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Concrete Domains in Logics: A Survey

Stéphane Demri, CNRS, LMF, ENS Paris-Saclay, Université Paris-Saclay
Karin Quaas, Universität Leipzig

In this short survey, we present logical formalisms in which reasoning about concrete domains is embedded
in formulae at the atomic level. These include temporal logics with concrete domains, description logics
with concrete domains as well as variant formalisms. We discuss several proof techniques to solve logical
decision problems for such formalisms, including those based on constrained automata or on translation into
decidable second-order logics. We also present recent results mainly related to decidability and complexity
as well as a selection of open problems.

1. INTRODUCTION
Reasoning about concrete domains. A concrete domain is a relational structure with

a fixed non-empty domain and a family of relations. Typical examples of concrete do-
mains are (N;<), (P(N);⊆), and the set of finite words over the alphabet {0, 1}∗ with
the prefix relation. Multiple logical formalisms have been developed to express prop-
erties on concrete domains, ranging from quantifier-free languages to first-order lan-
guages. A prominent example is Presburger arithmetic [Pre29; Grä88; Haa18] under-
stood as the first-order theory on the natural numbers with addition and the standard
ordering relation. Other concrete domains are relevant in computer science, in partic-
ular those related to the verification of programs with typed variables (real numbers,
finite binary trees, lists, etc.).

Reasoning about concrete domains embedded in logical formalisms can be mate-
rialised in at least two ways; combinations are also possible. One option is to keep
the semantical structures of the plain logic but to enrich the logical language so that
values in the concrete domains can be inferred from the models. This is what is done
in [BEH95] in which a version of constrained LTL is introduced that is interpreted over
standard LTL models but the logical language is enriched with Presburger constraints
to reason about the number of occurrences of events in the models. Graded modal log-
ics are of the same nature, see e.g. [Tob01], as the models are standard Kripke-style
structures but the modal language can state constraints about the number of successor
worlds satisfying a specific formula.

Another option is to enrich the semantical structures of the plain logic L with val-
ues from a concrete domain D (see e.g. [BH91]). The logic L(D) – L with the concrete
domain D – can express constraints between these values thanks to atomic formulae
that can compare these values. For instance, every position of an LTL-model can be as-
sociated with two natural numbers. In LTL(N;<), the atomic formula x < Xy expresses
that the value of the variable x at the current position is strictly less than the value of
y at the next position.

This paper is mainly dedicated to logical formalisms with concrete domains of the
second kind, i.e., extensions of L in which the semantical structures of the plain logic
are augmented with concrete values.

From ontologies to database-driven systems. Logical formalisms in which reasoning
about concrete domains is embedded in formulae at the atomic level and the models
are Kripke-style structures (transition systems, interpretations for description log-
ics [BHLS17]) are quite ubiquitous in theoretical computer science. Usually, every
world (state, domain element) is associated with a collection of values from concrete
domains. For example, in timed logics [AH93; AH94; AFH96], states have a times-
tamp in R whereas in logics for the verification of counter automata, see e.g. [CC00;
BQS19], every state comes with a tuple of counter values in N. This can be gener-
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alised to other specification languages for the behaviour of non-terminating programs
by understanding valuation sequences as snapshots of program’s variables at specific
points of time during its execution. Similarly, in description logics with concrete do-
mains handling ontologies with values from concrete domains, domain elements are
enriched with tuples of values, see e.g. [BH91; Lut02b; Lut03; Lut04b; LM07]. Dealing
with concrete domains in logics happens to be natural and further examples can be
found in spatial-temporal logics [WZ00; BC02], in first-order temporal logics for mod-
elling dynamical biological behaviours [FR09; Fag20], in synthesis problems [EFR21;
CDOT21], for the verification of hierarchical systems [FK18] and for reasoning about
sequences of memory states [BDL09]. Such logical formalisms have been also shown
relevant for analysing database-driven systems [DHV14]. For instance, a variant of
first-order LTL has been introduced in [DHV14] to verify data-driven web applications.

The expressive power of the plain logics augmented with constraints about concrete
domains often allows us to encode counting mechanisms, leading to undecidability of
the main reasoning tasks (satisfiability, model-checking), see e.g. [CC00; Lut02b]. How-
ever, properties of the concrete domains have been identified to get decidable logical
problems, see e.g. [BC02; LM07; CKL16; BR20], and syntactic restrictions have been
also elaborated to reduce the expressive power at the gain of having better computa-
tional properties, see e.g. [Laz11; BQS19].

Motivations. In view of the plethora of recent works dealing with logics with concrete
domains and the diversity of proof methods and decision problems, we would like to
provide a short survey about recent advances, in a uniform framework that allows us
to compare the different techniques and contributions. Pinpointing the most promising
research directions is an important motivation, too.

Content. In this paper, we present results about the decidability/complexity status
of reasoning tasks for logics with concrete domains focusing on recent works as well as
on the relationships between seemingly distinct formalisms. In Section 2.1, we intro-
duce the notion of concrete domains, we provide examples and we state a few standard
results in particular related to numerical domains and to string domains. The remain-
ing part of Section 2 deals with the introduction of temporal and description logics
equipped with concrete domains. The automata-based approach is described in Sec-
tion 3, extending the approach for modal and temporal logics, see e.g. [VW86; VW94].
Decidability results obtained by translation into second-order theories are sketched in
Section 4, following recent developments in [Car15; CKL16; CT16]. Comparisons with
other proof techniques are also provided there. Whereas the previous sections mainly
contain formalisms in which contraints between values from the concrete domains
have a local scope, Section 5 presents richer logical formalisms with global constraints
(including the use of the freeze operator, and its restriction to express value repeti-
tions) and a selection of decidability/complexity results. Finally, Section 6 concludes
the paper with a selection of open questions.

2. LOGICAL FORMALISMS WITH CONCRETE DOMAINS
2.1. Concrete domains and constraints

Concrete domains. A relational signature σ = {R1, R2, . . . } is a countable set of re-
lation symbols, where every symbol Ri has an associated positive arity. A concrete
domain over a relational signature σ is a tuple D = (D;RD1 , R

D
2 , . . . ), where D is the

domain, and for each R ∈ σ, RD ⊆ Dk is the interpretation of the relation symbol R in
D, where k is the arity of R. We often identify the relation RD with the relation symbol
R; in that case we specify a concrete domain as (D;R1, R2, . . . ) or (D;σ).
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Let us consider some examples of concrete domains. A generic concrete domain is
(D;≡), where D is an arbitrary set of data values and ≡ is an equivalence relation
over D. We may extend this to (D;≡, (=d)d∈D), where =d is a unary predicate stating
the equality with the constant d (the singleton =d is also simply written d in concrete
domains). Numerical concrete domains belong to the concrete domains probably stud-
ied the most in computer science. We mention here the integers (Z; +, <,=, 0, 1) that
are used for analysing and reasoning about systems with integer variables [CC00;
BQS19] and for representing infinite-state systems [Haa18]. Another example is the
real numbers (R;<,=), used in the verification of real-timed systems [AH93; AH94;
AFH96]. Concrete domains that can be used to reason about strings play a key role in
the analysis of programs [HW12; AAC+14; KS15; HSZ17]. Let A be a finite or infinite
set of letters, in the following called the alphabet, and let A∗ denote the set of all finite
strings over A. Given two finite strings u, v ∈ A∗, we use u · v (often abbreviated by
uv) to denote the concatenation of u and v. The pair (A∗; ·), where · is a ternary rela-
tion interpreted as concatenation, is an example of a concrete domain with domain A∗.
There are many interesting partial orders that can be used to form concrete domains
with domain A∗; we mention here the following ones. A subsequence of a string v ∈ A∗
is a string u that is obtained from v by removing any letters from v; in that case we
write u<seqv. If u is contiguous, we call u a subword of v, and write u <sbwd v. The prefix
<pre and suffix <suf relations are special cases of the subword order, with the obvious
respective meanings.

Constraints. Let VAR = {x, y, . . .} be a countable set of variables. A term over VAR is
an expression of the form Xix, where x ∈ VAR and Xi is a (possible empty) sequence of i
symbols X. A term Xix should be understood as a variable (that needs to be interpreted)
but, later on, we will see that the prefix Xi will have a temporal interpretation. We
write TVAR to denote the set of all terms over VAR. For all i ∈ N, we write T≤iVAR to
denote the subset of terms of the form Xjx, where j ≤ i. For instance, T≤0VAR = VAR.
Constraints are defined over a concrete domain and a set T ⊆ TVAR of terms. Let D be
a concrete domain over a relational signature σ. An atomic constraint c over D and T
is an expression of the form R(t1, . . . , td), where R ∈ σ of arity d and ti ∈ T , for all 1 ≤
i ≤ d. A constraint C is defined as a (finite) Boolean combination of atomic constraints;
we use ∧, ∨ and ¬ for the standard Boolean connectives. Constraints are interpreted
on valuations v : T → D that assign elements from D to the terms in T , so that v
satisfies R(t1, . . . , td), written v |= R(t1, . . . , td), if and only if, (v(t1), . . . , v(td)) ∈ RD.
The Boolean connectives are interpreted in the usual way. A constraint C over D and T
is satisfiable def⇔ there is a valuation v : T → D such that v |= C. Similarly, a constraint
C1 entails a constraint C2 (written C1 |= C2) def⇔ for all valuations v, we have v |= C1

implies v |= C2. In this document, most of the logics are based on concrete domains
whose satisfiability problem restricted to finite conjunctions of atomic constraints can
be solved in NP, if not in PTIME.

2.2. Models with concrete domains
In order to define logics with concrete domain D, the semantical structures of such
logics (typically, Kripke-style structures) are enriched with valuations that interpret
the variables of the logic by elements of the concrete domain.

Kripke structures. Let PROP = {p, q, . . .} be a countably infinite set of propositional
variables. A Kripke structureK is a triple (W,R, l), whereW is a set of worlds,R ⊆ W×
W is the accessibility relation and l : W → P(PROP) is a labelling function. A Kripke
structure K is total whenever for all w ∈ W, there is w′ ∈ W such that (w,w′) ∈ R.
Totality is a standard property for defining classes of models for temporal logics such
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as CTL∗. For instance, an LTL model K = (W, R, l) is a Kripke structure where (W, R)
is isomorphic to (N; succ), where succ is the successor relation on N. Given a Kripke
structure K = (W,R, l) and a world w ∈ W, an infinite path π from w is an ω-sequence
w0, . . . , wn, . . . such that w0 = w and for all i ∈ N, we have (wi, wi+1) ∈ R. Finite paths
are defined accordingly.

Decorated Kripke structures. A D-decorated Kripke structure K is a structure of the
form (D,W,R, l, v) such that D = (D;σ) is a concrete domain, (W,R, l) is a Kripke
structure and v : W × VAR → D is a valuation function. A D-decorated Kripke struc-
ture can be understood as a plain Kripke structure in which to each world is associated
a valuation interpreting the variables from VAR by elements in D. We may omit the
labelling function l from K if there is no need for propositional labelling (as in Sec-
tion 2.3). Similarly, D might be omitted if it is clear from the context. Note also that
numerous variants exist for the above definition, for instance one may admit a family
of accessibility relations (instead of a single one) or consider disjoint sets of variables
interpreted in distinct concrete domains (instead of a single concrete domain).

2.3. Temporal logics with concrete domains
We introduce temporal logics with concrete domains of the form LTL(D) and CTL∗(D),
naturally extending what is known for the temporal logics LTL and CTL∗. Other op-
tions are possible and some are evoked in the document, but these two cases allow us
to illustrate the main features.

Linear case. We write LTL(D) to denote the variant of LTL for which models are
D-decorated Kripke structures with underlying LTL models. LTL(D) formulae are de-
fined below; in short, propositional variables from LTL are replaced by atomic con-
straints over D and TVAR. The set of LTL(D)-formulae is defined as follows.

φ ::= R(t1, . . . , td) | φ ∧ φ | ¬φ | Xφ | φUφ,
where ti is a term in TVAR, and R ∈ σ is of arity d. The temporal operators X and
U are interpreted as in LTL. Note that the symbol ’X’ is overloaded here (temporal
operator and operator in the terms to access future variable values) but this should not
cause any confusion in the sequel. Other standard operators like →, or the temporal
operators sometimes F and always G can be defined in the usual way.

An LTL(D) model is a map of the form v : N × VAR → D. Given an LTL(D) model
v, we write v(i,Xjx) to denote the value v(i + j, x) ∈ D. The satisfaction relation |= for
LTL(D) is defined as follows (i ∈ N).

— v, i |= R(t1, . . . , td)
def⇔ (v(i, t1), . . . , v(i, td)) ∈ RD,

— v, i |= φ ∧ ψ def⇔ v, i |= φ and v, i |= ψ; v, i |= ¬φ def⇔ not v, i |= φ,
— v, i |= Xφ

def⇔ v, i+ 1 |= φ,
— v, i |= φUψ

def⇔ there is j ≥ i s.t. v, j |= ψ and for all j′ ∈ [i, j − 1], we have v, j′ |= φ.

As usual, φ is satisfiable iff there is a model v such that v, 0 |= φ. Note that
given an atomic constraint R(t1, . . . , td) such that tj = Xmjxj for all j and M =
max{m1, . . . ,md}, the satisfaction of v, i |= R(t1, . . . , td) only depends on the values
of the variables x1, . . . , xd at the positions i, . . . , i+M (understood as a finite path).

Recall that satisfiability for LTL is PSPACE-complete [SC85]. A natural question
is whether solving the satisfiability problem for LTL(D), denoted by SAT(LTL(D)),
is computationally more complex than for plain LTL; obviously, this depends on D.
In comparison with plain LTL, new constraints between variable values need to be
satisfied due to the interpretation to the specific concrete domainD. Moreover, as terms
can refer to the values of variables at the next position, the propagation of constraints
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may lead to a possibly infinite “network” of constraints (known as constraint graphs,
see e.g. [Lut04a; DD07; LOS20]). For instance, in LTL(N;<), no infinite sequence of
variables with strictly decreasing values is admitted; so G(x > Xx) is not satisfiable.
Considering another concrete domain, the formula 0 · x = Xx → X(1 · x = Xx) in
LTL({0, 1}∗; 0·, 1·) where 0· is a binary relation concatenating the letter 0 (similarly for
1·). is interpreted by “If 0 is popped from the ‘stack’ x, then at the next step 1 is pushed
onto it.”

One of the first results established for LTL(D) can be found in [BC02], where
SAT(LTL(R;<,=)) and SAT(LTL(Q;<,=)) are shown in PSPACE by adapting the proof
method from [SC85] to decide LTL satisfiability in PSPACE. In [DD07; ST11], con-
ditions generalising the above result are identified that guarantee a PSPACE upper
bound. Besides, SAT(LTL({0, 1}∗;<pre,=)) is in PSPACE, too (see e.g. [KW15; DD16])
although ({0, 1}∗;<pre,=) and (Q;<,=) are quite different structures. When a concrete
domain D is able to encode a counting mechanism, LTL(D) becomes quite expressive,
for instance SAT(LTL(N; succ,=)) is undecidable [CC00]. A natural question is which
properties of D make SAT(LTL(D)) decidable, or even better in PSPACE. We shall see
that several answers have been proposed in the literature.

Branching case. Next, we introduce the temporal logic CTL∗(D) understood as the
branching-time extension of LTL(D). State formulae φ and path formulae Φ of CTL∗(D)
are defined below

φ := ¬φ | φ ∧ φ | EΦ Φ := φ | R(t1, . . . , td) | ¬Φ | Φ ∧ Φ | XΦ | ΦUΦ,

where ti is a term in TVAR, and R ∈ σ is of arity d. State formulae are interpreted on
worlds from a D-decorated Kripke structure, whereas path formulae are interpreted
on LTL(D) models (or, equivalently, on infinite paths from D-decorated Kripke struc-
tures). The two satisfaction relations are defined as follows (we omit the standard
clauses for Boolean connectives), where K = (D,W,R, v) is a total D-decorated Kripke
structure, w ∈ W, and π is an infinite path of K.

—K, w |= EΦ
def⇔ there is an infinite path π starting from w such that K, π |= Φ,

—K, π |= R(t1, . . . , td)
def⇔ (v(π(0), t1), . . . , v(π(0), td)) ∈ RD, where v(π(0),Xjx)

def
=

v(wj , x) with wj the jth world of π,
—K, π |= XΦ

def⇔ K, π[1,+∞[|= Φ, where for any n, π[n,+∞[ is the suffix of π truncated
by the n first worlds,

—K, π |= ΦUΨ
def⇔ there is j ≥ 0 such that K, π[j,+∞[|= Ψ and for all j′ ∈ [i, j − 1], we

have K, π[j′,+∞[|= Φ.

Several results from [BC02] can can be adapted to the branching case for a quite
large family of concrete domains, see e.g. [Gas09]. For instance, SAT(CTL∗(R;<,=))
and SAT(CTL∗(Q;<,=)) are in 2EXPTIME (see also Section 3.3). Decidability of strict
fragments of CTL∗(Z;<,=, (=n)n∈Z) is shown in [BG06; Gas07]. It is only recently
in [Car15; CKL16] that decidability has been established for the full logic using a
translation into a decidable second-order logic (details are provided in Section 4).

THEOREM 2.1 ([CKL16]). SAT(CTL∗(Z;<,=, (=n)n∈Z)) is decidable.

The proof of Theorem 2.1 does not provide a sharp complexity upper bound and ac-
tually apart from determining the decidability status of logics of the form CTL∗(D),
characterising the computational complexity is a general issue too. By contrast,
SAT(LTL(Z;<,=, (=n)n∈Z)) is known to be in PSPACE [DG08; ST11] (with integers
encoded in binary).
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DL notation TL notation
concept name A; concept ∃r.C prop. variable p; formula EXr φ

path constraint ∃P. R(Si1x1, . . . , S
idxd) [CT16] atomic constraint EP. R(Xi1x1, . . . ,X

idxd)
concept ∃p1, . . . , pd. R(x1, . . . , xd) [BR20] atomic constraint R(EP1 x1, . . . ,EPd xd)

Fig. 1. A selection of correspondences between DLs and TLs

In order to conclude this section, we would like to note that it is also possible to
define logics of the form LTL(∆) or CTL∗(∆) where ∆ is a class of concrete domains
instead of a fixed concrete domain D as in CTL∗(D). For instance, in [Car15; CKL16],
the class of semi-orders is taken for ∆.

2.4. Description logics with concrete domains
Concrete domains are also handled in description logics by adding concrete values
in ontologies, following the seminal work [BH91]. Since [Sch91], correspondences be-
tween modal logics and description logics are well identified and this applies also to
relationships with temporal logics. Below, we present several ways to consider concrete
domains in description logics. To avoid the introduction of too lengthy definitions, we
present the new logics following the way the logics LTL(D) and CTL∗(D) have been
already defined (we limit ourselves to a selection of typical features). Figure 2.4 con-
tains a table with the appropriate syntactic correspondences dedicated to the readers
that are fluent in description logics lingua. Apart from the gain of space, this should
facilitate any comparison with temporal logics with concrete domains.

We adapt and extend several definitions introduced so far. Given a set NR = {r, s, . . .}
of role names, the notion of D-decorated Kripke structure is generalised to structures
of the form (D,W, (Rr)r∈NR

, l, v). Instead of having a single accessibility relation, the
D-decorated Kripke structures now admit a family of accessibility relations indexed by
role names r ∈ NR. A role path P = r1 · · · rn is a (possibly empty) word in N∗R. Some-
times, role paths admit abstract features that are role names interpreted by determin-
istic relations, see e.g. [Lut01]. Herein, we do not consider such role names (except in
Section 3.3).

Let us recall how concrete values and constraints between them are considered
in LTL(D) and CTL∗(D). An atomic constraint R(Xi1xj1 , . . . ,X

idxjd) holds at a po-
sition i ∈ N along the path π understood as an ω-sequence of valuations, when-
ever RD(π(i + i1)(xj1), . . . , π(i + id)(xjd)) holds. Hence, only the values for the vari-
ables xj1 , . . . , xjd at the positions i, i + 1, . . . , i + max(i1, . . . , id) determine whether
R(Xi1xj1 , . . . ,X

idxjd) holds true. Moreover, R(Xi1xj1 , . . . ,X
idxjd) is always evaluated

along a path: in LTL(D) because the models are linear structures, and in CTL∗(D)
because R(Xi1xj1 , . . . ,X

idxjd) always occurs in the scope of a path quantifier E. In de-
scription logics with concrete domains, at least two generalisations are performed.
Firstly, there are multiple accessibility relations (interpretations of role names) and it
is possible to specify that a finite path is defined by taking steps from distinct relations
using role paths. Secondly, values picked to satisfy an atomic constraint may be taken
from a finite rooted subtree instead of a (linear) path. Both extensions are substantial
and require to extend the way constraints are defined.

The set of ALC`(D)-formulae (‘`’ for ‘linear’) is defined as follows.

φ ::= p | EP R(t1, . . . , td) | φ ∧ φ | ¬φ | EXrφ,
where p ∈ PROP, ti is a term, P is a role path, R ∈ σ is of arity d and r is a role name.
We have the additional proviso that in EP R(t1, . . . , td), if ti = Xαx, then α ≤ |P | with
|P | the length of P (possibly zero), otherwise we would not know how to interpret ti.
The satisfaction relation is defined as follows (obvious clauses are omitted).
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—K, w |= p
def⇔ p ∈ l(w);

—K, w |= EXrφ
def⇔ there is w′ ∈ Rr(w) such that K, w′ |= φ,

—K, w |= Er1 · · · rn R(t1, . . . , td)
def⇔ there is a finite path w = w0Rr1w1Rr2 · · ·Rrnwn

such that R(d1, . . . , dd) holds with di
def
= v(wj , x) assuming that ti = Xjx for all i.

Logics of the form ALC`(D) can be found in [CT16; LOS20], and these are probably
the closest variants to LTL(D)/CTL∗(D). An axiom is an expression of the form φ v ψ
where φ, ψ are ALC`(D) formulae. A terminological box (TBox, for short) is a set of ax-
ioms. We say that K satisfies φ v ψ (written K |= φ v ψ) iff for every w ∈ W, K, w |= φ
implies K, w |= ψ; this generalises to TBoxes in the expected way. The satisfiability
problem w.r.t. a TBox, written TSAT(ALC`(D)) takes as input an ALC`(D)-formula φ
and a finite TBox T , and asks whether there exist a D-decorated Kripke structure K
and w ∈ W such that K, w |= φ and K |= T . It is well known that decision problems for
description logics are quite diverse, herein we have picked one that is a good represen-
tative.

THEOREM 2.2 ([CT16; LOS20]). TSAT(ALC`(Z;<,=, (=n)n∈Z)) is in EXPTIME
(with integers encoded in unary).

Now, let us define the description logics ALCt(D), variants of ALC`(D) in which
the values in constraints are extracted from tree-like structures. The set of ALCt(D)-
formulae is defined from

φ ::= p | R(EP1 x1, . . . ,EPd xd) | φ ∧ φ | ¬φ | EXrφ,

where the Pj ’s are role paths, R ∈ σ is of arity d and r is a role name. Unlike in
ALC`(D), each variable within an atomic constraint comes with a (possibly distinct)
role path. The satisfaction relation |= is updated as follows.

—K, w |= R(EP1 x1, . . . ,EPd xd)
def⇔ for all j ∈ [1, d], assuming Pj = r1 · · · rn, there is a

finite path π = wj0Rr1w
j
1Rr2 · · ·Rrnwjn with dj = v(wjn, xj), and RD(d1, . . . , dd) holds.

Logics of the form ALCt(D) can be found in [Lut01; LM07; BR20] and this is probably
the variant that is the most common for description logics, see also [Lut02a; Lut04a]
and the original proposal for description logics with concrete domains in [BH91].
Atomic constraints of the form R(AP1 x1, . . . ,APd xd) with universal quantifications
over values instead can be found in [LM07] but are not developed herein. Similarly,
the language can be extended to admit Boolean combinations in the scope of quantifi-
cation over role paths as in [LOS20; BR20].

In [LM07], ω-admissible concrete domains D are introduced for which a very general
decidability result is proved. ω-admissibility implies that the signature σ contains a
finite set of binary relations with additional properties, namely:

(1) Satisfiability problem for D-constraints is decidable.
(2) D satisfies the patchwork property, meaning roughly that two satisfiable finite sets

of constraints agreeing on common variables admit a satisfiable union. A similar
property can be found in [BC02], see condition (††) in Section 3.2.2.

(3) D satisfies a compactness property, meaning roughly that an infinite set of con-
straints is satisfiable iff any finite subset is satisfiable.

THEOREM 2.3 ([LM07]). For any ω-admissible concrete domain D, TSAT(ALCt(D))
is decidable.
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By way of example, (R;<,=) and (Q;<,=) are ω-admissible (see an early work on
(Q;<,=) in [Lut01]), whereas (N;<,=) is not. Besides, [BR20] provides a new defini-
tion for ω-admissibility, with conditions using model-theoretical characterisations.

2.5. A selection of other formalisms
In this section we shortly present some related formalisms. We start by giving a quick
summary about classical first-order (FO) logics. One of the most widely used results is
the decidability of the FO theory over (N; +, <,=, 0, 1), nowadays commonly known as
Presburger arithmetic [Pre29; Haa18]. Decidability was originally established by Pres-
burger via a quantifier elimination procedure, but several simplifications and other
decision procedures were proposed afterwards [FR98; Opp78], see [Haa18] for an ex-
haustive overview. For concrete domains over finite strings, the undecidability of many
FO theories can easily be established, including (A∗; ·) [Qui46], (A∗;<seq) [Kus06;
KS15; HSZ17], and (A∗;<sbwd) [Kus06]. One exception is the FO theory over (A∗;<pre),
for which the decidability is established by the famous theorem by Elgot and Ra-
bin [ER66]. The focus of most research is on restricted fragments of FO, typically the
existential FO theory [Mak77; Pla04; Kus06; KS15] or a restricted variable fragment
of FO [KS15; HSZ17].

Logics of the form LTL(D) have been extended or adapted in order to design logical
formalisms for the verification of database-driven systems, see e.g. [DHPV09; DHV14].
For instance, LTL-FO is an extension of LTL obtained by replacing propositional vari-
ables by quantifier-free FO formulae about tuples in the underyling database (an
overview can be found in [DHV14]). Moreover, universal quantification for variables
is also considered, providing similarities with the freeze operator, see e.g. [DHV14,
Section 3] and Section 5. As for LTL(D), the difficulty for reasoning with LTL-FO rests
on the infinite domain from which the data values are taken. Decidability results with
a linearly ordered dense data domain can be found in [DHPV09]. Besides, separation
logics with data, see e.g. [BBL09; KJW18] are logical formalisms involving concrete
domains, but this cannot be developed further here.

Constraints also appear in constraint satisfaction problems (CSPs) [Bod20]. A CSP
is a computational problem parameterized by a concrete domain, similarly to the log-
ics defined above. Formally, a CSP over a concrete domain D = (D;σ) is the problem
of deciding, given a relational structure A over the same signature σ, whether there
exists a homomorphism from A to D. In terms of logic, a CSP can be seen as finite
conjunction of constraints R(x1, . . . , xd), where xi is a variable. The main focus of re-
search in the area of CSP is the study of the computational complexity of CSPs. For
finite-domain CSPs there has recently been a major breakthrough achieved by the
confirmation [Bul17; Zhu17] of the twenty-year-old dichotomy conjecture by Feder and
Vardi [Bul18], stating that every CSP over a finite domain can be solved efficiently
or is NP-hard. Ongoing research attempts to generalize methods (based on universal
algebra, model theory, and graph homomorphisms) from finite-domain CSP to infinite
domains [Bod20].

3. AUTOMATA-BASED APPROACH
In this section, we present the automata-based approach for solving decision problems
for logics with concrete domains L(D) by extending the approach followed in seminal
works, for instance for MSO logic [Büc62] and for temporal logics, see e.g. [VW94;
KVW00]. In short, this approach consists of reducing logical problems (satisfiabil-
ity, model-checking) to automata-based decision problems while taking advantage of
existing results and decision procedures from automata theory, see e.g. [VW07]. Be-
low, we present the main steps for solving satisfiability and model-checking prob-
lems for L(D) thanks to so-called D-automata (see Section 3.1). Actually, the mate-
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rial presented below is quite orthodox in view of the automata-based approach for
temporal/description/modal logics. However, solving the nonemptiness problem for D-
automata can be trickier than for automata defined on finite alphabets. Indeed, the
elements of the concrete domain D can be much more constrained than letters from
a finite alphabet. For many concrete domains, nonemptiness of D-automata can be
reduced directly to instances of similar problems for automata on finite alphabets
(see [Lut01; Lut04a; DD07]). For a lot of other concrete domains, specific developments
about D-automata need to be provided (see e.g. [BG06; ST11; KW15]).

3.1. Constrained automata
In order to handle formulae from the logic LTL(D), we introduce a class of (constrained)
D-automata [Rev02] (see also [Čer94; ST11; KW15]) generalising Büchi automata ac-
cepting languages over finite alphabets, see e.g. [Tho90]. The alphabets of D-automata
are of the form Dk for some k ≥ 1, so potentially infinite if D has an infinite domain.
Transitions inD-automata are labelled by constraints that allow us to constrain values
in Dk at the current and the next position of the input valuation sequence.

Formally, a D-automaton A with k variables is a structure (S, δ, I, F ) such that

— S is a nonempty finite set of control states (also known as locations),
— I ⊆ S is the set of initial states; F ⊆ S is the set of final states,
— δ is a finite subset of S × Ck × S called the transition relation, where Ck is the set of

constraints over D and T≤1k , where T≤1k
def
= {x1, . . . , xk} ∪ {Xx1, . . . ,Xxk}.

The language L(A) accepted by A is a set of sequences of valuations v of the form
{x1, . . . , xk} → D. As usual, depending on the type of D-automata (finite, Büchi, etc.)
the length of the accepted sequences/words varies. For instance, given a Büchi D-
automaton A (the understanding by default herein), v0v1 · · · ∈ L(A) iff there is an
infinite run q0

C0−→ q1
C1−→ · · · such that

— for all i ∈ N, qi
Ci−→ qi+1 ∈ δ and [xj ← vi(xj),Xxj ← vi+1(xj)] |= Ci.

— q0 ∈ I and there is some q ∈ F that occurs infinitely often in q0q1q2 · · · .

The nonemptiness problem for D-automata, written NEP(D), takes as input a D-
automaton A and asks whether L(A) 6= ∅. This is a classical problem in automata
theory, apart from being strongly related to satisfiability in temporal logics [VW07].

3.2. Linear-time temporal logics LTL(D)

3.2.1. The standard translation in a nutshell. We explain how to construct from a given
LTL(D)-formula φ a D-automaton Aφ such that L(A) corresponds to the models of φ.
We fix a concrete domain D = (D;R1, . . . , Rn) over a finite signature and an LTL(D)

formula φ whose terms are among T≤1k , for some k ∈ N. More general terms, such
as X3x, could be handled in a similar fashion or eliminated if equality is part of D.
Similarly, assuming the finiteness of the signature σ is not a serious restriction as a
given formula always contains a finite amount of predicates. Details are omitted herein
and these assumptions are intended to simplify the presentation of the approach.

We write ACk to denote the finite set of atomic constraints built over the terms in
T≤1k . Let cl(φ) be the closure set of φ defined as the smallest set containing ACk ∪
{φ}, closed under subformulae and negation (double negations are eliminated), and if
ψ1Uψ2 ∈ cl(φ), then X(ψ1Uψ2) ∈ cl(φ). Let Aφ = (S, δ, I, F1, . . . , Fα) be the D-automaton
with k variables defined as follows (generalised Büchi acceptance F1, . . . , Fα can be
easily reduced to Büchi acceptance).
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— S is the set of subsets of cl(φ) that are propositionally maximally consistent, and if
Y ∈ S, then for all ψUϕ ∈ cl(φ), we have ψUϕ ∈ Y iff ϕ ∈ Y or ψ,X(ψUϕ) ∈ Y .

— I
def
= {Y ∈ S | φ ∈ Y }.

— For all Y, Y ′ ∈ S, we have Y C−→ Y ′ ∈ δ def⇔ C = (
∧
c∈Y ∩ACk

c) ∧ (
∧
c∈(ACk\Y ) ¬c) and

for all Xψ ∈ cl(φ), we have Xψ ∈ Y iff ψ ∈ Y ′.
— Let {ψ1Uϕ1, . . . , ψαUϕα} be the set of until formulae in cl(φ). For all i ∈ [1, α], we

have Fi
def
= {Y ∈ S | ψiUϕi 6∈ Y or ϕi ∈ Y }.

By using standard arguments for LTL from [VW94] and the notion of accepted lan-
guage for a D-automaton, we can show the following result.

THEOREM 3.1. L(Aφ) = {v : N× {x1, . . . , xk} → D | v, 0 |= φ}.

The construction of Aφ works for all concrete domains D; hence one can decide the
satisfiability of φ by deciding the nonemptiness of L(Aφ).

One way to check nonemptiness of L(Aφ) is to see Aφ as the product of an “LTL-
component” dealing with the temporal requirements on the one side, and a “D-
component” dealing with the satisfiability of ω-sequences made of conjunctions of
atomic constraints on the other side. In that context, a symbolic representation for
LTL(D) models is essential. This is explained below with the introduction of symbolic
models followed by a discussion about solving NEP(D) in general.

A symbolic model w is a map N → Ak with Ak
def
= P(ACk). Symbolic models can be

seen as standard LTL models, i.e. ω-sequences over the finite alphabet Ak. Given a
valuation v : N × {x1, . . . , xk} → D, we write symb(v, k) to denote the symbolic model
obtained from v by setting symb(v, k)(i) = {c ∈ ACk | v, i |= c} for all i ∈ N. A symbolic
model w : N→ Ak is D-satisfiable whenever there is v : N× {x1, . . . , xk} → D such that
symb(v, k) = w. For instance, the symbolic model {Xx < x}ω is (Q;<)-satisfiable, but it
is not (N;<)-satisfiable.

Symbolic models allow us to interpret φ symbolically as an LTL-formula over Ak. We
write w, i |=LTL φ, where, typically, w, i |=LTL c

def⇔ c ∈ w(i), and the other connectives
are interpreted as for LTL. The above example shows that the existence of a symbolic
model w for φ does not guarantee the existence of an LTL(D)-model for φ, as w may
not be D-satisfiable. However, if the set of all D-satisfiable symbolic models (a set of
ω-sequences over Ak) is ω-regular, i.e. it can be expressed by a Büchi automaton, then
we can easily solve SAT(LTL(D)) thanks to the property below.

LEMMA 3.2. φ is LTL(D)-satisfiable iff there is a D-satisfiable symbolic model w
such that w, 0 |=LTL φ.

So let us suppose there exists a Büchi automaton BkD whose accepted language is the
set of D-satisfiable symbolic models, restricted to {x1, . . . , xk}. By [VW94], one can
compute a Büchi automaton BLTL

φ whose accepted language is the set of symbolic mod-
els w such that w, 0 |=LTL φ. Then the standard product construction for BkD and BLTL

φ

yields a Büchi automaton accepting L(BkD) ∩ L(BLTL
φ ), i.e., the set of all D-satisfiable

symbolic models of φ. This entails the decidability of SAT(LTL(D)) as soon as BkD can
be effectively computed, and a PSPACE upper bound if BkD satisfies a few reasonable
assumptions omitted herein.

3.2.2. Nonemptiness problem for D-automata. Let us summarize recent approaches to
solve NEP(D) for D-automata. For many concrete domains D, NEP(D) can be reduced
to the nonemptiness problem for Büchi automata. Following the lines of arguments
from the previous subsection, this may be the case if the class of D-satisfiable symbolic
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models is effectively ω-regular (see e.g. [BC02; LM07]), or even if it is provably not ω-
regular, but D-satisfiability of symbolic models can relatively easily be identified, see
e.g. [DD07; LOS20]. Some other concrete domains seem to require specific treatments
(see e.g. [ST11; KW15]). Of course, another situation occurs if NEP(D) is undecidable.
For instance, for D† = (N; =, 0, succ), NEP(D†) is undecidable by a simple reduction
from the halting problem for Minsky machines [Min67].

So let us start with the most favorable case, where the class of D-satisfiable sym-
bolic models is effectively ω-regular. We reduce the problem of deciding NEP(D) to the
nonemptiness problem for Büchi automata, also using the decidability of the entail-
ment problem for D. Let A be the D-automaton with variables in {x1, . . . , xk} under
study, and, as before, let BkD be a Büchi automaton accepting the set of D-satisfiable
symbolic models restricted to the variables in {x1, . . . , xk}. Then one can define a Büchi
automaton A ⊗ BkD by synchronising the transitions using entailments of constraints
such that L(A ⊗ BkD) = {symb(v, k) | v ∈ L(A)}, the standard construction is omit-
ted. Consequently, L(A ⊗ BkD) 6= ∅ iff L(A) 6= ∅. Hence in this case, NEP(D) and
SAT(LTL(D)) admit decision procedures, and complexity characterisations are possi-
ble. Let us first review a few examples of ω-regularity that have been considered un-
der various assumptions, see e.g. the globally consistent concrete domains in [Dec92;
BC02], ω-admissible concrete domains in [LM07] (see also Section 2.4) and concrete
domains satisfying the completion property in [DD07]. Here is an essential property of
such concrete domains.

(††) Given a D-satisfiable conjunction of atomic constraints C, for any set of variables
Y occurring in C such that C = C ′ ∧C ′′ with the variables in Y occur exactly in C ′,
for any valuation Y → D satisfying C ′, there is a conservative extension (over all
the variables in C) that satisfies C.

This includes (R;<,=), (Q;<,=) and also many temporal and spatial domains
from [Lut01; BC02; Lut04a]. For instance, let DA = (IQ; (Ri)i∈[1,13]) be the concrete
domain such that IQ is the set of closed intervals [r, r′] ⊆ Q and (Ri)i∈[1,13] is the
family of 13 Allen’s relations [All83]. Similarly, the concrete domain RCC8 with space
regions in R2 contains topological relations between spatial regions, see e.g. [WZ00]
(generalisation to more domains D possible). In general, for concrete domains D for
the above classes, w : N → Ak is D-satisfiable, essentially if for all i ∈ N, w(i) is D-
satisfiable, and w is locally consistent, that is for all R(Xt1, . . . ,Xtd) ∈ ACk, we have
R(Xt1, . . . ,Xtd) ∈ w(i) iff R(t1, . . . , td) ∈ w(i+ 1).

THEOREM 3.3 ([BC02; DD07; ST11]). SAT(LTL(Q, <,=)), SAT(LTL(R, <,=)),
SAT(LTL(RCC8)) and SAT(LTL(DA)) are PSPACE-complete.

Strictly speaking, the PSPACE upper bound in [BC02] does not involve automata but
it is possible to reformulate the results with Büchi automata, which is partially done
in [DD07]. A substantial contribution in [BC02] is the design of sufficient conditions on
D to get a general decidability result for SAT(LTL(D)). For instance, the PSPACE upper
bound for SAT(LTL(RCC8)) in [BC02] improves the EXPSPACE bound from [WZ00].

For the less favorable case where the class of D-satisfiable symbolic models is not ef-
fectively ω-regular – this is the case, for instance, for (N;<) – specific methods are
developed for solving NEP(D). The concrete domains D in [ST11] are of the form
(D;<,P1, . . . , Pl,=d1

, . . . ,=dm
), where (D;<) is a linear ordering and the Pi’s are unary

relations. A saturation construction on D guarantees the existence of a so-called po-
tential function [ST11], leading to a PSPACE upper bound for NEP(D) for many con-
crete domains satisfying reasonable computational properties including (Q;<), (Z;<)
and (N;<). The PSPACE upper bound for SAT(LTL(N;<)) can be obtained as a conse-
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quence of [ST11, Theorems 16 & 19]. If the class of D-satisfiable symbolic models is not
necessarily ω-regular, it is also established that the D-automata for such domains can
express languages as those for automata from [BC17] that go strictly beyond Büchi au-
tomata. The need to capture the class of D-satisfiable symbolic models that go beyond
Büchi automata justifies the need for MSO extensions, introduced in [Boj04] and used
in [CKL16] in order to settle the EHD-approach (see forthcoming Section 4).

Besides, in [KW15], concrete domains of the form either DQ∗ = (Q∗;<pre,≤lex,=d1

, . . . ,=dm
) or D[1,α]∗ = ([1, α]∗;<pre,≤lex,=d1

, . . . ,=dm
) for some α ≥ 2 are considered.

Neither DQ∗ nor D[1,α]∗ falls into the classes of concrete domains designed in [BC02;
LM07; DD07] (see above). The problem NEP(DQ∗) is shown in PSPACE [KW15, The-
orem 6] by a sophisticated analysis based on an underlying well-quasi-ordering. The
crux of the proof consists in showing that in case of nonemptiness, there is a specific
run with a so-called noncontracting loop [KW15, Corollary 19]. It would be worth in-
vestigating the similarities with the proof method in [ST11], although the classes of
concrete domains are incomparable. As a consequence of the runs analysis, the com-
plexity of SAT(LTL(DQ∗)) can be characterised.

THEOREM 3.4 ([KW15]). SAT(LTL(DQ∗)) and SAT(LTL([1, α]∗)) (α ≥ 2) are
PSPACE-complete.

The results about SAT(LTL([1, α]∗)) can be reduced from those for SAT(LTL(DQ∗))
and for NEP(DQ∗), see [KW15, Theorem 4] although solving the problem with a finite
alphabet is more constrained.

3.2.3. Model-checking. We write MC(LTL(D)) to denote the model-checking problem
that takes as input a D-automaton A and a formula φ in LTL(D) both over the set of
variables {x1, . . . , xk}, and asks whether there exists v = v0v1 · · · ∈ L(A) (understood
as an LTL(D) model) such that v, 0 |= φ (this is a simple option among many defini-
tions for the model-checking problem). An instance A, φ of MC(LTL(D)) can be solved
by checking the nonemptiness of a product automaton made of A and Aφ (see Sec-
tion 3.2.1) that accepts exactly L(A)∩L(Aφ). As for plain temporal logics, MC(LTL(D))
can be solved with D-automata, leading to optimal complexity results. For instance,
MC(LTL(N;<)) and MC(LTL(R;<)) are PSPACE-complete, see e.g. [BC02; ST11].

3.3. Branching-time temporal logics and description logics
In this section, we provide explanations to show how the automata-based approach can
be extended to logics CTL∗(D) and ALCt(D), whence handling logics whose models are
D-decorated Kripke structures. If the class of D-satisfiable symbolic (linear) models
is ω-regular, then the generalisation can be done smoothly, by using tree automata
instead of Büchi word automata. Let us provide the key steps.

First, using similar arguments as for CTL∗, one establishes that the logic under
study has the tree model property (see e.g. [Lut04a, Lemma 15], [Gas09, Lemma 3.3]
and [CT16, Lemma 11]). This means that the D-decorated Kripke structures can be re-
stricted to (infinite) trees. Moreover, the branching degree, that is the maximal number
of children per node, of these trees is only polynomial in the size of the instance. Let
us use K to denote the branching degree of the trees.

The second step consists of introducing the notion of symbolic K-tree models,
which generalize symbolic (word) models from Section 3.2.1 in a natural way. Re-
call that Ak

def
= P(ACk). A symbolic K-tree model t is a map [1,K]∗ → (Ak)K satis-

fying certain local consistency conditions. Intuitively, a letter in (Ak)K encodes con-
straints between a node and its K children. As in the linear case, a symbolic K-
tree model t is D-satisfiable whenever there is a D-decorated Kripke tree model
v : [1,K]∗ × {x1, . . . , xk} → D that corresponds to t. We omit technical details as they
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Fig. 2. Part of a tree with branching degree 2. The labels in the gray dotted boxes on top of each node
represent a D-decorated Kripke tree model for k = 1 and D = (N;<,=). The labels in the dashed boxes
below each node represent a corresponding symbolic 2-tree model.

are very similar to the linear case. In Figure 3.3, we show a K-tree for k = 1 and
K = 2, representing a D-decorated Kripke tree model (on top of the nodes in dotted
lines) and a corresponding symbolic K-tree model (below the nodes in dashed lines),
where D is (N;<,=). We remark that a constraint graph Gt can be induced by any
symbolic tree model t (see an early reference to such graphs in [Lut01, Section 4])
and D-satisfiability of t can be reformulated as the existence of an homomorphism be-
tween Gt and D as done with CSPs. This approach with homomorphisms is extensively
developed in [Car15; CKL16; CT16] (see also Section 4).

3.3.1. CTL∗(D) in favorable cases. Suppose that the set of D-satisfiable symbolic K-tree
models can be characterised by Büchi (or Rabin) tree automata. In this case, we can
solve SAT(CTL∗(D)) very similarly to the linear case. In order to extend the linear
case, we write t,w |=CTL∗ φ if φ is interpreted on some symbolic K-tree model t (and
a world/node w in t) symbolically as for CTL∗. The following lemma is the branch-
ing counterpart of Lemma 3.2 (with similar assumptions on the input formula φ), see
also [Lut04a, Lemma 15] and [CT16, Theorem 11].

LEMMA 3.5 ([GAS09]). φ is CTL∗(D)-satisfiable iff there is a D-satisfiable symbolic
K-tree model t for some K ∈ O(|φ|) such that t, ε |=CTL∗ φ.

Since there is a Büchi (or Rabin) tree automaton Bk,KD whose accepted language is the
set of D-satisfiable symbolic K-tree models, and there is a tree automaton BCTL∗

φ whose
accepted language is the set of symbolic models t such that t, ε |=CTL∗ φ [KVW00], one
can compute a tree automaton accepting exactly the D-satisfiable symbolic tree models
t such that t, ε |=CTL∗ φ.

Let us name some examples of concrete domains D for which the set of D-satisfiable
symbolic K-tree models can be characterised by Büchi (or Rabin) tree automata. This
includes all concrete domains in Section 3.2 having this property for the linear case.
Here are a few new examples: (Rn;<,=) and (Qn;<,=) for some n ≥ 1 and the concrete
domain IPC++, see e.g. [Dem06], whose domain is N and the relations include x ≡k
y [d, d′], x ≡k [d, d′] (periodicity constraints), x = y and x < d.

THEOREM 3.6 ([GAS09; GAS07]). SAT(CTL∗(D)) is 2EXPTIME-complete for every
concrete domain D in listed above.

The logic CTL∗(N;<) does not fall in the scope of Theorem 3.6 and the decidability
of SAT(CTL∗(N;<)) has been first established in [CKL13] using the EHD-approach
(see Section 4). Notably, significant syntactic fragments of CTL∗(N;<) are shown to
admit a decidable satisfiability problem in [BG06] by using integral relational au-
tomata [Čer94]. However, the complexity of SAT(CTL∗(N;<)) remains open despite
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the substantial advances made in [BG06; CKL13] but the recent results from [LOS20]
might help to close the gap.

3.3.2. The typical case of ALCt with rational numbers. To conclude Section 3, we present
the main steps of the automata-based approach for solving TSAT(ALCt(DQ)) with
DQ = (Q;<,>,≤,≥,=, 6=). Note that ALCt(DQ) is distinct from ALCt(Q;<) as the
atomic constraints in formulae occur in R(EP1 x1, . . . ,EPd xd) (see Section 2.4). We
present the key results from [Lut04a] and we assume that the roles are abstract fea-
tures (i.e. interpreted by deterministic binary relations) in order to stick to the as-
sumptions from [Lut04a]. Interestingly, the automata-based approach for description
logics with concrete domains has been first introduced in [Lut01] (with journal ver-
sion [Lut04a]).

In order to use tree automata to solve TSAT(ALCt(DQ)), the formulae involved in the
instances are in normal form (negation occurs only in front of propositional variables)
and in R(EP1 x1,EP2 x2) both P1, P2 are of length at most one and at least one Pi
is empty (see [Lut04a, Lemma 11]). Such restrictions only require to express atomic
constraints between a node and its children, which is exactly the way transitions in
tree automata are defined.

The key step in [Lut04a] is to introduce Hintikka trees that are abstract DQ-
decorated Kripke structures defined as infinite K-trees with nodes labelled by finite
sets of formulae , which are built from the input formula φ and the finite set of ax-
ioms T . This is a standard approach to design an automata-based approach so that the
question to be solved becomes the existence of Hintikka trees for φ, T . Shortly sum-
marizing, the nodes of such Hintikka trees are labelled by sets of formulae that are
propositionally consistent, the constraints about a node and its children should be DQ-
satisfiable (and of course there are standard requirements related to EXr-formulae),
see e.g. [Lut04a, Section 4.3] for more details. The final step consists in showing that
the satisfiability of φ with respect to a finite set of axioms T (assumed to be in normal
form) is equivalent to the existence of a Hintikka tree (a standard property) [Lut04a,
Lemma 15] and the class of Hintikka trees can be captured by a Büchi tree automa-
ton [Lut04a, Lemma 17] leading to optimal complexity upper bounds.

THEOREM 3.7 ([LUT04A]). TSAT(ALCt(DQ)) is EXPTIME-complete.

Theorem 3.7 can be refined and extended by considering other concrete domains (for
instance ω-admissible ones [LM07]) and by adding new features in the logical lan-
guages, see e.g. [Lut02b; Lut04b]. By contrast, adapting Theorem 3.7 to DN = (N;<,>
,≤,≥,=, 6=), possibly enriched with constant tests, is not a trivial task. For instance,
TSAT(ALC`(DN)) is shown decidable in [CT16], and in EXPTIME in the follow-up pa-
per [LOS20] (with constants encoded in unary) using an automata-based approach.
Moreover, it entails decidability results for description logics in the style of those
from [LM07], typically a 2EXPTIME upper bound for TSAT(ALCt(DN)) [LOS20, The-
orem 29]. Interesting open problems in [LOS20] include for instance the question of
EXPTIME-easiness of the logic ALC`(DN) with a concrete domain augmented with con-
stant tests (constants encoded in binary).

4. TRANSLATION INTO DECIDABLE MSO THEORIES
In this section, we present an approach initiated in [CKL13] that consists in trans-
lating decision problems about temporal logics with concrete domains into decidable
MSO-like logics, instead of using D-automata as described in Section 3.
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4.1. A selection of decidable MSO-like logics
We present an overview over a selection of extensions of MSO logics that will be use-
ful in Section 4.2. A classical result is the decidability of the satisfiability problem for
MSO over infinite words, based on Büchi’s famous theorem on the expressive equiva-
lence of MSO and finite automata [Büc60]. This result has later been generalized to
infinite trees by Rabin [Rab69]. There is a long history of extending MSO to gain ex-
pressiveness beyond regular languages. Here, we are interested in the logic MSO+B,
introduced for infinite binary trees [Boj04] and infinite words [BC06], which extends
MSO with the bounding quantifier B. A formula of the form BX.ϕ(X) expresses that
there exists a finite bound on the size of the sets that satisfy ϕ(X). With MSO+B one
can define nonregular languages, and the question whether the satisfiability problem
for MSO+B is decidable has been part of an elaborate research program [Boj04; BC06;
BT12; BGMS14; Boj14; BPT16; BDG+20]. It turned out that the full logic MSO+B is
undecidable [BGMS14; BPT16] over infinite words (and hence infinite trees, too). Un-
decidability can be proved even for a weaker version of MSO+B, where quantification
is allowed over sets of ultimately periodic positions [BDG+20]. In contrast, a decidabil-
ity result is established for the weak version of the logic, denoted by WMSO+B, where
set quantifiers are restricted to finite sets [BT12]. This result is the base for prov-
ing decidability of the satisfiability problem for the logic BMW, which is the set of all
Boolean combinations of MSO and WMSO+B [CKL13], interpreted over infinite trees
with finite branching degree. The decidability of this logic is the key property for the
approach described in the next subsection. The proofs of the decidability for WMSO+B
and BMW follow Büchi’s approach by proving expressive equivalence of WMSO+B with
some automaton model with decidable emptiness problem. We remark that the exact
computational complexity of the emptiness problem for this automaton model is open,
and so is the complexity of the satisfiability problem for WMSO+B and BMW.

4.2. EHD approach
The works based on the automaton-based approach described in Section 3 leave open
the decidability status for the branching-time temporal logic over the concrete domain
Z = (Z;<,=, (=n)n∈Z). In [CKL16], a new approach for establishing decidability re-
sults for temporal logics over concrete domains is introduced, and besides settling the
question for Z positively (cf. Theorem 2.1), this approach also leads to a bunch of other
new results. The gist of the method presented in [CKL16] is the establishment of two
key properties of concrete domainsD that guarantee the decidability of SAT(CTL∗(D)):

THEOREM 4.1 ([CAR15; CKL16]). Let D be a concrete domain such that D is
negation-closed, and has the property EHD(BMW). Then SAT(CTL∗(D)) is decidable.

Let us explain the two properties mentioned in the above theorem. Suppose that σ is
the relational signature that D is defined over. We say that D is negation-closed if the
complement of each of the relations in σ is definable in positive existential FO over D.
For instance, the concrete domain Z is negation-closed:

—¬(x < y) if, and only if, x = y ∨ y < x,
—¬(x = y) if, and only if, x < y ∨ x < y, and
—¬(x = n) if, and only if, ∃y(y = n ∧ (x < y ∨ y < x)).

The second condition, called the EHD-property, means that one can establish a char-
acterization of all structures over the signature σ that permit a homomorphism into
D, and that characterization can be defined in a suitable logic L. Formally, D has the
EHD(L)-property if and only if for every finite subsignature τ ⊆ σ one can compute a
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sentence ψτ in L such that for every countable structure B over signature τ

∃h : B → D homomorphism ⇐⇒ B |= ψτ .

In Theorem 4.1 we use L = BMW, and the decidability of this logic (cf. Section 4.1)
is essential for yielding the result. We may of course use any other decidable logic;
for Z the choice falls naturally to an MSO logic incorporating the bounding quantifier
B due to the following characterization [DD07; CKL16]: for every countable structure
B = (B;<B) over signature {<}, there exists a homomorphism into (Z;<) if, and only
if,

— B does not contain any cycles, and,
— for all a, b ∈ B, there exists some n ∈ N such that the length of each path from a to b

is bounded by n. By a path from a to b we mean a sequence a0, a1, . . . , ak of elements
in B such that a0 = a, ak = b and ai <B ai+1 for all 0 ≤ i < k.

Both properties are definable in WMSO+B, and hence Z possesses the
EHD(WMSO+B)-property. In [CKL16] it is proved that also Z has the EHD(BMW)-
property. Together with the above mentioned fact that Z is negation-closed, the
application of Theorem 4.1 proves Theorem 2.1, i.e., the decidability of SAT(CTL∗(Z)).
This illustrates the general method: given some concrete domain D, for proving
decidability of SAT(CTL∗(D)), it is sufficient to prove that D is negation-closed and
has the EHD(BMW)-property.

A natural question is whether this approach can be applied to concrete domains
other than Z. In [CFKL17], this question is answered positively for concrete domains
belonging to classes of certain tree-like structures. More precisely, the EHD-method is
enhanced to classes ∆ of concrete domains, and the satisfiability problem for a class
of concrete domains is the question of deciding, for a given CTL∗(∆)-formula, whether
there exists a concrete domain D ∈ ∆ such that there exists a D-decorated model for
that formula.

THEOREM 4.2 ( [CFKL17]). SAT(CTL∗(∆)) is decidable for the following classes ∆
of concrete domains

(1) the class of all semi-linear orders,
(2) the class of all ordinal trees,
(3) the class of all order trees of height h, for each h ∈ N.

Interestingly, in the same paper it is also proved that the concrete domain T =
(N∗;<pre,⊥,=), i.e., the set of finite words over N together with the prefix and the
corresponding incomparability relation, does not have the EHD(BMW)-property. The
proof is based on Ehrenfeucht-Fraı̈ssé games which establish that BMW is not ex-
pressive enough to distinguish between structures that permit a homomorphism into
T and those that do not. Recall that the satisfiability problems for LTL(T ) is decid-
able [KW15; DD16], so that we can conclude that the EHD property of a concrete
domain provides a sufficient but not a necessary condition for a decidable satisfiability
problem.

The EHD method has also been applied successfully to the description logic
ALC`(D): in [CT16], a theorem following the structure of Theorem 4.1 is proved for
ALC`(D), leading to the decidability of TSAT(ALC`(Z)).

As pointed out in Section 4.1, the exact computational complexity of the logic BMW is
open, so that no upper computational complexity bounds can be inferred for the decid-
ability results presented in this section. Moreover, the logic BMW is rather expressive
and may provide little insight into the studied temporal or description logics (c.f. the
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PSPACE-upper bound for LTL(Z) [DG08] or a recently established EXPTIME-upper
bound for TSAT(ALC`(Z)) [LOS20].)

5. ADDING GLOBAL CONSTRAINTS
In this section, we present a selection of results about the addition of global constraints
in LTL(D). Bibliographical references are provided for further studies and examples.

5.1. What are global constraints?
So far, constraints between values are expressed by atomic constraints R(t1, . . . , td) or
by using temporal operators. Though R(t1, . . . , td) has obviously a local scope, global
properties can be also handled thanks to the propagation of local constraints. For in-
stance, in LTL(N; =), the formula G(x = Xx) enforces that x takes a unique value all
over the linear model. Similarly, the property “the value for x is equal to some future
value of y” is entailed by the satisfaction of the formula

G(x′ = Xx′) ∧ x = x′ ∧ XF(x′ = y),

that does not assume any further condition about the values for x. However, one can
show that this repeating constraint cannot be expressed in LTL(N; =), without the
introduction of an auxiliary x′. Note that x′ plays the role of a rigid variable whose
interpretation is constant and its introduction is similar to an existential quantifica-
tion. In this section, we present extensions of LTL(D) in which new binders or atomic
formulae allow us to constrain values at unbounded distance, unlike the atomic con-
straints R(t1, . . . , td). To do so, we introduce a natural first-order extension of LTL(D)
that is expressive enough to capture well-known explicit global constraints. Similar ex-
tensions can be designed for branching-time temporal logics (see e.g. [AFF17]), though
omitted here by lack of space. Adding first-order quantification to linear models often
leads to very expressive and undecidable formalisms, see e.g. [Krö90]. Presently, the
first-order extension is mainly convenient for presentation purposes.

Probably, freeze binding is the best known mechanism to express global constraints.
A formula of the form ↓r=y φ states that freezing the current value of y in the rigid
variable r, makes true φ (r possibly occurs in φ). Its popularity comes from its high ex-
pressive power and the possibility to use it in a restrictive way if computational prop-
erties are required. The freeze binding mechanism can be traced back to works about
real-time logics to express constraints about time intervals, see e.g. [AH94], modal hy-
brid logics to mark states, see e.g. [Gor96; ABM01], logics for data trees, see e.g. [Fig10;
JL11], or half-order modal logics in which predicate λ-abstraction permits a proper in-
terpretation of constants in modal logics, see e.g. [Fit02; LP05]. More examples can be
found in [DLN07, Section 5].

5.2. A selection of global constraints expressed in a first-order setting
Let RVAR = {r, s, t, . . .} be a set of rigid variables interpreted by elements in D. Un-
like variables in VAR whose values can vary from one state to another (understood
as flexible variables), the variables in RVAR take the same value for all the states,
like variables in classical predicate logic. Below, we define the first-order extension of
LTL(D) (written LTL∃(D)) and we revisit a few notions from LTL(D). For instance,
now, a term is either an expression of the form Xix for some i ≥ 0 (as in LTL(D)) or a
rigid variable r. The set of LTL∃(D) formulae is defined as follows.

φ ::= R(t1, . . . , td) | φ ∧ φ | ∃ r φ | Xφ | φUφ,

where the ti’s are (newly defined) terms, R ∈ σ is of arity d, and r ∈ RVAR.
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As for LTL(D), a model of LTL∃(D) is a map v : N× VAR→ D, but the formulae are
interpreted under an environment ρ : RVAR → D. Given a model v : N × VAR → D,
an environment ρ and i ∈ N, we write JrKv,ρ,i to denote ρ(r) and JXjxKv,ρ,i to denote
v(i+j, x). The satisfaction relation |= for LTL∃(D) is defined as follows (clauses similar
to LTL(D) are omitted).

— v, i |=ρ R(t1, . . . , td)
def⇔ (Jt1Kv,ρ,i, . . . , JtdKv,ρ,i) ∈ RD,

— v, i |=ρ ∃ r φ
def⇔ there is d ∈ D such that v, i |=ρ[r7→d] φ.

A sentence φ (no free occurrences of rigid variables) is satisfiable if there is some
model v such that v, 0 |=ρ φ for some arbitrary environment ρ. The model-checking
problem can be adapted similary, a well-studied instance is presented in Section 5.3.

Now, let us focus on several LTL∃(D) fragments obtained by restricting the first-
order quantification and motivated by the desire to express specific global constraints.
To start with, assuming that D contains the equality predicate, we introduce the freeze
operator ↓ (see e.g. [AH94; Gor96]), already met earlier, such that the formula ↓r=y
φ states that freezing the value of y in the rigid variable r makes true the formula
φ. For instance, G(↓r=y XG(¬(r = y))) expresses that y never takes twice the same
value. We write LTL↓(D) to denote the restriction of LTL∃(D) such that ∃ occurs only
in subformulae of the form ∃ r (r = y) ∧ φ and rigid variables occur only in equalities
of the form r = z, that amounts to admit first-order quantification only to encode the
freeze binder.

Unrestricted use of the freeze quantifier easily leads to undecidability (see below),
which motivates the introduction of repeating constraints stating that the current
value of x is equal to the value of y at a future position satisfying the formula φ, which
can be captured by ↓r=x XF(r = y ∧ φ). We write LTL〈〉(D) (see e.g. [DFP16]) to denote
the restriction of LTL↓(D) such that ∃ and rigid variables occur only in subformulae of
the form ∃ r (r = x)∧XF(r = y∧φ) (this constraint can be written x = 〈φ〉y). Similarly,
we write LTL〈>〉(D) to denote the fragment of LTL〈〉(D) in which x = 〈φ〉y is allowed
only with φ = >. So, x = 〈>〉y only states the repetition of a value. Other relevant
fragments of LTL∃(D) have been introduced in [Car15, Chapter 8].

5.3. The complexity of freezing or repeating
The power of global constraints on simple concrete domains. As the freeze quantifier

turns out to be very expressive, in this paragraph we consider simple concrete domains
such as (N; =) to measure its impact on computability. For instance, SAT(LTL(N; =)) is
PSPACE-complete. However, one rigid variable in LTL↓(N; =) leads to undecidability,
see the sharp result below improving earlier works [LP05; DLN07; DL09].

THEOREM 5.1 ([FS09]). SAT(LTL↓(N; =)) restricted to a unique rigid variable and
to the temporal operator F is undecidable.

Restricting the use of the temporal operators as well as the occurrences of the
freeze quantifier has been investigated to regain decidability. The safety fragment of
LTL↓(N; =) contains the formulae with at most one rigid variable and all the occur-
rences of U occur under an even number of negations.

THEOREM 5.2 ([LAZ11]). The satisfiability problem for the safety fragment of
LTL↓(N; =) is EXPSPACE-complete.

In our definition for safety LTL↓(N; =), multiple (flexible) variables are allowed and
no propositional variables are present whereas in [Laz11] the safety fragment is inter-
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preted on data words [Bou02] and the language admits letters from a finite alphabet.
Nevertheless, EXPSPACE-hardness in Theorem 5.2 is straightforward from [Laz11] as
equalities can simulate letters. Moreover, the EXPSPACE upper bound in Theorem 5.2
can be obtained by a reduction into the safety fragment from [Laz11] that increases
only polynomially the number of subformulae and the finite alphabet, which is the es-
sential complexity measure, see e.g. the proof of [Laz11, Theorem 2.5]. Safety refers to
the classification of verification properties, see e.g. [Sis94]. Typically, any ω-sequence
not in some given safety property has a finite prefix such that none of its extensions
belong to the property.

The freeze quantifier can easily lead to undecidability but adequate fragments may
regain decidability, see Theorem 5.2. In order to illustrate the diversity of interest-
ing fragments, below, we consider another syntactic fragment leading to decidability
but this time for a model-checking problem on counter machines. LTL↓(N; =) mod-
els with a unique variable are ω-sequences of natural numbers. Such sequences can
be extracted from accepting runs for one-counter automata. A one-counter automa-
ton (OCA) A is a structure (Q, qI , δ, QF ) where Q is the finite set of locations, q0 ∈ Q,
δ ⊆ Q×{−1, 0,+1, 0?}×Q and QF ⊆ Q. The elements in {−1, 0,+1, 0?} are intructions
(decrement, skip, increment, zero-test) and accepting runs (q0, n0) −→ (q1, n1) −→ · · ·
are ω-sequences of configurations in (Q× N)ω respecting δ (standard details are omit-
ted) such that (q0, n0) = (qI , 0) and some element of QF occurs infinitely often. The
model-checking problem takes as inputs an OCA A and a sentence φ ∈ LTL↓(N; =)
(with a single flexible variable) and asks whether there is an accepting run (q0, n0) −→
(q1, n1) −→ · · · such that n0n1n2 · · · |= φ. The flat fragment of LTL↓(N; =) is made of
formulae such that in any positive (resp. negative) occurrence of φ1Uφ2, ↓ does not
occur in φ1 (resp. in φ2). Unlike the safety fragment, U is not restricted but the occur-
rences of ↓ are. Though the model-checking problem over OCA is undecidable in full
generality [DLS10], flatness allows us to regain decidability.

THEOREM 5.3 ([BQS19]). Model-checking problem over OCA for flat LTL↓(N; =) is
NEXPTIME-complete.

OCA with parameterised tests are studied in [BQS19] to get this upper bound NEX-
PTIME. Accepting runs of OCA are data words [Bou02], and many logics have data
words as models, see [Kar16, Figure 4.7] for a complete recapitulation of complexity re-
sults. It is worth noting that herein, the logics LTL(D) and extensions such as LTL↓(D)
have no propositional variables (unlike many formalisms dedicated to data words) but
this can be simulated with atomic constraints when the number of variables is not
bounded and the concrete domain is not trivial.

Repeating values and linearly-ordered domains. Most known decidability results
with repeating constraints of the form x = 〈>〉y do involve concrete domains with
equality only, see e.g. [DFP16]. Adding a linear ordering may have an expensive com-
putational cost as stated below.

THEOREM 5.4 ([CAR15]). SAT(LTL〈>〉(N;<,=)) restricted to repetition constraints
of the form x = 〈>〉y is undecidable.

The proof of Theorem 5.4 is by reducing the infinite accepting run problem
for incrementing counter automata (incrementing errors are possible in such ma-
chines) [Car15]. By contrast, we have seen that SAT(LTL(N;<,=)) is PSPACE-
complete, and SAT(LTL〈>〉(N; =)) is decidable in EXPSPACE [DFP16]. Other undecid-
ability results for constrained LTL with repeating constraints and concrete domains
with relations other than equality can be found in [Car15; Bha20] as well as the de-
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sign of decidable fragments. Moreover, the works [AK10; DHLT14; Kar16] have in-
vestigated richer global constraints on data words with multiple attributes (flexible
variables) that can navigate along positions with identical values for some attribute.

6. CONCLUDING REMARKS
In this document, we have presented decidability/complexity results for logics with
concrete domains, with a diversity of logical formalisms (description logics, tempo-
ral logics) and a diversity of concrete domains. For solving satisfiability and model-
checking, we have mainly described the features of the automata-based approach and
the EHD-approach. Section 5 is also dedicated to more global constraints, in partic-
ular those that can be expressed with the freeze quantifier. The literature is too rich
to expect to cover all the topics in a short survey, in particular the logics for the auto-
matic verification of database-driven systems [DHPV09; DHV14] and the separation
logics parameterised by theories [BBL09; KJW18] could not be developed further and
compared with the formalisms described in Section 2.

As observed in the document, there is a recent tendency in the literature to under-
stand the essential ingredients that allow to get nice computational properties. This is
particularly true with the EHD-approach from [Car15; CKL16] that handles rich tem-
poral logics such as CTL∗ or with the model-theoretical approach from [BR20] to char-
acterise concrete domains having nice computational properties like the ω-admissible
concrete domains from [LM07]. There is a general need to understand better many
simple concrete domains when embedded in logical formalisms. For instance, the de-
cidability status of SAT(LTL({0, 1}∗;<pre, <suf)) is still open, as far as we know.

Consequently, it should not come as a surprise that more work is required to unify
the contributions from [ST11; KW15; CT16; BR20], in particular to understand better
the relationships between the automata and the MSO-like formalisms, apart from the
goal to provide a uniform framework leading to optimal complexity results. Finally, for
many concrete domains, SAT(CTL∗(D)) has been shown decidable but with no satis-
factory complexity characterisation. There is room for further improvements also here.
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J. Katelaan, D. Jovanović, and G. Weissenbacher. A separation logic with data: Small models and automa-

tion. In IJCAR’18, volume 10900 of Lecture Notes in Computer Science, pages 455–471. Springer, 2018.
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