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ABSTRACT

In this paper, an experimental methodology is presented in order to extract the dynamic proper-
ties of localized modes of a complex membrane. By applying the localization landscape theory,
the resonant frequencies and regions of the localizedmodes can be obtained experimentally. This
is implemented by a quasi-static measurement of the membrane deformation, and is performed
without the knowledge of its tension field or any hypothesis about its homogeneity (uniform or
non-uniform). The results are compared with Finite Element simulations and modal measure-
ments in vacuum conditions.

1. Introduction
Localization is a term that may refer to different concepts: the process of identifying the location of a specific

measurable quantity, i.e. source localization; or the energy concentration within a system, the main interest of this
paper. The latter is achievable by focalizing energy into a point, called focal point. This can be obtained by changing
the geometry of reflectors or the properties of the propagation medium, as seen in lenses [1] and parabolic antennas, or
by the convergence of one or multiples sources into a zone, as used in lithotripsy [2]. Reversal propagation techniques
[3] are other means for energy localization. When dealing with standing waves, localization is used to get high levels
for acoustic levitation [4, 5], acoustic tweezers [6] or nonlinear ultrasound demodulation [7].

The present paper deals with localized vibrational modes. Commonly, in a complex structure, when a localized
vibration is presented, it can be seen as a local mode, existing only in a small area of the structure, in opposition
to a global mode, involving the whole structure. Local modes or more precisely localized modes are a common
phenomenon studied in vibrations, for example when performing sub-structuring processes.

As a general physical phenomenon, localized waves have been studied in optics, electromagnetism, acoustics and
many physical domains. Strong or Anderson localization [8] and weakly localized waves have special attention in
optics and in quantum mechanics, due to the disordered media, but also can be found in mechanical waves. Multiples
experiments have been carried out such as [9], where localized states were observed in a complex wire; Even et al.
[10] implemented the first experiment with localization in fractal drums, showing the presence of both strong and
weak localization; Chulkin et al. [11] revealed the appearance of weak localization and its implications on the damping
coefficient in a dielectric chain crystal. More recently, Filoche andMayboroda [12] exposed that even a simple clamped
point in a thin plate can induce strong localization.

The work of Filoche and Mayboroda led to an important discovery: both Anderson and weak localization are
representations of the same phenomenon and can be unified by the landscape of localization theory [13]. The landscape
of localization exposes the presence of localized regions, where the modes can be present, by splitting the whole
structure into several regions determined exclusively by the geometry and the operator which describes the motion
(Laplacian, Bi-Laplacian or Hamiltonian operators). Lefebvre et al. [14] showed that one static measurement can
provide low-frequency information about the dynamic behaviour of a complex plate: geographical placement of the
localized modes, their eigenfrequencies and their localized state given by the network of valley lines.

In the domain of structural vibrations, and mainly in vibroacoustics, plates and shells have been the subject of
many works (see books of Fahy and Gardonio [15], Norton and Karczub [16], Lesueur [17], Soedel [18] for instance),
while membranes dynamics is commonly first introduced because of its relative simplicity in vacuum conditions [19].
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This is the case when uniform tension and density are considered and this assumption does not hold anymore when
a non-uniform tension is presented. Much of the research dealing with membranes is centred on the musical domain
[20, 21, 22], although membranes are widely present, from the auditory system [23] to room acoustics [24]. To the
knowledge of the authors, complex membranes presenting localized modes have been little studied, except in the case
of fractal boundary conditions [10].

The aim of this paper is to show how the landscape of localization theory enables to determine the localized
modes in a heterogeneous membrane without knowledge of its tension field. Even if the motion of a membrane with
uniform tension is a well-known problem governed by the wave equation, imposing a uniform tension field is an
ardours task and cannot always be guaranteed. In this sense, configurations with uniform and non-uniform tension
are presented in this work, and a complete methodology for extracting the dynamic properties with one quasi-static
measurement using laser vibrometry is exhibited. The paper is organized as follows: first, the theoretical background
and the landscape of localization theory applied to a heterogeneous membrane are presented. Then, simulations of the
landscape function and modal decomposition are exposed to illustrate the general characteristics of the localization
landscape. An experimental method is then established to measure the landscape function in a membrane having
localized modes. Finally, the results from the landscape of localization theory are compared with experimental modal
analysis made in vacuum conditions.

2. Theoretical Background
2.1. Membrane dynamics

The tension field on a membrane is characterized by the symmetric tensor �(r), where �ij are the components
of the tensor and ij, being x or y as the tension is in the plane, and respecting a valid tension field [25, 26]. The
vertical displacement w of a heterogeneous membrane with surface density �s(r) can be derived by taking the small
displacements hypothesis, where rotations �x, �y on the planes (x, z) , (y, z) are approximated as �x ≈ )w∕)x and
�y ≈ )w∕)y. Exposing the equilibrium of forces and projecting them onto the z plane [27] results in

�s(r)
)2w
)t2

− div
(

�(r) ⋅ grad(w)
)

= 0. (1)

In the case of a homogeneous membrane under uniform tension field, the tension becomes isotropic and the tensor
�(r) can be reduced to � = T .1, 1 being the identity matrix and T the uniform tension on the membrane. Taking this
into consideration

T div
(

grad(w)
)

= T∇2w = �s
)2w
)t2

, (2)

and thus

)2w
)t2

− c2∇2w = 0. (3)

where c =
√

T ∕�s is the speed of sound in the membrane and ∇2 the Laplace operator.

2.2. The eigenvalue problem
The displacement can be expressed as an infinite sum of orthogonal basis functions, determined by the eigenvalue

problem. In a modal decomposition, this results in mode shapes �p and associated resonant frequencies !2p, where
each mode satisfy the dynamic equation (Eq. (1)). Imposing fixed boundary conditions results in the Dirichlet problem

L�p = !2p�p in S,

w = 0 on )S.
(4)

where the spatial operator L = −�s(r)−1∇ ⋅
(

�(r) ⋅ ∇
)

in the case of a heterogeneous membrane, and which can be
simplified as L = −c2∇2 for a homogeneous membrane.
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2.3. Quasi-static limit
When the membrane is subjected to uniform harmonic pressure, Eq. (1) becomes

�s(r)
)2w
)t2

− div
(

�(r) ⋅ grad(w)
)

= P cos(Ωt). (5)

where Ω is the excitation frequency and P the amplitude of the imposed pressure. Expressing the displacement in a
modal expansion, the forced response results in

w =
∞
∑

p

P
mp

�p
!2p − Ω2 ∬S

�p dS cos(Ωt), (6)

The resonant frequency of the p mode is !2p = kp∕mp, where kp is the modal stiffness and mp the modal mass, defined
as

mp = ∬S
�s(r) �2p dS,

kp = ∬S
�p

(

�xx
)2�p
)x2

+ �yy
)2�p
)y2

+ 2�xy
)2�p
)x)y

)

dS.
(7)

The quasi-static regime is expected when the excitation frequency is small in comparison with the first resonant
frequency, that is Ω << !0. In Eq. (6), Ω tend to zero and given that mp!2p = kp, the quasi-static regime tends to the
static case, where no mass is involved

w ∼
∞
∑

p

P
kp
�p∬S

�p dS. (8)

In practice, when Ω = !0∕10, the relative error between the quasi-static deformation and the static deformation
is below 1%. Hence, ten times below the first resonance, the quasi-static and static deformations can be considered
equivalent.

2.4. Evaluation of the tension from the static deformation
To estimate the tension of the uniform membrane (see Section 4.4.1), we derive the relation between the tension

and the maximum displacement of the membrane under static load. The static problem is derived from Eq. (5) as

−div
(

�(r) ⋅ grad(w)
)

= P . (9)

Under the assumption of an uniform tension field, the tension becomes independent of the operator, as stated in Eq. (2).
By imposing fixed boundary conditions, Eq. (9) becomes a standard Poisson problem

−T∇2w = P in S,
w = 0 on )S.

(10)

For a circular membrane, the static displacement is expanded in a sum orthogonal basis functions �p that also satisfy
the eigenvalue problem, and scaled by amplitude coefficients �p

w(r, �) = P
T

∞
∑

p
�p�p =

P
T

∞
∑

m=0

∞
∑

n=1
�mn Jm(�mnr∕a) cos (m�), (11)

where Jm is the first order Bessel function, �mn the zeros of Jm, and a themembrane’s radius. The amplitude coefficients
�mn are calculated as

�0n =
2a2

(�0n)3 J1(�0n)
,

�mn =
2

�(�mn)2
(

Jm+1(�mn)
)2 ∫

a

0 ∫

�

−�
Jm(�mnr∕a) cos (m�) rdrdθ.

(12)
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Note that the homogeneous case of Eq. (8) is analogous to Eq. (11). Finally, by taking the maximum displacement
wmax of the membrane at r = 0, it is possible to note that all Jm(r = 0) are equals to 0 when m ≠ 0 on this point.
Taking this into consideration, the tension of the membrane relates directly to the maximal displacement

T = P
wmax

2a2
∞
∑

n=1

1
(�0n)3J1(�0n)

. (13)

2.5. The landscape of localization theory
As described in [13], the low-frequency behaviour is fully described by the landscape of localization theory, sum-

marized in the Dirichlet problem

Lu = 1 in S,
u = 0 on )S.

(14)

where u is the landscape function and L is the spatial operator previously introduced describing the motion of a mem-
brane. Eqs. (9) and (14) are then equivalent; the static deformation and the landscape function differ only by a constant
factor so that

u =
�sw
P
. (15)

In practice, this relationship allows to determine the landscape function from the measured static deformation of the
membrane, which could, in turn, be approximated by its quasi-static deformation (see Eq. (8)).

The landscape theory is a tool for investigating multiple localized modes in a complex structure. The separation
between each localized mode is marked by a network of valley function. The set of these valley lines are the minima of
the landscape function, that is the lowest gradient regions, and can be obtained by inverse flooding algorithms like the
watershed algorithm [28]. The network of valley lines is frequency-dependent and constrains the local displacement
of the eigenmodes. Each eigenmode satisfies the inequality [13]

||�p|| ≤ !2pu in S. (16)

where �p is normalized such that the maximum amplitude equals 1. When increasing the frequency, the valley will
open, allowing the modes to exist beyond the initial localized state.

Based on the similarity of the landscape with the first localized modes, we can obtain an approximation to the
eigenfrequencies of the itℎ localized mode in each sub-region ui of the landscape [14]

!i ≈ (4∕�)∕
√

max(ui). (17)

3. Simulations
To illustrate the application of the landscape theory to a membrane, a finite element calculation of Eq. (14) is

implemented in FreeFem++ [29]. The subject of study is a circular membrane of radius a = 0.279 m (22 inches
diameter).

To induce localization, two areas inside the domain will be set up with null displacement conditions. Uniform
tension about 1892 N.m−1 and a non-uniform tension field are tested. For the last case, the tension field is established
in order to respect div(�) = 0 [25, 26] and the components �xx and �yy of the tensor � are established as linear functions
of y and x respectively, giving a tension field varying from 250 N.m−1 to 750 N.m−1 in each case. No shear tension
was taken into account at this stage.

The results of the landscape simulations are presented in Fig. 1 and the first four modes of the membrane in Fig. 2.
The white lines represent the network of valley lines of the landscape function, and superimposing these lines onto
the modes, according to Eq. (16), provide insights concerning the strength of the confinement of each mode and will
be explained more in detail in the experimental section. These lines follow the lowest gradient points, dividing the
structure into 2 sub-regions where modes localize. It is seen that the area of the sub-region of each localized mode
depends on the tension field. The red crosses mark the peak values in each of the two sub-regions and the amplitude
of these peaks will be used, according to Eq. (17), to estimate the frequencies of the localized modes.
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Fig. 1: Landscape simulation, u (s2).
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Fig. 2: Mode shape simulation

Table 1
Simulation: Membrane under two different tension fields. [1] Computed with FreeFem++ [2] Calculated with
Eq. (17)

Uniform Tension Non-uniform Tension

FEM 1 (Hz) Landscape 2 (Hz) diff. % FEM 1 (Hz) Landscape 2 (Hz) diff. %

Mode 1 144.68 151.49 +4.7 79.66 83.09 +4.30
Mode 2 170.12 166.22 −2.29 99.09 97.98 −1.12
Mode 3 196.55 - - 107.17 - -
Mode 4 225.95 - - 128.72 - -
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In both cases, it is clear that the two first membrane modes correspond to the two first localized modes in each
sub-region. The behaviour changes in the fourth mode, where there is a shift in the appearance of the modes. The
resonant frequencies are well predicted by the landscape theory, with a difference of less than 5% (refer to Table 1).

4. Experimental Approach
The complete experimental approach is described in four sections: a description of the experimental setup, the

modal analysis of the membrane, the landscape function measurement and finally some details about the procedure to
set up the membrane’s tension.

4.1. General configuration
The experimental setup is depicted in Fig. 3. A 22-inch mylar membrane, with density � = 1380 kg.m−3 and

thickness e = 254 �m, is placed in a kick drum, and tensed under both uniform and non-uniform tension fields
(described in detail in Section 4.4). After the tension is set up, four rectangular magnets of 36 mm × 16 mm are placed
by pairs on each side of the membrane, to impose two zero displacement zones and to avoid introducing normal (z)
and tangential static deformations of the membrane. The magnets are held by a wood structure tied to the body of the
drum, as seen in Fig. 3a.

SOLENOID

MAGNETS

FORCE

SENSOR

SPEAKER

MICROPHONE

(a) Structure configuration without the membrane.

PUMP

LASER

VIBROMETER

VACUUM CHAMBER

(b) Vacuum measurement.

Fig. 3: Experimental setup for both landscape and modal measurements.

4.2. Modal measurement configuration
Most of the literature on modal analysis of plates or shells consider the light fluid assumption, disregarding the

fluid loading on the structure. In the case of the membrane coupled to a cavity, the influence of the surrounding air
cannot be neglected. Chaigne [27] shows that for circular membranes coupled with a cavity, the axisymmetric modes
are the most affected by the added stiffness of the cavity increasing the natural frequencies. The air loading can also
act as an added mass and the natural frequency is lowered this time. To avoid this effect, modal measurements will be
carried inside a vacuum chamber. The vacuum conditions are at approximately 1/300 the atmospheric pressure (A.P.)
(∼ 3 hPa), which is the practical limit of our vacuum chamber.

Modal analysis is performed using an impact excitation through an automatic impact hammer carrying a force
sensor. The hammer is driven by an Arduino controller employed to set the impact period and the impact time length.
The velocity field of the membrane is measured on 465 points employing a Polytec PSV-400 scanning laser vibrometer
triggered on the impact force. The frequency response of the displacement over the force (receptance) is then derived
on the frequency range [0.2 -250] Hz with a resolution of 0.2 Hz.
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Fig. 4: Modal measurement set-up: 1. kick-drum cavity, 2. magnets used to create null displacement boundary conditions,
3. support structure, 4. automatic hammer (solenoid and force sensor), 5. membrane, 6. plexiglass door.

4.2.1. Vacuum conditions
It is well known that as the tension on a membrane increases, the coupling between the air cavity and the mem-

brane becomes weaker. Multiple values of tension were tested to derive the optimal experimental conditions for both
landscape and modal measurements. Fig. 5 shows the evolution of the frequency of the first mode as function of the
pressure inside the cavity, for two dissimilar tension conditions around 700 N.m−1 and 2200 N.m−1 (estimated with
Eq. (13)). It is shown that the frequency of the first mode converges faster for the higher tension case. In fact, the
normalized frequency (by the value obtained at 1/300 A.P.) exceeds 0.95 above 1/10 A.P. against 1/100 A.P. for the
less tensed membrane. In the following, measurements will be then performed around a pressure of 1/300 A.P. to
minimize the effect of air loading as much as possible.

1 1/2 1/4 1/10 1/20 1/100 1/300
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
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1
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N
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m
al

iz
ed

fr
eq

ue
nc

y

Tension ∼ 700 N, 1st Mode 93 Hz
Tension ∼ 2200 N, 1st Mode 165 Hz

Fig. 5: Influence of the atmospheric pressure on the evolution of the first mode frequency at different ratios. A ’low’ and
’high’ uniform tension values are presented here.

4.3. Landscape measurement configuration
The landscape function is determined from a static deformation measurement. To this aim, several techniques

can be implemented: holographic interferometry [30], electronic speckle pattern interferometry [31] or digital speckle
pattern interferometry [32]. However, these techniques require specialized equipment. The approach used in this work
is based on ameasure of the quasi-static deformation, allowing the use of a dynamic sensor. The frequency of excitation
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must be much smaller than the first vibration mode, so that the quasi-static regime approximates the static regime (as
seen in Eq. (8)), and much smaller than the first cavity mode to guarantee a uniform pressure load. The first cavity
mode is found around 120 Hz at normal atmospheric pressure (∼ 1000 hPa) and the first mode of the membrane is
expected to be above 100 Hz. A suitable excitation frequency is chosen at 12 Hz. The kick drum cavity is sealed at
its back face with 1-inch thick plywood where a 6-inch diameter loudspeaker is installed. The air cavity will act as an
intermediate media to impose a uniform pressure on the membrane, that is monitored with a microphone (referenced
by 4 on Fig. 6). The first pair of magnets are placed inside of the cavity in the same plane of the membrane, and the
second pair of magnets will block the membrane on the other side without adding any static force. The membrane
displacement under the harmonic acoustic excitation is then measured on 1013 points, averaging on 16 cycles, through
a Polytech PSV-400 scanning laser vibrometer, configured in fast-scan mode.
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Fig. 6: Landscape measurement configuration: 1. bass-drum cavity, 2. magnets used to create null displacement boundary
conditions, 3. support structure, 4. microphone, 5. membrane, 6. back enclosure, 7. loudspeaker.

4.4. Setting the membrane’s tension
4.4.1. Uniform tension

This section describes themethod to set themembrane tension. Achieving a perfect uniform tension is a challenging
task. Most musicians, for example, tune their instruments, even if the tension is not perfectly uniform, by adjusting
the frequency pitch when kicking specific parts of the membrane [33], or using commercially available tuners such
as the Drum dial, which measures the deformation caused by its own load on the membrane. Chaigne [27] exposes
the process to calculate the tension using the deflection caused by a small section load and gravity, but this method
requires a static deformation measurement. The low sensitivity of the torque-meter wrench and the manufacturing
uncertainties do not allow the use of imposed force on the tuning rods to guarantee a uniform tension.

Our approach is to use the quasi-static deformation of the simple circular membrane under uniform load, as de-
scribed in the previous section, to reach a circularly symmetric deformation, and hence, a uniform tension. Several
measurement steps are shown in Fig. 8a to illustrate the method. Between each step, the tension is adjusted by acting
on the tension rods surrounding the kick drum, accordingly to the displacement map. The displacement is measured
around seven concentric circles on the membrane; the position of three of them are shown in Fig. 7a.

After 14 tuning steps, the most uniform tension state is considered achieved. As shown in Fig. 7b, the standard
deviation of displacement approaches zero on 3 of the 7 concentric circles used to tune the membrane. The main
disadvantage of this methodology is that it will be very hard to target a specific tension value due to the nature of the
iterative process, as exposed in Section 4.4. This method has also been used to monitor the non-uniform configuration
described below.

4.4.2. Non-uniform tension
To get the non-uniform tension configuration (see Fig. 8b), the uniform tension state is first achieved. Then, the

tension rods are relaxed on the left side to create a smooth variation of the tension around the surface. This relaxation
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Fig. 7: Tuning up the membrane based on the measurement of the displacement in the concentric circles and the standard
deviation.
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(b) Tuning under non-uniform tension

Fig. 8: a) Displacement field during the process of tuning the membrane’s tension by seeking an homogeneous deformation
of the membrane, from the initial state: a.1), to the final state: a.4). The 3 concentric circles show the measurement
points. b) Displacement field of the membrane under non-uniform tension field.

process is done carefully to maintain the linearity of the membrane behaviour and to avoid the presence of wrinkles
along the membrane’s surface.

5. Results
5.1. Uniform tension case

Once the iterative process end and the membrane is tensed under uniform tension, the tension is estimated with
Eq. (13) at 1890 N.m−1. Then, the magnets are placed as shown in Section 4.3. The cavity is airtightly sealed and an
harmonic excitation at 12 Hz is driven by the loudspeaker. The acoustic pressure inside the cavity is 10.4 Pa.
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Fig. 9: Landscape measurements, u (s2).
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Fig. 10: Modal measurements.

Table 2
Measurements: Membrane under two different tension configurations. [1] Computed in PLM Siemens [2]
Calculated with Eq. (17)

Uniform Tension Non-uniform Tension

Measured 1 (Hz) Landscape 2 (Hz) diff. % Measured 1 (Hz) Landscape 2 (Hz) diff. %

Mode 1 149.74 152.54 +1.87 80.65 80.45 −0.24
Mode 2 174.67 168.43 −3.57 96.87 - -
Mode 3 195.67 - - 106.25 102.74 −3.30
Mode 4 223.92 - - 116.56 - -
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The landscapemeasurement is presented in Fig. 9. Twomain lobes arise over the landscape, indicating the presence
of two localized modes in these regions. The white line corresponds to the network of valley lines and it is calculated
by the watershed algorithm. This valley line separates our structure into 2 regions. The peak values in each region
give an approximation of the localized modes frequencies according to Eq. (15) and are presented in Table 2.

Alternatively, from the modal measurement, the four first modes are presented in Fig. 10a. The projection of the
effective valley network onto the modes is frequency-dependent and is calculated with Eq. (16). As we can see, when
frequency increases, the valley lines tend to open allowing the modes to extend. The valleys must not be mistaken with
the modal lines, but as a reference that will guarantee the geographical limits of localized modes and the strength of
their confinement.

The estimation of localized modes frequencies, using Eq. (16), shows a difference between them and the mea-
surement of less than 2% and 4% for the first and second mode respectively (refer to Table 2). When comparing the
simulations and measurements in the uniform case, the simulations do not match exactly the experiment, showing a
small difference of 3% on frequencies. This can be explained by the fact that it is quite difficult to ensure a perfectly
uniform tension, as well as the uncertainty on the exact position of the magnets. The landscape function provides a
pretty good estimation of the frequencies of the localized modes, with a difference of the same order as the one obtained
by the simulation. Note that this estimation does not require knowledge of the tension value.

5.2. Non-uniform tension case
The tension field is relaxed on the left side of the membrane (see Fig. 8b) allowing a greater displacement on that

side. The order of the modes is modified as in the preliminary numerical test. Interestingly, not only the fourth mode
changed but also the second mode. The second mode is now localized on the same side as the first mode, and the third
mode of the membrane corresponds to the localized mode on the right side of the membrane. Despite this change, the
landscape theory identifies correctly the first localized mode in each region. The frequencies of both localized modes
again are well estimated by the landscape function, a difference below 4% is found in this case, and even of less than
0.5% for the first mode, showing the predictive ability of the landscape function regardless of the tension field.

The choice of a linear variation of the tension field without shear is not enough to characterize the behaviour of the
complex tension field present in this experiment. Trying to recreate such a non-uniform tension field would probably
require a more complex field involving the presence of shear.

6. Conclusion
In conclusion, we demonstrate that the landscape function can be simply computed from the quasi-static defor-

mation of a complex membrane. The quasi-static measurement of the landscape function allows determining the
frequencies of the localized modes in the membrane, regardless of the homogeneity of the tension field (uniform or
non-uniform) or its strength (lower tension or higher tension).

For uniform and non-uniform tension, a comparison between modal analysis and landscape of localization theory
provides a good agreement. Localized modes are well-identified in both cases by the landscape computation with a
difference of less than 5%.

The landscape function is a practical tool to characterize localized modes in complex membrane structures and by
extension in other types of structures. Particularly in the case of a membrane, the direct measurement of the landscape
function allows us to ignore the shape and values of the tension field, and still recover precisely the modal frequencies.

Even in complex cases, such as a membrane under non-uniform tension, the landscape function indicates the first
localized modes in each sub-region, constrained geographically by the valley lines network.
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