
Jets-medium coupled evolution in AA collisions: the
parton shower

Pol B. Gossiaux2

with Iurii KARPENKO1, Joerg Aichelin2, Martin Rohrmoser3, Klaus Werner2

1 FNSPE CTU in Prague
2 CNRS/SUBATECH Nantes
3 Jan Kochanowski University

We acknowledge support by the Region Pays de la Loire (France) under contract no. 2015-08473.

The work was supported from European Regional Development Fund-Project ”Center of

Advanced Applied Science” No. CZ.02.1.01/0.0/0.0/16-019/0000778.

Iurii Karpenko, Jets-medium coupled evolution in AA collisions: the parton shower 1/16



Our project

To get both hydrodynamic IS and initial hard partons from EPOS3 (currently),
make hydrodynamic and jet parts talk to each other, add hadronization scheme

and jet finding.
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Time-like parton shower

Monte Carlo simulation of DGLAP equations for a parton shower between
virtuality scales Q↑ (from Born process in EPOS) and Q↓ = 0.6 GeV.
Vacuum shower developed by Martin Rohrmoser

Qmax~pT

Q0~mq,g

sketch taken from Liliana Apolinário’s talk

On top of that:

The time evolution is split into timesteps (ideal for merging with
hydrodynamic medium evolution)

Parton splitting (for high-Q2 partons) happens with a probability according to
mean life times between the splittings ∆t = E/Q2.

Elastic scatterings off medium partons

Medium-induced radiation for low-Q2 (below Q↓): see next slides
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Multiple radiations and coherence effects

For the multiple scatterings in medium,
one has to take into account coherence
effects: Landau-Pomeranchuk-Migdal
(LPM) effect in QED, or BDMPS-Z in
QCD.

We adopted a faithful implementation of the BDMPS-Z by Zapp, Stachel,
Wiedemann, JHEP 07 (2011), 118

For low-Q2 partons: at each timestep, an elastic scattering and/or a radiation
of pre-formed gluon happens with a probability Rel∆t, Rinel∆t respectively.

Each formed parton can generate arbitrary number of pre-formed gluons (∝

blob).

Implementation of BDMPS-Z: see the next slide.
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The Monte Carlo algorithm for coherent radiation

Trial incoherent gluon radiation

Gluon phase accumulation

∆ϕ =
k2

T (t)+m2
g

ω
× ∆t

h̄c

Elastic scatterings

each scattering increments Ns = Ns +1

Phase accumulated: ϕ = Φform
and still in medium?

Yes No

Form with probability 1/Ns

Discard gluon, revert the recoil

add the recoil momentum lT back to the projectile

Yes No

Add the gluon
as formed/radiated

Discard gluon, revert the recoil

add the recoil momentum lT back to the projectile
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A test: reproducing the ω ·dN/dω ∝ 1/
√

ω,1/ω

A simplified setup a-là Zapp, Stachel, Wiedemann, JHEP 07 (2011), 118

Restrictions:

mono-energetic quark gun, quarks on the mass-shell

incoherent gluon radiation
dN incoh/dω = 1/ω with cut-offs [ωmin,ωmax].

initial kT = 0 for the trial radiated gluons

eikonal limit: projectile is not affected by scatterings, kT � ω, no phase
space treatment
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A test: reproducing the ω ·dN/dω ∝ 1/
√

ω,1/ω

projectile: E = 100 GeV quark, medium: box L = 1 fm and Rel = Rinel = 0.1 fm.

change in regime for ω ·dN/dω from 1/
√

ω to 1/ω happens at ω = ωc,

where ωc ≈ q̂L2

2Φformh̄ . With the present settings, ωc ≈ 3.4 GeV for L = 1 fm.
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Also, by setting Φform = 0 we reproduce the incoherent limit 1/ω.
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From 1/ω to full Gunion-Bertsch radiation seed

Basic idea: Gunion, Bertsch ’82

Extension for heavy quark projectile and
dynamical light quarks:
Aichelin, Gossiaux, Gousset, Phys. Rev. D89,
074018 (2014):

In the region of small x, the matrix elements from QCD can be approximated by
so-called scalar QCD1, which at high energy leads to a factorized formula for the
total cross section of the radiation process:

dσQq→Qqg

dxd2kT d2lT
=

dσel

d2lT
Pg(x,kT , lT )θ(∆), where

Pg(x, ~kT ,~lT ;M) =
CAαs

π2
1− x

x

(
~kT

~kT
2
+ x2M2

−
~kT −~lT

(~kT −~lT )2 + x2M2

)2

,

and dσel
d2lT
→ 8α2

s

9(~lT
2
+µ2)2

. Allows for finite quark/gluon masses → heavy quark jets

1Scalar QCD is a case of spin-0 quarks interacting with non-Abelian gauge field (gluons).
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Benchmark on BDMS for intermediate gluon ω (extended medium)
BDMS (NPB 531 (1998) 403) : ω

d2Ng
dωdL ≈

√
2αsCF
πλ̃

√
κ̃ ln 1

κ̃
with κ̃ = λ̃ µ2

2ω(1−x) .

Accumulating phase algorithm provides a good trend for dN
dω

, but recovering the
absolute spectrum requires some tuning.
We consider effective mreg

g for k� T :

mq = ∞, αs = 0.3, T = 0.4 GeV, Γel = 10 ·T fm−1, E = 1 TeV
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Benchmark on BDMS for intermediate gluon ω (extended medium)

Good agreement between the MC and BDMS :

mq = ∞, T = 0.4 GeV, Γel = 10 ·T fm−1, E = 1 TeV

Iurii Karpenko, Jets-medium coupled evolution in AA collisions: the parton shower 10/16



From BDMS to coherent regime for gluon emission

Intermediate gluon energy : BDMS NPB 531 (1998) 403
Coherent regime : Zakharov FZJ-IKP(Th)-2000-31 (hep-ph/0012360v1)

with ωc =
µ2L2

λ̃

MC also has this 1/ω tail (cond. prob ∼ ωc
ω Φform

for Coulomb-like scattering).

Allows to fix Φform.
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Releasing the restrictions
”mq = ∞” → Full ”mq = 0” :

fixed scat. centers → recoil allowed and initial thermal motion

kT = 0 at pre-gluon emission → arbitrary kT after GB pre-gluon emission

no secondary emission → secondary emissions allowed

Induced gluon spectrum:

pQ=1TeV, T=0.4 GeV,
L=8 fm, αs=0.3, elastic
rate Γ = 4fm−1

Increase of gluon radiation, especially at low energy (subsequent emissions)
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More realistic calculations

Medium: box L = 4 fm of QGP with T = 350 MeV

massive medium constituents: mq = 330 MeV, mg = 564 MeV

mono-energetic ”quark gun” with Eini = 100 GeV

energy loss via the medium-induced coherent radiation from above; fixed
αs = 0.4, infrared regularisation µ = 623 MeV (derived from Debye mass)

hadronisation via Pythia8

jet reconstruction: anti-kT with FASTJET 3.3
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On-shell initial parton
In this case, the composition of the energy losses of the E = 100 GeV
parton-projectile is: radiative energy loss ≈ 11.2 GeV, collisional one ≈ 5.2 GeV.
Radiative Energy Loss dominates as expected.
What happens after the jet reconstruction with FASTJET is the following:

50 60 70 80 90 100
E [GeV]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

d
N

je
t/
d
E 〈Ejet〉 =77.7 GeV

〈Ejet〉 =83.2 GeV

〈Ejet〉 =89.0 GeV

〈Ejet〉 =95.8 GeV

〈Ejet〉 =94.9 GeV

〈Ejet〉 =95.0 GeV

rad melt=2T R=0.05

rad melt=2T R=0.2

rad melt=2T R=0.3

rad melt=2T R=0.5

rad, R=0.5

coll (R independent)

Half of the energy of radiated gluons is recovered with the jet cone R = 0.5.
Thermalization (”melting”) of jet partons with E < 2T → medium has a
negligible influence.
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Off-shell initial parton

Same, but Q↑ = Eini = 100 GeV ⇒ DGLAP shower down to Q↓ = 0.6 GeV
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Left panel: Collisional energy loss dominates ! The difference between the
red/purple and blue is much bigger than between the orange/green and blue.
This collisional energy loss dominantly affects the secondary gluons (see right
panel)
No single number/parameter can reproduce the full jet evolution !
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Summary

We’ve constructed a Monte Carlo implementation of the incoherent +
coherent radiative energy loss in BDMPS-Z formalism, based on an extension
of the Gunion-Bertsch model to massive quarks/gluons.

The code has been calibrated against established results in the literature in
the main regimes (incoherent, coherent, finite path length)

First AA studies with full-coupling to the hydro will come soon.
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