are measurements and lines are joint PDF 

calculations. IEM with   =3.3: dashed line with triangle, MCD with   =3.8: dotted line with 

square, EMST with   =1.5: solid line with plus.  

Four different mixing models were assessed by Orbegoso and Figueira da Silva 

[86] using a PaSR-based approach. Models considered involve the IEM [37,57], EIEM 

[64-66], LM [84] and ELM [64,65]. Particularly, the degree of mixing and reaction and 
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their influence on the thermochemical properties characterizing combustion processes 

were investigated. Results were analyzed through comparisons of both the evolution and 

the first and second statistical moments of the PDFs associated with each of the mixing 

models studied. For reference purposes, these comparisons included the use of DNS 

data [103] and semi-analytic steady-state solutions of the PDF corresponding to the IEM 

model [67]. The evolution of an inert scalar subject to homogeneous turbulent 

fluctuations was initially addressed. It was observed that during the early stages of 

mixing the scalar PDFs computed agreed well with DNS results. For large mixing 

times, only the LM yielded self-similar scalar PDFs consistent with a Gaussian shape. 

In accordance with previous results [65], EIEM and ELM, containing a description of 

the turbulent frequency, led in this case to a divergent, super-Gaussian behavior. 

Using a PaSR the qualitative evolution of the PDF corresponding to the IEM and 

the stochastic mixing models was examined for situations characterized by both (i) fast 

mixing and reaction, and (ii) slow mixing and reaction. It was noticed that, in the former 

case, the shape of the steady-state PDF is only slightly modified by the choice of the 

mixing model. For slow reaction and mixing regimes, differences between the 

computed PDF shapes are found to occur, mostly at the vicinity of the unburned gases. 

The extended models, which contain a turbulent frequency log-normal description, are 

found to enhance mixing, whereas Langevin models promote reaction via an increase of 

scalar dissipation. A parametric analysis of the choice of the mixing model and its 

influence on the mean and standard deviation ( ) of the reaction progress variable (c), 

which characterize the combustion processes modeled, was also carried out. For this 

analysis, two different values of the ratio between the mean residence time and the 

characteristic turbulence time, Z=0.5 and 2, were studied. These Z values correspond to 

slow and fast mixing processes, respectively. This follows from the fact that, according 

the modelling approach employed in [86], Z is directly related to the logarithm of the 

turbulent frequency (X). A range of residence to chemical time scale ratios was also 

covered, Y [0.03, 1], ranging from mild to intensive reaction regimes. Thus Fig. 6 

shows particular results obtained from the EIM and LM simulations as part of the 

parametric study performed. 

From Fig. 6 it is possible to see that for the case of fast mixing (Z= 2), the c mean 

values are nearly identical for the IEM model. The same occurs for the LM when the 

value of the parameter that controls the PDF relaxation rate in this model (do) is equal 
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to 0.4. For do=1, larger c mean values characterize the LM in mild combustion regimes 

(Y < 0.2). A different picture results for the slow mixing case shown in Fig. 6b. The 

reaction progress variable mean and standard deviation values, computed with IEM and 

LM (do=0.4), are practically identical in intensive combustion regimes. Nevertheless, as 

the chemical reaction process slows, the choice of the mixing model substantially 

influences the 〈 〉 and   values. The results obtained with the use of EIEM and ELM 

exhibit a still larger sensitivity to the choice of both the mixing model and the LM 

parameter do. It is concluded that in the intense combustion regimes, i.e., when the 

residence to chemical time ratio is larger than 0.3, all the studied mixing models lead to 

equivalent results. In the mild combustion regimes however, large differences are found 

to occur. In general, Langevin models (LM and ELM) lead to larger average values of 

the reactive scalar mean (〈 〉) within the PaSR. The results obtained from these models 

also show a dependence on the parameter that controls the reactive scalar dissipation 

(do). In particular, an increment of this parameter leads to an increment of the c mean 

values. This behavior is consistent with the increment of the averaged reaction rate with 

the scalar dissipation rate, which corresponds to the classic modeling of premixed 

turbulent combustion. 

 

Fig. 6. Reaction progress variable mean (〈 〉) and standard deviation ( ) in a PaSR operation 

using IEM and LM for (a) high and (b) low mixing frequencies (do is a Langevin model 

parameter) [86]. 

Meyer and Jenny [25] assessed the accuracy and computational efficiency of the 

PSP mixing model [46] and compared the results obtained with the corresponding ones 

associated with the CD [68], MCD [22], IEM [37,57] and EMST [24] models. The 

selected test cases involved a three-stream problem [73] and a multi-scalar test case 

with mean scalar gradients [24]. In the three-stream problem, involving the mixing of 

two inert scalars in a stationary homogeneous turbulent flow, DNS reference data [104] 

was utilized for reference purposes. The main results for this case show that all mixing 

models studied, except PSP, which is in closest agreement with DNS data, predict a 

constant decay rate of the rms scalar values. For the EMST model this is so by 

construction. The IEM is calibrated to reproduce the correct constant decay rate with a 

scalar energy spectrum in equilibrium [104]; and the CD-based models yield consistent 
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decay rates when adequate mechanical-to-scalar timescale ratios are selected. The 

results also show that, after attaining a self-similar PDF shape, the PSP model predicts a 

DNS consistent scalar decay rate as well. 

When the evolution of the joint scalar PDFs obtained using the different mixing 

models is analyzed, it is observed that the PSP model yields results that are in good 

agreement with DNS data. A similar behavior is seen from the conceptually simple Curl 

models. The IEM predictions are not satisfactory due to its PDF shape preserving 

property. The same occurs in the case of the EMST model due to the so-called 

stranding, i.e., unphysical formation of tree-like particle structures in scalar space. 

Stranding issues may be alleviated by adjusting the parameters characterizing the 

mixing intermittency process utilized in EMST. However this is feasible only within a 

limited range of values, as it may lead to reductions of the number of particles in the 

mixing sub-ensemble and, thus, in the localness characteristics of the model [25]. 

Notice that, in an inhomogeneous mixing scenario, the stranding problem is reduced 

since the particle transport in physical space counteracts it. 

In the multi-scalar case with mean scalar gradients evaluated, a statistically 

stationary homogeneous turbulent flow field was also considered and constant mean 

scalar gradients in spatial directions were prescribed. In particular, the influence of 

mixing models and the number of scalars and particles on the scalar statistics and 

computational cost was investigated. The normalized scalar variance and kurtosis 

characterizing this particular case, plotted as functions of the number of scalars, are 

shown in Fig. 7. Manifested through the dependence on the number of scalars, this 

figure shows that the independence and linearity properties are not fulfilled by the 

EMST and early variants of the PSP mixing model. Although independence and 

linearity principles have been initially pointed out as requirements for mixing models, it 

has been shown [105] that in scalar PDF approaches mixing models need not comply 

with the linearity and independence hypothesis, since these are relaxed when 

conditional expected values are utilized. The EMST and PSP independence and linearity 

features could be then considered only a mild drawback for these models. It is also seen 

that, for a relatively large number of scalars, the EMST results approach the IEM ones, 

whereas the PSP variance predictions tend to the equilibrium variance obtained from 

DNS data [106]. Notice as well that the IEM model predicts a kurtosis of 3, which 

corresponds to a Gaussian distribution. Regarding the number of particles and 
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computational cost, the results show that the scalar statistics have a weak dependence on 

the number of particles only. In addition, the CD, MCD and IEM models are 

computationally efficient, as their costs scale linearly with the number of scalars and 

particles. The PSP and EMST mixing models present higher costs however. A linear 

dependence on the number of particles is found for the PSP model while the EMST 

model leads to a nearly quadratic dependence. Moreover, for a relatively large number 

of scalars (> 30), both PSP and EMST present computational costs approximately 

proportional to the number of scalars powered to 1.5. 

 

Fig. 7. Non dimensional scalar variance (left) and kurtosis (right), as a function of the number of 

scalars (ns), obtained from a multi-scalar test case with mean scalar gradients [25]. IEM: (o), 

CD: (dash dot line), MCD: ( ), EMST: (solid line), PSP: (dashed and dotted lines). 

In a recent effort, Rowinski and Pope [55] carried out PDF calculations of a three-

stream turbulent jet in both RAS and LES contexts. The RAS-based computations 

involved the evaluation and comparison of three classic mixing models, namely IEM 

[37,57], MCD [22] and EMST [24]. One of the specific goals of this work involved the 

evaluation of the mixing models efficiency through comparisons of the calculated 

conditional diffusion with the corresponding results obtained experimentally. The non 

reacting flow configuration studied corresponds to the experiment conducted in [107], 

which consists of three concentric streams: a jet, an annulus and a coflow. It is 

recognized that the numerical accuracy of the calculations is affected by the (i) grid 

size, (ii) the number of particles per cell, (iii) the duration over which time-averaging is 

performed and (iv) the time step. A preliminary analysis involved then systematic tests 

of these parameters, such as to determine the most adequate values for the simulations. 

Particularly it was found that the largest source of error is in the grid resolution.   

Comparative results relating the mixing models analyzed, obtained from the 

RAS/PDF computations carried out, are illustrated in Fig. 8. In this figure, the time 

averaged mass weighted mean (〈 ̃ 〉, 〈 ̃ 〉) and rms (〈  
 ̃〉, 〈  

 ̃〉) mixture fractions 

correspond to, respectively, the jet and annulus streams. It is observed that there is a 

small sensitivity of the IEM-based mean mixture fractions to the    values. In contrast 

to these results, Fig. 8 shows a much larger sensitivity of the rms with respect to   . 

Specifically, larger   values yield a decreased rms which is expected since this model 
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parameter directly impacts the scalar variance. The best agreement of the computed 

results with the experimental data, in terms of means and rms statistics, is obtained with 

a value of   =1.5. The MCD and EMST results are very similar to those obtained using 

the IEM mixing model. 

 

Fig. 8. Radial profiles of time averaged mass weighted mean (a) and rms (b) mixture fractions 

characterizing a three-stream turbulent jet [107]. IEM,   =1.5: solid dark line; MCD,   =1.5: 

dashed dark line; EMST,   =1.5: solid gray line; IEM,   =0.5: dashed light gray line; IEM, 

  =4.5: light gray solid line; experimental data: circles. 

Even though similar results are obtained in terms of mean and rms statistics, Fig. 9 

shows that there is a considerable difference in the higher order statistics associated 

with the different mixing models studied. The joint PDF and conditional diffusion 

results shown in this figure correspond to a flow location where there is significant 

mixing of all three streams. Regarding IEM, it is observed in Fig. 9 that this model 

yields a joint PDF that is more compact in composition space than the corresponding 

experimental one. Moreover, in contrast to the unimodal one observed experimentally, 

IEM results indicate a bimodal PDF. This implies that although the first two statistical 

moments are calculated reasonably accurately the same does not occur for higher order 

statistics. Additionally, in accordance with its formulation, IEM conditional diffusion 

values are linearly proportional to the distance from the mean value. Qualitatively the 

MCD model results in a joint PDF which is the most similar to what is obtained 

experimentally. The EMST model yields in turn a joint PDF which is much more 

compact than those associated with the experiments and the other mixing models 

analyzed. 

 

Fig. 9. Three-stream turbulent jet – Joint PDF of mixture fractions (top) and magnitude of 

conditional diffusion (bottom) [107]. Circle and plus sign are mean values from experiments and 

PDF-based computations, respectively. In top plots, solid lines are iso contours enclosing 

regions with probability 0.5 and 0.9. In lower plots, lines with arrows are streamlines everywhere 

parallel to the conditional diffusion vector. 

Further analyses show that the location in composition space where the dense 

EMST PDFs occur corresponds to the slow manifold region identified experimentally 
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[107]. In this context a slow manifold is understood to be the single low dimensional 

manifold to which all fast manifolds, i.e., initial trajectories in mixture fraction space, 

are drawn to [55]. The EMST joint PDF and conditional diffusion results also show a 

lack of the fast manifolds observed in the experiments. It is believed thus that other 

physical processes not accounted for in EMST, such as differential diffusion, may be 

the responsible for these manifolds [55]. This study of mixing models demonstrates the 

strengths and weaknesses of each model, and highlights the fact that there is room for 

improvements in the predictions performed with these models. The simulations of the 

three-stream flow configuration carried out in the LES context yielded mixture fraction 

joint PDFs in good agreement with experimental data, better than that obtained in the 

RAS context with the three mixing models studied. 

Other parametric studies involving mixing models constitute those presented by 

Meyer and Deb [50] and Meyer and Jenny [51]. In these works it is emphasized that, in 

joint velocity-composition PDF contexts, velocity conditioning is essential for accurate 

predictions of scalar statistics. Ignoring this fact in mixing models leads to significant 

errors in scalar statistics, including scalar mean and variances. In particular, it is shown 

that when velocity conditioning is neglected there are no unique    values reproducing 

scalar variance data accurately. A recent effort involving comparative analyzes of the 

performance of mixing models is the work by Krisman et al. [58]. This study involving 

the IEM, MCD and EMST mixing models utilizes DNS data to provide both initial 

conditions and inputs needed over the course of the simulations, including mean flow 

velocities, mixing frequencies, and turbulent diffusion coefficients. The focus of the 

study is on mixing models, so attempts are made in order to both eliminate possible 

sources of errors (related to, for example, chemical kinetic mechanisms, turbulence 

modeling and numerical algorithms) and allow comparing as fair as possible the mixing 

models. The configuration studied corresponds to a one-dimensional, non premixed, 

turbulent jet flame burning either syngas or ethylene fuel streams. Parametric variations 

of Re and Da are also studied. For the syngas cases, the results show that, for relatively 

low and intermediate Re, flame extinction and reignition are successfully predicted 

using all three mixing models. Nevertheless all models under-predict reignition for the 

relatively high Re. In the ethylene fuelled cases, only the EMST model correctly 

predicts reignition events for the higher Da cases analyzed. In the lowest Da case 

studied however, the EMST over-predicts reignition and both IEM and MCD models 
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under-predict it. From a parametric study performed of the mechanical-to-scalar time 

scale ratio   , it is concluded that this parameter is mixing model and case dependent. 

In the ethylene case considered then, reignition could be achieved with the IEM and 

MCD models by adjusting the    values. 

Similar to the studies reviewed in this section, several others have been carried out 

in the past in order to assess the performance of mixing models [58,108,109]. For the 

sake of brevity however, these studies are not detailed here. For further references 

regarding comparisons of mixing models performance, the interested reader is referred 

to Table 2 highlighting the main past studies carried out on this matter. Indeed, the 

purpose of this section was to emphasize the differences in the results obtained with 

different mixing models, rather than to discuss all parametric analyses involving these 

models performed so far. From the results shown in this section it may be concluded 

that there are significant differences in the results obtained when different mixing 

models are utilized. This is particularly true when higher order scalar statistics are 

accounted for. It has been also illustrated how the model parameters, in particular the 

mechanical-to-scalar time scale ratio   , influence the mixing results. A considerable 

effort has been undertaken in the past to determine a range of acceptable values for 

these model parameters without much success. In summary, work still needs to be 

carried out in order to develop a mixing model satisfying all desirable characteristics 

expected from these models. In the following section some avenues that can be explored 

in order to achieve this goal are discussed. 

Table 2. Previous studies including comparisons of mixing models performance. 

Reference Configuration Mixing models Main findings/conclusions 

[89] 
Partially stirred 

reactors 
IEM, MCD, 

EMST 

Mixing models exhibit significant differences in 

both mixture fraction PDFs and extinction 

behaviors 

[91] 
Turbulent 

diffusion flames 
IEM, MCD, 

EMST 

No mixing model realistically describes flame 

extinction and reignition 

EMST mixing model performs better than IEM and 

MCD models 

[92] 
Non premixed 

bluff body flames 
MCD, EMST 

Results are influenced by mixing model choice as 

local flame extinction increases  
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[93] 
Piloted jet 

diffusion flames 
IEM, MCD, 

EMST 

IEM model considered inadequate 

No scalar-to-mechanical time scale ratio value led 

to both mixture fraction rms and local extinction 

good predictions  

[101] Piloted jet flames 
IEM, MCD, 

EMST 

Mixing models capable of reproducing 

experimental levels of local extinction 

Different scalar-to-mechanical time scale ratios 

required 

[86] 
Partially stirred 

reactors 
IEM, EIEM, 

LM, ELM 

Fast mixing and intense reaction: similar mixing 

models results 

Slow mixing and mild reaction: large differences 

are observed 

[25] 

Three-stream 

problem, Mean 

scalar gradient 

configuration 

IEM, CD, 

MCD, EMST, 

PSP 

IEM, CD and MCD models are computationally 

efficient 

PSP and EMST present higher costs 

[55] 
Three-stream 

turbulent jet 
IEM, MCD, 

EMST 

Similar mixing models results are obtained in terms 

of mean and rms statistics 

Large differences in higher order statistics are 

observed 

[50] 
Three-stream 

mixing 

configuration 

IEM, IECM, 

PSP 

PSP performs better than IECM at comparable cost 

Velocity conditioning is essential in joint velocity-

composition PDF contexts 

[51] 
Three-stream 

mixing 

configuration 

IECM, MCD, 

PSP 

Velocity-conditional MCD and PSP mixing models 

provide more accurate joint scalar PDF predictions 

(at lower computational cost) than the IECM model 

[108] 
Non premixed 

counterflow 
IEM, MCD 

Shortcomings in mixing models found 

Potential source: representation of scalar mixing 

frequency (constant ratio of scalar to flow time) 

[109] 
Lifted turbulent jet 

flame 
IEM, MCD, 

EMST 

All three models give relatively similar results 

EMST lift-off heights shorter than the IEM and 

MCD ones 

[58] 
Non premixed 

turbulent jet flame 
IEM, MCD, 

EMST 
Scalar-to-mechanical time scale ratio optimal 

values are mixing model and case dependent 
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5 Prospects for Mixing Models 

It has been anticipated [2] that PDF-based methods will be adopted more broadly 

during the 21st century in order to address key combustion-related issues, such as those 

involving the complex interactions among turbulence, gas-phase chemistry, liquid fuel 

sprays, soot and thermal radiation. In the particular formulation used for turbulent 

combustion modeling known as transported PDF method, the mixing models dealing 

with the PDF transport due to the molecular diffusivity remain the weakest link [4]. 

Currently there is no mixing model presenting all desirable characteristics expected 

from these models. This implies that the development of mixing models is an open area 

for research. This is particularly true in the case of the relative new approaches being 

utilized, involving Eulerian Monte Carlo [6-8] and sparse-Lagrangian Monte Carlo 

[74,76] methods. 

In general mixing models should rely on sound physical grounds. This allows both 

performing a straightforward validation of their results by using experimental or DNS 

data, and obtaining an overall picture of the molecular diffusion processes that they are 

supposed to mimic. One route that could be further explored is that in which the effects 

of the turbulent frequency scale distribution on scalar mixing are included [64-66]. This 

approach is based on the fact that, although molecular mixing is a small scale 

phenomenon, the local scalar dissipation frequencies determining roughly its intensity, 

depend on the scalar structures influenced by the full spectra of turbulence. It has been 

thus proposed to replace the single frequency scale used in most mixing models by a 

stochastic distribution of this parameter. The challenge here is how to properly model 

this stochastic process. It has been emphasized [4] as well that the lack of information 

regarding the joint scalar dissipation rates in most mixing models may lead to 

unphysical predictions. This means that mixing models should contain information 

about small scale correlations between scalar gradients. Improving upon existing mixing 

models implies then finding accurate models for the scalar dissipation rates and their 

dependence on the chemical source term [4]. Notice as well that, as discussed in [110], 

the problem raised by the numerical prediction of the mean chemical reaction rate has 

led to the development of several modeling approaches for the scalar dissipation rates. 

The works dealing with these modeling approaches emphasize the existing relationship 
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between mean chemical reaction and scalar dissipation rates. The outcomes from these 

works could also contribute thus for the development of improved mixing models. 

The mixture fraction length scale distribution often appears in the form of the 

fluctuating scalar dissipation rate in turbulent combustion models [4]. Because of the 

importance of accurately modeling the scalar dissipation rates, the scalar length scale 

distribution is also thus a key aspect to be considered in mixing models. It has been 

shown indeed that accounting for the evolution of the scalar length scale distribution is 

crucial for predicting the correct decay rate of scalar variance [111]. The scalar length 

scales can be linked to the experimental results obtained recently by Cai et al. [107], 

from the characterization of three-scalar mixing processes in a turbulent coaxial jet 

configuration. In this experimental work, it has been found that (i) the diffusion velocity 

streamlines in scalar space generally quickly converge to a manifold along which they 

continue at a lower rate. Additionally, (ii) the mixing processes during the approach to 

the manifold cannot be modelled by using different dissipation time scales alone. 

Because of the particular three-stream flow configuration analyzed, mixing between two 

of the scalars can occur only through the third one, i.e., through a preferential mixing 

path in scalar space. This mixing path is indeed challenging for mixing models, since 

most of them use only scalar-space variables and disregard the spatial (physical-space) 

scalar structure.  

One of the mixing models considering, directly or indirectly, both scalar and spatial 

spaces is the MMC model [73,74,76]. In this particular model, in order to preserve 

localness, only particles that are close in both reference and physical spaces are allowed 

to be mixed. Thus this model accounts for the spatial scalar structure mentioned above. 

It is worth highlighting that, in order to provide for locality characteristics to a given 

mixing model, it is necessary to first define the particles neighborhood. This means that, 

for a given particle, its corresponding neighbors need to be firstly identified. The 

definition of a particle neighborhood can be done directly in scalar space (EMST [24]), 

reference variables space, and/or physical space (MMC [73,74,76]). For single scalar 

cases this neighborhood definition can be reduced to a simple particle ordering 

according to the values of given parameter. For multi scalar situations however, this 

process can be complex and expensive in computational terms. Devising a relative 

simple scalar mixing model which ensures localness remains thus a challenge 

nowadays. 
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The use of a non-traditional mixing approach for simulating eventually turbulent 

reacting flows has been proposed recently [112]. Traditional mixing as discussed in this 

review work is conservative, which means that the total amount of a scalar is preserved 

during a mixing event. In contrast, the non-traditional mixing known as non-

conservative or competitive mixing considers a more general mixing that does not 

possess these conservative properties. In short, in non-conservative mixing, the particle 

post-mixing average becomes biased towards one of the particles participating in the 

mixing process [112]. Competitive mixing has been used in simulations emulating the 

propagation of combustion waves in turbulent premixed combustion under the flamelet 

regime [113]. Competitive mixing is seen, in this case, as the superposition of 

conservative mixing followed by the rapid evolution of the particles into the burned 

state. The results obtained for this particular application are shown to be consistent with 

the corresponding experimental evidence. This mixing approach constitutes an 

alternative route towards the development of mixing models that could be further 

explored in future. Additional discussions on the concept of mixing in different 

contexts, including mechanical mixing, ergodic theory, turbulent combustion modeling 

and complex competitive systems, can be found in [114]. 

The remaining challenges facing turbulent combustion models have been reviewed 

in [115], from the point of view of the implied manifolds in the species space. These 

challenges are related to the presence, in the combustion processes, of small scales and 

many chemical species, as well as to the coupled processes of reaction and molecular 

diffusion. Turbulent combustion involves a large range of scales, from those of the 

apparatus size down to the smallest turbulent and reaction-zone scales. The efficient 

representation of the small scales inevitably requires the use of a statistical approach for 

the modelling of the small-scale processes. This implies in turn that the coupled 

processes of reaction and molecular diffusion have to be modeled [115]. Mixing models 

such as those discussed above are utilized for these purposes. Notice that relative simple 

models, including IEM [37,57] and MCD [22], do not account for the effects that 

reaction may have such as to steepen scalar gradients and, hence, to influence molecular 

mixing. Nevertheless more sophisticated models such as EMST [24] and MMC 

[73,74,76] do account for these effects [115], which gives them good prospects for 

further improvements. 
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An important subject that has been addressed in [115] relates to the examination of 

the processes of reaction and molecular diffusion from the perspective of manifolds in 

the species space. Different types of manifolds used in turbulent combustion, including 

skeletal, reaction-diffusion, conditional and empirical manifolds, have been thus 

discussed. More specifically, it has been shown that empirical manifolds can be 

constructed based on composition samples obtained from experimental or DNS data. 

Particular results illustrate that DNS data corresponding to relatively simple flames are 

not well approximated by low dimensional empirical manifolds. Since flamelet-like 

models assume that computed compositions are confined to a low dimensional 

manifold, it is doubted in [115] on their applicability to simple flame configurations, 

and yet more so to the more complex ones. Certainly these manifold-based approaches 

open other avenues to be explored in order to improve mixing models currently used in 

simulations of turbulent combustion processes. 

Thinking out of the box may also help to further improve current mixing models. In 

this sense the study of coherent structures, which are distinguishable regions of the flow 

field sharing common properties and correlated in space and time [116], have the 

potential to open exciting avenues for mixing models research. It is known that coherent 

structures play a key role in turbulent transport and mixing [117,118]. However, the 

main issue that remains is the determination of these coherent structures based on 

experimental/numerical data. In Eulerian contexts, a problem arises when defining the 

criteria for coherence as different definitions favor different structures. Besides, 

Eulerian coherence indicators are frame dependent and hence often unable to capture 

intrinsic flow properties in unsteady flows [117]. Lagrangian coherent structures (LCS) 

[119,120] have evolved thus from a need to formally define intrinsic structures 

governing flow transport within fluid flows. This means that LCS are expected to 

establish frame-independent criteria allowing unambiguous definition of coherent 

structures based on their influence on flow transport [121]. When using LCS fluid 

motion is seen from a Lagrangian perspective, which means that LCS can be defined as 

distinguished sets of fluid particles [117]. As highlighted in literature [119], LCS have a 

direct impact on fluid mixing due to their stability properties. In laminar flows LCS can 

be determined using chaotic advection methods [122]. Nevertheless, it is more difficult 

to identify LCS from turbulent flow experiments, as the stability properties of individual 

fluid particles are difficult to establish [117]. Ultimately, it is expected that the proper 
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identification and eventually prediction of LCS could help to better understand and 

effectively exploit fluid flows in engineering. 

Following a line of reasoning similar to LCS and flow patterns, another route that 

can be further explored is that accounting for the interaction of combustion 

thermochemical processes with the local geometries of both scalar fields and flow 

topologies [123]. This approach has a great potential to contribute to the development of 

more accurate mixing models, as it is intended to include a solid grasp of the physical 

process that mixing models are supposed to represent. Since the pioneering work of 

Chong et al. [124], who studied and classified local small-scale topologies for both 

compressible and incompressible flows, based on the velocity-gradient tensor 

invariants, several other investigations have been carried out on this subject. Most of 

these works have been performed for constant density flows. Accordingly, the turbulent 

mixing of a single reacting scalar in a statistically homogeneous constant density flow is 

addressed in [125]. It is shown that scalar mixing depends on the topologies of the 

velocity field, especially when the velocity gradient invariants are large, indicating that 

small scale intermittency plays a role in turbulent mixing mechanisms. One recent study 

about local flow topologies and scalar structures [123] considers the case of a turbulent 

premixed flame. The main results of this work indicate that thermochemical processes 

tend to smooth out highly contorted iso-scalar surfaces in some flow regions. Besides 

particular flow topologies correlate with large values of the strain rate tensor, providing 

thus hints on the flow topologies fostering scalar mixing. Molecular mixing is a small 

length scale process, so the interaction between small scale flow topologies and scalar 

structures needs to be accounted for when developing mixing models. Furthermore, 

given the fact that chemistry can enhance existing scalar gradients, the characteristic 

mixing time (or frequency) can be strongly influenced by combustion. The presence of 

chemical reactions cannot be ignored then in mixing models. It seems that the main 

focus of investigations has been so far on the use of a large scale characteristic time, 

instead of, for example, Kolmogorov strain rates or molecular diffusion coefficients. 

This needs to be addressed indeed should better mixing models are to be developed in 

future. 

As it has been pointed out throughout this section, several approaches have the 

potential to make contributions to the development of better and more comprehensive 

mixing models and some of them seem to be more promising than the others. In a more 
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personal level, we believe that generality and simplicity should be the main driving 

forces for the development of new mixing models. We have seen that by tuning model 

constants it has been possible to obtain in some situations results that reasonably agree 

with experimental or DNS data, at least in terms of low order statistical moments. 

Nevertheless it seems awkward to perform a tuning process before using these models. 

Generality, as well as simplicity or ease of use, are then key for future developments 

involving mixing models. Having this in mind, as it would allow representing more 

accurately the physical phenomena involved, we definitely believe that more physics 

needs to be embedded in mixing models. In particular local length or time scales, 

relating small scale flow topologies and scalar structures, need to be accounted for in 

mixing models. Accordingly, we consider that one of the most promising avenues for 

the development of improved mixing models is that involving feature extraction 

[126,127] from large scale experimental or DNS data. Additionally, regardless of the 

methodology used for analyzing data, recognizing patterns and extracting relevant 

features from it, it is crucial to understand the local relationship between mixing and 

chemical reactions, i.e., the interaction of chemical processes with local geometries of 

scalar and flow fields. Ultimately, we expect that both the proper identification of 

relevant features from large scale data, and the understanding of the interaction among 

turbulence, mixing and reaction allow the conception and development of simple, 

general and more accurate mixing models than those currently available. 

6 Conclusions 

In this work a review of the main mixing models utilized for closure purposes in 

Lagrangian transported PDF formulations focused on turbulent reacting flows was 

presented. These models provide in practice a closure to the PDF transport equation 

open terms that represent the transport of the PDF due to molecular diffusion. Over the 

years several mixing models with different degrees of complexity have been developed. 

The review carried out included models in which the composition of a particle changes 

not only essentially independently of that of the other particles, but also through direct 

interaction with other particles. Main advantages and shortcomings of the mixing 

models reviewed were highlighted as required. Because of the current interest in solving 

PDF transport equations using Lagrangian Monte Carlo techniques in hybrid 
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Euler/Lagrange approaches, a particular emphasis was put on those models applicable to 

particle-based schemes. In the last part of the article both comparative results of mixing 

models performance, and prospects for the mixing models were discussed to 

complement the literature review carried out. 

Despite the effort that has been devoted to the development of more capable mixing 

models, there is no mixing model presenting all desirable characteristics. Even more, 

there are significant differences in the results obtained when different mixing models 

are utilized, especially when higher order scalar statistics are accounted for. It has been 

observed that particular model parameters influence the mixing results. This is 

particularly true in the case of the mechanical-to-scalar time scale ratio, which 

determines the transported scalar mixing rates. In the past, several works have been 

focused on the determination of acceptable values for this parameter, but the results 

have not been as expected. Results show indeed that the value of this particular model 

parameter is both mixing model and case dependent. It is therefore concluded that work 

still needs to be carried out in order to develop a mixing model satisfying all desirable 

characteristics expected from these models. Several avenues can be further explored in 

order to achieve this goal. These potential routes include those accounting for spatial 

scalar structures and both scalar length and turbulent frequency scales distributions. 

Other approaches based on competitive mixing, manifold-based features and 

Lagrangian coherent structures may also bring further improvements upon existing 

mixing models. From all potential approaches, those embedding more physics into 

mixing models seem to be the most promising, as they are supposed to account more 

properly for the interaction among turbulence, mixing and chemical reactions. The 

development of a sound mixing model will allow eventually removing one of the largest 

sources of modeling uncertainty in PDF-based calculations. 
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