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Sparse Visual-Inertial Measurement Units Placement for Gait
Kinematics Assessment

Randa Mallat, Vincent Bonnet, Raphael Dumas, Mohamed Adjel, Gentiane Venture, Mohamad Khalil, Samer
Mohammed

Abstract—This study investigates the possibility of estimating
lower-limb joint kinematics and meaningful performance indexes
for physiotherapists, during gait on a treadmill based on data
collected from a sparse placement of new Visual Inertial Measure-
ment Units (VIMU) and the use of an Extended Kalman Filter
(EKF). The proposed EKF takes advantage of the biomechanics
of the human body and of the investigated task to reduce sensor
inaccuracies. Two state-vector formulations, one based on the use
of constant acceleration model and one based on Fourier series,
and the tuning of their corresponding parameters were analyzed.
The constant acceleration model, due to its inherent inconsistency
for human motion, required a cumbersome optimisation process
and needed the a-priori knowledge of reference joint trajectories
for EKF parameters tuning. On the other hand, the Fourier series
formulation could be used without a specific parameters tuning
process. In both cases, the average root mean square difference
and correlation coefficient between the estimated joint angles
and those reconstructed with a reference stereophotogrammetric
system was 3.5deg and 0.70, respectively. Moreover, the stride
lengths were estimated with a normalized root mean square
difference inferior to 2% when using the forward kinematics
model receiving as input the estimated joint angles. The popular
gait deviation index was also estimated and showed similar results
very close to 100, using both the proposed method and the
reference stereophotogrammetric system. Such consistency was
obtained using only three wireless and affordable VIMU located
at the pelvis and both heels and tracked using two affordable
RGB cameras. Being further easy-to-use and suitable for applica-
tions taking place outside of the laboratory, the proposed method
thus represents a good compromise between accurate reference
stereophotogrammetric systems and markerless ones for which
accuracy is still under debate.

Index Terms—Extended Kalman Filter, Gait rehabilitation,
Inertial Measurement Unit, Augmented Reality Markers.

I. INTRODUCTION

GAIT analysis is the most popular method used to quantify
movement disorders and to assess rehabilitation effects

over time [1]. It is a clinical routine used in broad variety
of pathologies in rheumatology, orthopedics, endocrinology,
and neurology [2]. When assessing gait, kinematics parameters
such as joint angles, that are the basis of most analyses, or
spatiotemporal parameters (e.g., velocity and stride length)
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are often used. When accurately estimated, those parameters
can be combined to build assessment indicators to assist the
therapists in their diagnosis. For example, the Gait Deviation
Index (GDI) introduced by Schwartz et al. is increasingly
used by the clinical community to estimate the level of gait
pathology among disabled persons [3]. The GDI compares
gait kinematics data of a given patient to a healthy group, by
estimating the distance between healthy strides and patient’s
strides. This distance (with respect to the healthy group),
which reflects the pathology level, requires an estimation of
the kinematics parameters to be assessed properly. Stereopho-
togrammetric Systems (SS) are considered as the reference
tools in kinematics motion analysis. However, their use require
a large financial investment and a complex experimental
protocol. An alternative solution proposed by Cappozzo was
called the minimum measured input model approach, that is
aiming at maximizing the functional information extracted
from simplified and affordable experimental protocols [4].

A. Related works

In this context, mainly two technologies were proposed: In-
ertial Measurement Unit (IMU) and RGB/RGB-Depth camera-
based systems. Small, low-cost IMUs measure three accel-
erations and three angular velocities. Thus, in principle, it
is possible to estimate their position and orientation through
double and single integration, respectively. Unfortunately, drift
jeopardizes the time integration of raw signals [5]. To over-
come this problem, Kalman adaptive filters are often proposed
in the literature to ensure real-time estimates of the IMU
orientation by fusing accelerometer and gyroscope data. Since
only two orientation angles can be obtained with this approach
[6], several studies have proposed to use at least one IMU for
each segment of interest together with a multi-body model
representing the human skeleton as a mean to reduce drift-
influence. For example, El Gohary et al. proposed to use a zero
velocity update approach with an Unscented Kalman Filter
relying on a kinematics model for arm motions tracking [7].
Remarkable results were obtained when operating with a rigid
robotic arm so that human soft-tissue-artifact and sensor-to-
segment calibration errors were not considered in this study. To
reduce the sensors count, Sy et al. proposed recently a method
to estimate lower limbs 3D joint angles during gait [8]. Despite
a very interesting approach based on the use of an Extended
Kalman Filter (EKF) including assumptions and constraints
such as rigid body constraints, zero velocity update at the foot
contact, assuming flat floor or making use of the total pelvis
height, the presented results displayed a large Root Mean
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Square Difference (RMSD) superior to 10deg when compared
to the same estimates using SS. These relatively poor results
might be due to the fact that a proper sensor-to-segment
calibration was missing and that a constant acceleration model
was used. Indeed, IMUs require a calibration phase to align
each sensor with respect to its segment. Static and functional
calibration techniques based on a set of pre-defined postures
and/or motions are commonly used in literature. However,
these methods are time-consuming, might be limited by the
subject’s ability to perform pre-defined postures or motions,
and thus can be hardly used with some population or in
clinical settings for example [9]. Large errors might also be
due to sub-optimal weights tuning leading to an emphasized
influence of IMU drift on joint angle estimates. Joukov et
al. showed the influence of parameter’s tuning when using
an adaptive filter such as the EKF [10]. Moreover, during
gait, they showed the superiority of using Fourier series over
using standard constant acceleration model of joint temporal
evolution. The assumption that the joint trajectories can be
modelled by using low-order Fourier series has already been
made in the literature [10]–[12]. Fourier representation was
also largely used for spatio-temporal parameters assessment
using IMUs [13]. Fourier series coefficients were identified
using a feedback adaptive frequency phase oscillator. As
Joukov et al. discussed, the learning rate and parameters tuning
of the oscillator was decisive in the performance of their
method [10]. Nevertheless, by performing a grid search, it
was possible to fine-tune the filter and obtain a low RMSD of
2.4deg for the hip and knee joint angles. However, it should
be noted that the proposed method could not estimate ankle
angles, required a cumbersome sensor-to-segment calibration
process and was based on one IMU per investigated segment.
To cope with the IMU drawbacks, some authors have proposed
to use camera based systems. Recently, markerless visual
motion capture based on a RGB camera and machine learning
algorithms were developed for estimating human motion in
real-life scenarios [14], [15]. However, such approaches are
not yet real-time or accurate enough to reliably estimate
dependent subject’s joint angles and thus are not ready to
be used yet in clinical settings for example. Moreover such
methods need often to be trained on large scale datasets
requiring a large computational power. Devices, based on
RGB-Depth sensors such as the Kinect camera (Microsoft),
with embedded skeleton tracking algorithms are available.
However, it was shown that the Kinect camera is not accurate
enough for rehabilitation assessment mainly due to segment
length variations [16]. For gait analysis, the Kinect sensor
can only estimate timing and spatial characteristics [17] as
joint angles are not reliable enough for a consistent analysis.
Numerous methods have been developed in the literature to
improve kinematic estimates of RGB-D like sensors. Most of
them add the use of a multi-body model to obtain a more
robust joint angle estimate [15], [16]. However, acceptable
differences can only be obtained for motions of very large
amplitude [16].

Another camera based approach is homography, which is
used in Augmented Reality (AR) to accurately estimate 3D
rotations and translations of a given AR marker after a proper,

yet simple, camera calibration process.
Nagymate et al. proposed the use of AR markers for

gait analysis [18]. They have used a commercial Multi-body
Kinematics Optimization (MKO) approach that was fed with
segments 3D pose obtained from very large AR markers that
were located at each investigated segments. They displayed
a RMSD of 2.3cm for the step length, and a joint angle
estimate varying from 2.5deg to 6.7deg. The authors state
that they have chosen to use such large AR markers to avoid
occlusion and undetected markers. In a recent survey [19], it
was suggested that merging RGB-Depth and IMU data could
prevent occlusions and improve joint angle estimate accuracy
[20]. Ahmed et al. for example were able to estimate head and
feet trajectories during overground walking, with a RMSD that
was less than 2% of the walked distance, based on the fusion
of only three sensors: a head mounted IMU-camera and two
feet mounted IMU [21]. However, the joint kinematics were
not assessed in this study. Moreover, it is worthy noting that
MKO and EKF were alternatively used with IMU [10] and AR
markers [18], [22] (as well as with SS markers [23]). Both
methods seem to provide similar results however the MKO
can hardly be implemented in real-time [24].

In this context, it seems that there is a consensus in the
community on the fact that a multi-body model based approach
should be used to perform inverse kinematics with a sparse
placement of sensors. Fusing camera based information, ob-
tained from AR markers, and IMU data could lead to reliable
and robust 3D sensor pose estimate. Proper sensor-to-segment
calibration and EKF parameters tuning are also essential to
provide accurate joint kinematics estimation. Our group has
already proposed such an approach in a recent study [22] but
it was dealing with simple arm tasks. Moreover, it required
one sensor module per investigated segment. Nevertheless
it allowed to show that it is possible to reduce IMU drift
influence and to cope with visual occlusion problems.

B. Contribution

The objective of the present study is to demonstrate the
validity of using sparse calibrated newly designed Visual-
Inertial Measurement Units (VIMU) and adaptive filtering,
during treadmill gait, to estimate relevant kinematics quan-
tities that may be of great benefit to the clinical community.
Moreover, besides new constraints implemented in the EKF,
two formulations of the proposed state-vector are studied and
compared: a classical constant acceleration model associated
to an optimal tuning process of the EKF’s parameters, and a
model based on Fourier series that allows a simple tuning of
the EKF’s parameters based on a priori knowledge. Thus one
of the sub-objective of this study is to assess if by having a
more realistic state variable evolution model the tuning of the
EKF parameters will be simplified.

II. METHOD

The overall principle of the proposed approach is depicted
in Fig.1, and is based on the simultaneous use of affordable
IMUs, incorporating only 3D accelerometers and gyroscopes
sensors, i.e., no magnetometers, and a set of AR markers
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Fig. 1. Overview of the proposed approach based on Visual-Inertial Measurement Units (VIMU) and an Extended Kalman Filter (EKF) taking advantage of
the human body and task biomechanics.

Fig. 2. (a) Lower-limbs multi-body model composed of #( segments, of
lengths !8 , 8 = 1, .., #( , and #� Degrees-of-Freedoms (DoF) denoted \8 , 8 =
1, .., #� . (b) Experimental setup, three VIMU attached to the pelvis, left, and
right heels in a bracelet form are collecting data during gait thanks to two
RGB cameras located behind the treadmill.

tracked with two affordable RGB cameras. The raw data
collected from both IMUs and AR markers require a prior and
unique calibration procedure that is based on a process detailed
in our previous study [22] and briefly described in section II.B.
A set of three AR markers is mounted on the top of each IMU
sensor to form a so-called VIMU (see Fig. 3). Then, a practical
subject-specific sensor-to-segment static calibration (section
II.B.2) is done to define each VIMU pose in the segment
coordinate systems (subject’s segment axes and joint centres
are therefore defined at this step). Finally, an EKF based on
an eighteen Degrees-of-Freedom (DoF) multi-body kinematics

model that is described in section II.A, fuses all measured
quantities to estimate lower-limbs joint angles. The tuning of
the EKF’s parameters along with its state-vector expressed in
two different versions with respect to the evolution of the joint
trajectories are also compared and discussed (section II.C and
section II.D).

A. Lower-limbs Multi-Body Model

A multi-body model of the lower-limbs is devised to relate
the joint kinematics with the three VIMU measurements. It
consists of #( = 7 segments articulated with #� = 18 DoF. As
represented in Fig. 2.a, it is composed of two spherical joints
(hip), two hinge joints (knee) and two universal joints (ankle).
Moreover, the model floating base is located with respect to
a global coordinate system ('0) using three prismatic and
three rotational virtual joints. Three VIMUs are assumed
to be rigidly attached to the sacrum, and to the left and
right heels, respectively (Fig 2.b). A VIMU is composed of
three AR markers and a single IMU (see Fig.3 and Fig.4).
The pose (position and orientation) of each VIMU marker
is directly estimated by the off-the-shelf ArUco library [46].
The orientation provided by ArUco is expressed using the
quaternion formalism as presented by Diebel [25]. Thus, each
VIMU allows measuring the absolute 3D position p0

E and
orientation (quaternion) q0

E with respect to '0 of each AR
marker as well as the 3D linear acceleration aEE and angular
velocity 
E

E with respect to the IMU coordinate system. Three
coordinate systems are therefore used to represent VIMU
different elements: a coordinate system corresponding to both
IMU and central AR marker and two additional coordinate
systems for the left and right AR markers, respectively. The
forward kinematics model (FKM) and its first and second
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derivative (J and ¤J) relating joint kinematics to the VIMU
measurements are given as follows:

p0
E = FKM(\)

q0
E = f (R0

v)

E
E = (R0

E )) J' (\) ¤\
aEE = (R0

E )) (J% (\) ¥\ + ¤J% (\) ¤\) + b0

(1)

where ) , ¤) , ¥) are the (#� × 1) joints positions, velocities and
accelerations vectors, respectively. R0

E (3 × 3) is the rotation
matrix expressing the VIMU’s central AR marker orientation
in '0. It is converted into a (4×1) quaternion vector q0

E through
a custom mapping function f (). Details on the implementation
of f () can be found in section 6.5 of the review paper proposed
by Diebel [25]. The Jacobian matrix (6 × 3) is composed of
J = [J% J'], and b0 is a (3 × 1) acceleration bias vector.

B. Calibration
Two easy-to-use calibration procedures are required to use

the raw measurements effectively:
• a calibration for each VIMU, independent of the subject,
• a subject-specific sensor-to-segment calibration.

On the one hand, the VIMU calibration is done without
participation of the subject by positioning and moving the unit
in the field of view of the RGB camera. On the other hand,
thanks to the use of AR markers, an anatomical calibration of
the VIMU can simply be done [26].

Fig. 3. (a) The VIMU prototype with three different bracelet arrangements to
fit different subjects and/or segment sections. (b) Description of the coordinate
systems associated to a VIMU. The coordinate system of the IMU sensor, left,
and right AR markers are all linked to the central marker coordinate system
through rotation matrices R and a translation vectors r.

1) VIMU calibration: The gyroscope and accelerometer
were calibrated, without the use of any external device, as
proposed by Tedaldi et al. to take into account inaccuracies in
scaling factors, misalignment and non-orthogonality of axes,
and non-zero biases [27]. Moreover, as shown in our previous
study [22], the coordinate systems of the IMU and of the cen-
tral AR markers were aligned thanks to a dynamic calibration
step making use of centripetal acceleration, to calculate the
rotation matrix RBE (3 × 3). Two rigid transformations also
exist between the side coordinate systems of the AR markers
and of the central one:

RE
82 = (R0

E ))R0
8

qE82 = 5 (RE
82)

rE82 = (R0
E )) (r0

8 − r0
E )

(2)

where RE
82
(3 × 3), qE

82
(4 × 1), rE

82
(3 × 1) represent the

rotation matrix, its corresponding quaternion formulation, and
position vector of 8= ; (left) or A (right) AR marker expressed
in the central one and obtained after calibration, respectively.
These relative transformations were easily determined using
50 different static postures of the VIMU and solving an over-
determined system [28]. These rigid transformations between
the coordinate systems of the AR markers will be considered
as rigid body constraints in the EKF (section II.C). Finally, a
VIMU is fully calibrated given that all its measurements are
expressed with respect to the coordinate system attached to
the central AR marker frame 'E .

Fig. 4. Example of lower-limbs anatomical landmarks pin-pointed using a
calibration wand base on an AR marker.

2) Sensor-to-Segment Calibration: As exemplify in Fig.4
the information from an additional AR marker mounted on a
large calibration wand, making its detection accurate and ro-
bust, can be used to pin-point anatomical landmarks similarly
to what is done when using a SS [26]. The calibration wand
is used to pin-point eleven lower-limbs anatomical landmarks
in '0. These are the midpoint between the postero-superior
illiac spines, the right and left antero-superior illiac spines,
the lateral and medial femoral epicondyles, and the lateral
and medial malleolus. This operation can be done in less
than a minute. Joint center positions are then calculated using
classical linear regression methods [29]. The norm between
consecutive joint center positions is used to determine the
segments lengths in the multi-body model (section II.A, Fig.
2). Note that this sensor-to-segment calibration is valid as long
as the VIMUs location on their corresponding segments are
not modified. Otherwise, it has to be repeated.

C. Extended Kalman Filter

An EKF is proposed to estimate lower-limbs joint kinemat-
ics, gathered in the state-vector x, that minimizes at each time
step : the least-square difference between the VIMU measure-
ments, gathered in y, and their estimate from the measurement
model h, gathered in h, including the estimate of the VIMUs
3D positions p0

E , orientations q0
E , linear accelerations aEE and

angular velocities 
E
E (section II.A).
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h: = [p0
E: q0

E: aEE: 
E
E: h21: h22: ])

h21: = [(\8: − \" )2]) with 8 = 7, ..., #�
h22: = [(rE; − rE;2)

2 (qE; − qE;2)
2 (rEA − rEA2)2 (qEA − qEA2)2])

(3)
The vector of estimated VIMUs measurements h is based on
the forward kinematics of the multi-body model but also incor-
porates two type of constraints terms (c1 and c2). The elements
of h21 (#� × 1) are used to solve kinematics indetermination.
Since the number of VIMU is reduced, i.e. a single VIMU
per kinematics chain, there exist multiple kinematics solutions
leading to the same VIMU measurements in the Cartesian
space. However, there is not an infinite number of solutions
leading to the same VIMU pose as the proposed leg model has
6DoF similarly to the number of estimated quantities from a
VIMU. This kinematics indetermination is well known as the
elbow-up/elbow-down problem in robotics. It has been solved
in different ways. In this study, we propose to push the joint
solution toward the average joint angle value, \" , reported for
walking in the literature [30], [31]: 13deg, 8deg, 11deg, 16deg,
1deg, 6deg for \7, \8, \9, \10, \11, \12 angles of the left leg and,
symmetrically for the right leg, respectively. In the context of
the EKF, this is done by adding #� − 6 virtual measurements
aiming to minimise the square difference with \" at each
sample of time by setting the corresponding measurements in
y to zero. This is equivalent to minimizing a cost function in
an optimization process [32].

The elements in h22 (42× 1) additionally ensure rigid body
constraints between the three AR markers in the VIMU. The
position and orientation of the right and left AR markers with
respect to the central AR marker should match their values
obtained during the VIMU calibration (section II.B).

Once the measurement model was established, the joint
kinematics estimation was conducted, first, through the predic-
tion of the a priori state-vector x̂− thanks to a state evolution
model 5 , that is approximated by a linear form F, and a
process covariance matrix Q:

x̂−: = Fx̂:−1

P−: = FP:−1F) +Q
(4)

where P−
:

is the a priori estimation of the error covariance
matrix.

Two cases were investigated for the state-vector formula-
tion:
• case 1 EKF based on a Constant Acceleration (EKF-CA)

model: A first classical state-vector formulation proposes
to estimate the joint angles, velocities and accelerations
and assumed a constant acceleration model [23]:

x8: = [\8: ¤\8: ¥\8: b0: ]) with 8 = 1, ..., #�

� =



I#�×#� Δ)BI#�×#�

JT2
s

2 I#�×#�
0#�×#� I#�×#� Δ)BI#�×#�
0#�×#� 0#�×#� I#�×#�

 0#�×9

09G3#� I9G9


(5)

where )B , 0 and I are the sampling time, and the null and
identity matrices, respectively. To reduce the drift effect, a

random acceleration bias b0 (9 × 1) was added to better track
the 3D measured accelerations of each VIMU (see Eq. 1) [7].
• case 2 EKF based on a Fourier Series (EKF-FS) model:

Since gait can be assumed to be a quasi-periodic task, the
angle of the 8Cℎ joint can be represented using a Fourier
series:

\8: = a80 +
#�∑
==1
(a8=2>B(=l:)B) + b8=B8=(=l:)B)) (6)

where #� is the number of harmonics, and l is the main
motion pulsation.

As described in the experimental validation (see section
III), the gait activity takes place on a treadmill at constant
velocity. Consequently, Fourier series coefficients are expected
to converge towards near constant values and identity matrix
can be used as state-vector evolution model. The state-vector
and its evolution model were defined as follows:

x8: = [a80 a8= b8= l: b0: ])

with 8 = 1, ..., #� and = = 1, ..., #�
x:+1 = I#G×#Gx:

(7)

with #G = (1 + 2#� )#� + 1 + 9.

Secondly, depending on the measurement error, v, and the
measurement covariance matrix, R, the Kalman gain K was
calculated to update the state-vector:

v: = y: − ℎ(x̂−: )
S: = H:P−:H

)
: + R:

K: = P−:H
)
: S−1

:

x̂: = x̂−: +K:v:
P: = K:R:K): + (I −K:H: )P−: (I −K:H: ))

(8)

where H is the Jacobian matrix mℎ
mx and S is the measurement

covariance matrix.

D. EKF Parameters Tuning

The proposed EKF requires the tuning of the following
elements: the initial state-vector value x̂0, the initial estimation
of the error covariance matrix P0, the process noise covariance
matrix Q and the measurement noise covariance matrix R.

For the initial state-vector and error covariance matrices, it
has been shown that their values mainly affect the initial part
of the estimation [33]. Thus, x̂0 was set with the result of the
inverse geometric model calculated from the AR markers data
collected at the first sample of time. P0 was set equal to the
identity matrix giving the same influence to all joints.

The tuning of the elements of Q and R is more sensitive
as they impact the filter convergence rate and stability. The
elements of R corresponding to the IMU data can be ex-
perimentally determined. However, the accuracy of the visual
measurements is variable as a function of different aspects
such as marker occlusion, motion blur, or distance and orien-
tation with respect to the camera and thus is difficult to be
assessed. The elements of R corresponding to the constraints
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c1 and c2 (section II.C) must also be tuned leading to a large
number of parameters. Moreover, the ratio between the tuning
of the elements of R and Q, that is more sensitive and task
and joint dependent [23], affects the filter performance [33].
The tuning of Q reflects the trust level that could be given to
the state-vector evolution model 5 . For example, the constant
acceleration model is obviously incorrect for human motion
leading to inconsistencies in the state-vector [35] and thus
this should be reflected in Q. Similarly, despite the bracelet
form, AR markers have shown some sensitivity to occlusions.
Fortunately, these are easily detectable. Thus, if the loss of all
three markers data was detected, the corresponding elements
of the EKF noise covariance matrix R will be automatically
updated to reflect the new state of input data. Consequently,
two R matrices were considered: the one corresponding to the
whole markers trajectories when no occlusion of at least one
marker has occurred and another one when all AR markers
were occluded. In the latter, the missing markers poses were
replaced by their previous values and their associated R
elements were given a large value (143) indicating a lack
of trust in these measurements. Considering the assumption
that the parameters tuning is task-dependent [23], which is
commonly used in EKF for motion analysis, the data of one
randomly chosen subject was used to identify the elements of
Q. The same identified values were then used for the remaining
subjects. Then, depending on the state-vector formulation, two
methods to tune the parameters of R and Q were proposed in
this study.

In the case 1, corresponding to the EKF-CA, an opti-
misation process aiming at tuning the parameters of the
EKF-CA was used. The optimization process consists of
finding V = [& \ & ¤\ & ¥\ '? '@ '0 'Ω R\ ]) (13 × 1)
that minimizes the square difference between the estimated
joint angles and the reference ones, obtained from the SS
and MKO, respectively (see section IV). The optimization
process is computationally costly. Thus, it is proposed to group
some parameters and to set the elements corresponding to the
constraints c2 to 14−3. The choice of this value reflects the
fact that the reference values are almost exact. The thirteen
parameters that need to be identified are: three parameters & \ ,
& ¤\ , and & ¥\ corresponding to the joint angles, velocities and
accelerations elements of the process covariance matrix Q,
and ten parameters corresponding to the measured positions
'? , quaternions '@ , linear accelerations '0, angular velocities
'Ω, and to the six joints R\ = '\8 in constraint c1 with
8 = 1...6 (assuming left and right symmetry). The problem
of the optimal tuning of V then boils down to:

Find V∗ ∈ min
V∈R13

#�∑
9=1

#∑
:=1
(\(( 9: − \ 9: )2

s.t. V− ≤ V ≤ V+
(9)

where # is the number of samples of the considered trial.
V− and V+ represent the lower and upper boundaries, re-
spectively. \(( (18 × 1) is the vector of the reference joint
angles calculated using the SS (see Section IV). It should
be noted that the gradient of this formulation is difficult to
calculate since the equation in the EKF needs to be integrated.

Thus, Eq. 9 was solved using a local derivative-free solver
proposed in the popular IPOPT library [34], leading to V>?C =
[165.23 3.18 0.17 0.13 0.17 1.09 0.46 [0.09 0.04 0.03
2.32 0.1 1]]) .

In the case 2 corresponding to EKF-FS, it is crucial to
determine firstly the number of harmonics #� required to ac-
curately estimate the joint angles, velocities and accelerations.
To do so, it is proposed to a priori solve the following fitting
problem for different values of #� :

Find a∗, b∗, l∗ ∈ min
a∗ ,b∗ ,l∗∈R2#� +#� +1

#�∑
9=1

#∑
:=1
(\(( 9: − \ 9: )2

s.t. 0 ≤ l
(10)

The Fourier representation is also used to obtain an an-
alytical estimate of the joint velocities and accelerations.
Thereafter, the results of this fitting process were used to
determine a good trade-off between the number of parameters
and the accuracy. Then, the parameter tuning is only based on a
priori knowledge of the biomechanics of the task. The diagonal
elements in Q were set to a small value (0.01) to enforce their
convergence to pseudo-constant values [35]. This guarantees
the convergence of the corresponding error covariance P to
a value close to zero. The elements of R related to the
measurements were all empirically set to 0.1. As it regards the
constraints (c1) related to the difference between estimated and
average joint angles, the elements were set accordingly to the
joint angle amplitude such that R\ = [1 1 1 10 1 10] while
the corresponding elements of the rigid body constraints (c2)
were set to 14−3.

III. EXPERIMENTAL VALIDATION

A. VIMU Prototype

The proposed motion capture system was developed to
be affordable, user-friendly, compact and light-weight. VIMU
prototypes are shown in Fig. 3.a. Each VIMU consists of one
IMU (MPU-6050, Invensense) embedding a 3D gyroscope and
a 3D accelerometer, and communicating at 100Hz using a
Bluetooth wireless module. On the top of the IMU enclo-
sure, measuring 4x4x2cm, three AR markers of 3.6x3.6cm
are mounted in a 3D printed bracelet form. The bracelet
weights 40g and has different forms depending on the targeted
segment. Its form is convenient to improve the AR markers
detection rate during motions involving complex rotations.
VIMUs were attached to human body segments using a velcro
strap. Two standard 60Hz high-definition RGB USB cameras
(USBFHD01, ELP) were used to track the AR markers poses.
A custom program is developed in C++ to read all VIMUs
data synchronously at a frequency rate of 60 Hz. The total
cost of the proposed system was below 100 e.

B. Experimental protocol

Ten healthy male volunteers (age 25.4 ± 4.1 years old,
weight 71.2 ± 16.0 Kg, height 1.7 ± 0.08m) participated in
the experiments. They gave their informed consent following
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ethical regulation for non-invasive experiments of the Uni-
versity of Tokyo Agriculture and Technology (Tokyo, Japan)
and of the University of Paris-Est Créteil (Créteil, France)
where experiments took place. Once the VIMUs and retro-
reflective markers were worn by the subject, at the different
locations shown in Fig2.b, every subject was told to stand
statically, for less than one minute, in any comfortable posture
that allows detection of VIMUs AR markers using the RGB
cameras. Two RGB cameras were setup on tripods to be able to
visualize the whole scene and detect all AR markers. The two
RGB cameras parameters were obtained thanks to a standard
calibration process based on a chArUcoBoard [36]. The data
collected by the two cameras were thereafter expressed in
the same coordinate system using a large AR marker located
on the floor in the field of view of the two cameras (Fig.4).
Meanwhile, anatomical landmarks of interest were pin-pointed
using the affordable calibration wand and also captured using
the SS (see Fig. 2.b). As a result, joint centres’ positions,
segments’ lengths, as well as the local pose of each VIMU
sensor relative to its corresponding segment anatomical frame,
could be accurately calculated (Section. II.B). Hereafter, all
subjects performed normal gait on a treadmill for one minute
while wearing their running shoes. Each participant was free
to choose his natural and comfortable gait speed.

C. Accuracy Assessment

The ability of the two proposed EKF state-vector formula-
tions to accurately estimate the lower-limbs joint kinematics
was assessed by calculating the RMSD and the Pearson Cor-
relation Coefficient (CC) between the estimated and reference
joint angles obtained by means of the SS. This choice is
due to the fact that we were interested in estimating the
temporal joints evolution, independently of the alignment and
calibration offsets between the global reference frames of the
different motion capture systems. Note that the sensor data are
presented in international system of units while the outputs of
the proposed system are given in degrees and centimeters since
these units are more easily interpreted in a clinical context.
The reference joint angles were obtained using a standard
reference SS (6 Prime cameras, Optitrack) and a state of the art
MKO tracking 22 reflective markers [24] with the multi-body
model shown in Fig. 2. The joint angles computed with the
SS follow the Conventional Gait Model [37]. Moreover, the
knee flexion axis was defined orthogonal to the long axis of the
femur and, at the hip, the joint coordinate system corresponded
to 2-by-2 mutually orthogonal axes, similarly to the multibody
model as shown in Fig.2.a. The data of the three VIMUs,
located at the pelvis and both heels of the subjects as shown
in Fig.2.b, were synchronously collected.
The gait deviation index (GDI) [3] was calculated using the
estimated joint angles obtained from EKF-CA and from EKF-
FS. Both results were compared with the mean GDI obtained
from reference SS data, with a leave-one-subject-out cross
validation. Estimates of nine subjects were used to build the
basis required to estimate GDI of the 10Cℎ subject. A total of
approximately 260 healthy strides were used to build the GDI
basis matrix on 9 subjects. The strides of the 10Cℎ subject

were labelled as test strides, and used to calculate the GDI
relatively to healthy strides. This operation was performed for
each subject.

Moreover, based on the joint angles estimates and the
forward kinematic model (see Eq. 1), the sacrum and heels
positions were estimated and used to compute the gait stride
lengths. The occurrences of heel strikes on the treadmill were
first determined using the method developed in [38] and then
used to estimate the corresponding stride lengths as in [39].

Finally, we have studied the differences between EKF-CA
and EKF-FS results by verifying that they were statistically
nonsignificant. This was done using the corresponding RMSD
and CC of all estimated gait kinematics parameters and of
the GDI through a paired t-test with an alpha level set a
priori to 0.05. The Pearson Chi-square goodness-of-fit test was
conducted to check for normal distribution in the data.

IV. RESULTS
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Fig. 5. Mean RMSD between the joint angles, velocities and accelerations
estimated using Fourier series expansion and those obtained using the SS as
a function of the number of harmonics #� .

The mean RMSD of the joint angles, velocities and ac-
celerations calculated using Fourier series representation and
those estimated using the SS as a function of the number of
harmonics #� for a randomly selected subject are shown in
Fig.5. To minimise the RMSD for the joint trajectories the
number of harmonics was set to #� = 4 accordingly to Fig.
5.
Fig. 6 shows the tracking performance using the proposed
EKF-CA of the data collected by the VIMU sensor attached
to the left heel while walking on the treadmill. Overall the
input data were correctly tracked. The RMSD on the IMU data
tracking were on average of 0.017 m.s−2 and of 0.029rad.s−1

for the linear accelerations and for the angular velocities,
respectively. For the AR marker positions and quaternions,
the RMSD were on average of 3.8cm and 2.24−2, respectively.
These relatively large tracking errors were due to the fact that
the AR markers were not detected just after toe-off as exem-
plify by the zoomed windows of Fig.6. In fact at this moment
the AR markers were positioned almost perpendicularly to the
cameras. Despite these tracking errors, the EKF was able to
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Note that the vertical grey lines are used to separate data that are presented
for all N samples on the same subplot.

accurately estimate the eighteen joint angles of the lower-limbs
model described in Fig. 2. This is valid for both the CA and FS
state-vector formulations using the optimal parameters tuning.
Fig. 7 exemplifies the accurate estimates of the 6 DoF that
were used to calculate the pose of the pelvis with respect to '0
for both approaches. In this figure, the corresponding average
RMSD of the 3D pelvis position was equal to 0.4±0.0cm (CC
0.86 ± 0.20) and 1.6 ± 0.9deg (CC 0.75 ± 0.16) in the case of
EKF-CA and 0.4 ± 0.0cm (CC 0.80 ± 0.30) and 2.1 ± 0.7deg
(CC 0.76 ± 0.21) in the case of EKF-FS. Fig. 8 shows a
representative comparison of the left leg joint angles estimate
obtained using both EKF-CA and EKF-FS approaches. The
corresponding joint angles were satisfactorily estimated with
an average RMSDs and CCs of 3.3 ± 1.6deg and 0.76 ± 0.24
using the EKF-CA and of 3.3 ± 1.2deg and 0.74 ± 0.20 using
the EKF-FS, respectively.
Table I summarizes the results of the comparison between the
lower-limb joint trajectories obtained with the proposed system
and the SS, for each considered measure, based on the data
from all subjects. Note that the results for the leg joints (i.e.,
hip, knee and ankle) were obtained over the average of left and
right leg values. In general, results were similar between both
EKF-CA and EKF-FS approaches. For the pelvis the average
RMSDs were of 0.6±0.1cm (CC 0.84±0.21) and 2.0±0.25deg
(CC 0.60 ± 0.09) when using the EKF-CA and 0.7 ± 0.0cm
(CC 0.82±0.22) and 2.2±0.4deg (CC 0.63±0.18) when using
the EKF-FS. For the leg joint angles, i.e., the hip, knee, and
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Fig. 7. Representative comparison of the pelvis joint trajectories obtained
for a random selected subject while walking on a treadmill using the
stereophotogrammetric system (black) and the proposed approach based either
on a constant acceleration model (red) or on Fourier series expansion (dashed
blue).

ankle joint angles, the average RMSDs for all subjects were
equal to 3.9 ± 1.0deg (CC 0.74 ± 0.19) and 3.9 ± 0.8deg (CC
0.71 ± 0.19) when using EKF-CA and EKF-FS, respectively.

Table. II summarizes the mean and standard deviation
RMSDs for right and left stride lengths estimates. These were
calculated first using the VIMUs raw data (without processing)
obtained from the AR markers pose estimation, then using both
EKF-CA and EKF-FS estimated data, and were compared with
respect to the SS. In both cases, the use of the EKF reduced
the RMSD in stride length estimates. Specifically, the EKF-FS
showed an improvement by 50% approximately passing from
2.6cm to 1.3cm.
Moreover, using the joint angles estimates for the detected
strides, the GDI was also calculated. Results presented in Table
II show that all the mean of GDIs (the reference and the
estimated ones), are very close to 100 indicating a normal
walking pattern.

The paired t-test results for RMSD and CC of each joint
trajectory estimated using both the EKF-CA and EKF-FS
implementations are reported in Table I. For all joints, re-
sults showed nonsignificant statistical differences (p > 0.05)
between EKF-CA and EKF-FS with the exception of the pelvic
tilt angle (p'"(� = 0.001, p�� = 0.039). Nevertheless,
considering the above results, the gait kinematics estimates
do not seem to be deteriorated by the poor estimate of the
pelvic tilt angle. Errors in pelvis tilt angle also mechanically
affects hip flexion-extension. However, while pelvis tilt is of
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Fig. 8. Representative comparison of the left leg joint angles obtained
for a random selected subject while walking on a treadmill using the
stereophotogrammetric system (black) and the proposed approach based either
on a constant acceleration model (red) or on Fourier series expansion (dashed
blue)

limited amplitude during gait, hip flexion-extension is of large
amplitude. Therefore, the segment angle errors do not translate
into significant joint angle errors between EKF-CA and EKF-
FS (p = 0.200 for RMSD and p = 0.071 for CC). A similar
statistical test was performed in Table III for the RMSD of
the stride lengths and for the GDI calculation. Both stride
lengths’ RMSD and GDI showed nonsignificant differences
between EKF-CA and EKF-FS. The difference in GDI values
resulting from each EKF implementation and SS data was
also nonsignificant. On the other hand, the raw stride length
values compared to their estimates based on the two EKFs
(see Table III) revealed, as expected, significant differences.
This emphasizes the improvement provided by the EKFs in
either implementation.

Fig. 9 shows the evolution of the nine Fourier series coeffi-
cients corresponding to the ankle flexion angle estimated using
EKF-FS. The coefficients converge toward pseudo-constant
values showing, as expected, the gait periodicity.

V. DISCUSSION

The proposed system proposes to fuse visual and inertial
data of three VIMUs attached to the pelvis, left and right heels
into an EKF and a lower-limb kinematic model. This allowed
handling the inaccuracies that result from using affordable
sensors. Visual occlusion was greatly limited thanks to the

TABLE I
RESULTS OF THE COMPARISON BETWEEN EIGHTEEN LOWER-LIMBS JOINT

TRAJECTORIES OBTAINED USING THE PROPOSED AFFORDABLE SYSTEM
AND THE SS. RESULTS HAVE BEEN REPORTED AS MEAN ± SD OVER ALL
SUBJECTS AND RESULTS OF HIP, KNEE, AND ANKLE JOINTS HAVE BEEN

OBTAINED OVER THE AVERAGE OF LEFT AND RIGHT LEG VALUES.
RESULTS OF THE PAIRED T-TEST BETWEEN EKF-CA AND EKF-FS FOR

RMSD AND CC OF EVERY JOINT TRAJECTORY HAVE ALSO BEEN
REPORTED.

Constant acceleration
model assumption

Fourier series
model assumption p-Values

Pelvic
Translations

RMSD
[cm] CC RMSD

[cm] CC RMSD CC

Translation Y
\1

0.7±0.2 0.96±0.03 0.7±0.2 0.94±0.05 0.444 0.608

Translation X
\2

0.7±0.1 0.96±0.02 0.8±0.1 0.96±0.03 0.472 0.273

Translation Z
\3

0.5±0.2 0.59±0.19 0.7±0.2 0.56±0.25 0.182 0.796

Mean 0.6±0.1 0.84±0.21 0.7±0.0 0.82±0.22

Joint Angles RMSD
[deg] CC RMSD

[deg] CC RMSD CC

Pelvis
tilt 1.7±0.8 0.54±0.26 2.4±0.7 0.43±0.22 0.001 0.039

Pelvis
obliquity 2.0±0.8 0.56±0.4 1.7±0.6 0.77±0.13 0.372 0.136

Pelvis
rotation 2.2±0.8 0.70±0.19 2.4±0.7 0.69±0.29 0.610 0.382

Hip
Flex./Ext. 3.6±0.9 0.95±0.02 3.9±1.1 0.93±0.02 0.200 0.071

Hip
Abd./Add. 2.6±1.3 0.64±0.18 2.7±1.2 0.57±0.25 0.583 0.205

Hip Int./Ext.
Rotation 4.1±1.5 0.79±0.20 4.2±1.1 0.73±0.25 0.872 0.421

Knee
Flex./Ext. 5.1±1.1 0.91±0.06 4.8±0.9 0.92±0.04 0.152 0.127

Ankle
Flex./Ext. 3.1±0.8 0.42±0.27 3.1±1.1 0.45±0.25 0.841 0.941

Ankle
Inv/Eve. 5.0±1.6 0.72±0.20 4.7±1.5 0.64±0.25 0.516 0.085

Mean 3.5±1.2 0.71±0.17 3.5±1.0 0.69±0.18

TABLE II
COMPARISON BETWEEN USING THE AFFORDABLE RAW/SS DATA AND THE

DATA ESTIMATED BY EKF, FOR OBTAINING THE STRIDE LENGTHS AND
GAIT DEVIATION INDEX (GDI), OVER ALL SUBJECTS AND STRIDES.

Stride
lengths

Raw data EKF-CA EKF-FS

RMSD
[cm]

NRMSD
[%]

RMSD
[cm]

NRMSD
[%]

RMSD
[cm]

NRMSD
[%]

Right 2.6±1.1 3.8±1.6 1.7±0.0 2.3±0.5 1.4±0.0 1.9±0.2
Left 2.6±1.0 3.8±1.5 1.6±0.0 2.2±0.8 1.3±0.0 1.7±0.5

SS data EKF-CA EKF-FS

GDI 99.66±3.87 98.44±7.82 98.38±7.97

TABLE III
THE p-VALUES RESULTING FROM THE PAIRED T-TEST BETWEEN RAW/SS

DATA, EKF-CA, AND EKF-FS FOR BOTH RMSD OF STRIDE LENGTHS
AND GDI.

p-Values
Stride lengths

RMSD
EKF-CA /
Raw data

EKF-FS /
Raw data

EKF-CA /
EKF-FS

Right 0.049 0.013 0.093
Left 0.016 0.005 0.183

GDI EKF-CA /
SS data

EKF-FS /
SS data

EKF-CA /
EKF-FS

0.648 0.280 0.984
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Fig. 9. Representative evolution of the Fourier series coefficients correspond-
ing to the ankle rotation joint (\12) estimated by the EKF-FS.

bracelet form of the VIMUs. Rigid body constraints were
integrated in the EKF formulation allowing to reconstruct
marker loss based on its non-occluded partners within the same
VIMU. This was possible as the rigid transformation between
each two VIMU markers was priory calibrated (section II.B.1).
Nevertheless, depending on the motion phases, the complete
occlusion of the three AR markers could not be entirely
avoided. Yet, the EKF was able to cope with such occlusion
by relying more on IMU data thanks to the online update of
the measurement covariance matrix R. This is shown in the
zoomed capture of Fig. 6 where one can note that the EKF is
not tracking inconsistent visual data. However, it is important
to note that the occlusion was never longer than few seconds.
We have shown in a recent study that EKF approach was able
to cope efficiently with such short occlusion [22]. Thus we
can conclude that the proposed method is not very sensitive
to occlusion with the current setup.
Moreover, constraints having the effects of joint springs push-
ing the joint angles toward mean values were added to the
EKF as soft constraints in the measurement model h. This was
motivated by the fact that a sparse placement of the sensors
was used. Thus, for the same VIMUs tracking, different joint
configurations, possibly within the joint limits, are possible.
Basically one could imagine to have springs of different
stiffness attached to each joint. This concept is similar to the
popular potential field approach [40] commonly used within
the robotics community.
The proposed approach has been validated with a direct
comparison to the joint kinematics estimated using a reference
SS. For consistency in the joint trajectories comparison, the
SS data were also processed with MKO using the same multi-
body model. When tracking the same data, EKF and MKO are
expected to provide very similar results [24]. Over the fifteen
lower-limbs joint angles the mean RMSD was of 3.5deg. These
results show the ability of the proposed approach to handle
the 3D IMU drift without magnetometers involvement while
compensating a sparse sensors placement.

For both EKF implementations, the knee and hip flexion-
extension angles estimates presented a relatively high CC of
0.927 on average and a low RMSD (6 5deg). In contrast,
the CCs of the ankle dorsi/plantar flexion (0.435) and the
pelvic tilt angle (0.485) estimates are the poorest but with
a satisfactory RMSD of 3.1deg and 2.0deg, respectively.
Moreover the p-value of the pelvic tilt angle is the only
angle displaying significant different results between the two
EKF implementations. This might be explained by the small
angle amplitude of this joint while walking on the treadmill.
Moreover, the tracking error is not equally distributed among
all joint trajectories due to constraints c1 (similar to joint
springs) and to different parameters values in the covariance
matrix R.
When compared to reference kinematics (bone pins or fluo-
roscopy), a systematic review reported errors between 1 and
22deg at the knee joint when tracking retro-reflective markers
placed on both thigh and shank segments [24]. The proposed
method outperforms related studies dealing with a sparse
sensor placement [8] (RSMD of 10deg) or when using a simple
visual observation (RMSD of 9deg [10]) that is often still
used by physiotherapists (see section I.A for further details
on these studies). When using a single IMU per investigated
segment and a quasi-periodic assumption it is possible to reach
a better accuracy without monitoring the ankle joints (RMSD
of 2.4deg) [10]. Of course this increases the complexity and
the price of the overall system.
While similar results were observed by comparing the use of
a constant acceleration model and a Fourier series expansion
in the EKF (see Table. I), it is important to note that pre-
processing to obtain these results is very different with the
two methods. In the former, the model assumption is inherently
inaccurate in human motion. The literature related to the use
of EKF for motion analysis rarely proposes methods to model
these inaccuracies and to reflect them in the parameters tuning.
Cerveri et al. [41] were the sole authors to propose a frequency
based approach but this requires to have a prior knowledge
of the joint angle evolution, applies to cyclic motions and
was not tested with low-cost sensors data. We have shown
in a previous study [16], using a RGB-D camera and a
markerless joint center estimate algorithm, that an optimization
process outperforms frequency based method and is absolutely
required to tune the EKF parameters. Nevertheless, when using
markerless data as input and despite an optimal tuning of the
EKF parameters and a simplified experimental setup [16], it
was not possible to achieve a joint estimate RMSD lower
than 9.7deg on average when compared to a reference SS.
Specifically, for tasks closely related to walking, a RMSD up
to 20deg was observed for the hip joints. This emphasizes that
markerless approaches are not yet accurate enough to estimate
human motion, and the superiority of our proposed system
being a good and affordable compromise between reference
SS and markerless systems.
Unfortunately, an optimal parameters tuning approach is time
consuming, since it requires to run the EKF several thousands
of times leading to at least 10h of calculation time. Moreover,
it can not be performed independently from a SS. Although
this optimisation is task dependant and can be performed once
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for different subjects, it requires that one subject performs
the task wearing simultaneously VIMUs and retro-reflective
markers at least once. In the latter, when using a Fourier
series model, the EKF parameters can be directly set based
on a priori knowledge. As exemplified in Fig. 9, the Fourier
series converge towards pseudo-constant values, confirming,
as expected, the quasi-periodicity of the joint trajectories. The
quasi-periodicity of gait was already used for motion analysis
in the literature [10]–[12] and seems to be a valid assumption
even for patients.
Regarding values obtained by the optimization process for the
tuning of the EKF-CA, they are difficult to be interpreted as
the elements of Q and R are interdependent. However we can
observe that for the noise covariance matrix they are of the
same order of magnitude than the ones set empirically for the
EKF-FS and that for the joint soft constraints the ratio of one
for ten between some angles is also respected.
Despite the differences in the two EKF implementations, the
paired t-test results obtained for GDI and most gait kinematics
(see Tables I and III) were not statistically significant. This
suggests that both EKF-CA and EKF-FS can be used inter-
changeably for gait kinematics estimation while emphasizing
the relevance of using an optimal tuning of the EKF parameters
and/or a realistic process model that describes the joints
evolution during movement.
The position of the joint centers were estimated thanks to
an anatomical calibration even if functional calibration move-
ments could have been used [9]. However, the proposed system
targets patients that might not be able to perform exciting
postures or motions [9]. Nevertheless, for patients having a
certain level of recovery, such as patients at home, the fact
that with the proposed system position and orientation data
could be directly provided by the AR markers would make
the estimate of joint centers straightforward [9]. Note that in
both EKF formulations, the difference in joint angles estimates
might be explained by the constant body segment lengths,
computed statically as the distance between subsequent joint
centre positions, as well as the VIMU-to-body-segment trans-
lational and rotational offsets. The latter may occur due to
inaccuracies in AR markers measurements at initial static cal-
ibration, soft tissue artifacts, and the assumption of sensors-to-
body-segments rigid connection. In such case, both segments
lengths and VIMUs local poses could be modelled in the EKF
but at the cost of increasing the state-vector dimensions.
The NRMSD of the strides lengths estimated with the SS
and estimated when using the corrected EKF data was on
average 1.5cm or 2% for both implementation cases (see
Table II). This result is better than the 3cm reported in a
recent study when using IMU data collected at both heel
levels [42]. Many studies have intended to estimate similar
spatial gait parameters. For instance, Kose et al. reported a
maximal error up to 3% for step length estimate [43]. However,
their approach, despite its ease of use, suffers from signal
features dependency limiting its scope to normal walking. It
relies directly on the IMU signal for heel strike detection and
assumes a support leg in full extension. The approach proposed
by Ahmed et al. uses a camera but only at the head level and
thus it suffers from the same problems [21]. These authors

do not directly compute stride or step length, however their
foot trajectory estimates, even if acquired over long travelled
distance, showed a relatively large RMSD varying from 5 to
13cm. A recent study compared different spatio-temporal gait
parameters between healthy and amputee patients [44]. The
patient’s average stride length was about 1.05 m, while the
normal walking was on average of 1.24 m. This difference
is much larger than the accuracy provided by the proposed
system. Thus, it would be easy to distinguish between the
different walking modes.
Having correctly estimated joint trajectories and stride lengths
allow to estimate other indexes such as the GDI. The GDI
difference between each EKF and SS data was not statistically
significant. Moreover, GDI results were all very close to 100.
By definition, a GDI greater or equal to 100 means that
the test strides are close enough to the healthy strides to
be classified as normal ones. The obtained GDI illustrates
that the joint trajectories, as well as stride lengths, estimated
using the proposed approach have the potential to provide
clinically useful indicators. In addition, from the EKF results,
the evolution of the Fourier coefficients could be further used
to evaluate the gait variability of patients [11].
The proposed system is composed of two RGB cameras.
This number could be easily increased to match a regular
motion capture system and target more complex tasks where
the subject will not be facing the same set of cameras. Note
that unlike classical stereophotogrammetric approaches, the
proposed one is less sensitive to visual occlusion thanks to
the simultaneous use of IMU data. However, as previously
demonstrated [22], the subject should not be too long away
from the camera(s) field of view as the IMUs drift will impact
the accuracy of the joint angle estimate. This is inherent
to any purely IMU based system [10]. Another limitation
of purely IMU based system is that the absolute position
of the body with respect to the ground, and for instance
to a forceplate, remains undetermined which impedes joint
kinetics to be computed. The addition of externally fixed RGB
camera(s) solves this issue. This way, the proposed affordable
system shall be suitable for both kinematics and kinetics. The
proposed system could be used outside of the laboratory but
it will still require trained staff to perform the anatomical
calibration. It could be used to monitor gait in small clinical
centers or at doctor or physiotherapist practice for example.
This is already the case of much more expensive devices that
can monitor solely the knee joint angle [45].

VI. CONCLUSION

A new approach for motion analysis based on the use of
VIMU sensors and an EKF has been proposed and validated
in this paper. VIMU sensors can be considered a good compro-
mise between, on the one hand, SS systems which are costly
and cumbersome and, on the other hand, purely IMU based
methods which requires one IMU per segment and advanced
anatomical calibrations to reach an accuracy below 5deg. On
the computational side, the propose EKF-FS represent one of
the most advance implementations of this approach (including
constraints and a clear rationale for the filter parameter tuning).
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