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Abstract 

Retarding field analyzers (RFA) provide an integral of the ion velocity distribution in 

tokamak edge plasmas, leading, in principle, to an estimate of the ion temperature. However, 

the presence of the RFA itself perturbs the ambient plasma, such that the measured 

distribution is distorted with respect to the unperturbed one far from the probe. Here, 

collisionless kinetic modeling is employed to investigate the modification of the plasma 

characteristics (temperature, particle flux, density, and electric potential) in the presheath of 

the RFA. The kinetic equations are solved independently by means of two different numerical 
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methods, which provide a reliable check of their results. Moreover, they are interpreted in 

light of a simplified kinetic analytical model. Systematic numerical studies are performed for 

a large range of values of the ion-to-electron temperature ratio and the parallel drift speed. In 

the same way that a Mach probe measures upstream-downstream asymmetries of ion 

saturation current in flowing plasmas, RFAs are expected to measure important asymmetries 

of sheath potential and ion temperature. These asymmetries can be used to estimate accurately 

the ion temperature in the absence of the probe perturbation. 

 

I. Introduction 

 

A good knowledge and control of edge plasma conditions are necessary to maintain a steady 

state in fusion devices. In particular, material edge tokamak structures such as antennae, 

limiters, or divertor plates are eroded by the impact of energetic particles. Such a flux 

generates impurities by physical sputtering, which can be ionized in the scrape-off layer 

(SOL) and transported into the core plasma, thus degrading fusion energy and confinement1,2. 

In order to assess the incident power flux on material surfaces and the magnitude of impurity 

generation, the ion energy distribution and temperature are determining parameters. However, 

measuring accurately the latter is a difficult task. Spectroscopic measurements correspond to 

an average over a volume of plasma and do not provide directly the ion temperature, as 

hydrogen isotopes do not emit photons3. The ion temperature is estimated from the neutral 

temperature and an ion-neutral coupling model is therefore required4-6. An alternative 

technique, using a RFA device (retarding field analyzer)7-11 that measures directly the ion 

energy distribution, is investigated here by means of a kinetic model and numerical 

simulations. 

 
a) corresponding author's email address: Fabrice.Valsaque@lpmi.uhp-nancy.fr 
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A schematic description of the RFA is represented in Fig. 1. It consists of a small entrance slit 

in the probe surface, two grids and a collector. The probe is aligned along the magnetic field 

lines so as to measure the parallel component of the ion flux. The entrance slit is sufficiently 

biased to a negative (and constant) potential e, so that most of the electrons coming from the 

plasma are repelled. The retarding potential S applied to the first grid ranges from zero to 

large positive values in order to scan the ion distribution function. Only the ions with a kinetic 

energy larger than eS are collected. The second grid is negatively biased to a negative 

(constant) voltage er to repel energetic electrons from the plasma (which pass the barrier 

potential of the entrance slit) and cancel out secondary electron emission created by ion 

impact on the collector. The entrance slit width is of the order of a Debye length or less11, so 

that it is shielded by the sheath. In this case, the ion distribution function entering the analyzer 

is reasonably close to the one reaching its external surface, and most incident electrons are 

repelled back into the plasma.  

 

The experimental device RFA has already been employed in various domains of plasma 

physics12-15, although the high heat flux released in the SOL and the smallness of the Debye 

length had limited its use for tokamak plasmas in the past7-10. Nowadays, even if this problem 

can be overcome by an appropriate design of the analyzer11,16, there are still some difficulties, 

particularly because RFA measurements strongly depend on the plasma flow. As large plasma 

flows are frequently observed in the SOL17-20, their effect should be taken into account to 

provide a realistic interpretation of the measurements. The latter point will be addressed in the 

present paper. 
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Various types of models, both fluid and kinetic, have been used in the past for the theoretical 

and numerical analysis of the plasma-probe transition layer. As the ion density is depleted by 

the probe, the dynamical equations must be supplemented by an ad hoc source term, in order 

to reach an equilibrium state in the presheath. Different ion sources were proposed by Emmert 

et al.21 and Bissel and Johnson22, but, as their studies were restricted to the case of a plasma 

bounded between two walls, no plasma flow was considered. Stangeby23 proposed a fluid 

model suitable for the case of tokamak edge plasmas, but the source he used only permitted 

cross-field diffusion from the plasma into the presheath, and not vice versa. Even though in 

strong magnetic field situations, the inward (plasma to presheath) transport is larger than the 

outward transport, the latter cannot be neglected. A more realistic source, accounting for ion 

exchange in both directions, was introduced by Hutchinson24. This modification significantly 

improved the realism of the model, which has since shown to be in good agreement with 

experimental results25-26. However, the fluid approach adopted in Ref. 24 assumed isothermal 

ions, which is not entirely satisfactory in such plasma-probe transition layers. In a subsequent 

paper, Chung and Hutchinson27 generalized this approach by using a kinetic model, which 

provides direct information on the ion distribution and is no more restricted by the isothermal 

assumption. For the sake of the interpretation of ion temperature measurements by RFA, the 

kinetic approach is crucial as the shape of the ion distribution function (which is rarely 

Maxwellian) plays a considerable role. 

 

The kinetic model developed by Chung and Hutchinson27, in the context of Mach probes16, is 

applied to the case of RFA in Sect. II. Section III starts with a quick description of the two 

different numerical approaches to solve the model's equations. Then, Sect. III contains our 

interpretations of the numerical results and their comparison with analytical solutions derived 

from a simplified kinetic model. We discuss the asymmetries between RFA measurements 
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taken on each side of the probe. Furthermore, the plasma drift and plasma ion temperature 

effects are studied. Conclusions and discussions on the experimental applications are reported 

in Sect. IV. 

 

II. Model: probe in a strong magnetic field 

 

A. Governing equations 

 

In order to model the plasma-probe interaction in the SOL of tokamak plasmas, we consider 

the interaction of a collisionless flowing plasma with a fixed wall, in the presence of a strong 

uniform magnetic field, following the approach of Chung and Hutchinson27. The density 

perturbation caused by the probe can be characterized by two regions: an electrically charged 

Debye sheath and a quasineutral presheath. The Debye sheath is found in the immediate 

vicinity of the wall and is a few Debye lengths thick. In typical tokamak edge plasmas, the 

Debye sheath thickness is of the order of 0.1 mm28, whereas the diameter of the probe tends to 

be a few centimeters. On a macroscopic scale the Debye sheath is negligible; it is a thin, 

collisionless, and sourceless transition layer that serves to balance the ion and electron fluxes 

to the probe surface. The quasineutral presheath region extends along the field lines inside the 

flux tube connected to the probe. The presheath length is determined by the balance between 

the parallel flow normal to the probe surface and the cross-field transport that feeds the 

presheath from the unperturbed plasma outside the flux tube (Fig. 2). The probe considered is, 

indeed, a double-mounted RFA, which can provide simultaneous measurements from both 

sides. The magnetic field is strong enough that the ion gyroradius is significantly smaller than 

the size of the probe. In most tokamak SOLs with magnetic field strengths of a few Teslas and 

ion temperatures some tens of electron volts, the Larmor radius is typically a few tenths of a 
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millimeter. In this case, the cross-field transport can be considered as being diffusive 

(generally anomalous)27 and is modeled as a random migration of ions across magnetic field 

lines. The migration rate is governed by the magnetic field strength, so that, for typical SOL 

regimes, parallel convection dominates over perpendicular transport. Therefore, the parallel 

length of the presheath L// is very long compared to the cross-field dimension of the probe L⊥. 

For instance, typical values for the Tore Supra tokamak are L// = 20 m and L⊥ = 2 cm with     

cS = 50 km/s and D⊥ = 1 m2s-1, where cS and D⊥ are respectively the acoustic velocity and the 

cross-field diffusion coefficient. In this case, we can use a one-dimensional model in the 

parallel direction, the cross-field transport being taken into account by a simplified source 

term27,29. For a collisionless presheath, the ion dynamics is governed by the Vlasov equation. 

Its parallel projection in case of singly charged ions can be written as: 

 

 

 (1) 

 

where fi (x,v,t) is the ion distribution function in the presheath, v the ion parallel velocity, e the 

ion charge, (x,t) the presheath electric potential computed self-consistently from the ion 

distribution, mi the ion mass and S the volume source term. As the latter corresponds to a 

random migration of ions across magnetic field lines, exchanges between the unperturbed 

plasma and the presheath must be considered. We assume that these exchanges occur, in both 

directions, at a frequency W = D⊥ / L⊥
2. The volume source S therefore becomes: 

 

S = W ( f0 – fi ) (2) 
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where f0(v) is the ion distribution function in the unperturbed plasma. The first term on the 

right hand side of Eq. (2) models ions entering the presheath from the unperturbed plasma and 

the second ions exchanged in the other direction. Assuming electrons at thermal equilibrium, 

their density in the presheath is given by the Boltzmann relation: 

 

ne(x,t) = n0 exp (e (x,t) / kBTe)  (3) 

 

where n0 is the unperturbed plasma density, kB is Boltzmann's constant and Te the electron 

temperature. 

 

This set of equations is closed by the quasineutrality condition: 
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which implicitly assumes that De = 0, so that the Debye sheath is neglected. 

 

B. Normalized equations 

 

Assuming quasineutrality and a constant ion exchange frequency W, the previous self-

consistent equations are normalized with the following transformations: 

  

 (5) 
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where we define the cold ion sound speed ce = ( kBTe / mi )
1/2 as a type of acoustic velocity. In 

our treatment, we do not use a fluid approximation, such as the assumption of isothermal or 

adiabatic behavior for the ions, so that the choice of a precise definition of the acoustic 

velocity is not important. This normalization, which is useful to express velocities with an 

appropriate unit, will be used throughout the rest of this paper. By dropping the primes for 

brevity on the quantities defined in Eq. (5), Eqs. (1-4) can thus be written in the form: 

 

 (6) 

 

= dv  ftx iln),(  (7) 

 

Outside the presheath, the ion distribution function f0 is assumed to be a shifted Maxwellian 

with temperature Ti0 and mean velocity U0. The expression of f0 is thus 
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where  = Ti0 / Te. 

 

We assume that the probe surface (located at x = 0) is perfectly absorbing, and that far from 

the probe the ion distribution is equal to f0. Besides, using Eqs. (7-8), the boundary conditions 

become: 

 

fi(x = 0, v > 0) = 0,   fi(x → ) = f0,    (x → ) = 0  (9) 
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on the upstream side and 

 

fi(x = 0, v < 0) = 0,   fi(x → – ) = f0,    (x → – ) = 0  (10) 

 

on the downstream side (see Fig. 2). 

 

Therefore, considering this self-consistent set of equations, the presheath behavior is governed 

by only two dimensionless parameters of the unperturbed plasma, which are the ion to 

electron temperature ratio  and the mean ion velocity U0 (normalized to ce) also called the 

plasma drift velocity. The ion particle density, current density, mean speed, and kinetic 

temperature are computed as moments of  fi: 
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III. Results 

 

Numerical results are always generated with an inaccuracy inherent to the method used. We 

solved independently the set of Equations (6-7), with the boundary conditions Eqs. (9-10), by 

means of two different numerical approaches. The results are obtained by initializing the 

codes with a spatially uniform ion distribution, which is then left to evolve self-consistently 

until it reaches a stationary equilibrium. The first numerical tool is a rendered-down version 

of the two-dimensional GUNDY particle-in-cell (PIC)30 code used to simulate ion flows 

around a cylindrical Gundestrup probe26. The presheath is adequately described by 100 cells 

containing 2000-4000 particles each. The second numerical tool is a Vlasov-Eulerian code31-

34. It computes directly the ion distribution function on a grid corresponding to the phase 

space variables (x, v), which are both sampled with 200-400 points. As it will be presented in 
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the following, results from both numerical approaches are in good agreement in all the cases 

studied. We interpret this agreement as an indication that numerical inaccuracy does not 

significantly affect the results.  

 

A. Ion distributions and probe characteristics for  = 2 and U0 = 1 

 

The primary goal of this paper is to propose a method to extract the ion temperature in the 

unperturbed plasma from quantities measured by the RFA. For the purpose of illustration, the 

two parameters controlling the presheath behavior are firstly set to  = 2 and U0 = 1; the ions 

are twice as hot as electrons and drifting with a parallel speed equal to ce in the unperturbed 

plasma. The latter value corresponds to a fluid Mach number (drift velocity normalized to the 

acoustic velocity with isothermal ions cS = ( kB (Te+ Ti) / mi )
1/2) of around 0.6, which is 

consistent with expectations in SOL plasmas17-20. Referring to Figs. 1-2, ions moving towards 

the analyzer on the downstream side have positive speeds and vice versa on the upstream side. 

Figs. 3.a-b present the ion distribution function fi (x,v) obtained from the Vlasov-Eulerian 

simulations, on both sides of the analyzer, at different positions. It shows the progressive 

modifications from the Maxwellian distribution at the plasma boundary to the one at the wall. 

(Strictly speaking, we calculate the distribution function at the sheath edge, but for brevity we 

refer to it here as the "wall". The actual distribution at the solid surface can be easily obtained 

by applying a shift in energy equal to the sheath potential drop.) On both sides, the ion density 

decreases, near the probe, as the integral of the velocity distribution becomes smaller. This 

depletion of the distribution function is due to the total absorption condition at the wall. On 

the upstream side (Fig. 3.b), the kinetic modifications concern almost only ions entering the 

presheath with a velocity not directed to the probe. The others are collected without being 

significantly accelerated, which indicates that the electric field is weak. The wall distribution 
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is more distorted on the downstream side (Fig. 3.a) because of the heavy depletion by the 

probe of ions coming from the upstream direction. Therefore, the density is very low and the 

potential drop is large, as given by the Boltzmann relation [Eq. (7)]. Ions are then accelerated 

by the electric field in the direction of the wall. This shifts the distribution profiles towards 

positive values of the velocity. Further, as it was also noticed in a preliminary study35, the 

shape of the distribution is no longer Maxwellian (e.g. at x = 0.1 the profile is clearly 

asymmetric), which points out that a kinetic model is indeed necessary for this kind of 

problem.  

 

An analytical solution can be derived from the Vlasov equation, by neglecting the electric 

field. At equilibrium ( fi    t = 0), Eq. (6) becomes: 

 

 i0

i ff
x 

f 
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According to the boundary conditions specified in Eqs. (9-10), a solution for fi is: 
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where positive and negative signs stand respectively for upstream and downstream cases, and 

H is the Heaviside function. It is useful to contrast this model with the full kinetic results in 

order to distinguish the importance of simple geometrical shadowing with respect to distortion 

of the distribution function by the electric field. The distribution profiles fa at the same 

positions as those presented from the numerical results are plotted in Figs. 3.c-d. For 

velocities directed towards the analyzer (i.e. v > 0 on the downstream side, and v < 0 on the 
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upstream side), all profiles are identical to the equilibrium Maxwellian distribution, because 

the ions are not accelerated. The function fa is continuous even at the apparent singularity       

v = 0, except for x = 0: as x decreases, its gradient at v = 0 becomes gradually steeper, until a 

discontinuity occurs. On the analyzer (x = 0), the analytical model yields a shifted 

Maxwellian, truncated at v = 0. In the general case (for U0  0), the ion distributions are, thus, 

not simply half-Maxwellian. The shadowing effect of the probe yields a density decrease and 

thus a potential drop, which are both larger on the downstream side. Therefore, the electric 

field magnitudes on each side of the probe are not the same. This fact determines the relative 

degree of distortion of the distribution functions computed numerically and explains why the 

upstream analytical profiles are closer to the numerical results. 

 

Fig. 4 shows, on both sides of the probe, the electrostatic potential, ion current, and ion kinetic 

temperature, which are computed from Eq. (11). Table I summarizes the values of such 

quantities, at the wall, for the different methods. Both numerical methods, PIC and Vlasov-

Eulerian, are in good agreement, especially for the profile variations. On the downstream side, 

as it was mentioned before, the density perturbation is larger, so that the wall potential is more 

negative. In the vicinity of the wall, the potential and kinetic temperature gradients are rather 

steep, which required the use of a non-uniform mesh to obtain accurate results. The kinetic 

temperature quantifies the narrowing, near the wall, of the distribution functions of Figs. 3.a-

b. However, this does not give any information on the distortions of such distributions. By 

using the same procedure for fa as for fi in Eq. (11), the analytical model gives the density, 

current, and temperature, which are also plotted in Fig. 4. Both analytical and numerical 

results present a substantial kinetic temperature drop near the analyzer, which is similar to the 

case of a presheath surrounding a Mach probe26. Here, an isothermal ion assumption is clearly 

not valid. Considering the drastic assumption made on the electric field, the analytical profiles 
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are rather close to those obtained by solving numerically the full Vlasov equation. This points 

out that (for this case  = 2 and U0 = 1) the electric field effects are not predominant : the 

presheath behavior is mainly governed by the probe shadowing effect.  

 

Table I. Density, electric potential, ion current and ion kinetic temperature, at the wall. 

(Quantities respectively normalized to n0, kBTe, n0ce and Te;  = 2 and U0 = 1.) 

 

 Downstream   Upstream 

  ni  Ji Ti,kin   ni  Ji Ti,kin 

 PIC 0.21 -1.56 0.31 0.43   0.67 -0.40 -1.25 0.94 

 Vlasov 0.19 -1.66 0.31 0.37   0.66 -0.42 -1.25 0.91 

 Analytical 0.24 -1.43 0.20 0.47   0.76 -0.27 -1.20 1.09 

 

Concerning the measurements by the RFA (see Fig. 1), the retarding potential S applied to 

the ion selector affects only the ions whose kinetic energy is too small to reach the collector. 

Therefore, the differential fluxes at the wall v.fi (x = 0,v), can be scanned by varying S on 

each side. Provided that the potential on the collector is lower than the one at the entrance slit 

(c < e), all the ions passing through the ion selector reach the collector (even for S = 0). 

The upstream and downstream collected currents are then: 
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Collected currents vary from their maximum values (obtained for S = 0) to zero (for large 

positive values of S). RFA characteristics, which are the semi-logarithm plots presented in 
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Fig. 5, are the kind of results obtained experimentally. In our computations, the Debye sheath 

was neglected, so the numerical results correspond only to the decreasing part of the curve. 

However, the plateau region in Fig. 5 can be explained as follows. The entrance slits (see also 

Fig. 1), on both side of the RFA, are usually negatively biased to the same value e (lower 

than ps =  (x = 0)). Before entering the RFA, all ions are accelerated by the potential drop          

d  ps – e, which is considered occurring within the collisionless Debye sheath. Therefore, 

as long as S is lower than d, no ions are deflected and the collected current remains 

maximal. The electric potential ps at the wall (x = 0), is larger (in absolute value) on the 

downstream side, therefore the potential drop d is smaller. The absolute value of e does not 

really matter, as it just shifts the two characteristics by the same voltage. What is more 

important is the relative difference between them, which is   d,up – d,down = up (x = 0) – 

down(x = 0): we call this quantity upstream-to-downstream potential difference. 

 

An estimated ion temperature TRFA = – 1/ can be deduced from the slope  of the linear part 

of the characteristics11. We computed the slopes by using a least square method. This 

estimation would give the correct ion temperature only if the ion distribution on the wall were 

a half-Maxwellian with no shift, which is clearly not the case, as shown in Fig. 3. The kinetic 

modifications can be significant, so it is not surprising that the measured value is not equal to 

the equilibrium plasma temperature Ti0. However, by means of measures on both sides of the 

analyzer, as we will explain, a more accurate estimation can be obtained. As most 

characteristics are not linear on their upper part and very small currents are not experimentally 

measurable, we need to restrict the range of data to attempt to simulate what one can really 

measure. On the other hand, such range must be sufficiently wide to have enough data to 

compute accurately the slope. We have used a standard procedure, which corresponds to a 

good compromise for all values of  and U0, by fitting the numerical values for which the 



15 

logarithm of the current is included between ln (|Jmax|) - 1 and ln (|Jmax|) - 4, where Jmax is the 

current collected for S = 0. The analytical model gives, by using fa in Eq. (14): 
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where upper and lower signs refer respectively to upstream and downstream cases and erf is 

the error function. In Fig. 5, both the analytical and the numerical characteristics are shifted 

by the constant value d. On the downstream side, the analytical curve does not fit well the 

numerical data. However, we are only interested in the slope of its linear part. The RFA 

temperature as a function of the retarding potential S can be defined as the inverse of the 

local slope of the curve: 
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The analytical model gives: 
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The first term in Eq. (17) corresponds to the result obtained by Pitts11 with a non-shifted half-

Maxwellian distribution and coincides with the temperature in the plasma core. The second 

term is the correction due to the drift of the plasma and vanishes for U0 = 0. It is positive on 

the upstream side and negative on the downstream side. Therefore, one can expect that the 
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measured RFA temperature is larger than the real ion temperature on the upstream side, and 

lower on the downstream side. As S increases, the error function in Eq. (17) tends to –1 

faster than the exponential function grows. Thus, the analytical RFA temperature remains 

finite and tends to  as S becomes larger (an asymptotic expansion to the first order gives 

TRFA,a (S →)    U0  / (2S)½). However, since for large values of the potential the 

current is rather small, this limit is not interesting from an experimental point of view. A 

Taylor series of Eq. (17) with respect to the variable U0, shows that odd terms in the 

expansion for the downstream case are opposite in sign to the odd terms for the upstream 

case. Thus, the average RFA temperature: 

 

2

downRFA,upRFA,

RFA

TT
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  (18) 

 

is equal to  to the second order in the expansion. Therefore, even if the RFA temperature on 

each side of the analyzer is not equal to the one in the plasma, we can expect that the 

estimation from Eq. (18) gives accurate results as long as the plasma drift is not too important.  

 

For the sake of comparison with the numerical results, we estimated the analytical RFA 

temperature within the same current interval, i.e. ln (|Jmax|) - 1 > ln Jc,a > ln (|Jmax|) - 4. As 

TRFA,a does not depend on Jc,a but rather on S, the corresponding retarding potential interval 

(S1 < S < S4), for each set of values of  and U0, is found numerically by means of a 

dichotomy method. Then TRFA,a is averaged between S1 and S4: 

 

.
1 S4

S1

SSRFA,a

S1S4

RFA,a 





−

= d )(TT  (19) 
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Table II gives the comparison between RFA temperatures obtained by different methods. As 

the RFA temperature is estimated within a current range, the scan of the ion distribution 

function is restricted within an energetic range (too low or too high energy ions in the 

distribution are not taken into account). The RFA temperature, then, corresponds to the 

temperature of a Maxwellian distribution that best fits the ion distribution within this 

energetic range. The ion distributions analyzed are not Maxwellian, so that this is not a 

measure of the standard deviation as given by the kinetic temperature, which explains why the 

RFA temperatures are different from those shown in Table I. Average RFA temperatures are 

equal to  (the plasma temperature) with a relative error lower than 3 %. 

 

Table II. Downstream, upstream and average RFA temperatures (normalized to Te;  = 2 and 

U0 = 1). 

 

 = 2, U0 = 1   TRFA,down TRFA,up   RFAT  

 PIC  1.52 2.58  2.05 

 Vlasov  1.51 2.58  2.05 

 Analytical   1.50 2.62   2.06 

 

 

B. Drift and ion temperature effects 

 

Keeping the procedure presented in Sect. III.A, we now investigate a larger range of the 

plasma parameters:  varying from 0.1 to 5, and U0 varying from zero to cS, where cS is the 

acoustic velocity with isothermal ions cS = ce (1+)1/2. 
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The agreement between PIC and Vlasov-Eulerian results was verified for each set of values 

(, U0). The physical correctness of the results was checked in two ways. Firstly, a few runs 

with zero electric field were performed to compare with the analytic solution, and excellent 

agreement was found. Secondly, fluid moments of the ion distribution provide a simple test to 

confirm the validity of the numerical results. Integration of the Vlasov equation (6), with 

respect to v, and using the definitions of Eq. (11), gives at equilibrium ( fi   t = 0): 

 

i
i 1 n

x 

J 
−=




 (20) 

 

Typically, in our simulations, Eq. (20) is verified with an error below 0.4 %. 

 

In Fig. 6, the ratio of upstream-to-downstream collected current (for S = 0) is plotted versus 

the Mach number (equal to the drift velocity normalized to the acoustic velocity cS) and for 

different values of the parameter  (from 0.1 to 5). As both numerical methods give very 

similar results, only those from the Vlasov-Eulerian computations are presented. For each , 

the current ratio curves are remarkably straight on a semi-logarithm scale, as it was pointed 

out by Chung and Hutchinson27. By expressing the plasma drift speed in units of cS instead of 

ce, all current ratio curves have almost the same slope. Therefore, this kind of plot can be used 

to calibrate Mach probes26,36, as the value of  is not required to estimate the dimensionless 

Mach number. The upstream-to-downstream RFA temperature ratio and upstream-to-

downstream difference potential , plotted versus the plasma drift speed U0, also yield 

relatively straight lines (see Fig. 7) for   1. It appears that both  and the RFA temperature 

ratio increase with U0 and decrease with . The dependence on U0 can be expressed as: 
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, (21) 

 

where KJ(), KT() and K() are computed with a least-square method to fit the curves of 

Figs. 6 and 7. The dependence of such quantities on  is shown in Fig. 8. 

 

For cold ions ( = 0.1 or 0.2), the semi-logarithm plots of RFA temperature ratio versus the 

plasma drift speed U0 are not linear. For these values of , the second equality of Eq. (21) is 

not a good approximation. This fact is illustrated in Fig. 9, which shows the numerical and 

analytical RFA temperatures [computed from Eq. (16)] versus the retarding potential, on the 

downstream case for U0 = 0.5 and  ranging from 0.1 to 2. As it was mentioned in Sect. III.A: 

(i) a non-shifted Maxwellian distribution (U0 = 0) would give [see Eq. (17)] TRFA (S) =  

 S; (ii) by taking into account the shift, downstream RFA temperatures are lower than the 

corresponding values of ; (iii) RFA characteristics are not linear on their upper part (see   

Fig. 5), and therefore TRFA (S) is not a significant quantity for small values of the retarding 

potential. Figure 9 shows that for cold ions it is less justified to deduce one single value of the 

RFA temperature from the RFA characteristic, as the latter is constant only in a narrow 

interval of the potential S. Since the analytical model neglects the presheath electric field, 

leading to a truncated Maxwellian distribution on the analyzer [see Eq. (13)], one can see 

qualitatively the differences due to the electric field on the kinetic distribution. For  < 1 and 

as  decreases, electric effects become larger, and the numerical curves of Fig. 9 are farther 

from the analytical ones. Therefore, deducing the plasma temperature from the RFA one is 

less accurate since the correlation between the ion distributions at the plasma boundary and on 

the analyzer is less clear. Moreover, for each value of , the RFA temperature was estimated 
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within a current interval compatible with the restrictions presented in Sect. III.A. These 

intervals are delimited by the thick vertical segments on each numerical curve of Fig. 9. One 

can see that they are less and less appropriate as  decreases, since they do not correspond to 

the intervals where TRFA (S) is constant.  

 

From Eq. (18), the average RFA temperature 
RFAT  is plotted, in Fig. 10, versus the plasma 

drift speed U0. According to Sect. III.A., the average temperature computed from the 

analytical model gives a good estimation of the ion plasma temperature  as long as U0 is not 

too large (typically U0  1). Except for cold ion plasmas ( < 1), the average RFA temperature 

obtained from the simulations remains close to  even for greater drift velocities; for  = 1, 2, 

3.5 and 5, the relative differences between 
RFAT and , are below 6, 3, 1.5 and 1% 

respectively. For lower values of , due to the problems described above, the ion temperature 

estimation is less accurate, although it remains roughly correct. In contrast, temperature 

estimations obtained from a single measure on either side of the RFA are far less accurate 

(see, for example, Table II). Therefore, the averaging procedure of Eq. (18) constitutes a 

reliable technique to deduce the ion temperature from RFA measurements. 

 

IV. Conclusion 

 

The behavior of the presheath surrounding a RFA analyzer has been studied by means of 

theoretical analysis and numerical simulations of a kinetic model. The model incorporates the 

effect of self-consistent electric fields, global plasma drifts, as well as cross-field diffusion 

across magnetic field lines, and was first proposed by Chung and Hutchinson27 in a seminal 

paper. We have used two different numerical methods, particle-in-cell and Vlasov-Eulerian, 

which provides a reliable check for the results of the simulations. In addition, a simplified 
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analytical model has been derived, by neglecting the effect of the electric field in the 

presheath.  

In a tokamak environment, the ambient plasma far from the probe is characterized by a shifted 

Maxwellian distribution, with a well-defined temperature and average drift velocity. In the 

vicinity of the probe, the plasma is perturbed (mainly due to the shadowing effect induced by 

the probe itself), and its velocity distribution is no longer Maxwellian. The perturbation also 

depletes the ion density, and thus generates a self-consistent electric field. Our simulations 

have shown clearly how the equilibrium Maxwellian gets distorted in the presheath, both on 

the upstream side (where velocities are mainly directed towards the probe) and on the 

downstream side (where velocities are mainly directed opposite to the probe). The two sides 

of the probe are not symmetric. Modifications of the ion distribution function are more 

significant on the downstream side than on the upstream side, and consequently the density 

and electric potential drop are larger on the former than on the latter. Both PIC and Vlasov-

Eulerian codes yielded very similar results for the fully self-consistent problem. Less 

obviously, the results from the analytical model (which neglects the electric field) were also in 

relatively good agreement with the simulations, except for very low ion-to-electron 

temperature ratios. (This is not a severe limitation for measurements in SOL plasmas, as the 

ion temperature is generally believed to be close to or greater than that of the electrons1,6,10.) It 

appears therefore that the electric field plays only a secondary role in determining the 

structure of the presheath, at least for warm-ion regimes relevant to SOL plasmas. The 

primary effect in shaping the presheath originates from the geometric shadowing induced by 

the very presence of the probe. 

 

The main purpose of the RFA is to measure the ion temperature. In experiments, this is done 

by plotting the current-voltage characteristics on a logarithmic scale: the ion temperature is 
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then proportional to the inverse of the slope of this curve. This procedure, however, fails to 

incorporate the effect of the presheath on the ion velocity distribution, and yields a value of 

the ion temperature that is different from the “real” value in the unperturbed plasma. The 

difference is particularly significant when the plasma flow is large, as we observed in our 

simulations. Further, the results are different on each side of the probe: the measured 

temperature on the upstream side is larger than that on the downstream side. Nevertheless, we 

showed that an accurate estimation can be obtained by taking the average of the temperatures 

measured on each side of the probe. For ion temperatures relevant to tokamak SOL plasmas 

(i.e. Ti ≥ Te), this averaging procedure yields the unperturbed ion temperature within an 

accuracy of a few percent. For lower ion temperatures, the method is less accurate, although it 

still yields much better results than a single measure on either side of the analyzer. 

 

Finally, other quantities than the ion temperature can be measured with RFAs. In particular, 

the analyzer can act as Mach probe (see Fig. 6), by setting the retarding potential S to zero, 

and using a set of measures of the upstream and downstream collected currents to deduce the 

Mach number (parallel drift speed normalized to the acoustic velocity). In order to complete 

the SOL plasma analysis, it would be interesting to mount a RFA and a Langmuir probe tip on 

the same head. Both temperatures could thus be measured simultaneously, the electron 

temperature from the Langmuir probe, and the ion temperature using the averaging procedure 

discussed in the previous paragraph and in Sec. IV.B. This would provide a value for the 

acoustic velocity and, by using the measure of the Mach number as discussed above, would 

yield the plasma drift velocity in dimensional units. 
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FIG. 1: Experimental device: schematic view of the Retarding Field Analyzer, on the 

upstream side. 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIG. 2: RFA in a flowing plasma, in the presence of a strong magnetic field. 
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FIG. 3: a-b: Vlasov simulations; c-d: analytical model. Ion distribution profiles ( = 2 and     

U0 = 1) for different positions from the plasma to the wall (dashed curve). (Left: downstream 

side, x = 15, 1.5, 0.7, 0.25, 0.1, and 0; right: upstream side, x = 0, 0.15, 0.65, and 15, positions 

normalized to ce /W.) 
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FIG. 4: Electric potential, ion current and ion kinetic temperature, respectively normalized to 

kBTe, n0ce and Te (PIC: +, Vlasov: solid line, analytical model: dashed line), on each side of 

the RFA analyzer (for  = 2 and U0 = 1). 
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FIG. 5: PIC (+), Vlasov (solid line) and analytical model (dotted line) RFA characteristics. 

(Current normalized to n0ce,  = 2 and U0 = 1). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 6: Upstream-to-downstream current ratio (for S = 0) from Vlasov numerical 

simulations.  = 0.1, 0.2, 0.5, 1, 2, 3.5, and 5. The dotted line is the kinetic model of Chung 

and Hutchinson. The Mach number is equal to the drift velocity normalized to cS . 
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FIG. 7: Upstream-to-downstream RFA temperature ratio and difference potential  from 

Vlasov numerical simulations.  = 0.1, 0.2, 0.5, 1, 2, 3.5, and 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 8: Fitting factors KJ, KT, and K (expressed in unit of ce
-1) as a function of . 
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FIG. 9: Numerical (solid line) and analytical (dotted line) RFA temperature as a function of 

the retarding potential, on the downstream case for U0 = 0.5 and  = 0.1, 0.2, 0.5, 1, and 2. 

The thick vertical segments delimit the intervals where the RFA temperatures were estimated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 10: Numerical (solid line) and analytical (dotted line) average RFA temperatures 

(normalized to Te), for  = 0.1, 0.5, 1, 2, 3.5, and 5. 
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