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Abstract. This tutorial review paper consolidates the existing applica-
tions of the power watershed (PW) optimization framework in the con-
text of image processing. In literature, it is known that PW framework
when applied to some well-known graph-based image segmentation and
filtering algorithms such as random walker, isoperimetric partitioning,
ratio-cut clustering, multi-cut and shortest path filters yield faster yet
consistent solutions. In this paper, the intuition behind the working of
PW framework i.e. exploitation of contrast invariance on image data
is explained. The intuitions are illustrated with toy images and experi-
ments on simulated astronomical images. This article is primarily aimed
at researchers working on image segmentation and filtering problems
in application areas such as astronomy where images typically have
huge number of pixels. Classic graph-based cost minimization methods
provide good results on images with small number of pixels but do not
scale well for images with large number of pixels. The ideas from the
article can be adapted to a large class of graph-based cost minimization
methods to obtain scalable segmentation and filtering algorithms.

1 Introduction

Machine vision applications are diverse ranging from segmentation, filtering, object
detection, object localization, instance segmentation, semantic segmentation, image
classification, image captioning, and image reconstruction etc [49]. Image segmenta-
tion and filtering form the building blocks of many machine vision tasks. Historically,
energy-based or cost minimization-based approaches have been popularly used to
solve image segmentation and filtering. The cost functions are designed such that the
minimizers yields desired results. Also, the cost functions are constructed to incor-
porate an inductive bias in images namely translation invariance. In the context of
image classification, translation invariance means - if object(s) in an image are ver-
tically or horizontally translated within the image, this image is still expected to be
classified as the same category (or set of categories). CNNs takes this approach to
the next level, by allowing many parameters to be learned by gradient descent, with
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the very same cost function, and allowing the system to compute parameters that
are otherwise difficult to predict or to tune. Some works additionally capitalize on
rotation invariance by augmenting the training datasets with customized rotations.
This helped to improve the performance of the cost minimization-based approaches
further.

One of the less exploited aspects of image data is that of contrast invariance. In-
tuitively, it is clear that a human eye perceives the same set of objects in an image
even if the contrast of the image is changed (see Fig 1). In fact, the object boundaries
are also expected to be intact when the contrast of the image is altered. An obvious
question arises - how does one exploit the contrast-invariance nature of solutions to
image processing tasks? In this article, we provide an answer to this question in the
context of image segmentation and image filtering. We revisit the power watershed
(PW) framework [39] and show that this optimization framework provides a formal-
ism to impose the constraint that the solutions are contrast-agnostic. It is well known
that an application of PW to classic graph-based cost minimization methods results
in high-quality approximation solutions to the cost minimization problem [1,17,18,
21,11,10,23,22,12,56,54,55]. In other words, PW exploits contrast-agnostic nature of
solutions and allows one to apply classic graph-based cost minimization methods to
images with very large number of pixels which were otherwise prohibited by compu-
tational constraints. In particular, astronomical images which have a huge number of
pixels can be segmented and/or filtered with graph-based cost minimization methods
by using PW framework.

Fig. 1. Left: An image from the Weizmann 1-object database [2]. Right: Enhanced contrast
of the image on left. Observe that the object boundaries are not expected to change even in
the contrast enhanced image. One expects that a segmentation method applied on either of
these images yields the same result.

Recall that image segmentation and filtering form the building blocks of many
image processing applications. Image segmentation and image filtering are typically
used either as a pre-processing or a post-processing step depending on the machine
vision task at hand. Image segmentation is an ill-posed problem. The goal of image
segmentation is to cluster pixels in an image such that the clusters are ‘close’ to the
clusters obtained by a domain expert w.r.t. some standard measures that compare
closeness of clusters. Typically, each cluster obtained by a domain expert contains
pixels only from one object and the number of clusters are usually much smaller when
compared to the total number of pixels in the image (see Fig 2 for a segmentation of
an image obtained by a domain expert using two labels). Image filtering is another
closely related ill-posed problem. Image filtering is the process of magnifying certain
details while suppressing the others. Informally, image filtering can be interpreted as
summarizing the content of an image by removing redundant details. For example,
in Fig 2, in order to identify the object boundaries, details such as feathers etc are
irrelevant and can be ignored. Although, in this article, we deal with only image
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segmentation and image filtering problems specific to 2D images, the techniques we
present are generic and can be applied to any kind of image data.

Fig. 2. Left: An image of dimensions 548× 402 from the Weizmann 1-object database [2].
Middle: Two labels are used to segment the pixels. The pixels belonging to the foreground
are identified by the colour-code red. Right: The image on left is filtered using a bilateral
filter [50]. A bilateral filter suppresses the texture details within objects which are irrelevant
for summarizing the information on object boundaries in the image. The boundaries between
the foreground and the background are crucial for image segmentation and are preserved.

Recall that a 2D digital image consists of a finite number of pixels. Each pixel
represents a small physical area and typically these pixels are square shaped. To each
pixel, one associates a scalar or vector that represents the average intensity/color
reflected by the corresponding area. A 2D digital image of dimensions M ×N is thus
a matrix of scalar/vector-valued entries with M rows and N columns.

I : {0, 1, · · · ,M − 1} × {0, 1, · · · , N − 1} → Zρ, (1)

where Z is a discrete set consisting of non-negative real numbers and and ρ denotes
the number of bands (ρ = 1 in case of greyscale images and ρ = 3 in case of color
images). However, in this article, we use edge-weighted graphs to model images and
work with those models instead of Eq 1. This is because local changes such as gradients
etc that provide information on object boundaries can be captured using the edge
weights. Recall that a gradient is a dissimilarity measure between neighbouring pixels.
A 2D image is represented as a 4-grid graph or a 4-adjacency graph (Von Neumann
neighborhood) with vertices representing the pixels and the edge weights reflecting
a similarity/dissimilarity between neighbouring pixels. Formally, if I is an image of
dimensions M × N , we have GI = (V,E,W ) where V , the set of vertices represents
the pixels i.e.

V = {(i, j) : 0 ≤ i ≤M − 1, 0 ≤ j ≤ N − 1}, (2)

the set of edges are given by

E =
⋃

0≤i≤M−1,0≤j≤N−1

Eij (3)

Eij = {{(i′, j′), (i, j)} : |i− i′|+ |j− j′| = 1 and 0 ≤ i′ ≤M −1, 0 ≤ j′ ≤ N −1}, (4)

for each 0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1, and W : E → R+ is a non-negative real
valued function on the set of edges. The edge weights either represent a similarity or
a dissimilarity depending on the application at hand. Typically, the edge weights are
obtained by using monotonic functions of a standard norm of the difference of the
pixel intensities/colors of pixels incident on the edge.

Recall that the increase (respectively decrease) in contrast of an image in the
classic sense is obtained by multiplying intensity/each coordinate in the color vector
of each pixel by a constant non-negative number greater (respectively lesser) than one.
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Fig. 3. Left: A toy 2D greyscale image of dimensions 3 × 3 containing two objects is
represented with a vertex-weighted graph. Each pixel in the image corresponds to a vertex
in the graph. The pixel intensities are displayed inside the circled vertices. Vertices are
coloured with two distinct colours to signify that they belong to different objects. Middle:
The image is represented as an edge-weighted graph. The weights of edges are obtained by the
absolute difference of image intensities and hence represent a dissimilarity measure between
the neighbouring pixels. Right: A change in the contrast of the image can be represented
by a scaling of the weights. Observe the intensities of the pixels and the weights of the edges
are doubled.

For the edge-weighted graph model, this is equivalent to: the contrast of an image is
increased (respectively decreased) when the edge weights are magnified (respectively
diminished). Mathematically, a magnifying (respectively shrinking) operation on the
edge weights is a function on the edge weights with derivative greater (respectively
lesser) than one. Also, a change in contrast does not alter the relative ordering of edge
weights. Mathematically, this is equivalent to restricting the operations on the edge
weights to be strictly increasing functions. Thus, the answer to the question posed in
the second paragraph i.e. contrast invariance can be obtained by considering only the:
‘solutions that are invariant to strictly increasing functions on the edge weights of the
graph constructed on the image’. Typically, a graph constructed to model an image
is referred to as the image graph irrespective of whether the edge weights reflect a
similarity or a dissimilarity or a combination of both. In the rest of the article, we
use the term ‘image graph’ to refer to the ‘graph constructed on an image’.

In literature, there are plenty of graph-based methods to obtain image segmen-
tation and filtering. For segmentation, broadly they fall under two overlapping cat-
egories namely graph-partitioning methods [51,3] and variational cost minimization
[37]. Both these classes of methods typically optimize a cost defined on the image
graph. Some commonly used segmentation methods in these categories are graph-cut
[7], shortest-path segmentation [24], random walker [27], ratio cut [53], normalized
cut [53,48], watershed cut [19], multi-cut [51] and isoperimetric partitioning [29]. For
image filtering, weighted average filters such as shortest-path filters/morphological
amoebas [35,30], tree filter [6,57] are graph-based and yield good results. However,
in practice, these methods cannot be applied to images with large number of pixels
as their asymptotic complexity is very high.

The methods mentioned in the previous paragraph are based on cost minimization
on an edge-weighted graph. Hence, the final segmentation/filtering result is a function
of the edge weights of the image graph. The algorithms that are originally introduced
to implement these methods take the actual weights into consideration. In order to
ensure contrast invariance, one needs to consider only the relative ordering of the edge
weights instead of the actual weights in the cost minimization. This is the core idea of
the PW framework. Given a cost-minimization problem, PW framework transforms
the cost-minimization problem into a series of nested cost-minimization problems. The
transformation is such that the set of nested cost-minimization problems remain the
same even if the edge weights of the graph are changed without altering their relative
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ordering. Solving the transformed problem is computationally easier than solving the
original minimization problem. Additionally, the results obtained on the transformed
problem are similar to those obtained on the original minimization problem. Thus,
application of PW to graph-based cost minimization methods helps in scaling these
methods to images with large number of pixels.

The rest of the article is organized as follows: In Sec 2, graphs used in image
processing within the scope of the article are briefly described. Sec 3 provides an
explanation of the PW optimization framework in the context of image processing.
The next four sections i.e. Sec 4, Sec 5, Sec 6, and Sec 7 provide a comprehen-
sive survey of applications of PW to classic graph-partitioning and variational cost
minimization image segmentation methods. These methods are explained intuitively
using toy images, simulated astronomical images, and a few figures replicated from
the original articles. Sec 8 contains a brief description of the utility of PW framework
in explaining the links between shortest path-based filters and spanning tree-based
filters. Sec 9 contains experiments on simulated astronomical sky images [43,31]. It is
illustrated that the PW counterparts yield similar results as that of the classic meth-
ods at a lower computational cost. The conclusions section summarizes the article
and provides some pointers on how to use the ideas from the article to build scalable
algorithms in the context of graph-based image segmentation.

2 Graphs in Image Processing

Graphs are discrete mathematical objects. They are popularly used for data analy-
sis as there is abundant literature available on graph algorithms. Although several
variants of graph models exist, the description of graphs in this section is restricted
to those essential to follow the rest of the article. The simplest of a graph model
consists of two objects: a set of vertices, a subset of unordered pairs of vertices called
edge set or simply edges. Two vertices are said to be adjacent to each other if the
unordered pair of these vertices belongs to the edge set. In the context of images, one
can identify each pixel with a vertex in the graph. As pixels in a 2D image are aligned
‘nicely’ like a grid, a 4-adjacency relation (see Fig 3) is a popular choice for modelling
images. In other words, each vertex is adjacent to exactly four other vertices (except
at the borders of the image) viz. nearest vertices one in each of left, right, top and
bottom. See Eq 3 for a formal definition.

Each pixel has a grey value (or a triplet of values corresponding R, G, and B bands
in case of colour images), one can assign a mapping on the set of vertices. However,
as described in the previous section, it is convenient to model local changes. This is
done by assigning weights to edges. A classic usage is to consider a discrete gradient
given by the absolute difference between the pixel values (euclidean distance between
triplets) of the adjacent vertices in the case of greyscale images (colour images). This
can be viewed as a dissimilarity between the neighbouring pixels (see Fig. 3). In
general, if the weights of edges are constructed so as to capture dissimilarity between
the adjacent vertices then the graph is said to be a dissimilarity-based edge-weighted
graph. These kinds of graphs are useful for image filtering applications (see Sec 8 for
details).

On the other hand, for many image processing methods, it is convenient to cap-
ture similarity between adjacent pixels. The edge-weighted graphs with edge weights
reflecting similarity between adjacent pixels are known as similarity-based edge-
weighted graphs. These are particularly useful in applications where one wants to
pose the objective as a cost minimization problem (Fig 4 illustrates this fact. See Sec
5, Sec 6 and Sec 7 for details). For example, if one is interested to find a segmentation
of the image with a known number of segments k, the problem can be posed as finding
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Fig. 4. Left: A toy 2D greyscale image containing two objects is visualized with a edge-
weighted graph. Each pixel in the image corresponds to a vertex in the graph. The pixel
intensities are displayed inside the circled vertices. Vertices are coloured with two distinct
colours to signify that they belong to different objects. The edge weights are given by absolute
difference of grey values of adjacent pixels Right: The edge weights are transformed to
reflect similarities i.e. higher the similarity, higher the weight. Here f(x) = exp(−x). Image
segmentation can be posed as a minimization problem i.e. find a set of edges such that the
sum of its weights is minimum and its removal results in two pieces (as there are two objects
in the image). An optimal set of edges are indicated by highlighting them as dotted edges.

a set of edges such that the sum of the weights of these edges is minimum and their
removal results in k pieces (called ‘components’ in graph theory terminology). This
yields good results in practice as most of the pairs of vertices corresponding to low-
weight edges w.r.t. a similarity measure belong to different objects. Fig 4 illustrates
for k = 2, also known as a graph-cut problem. In general, an image contains more
than two objects and the corresponding mathematical generalization of the graph
partitioning is referred to as a k-way cut [51].

On some occasions, prior information in the image is available. Labels of some
of the pixels might be known. For example, in an astronomical sky image, some
background pixels and some pixels corresponding to galaxies/stars can be identified
easily. Extreme values along with low variability in the neighbourhood (see Fig 8 in
Sec 4 for an illustration on marking seeds) are indicators for such pixels in the case
of sky images. A basic yet important task is to segment the galaxies/stars from the
background. The pixels with known labels are called seeds in image segmentation
terminology. When seeds are available, one can compute the affinity between each
pixel and the labelled seeds. Then, the non-seed pixels can be assigned a label corre-
sponding to the label with maximum affinity. More often than not, these affinities are
computed using ‘paths’ that start at the non-seed pixels and terminate at seeds. Re-
call that a ‘path’ is a sequence of distinct vertices such that every pair of consecutive
vertices in the sequence are adjacent to each other. Random Walker segmentation
(see Sec 4) is based on this idea.

There are other kinds of prior information on the image. For example, it might be
known apriori that certain set of pairs of pixels have different labels. This information
can be imposed as a constraint on the graph partitioning problem thus making it a
constrained optimization problem. Multi-cut partitioning [51] is based on this idea.
More generally, on some occasions, it is known that certain pairs have the same
labels (similar or attractive) and certain other pairs have different labels (dissimilar or
repulsive) with varying levels of confidence. A forbidden pair of pixels having the same
label can be seen as a dissimilar pair with infinite affinity. Similarly a pair constrained
to have the same labels can be visualized as a similar pair with infinite affinity. It is
important to note that these pairs are not necessarily adjacent pixels. Hybrid edge-
weighted graph models capturing both similarity and dissimilarity are used to model
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Fig. 5. Left: A hybrid edge-weighted graph capturing similarities, dissimilarities along with
pairs of pixels that are forbidden to have the same labels and pairs of pixels that are required
to have the same labels. A red coloured edge indicates dissimilarity and a black coloured edge
indicates a similarity. The weights displayed on the edges reflects the strength of affinity.
For example, a red coloured edge of value ∞ indicates a pair that is forbidden to have same
labels.

such situations. We remark that such graphs have additional edges on top of the four
neighbours that each pixel has, in order to capture the attractions and repulsions (see
Fig 5). Each edge in the graph is either a similarity edge or a dissimilarity edge but
not both. An indicator function on the edge set is used to identify whether an edge
indicates a similarity or a dissimilarity. Each edge has a weight and the weight of the
edge indicates the confidence on the affinity. For example, a dissimilarity edge with a
high value indicates that the pair of vertices on the edge are likely to have different
labels. Mutex watershed is an algorithm based on this idea. Muti-cut is closely related
to Mutex watershed [56,54] and the reader may refer to Sec 7 for details.

In the context of astronomical image processing, domain knowledge of the physical
characteristics of the images can be incorporated into the weights of edges in various
forms: similarity, dissimilarity or a combination of both similarity and dissimilarity.

3 Power Watershed Optimization and Contrast Invariance

In Sec 2, we mentioned that edge-weighted graphs are well suited to image processing
tasks. Specifically, three types of edge-weighted graphs have been described. These
are dissimilarity-based, similarity-based, and hybrid edge-weighted graphs capturing
both similarity and dissimilarity. Assume that the objective i.e. image segmentation
or filtering is cast as a cost minimization problem on the image graph. Further, assume
that the cost can be written as a linear combination of edge weights. Allowing a slight
generalization, we have the following form for the cost function Q(x):

Q(x) =
∑
eij∈E

f(wij)Qij(xi, xj), (5)

where E is the set of edges of the image graph, eij is the edge connecting the
vertices i and j, wij is the weight of eij , f is a known monotonic function (either an
increasing or a decreasing function) and Qij() is a smooth function (differentiable).
Here x is a vector of size equal to the number of pixels and represents the set of target
labels/values.

PW framework considers the following sequence of optimization problems:
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Q(p)(x) =
∑
eij∈E

(f(wij))
pQij(xi, xj), (6)

where p is a positive integer and the other quantities are same as that of Eq
5. Instead of minimizing the cost for each p, PW framework considers the limit of
minimizers of a sequence of cost functions (Q(p)(x))∞p=1 as p → ∞, termed as PW
limit.

An image graph is finite, so the number of edges is finite. Further, let the set
of edges, E be relabelled in the increasing order of their weights. The Qij terms
corresponding to identical weights can be merged. The cost function can then be as
sum of l terms where w1 < · · · < wl are the distinct set of weights (l ≤ |E| holds for
obvious reasons). It is shown in [39] that the limit of the minimizers can be obtained
by the following algorithm:

Algorithm 1 Calculating limit of minimizers [39]

Input A sequence of cost functions indexed with p ∈ Z+ given by Eq 6
Output A limit of minimizers to Eq 6 as p→∞.

1: Set i = l and Mi is the entire solution space.
2: while i > 1 do
3: Compute the set of minimizers Mi−1 = arg minx∈Mi Qi(x)

4: Return arbitrary x ∈M1.

In order to better understand the intuition behind the algorithm, consider the
following example (modified from [39]). Let w > 0 and Q(p) : R2 → R be defined as

Q(p)(x1, x2) = wp1((x1 − 1)2 + x2
2) + wp2(x1 − x2)2 (7)

where w1 = w and w2 = 2w. Observe that Q(p) is a non-negative function for any
p > 0. The minimizer of Q(p) can be computed directly and is given by

x̂1
(p) =

2p

2p+1 + 1
(8)

x̂2
(p) =

2p + 1

2p+1 + 1
(9)

With simple calculus, it is easy to verify that the sequence of minimizers of Q(p)

i.e. ((x̂)(p))p>0 = ((x̂1
(p), x̂2

(p)))p>0 converges to ( 1
2 ,

1
2 ) as p→∞.

On the other hand, application of Algorithm 1 translates to rewriting Q(p)(x1, x2)
as follows:

Q(p)(x1, x2)

wp2
=

((x1 − 1)2 + x2
2)

2p
+ (x1 − x2)2 (10)

This quantity behaves like the function

(x1 − x2)2 (11)

as p→∞
At the first pass, our search space of solutions is restricted to the subspace

{(x1, x2) ∈ R2 | x1 = x2}. At the next pass, within the restricted subspace of the
solutions, the point that minimizes ((x1 − 1)2 + x2

2) is easily seen to be ( 1
2 ,

1
2 ).
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Recall that in order to ensure contrast invariance, the optimization problem has
to remain the same irrespective of changes to the edge weights subject to preserving
their relative ordering. It can be seen from Algorithm 1 that the limit of minimizers of
Q(p)(x) depends only on the relative ordering of the edges and not the actual weights.
Also, it is worth noting that Algorithm 1 decomposes the cost function on the original
graph into costs on smaller subgraphs. It is shown in [17,18,21,11,10,23,22,12] that
the computation of said limit is easier than minimizing the original cost Q(x). In Sec
4, Sec 5, Sec 6 and Sec 7, it will be demonstrated that the quality of the segmentation
is retained while reducing the computational cost.

It is important to mention that the PW limit of a cost of the form Eq 5 depends
only on a substructure of the image graph (known as a subgraph in graph theory).
This subgraph is either union of maximum spanning trees (UMaxST) or the union of
minimum spanning trees (UMinST) depending on whether the edge weights reflect
similarity or dissimilarity. UMaxST (respectively UMinST) is the induced subgraph
generated by set of edges that belong to at least one ‘maximum spanning tree’ (re-
spectively ‘minimum spanning tree’) of the image graph. Recall that a ‘spanning tree’
is a subset of edges of the image graph such that there exists a unique path between
every two vertices in the image graph when the paths are restricted to contain only
edges from the subset of edges (see Fig 6 for an illustration). A maximum spanning
tree (MaxST) is a spanning tree such that no other spanning tree has the sum of its
edge weights larger than that of MaxST. A similar definition holds for a minimum
spanning tree (MinST).
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Fig. 6. Left: An edge-weighted graph. Middle: A MaxST of the graph on left. Right
UMaxST of the graph on left.

4 Fast Random Walker Segmentation

Recall that in some practical applications, prior information of labels of some pixels
in the image is available. Random Walker is a seeded segmentation method and is
handy for such situations.

4.1 Classic Random Walker Segmentation

Random Walker (RW) can be described as follows: A similarity-based edge-weighted
graph is constructed on the image. For each non-seed, several random walks are
simultaneously propagated to each of its neighbours and the process is recursively
repeated. At each step, it is assumed that a random walk splits into multiple unvisited
vertices independently. Further, the branching probability of an edge on a vertex is
equal to the proportion of similarity of the edge traversed to the sum of similarities of
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all possible edges that can be traversed at that step. For example, in Fig 7, a random
walker starting at vertex 1 selects the edge 1− 2 with probability 2

3 as there are two
edges emanating from 1 namely 1− 2 with weight 2 and 1− 4 with weight 1. These
paths are recursively propagated until they terminate on labelled points i.e. seeds.
For example, a random walker starting at the vertex 1 that already chose the first
edge as 1− 2 will choose the edge 2− 3 with conditional probability 1

4 . Note that the
random walker has only two choices of edges namely 2− 5 and 2− 3 at this stage as
vertex 1 is already visited. The probability of a non-seed pixel having a given label
is then calculated by summing up probabilities of all the paths that start from the
non-seed pixel to all seeds with that label (see Fig 7 for an illustration). A non-seed
is then assigned the label to which the RW probability is highest. For example, in Fig
7, vertex N would be assigned label B.
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Fig. 7. Left: A similarity-based edge-weighted graph with two labels coloured blue and red
with three seeds, two seeds with colour red, and one seed with colour blue. Middle: The
paths from vertex 1 to seeds with red label are highlighted in red. Random walk probabilities
are displayed on the corresponding edges. The probability that the vertical path from vertex
1 to red seed vertex 7 is 0.33*0.5. Similarly, the probabilities are computed for the horizontal
path from 1 to 3 which is also a red seed. Adding these probabilities yields the RW probability
for vertex 1 to be labelled red. Left: The paths from 1 to seed with the label blue are
highlighted. The path probability computations are performed similarly. The RW probability
for the vertex to be labelled either red or blue would add up to 1.

Recall that a seeded classification problem with multiple labels can also be per-
ceived as a collection of binary classification problems. The number of such binary
classification problems would be as many as the number of distinct labels. Let L
denote the set of distinct labels. Each such binary classification problem deals with
identifying label l versus NOT label l where l ∈ L is a label. Treating the multiple
class classification problem this way, it was shown in [27] that RW probabilities of
each such binary classification problem can be obtained by minimizing the convex
cost function given by Eq 12.

RWCost(x) =
1

2

∑
eij∈E

wij(xi − xj)2, subject to xseed = fseed, (12)

where vector x refers to the target labels of all pixels, E is the set of edges, wij is
the weight of eij , xseed refers to the target labels of seed pixels and fseed is the vector
of preset labels of corresponding seeds. Note that fseed is a vector of zeros and ones as
we are dealing with a binary classification problem. More particularly, in the l versus
NOT l classification problem, a coordinate in fseed equals 1 if the corresponding pixel
is labelled l and 0 if it is labelled but the corresponding label is NOT l.

Let L denote the unnormalized Laplacian of the graph [53]. One can write the
cost RWCost(x) in Eq 12 as xTLx upto a constant factor. Rearranging the indices
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Fig. 8. Top Left: An image to be segmented. Top Middle: Seeds are marked with strokes.
Four different labels are used for RW segmentation. Top Left: Visualization of RW Proba-
bility map of green label. Bottom: From left to right, each image is a visualization map of
label RW probabilities for labels blue, violet and red in that order. White shades indicate
high probability and dark indicate low probability.

of seeds and non-seeds so that the indices of all seeds appear before those of non-seeds,
one can decompose L as follows:

L =

(
Lseed B
BT LU

)
(13)

RWCost(x) can then be written as:

RWCost(x) =
1

2
(xTseedLseedxseed + 2xTUB

Txseed + xTULUxU ), (14)

where xU denotes the sub-vector of x corresponding to the unlabelled points.
Applying elementary calculus, it can be seen that the solutions to the minimization
problem can be obtained by solving the following linear system of equations:

LUxU = −BTxseed (15)

Recall that the number of distinct labels in the multiple class classification prob-
lem is |L|. Hence, one needs to compute an affinity vector of length |L| to encode
probabilities of the unlabelled points to each of the distinct labels. In other words,
Eq 15 transforms to solving

LUX = −BTS (16)

where X is a matrix of shape |xU | × |L| and S is a matrix of size |xseed| × |L|
An application of RW on a real image is illustrated in Fig 8 (this demonstration is

similar to the illustration on the medical image from the original paper on RW [27]).

4.2 Power Watershed Approximation to Random Walker

It can be seen that Eq 12 is in the form of Eq 5. In [18,17], the RW cost function
is recast in the form of Eq 6 using the PW framework. The cost minimization is
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Fig. 9. Consider the toy image from Fig 7. This figure shows the application of PW on RW.
Left: After first step of the PW sequential optimization of Eq 17, the graph is collapsed
to a smaller graph. Vertex 8 is then labelled red. Middle: After the second step in PW
optimization, the graph collapses further as shown. At this stage, vertex 9 is also labelled
red. Using the next highest weights of magnitude 3, random walks are illustrated in respective
colours to the labels. Left: After solving the RW in the middle figure, the probabilities that
vertex 6 is labelled red and blue are computed (probabilities are not shown in the figure).
In the next step, the graph is further collapsed and is illustrated here.

transformed into a family of cost minimization problems as given by Eq 17 indexed
by p where p ∈ N.

RWCost(p)(x) =
1

2

∑
eij∈E

wpij(xi − xj)
2, subject to xseed = fseed, (17)

It was shown in [18] that the results obtained by the limit of minimizers to Eq 17
as p → ∞ are comparable to RW at the benefit of lesser computational cost. Recall
Algorithm 1 from Sec 3. The limit of minimizers to Eq 17 as p → ∞ is computed
as follows - firstly the sum of terms corresponding to the highest weights in the
summation of Eq 17 are considered. This summation is minimized subject to the seed
constraints. The solution set is then restricted to those obtained at this level and the
sum of terms corresponding to the next highest weight is considered. This summation
is minimized subject to seed constraints and the solution set constraint obtained from
the minimization problem(s) at the higher weights. The sum of terms corresponding
to the next highest weights are then considered. This process is repeated until all the
distinct weights are processed.

In case of random walker, this process can be envisioned as follows - consider the
subgraph of the image graph with only the highest weights. Examine each of the
connected components of this graph. If there is no seed in a connected component,
the connected component is collapsed and the target labels of each of the vertices in
the connected component are constrained to be same. If there is exactly one seed in
a connected component, the connected component is collapsed and the target labels
of each of the vertices in the connected component are set as the label of the seed. In
case of two or more seeds in a connected component, a random walker is solved on the
connected component using Eq 16 as described in Subsec 4.1. The collapsed graph is
considered for the sequential processing. The pixels that are already labelled are also
treated as seeds for the subsequent steps. Next, the edges of second highest weight are
considered and the process is repeated. This process is continued until all the edges
of the image graph are processed. Fig 9 illustrates an example of PW approximation
to RW. A formal algorithm to solve a random walker segmentation with two labels is
given by algorithm 2. For more than two labels, the idea is similar and one needs to
work with one-hot encoding to obtain probabilities.
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Algorithm 2 PW Approximation to Random Walker Segmentation [18]

Input An edge-weighted graph G = (V,E,W ) and seeds with two labels xi = 1 for
i ∈ F and xj = 0 for j ∈ B, F,B ⊂ V with F ∩B = ∅

Output Random walker probabilities for each xk for k ∈ V \ (F ∪B)

1: Sort the edge set E in decreasing order of weights.
2: Decompose E into sets of edges with different weights E = ∪li=1El where Er contains

edges with weight wr for each 1 ≤ r ≤ l with wr > wr′ if r > r′.
3: Denote Vr as the set of vertices that are incident on Er for each 1 ≤ r ≤ l. Set i = l.
4: while i > 0 do
5: Solve Eq 12 on the graph Gi = (Vi, Ei,W |Ei) on each connected component separately
6: if Connected component does not contain any vertex with known label probability

then
7: Collapse the vertices of the connected component into a single vertex. The label

probability values will be identical on each of these vertices eventually when computed
8: else
9: The solver yields fixed label probabilities. Consider all the label probabilities

known for these vertices
10: Set i = i− 1

11: Return label probabilities xi for each i ∈ V .

Essentially, the application of PW implies that the linear system of equations
used for computing random walk probabilities have to be solved on subgraphs of the
image graph sequentially. In general, the sizes of the subgraphs obtained at each step
are not deterministic in nature. However, typically these subgraphs end up being
very small when compared to the image graph. This would significantly reduce the
computational cost. Fig 10 from [18] shows a comparison of the time taken to obtain
segmentation results on 2D images [44] as a function of number of pixels by random
walker algorithm (in green), PW approximation to random walker (in red) along
with a few other popular segmentation methods. It can be seen that for images with
relatively larger number of pixels, the PW approximation to RW scales well. The
downside is that there are no theoretical guarantees on the approximation to the
optimal solution.

5 Fast and Robust Isoperimetric Segmentation

Recall from Sec 2 that a graph-cut separates the graph into two components by re-
moving a set of edges. The sum of weights of these edges is minimum among all such
sets whose removal results in breaking the graph into two components. Mathemat-
ically, it boils down to minimizing the following quantity over all subsets A of the
vertex set.

W (A, Ā) =
∑

eij∈E,i∈A,j∈Ā

wij , (18)

where E denotes the set of edges of the graph and wij denotes the weight of edge
eij . The summation runs over all edges such that one endpoint of the edge is in A
and the other in Ā.

Each of these components can be viewed as an object. The sum of edge weights is
likely to be less when the edges removed are less in number. In practice, more often
than not, a graph-cut results in small components as removal of a few edges is sufficient
to separate the graph into a small and a big component (see Fig 11). Small components
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Fig. 11. Left: A similarity-based edge-weighted graph. Right Small Cut problem illus-
trated. Eight vertices in one component and one vertex in the other resulted by graph-cut.
The cut edges are highlighted as dotted red edges and the vertices belonging to different
components are colour-coded.

are not desired as they practically do not represent any meaningful objects. One of
the common approaches to avoid small components is to impose a penalty on the
size of the components in the cost function. Ratio Cut [8,53], Normalized cut [53],
Isoperimetric cut [29,36,28] are some of the popular methods that impose a penalty
on the size. Isoperimetric cut can be described as the following cost minimization
problem:

IsoCost(A) =
W (A, Ā)

min{|A|, |Ā|}
, (19)

where A is a subset of the vertices and Ā denotes its complement. The numerator
in the cost is the cost function minimized by graph cut (see Eq 18). The denominator
penalizes the cost on small components so that minimizing the cost does not yield
them. However, this is an NP-hard problem.
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5.1 Classic Approach to Isoperimetric Graph Partitioning for Image
Segmentation

Notice that the numerator in Eq 19 can be rewritten as

W (A, Ā) =
∑

eij∈E,i∈A,j∈Ā

wij =
∑
eij∈E

wij(xi − xj)2,

where xi = 1 if i ∈ A and xi = 0 if xi ∈ Ā. Using the notion of unnormalized
graph Laplacian [53], one can compactly rewrite the cost function in Eq 19 as

IsoCost(A) =
xTLx

min{xT1, (1− x)T1}
, (20)

where x is the vector of vertex labels i.e. xi = 1 if i ∈ A and xi = 0 of i ∈ Ā. L is
the unnormalized graph Laplacian.

Typically, in order to obtain an approximation solution to NP-hard problems
with a discrete constraint set, the constraints are relaxed. The transformed problem
is known as a continuous relaxation of the corresponding NP-hard problem. The
solutions to continuous relaxation can be obtained easily. All possible thresholds of
such solutions are examined and an optimal threshold i.e. the discretized solution
with lowest cost is identified as a heuristic approximation. In practice, such heuristics
work well. However, in this particular case, allowing continuous relaxation without
further constraints would lead to meaningless solutions. This is because of the cost in
Eq 20 is always non-negative (a graph Laplacian is a positive semi-definite [53]). For
the relaxed constraints, the cost can be made arbitrarily close to zero (which would
be the minimum cost) for every possible partition of the graph (see [22] for details).
Hence an additional constraint is added i.e. the label of an arbitrary vertex r is set
to be zero without loss of generality. The transformed problem can be written as:

Minimize
xT−rL−rx−r

min{xT−r1, (1− x−r)T1}
, subject to each xi ∈ [0, 1] (21)

where x−r denotes the vector x with the xr removed and L−r denotes L after
deletion of rth row and columns.

Using Lagrange multipliers, solving Eq 21 is equivalent to solving:

L−rx−r = 1 (22)

The reader may refer to Fig 24 in Sec 9 for an illustration of segmentation on
a simulated astronomical image obtained by solving the relaxed isoperimetric parti-
tioning.

5.2 Spanning Tree-Based Approaches to Isoperimetric Graph Partitioning

In [26], it was suggested that solving the continuous relaxation problem on a MaxST
of the image graph scales well. To elaborate, recall that the average number of non-
zero, non-diagonal elements in each row of a graph Laplacian is the average degree
of a vertex in the graph (number of neighbours of a vertex is known as the degree of
the vertex in graph theory). For example, from 2D images to 3D images, the sparsity
of the graph Laplacian decreases due to an increase in average degree from four to
six. Hence, solving the linear system in Eq 22 is slower on 3D images and can be
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prohibitively slow for denser graphs. On the other hand, the graph Laplacian of a
MaxST always has an average of two non-zero, non-diagonal elements in a row. Also,
the results obtained by solving the continuous relaxation on an arbitrary MaxST were
shown to be reasonably good in terms of quality for 3D medical image segmentation.

Fig. 12. The relative ordering of the solutions to the continuous relaxation problem of
the isoperimetric partitioning (this figure is replicated from [22]). Each colour in the left
and middle figures correspond to one image in the Weizmann 1-object dataset [2]. A strictly
increasing plot implies perfectly consistent solutions w.r.t. solving Eq 22 on the image graph.
In both the figures in left and middle, the X-axis corresponds to the image graph. Left:
Arbitrary MaxST versus image graph. Middle: UMaxST versus image graph. Right: A
box plot indicating the proportion of inversions on the solutions obtained by an arbitrary
MaxST and UMaxST w.r.t. the solutions on image graph.

Later, in [22] it was shown that the solutions obtained by solving Eq 22 on an
arbitrary MaxST are not consistent with those solved on the image graph (see Fig
12 replicated from [22]). It was established in [22] that application of PW framework
theoretically implies that it is enough to solve Eq 22 on UMaxST of the image graph.
Algorithm 3 provides a formal algorithm to obtain the PW approximation to the
isoperimetric graph partitioning.

Algorithm 3 PW Approximation to Isoperimetric Graph Partitioning [22]

Input An edge-weighted graph G = (V,E,W )
Output A heuristic approximation to the isoperimetric graph partition i.e. labels xi = 0

or xi = 1 for each i ∈ V .

1: Choose an arbitrary vertex r ∈ V . Set xr = 0
2: Compute the UMaxST of G. Denote it by GUMaxST

3: Compute the unnormalized graph Laplacian LUMaxST of GUMaxST .
4: Delete the rth row and column of LUMaxST . Denote this by L(UMaxST,−r).

5: Denote the vector of labels for each vertex as x. Remove the rth coordinate from x and
denote it by x−r.

6: Solve L(UMaxST,−r)x−r = 1 for x−r and denote the optimal solution by xopt−r
7: Let xopt denote the vector with xr = 0 inserted at rth coordinate.
8: Compute all possible thresholds of xopt, check the cost obtained by each such threshold

solution using Eq 20.
9: Return the solution corresponding to the lowest cost in the previous step.

Further, it was supported by empirical evidence that these solutions are consistent
with those solving Eq 22 on the image graph (see Fig 12). Although the number of
edges in the UMaxST varies in general and can be as large as that of the image graph
itself, it was shown empirically on several 2D image databases that the reduction
in a number of edges on an average is about 25 percent. Fig 13 from [22] shows
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histograms on the percentage of redundant edges removed i.e. the edges present in
the image graph but not in the UMaxST of the image graph. These edges do not
contribute to the final segmentation results. However, if they are not discarded, the
linear solver in Eq 22 can be prohibitively slow especially when the number of edges
are large in the image graph. This is because, the sparser the adjacency matrix of the
graph, the more zeros in the corresponding Laplacian.

To summarise, the solution obtained by application of PW to the relaxed isoperi-
metric partitioning cost minimization is a robust yet fast approximation to the relaxed
isoperimetric partitioning cost minimization problem. In particular, the PW approx-
imation is very useful for segmenting astronomical images which usually have very
large number of pixels. The downside is that there are no theoretical guarantees on
how close the PW approximation solution is from the optimal solution to the relaxed
problem. For experiments on simulated astronomical images, the reader may refer to
Sec 9.
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Fig. 13. Histograms indicating the percentage of redundant edges removed by UMaxST. x-
axis represents the percentage reduction obtained (this figure is replicated from [22]). y-axis
represents the number of images achieving the given amount of reduction. The results are
computed on Left: Weizmann 2-Object dataset [2], Right: on BSDS500 dataset [3].

6 Fast Spectral Clustering

Ratio cut is another variant of graph-cut designed to avoid small components. Suppose
we know that an image contains k objects, ratio cut can be described as minimizing
the following cost splitting the vertex set V of the image graph into disjoint subsets
A1, · · · , Ak:

RatioCost(A1, · · · , Ak) =

k∑
t=1

W (At, Āt)

|At|
, (23)

6.1 Classic Approach to Ratio Cut

where W (A, Ā) is given by Eq 18. However, the ratio-cut problem is NP-hard. In order
to obtain an approximation solution, typically a continuous relaxation is constructed.
A basic construction is done as follows:



18 Will be inserted by the editor

Set xi =
√
|Ā|
|A| if i ∈ A and xi = −

√
|A|
|Ā| if i ∈ Ā. These xis are supposed to be

visualized as one-dimensional representations of the vertices. The ratio-cut cost can
then be rewritten as

RatioCost(A, Ā) =

(
2

|A|+ |Ā|

)
xTLx, (24)

where L is the unnormalized Laplacian of the image graph. Observe that xTx =
|A|+ |Ā| = |V | is a constant by the choice of each xi. The relaxed ratio cut problem
can be expressed as:

Minimize xTLx subject to xTx = |V | (25)

This is the classic eigenvector problem i.e. finding an eigenvector with smallest
eigenvalue. It is easy to see that the ratio cut cost is always non-negative. Further,
a zero cost is attained when x is a constant vector. However, a constant vector does
provide any information on partitioning the vertices as the corresponding xi values are
identical. Hence an additional constraint should be added to avoid constant vectors.
As we are working with Eigenspaces, it is enough to search in the orthogonal space
to the linear space spanned by constant vectors i.e.:

Minimize xTLx subject to xTx = |V |, and xT1 = 0 (26)

In general, representations with more than one dimension carry more information.
As a thumb rule, for partitioning the graph into k components, a k-dimensional
representation is used. A continuous relaxation of the ratio cut problem can thus be
rewritten as the following minimization problem:

Minimize Tr(HTLH) subject to HTH = Ik, (27)

where Tr() denotes the trace operator of a matrix i.e. sum of diagonal elements
of a matrix, Ik is an identity matrix of size k, H denotes a |V | × k matrix with

xti =
√
|Āt|
|At| if i ∈ At and xti = −

√
|At|
|Āt|

if i ∈ Āt. Theoretically, the solution to Eq

27 is obtained by finding the first k eigenvectors of Laplacian L of the image graph.
The row vectors of H obtained by solving Eq 27 are called spectral embeddings.

Simple Euclidean distances between spectral embeddings capture the objects reason-
ably well in an image. Typically, standard algorithms such as k-means [32] are applied
to use these distances in order to obtain the final image segmentation (see Fig 14 for
an illustration on a general edge-weighted graph). It is worth mentioning that multi-
scale combinatorial grouping [4,41] which uses spectral clustering as a building block
achieved state-of-the-art on a popular image segmentation dataset when published.

An application of ratio cut on a simulated astronomical image shown in the left
image of Fig 8 is illustrated in Fig 15. The ratio cut is performed as follows: firstly, a
histogram equalization is performed on the noisy image. This is followed by a median
filter. A 4-adjacency similarity graph is constructed on this image. An opening is then
performed on the median filtered image. On the opened image, pixels with intensities
less than a low preset threshold and pixels with intensities greater than a high preset
threshold are identified as two groups of pixels. Each of pixels in the first group are
connected to an auxiliary vertex. Similarly, each of the pixels in the second group are
connected to a second auxiliary vertex. The weights of the edges incident on either of
the auxiliary vertices are set to the same value slightly larger than the highest weight
among the edges of the 4-adjacency graph. A ratio cut is then performed on this
graph with k = 2 clusters. The auxiliary vertices are then discarded and the labels of
the other vertices i.e. image pixels are returned.
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Fig. 14. Left: A similarity-based edge-weighted graph with seven vertices. The edge weights
are displayed on the edges and are colour-coded to indicate the strength of similarity. Red,
green, and blue indicate low, medium, and high respectively. Right: 2 dimensional spectral
embedding of the vertices obtained by solving the continuous relaxation of ratio cut. Observe
that most of the pairs of vertices with higher similarity are closer and the pairs with low
similarity are farther in the embedded space. Hence a simple distance-based clustering would
work well on the embeddings for clustering purposes.

Fig. 15. Left: A simulated astronomical image to be segmented (same as left image in Fig
8). Right: Clusters obtained by performing a ratio cut on the image on left. The details of
implementation are provided in the text.

6.2 Power Ratio Cut

One of the major issues with spectral clustering is computational complexity. A ratio
cut requires O(|V | 32 ) computations where V is the set of vertices of the graph. Intu-
itively, it is expected that pairs of vertices with ‘high’ similarity should belong to the
same component. This can be done by collapsing high similarity vertices together to
hybrid vertices thereby reducing the size of the graph (see Fig 16 for an illustration).
However, two questions need to be answered: (1) how to quantify a ‘high’ similarity
edge? (2) what are appropriate weights for the edges incident on the hybrid vertices
so that spectral clustering on the collapsed graph yields similar results as that of
spectral clustering on the original graph? PW framework answers these questions.

Applying the PW framework to Eq 27, one can obtain the following collection of
minimization problems labelled with p, where p ∈ N:

Minimize
∑
i

wpi Tr(H
TLiH) subject to HTH = Ik, (28)
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Fig. 16. Left: A similarity-based edge-weighted graph with seven vertices (this figure is
replicated from [12]). The edge weights are displayed on the edges and are colour-coded to
indicate the strength of similarity. Red, green, and blue indicate low, medium, and high
respectively. Right: The vertices d and e are merged to form hybrid vertex de. This hybrid
vertex is adjacent to every vertex that either of d and e are adjacent. However, it is not clear
on how the edge weights for the edges containing hybrid vertices have to be set so that ratio
cut on this collapsed graph yields similar results as that of the original graph. PW answers
this question.

where the summation is over a distinct set of weights in the graph, Li is the
Laplacian of the subgraph induced by the edges of weight wi (see Fig 17 for an
example) resetting the weights to 1. It was shown in [12] that limit of minimizers to
Eq 28 as p → ∞, also known as power ratio cut, can be computed as follows: The
edges of the image graph are sorted in decreasing order of weights say wl ≥ · · · ≥ w1.
A graph is constructed with edges of highest weights wl of the image graph G i.e.
the induced subgraph G≥wl . Edges are added to this graph gradually in decreasing
order of weights. Then a critical value i.e. 1 < r ≤ l is found such that G≥wr , the
induced subgraph generated with edges of weights greater than or equal to wr, has
number of connected components greater than or equal to k but G≥wr−1 has less than
k components. A spectral clustering is performed on G≥wr−1

subject to the condition
that the representations on each of the connected components of G≥wr are same. See
Algorithm 4 from [12] for a formal algorithm.

Observe that the collapsed graph on which spectral clustering is performed is of
much smaller size when compared to the original graph as k � |V |. Hence, the com-
putation cost for the spectral clustering part is negligible in PW approximation. How-
ever, there is a sorting step involved and hence this algorithm runs in O(|V |log|V |).
This is a significant improvement as the classic ratio cut runs in O(|V | 32 ). Fig 18
from [12] shows the comparison of time taken to cluster simple blobs dataset [33] with
nfeatures = 2 and centers = 2. Notice that as the number of data points increase,
the PW approximation to ratio cut is a better option in terms of computations.

Also, it was shown in [12,10,11] that power ratio cut yields segmentation results
comparable to that of the ratio cut. An intuitive explanation on why the approxima-
tion is good is that the number of objects are much lesser in an image when compared
to the number of pixels in the image. Hence, expensive computations (such as spectral
clustering steps) are required only near the object boundaries and a simple greedy
algorithm such as a maximum spanning tree based label propagation suffices in the
object interiors. In particular, for astronomical image segmentation, power ratio cut
is a practical solution to implementing an approximation to the NP-hard ratio cut
minimization as these images usually have a large number of pixels.
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Fig. 17. Top Left: A similarity-based edge-weighted graph with six vertices. The edge
weights are displayed on the edges.Top Right, Bottom Left and Bottom Right: The
edge-weighted graph is decomposed into several subgraphs, each consisting of edge weights
of a fixed value in decreasing order of weights. These are called subgraphs induced by edges
of fixed weight of the graph on top left.

Algorithm 4 PW Approximation to Ratio Cut Partitioning [12]

Input An edge-weighted graph G = (V,E,W ) with bucketed weights w1 < · · · < wl
Output A representation of the subspace spanned by the PW approximation to ratio

cut optimal solution.

1: Set i = l
2: while Number of connected components of G≥wi is greater than or equal to k do
3: Set i = i− 1.

4: Let {Ci}, i ∈ {1, · · · , nc} be the connected components in G≥wi .
5: Let ICi be the vector

ICi(x) =

{
1/

√
|Ci| if x ∈ Ci

0 otherwise
(29)

6: Construct matrix N with ICi as column vectors
7: Let G1 be the graph with vertex set same as that of G. Let L1 be the unnormalized

Laplacian of G1.
8: Let L̄1 = N tL1N .
9: Calculate the first k eigenvectors of L̄1 and construct A using these eigenvectors as

columns.
10: Return NA

7 Mutex Watershed and Power Watershed Optimization

In the previous sections, we have seen random walker, spectral clustering and isoperi-
metric partitioning. Observe that for these methods to work well, a good estimate of
the number of objects in the image should be computed beforehand. In the case of
random walker, at least one seed pixel should be provided. Isoperimetric partitioning
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Fig. 18. A comparison of time complexities of PW approximation to ratio cut and ratio
cut as a function of data size on blobs dataset [33] with parameters -nfeatures = 2 and
centers = 2 (this figure is replicated from [12]). Observe that for small data sizes the
difference between PW approximation and ratio cut is not significant, while for relatively
larger data sizes, the difference is significant.

has to be applied recursively as many times as the number of objects in the image.
Spectral clustering uses the number of objects as the input k and partitions the graph
into k components.

In practical applications, it is often the case that the number of segments in an
image are unknown and difficult to obtain a reasonable estimate. In such cases, one
needs to apply algorithms that can yield good quality results which do not require the
number of segments as an input. In this section, one such algorithm namely multi-cut
problem and its PW approximation [56,54] are reviewed in detail.

7.1 Multi-Cut: NP-Hard Problem

Recall from Sec 2, in some application areas, one can obtain information on certain
pairs of pixels that are known to have the same labels and certain pairs to have dif-
ferent labels, each with a varied level of confidence. Hybrid image graphs capturing
similarities and dissimilarities between pixels are used for such applications. One can
then generalize the notion of graph-cut as follows: find a set of edges, possibly both
similarity and dissimilarity edges (called cut edges) such that sum of their weights is
minimum. Here the segmentation is obtained by discarding the dissimilarity edges
after the removal of the cut edges from the image graph. One expects that the end-
points of the discarded dissimilarity edges belong to different segments. Hence, there
is a requirement of an additional condition on the selected cut edges which is: removal
of the cut edges should not result in a cycle with exactly one dissimilarity edge (see
Fig 19 for an illustration on violation of this condition).

Observe that the sum of weights of all edges in the image graph is constant. Hence,
minimizing the sum of weights of cut edges is the same as minimizing the negative-
sum of weights of edges that do not belong to the cut. Denote the set of edges that
do not belong to the cut as A, the multi-cut problem can be stated as the following
optimization problem:
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Fig. 19. Left: A hybrid graph on a toy image capturing similarities and dissimilarities
between the pixels. Each vertex represents a pixel. Red coloured edges indicate dissimilarity
and black coloured edges indicate similarity. The weights on the corresponding edges indicate
the strength of similarity/dissimilarity. Right: A set of cut edges removed on the image graph
on left. Observe that these cut edges violate a desired condition. The cycle < 7, 8, 13, 12 >
consisting of edges , {7, 8}, {8, 13}, {13, 12}, {12, 7} have exactly one dissimilarity edge
namely {12, 7}. Removal of the edge {12, 7} would still lead to pixels 12 and 7 to contain in
the same segment.

Minimize Q(a) = −
∑
e∈E

aewe

subject to a ∈ {0, 1}|E|, C1(A) = ∅ with A = {e ∈ E|ae = 1}
(30)

where E denotes the set of edges of the image graph, C1(A) denotes the set of
cycles in A with exactly one dissimilarity edge. Unfortunately, Eq 30 is a NP-hard
problem.

7.2 Interpreting Mutex Watershed as Power Watershed Approximation to
Multi-Cut

In [56,54], the authors propose an approximation solution to Eq 30 with a greedy al-
gorithm. This algorithm combined with a CNN architecture to learn the edge weights
achieved state-of-the-art results on EM segmentation challenge [5] when published.
It was shown that this algorithm can be interpreted as an application of PW on the
NP-hard multi-cut problem.

Minimize Q(p)(a) = −
∑
e∈E

aew
p
e

subject to a ∈ {0, 1}|E|, C1(A) = ∅ with A = {e ∈ E|ae = 1}
(31)

Decomposing the edges of the graph into different weights in decreasing order of
magnitudes wl > · · · > w1 (see Fig 17), i.e. Er = {e ∈ E|we = wr} for each 1 ≤ r ≤ l.
The first level in the PW nested minimization problem is given by:

Minimize −
∑
e∈El

ae

subject to a ∈ {0, 1}|El|, C1(A) = ∅ with A = {e ∈ El|ae = 1}
(32)
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Fig. 20. Left: The set of edges selected by mutex watershed when applied on Fig 19
left image. Observe that there are no cycles with exactly one red edge. Hence there is no
ambiguity in the partitions. Right: The final partition obtained by mutex watershed. This
is obtained by discarding the red edges in the left figure.

Let the solution space be denoted by Al.
Minimizing Eq 32 is no longer NP-hard as all the weights in the subgraph are of

the same weight. One can then greedily add edges so as to satisfy the cycle condition
[15]. At the next level, we have the subgraph with edges El−1:

Minimize −
∑

e∈El−1

ae

subject to a ∈ {0, 1}|El−1|, C1(A) = ∅ with A = Al ∪ {e ∈ El−1|ae = 1}
(33)

Let the solution space be denoted by Al−1. This process is continued all the way until
edges are exhausted i.e. E1. The solution obtained is A1. Discarding the dissimilarity
edges from A1 yields a segmentation satisfying the cycle constraint. See Algorithm 5
from [54] for a formal algorithm. Here C0(A) denotes the set of cycles in A with no
dissimilarity edges. The result obtained by applying mutex watershed on Fig 19 left
image is illustrated in Fig 20. Fig 21 replicated from [56,54] shows an image from
EM segmentation challenge [5] and illustrates how mutex watershed works on a real
image.

Fig. 21. This figure is replicated from [56,54]. Left: Overlay of raw data from the ISBI
2012 EM segmentation challenge and the edges for which attractive (green) or repulsive
(red) interactions are estimated for each pixel using a CNN. Middle: vertical / horizontal
repulsive interactions at intermediate / long range are shown in the top / bottom half.
Right: Active mutual exclusion (mutex) constraints that the proposed algorithm invokes
during the segmentation process.
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Algorithm 5 Mutex Watershed [54]

Input An edge-weighted graph G = (V,E = E+ ∪ E−,W = W+ ∪W−)
Output Clusters defined by A∗ ∩ E+.

1: Initialization A = ∅
2: for e ∈ E+ ∪ E− in the descending order of W+ ∪W− do
3: if C0(A ∪ {e}) = ∅ and C1(A ∪ {e}) = ∅ then
4: A = A ∪ {e}
5: A∗ = A
6: Return A∗

To summarise, application of PW to multi-cut allows one to practically implement
a multi-cut minimization and obtain high quality image segmentation results. In case
of astronomical images, learning appropriate edge weights (using a neural network
architecture) suitable for mutex watershed algorithm is a potentially useful research
direction.

8 Explaining the Links between Spanning Tree Filters and Shortest
Path Filters using PW

Recall from Sec 1 that image filtering is the process of summarizing the image by
removing redundant details. The relevant information and the redundant details de-
pend on the application at hand. A popular class of filters are edge-preserving image
filters i.e. an operation on the image that blurs the details within objects and pre-
serves the object boundaries. The bilateral filter illustrated in Fig 2 is an example
of an edge-preserving filter. There is a vast amount of literature on edge-preserving
filters.

In this section, we restrict the discussion to two families of graph-based weighted
average filters namely shortest path filters and spanning tree based filters. As the
name suggests, graph-based filters implies that the filtering is performed using a
graph model on the image. The filtered value at each pixel is given by a weighted
average of the other pixels in the image. The pairwise weights in the shortest path
filters arise from a shortest path between pairs of pixels. On the other hand, the
pairwise weights in the spanning tree-based filters are computed from spanning trees.

8.1 Shortest Path Filters

Recall from Sec 2 that dissimilarity based edge-weighted graphs are used for image
filtering. The family of the shortest path filters can be described as follows. The
filtered value at pixel i is given by:

SPF i =
∑
j∈V

gi(j)Ij , (34)

where gi(j) =
exp(−Θ(i,j)

σ )∑
q∈V exp(−

Θ(i,q)
σ )

. Θ(i, j) is the smallest number of edges on paths

among all shortest path between pixels i and j on the image graph. σ is a smoothing
parameter. Shortest paths can be defined in many ways [35,24,13]. Fig 22 illustrates
a standard definition of a shortest path distance. Intuitively, pixels which are in the
same object are separated by shorter paths when compared to pixels across objects.
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Fig. 22. Left: A toy image represented with an edge-weighted graph. Vertices represent
pixels and the edge weights represent dissimilarity between adjacent vertices. The image
contains two objects and the pixels corresponding to different objects are highlighted in
different colours. Middle: The shortest path between the pixels i and j is highlighted in
red. Here, a shortest path is determined by the sum of the weights of its edges. Observe that
every other path between i and j has sum of the edge weights strictly greater than that of
the path highlighted in red. Thus Θ(i, j) = 3. Right: The unique path between the pixels i
and j is highlighted in red i.e. D(i, j) = 5. Notice that for many pairs of pixels across objects
i.e. pairs such that both pixels belonging to different objects, the separation on the MinST
is larger than that of their spatial distance.

Thus, it is expected that such a filter would result in smoothing of the image keeping
the object boundaries intact.

Although, shortest path filters are theoretically promising, they are computation-
ally expensive. This is because an exact computation [25] requires finding shortest
paths between all pairs of vertices in the graph which is O(|V |3) where |V | is the
number of vertices of the image graph.

8.2 Spanning Tree Filters

On the other hand, spanning tree based filters were introduced independently w.r.t.
shortest path filters. The spanning tree filters are weighted average filters. The pair-
wise similarity weights are computed on an arbitrary minimum spanning tree (MinST)
on the image graph. A specific spanning tree filter namely Tree filter [6] can be de-
scribed as follows. The filtered value at pixel i is given by:

TFi =
∑
j

ti(j)Ij , (35)

where ti(j) =
exp(−D(i,j)

σ )∑
q exp(−D(i,q)

σ )
.D(i, j) is the number of edges on an arbitrary MinST

of the graph (this quantity is well-defined as given an arbitrary spanning tree, there
exists a unique path between every pair of vertices in the graph). σ is a smoothing
parameter. An illustration of the spanning tree filter on a toy example is provided in
Fig 22. Fig 23 provides an illustration of the tree filter on a simulated astronomical
image. In general, for pairs of pixels i and j belonging to different objects, D(i, j) is
large. However, there is at least one boundary edge in any arbitrary MinST. In practice
such edges are usually negligible in number. Thus, tree filter works reasonably well in
practice except for a small leak at object boundaries. A tree filter can be computed
efficiently in linear time [58] (using two passes, bottom-up and top-down).

In [21,23], it was shown using PW framework that the tree filter is a fast approxi-
mation to the contrast-invariance version of a shortest path filter. The exact contrast
invariant version of a shortest path filter was characterized as a weighted average fil-
ter with the pairwise weights computed on UMinST of the image graph. Recall that
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Fig. 23. Top Left: A simulated astronomical image to be segmented (same as left image in
Fig 8). Top Right: A Canny edge detector applied on the image on top left. Bottom Left:
A tree filter is implemented on the image on left using Eq 35. Bottom Right: A Canny
edge detector applied on the tree filtered image. The boundaries identified by a simple edge
detector such as Canny edge detector are more reliable on the tree filtered image.

UMinST of a graph is a subgraph generated by edges of all MinST’s of the graph.
Two other approximations to obtain the contrast invariant version of a shortest path
filter, namely order-based approximation and depth-based approximation have been
proposed in [23]. Algorithms 6, 7, and 8 provide details on implementation of these
approximations. The key idea to implementing these approximations is that for every
pixel in the image, there exists a spanning tree from which the pairwise weights for
filtering this pixel can be computed. Such a tree is termed as an adaptive spanning
tree in [23]. These adaptive spanning trees can be computed in parallel to obtain
these approximations more efficiently. Further, it was shown empirically that the tree
filter and these approximations yield similar results in practice.

Algorithm 6 Generic Algorithm to compute UMinST Filter [23]

Input A 4-adjacency graph G = (V,E,W ) of an image I, Adaptive Spanning Trees Ti
for each i ∈ V , smoothing parameter σ

Output Filtered image S.

1: for i ∈ V do
2: Starting from i on Ti, use Sp = Ip+

∑
q∈children of p exp(

−1
σ

)Sq recursively to compute
Si

3: Return S
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Algorithm 7 Depth-truncated Adaptive Spanning Tree [23]

Input UMinST of the graph G = (V,E,W ), depth d and pixel i
Output Depth-Truncated Adaptive Spanning Tree Ti,d.

1: Set X = {i} and Ti,d = (i, ∅)
2: while True do
3: break = True
4: for e in shortest edges from X to Xc do
5: if dist(e, i, Ti,d) < d then
6: Add e to the edge-set of Ti,d
7: break = False
8: if break = True then
9: Return Ti,d.

Algorithm 8 Order-truncated Adaptive Spanning Tree [23]

Input UMinST of the graph G = (V,E,W ), kernel size N and pixel i, path cost function
f determined by reverse lexicographic ordering of the edges in the path [23]

Output Order-Truncated Adaptive Spanning Tree T̂i,N .

1: Set T̂i,N = ∅, Q = I, Parent(j) = null for each j ∈ I and count = 0
2: while Q 6= ∅ and count < N do
3: Remove from Q a pixel j such that f(P ∗(j)) is minimum and add it to T̂i,N
4: count+ = 1
5: for each pixel k such that (j, k) ∈ E do
6: if f(P ∗(j)· < j, k >) < f(P ∗(k)) then
7: set Parent(k) = j

8: Return T̂i,N

9 Experiments on Simulated Astronomical Sky Images

In this section, experiments are performed on simulated astronomical sky images. It is
a common practice to use simulations [47,52,40,31] as it is difficult to obtain ground
truth segmentation for real astronomical images. The sky images are generated using
the R code developed by authors in [43]. Firstly, noise-free sky images with light
sources are generated. A threshold is then applied on the noise-free simulations to
obtain a ground truth foreground and background. Typical noise such as Viking object
shot-noise, sky noise and Pareto noise are then added to simulate real sky images. See
Fig 24 for an illustration. The noisy images are used for segmentation and filtering.

The goal of segmentation is to separate the foreground from the background i.e.
separate the background sky from the light sources. Recall that one of the the aims of
the article is to demonstrate that the implementation of classic graph-based cost min-
imization methods and the corresponding PW versions yield similar results. F-ratio
and AUC curves are used evaluating segmentation and filtering results. As the tuto-
rial article does not attempt to achieve state-of-the-art results, sophisticated measures
such as pairs-of-pixels method [42] or tailor-made evaluation measures for astronomi-
cal sky images such as described in [31] are not used. The second aim of the article is to
show that the PW versions scale well when compared to the classic implementations.
This is demonstrated experimentally by implementing both the algorithms on a same
machine (Intel(R) Xeon(R) CPU E5620 at 2.40GHz with RAM size of 16 GigaBytes)
and comparing the computation times. All the segmentation methods described in
the article are similar to implement. Hence, segmentation experiments are performed
comparing only one segmentation method namely isoperimetric partitioning i.e. the
classic implementation of isoperimetric partitioning versus the corresponding PW
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Fig. 24. Top Left: A simulation of a noise-free astronomical sky image. Top Middle: A
ground truth of foreground and background obtained by thresholding the image on left. Top
Right: Viking object shot-noise, sky noise and Pareto noise added to the noise-free image
to simulate a real astronomical sky image [43]. A median filtered version of the noisy image
is illustrated for better visualization. Bottom: All three segmentations are obtained on the
raw noisy image as described in the text. Bottom Left: Result of segmentation obtained
by implementation of classic approach to isoperimetric segmentation (see Eq 21). Bottom
Middle: PW implementation of isoperimetric segmentation (i.e. solving Eq 22 on UMaxST)
yields similar results to that of the classic approach. Bottom Right: Result of solving Eq
22 on an arbitrary MaxST i.e. the method in [26]. Observe that qualitatively these results
appear different when compared to the figure on bottom left. This observation is consistent
with left figure in Fig 12.

version. Also, these segmentation methods yield hard labels. Hence, F-ratio is used
to evaluate the quality of the segmentation. The higher the F-ratio, the better the
segmentation results.

The isoperimetric partitioning is performed as follows: the noisy images are pre-
processed with a threshold operation followed by a morphological opening [45]. The
vertices corresponding to the bright pixels in the pre-processed image are identified
as the foreground pixels. A 4-adjacency similarity graph is constructed on the image.
Each of the vertices corresponding to the identified foreground pixels in the pre-
processing step are additionally connected to an auxiliary vertex. The weights of the
edges incident on the auxiliary vertex are set to a value slightly larger than the highest
weight among the edges of the 4-adjacency graph. Isoperimetric partitioning is recur-
sively performed on this graph. The auxiliary vertex is then discarded and the labels
of the other vertices i.e. image pixels are returned. This yields an over-segmentation
on some of the images i.e. more than two labels in the image. Some of the labels are
merged together such that the merging results in only two labels. Table 1 contains
a comparison of the F-ratios obtained on 30 simulated images of sizes 1000 × 1000
for classic implementation of isoperimetric segmentation, PW counterparts, and on
an arbitrary MaxST as proposed in [26]. It can be observed from the table that the
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classic implementation and PW implementation yields a similar F1 ratio while the
MaxST implementation yields a lower F1 ratio.

Table 1. F-Ratio

Mean F1-ratio on 30 simulated images
Iso PW Iso MST Iso

Mean F-ratio 0.74 0.75 0.68
Std. Dev. F-ratio 0.07 0.06 0.08

Fig. 25. X-axis represents the number of pixels (in multiples of 104) in the image on which
segmentation is performed. A point (x0, y0) has to be interpreted as follows: y0 represents
the ratio of mean time taken for implementation of a segmentation method on an image
with x0 × 104 pixels to the mean time taken to implement the same method on an image
with 104 pixels. The blue plot corresponds to the classic implementation of isoperimetric
partitioning and the green plot corresponds to the PW version. It can be clearly seen that
the PW version scales much better when compared to the classic implementation.

Fig 25 compares the scalability of the PW-based isoperimetric segmentation with
the classic implementation of isoperimetric segmentation. Simulated astronomical im-
ages of 10 different sizes and 30 images of each size, starting from a smallest size of
100× 100 to a largest size of 1000× 1000 are used. The lth size has width and height
each of 100l i.e. its number of pixels are l2 times the number of pixels in the smallest
size. The ratio of the mean computational time for each image size to the mean com-
putational time of the smallest size are plotted on the y-axis. The values on the x-axis
have to be interpreted as the ratio of number of pixels in the image to the number of
pixels in a 100 × 100 image. For example, a value of 81 on the x-axis indicates that
the image is of the shape 900 × 900 and has 81 × 104 pixels in total. It can be seen
that PW counterpart of the isoperimetric segmentation scales well (the green plot)
while the classic version (the blue plot) is not scalable.

For comparing the filtering methods, a bilateral filter is used to compare against
the tree filter instead of a shortest path filter. This is because a bilateral filter is a
widely used as an edge-preserving filter in practice. Also, shortest path filters are
prohibitively slow to implement. The filters are compared as follows: a noisy image is
filtered using both the filtering methods. As these filters are supposed to smooth pixel
values within objects without losing the boundary details, simple thresholds on the
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filtered images are expected to achieve good segmentation results. The foreground-
background segmentation problem as described earlier is used for this purpose. The
filtered images are post-processed with an opening operator [46] and each threshold,
the segmentation result is compared against the ground truth w.r.t. AUC. An average
AUC measure over each threshold is used as a quality measure of the segmentation.
A higher average AUC indicates a better quality segmentation and thus a better
filtering approach. It can be seen from Table 2 that tree filter outperforms the classic
bilateral filter used for edge-preserving filtering.

Table 2. AUC

Mean AUC on 30 simulated images
BF TF

Mean 0.61 0.79
Std. Dev. 0.03 0.03

A tree filter, an approximation to the contrast invariance implementation of short-
est path filter thus yields good filtering results. It is easy to see that the bottleneck of
the tree filter is the computation of a MinST. This is because the filtered values are
obtained on the tree in two passes and can be obtained in linear time. On the other
hand, a MinST computation required a sorting step which is O(|V |log|V |). Thus tree
filter scales better than a shortest path filter which has asymptotic complexity of
O(|V |3).

10 Conclusions and Perspectives

In this article, several popular graph-based approaches to image segmentation and
filtering namely random walker segmentation, isoperimetric partitioning, ratio cut,
multi-cut and shortest path edge-preserving filters are revisited. The applications of
PW framework to these methods are surveyed and analysed from the perspective of
contrast invariance. It is shown that the PW versions of these methods can be visu-
alized as contrast-agnostic fast approximations to the corresponding methods. These
methods fall under a large class of cost minimization problems on finite graphs. This
class encompasses all cost functions that can be written as a weighted linear com-
bination of pairwise penalties on pixel labels such that the weights are monotonic
functions of the corresponding weights of the edges connecting the pixels. On this
particular class of cost minimization problems, the PW framework operates on a spe-
cific substructure of the graph i.e. either of UMinST or UMaxST. For graph-based
cost minimization approaches to image processing with more general cost functions,
the PW framework can still be applied by considering the sequence of nested min-
imization problems as mentioned in the article. This results in scalable algorithms
and is potentially useful in image processing applications such as astronomy where
images with massive number of pixels needs to be processed.

A recent trend in the usage of graph-based optimization in imaging applications is
to learn the edge weights of the underlying image graph using deep neural networks.
For example, an end-to-end learned random walker proposed in [9] achieved state-of-
the-art results on some image segmentation database [20]. However, these methods do
not scale well. PW is compatible with such end-to-end learned graph-based methods
and can be applied at the test phase. This would be useful in building scalable state-
of-the-art models for image segmentation and filtering. As a current instance of such
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research direction, the mutex watershed [56,54,55] was shown to achieve state-of-the-
art results on a popular image segmentation database [5] and high quality results on
popular semantic segmentation databases [14,38], using edge-weights obtained thanks
to a CNN architecture. In case of astronomical images, learning appropriate edge
weights (using a neural network architecture) suitable for mutex watershed algorithm
is a potentially useful research direction. Essentially, domain knowledge of the physical
characteristics of astronomical images can be incorporated into the weights of edges.
PW has also been used for other interesting applications such as surface reconstruction
[16] and estimation of separating planes between touching 3D objects [34]. Anisotropic
diffusion for L0 [17] is another interesting direction of research.
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rich Köthe, and Fred A Hamprecht. The mutex watershed and its objective: Efficient,
parameter-free graph partitioning. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2020.

55. Steffen Wolf, Yuyan Li, Constantin Pape, Alberto Bailoni, Anna Kreshuk, and Fred A
Hamprecht. The semantic mutex watershed for efficient bottom-up semantic instance
segmentation. In European Conference on Computer Vision, pages 208–224. Springer,
2020.

56. Steffen Wolf, Constantin Pape, Alberto Bailoni, Nasim Rahaman, Anna Kreshuk, Ullrich
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