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Predicting Risk-adjusted Returns using an Asset Independent Regime-switching Model

Nicklas Wergea,∗

aLPSM, Sorbonne Université, 4 place Jussieu, 75005 Paris, France

Abstract

Financial markets tend to switch between various market regimes over time, making stationarity-based models unsustainable. We
construct a regime-switching model independent of asset classes for risk-adjusted return predictions based on hidden Markov
models. This framework can distinguish between market regimes in a wide range of financial markets such as the commodity,
currency, stock, and fixed income market. The proposed method employs sticky features that directly affect the regime stickiness
and thereby changing turnover levels. An investigation of our metric for risk-adjusted return predictions is conducted by analyzing
daily financial market changes for almost twenty years. Empirical demonstrations of out-of-sample observations obtain an accurate
detection of bull, bear, and high volatility periods, improving risk-adjusted returns while keeping a preferable turnover level.
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1. Introduction

Financial markets are known to shift between economic cy-
cles; some of the most well-known regimes are the bull, bear,
and high-volatility markets. Each of these market regimes may
have financial characteristics unique to this particular regime.
One of the most common methods of financial market analysis
is time series analysis. Time series models are used to predict
future prices, price changes, and volatilities in a wide range of
financial markets. Some of the most famous models are the
AutoRegressive Integrated Moving Average (ARIMA) models.
However, analyzing financial time series through these tradi-
tional time series methods may result in misleading resolutions
as they cannot embrace the nonlinear characteristics of finan-
cial time series, e.g., the stationarity assumption often seems
dubious in practice. Therefore, non-stationary-based time se-
ries models are more suitable for financial time series. One
could comprehend this by modifying these time series mod-
els by incorporating a time-dependent variable to adjust for the
non-stationarity, e.g., the threshold autoregressive time series
model.

Another way to capture financial markets’ tendency to switch
between regimes is the Hidden Markov Model (HMM), as it
"only" assumes local or state-conditioned stationarity. Mod-
eling times series data using HMMs became mainstream after
Baum et al. (1970) and Rabiner (1989) applied it across many
areas (e.g., speech recognition, medical applications, and text
classification). The idea of making a Markov-switching ap-
proach to analyze financial time series became popular after
Hamilton (1989) applied this approach to identify economic cy-
cles of GNP levels. More recently, the HMM has been used
to predict market regimes in the financial markets due to their
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ability to capture multiple characteristics from financial return
series such as time-varying correlations, fat tails, volatility clus-
tering, skewness, and kurtosis, while also providing reason-
able approximations even for processes in which the underly-
ing model is unknown (Ang and Timmermann (2012); Nystrup
et al. (2015, 2017)). Besides, HMMs are advantageous as they
allow ample interpretability of the results; thinking in market
regimes is a natural approach for financial practitioners. Never-
theless, the lack of data availability makes the linking between
investment purposes and business cycles a complex and chal-
lenging task. As the market regimes are not observable, one has
to extract them from the time series. However, this extraction
is not unambiguous, as some specific regimes may be up for
discussion in the financial practitioner’s community, e.g., high
and low volatility regimes depend on the given risk-aversion.
Consequently, we demand a model to apprehend the various
economic sentiments of the financial markets.

Many researchers have applied HMMs to analyze and predict
economic (non-linear) trends and future financial asset prices.
Kritzman et al. (2012) studied an HMM with two states to
predict regimes in market turbulence, inflation, and economic
growth index. Hassan and Nath (2005) and Nguyen (2018) used
the HMM to forecast prices in the stock market. A combina-
tion of open, close, low, and high prices was used in Gupta and
Dhingra (2012) for stock price prediction. All of the above ref-
erences use four hidden states in their study on the stock market.
Guidolin and Timmermann (2007a) and Fons et al. (2021) used
a four-state and two-state HMM, respectively, in their studies
of asset allocation decisions using various time series. As sug-
gested by Guidolin and Timmermann (2007b), a range between
two and four hidden states in the HMM is often encountered
in financial studies. However, studies of applying HMMs to
predict trends across a broad range of assets are sparse.

In this study, we focus on predicting risk-adjusted returns us-
ing a single regime-switching model. Using only one HMM to
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analyze a wide range of assets, we enforce generalizations in
the model. This framework is made with so-called "sticky" fea-
tures that naturally enhance regime stickiness by an adjustable
hyperparameter. Finally, we demonstrate our methodology on a
broad range of asset classes by analyzing daily financial market
changes for almost twenty years. The investigation illustrates
our metric ability to predict risk-adjusted returns for differ-
ent regime stickiness choices. Our experiments are conducted
using out-of-sample observations, showing an accurate detec-
tion of bull, bear, and high volatility periods, improving risk-
adjusted returns while keeping a preferable turnover level.

2. Hidden Markov Models (HMMs)

There is much literature about HMMs, but to have the nec-
essary notions, we briefly sketch the elements of the HMM,
how to estimate the parameters, and select the number of hid-
den states in the HMMs. For a comprehensive introduction of
the inference of HMMs, we refer to Zucchini and MacDonald
(2009) and Murphy (2013).

2.1. Elements of HMM

The HMM is a probabilistic model in which a sequence of
observations x = (x1, . . . , xn) with xt ∈ Rd for t = 1, . . . , n is
generated by a latent finite-state Markov chain z = (z1, . . . , zn).
Denote by d the dimension of the observations. We call z the
sequence of hidden states where zt ∈ {1, . . . , S } for t = 1, . . . , n
with S the number of hidden states. The HMM can be specified
by the initial probability vector π = {πi}i=1,...S ∈ RS , a transition
probability matrix A = {Ai j}i, j=1,...,S ∈ RS×S and the emission
probabilities B which can be any distribution conditioned on
the current hidden state. The parameters of the HMM are given
by Λ = {π,A,B} and have to be estimated from the observed
sequence x. Note that πi = P(z1 = i) is the probability for being
in hidden state i at time t = 1 where

∑S
i=1 πi = 1, Ai j = P(zt =

j|zt−1 = i) is the transition probability of moving from hidden
state i at time t − 1 to hidden state j at time t with

∑S
j=1 Ai j = 1,

and B is the parameters of the conditional densities p(xt |zt = j).
When working with financial time series, a typical choice of

emission probabilities is the Gaussian Mixture Model (GMM).
However, other density functions could likewise be considered.
A gentle introduction of HMMs with GMM emissions is made
in Bilmes (1998). The authors of Ang and Timmermann (2012)
and Nystrup et al. (2015) show evidence on the HMMs abil-
ity to comprehend several stylized facts, such as leptokurtosis,
heteroskedasticity, skewness, and time-varying correlations, by
use of the GMM as emission probability. For simplicity, we
assume the distribution of emission probabilities B to be Gaus-
sian; B = p(xt |zt = j,Λ) = N(xt |µ j,Σ j) where µ = {µ j} j=1,...,S is
the mean vectors and Σ = {Σ j} j=1,...,S the co-variance matrices
with µ j ∈ Rd and Σ j ∈ Rd×d for j = 1, . . . , S . Thus, the model
parameters of our HMM is given as Λ = {π,A,µ,Σ}.

2.2. Parameter Estimation

There are three fundamental problems in estimating the
HMM:

• Given the observations sequence x = (x1, . . . , xn) and
HMM parameters Λ = {π,A,µ,Σ}, how can we estimate
P(x|Λ) the likelihood of the given observation sequence.

• Given the observations sequence x = (x1, . . . , xn) and
model parameters Λ = {π,A,µ,Σ}, how can we choose
a sequence of hidden states z = (z1, . . . , zn), which is opti-
mal.

• How do we adjust the HMM parameters Λ = {π,A,µ,Σ}
to maximize P(x|Λ).

There are several approaches to solve these problems since
there are several possible optimal criteria. We choose to solve
the first and the second problem by the dynamic programming
algorithms known as the forward-backward algorithm proposed
by Baum and Eagon (1967) and Baum and Sell (1968), and the
Viterbi algorithm (Viterbi (1967)). The third problem is solved
by the iterative Baum-Welch (BW) algorithm, a type of the
Expectation-Maximization (EM) algorithm (Rabiner (1989)).

The BW algorithm alternates between an expectation step
and a maximization step until convergence is reached, often
abbreviated as the E-step and M-step. In the E-step, we cal-
culate the expected log-likelihood of the hidden state given the
observation sequence x and model parameters Λ. Next, in the
M-step we maximize the expected log-likelihood from the E-
step to update our model parameters Λ. We denote by Q(Λ, Λ̄)
the function of the expectation of the complete log-likelihood
given as

Q(Λ, Λ̄) = E[logP(x, z|Λ)|x, Λ̄), (2.1)

where the current model is Λ and the previous model as Λ̄.
It can be proven that P(x|Λ) ≥ P(x|Λ̄), but it is essential to

remember that the BW algorithm does not guarantee a global
solution. As suggested in Adams et al. (2016) and Fons et al.
(2021), we modify the Q(Λ, Λ̄) function with the priors of the
model parameters G(Λ), namely

Q(Λ, Λ̄) + log(G(Λ)), (2.2)

which is called Maximum a Posteriori (MAP) estimation (Gau-
vain and Lee (1994)). Thus, in the E-step, we calculate the
Q(Λ, Λ̄) function from (2.1), and for the M-step, we maximize
(2.2).

2.3. Prediction
The prediction of the hidden states sequence (z1, . . . , zn) is

estimated using the observation sequence (x1, . . . , xn) as de-
scribed in Section 2.2. We denote by αn|n the vector of state
probabilities at time n (given the sequence of observations
x = (x1, . . . , xn)) with the jth entry (αn|n) j = P(zn = j|x) for
j = 1, . . . , S . Thus, one can forecast the state probability h ≥ 0
steps ahead by

αn+h|n = αn|nAh, (2.3)

as the model parameters A are assumed to be constant over
time.
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2.4. Model Selection

A drawback of using the HMM is the necessity of know-
ing the number of hidden states in advance (such as the hyper-
parameter k in the k-nearest neighbor algorithm and k-means
clustering). There are several criteria used for this model se-
lection: the lazy approach is to use statistical criteria such as
the Akaike’s Information Criterion (AIC) by Akaike (1974),
Bayesian Information Criterion (BIC) by Schwarz (1978),
Hannan-Quinn Information Criterion (HQIC) by Hannan and
Quinn (1979), and Bozdogan Consistent Akaike Information
Criterion (BCAIC) by Bozdogan (1987). These criteria are de-
fined as follows:

AIC = −2 log(L) + 2p,

BIC = −2 log(L) + p log(n),
HQIC = −2 log(L) + p log(log(n)),

BCAIC = −2 log(L) + p(log(n) + 1),

where log(L) is the log-likelihood of the model, n indicates the
number of observations in the time series, and p denotes the
number of independent parameters of the model. In the case
of an HMM with GMM emissions, we have p = S (S + cm),
where S is the number of hidden states in the Markov chain of
the model, m is the number of Gaussian mixtures, and c is the
number of parameters of the underlying distribution of the ob-
servation process. Note that a d-dimensional multivariate Gaus-
sian with full covariance matrix process has c = d + d(d + 1)/2
parameters to estimate. Thus, an HMM with three hidden states
(S = 3), a single 2-dimensional Gaussian process in each hid-
den state, has a total of 24 parameters.

Suppose one were to see the number of hidden states as the
number of strategies we have to make to produce proper pre-
dictions. Then the number should be neither too small nor too
large. If the number of hidden states is too small, then the
risk of misclassification will increase. Too many hidden states
will make the distinction between each hidden state vague and,
therefore, increase the risk for overfitting and increase the com-
putational cost. A similar observation can be made regarding
the number of Gaussian mixture components.

However, if one wishes to maintain a high degree of inter-
pretability of the hidden states in the model, we should keep the
number of hidden states low. Another approach is the greedy
approach, where we decide the number of hidden states in the
HMM by constructing different portfolios based on HMMs with
different numbers of hidden states and then select the number
of hidden states associated with the portfolios of the best per-
formance, e.g., evaluated by the Sharpe Ratio (SR). One should
be aware that we may find different optimal numbers of states
for each asset using these criteria.

3. Data

Our objective is to identify market regimes on various asset
classes, namely commodity (CO), currency (FX), equity (EQ),
and fixed income (FI). We consider d = 15 instruments defined
as I = (I1, . . . , I15)T , consisting of four different instruments per

asset type, except for commodities where we have only three
instruments. All instruments I are future contracts generated
automatically by selecting the nearest contract. The data ana-
lyzed are closing returns of daily frequency from January 2000
to October 2019, consisting of n = 4972 observations (per in-
strument).

Table 1 presents an overview of the performance of each as-
set. This confirms a high degree of variation of the consid-
ered asset; commodities and equities are the most volatile asset
classes, whereas fixed income volatility is several times lower.
Currencies appear to be in the middle of the levels we observe
for equities and fixed income. Fixed income seems to be the
most coherent asset class, whereas we find some large varia-
tions in returns, volatility, and maximum drawdown in com-
modities.

# Instr. Ret. Vol. SR DD
1 CO1 6.36% 17.23% 0.45 16.81%
2 CO2 −20.19% 50.4% −0.2 37.71%
3 CO3 5.46% 36.12% 0.33 24.13%
4 FX1 −0.83% 9.17% −0.04 10.83%
5 FX2 −0.02% 9.58% 0.05 5.83%
6 FX3 −1.82% 9.79% −0.14 8.29%
7 FX4 −0.98% 7.96% −0.08 4.98%
8 EQ1 1.1% 23.34% 0.16 18.39%
9 EQ2 2.64% 18.1% 0.24 15.79%
10 EQ3 1.08% 24.61% 0.17 27.98%
11 EQ4 4.14% 18.67% 0.31 21.02%
12 FI1 3.73% 5.91% 0.66 5.02%
13 FI2 4.22% 5.24% 0.82 3.49%
14 FI3 3.65% 5.88% 0.65 4.19%
15 FI4 2.35% 3.05% 0.79 2.87%

Table 1: Performance overview (annualized return, annualized volatility,
Sharpe ratio, and maximum drawdown) of our instruments I evaluated from
January 2000 to October 2019. Note I ∈ Rn×d with n = 4972 and d = 15.

To further emphasize our instruments’ diversity, we show
the range (minimum; maximum) of the one-year rolling mean,
standard deviation, skewness, and (excess) kurtosis in Table
2. The instruments I show a considerable amount of variabil-
ity, both within and across instrument types, with commodi-
ties showing the most variation and fixed income showing the
least fluctuation. In particular, it is not abnormal that skew-
ness exceeds one (in absolute terms), nor kurtosis is negative
(platykurtic) or very positive (leptokurtic), e.g., CO2 have a
kurtosis above thirty-five.

4. Feature Engineering

4.1. Exponential Weighted Moving Moments

When the underlying parameters are believed to follow a ran-
dom walk, it is natural to use exponential forgetting. One of
the most popular methods for calculating moments is the Expo-
nential Weighted Moving Moment (EWMM) method, which is
applied extensively in many different fields due to its computa-
tional efficiency. This EWMM method is often used to reduce
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# Instr. Mean Std. Skew. Kurt.
1 CO1 (-3.26;3.93) (5.09;23.69) (-3.63;2.20) (-0.42;19.33)
2 CO2 (-8.94;12.6) (14.01;58.96) (-1.01;4.15) (-0.64;35.64)
3 CO3 (-13.48;5.33) (8.61;56.73) (-2.54;1.79) (-0.69;11.50)
4 FX1 (-3.12;1.6) (2.7;13.02) (-4.18;0.97) (-0.66;25.85)
5 FX2 (-2.37;1.57) (2.35;12.07) (-1.36;1.10) (-0.61;6.59)
6 FX3 (-1.89;2.12) (2.67;11.58) (-2.29;2.65) (-0.36;13.96)
7 FX4 (-1.35;1.92) (2.07;9.87) (-0.88;1.30) (-0.70;4.62)
8 EQ1 (-5.55;2.61) (5.84;35.71) (-2.01;1.90) (-0.42;13.29)
9 EQ2 (-5.03;2.41) (4.66;32.84) (-1.41;1.21) (-0.56;5.26)

10 EQ3 (-8.62;4.55) (6.47;49.24) (-2.61;1.25) (-0.80;13.03)
11 EQ4 (-5.77;2.16) (3.64;39.59) (-4.05;1.49) (-0.43;22.06)
12 FI1 (-0.86;1.8) (1.66;8.11) (-1.40;1.39) (-0.75;6.52)
13 FI2 (-0.62;1.34) (1.97;6.25) (-1.32;0.70) (-0.77;3.83)
14 FI3 (-0.81;1.4) (1.94;7.3) (-0.90;1.60) (-0.70;6.92)
15 FI4 (-0.74;0.58) (0.48;4.49) (-4.34;2.24) (-0.49;26.33)

Table 2: Range (min; max) of one-year rolling mean, standard deviation, skew-
ness and (excess) kurtosis of instruments I. Rolling mean and standard devia-
tion are scaled by 103.

noisy time-series data, also called "smoothing" the data. We
can define the EWMMi

t of order i ∈ N at time t by

EWMMi
t = λMi

t + (1 − λ)EWMMi
t−1,

where λ = 2
s+1 with s ∈ N defined as the span. For daily data,

letting our span s = 5 would correspond to a half-life of 5 days.
The choice of s can be seen as a smoothing factor where high
(low) values of s would mean a high (low) degree of smooth-
ing our time series. Using this method to calculate the well-
known exponential weighted moving average of observations
(x1, . . . , xn) is done by letting M1

t = xt for t = 1, . . . , n. Fur-
thermore, setting s = 2t − 1 would give us the usual average
estimate. Hence, there is a trade-off between the sensitivity to
noise and its ability to adapt to parameter changes.

4.2. Feature Extraction

Our interest is to predict risk-adjusted returns, where we in-
corporate an adjustable hyperparameter that changes the stick-
iness of the regimes. We extract the features of our instru-
ments I according to the description of EWMMs in Section
4.1. Denote our features for the first and second moment by
( f i

s)i=1,2 = (EWMMi
t)i=1,2, where s denotes the feature span.

All features ( f i
s)i=1,2 are normalized to zero mean and unit vari-

ance using a z-score normalization fitted on the training data.
After normalization, we concatenate our features depending on
the moment’s order into one feature before passing it onto our
HMM. Thus, our complete features space is fs = ( f 1

s , f 2
s ).

The span s in our features fs will work as a smoothing fac-
tor and determine the frequency of regime shifts, namely the
regime stickiness. The larger we make our smoothing factor
s, the slower our features fs would change, making our hidden
states more sticky, i.e., large diagonal values in the transition
matrix A (See Section 2.1). Thus, portfolio turnover will de-
crease.

There are different approaches in the literature on how to deal
with this increased noise of hidden state prediction; the authors
of Gupta and Dhingra (2012) use the notion of latency days, in
which they forecast the hidden states at time n + 1 using only
the ten previous days of observations. Others detect a regime
change by considering the number of consecutive days in the
same new hidden state, given a rolling window of days (which
one has to estimate/select). Intuitively, smaller window sizes
will lead to a larger number of regime changes, whereas large
window sizes will increase regimes’ length. Putting into an eco-
nomic scenario, one would like to find a window size according
to the preferences for turnover adjusted for transaction costs.

4.3. Prediction of Expected SR

The unsupervised classification computed by the HMM us-
ing our features fs = ( f 1

s , f 2
s ) results in some mean and vari-

ance estimates of every feature in each hidden state S . We aim
to combine these resulting mean and variance estimates into
a self-explanatory financial metric that reflects the underlying
risk-adjusted returns.

Before defining the risk-adjusted return metric we need to
introduce the following notions: let µ = {µ j} j=1,...,S denote the
mean vectors and Σ = {Σ j} j=1,...,S the co-variance matrices with
µ j = (µ j( f 1

s ), µ j( f 2
s ))T ∈ R2 and Σ j = Σ j( f 1

s , f 2
s ) ∈ R2×2 for

j = 1, . . . , S . Thus, by dividing our mean estimate of our
first moment by the mean estimate of the second moment at
each hidden state, we have an Expected SR (ESR) in each
hidden state called ESR j

s. Meaning, for each hidden state
j ∈ {1, . . . , S }, then ESR j

s = µ j( f 1
s )/µ j( f 2

s ) ∈ R. We denote
by ESRS

s the vector (ESR1
s , . . . ,ESRS

s )T ∈ RS , where S is the
number of hidden states in the HMM and s the span used to
calculate our features.

We can use our ESRS
s metric to predict an expected SR

h ≥ 0 steps ahead by combining this with the estimated vec-
tor of state probabilities α and the transition matrix A. Re-
call from (2.3) that αn+h|n = αn|nAh, where αn|n is the vector of
state probabilities at time n and A the transition matrix (given
the sequence of observations (x1, . . . , xn)) with the jth entry
(αn|n) j = P(zn = j|x) for j = 1, . . . , S . Hence, we can define
the predicted ESR (PESR) metric by the product of

PESRS
s (h) = (ESRS

s )Tαn+h|n, (4.1)

where h ≥ 0 and PESRS
s (h) ∈ R. This PESRS

s (h) number tells
us what SR to expect h ≥ 0 times ahead.

Summarizing, ESRS
s is a vector containing an expected SR

of each hidden state of our HMM. Thus, by incorporation the
transition estimates, we obtain PESRS

s (h) as a metric for pre-
dicting expected risk-adjusted returns h ≥ 0 steps ahead given
the HMM with S hidden states. Both metrics are fitted on
the features using span s, extracted from the past observations
(x1, . . . , xn). One may note that more elaborating functions
could be made by including higher order of moments, incor-
porating the downside risk of returns. Extracting features using
closing and opening prices, high and low prices, and volume
may also be of interest, as long as the features are not linearly
correlated.
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5. Experiments

In our experiments, we divide the data set into three parts:
training (up to the year 2012 ≈ twelve years), validation (the
year 2012 to 2016 ≈ four years), and test set (from the year
2016 ≈ four years).

We train our HMM using the features fs = ( f 1
s , f 2

s ) extracted
from our training data. Then we validate the (out-of-sample)
performance by evaluating our model on the validation data.
Selecting training data with suitable variability will help us im-
prove the models’ ability to generalize. Thus, we identify the
desired pattern(s) in our training data, which explains our vali-
dation data’s behavior the best. To avoid getting stuck in a lo-
cal maximum, we select the HMM with the highest score over
many trained models, where each model is randomly initialized.

Our goal is to enhance the risk-adjusted returns with the use
of our proposed PESR metric PESRS

s (h) from (4.1). We choose
the number of hidden states relatively low to have high inter-
pretability of each hidden state in our HMM. Thus, our choice
is an HMM with three hidden states (S = 3), where the hidden
states can be labeled as a bull, bear, and high volatility regime.
Our labeling comes from the fact that our estimated ESR metric
outputs a positive, negative, and (close to) zero value, which can
be labeled into a bull, bear, and high volatility regime. Our high
volatility regimes have an estimated ESR metric close to zero
as the estimated volatility dominates, i.e., µ j( f 2

s ) is sufficiently
larger than µ j( f 1

s ) and µ j( f 1
s ) is close to zero.

We model the outcomes/predictions of the PESR metric
PESRS

s (h) into the two different holding strategies; a long-
only strategy and long/short strategy. We will not restrict the
turnover level, but we incorporate a transaction cost of 5bps for
buying and selling. Lastly, as we are disallowing gearing, we
cap our holdings onto the range [0, 1] for the long-only strategy
and [−1, 1] for the long/short strategy. If we were to increase the
number of hidden states (and/or adding other features) in our
HMM, then the PESR metric’s outcomes may be transformed
into a more advanced holding strategy.

From our training and validation data, we observe that spans
s ∈ {15, 30, 60} seems preferable to have some different levels
of transitions within the four years of testing. Thus, we will
in the next section consider span s ∈ {15, 30, 60}. This range
of spans s would also illustrate how the choice of span affects
our method’s regime stickiness. Recall that the choice of span
s will directly affect the turnover, meaning a lower span s may
increase (absolute) performance and lower regime stickiness,
i.e., increase the level of turnover.

All results in the following section are made using the (out-
of-sample) test period from January 2016 to October 2019.
Before we move to the results of our experiments, then we
may need an overview of the instrument’s performance met-
rics to compare with the outcome of our strategies. In Ta-
ble 3, we have the annualized returns, annualized volatilities,
Sharpe ratios, and maximum drawdowns of each instrument in
I = (I1, . . . , I15)T . As we earlier discussed in Section 3, each in-
strument’s performance metrics vary a lot, but also within each
asset class, we have large variations. However, most annualized
returns are positive (with only a few exceptions) but achieved

under different volatility levels.

# Instr. Ret. Vol. SR DD
1 CO1 7.54% 12.02% 0.67 7.66%
2 CO2 −12.94% 39.25% −0.16 20.0%
3 CO3 10.22% 33.09% 0.46 17.44%
4 FX1 −6.01% 9.52% −0.6 9.93%
5 FX2 −1.68% 6.84% −0.21 3.78%
6 FX3 1.65% 8.57% 0.23 5.56%
7 FX4 0.29% 5.9% 0.08 3.39%
8 EQ1 6.44% 15.35% 0.49 11.8%
9 EQ2 7.51% 12.85% 0.64 6.15%
10 EQ3 5.43% 20.56% 0.36 14.16%
11 EQ4 11.23% 11.35% 1.0 7.82%
12 FI1 0.92% 3.78% 0.27 2.31%
13 FI2 4.23% 4.19% 1.02 2.1%
14 FI3 4.91% 5.35% 0.94 3.23%
15 FI4 1.59% 1.71% 0.96 1.39%

Table 3: Realized performance metrics; annualized returns, annualized volatil-
ity, Sharpe ratios, and maximum drawdowns of instruments I in the test period
from January 2016 to October 2019.

5.1. Results

The results of our long-only strategy based on the outcomes
of PESR3

s(1)s∈{15,30,60} are presented in Table 4. Table 4 con-
firms our claim that lower (higher) levels of span s delivers a
higher (lower) level of turnover. However, different choices of
span s affect the performance metrics individually due to both
the "true" length of market regimes and the transaction costs.
If we consider span s = 30, then what first comes to mind
is that all (annualized) returns are positive with slightly lower
(annualized) volatility leading to an improved SR, now above
one for all assets (except from FX1, which have a SR of 0.86).
Furthermore, CO1, EQ4, and FI1, now have a SR above two.
The daily turnover range from 1.64% to 4.08%, giving an in-
vestment horizon of approximately 25 to over 60 days. Thus,
one would have a monthly re-balancing scheme for this long-
only strategy. The overall results presented in Table 4 show
a convincing improvement of SR with a feasible turnover rate
(which can be changed after preferences through the selection
of span s). Nevertheless, we cannot guarantee that the cumu-
lative return will be improved using our PESR metric, as the
aim is to improve risk-adjusted returns. FI4 is an example of
this as we see an improved SR but not a cumulative return. In
such cases, additional span sizes should be included to embrace
these assets. Several factors affect the investment strategy, but
the choice of span s has a significant influence since it oper-
ates as a smoothing factor and determines the regime shifts’
frequency (i.e., the regime stickiness). Thus, assets with low
volatility may not require much smoothing, suggesting that we
should use higher levels of span s. In addition, transaction costs
play a significant role as the absolute returns are small.

Next, in Table 5, we have the results of our long/short strat-
egy; this strategy seems to provide larger (absolute) returns but
with increased volatility, leading to a lower SR than for the
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Long-only PESR3
15(1) PESR3

30(1) PESR3
60(1)

# Instr. Ret. Vol. SR DD Turn. Ret. Vol. SR DD Turn. Ret. Vol. SR DD Turn.
1 CO1 11.65% 7.8% 2.4 6.29% 4.87% 13.21% 8.27% 2.44 6.48% 2.67% 9.61% 8.39% 1.74 6.67% 1.96%
2 CO2 29.74% 24.13% 2.08 17.7% 3.87% 15.56% 25.29% 1.2 17.7% 2.49% 10.57% 26.39% 0.73 17.7% 2.46%
3 CO3 31.57% 20.62% 1.95 10.94% 4.62% 22.08% 18.35% 1.59 12.81% 3.19% 15.55% 17.88% 1.25 12.81% 2.54%
4 FX1 3.48% 5.71% 0.84 4.09% 4.56% 2.98% 4.89% 0.86 3.67% 2.52% 1.65% 4.51% 0.55 3.29% 2.01%
5 FX2 4.63% 4.26% 1.93 3.78% 3.69% 3.75% 3.89% 1.77 2.57% 2.36% 2.95% 3.89% 1.41 2.57% 1.47%
6 FX3 4.33% 5.31% 1.19 3.59% 4.02% 4.66% 5.19% 1.27 4.72% 2.7% 6.73% 5.75% 1.54 4.72% 2.05%
7 FX4 3.37% 3.16% 1.94 2.13% 3.82% 2.89% 3.7% 1.29 2.71% 2.46% 3.44% 4.13% 1.08 2.42% 2.06%
8 EQ1 15.64% 8.56% 2.48 11.32% 4.49% 11.51% 8.92% 1.73 11.32% 3.74% 8.04% 9.84% 1.04 11.32% 2.66%
9 EQ2 13.44% 6.97% 2.55 4.63% 4.91% 8.02% 7.68% 1.36 4.91% 3.77% 9.81% 8.18% 1.54 5.67% 2.24%

10 EQ3 23.22% 11.22% 2.46 7.58% 5.4% 16.85% 11.47% 1.8 7.58% 3.71% 15.42% 12.05% 1.58 9.58% 2.06%
11 EQ4 14.4% 6.35% 3.0 5.17% 4.79% 12.59% 7.17% 2.01 7.72% 3.43% 10.93% 8.28% 1.44 7.72% 2.07%
12 FI1 2.01% 1.91% 2.49 1.65% 2.44% 2.26% 1.97% 2.58 1.69% 1.64% 1.83% 1.99% 1.92 1.82% 1.44%
13 FI2 5.21% 2.74% 2.62 1.53% 4.91% 4.09% 2.85% 1.93 2.07% 4.08% 3.72% 3.01% 1.6 2.07% 2.97%
14 FI3 6.0% 3.97% 1.8 2.18% 4.64% 4.17% 3.71% 1.35 2.22% 3.87% 3.86% 3.73% 1.31 3.1% 3.09%
15 FI4 0.5% 1.04% 1.25 1.39% 1.63% 0.74% 1.01% 1.62 1.12% 1.68% 1.36% 1.21% 1.97 1.39% 1.27%

Table 4: Realized performance metrics; annualized returns, annualized volatilities, Sharpe ratios, maximum drawdowns, and daily turnovers of long-only strategies
PESR3

s (1)s∈{15,30,60} in the test period from January 2016 to October 2019.

long-only strategy. This means the short leg of our strategies
adds some more volatility to the strategy. Naturally, as we can
be short now, this leads to increasing daily turnover, e.g., for
span s = 30, the turnover now ranges from 3.37% to 7.34%
giving an investment horizon of approximately 15 to 30 days.
As the turnover increase, the same do transaction costs, which
for some strategies/assets may represent a significant part of the
overall performance. Particularly, FI4 has a negative SR (and
cumulative return), however, with lower volatility than the asset
itself.

Time-series plots of cumulative returns of each instrument
I for both HMM strategies (long-only and long/short) can be
found in Appendix A, including their corresponding holdings.
These figures show that we mostly shift between the bull and
bear regime, and only in the high volatility state for some short
periods. Overall, as we seek to increase our risk-adjusted re-
turns, then the long-only strategy would be preferred. However,
if we relaxed our risk-aversion, we could maximize total return
using the long/short strategy.

6. Discussion

HMMs have previously been applied to finance time series
with great success but never on a broad class of assets, at least
not to our knowledge. We proposed an asset independent three-
state HMM for predicting risk-adjusted returns trained using
only the first two moments as features. The model outcome
was combined into a metric for predicting expected SRs. Our
investigation showed a proper ability to predict bull, bear, and
high-volatility regimes, which lead to enhanced risk-adjusted
returns (compared to buying the underlying asset) while keep-
ing a preferable turnover level. However, this could be im-
proved by fine-tuning the choice of span s as transaction costs
could otherwise dominate.

As our findings were made using the entire test dataset to
predict the hidden state sequence, our next focus will then be

an extension to a setting in which we make incremental pre-
dictions of tomorrow’s expected SR using only past informa-
tion. As this may increase noise, we could increase our model’s
predictability by introducing time-varying parameters, i.e., an
adaptive model where the model parameters are updated as new
observations arrive (e.g., see Ford and Moore (1998) and Nys-
trup et al. (2017)). Expanding this analysis with a larger group
of features, e.g., volume, higher-order moments, short-term os-
cillators, and associated gradients, could be appealing. All this
could be combined with the feature saliency HMM proposed by
Adams et al. (2016), which comprises the treatment of "irrele-
vant" features.
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Appendix A. Cumulative Returns of HMM Strategies

Figure A.1-A.15 and Figure A.16-A.30 shows the HMM
strategies long-only and long/short, respectively, based on the
outcomes of PESR3

s(1)s∈{15,30,60} for the instruments I.

Figure A.1: Cumulative returns of long-only HMM strategies for instrument I1
(CO1) in the test period from January 2016 to October 2019.
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Figure A.2: Cumulative returns of long-only HMM strategies for instrument I2
(CO2) in the test period from January 2016 to October 2019.

Figure A.3: Cumulative returns of long-only HMM strategies for instrument I3
(CO3) in the test period from January 2016 to October 2019.

Figure A.4: Cumulative returns of long-only HMM strategies for instrument I4
(FX1) in the test period from January 2016 to October 2019.

Figure A.5: Cumulative returns of long-only HMM strategies for instrument I5
(FX2) in the test period from January 2016 to October 2019.

Figure A.6: Cumulative returns of long-only HMM strategies for instrument I6
(FX3) in the test period from January 2016 to October 2019.

Figure A.7: Cumulative returns of long-only HMM strategies for instrument I7
(FX4) in the test period from January 2016 to October 2019.
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Figure A.8: Cumulative returns of long-only HMM strategies for instrument I8
(EQ1) in the test period from January 2016 to October 2019.

Figure A.9: Cumulative returns of long-only HMM strategies for instrument I9
(EQ2) in the test period from January 2016 to October 2019.

Figure A.10: Cumulative returns of long-only HMM strategies for instrument
I10 (EQ3) in the test period from January 2016 to October 2019.

Figure A.11: Cumulative returns of long-only HMM strategies for instrument
I11 (EQ4) in the test period from January 2016 to October 2019.

Figure A.12: Cumulative returns of long-only HMM strategies for instrument
I12 (FI1) in the test period from January 2016 to October 2019.

Figure A.13: Cumulative returns of long-only HMM strategies for instrument
I13 (FI2) in the test period from January 2016 to October 2019.
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Figure A.14: Cumulative returns of long-only HMM strategies for instrument
I14 (FI3) in the test period from January 2016 to October 2019.

Figure A.15: Cumulative returns of long-only HMM strategies for instrument
I15 (FI4) in the test period from January 2016 to October 2019.

Figure A.16: Cumulative returns of long/short HMM strategies for instrument
I1 (CO1) in the test period from January 2016 to October 2019.

Figure A.17: Cumulative returns of long/short HMM strategies for instrument
I2 (CO2) in the test period from January 2016 to October 2019.

Figure A.18: Cumulative returns of long/short HMM strategies for instrument
I3 (CO3) in the test period from January 2016 to October 2019.

Figure A.19: Cumulative returns of long/short HMM strategies for instrument
I4 (FX1) in the test period from January 2016 to October 2019.
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Figure A.20: Cumulative returns of long/short HMM strategies for instrument
I5 (FX2) in the test period from January 2016 to October 2019.

Figure A.21: Cumulative returns of long/short HMM strategies for instrument
I6 (FX3) in the test period from January 2016 to October 2019.

Figure A.22: Cumulative returns of long/short HMM strategies for instrument
I7 (FX4) in the test period from January 2016 to October 2019.

Figure A.23: Cumulative returns of long/short HMM strategies for instrument
I8 (EQ1) in the test period from January 2016 to October 2019.

Figure A.24: Cumulative returns of long/short HMM strategies for instrument
I9 (EQ2) in the test period from January 2016 to October 2019.

Figure A.25: Cumulative returns of long/short HMM strategies for instrument
I10 (EQ3) in the test period from January 2016 to October 2019.
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Figure A.26: Cumulative returns of long/short HMM strategies for instrument
I11 (EQ4) in the test period from January 2016 to October 2019.

Figure A.27: Cumulative returns of long/short HMM strategies for instrument
I12 (FI1) in the test period from January 2016 to October 2019.

Figure A.28: Cumulative returns of long/short HMM strategies for instrument
I13 (FI2) in the test period from January 2016 to October 2019.

Figure A.29: Cumulative returns of long/short HMM strategies for instrument
I14 (FI3) in the test period from January 2016 to October 2019.

Figure A.30: Cumulative returns of long/short HMM strategies for instrument
I15 (FI4) in the test period from January 2016 to October 2019.
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