
HAL Id: hal-03313462
https://hal.science/hal-03313462

Submitted on 4 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From GWT to Angular: An Experiment Report on
Migrating a Legacy Web Application

Benoît Verhaeghe, Anas Shatnawi, Abderrahmane Seriai, Anne Etien, Nicolas
Anquetil, Mustapha Derras, Stephane Ducasse

To cite this version:
Benoît Verhaeghe, Anas Shatnawi, Abderrahmane Seriai, Anne Etien, Nicolas Anquetil, et al.. From
GWT to Angular: An Experiment Report on Migrating a Legacy Web Application. IEEE Software,
inPress, �10.1109/MS.2021.3101249�. �hal-03313462�

https://hal.science/hal-03313462
https://hal.archives-ouvertes.fr


Department: Head
Editor: Name, xxxx@email

From GWT to Angular:
An Experiment Report on
Migrating a Legacy Web
Application

B. Verhaeghe
Berger-Levrault, France
Université de Lille, CNRS, Inria, Centrale Lille, UMR 9189 – CRIStAL, France

A. Shatnawi
Berger-Levrault, France

A. Seriai
Berger-Levrault, France

A. Etien
Université de Lille, CNRS, Inria, Centrale Lille, UMR 9189 – CRIStAL, France

N. Anquetil
Université de Lille, CNRS, Inria, Centrale Lille, UMR 9189 – CRIStAL, France

M. Derras
Berger-Levrault, France

S. Ducasse
Université de Lille, CNRS, Inria, Centrale Lille, UMR 9189 – CRIStAL, France

Abstract—Berger-Levrault is an international company that developed applications in GWT for
more than 10 years. However, GWT is no longer actively maintained, with only one major update
since 2015. To avoid being stuck with legacy technology, the company decided to migrate its
applications to Angular. However, because of the size of the applications (more than 500 web
pages per application), rewriting from scratch is not desirable. To ease the migration, we
designed a semi-automated migration approach that helps developers migrate applications’
front-end from GWT to Angular and a tool that performs the migration. In this paper, we present
our approach and tool. We validated the approach on concrete application migration and
compared its benefits to redeveloping the application manually. We report that the
semi-automated migration offers an effort reduction over a manual migration. Finally, we present
recommendations for future migration projects.

May/June 2019 1



COMPANIES use GUI frameworks to ease the
creation of their applications’ front-end. However,
those frameworks are getting old and become
legacy. In such a situation, companies must mi-
grate their applications to more recent frame-
works to avoid being stuck with old technologies.

Berger-Levrault has developed several appli-
cations using the Google Web Toolkit (GWT)
framework. This framework allows one to write
the front-end of a web application in Java. How-
ever, GWT received only one major update since
2015. Thus, the company decided to migrate its
applications to Angular.

Berger-Levrault evaluated the time needed to
redevelop one of its GWT application manually
at 8,000 person-days. It includes the migration
of more than 500 web pages written with several
million lines of code. Considering the size and
the number of applications (eight applications
targeted for GWT to Angular migration), it is
clear that manual migration is not feasible in this
industrial context.

To help the company migrate its projects, we
designed an iterative semi-automated migration
approach. This approach includes a tool called
Casino described in a previous paper [1].

In this paper, we first present the migration
context and the architecture of the applications
to be migrated. Then, we detail the input and
output of each step of our approach and how
developers can fine-tune Casino along the process
for the benefit of the next iteration. We also
discuss which actions can be reused and the
ones that must be performed for each migration
project. Finally, we present a concrete migration
experiment. We give figures such as the number
of migrated UI elements, time spent, etc., and
compare our approach results with a manual
migration.

Migration Context
In the following, we detail the existing mi-

gration approaches and the architecture of the
applications at Berger-Levrault.

Modernization approaches
Many migration approaches were proposed

for the modernization of applications [2], [3], [4],
[5]. They can be divided into three categories

[6]: from scratch, wrapping, and semi-automated
migration.

From scratch consists of recreating the full
application manually. This solution is adopted for
small applications but can not be used for big
applications as in the Berger-Levrault context.

Wrapping consists in executing the old appli-
cation in a new context [7]. Although wrapping
provides a fast way to upgrade applications for
the end-user, it is a temporary solution for the
developers rather than a concrete migration.

Semi-automated migration consists of using
tools to migrate completely or partially the ap-
plication. In the case of partial migration, devel-
opers only need to deal with the complex code
that can not be automatically migrated. In the
end, the application is fully written in the target
language/framework.

Another approach, transpilers, migrate from
one programming language to another without
considering GUI frameworks’ specificities [8].
For example, JSweet [9], migrates Java to Type-
Script without focusing on GUI and therefore
produces poor results in this context.

The semi-automated approach is the most
adopted in literature [2], [3], [10], [11], [12], [13].
However, the authors focused on the conception
of tools that perform GUI migration and fail to
detail the migration process and how their tools
fit in. The papers we found are often theoretical,
presenting the technical solutions but lacking a
practical evaluation of how well developers of
a legacy application could perform the kind of
incremental migration that is required on a large
application. Our partner also needed a better
estimation of the investment required to perform
a migration.

Application architecture
To perform a semi-automated GUI migration,

we first need to identify the architecture of the
applications. Both GWT and Angular allow de-
velopers to write applications that follow the
Single Page Application (SPA) style.

This high-level architecture is preserved dur-
ing the migration. However, there are technical
differences between GWT and Angular that must
be taken into account.

Figure 1 presents an example of a generic
web application architecture. It is divided into two

2 © 2019 IEEE Published by the IEEE Computer Society IT Professional



Figure 1: Main parts of a web application archi-
tecture

parts: Shell [14] and Content.
The Shell corresponds to the infrastructure

provided by the GUI framework. It includes the
company specific rules and configuration. It also
includes the front-end header and footer of the
web pages.

The Content part is developed for each ap-
plication. It corresponds to the web page GUI
and the business code (e.g. the application rules,
distant server address, application-specific data).

Figure 2: Architecture of web applications

Figure 2 details the Shell and the Content.
The Shell part is subdivided into the compo-

nents and the controller.
The Components (also known as widgets) are

the UI elements that can be used by developers
to design their applications.

The Controller renders the header and footer
of the application, ensures the security layer of
the front-end (i.e., inject the session ID, redirect
to the login page. . . ) and, manages URL mapping
(i.e., display the page selected by the user).

The Content part of the architecture is divided
into the Data Transfer Objects (DTOs), the pages,
and the services.

The DTOs are the data manipulated by the
application. In the object-oriented paradigm, they
correspond to classes with attributes. Attributes
type can be: primitives (i.e. string, int etc.), col-
lections, dictionaries, and other DTOs.

The Pages are the GUI and behavioral code
(e.g., the code executed when the user interacts
with a widget) designed by developers and used
by customers. They are designed using compo-
nents of the Shell, and interact with other pages
through the controller. In particular, they call
the controller for navigation between pages and
transmitting data to other pages. Some pages uses
DTOs. It is the case for pages displaying data
retrieved from the back-end. Those DTOs are
provided by services.

The Services are the connection between the
front-end and the back-end of the application.
When called, they create a request to the back-
end, receive the result, and transmit the result to
the original caller (i.e., a page or another service).

Table 1: Application architecture technical imple-
mentation

GWT Angular

Components Java file TypeScript, HTML, and CSS
files

Controller Java and
XML files Module and route file

DTOs Java class TypeScript class without
getter and setter

Pages Java file TypeScript, HTML, and CSS
files

Services GWT/RPC REST

Table 1 summarizes the main technical imple-
mentation differences between GWT and Angu-
lar. In general, GWT uses Java files, and Angular
uses TypeScript, HTML, and CSS files. There is
also a major difference in the services. GWT uses
a specific GWT/RPC protocol, whereas Angular
uses REST.

We will now look at a migration process that
will ease the transition from one architecture to
another.

Migration process
To perform the migration from GWT to An-

gular, we designed a process divided into three

May/June 2019 3



Department Head

steps: shell migration, back-end connection mi-
gration, and front-end migration.

Shell migration
The first step to migrate the applications’ GUI

is the migration of the Shell in the target frame-
work. This step consists of manually developing
in the target framework the pages’ header and
footer, the CSS, and the company’s widgets.

Since the Shell is the same for all the appli-
cations, this step needs to be done only once for
all migration projects.

Once the Shell is migrated, it is possible to
perform the migration of the back-end connection
and the migration of the front-end.

Back-end connection migration
To perform the migration of the back-end con-

nection, we used the Casino tool (see Figure 3).

Figure 3: back-end connection migration

Casino is an engine that translates GWT GUI
to Angular GUI [1]. It performs a static analysis
of the GWT source code to extract the front-
end of the application (i.e., the widgets, their at-
tributes, and the widgets composition), its behav-
ior, its services, and its DTOs. Internally, Casino
uses a mapping of the GWT widgets to their
Angular counterparts. This mapping might not be
exhaustive, and new widgets can be incrementally
added when they are first encountered.

At this step, Casino creates the services in
Angular. It transforms the JAVA RPC endpoints
(e.g., methods) into Java REST endpoints. Note,
the Java REST endpoints, in our case, do not
follow RESTful standards, which makes it easier
to migrate them (e.g., we do not access element
state, but we call methods). Casino also generates

the Angular services to request the Java REST
endpoints. For the DTOs, Casino extracts their
structures and creates their Angular counterparts.

During this step, all the services and DTOs
of the application are migrated automatically by
Casino. Thus, it only needs to be executed once
for each application migration.

Front-end migration
Finally, it is possible to migrate the front-end

of the application. Figure 4 presents the migration
approach. It consists of three main steps that are
repeated over all pages to migrate.

Select a Page in the source application. For
example, developers can start with simpler pages
or pages that only use widgets already known by
Casino. They can also select to migrate a group
of pages that work together to avoid dangling
dependency issues.

Use Casino to analyze the selected page(s)
and generate it(them) into the target framework.
This step is automatic.

Fix the page presenting differences between
their source and the target versions. Differences
are identified “manually”, they include visual
differences (e.g. widgets are missing or the page
layout is incorrect), and behavioral differences
(e.g. the proper behavior is not executed when
the user interacts with the page). If there are
differences, developers fix them and integrate the
migrated page in the final application. Some fixes
(for example, adding new widgets to the map-
ping) can be retro-fitted into Casino to improve
the next page migration.

Evaluation
Case study

We evaluate our semi-automated approach on
a GWT application of Berger-Levrault. This ap-
plication is called Omaje and was selected as
representative of other Berger-Levrault’s applica-
tions. Omaje is a client subscription management

Figure 4: Front-end migration

4 IT Professional



application used internally., It is, therefore, a safe
case study for our experiment. Omaje includes
20 main pages following the SPA architecture
and contains 6,683 GWT elements. It is built
with 33 different kinds of widgets, from basic
ones (button), to complex ones (charts or tables
that auto-update part of the GUI when a row is
selected). In total, in its original version, Omaje
“weighs” 191 KLOC that are implemented using
2,669 classes and 14,882 methods.

We hired a Master student as a trainee to
perform the migration of the GUI of Omaje from
GWT to Angular. We wanted somebody who did
not know Angular yet (representative of many
developers in the company) nor our tool. The
drawback of this choice is that the student does
not know Omaje either, which would not be the
case with a company developer.

The trainee required 10 person-days to in-
stall the application environment, discover the
Angular framework, and learn how to use our
migration approach and tool. Then, he performed
the front-end migration. It consisted of following
the process described above (selecting a page,
migrating it with Casino, fixing and integrating
it into the Angular application). When fixing a
page, he encountered GUI elements not migrated
by Casino because they only exist in the source
framework. In this case, he created a correspond-
ing component in the target framework and added
it into the Casino’s widget map.

Effort reduction

Once the environment was installed, the GUI
migration was completed in 14 days.

The developers of Omaje had roughly esti-
mated the effort to manually migrate the applica-
tion to 104 person-days. Although this is a very
crude estimation, there is no doubt that our tool
allowed the trainee to achieve the same result
in considerably less time, and with the added
disadvantage that he did not know the application
itself at the beginning.

In total, the migration cost 24 days. The
migrated application consists of 505 Angular files
and 34,830 LOC. It is 82% less than the original
application. The main reason is that TypeScript
and HTML are less verbose than Java.

Reduction of manual work along the process
As we mentioned earlier, when the migration

developer identified a missing GUI element in
the Angular application, he developed a generic
reusable Angular component. This component is
then used by Casino during the generation of
other pages.

Figure 5: Results of manual work reduction
gained by reusable components to extend Casino
tool

Time spent to manually complete the migration and create
reusable Angular elements in hours (left axis)

Number of reusable elements created in this page (right
axis)

Figure 5 presents the amount of time in hours
required by the developer to perform the migra-
tion of each page, with the number of reusable
Angular elements created for those pages. The
results show that 10 reusable Angular GUI ele-
ments have been developed during the migration.
One can see that the time steadily decreased as
the trainee gained experience with the tool and
the required widgets were added.

The time needed to complete the migration
of pages 13 and 18 is low despite the creation
of two new components. The two components
were really simple (i.e., consist of less than three
HTML tags), and their behavioral logic was al-
ready existing. Thus, nearly no time was required
to create them.

We note that the main effort was to add miss-
ing Angular elements in the application. Once
this step was done, migrating a page became
trivial for the Master student. Setting up an expert
team dedicated to designing the target Angular
elements would have eased the migration.

Maintainability of the produced application
A common problem with automatically gen-

erated code is the quality of the code. We eval-
uate this aspect using the SonarQube engine that

May/June 2019 5



Department Head

provides code quality information over a project.
We focused on three aspects: reliability, main-
tainability, and security. Reliability validates the
absence of potential bugs. Maintainability checks
that the migrated application will be usable by
developers after the migration. Security verifies
that the migrated application does not contain
vulnerabilities.

Table 2: SonarQube number of issues per quality
aspect

Reliability Maintainability Security
issue issue issue

Original 1,389 (1%) 5,075 (3%) 4 (0%)
Semi-automatic 684 (1%) 1,096 (5%) 1 (0%)
Full migration 409 (1%) 911 (3%) 0 (0%)

In parentheses: percentage of issues per line of code

Table 2 summarizes the result for the code
quality evaluation. It presents the number of is-
sues reported for each aspect. It shows that our
semi-automatic migration tool did not damage the
quality of the code. Although the percentage of
issues per line of code is constant, the number of
issues has decreased in the migrated application.
In fact, by standardizing the former code into
the target standard, Casino allows one to remove
many Sonar issues. Such standardization of the
code is similar to the one performed by [15] to
ease the migration process. This is also a common
practice when improving an application’s main-
tainability.

The Omaje development team later performed
56 functional test scenarios on the Angular ver-
sion and did not report any bug. The team also
developed new features in the migrated Angular
application and did not report any problem. They
decided to adopt this version for future develop-
ment.

Conclusion
In this paper, we expose a concrete problem

of GUI migration. We presented an approach to
migrate the front-end of applications and applied
it to an application of Berger-Levrault. We report
that our approach allows the company to reduce
the migration time significantly.

In our experiment, the manual step of the
migration has been performed by only one de-
veloper. Future work includes the migration of

larger applications with a larger team.
As final recommendations, we stress the ben-

efits of standardization of the source code fol-
lowing coding conventions to ease the migra-
tion process. This reduces the manual effort to
discover and map source widgets to their target
counterparts, and it improves the maintainability
of the code.

We also encourage future practitioners to pay
attention to the differences between the source
and target GUI framework architecture style. In
our example, both used the SPA architecture style,
which did not require additional work. In case
the two GUI frameworks are based on different
architectures, one has to define rules to migrate
from one architecture to the other.
We provide at https://badetitou.github.io/projects/
Casino/ links to several GUI importers and gen-
erators that can help migrate applications and
provides details on our approach.

REFERENCES
1. B. Verhaeghe, A. Etien, N. Anquetil, A. Seriai,

L. Deruelle, S. Ducasse, and M. Derras, “GUI migration

using MDE from GWT to Angular 6: An industrial

case,” in 2019 IEEE 26th International Conference

on Software Analysis, Evolution and Reengineering

(SANER’19), Hangzhou, China, 2019, pp. 579–583.

[Online]. Available: https://hal.inria.fr/hal-02019015

2. K. Garcés, R. Casallas, C. Álvarez, E. Sandoval,

A. Salamanca, F. Viera, F. Melo, and J. M. Soto, “White-

box modernization of legacy applications: The oracle

forms case study,” Computer Standards & Interfaces,

pp. 110–122, Oct. 2017.

3. O. Sánchez Ramón, J. Sánchez Cuadrado, and

J. García Molina, “Model-driven reverse engineering

of legacy graphical user interfaces,” Automated

Software Engineering, vol. 21, no. 2, pp. 147–

186, 2014. [Online]. Available: http://link.springer.com/

10.1007/s10515-013-0130-2

4. H. Samir, A. Kamel, and E. Stroulia, “Swing2script:

Migration of Java-Swing applications to Ajax Web ap-

plications,” in 14th Working Conference on Reverse

Engineering (WCRE 2007), 2007.

5. E. Shah and E. Tilevich, “Reverse-engineering user

interfaces to facilitate porting to and across mobile

devices and platforms,” in Proceedings of the compila-

tion of the co-located workshops on DSM’11, TMC’11,

AGERE! 2011, AOOPES’11, NEAT’11, \& VMIL’11.

ACM, 2011, pp. 255–260.

6 IT Professional

https://badetitou.github.io/projects/Casino/
https://badetitou.github.io/projects/Casino/
https://hal.inria.fr/hal-02019015
http://link.springer.com/10.1007/s10515-013-0130-2
http://link.springer.com/10.1007/s10515-013-0130-2


6. H. M. Sneed and C. Verhoef, “Cost-driven software

migration: An experience report,” Journal of Software:

Evolution and Process, p. e2236, 2020.

7. T. Tonelli et al., “Swing to swt and back: Patterns for

api migration by wrapping,” in 2010 IEEE International

Conference on Software Maintenance. IEEE, 2010,

pp. 1–10.

8. J. Brant, D. Roberts, B. Plendl, and J. Prince, “Extreme

maintenance: Transforming Delphi into C#,” in ICSM’10,

2010.

9. R. Pawlak, “Jsweet: Insights on motivations and design,”

A transpiler from Java to JavaScript. EASYTRUST,

vol. 16, 2015.

10. T. Hayakawa, S. Hasegawa, S. Yoshika, and T. Hikita,

“Maintaining web applications by translating among dif-

ferent RIA technologies,” GSTF Journal on Computing,

p. 7, 2012.

11. F. Fleurey, E. Breton, B. Baudry, A. Nicolas, and J.-

M. Jezéquel, “Model-Driven Engineering for Software

Migration in a Large Industrial Context,” in Model Driven

Engineering Languages and Systems, G. Engels,

B. Opdyke, D. C. Schmidt, and F. Weil, Eds., vol. 4735.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,

pp. 482–497. [Online]. Available: http://link.springer.

com/10.1007/978-3-540-75209-7_33

12. A. Mesbah and A. van Deursen, “Migrating multi-

page web applications to single-page ajax interfaces,”

in Proceedings of the 11th European Conference

on Software Maintenance and Reengineering, ser.

CSMR ’07. Washington, DC, USA: IEEE Computer

Society, 2007, pp. 181–190. [Online]. Available: http:

//dx.doi.org/10.1109/CSMR.2007.33

13. S. Bragagnolo, N. Anquetil, S. Ducasse, S. Abder-

rahmane, and M. Derras, “Analysing microsoft access

projects: Building a model in a partially observable

domain,” in International Conference on Software and

Systems Reuse (ICSR’20), ser. LNCS, no. 12541, Dec.

2020.

14. A. Osmani, “The app shell model,” https://developers.

google.com/web/fundamentals/architecture/app-shell,

accessed: 2020-09-10.

15. L. Włodarski, B. Pereira, I. Povazan, J. Fabry, and V. Za-

ytsev, “Qualify first! a large scale modernisation report,”

in 2019 IEEE 26th International Conference on Soft-

ware Analysis, Evolution and Reengineering (SANER).

IEEE, 2019, pp. 569–573.

Benoît Verhaeghe is a Ph.D. student at the RMoD
Team of Inria Lille - Nord Europe, Lille, France, and
research engineer at Berger-Levrault, France. His re-

search interest includes reverse engineering, mainte-
nance, and software systems migration. Contact him
at benoit.verhaeghe@berger-levrault.com.

Anas Shatnawi is a research engineer at Berger-
Levrault, France. He obtained his Ph.D. degree
in Computer Science from LIRMM of University
of Montpellier, France. His research interest is in
software reuse, reengineering, reverse engineering
and empirical software engineering. Contact him at
anas.shatnawi@berger-levrault.com.

Anne Etien is full Professor at the University of Lille,
France. Her research interests concern the reengi-
neering of complex legacy systems, tests, software
migration. Contact her at anne.etien@inria.fr.

Nicolas Anquetil is assistant Professor at the Uni-
versity of Lille, France. His research interests in-
clude everything related to software evolution, in-
cluding: software reverse engineering, software qual-
ity, tests, software migration. Contact him at nico-
las.anquetil@inria.fr.

Abderrahmane Seriai obtained his Ph.D. in com-
puter science from the University South Brittany
(France) in 2015. He joined the Berger-Levrault group
in 2017. His current work revolves around applied re-
search in the field of software engineering. He actively
participates in the scientific research, design, analy-
sis and development aspects of use cases for new
technologies (software migration, product lines, big
data, blockchain, etc.). abderrahmane.seriai@berger-
levrault.com.

Mustapha Derras is research director at Berger-
Levrault. Contact him at mustapha.derras@berger-
levrault.com.

Stephane Ducasse is research director at INRIA
Lille leading the RMoD Team, France. During 10
years, he co-directed with O. Nierstrasz the Software
Composition Group. He is president of ESUG. He is
one of the leaders of Pharo: a new exciting dynamic
language. Contact him at stephane.ducasse@inria.fr.

May/June 2019 7

http://link.springer.com/10.1007/978-3-540-75209-7_33
http://link.springer.com/10.1007/978-3-540-75209-7_33
http://dx.doi.org/10.1109/CSMR.2007.33
http://dx.doi.org/10.1109/CSMR.2007.33
https://developers.google.com/web/fundamentals/architecture/app-shell
https://developers.google.com/web/fundamentals/architecture/app-shell

	Migration Context
	Modernization approaches
	Application architecture

	Migration process
	Shell migration
	Back-end connection migration
	Front-end migration

	Evaluation
	Case study
	Effort reduction
	Reduction of manual work along the process
	Maintainability of the produced application

	Conclusion
	REFERENCES
	Biographies
	Benoît Verhaeghe
	Anas Shatnawi
	Anne Etien
	Nicolas Anquetil
	Abderrahmane Seriai
	Mustapha Derras
	Stephane Ducasse


