Jets-medium coupled evolution in AA collisions: the parton shower

 $\mathsf{Pol}\ \mathsf{B}.\ \mathsf{Gossiaux}^2$

with Iurii KARPENKO¹, Joerg Aichelin², Martin Rohrmoser³, Klaus Werner²

¹ FNSPE CTU in Prague
² CNRS/SUBATECH Nantes
³ Jan Kochanowski University

We acknowledge support by the Region Pays de la Loire (France) under contract no. 2015-08473. The work was supported from European Regional Development Fund-Project "Center of Advanced Applied Science" No. CZ.02.1.01/0.0/0.0/16-019/0000778.

> CTU Ectification

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Our project

To get both hydrodynamic IS and initial hard partons from EPOS3 (currently), make hydrodynamic and jet parts talk to each other, add hadronization scheme and jet finding.

Time-like parton shower

• Monte Carlo simulation of DGLAP equations for a parton shower between virtuality scales Q_{\uparrow} (from Born process in EPOS) and $Q_{\downarrow} = 0.6$ GeV. Vacuum shower developed by Martin Rohrmoser

sketch taken from Liliana Apolinário's talk

On top of that:

- The *time* evolution is split into timesteps (ideal for merging with hydrodynamic medium evolution)
- Parton splitting (for high- Q^2 partons) happens with a probability according to mean life times between the splittings $\Delta t = E/Q^2$.
- Elastic scatterings off medium partons
- Medium-induced radiation for low- Q^2 (below Q_{\downarrow}): see next slides

Multiple radiations and coherence effects

For the multiple scatterings in medium, one has to take into account coherence effects: Landau-Pomeranchuk-Migdal (LPM) effect in QED, or BDMPS-Z in QCD.

We adopted a faithful implementation of the BDMPS-Z by Zapp, Stachel, Wiedemann, JHEP **07** (2011), 118

- For low- Q^2 partons: at each timestep, an elastic scattering and/or a radiation of pre-formed gluon happens with a probability $R_{\rm el}\Delta t$, $R_{\rm inel}\Delta t$ respectively.
- Each formed parton can generate arbitrary number of pre-formed gluons (\propto blob).
- Implementation of BDMPS-Z: see the next slide.

The Monte Carlo algorithm for coherent radiation

A test: reproducing the $\omega \cdot dN/d\omega \propto 1/\sqrt{\omega}, 1/\omega$

A simplified setup a-là Zapp, Stachel, Wiedemann, JHEP **07** (2011), 118 Restrictions:

- mono-energetic quark gun, quarks on the mass-shell
- incoherent gluon radiation $dN^{\text{incoh}}/d\omega = 1/\omega$ with cut-offs $[\omega_{\min}, \omega_{\max}]$.
- initial $k_T = 0$ for the trial radiated gluons
- eikonal limit: projectile is not affected by scatterings, $k_T \ll \omega$, no phase space treatment

A test: reproducing the $\omega \cdot dN/d\omega \propto 1/\sqrt{\omega}, 1/\omega$

- projectile: E = 100 GeV quark, medium: box $L = 1 \text{ fm and } R_{el} = R_{inel} = 0.1 \text{ fm}.$
- change in regime for $\omega \cdot dN/d\omega$ from $1/\sqrt{\omega}$ to $1/\omega$ happens at $\omega = \omega_c$,

where $\omega_c \approx \frac{\hat{q}L^2}{2\Phi_{\rm form}\hbar}$. With the present settings, $\omega_c \approx 3.4$ GeV for L = 1 fm.

• Also, by setting $\Phi_{\text{form}} = 0$ we reproduce the incoherent limit $1/\omega$.

From $1/\omega$ to full Gunion-Bertsch radiation seed

Basic idea: Gunion, Bertsch '82

Extension for heavy quark projectile and dynamical light quarks:

Aichelin, Gossiaux, Gousset, Phys. Rev. D**89**, 074018 (2014):

In the region of small x, the matrix elements from QCD can be approximated by so-called *scalar* QCD¹, which at high energy leads to a factorized formula for the total cross section of the radiation process:

$$\frac{d\sigma^{Qq \to Qqg}}{dx d^2 k_T d^2 l_T} = \frac{d\sigma_{\mathsf{el}}}{d^2 l_T} P_g(x, k_T, l_T) \theta(\Delta), \qquad \text{where}$$

$$P_g(x,\vec{k_T},\vec{l_T};M) = \frac{C_A \alpha_s}{\pi^2} \frac{1-x}{x} \left(\frac{\vec{k_T}}{\vec{k_T}^2 + x^2 M^2} - \frac{\vec{k_T} - \vec{l_T}}{(\vec{k_T} - \vec{l_T})^2 + x^2 M^2} \right)^2,$$

and $\frac{d\sigma_{\rm el}}{d^2 l_T} \rightarrow \frac{8\alpha_s^2}{9(l_T^2 + \mu^2)^2}$. Allows for finite quark/gluon masses \rightarrow heavy quark jets

¹Scalar QCD is a case of spin-0 quarks interacting with non-Abelian gauge field (gluons). Iurii Karpenko, Jets-medium coupled evolution in AA collisions: the parton shower

2

Benchmark on BDMS for intermediate gluon ω (extended medium) BDMS (NPB 531 (1998) 403) : $\omega \frac{d^2 N_g}{d\omega dL} \approx \frac{\sqrt{2}\alpha_s C_F}{\pi \lambda} \sqrt{\tilde{\kappa} \ln \frac{1}{\tilde{\kappa}}}$ with $\tilde{\kappa} = \frac{\tilde{\lambda} \mu^2}{2\omega(1-x)}$. Accumulating phase algorithm provides a good trend for $\frac{dN}{d\omega}$, but recovering the absolute spectrum requires some tuning. We consider effective m_g^{reg} for $k \gg T$:

Benchmark on BDMS for intermediate gluon ω (extended medium)

Good agreement between the MC and BDMS :

Iurii Karpenko, Jets-medium coupled evolution in AA collisions: the parton shower

From BDMS to coherent regime for gluon emission

Intermediate gluon energy : BDMS NPB 531 (1998) 403 Coherent regime : Zakharov FZJ-IKP(Th)-2000-31 (hep-ph/0012360v1)

Releasing the restrictions

" $m_q = \infty$ " \rightarrow Full " $m_q = 0$ " :

 $\bullet\,$ fixed scat. centers \rightarrow recoil allowed and initial thermal motion

• $k_T = 0$ at pre-gluon emission \rightarrow arbitrary k_T after GB pre-gluon emission

 $\bullet\,$ no secondary emission \rightarrow secondary emissions allowed

Induced gluon spectrum:

Increase of gluon radiation, especially at low energy (subsequent emissions)

More realistic calculations

- \bullet Medium: box L = 4 fm of QGP with T = 350 MeV
- massive medium constituents: $m_q = 330$ MeV, $m_g = 564$ MeV
- mono-energetic "quark gun" with $E_{\rm ini}=100~{\rm GeV}$
- energy loss via the medium-induced coherent radiation from above; fixed $\alpha_s = 0.4$, infrared regularisation $\mu = 623$ MeV (derived from Debye mass)
- hadronisation via Pythia8
- jet reconstruction: anti- k_T with FASTJET 3.3

On-shell initial parton

In this case, the composition of the energy losses of the $E=100~{\rm GeV}$ parton-projectile is: radiative energy loss $\approx 11.2~{\rm GeV}$, collisional one $\approx 5.2~{\rm GeV}$. Radiative Energy Loss dominates as expected.

What happens after the jet reconstruction with FASTJET is the following:

Half of the energy of radiated gluons is recovered with the jet cone R = 0.5. Thermalization ("melting") of jet partons with $E < 2T \rightarrow$ medium has a negligible influence.

Off-shell initial parton

Same, but $Q_{\uparrow} = E_{\rm ini} = 100 \text{ GeV} \Rightarrow \text{DGLAP}$ shower down to $Q_{\downarrow} = 0.6 \text{ GeV}$

Left panel: Collisional energy loss dominates ! The difference between the red/purple and blue is much bigger than between the orange/green and blue. This collisional energy loss dominantly affects the secondary gluons (see right panel)

No single number/parameter can reproduce the full jet evolution !

Summary

- We've constructed a Monte Carlo implementation of the incoherent + coherent radiative energy loss in BDMPS-Z formalism, based on an extension of the Gunion-Bertsch model to massive quarks/gluons.
- The code has been calibrated against established results in the literature in the main regimes (incoherent, coherent, finite path length)
- First AA studies with full-coupling to the hydro will come soon.