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9 Abstract

10 In a circular economy approach, heterogeneous wastes can be upgraded to energy in the 

11 form of syngas via pyrogasification, and then to methane via biomethanation. Working at 

12 high pressure is a promising approach to intensify the process and to reduce gas-liquid 

13 transfer limitations. However, raising the pressure could lead to reaching the CO inhibition 

14 threshold of the microorganisms involved in syngas-biomethanation. To investigate the 

15 impact on pressure on the process, a 10L continuous stirred tank reactor working at 4 bars 

16 and 55°C was implemented. Syngas (40% CO, 40% H2, 20% CO2) biomethanation was 

17 performed successfully and methane productivity as high as 6.8 mmolCH4/Lreactor/h with 

18 almost full conversion of CO (97%) and H2 (98%) was achieved. CO inhibition was 

19 investigated and carboxydotrophs appeared less resistant to high CO exposition than 

20 methanogens. 

21

22 Keywords: Biomethanation, syngas, fermentation, carbon monoxide conversion, biological 

23 water-gas shift
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25 1 Introduction

26 As the world population grows, waste management becomes an increasing issue. More and 

27 more heterogenous wastes including plastic are produced each year which leads to issues 

28 regarding health or environment. Waste management can then come at high cost for 

29 industries or public actors. In a circular economy perspective, gasification can help reducing 

30 overall waste and convert it to energy in the form of syngas, a mixture of N2, H2, CO, CO2, 

31 and other minor compounds. Promising studies show that heterogenous wastes including 

32 plastics can be converted to syngas with gasification (Arena, 2012; Perkins, 2020). However, 

33 syngas has a relatively low calorific value. Its conversion into methane would then 

34 represent an interesting upgrade, considering the natural gas grid extent and storage 

35 infrastructure already in place in Europe. Moreover, syngas methanation features in the 

36 study “A 100% renewable gas mix in 2050?” conducted by ADEME (French Agency for 

37 Ecological Transition), which explores the conditions of the technical and economic 

38 feasibility of a gas system in 2050 based on 100% renewable gas in France. Thus, syngas 

39 methanation is a promising technology at the center of renewable energy transition plans. 

40 CO + 3H2  CH4 + H2O (1)

41 4CO + 2H2O  CH4 + 3CO2 (2)

42 4H2 + CO2  CH4 + 2H2O (3)

43 Syngas conversion to methane can be performed via catalytic methanation (Eq. (1)) or 

44 biological methanation (Eq. (2) and (3)). Catalytic methanation of CO and CO2 is a more 

45 mature process, however its higher sensitivity to impurities, especially H2S and tar, might 

46 make it less relevant regarding syngas methanation. Biological methanation could be more 
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47 resilient to impurities in the feed gas and can be achieved under mild operating conditions. 

48 Indeed, it can be operated at ambient pressure and temperatures around 35-75°C, whereas 

49 catalytic methanation requires higher pressure and temperatures above 250°C (Grimalt-

50 Alemany et al., 2018). Moreover, biomethanation can convert CO and H2 independently, as 

51 different biological routes are involved as discussed below. This allows biomethanation to 

52 convert syngas independently from the CO/H2 ratio.  

53 Syngas biological methanation is generally performed by the syntrophic association of 

54 anaerobic microorganisms, whether using an association of pure cultures or an adapted 

55 mixed consortium. The consortium uses syngas as both carbon and energy source to 

56 support their growth and synthetize methane and carbon dioxide. Complex biochemical 

57 reactions are involved, carried out by different microbial groups. They can be identified 

58 using specific inhibitors such as bromoethane sulfonate (BES) for methanogens and 

59 vancomycin for bacteria (Oremland and Capone, 1988), implementing specific activity tests 

60 with CO, H2/CO2 or acetate as sole substrates and characterizing the microbial population. 

61 Regarding syngas-biomethanation, the main observed reactions are carboxydotrophic 

62 hydrogenogenesis (water-gas shift reaction), carboxydotrophic acetogenesis, 

63 homoacetogenesis, hydrogenotrophic methanogenesis and acetoclastic methanogenesis 

64 (Grimalt-Alemany et al., 2019) as described in Fig. 1. In addition, Li et al. (2020) have 

65 suggested that syntrophic acetate oxidation (SAO) could also occur in syngas-

66 biomethanation processes. Direct CO methanogenesis (Eq.(2)) could theoretically be 

67 another conversion route, as Sipma et al. (2004) have suggested its occurrence in CO-

68 biomethanation experiments. However, to our knowledge, it has not been observed in a 

69 syngas-biomethanation process to date. 
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70 The biological mechanisms involved in syngas conversion by a mixed microbial consortium 

71 strongly depend on the operating temperature. Grimalt-Alemany et al. (2019) have adapted 

72 the same inoculum to mesophilic or thermophilic conditions. Based on activity tests and 

73 microbial consortia analysis, they suggested that in mesophilic conditions, acetate seemed 

74 to be the main intermediate for CO conversion paired with H2/CO2 as second intermediates 

75 through water-gas shift. In addition, homoacetogens appeared to be active and in 

76 competition with methanogens for H2/CO2. This makes sense with regards to the kinetic 

77 parameters of the populations involved: known hydrogenotrophic methanogens have 

78 smaller max in mesophilic conditions (0.02–2.6 day-1) compared to homoacetogens (1.20–

79 4.68 day-1) (Rafrafi et al., 2020). On the other hand, in thermophilic conditions, Grimalt-

80 Alemany et al. (2019) suggested that H2/CO2 seemed to be the main intermediate through 

81 water-gas shift reaction, with no acetogenic nor acetotrophic activity detected. These 

82 results are in accordance with other findings from CO-biomethanation studies, with acetate 

83 being the main intermediate for CO conversion in mesophilic conditions and H2/CO2 in 

84 thermophilic conditions (Guiot et al., 2011; Sipma et al., 2003). 

85 In addition, the operating temperature also has an impact on the methane productivity, 

86 which was found to be generally more than twice higher in thermophilic conditions 

87 compared to mesophilic conditions (Asimakopoulos et al., 2020; Grimalt-Alemany et al., 

88 2019; Youngsukkasem et al., 2015). Bu et al. (2018) also observed that higher CO and H2 

89 conversion efficiencies were achieved in thermophilic conditions (97.2% and 100% for CO 

90 and H2, respectively) compared to extreme-thermophilic conditions (83.7% and 96.2% for 

91 CO and H2, respectively). This indicates that thermophilic conditions could be more 

92 promising regarding the economic viability of the process. 
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93 Biomethanation of CO as sole substrate has been studied both in batch (Alves et al., 2013; 

94 Arantes et al., 2018; Sancho Navarro et al., 2016; Sipma et al., 2003) and continuous mode 

95 (Guiot et al., 2011, 2010; Luo et al., 2013). As it gives important insight on CO conversion 

96 routes, one should note that when reviewing literature, CO-biomethanation should be 

97 distinguished from syngas-biomethanation, as different microorganisms seem to be 

98 involved. Indeed, Alves (2013) observed that the same sludge enriched with either CO or 

99 syngas would adapt differently and the microbial composition would be different, as well as 

100 the observed reaction products. 

101 Moreover, the enrichment strategy could have an impact on the capacity of the inoculum 

102 to adapt to syngas-biomethanation. Grimalt-Alemany et al. (2019) hypothesized that, 

103 compared to other publications (Alves et al., 2013), their success into carrying an 

104 enrichment with a partial pressure of CO of 0.4 atm using successive batch transfers was 

105 due to starting right away at the final CO pressure instead of gradually increasing it. This 

106 makes sense, as the enrichment culture technique appears to specialized a consortium 

107 after the 2nd to 3rd transfer (Beck, 1971). This tends to indicate that the most efficient 

108 enrichment strategy would be to start at the target partial pressures. 

109 Nevertheless, the main limiting step of biomethanation is the necessity to transfer the 

110 gaseous substrates to the biological catalyst which is in aqueous phase (Asimakopoulos et 

111 al., 2018; Klasson et al., 1991).

112 Rti = kLai*(Hi, cp*Pi – Ci, L) (4)

113 The mass transfer rate of a specific substrate Rti [mol/(m3.s] can be described by Eq.(4). It is 

114 linked to the mass transfer coefficient kLai [1/s], which can be influenced by reactor type 

115 and operating parameters. It is also correlated to the concentration gradient (Hi, cp*Pi – Ci, L), 
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116 with Hi, cp [mol/(L.bar)] being the Henry’s law constant, Pi [bar] the partial pressure of the 

117 gas and Ci, L [mol/L] its concentration in the liquid phase. It appears that increasing the 

118 partial pressure of the substrates by increasing the overall pressure of the process can lead 

119 to better transfer performances. Therefore, a higher pressurized process can lead to 

120 intensified methane production, which is a significant step towards an industrial 

121 application. 

122 However, with an intensified pressurized process, another limiting step of syngas 

123 biomethanation could be CO inhibition. An increase in CO partial pressure and thus in CO 

124 transfer rate can lead to high soluble CO concentrations. These high soluble CO 

125 concentrations could be close to inhibition level for the different microbial groups involved 

126 into biomethanation reactions. CO inhibition has mainly been studied with CO-

127 biomethanation experiments (Guiot et al., 2011; Sancho Navarro et al., 2016) and methane 

128 production has been achieved using CO-biomethanation with CO partial pressures as high 

129 as 1.8 bar (Sipma et al., 2003). However, considering syngas-biomethanation, the highest 

130 CO partial pressure tested with successful methane production has been 0.56 bar 

131 (Westman et al., 2016; Youngsukkasem et al., 2015). As specializing a mixed consortium to 

132 syngas or CO could lead to different microbial communities, the CO inhibition limits could 

133 vary with the different species present and thus be different for syngas-biomethanation 

134 compared to CO-biomethanation. Therefore, information on the capacity of syngas-

135 biomethanation to operate at higher CO partial pressure without inhibition is lacking. 

136 Therefore, the aim of the present study was to operate a continuous lab-scale pilot at high 

137 pressure in thermophilic conditions, using a mixed microbial consortium. A pressurized 

138 agitated column has been chosen for this study. The achieved methane productivity was 
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139 compared to previous studies of different continuous operated reactors. Since CO 

140 inhibition is a central matter of syngas-biomethanation, this study aimed to explore high CO 

141 exposition starting with initial partial pressure as high as 1.6 bar to investigate the 

142 resilience and adaptability of the consortium.

143 2 Materials and Methods

144 2.1 Reactor setup

145 The experimental setup is described in Fig. 2. The reactor (height 588 mm; inner diameter 

146 161.5 mm) was a stainless-steel gastight tank with a water jacket for thermal regulation. 

147 The total inner volume was about 12 L, and the working volume was about 10 L. The 

148 reactor was stirred by an electric motor with an integrated magnetic coupling and three 

149 Rushton turbines (Büchi AG, Switzerland). A temperature-controlled thermostat (Labelians, 

150 France) maintained the temperature inside the reactor at 55.0 ± 0.1°C by circulating hot 

151 water in the water jacket. 

152 The pressure in the reactor was regulated at 4.000 ± 0.001 bar with a pressure controller 

153 (Brooks Instrument, USA). The outlet gas was then analyzed by a Fusion micro gas 

154 chromatography (Inficon, Switzerland) and a drum gas meter (Ritter, Germany) measured 

155 the outlet flow rate.

156 CO (>99%) and CO2 (>99.7%) were supplied with gas bottles (Air Liquide, France) whereas 

157 H2 (>99.9999%) was obtained using a H2 generator (Claind srl, Italy). All gases were supplied 

158 continuously, and flow rates were regulated for each gas using mass flow controllers 

159 (Brooks Instrument, USA). 

156 CO (>99%) and CO
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160 The reactor was depressurized three times a week to perform liquid sampling and 

161 injections of nutrient solution, with nitrogen source. The liquid level was computed from 

162 the pressure difference between the top and the bottom of the tank, which was measured 

163 by a pressure transmitter (Keller, Switzerland).

164  (5)=
2

2

0.5

 

165 Mass transfer coefficients (kLa) were characterized for oxygen with the reoxygenation 

166 method by measuring dissolved oxygen concentration in clean water as described by He et 

167 al. (2003), using a EasySense O2 21 probe (Mettler Toledo, Switzerland). The coefficients 

168 corresponding to the operational parameters (55°C – 1000 rpm – 7.5 NL/h – 4 bars) in clean 

169 water were estimated to be 27.8 ± 1.4 h-1 for O2. Using the diffusivities ratio Di/DO2

170 according to Eq. 5, the mass transfer coefficients were then computed to be 35.2 ± 1.8 h-1 

171 and 27.0 ± 1.3 h-1 for H2 and CO, respectively. 

172 2.2  Inoculation and operating conditions

173 The reactor was inoculated with a mesophilic anaerobic sludge sampled from the sludge 

174 digester of the municipal wastewater treatment plant of La Feyssine, Lyon, France. The 

175 inoculum was diluted to final concentrations of 11.8 ± 0.2 g/L for total solids (TS) and 8.0 ± 

176 0.2 g/L for volatile solids (VS). Thermophilic conditions were chosen due to the higher 

177 methane productivity expected under those conditions as discussed previously and the 

178 reactor was heated at 55°C. The stirring rate was set at 1000 ± 1 rpm. Once the reactor was 

179 inoculated, the experiment started directly with a continuous gas feed of 7.500 ± 0.003 
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181 at 4 bar to apply a high CO partial pressure (1.6 ± 0.2 bar) right from the start, in order to 

182 adapt the consortium to the target pressure as discussed above.  

183 The reactor was at first operated continuously for 50 days (Phase 1) and then had to be 

184 stopped due to lockdown measures and laboratory closure in March 2020. The adapted 

185 consortium was stored at 4°C for 78 days and then restarted for 72 days straight (Phase 2). 

186 It was decided to restart it at atmospheric pressure to check if the biological activity was 

187 still present, and the pressure was then gradually increased up to 4 bars. The two phases of 

188 continuous operations will be referred to in this paper as Phase 1 and Phase 2. 

189 Nutrients and liquid level were regulated by adding digestate obtained by centrifugation at 

190 5000g of the same mesophilic sludge kept at 4°C. It was analyzed for several nutrients 

191 concentrations and presented the following compositions (concentrations in mg per liter, 

192 5% uncertainty): 0.143 B, 0.008 Co, 0.186 Cu, 0.192 Fe, 127 K, 22.6 Mg, 0.041 Ni, 5.09 S, 

193 0.176 Zn, 714 NH4
+. pH was maintained above 6.0 ± 0.1 by addition of NaOH (100 mg/L) or 

194 NH4OH (25%) depending on the nitrogen requirements, with an average addition of 2 mL/d. 

195 Ammonia nitrogen –N-NH4
+ concentration in the reactor was regularly measured according 

196 to the method described below. 

197 From day 9 of Phase 2, a solution of Na2S.9H2O (30 g/L) was supplied to the reactor. It was 

198 first added manually 3 times a week using a 20 mL syringe. Then from day 51, it was 
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200 was between 5 and 10 mL/d.  
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202 Online measures included pH, temperature, pressure, inlet and outlet flows, and gas 

203 composition. The pH inside the reactor was acquired using EasySense 31 probe (Mettler 

204 Toledo, Switzerland) and temperature using a thermocouple sensor (TC Ltd, France). The 

205 composition of the outlet gas was analyzed every 15 minutes with a Fusion micro gas 

206 chromatography (Inficon, Switzerland). H2, CO, N2, O2, and CH4 were measured with a 

207 molecular sieve column and CO2, H2O, and H2S with a RT-Q-Bond column. A calibration gas 

208 bottle (Air Liquide, France) was used to regularly calibrate the gas analyzer, with the 

209 following composition: 5% H2; 5% CO; 500ppm H2S, 60% CO2 and CH4 balance. 

210 Liquid analyses included Volatile Fatty Acid (VFA), NH4
+, trace elements, TS and VS, and 

211 water-soluble chemical oxygen demand (COD). All analyses excepting TS and VS were 

212 performed after centrifugation and filtration at 0.45  

213 VFA were measured by ion chromatography (Shimadzu Corporation, Japan) equipped with 

214 a AS11-HC-4 µm, 2*250mm (Thermo Fisher, USA), using H2 as carrier gas and a flame 

215 ionization detector. Water-soluble COD was measured with a LT200 mineralizer and a 

216 DR1900 HACH spectrometer. N-NH3 were analyzed with Hack LCK303 tubes and DR1900 

217 HACH spectrometer. Trace elements concentrations were measured by ICP-OES Ultima 2 

218 (HORIBA Jobin Yvon, Japan) according to the NF EN ISO 11885 (1998) AFNOR NF T 90-136 

219 Method.

220 The TS concentration was determined through 105°C drying for 24h and VS concentration 

221 after heating the sample at 550°C during 2h, following the ASTM standard methods 

222 recommendations.  

223 2.4 Mass Balance Calculation Method
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224 Mass balances calculations were done during steady-state operation phases with constant 

225 gas composition. A particular attention was paid to H2 and CO. In the calculation, we 

226 assumed a simplified metabolic route, with CO being converted to H2 and H2 to CH4. This 

227 simplification was chosen because the amount of other intermediate products was very 

228 small (See 3.1). It should be noted that due to reactions stoichiometry, the path through 

229 which secondary products are produced does not change the mass balance results. Acetate 

230 and cell production were neglected, as we computed that they represented less than 1% of 

231 the total products of reaction. 

232 Mass balance calculations were done on specific time ranges  Volatile suspended solids 

233 variations during  are referred to as VSS (gVSS). 

234 When computing H2 conversion rates, H2 produced from CO was taken into account in 

235 addition to injected H2. This means that we assumed that all the CO consumed was 

236 converted into H2 through the water gas shift reaction. This methodology allows to express 

237 the effective capability of microorganisms to convert H2 to CH4. 

238 In order to study reactions kinetics, the following values were considered. i, the molar flux 

239 of component i (mmol/h), is computed with the measured gas compositions and the 

240 measured total outlet flow rate.  

241 Production rates :[ ]

242 RCO = CO, in - CO, out (6.a)

243 RH2 = [Consumed injected H2] + [Consumed H2 produced from CO]

244 RH2 = H2, in - H2, out ] + CO, in - CO, out ] (6.b)

245 RCH4 = CH4, out (6.c)

R
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246 Production rates ri (mmol/LR/h) were then computed by dividing these rates by the reactor 

247 volume, and similarly specific production rates rx, i (mmol/gVSS/h) by dividing them by VSS.

248 Global biomass yield:

249   (7)=  
 

 =
  +

2, 2, 
 [ ]

250 Mass transfer rate is highly influenced by the gas partial pressure (Eq. 4). However, as the 

251 gas is converted throughout the reactor, its partial pressure varies and cannot be assumed 

252 equal to the applied partial pressure. For instance, when stable methanogenesis occurred, 

253 CO partial pressure was equal to 1.6 ± 0.2 bar at the inlet of the reactor, and to 0.1 ± 0.2 

254 bar at the outlet. Hence, the logarithmic mean of the partial pressure between the 

255 entrance ( ) and the exit ( ) of the reactor was used to estimate the average partial 

256 pressure experienced by the microorganisms (Doran, 2013): 

257  (8)=  
ln ( )  ln )

  

258 3 Results and Discussion

259 3.1 Water gas shift as the main intermediate reaction for methane production at 4 bars. 

260 The results of Phase 1, obtained before the lockdown, are shown in Fig. 3. Phase 1 began at 

261 4 bars with an early start of biological activity, starting with a decrease in CO outlet flow 

262 rate correlated with an increase in H2 and CO2 flow rates, indicating CO conversion into H2 

263 (days 1 – 5). It is more likely that CO is converted through the water-gas shift reaction ( G=-

264 20 kJ/mol), which has been observed by other authors in thermophilic conditions (Grimalt-

265 Alemany et al., 2019; Guiot et al., 2011; Sipma et al., 2003). It was then followed by a 

266 decrease in H2 and CO2 flow rates and an increase in CH4 flow rate, suggesting 

267 hydrogenotrophic methanogenesis (days 5 – 20). Then we observed conversion of both H2 

262 rate correlated with an increase in H
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268 and CO for a short period of time and CH4 and CO2 production (days 24 – 26). However, the 

269 reactor was unstable probably due to nutrients deficiency, and the results of Phase 1 were 

270 not straightforward. Indeed, no Na2S.9H2O was added during Phase 1, and it has been 

271 suggested that it is a necessary nutrient for methanogenesis (Strübing et al., 2017). 

272 Phase 2 started after an interruption of 78 days due to the sanitary lockdown. The 

273 biological activity was restored within the first days after restart at atmospheric pressure as 

274 described previously. At day 5 and under 1 bar, the conversion efficiency of CO and H2 

275 reached 87.8 ± 1.2 % and 91.0 ± 0.9 %, respectively. This result showed the high resilience 

276 of the mixed consortium, even after a long storage period at low temperature [Results not 

277 shown]. With an appropriate supply of nutrients (trace elements, sulfur, and ammonium 

278 sources) the reactor recovered a stable methane production with a full conversion of all 

279 gaseous substrates around day 10 of Phase 2. The reactor was then pressurized at 4 bars at 

280 day 17 and methane production remained stable. 

281 Fig. 4 shows the evolution of flow rates during stable methane production periods in Phase 

282 2 (days 30 -73). During this phase, the reactor reached stable conversion efficiencies of 99.0 

283 ± 0.4 % and 97.6 ± 1.0 % for H2 and CO, respectively. 

284 The supply of sulfur was stopped on day 40 in order to stop methane production and 

285 identify intermediate mechanisms. Methane production decreased after a few days, the 

286 time for sulfur stored in the reactor to be consumed. We observed that both H2 and CO2 

287 outlet flow rates increased compared to inlet flow rates, and that CO conversion still took 

288 place. This indicates that the water-gas shift reaction still occurred during this period. We 

289 had observed the same phenomenon during Phase 1. This means that H2/CO2 are the main 

290 products of CO conversion under these conditions. This result is consistent with previous 

285 identify intermediate mechanisms. Methane production decreased after a few days, the 

286 time for sulfur stored in the reactor to be consumed. We observed that both H
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291 studies, showing that in thermophilic conditions, CO would be mainly converted via H2/CO2 

292 whereas in mesophilic conditions the main intermediate seemed to be acetate (Grimalt-

293 Alemany et al., 2019). 

294 3.2 Acetate production during water gas shift phases

295 As we can see in Fig. 4, the water gas-shift phase (days 44 – 57) is correlated with pH 

296 decrease (from 6 – 6.5 when methanogenesis was occurring to 5.6 during the water-gas 

297 shift phase). This could be due either to the higher dissolved CO2 concentration that 

298 increased as more CO2 is produced from water-gas shift, or to the increased acetate 

299 concentration. 

300 Indeed, during the water-gas shift phase, we also observed an increase in acetate 

301 concentration in the reactor, from around 2 g/L (day 40) up to 6 g/L during water-gas shift 

302 (day 53). The same phenomenon was observed during Phase 1, with concentrations going 

303 from about 3.5 g/L during methanogenesis up to about 8.5 g/L during water-gas shift (Fig. 

304 3.). However, the molar balance revealed that the amount of acetate accumulated during 

305 this phase represented only 0.75% of the COD consumed from CO conversion. This could 

306 suggest that the acetate production is only a secondary metabolic route happening at the 

307 same time as the water-gas shift reaction. 

308 However, it is unclear in our case from which mechanism acetate is produced, as it can be 

309 obtained either from CO (carboxydotrophic acetogenesis) or from H2/CO2 

310 (homoacetogenesis) (Fig. 1). Indeed, acetate production was also observed in H2/CO2 

311 biomethanation processes by other authors: high H2 concentrations can lead to increased 

312 acetate concentration via homoacetogenesis, in thermophilic (Kougias et al., 2017; Strübing 

313 et al., 2017) and in mesophilic conditions (Agneessens et al., 2018). For instance, Liu et al. 
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314 (2016) reported that at a H2 partial pressure of 0.96 bar, 40% of hydrogen was consumed 

315 by homoacetogens in mesophilic conditions. Nevertheless, even if acetate production from 

316 H2 has been observed both in thermophilic and mesophilic conditions, kinetic parameters 

317 suggest that mesophilic conditions would be more favorable to homoacetogens (Rafrafi et 

318 al., 2020). 

319 However, in the case of mixed culture syngas-biomethanation, different microorganisms 

320 could be involved. Acetate could thus be produced from various metabolic routes. 

321 Moreover, thermophilic hydrogenotrophic carboxydotrophs such as Carboxydothermus 

322 hydrogenoformans can shift their metabolism from hydrogenogenic to acetogenic (Henstra 

323 and Stams, 2011). Taking this into account, Grimalt-Alemany et al. (2020) when modelling 

324 syngas biomethanation, hypothesized that this shift takes place when CO conversion to 

325 H2/CO2 is thermodynamically limited, which occurs at high H2 partial pressure. 

326 In the case of thermophilic syngas-biomethanation, some elements lead to favor the 

327 hypothesis of acetate production via carboxydotrophic route rather than by 

328 homoacetogenesis. Indeed, Grimalt-Alemany et al. (2019) used activity tests with either CO, 

329 H2/CO2 and acetate as sole substrates and bromoethane sulfonate (BES) as inhibitory agent. 

330 They concluded that in their enrichment experiment no homoacetogenesis would occur in 

331 thermophilic conditions, whereas it would occur in mesophilic conditions. This could be in 

332 accordance with the better substrate affinity and higher maximum specific growth rate of 

333 hydrogenotrophic methanogens over homoacetogens in thermophilic conditions (Rafrafi et 

334 al., 2020), indicating higher competitivity. In contrast, in mesophilic conditions, the 

335 maximum growth rates of both groups are in the same range and homoacetogens seem to 

336 be able to outcompete hydrogenotrophic methanogens. 
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337 More experiments are required to determine if the acetate production observed in our 

338 study correlated with higher H2 partial pressure comes from homoacetogenesis as usually 

339 observed in H2/CO2-biomethanation, or if it comes from a shift in CO conversion 

340 metabolism as observed in other syngas-biomethanation experiments (Diender et al., 2018; 

341 Grimalt-Alemany et al., 2019). 

342 It should also be noted that acetate concentrations decreased after methanation restart 

343 (Fig. 4) around day 60, indicating acetotrophic activity. This is not in accordance with other 

344 findings that observed no acetotrophic activity in thermophilic conditions for syngas-

345 biomethanation (Asimakopoulos et al., 2020; Grimalt-Alemany et al., 2019). However, 

346 Westman et al. (2016) when studying syngas-biomethanation with co-substrate addition 

347 containing acetate, observed an acetate conversion, indicating the presence of 

348 acetotrophic activity in thermophilic conditions. Thus, presence or not of acetotrophic 

349 activity in regard to thermophilic syngas-biomethanation requires further research. 

350 3.3 Kinetics and productivity of syngas-biomethanation 

351 From our results, we selected 6 periods of stable gas production to perform mass balances 

352 and to assess the conversion kinetics (they are listed Table 1). These periods were selected 

353 because they were associated to three different observed phenomena: methane 

354 production with conversion of all gaseous substrates (period I, III and VI), CO conversion to 

355 H2/CO2 with limited methane production (period IV and V, also called “water gas shift 

356 periods”), and methane production from H2/CO2 with limited CO conversion (period II). The 

357 fact that either CO conversion or methane production were limited during certain periods 

358 was attributed to CO inhibition (See 3.4) and nutrients deficiency (See 3.1), respectively. 

/CO2
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359 The results from mass balance calculations are listed in Table 2 . As not all gaseous 

360 substrates are converted, we hypothesized that the reactor was limited by gas-liquid mass 

361 transfer. Optimizing the mass transfer was not the purpose of this study. However, it could 

362 be improved by adding baffles to the tank (Cabaret et al., 2008). Regarding 

363 biomethanation, different reactor configurations have been studied to improve the gas-

364 liquid mass transfer (Asimakopoulos et al., 2018), and hollow fiber membrane bioreactors 

365 appear to be the most efficient (Orgill et al., 2013; Yasin et al., 2019).

366 During the three methanation periods (I, III, VI), good conversion efficiencies have been 

367 observed as high as 97.6 ± 1.7 % and 98.6 ± 0.4 % for CO and H2, respectively. H2 conversion 

368 efficiency was always slightly higher than CO conversion efficiency, which could be 

369 explained by higher mass transfer coefficients for H2 (35.2 ± 1.8 h-1) than for CO (27.0 ± 1.3

370 h-1). 

371 The CO volumetric conversion rates appeared to be similar around 13 mmol/(LR.h) during 

372 all three methanation periods. However, the CO specific rates decreased from 1.72 ± 0.11 

373 to 1.20 ± 0.02 mmol/(gVSS.h) with time. This could be explained by the growth of non 

374 carboxydotrophs microorganisms, such as methanogens for instance, leading to the overall 

375 increase of VSS and to the decrease of CO specific rate. 

376 Furthermore, methane volumetric productivity increased over time, from 5.49 ± 3.51 

377 during Period I to 6.80 ± 0.50 mmol/(LR.h) during Period VI. This is probably because the 

378 VSS concentration in the reactor had increased from 7.9 ± 0.2 to 10.9 ± 0.2 gVSS/L. Indeed, 

379 the specific methane production activity was rather constant around 0.7 mmol/(gVSS.h) over 

380 the three methanation periods. Those elements could also suggest a growth of 

376 Furthermore, methane volumetric productivity increased over time, from 

377 during Period I to 6.80 
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381 methanogenic populations, leading to an overall increase of the VSS concentration and of 

382 the methane volumetric productivity. 

383 The global biomass yields over the three methanation periods was 0.20 gVSS/mol substrate 

384 in average. This is relatively low compared to the batch experiment conducted by Grimalt-

385 Alemany et al. (2019), where they obtained 0.66 gVSS/mol substrate.

386 During period II, limited CO conversion (10.9 ± 8.0%) took place but methanogenesis from 

387 H2 occurred. We can see that specific rates for H2 conversion and CH4 production are lower 

388 (2.25 ± 0.65 and 0.50 ± 0.07 mmol/(gVSS.h), respectively) than those obtained during the 

389 methanation periods(I, III, VI) where H2 and CH4 specific rates were around 2.43-3.19 and 

390 0.63-0.88 mmol/(gVSS.h) respectively. This makes sense, as during period II carboxydotrophs 

391 appeared to be inhibited (See 3.4). Therefore, a portion of the overall biomass is unactive, 

392 which decreases the specific activity. Volumetric rates are also almost twice lower during 

393 Period II compared to the three methanation periods (H2 and CH4 volumetric rates around 

394 13.65 ± 3.27 and 3.03 ± 0.26 mmol/(LR.h), respectively compared to 24.58-26.07 and 5.49-

395 6.80 for the methanation periods). This is makes sense as CO conversion to H2 is limited. 

396 Regarding water-gas shift periods, it can be observed that CO conversion efficiency is lower 

397 in periods IV and V when only CO conversion occurs, compared to the periods where both 

398 CO and H2 are converted (around 91-93% versus 97-98%). However, CO mass transfer rates 

399 should be higher as less CO is converted, leading to higher CO partial pressure in the 

400 headspace. This result seems to indicate rather a thermodynamic limitation than a mass 

401 transfer issue: as H2 is not converted, it accumulates and might limit CO conversion to H2. 

402 Thermodynamic limitations of CO conversion to H2 when H2 accumulates in the headspace 

403 have already been suggested by other studies (Grimalt-Alemany et al., 2020). 
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404 An overview of some literature data of syngas-biomethanation in continuous reactors is 

405 presented in Table 3. When needed, the methane production rates have been converted to 

406 different units to be able to compare the results. Most of the time, the selected data 

407 correspond to the highest conversion efficiencies of the cited reference and not the highest 

408 methane productivity. It should be noted that in the biomethanation process, the 

409 performance of a given system is generally a compromise between a high methane 

410 productivity and good conversion efficiencies (Asimakopoulos et al., 2020). 

411 To date, syngas-biomethanation research is rather new and there are very few studies with 

412 continuous processes. Moreover, the operational parameters in the existing research are 

413 highly different: reactor configuration, syngas composition, inlet syngas flow rate or 

414 microbial consortium. All these parameters have an influence on methane productivity and 

415 conversion efficiencies, hence making difficult to compare the results. Still, this literature 

416 review in Table 3 gives a comprehensive view of the current state of the art. Some trends 

417 can be noticed: for instance, higher H2 proportion in the syngas gives higher methane 

418 production rates. This is consistent with the stoichiometry of reactions 1 and 2, which 

419 indicates that increasing H2 proportion will increase CH4 proportion of the produced gas 

420 within the limit of the stoichiometry and if H2 is limiting. Moreover, this theoretical 

421 assertion has been supported by the experimental results of Li et al. (2019). 

422 The results of the current study are promising, with methane productivity of 6.80 ± 0.50 

423 mmolCH4/L/h paired with good conversion efficiencies of 96.6 ± 0.3% and 98.1 ± 0.2% for 

424 CO and H2, respectively. Steady state operation was achieved within a few days after start-

425 up (with a mesophilic non-adapted inoculum) and restart (after the COVID sanitary 

426 lockdown and inoculum storage at 4°C), which shows the good versatility of the process. 
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427 The production rate 6.80 ± 0.50 mmolCH4/L/h is rather high compared to results published 

428 so far. For example, Asimakopoulos et al. (2020) measured 3.80 mmolCH4/LR/h at similar 

429 conversion efficiencies and similar inlet flow rates in relation to reactor size (0.75 

430 NLsyngas/LR/h for this study and about 0.67 Lsyngas/LR/h for theirs). The difference in 

431 productivity could be explained by the slightly lower syngas flow rate, and perhaps by the 

432 difference in concentration and composition between the two consortia.  In a more recent 

433 study, by increasing the inlet flow rate up to 3 Lsyngas/LR/h and improving the mass transfer, 

434 Asimakopoulos et al.( 2021) reached 17.6 mmolCH4/LR/h. 

435 By working at 4 bars, our reactor reached good conversion efficiencies and good 

436 productivity in regard to literature. Hence, working at high pressure seems a promising 

437 approach to reach high conversion efficiencies with satisfying methane productivity. 

438 However, this relies on the condition that working at higher pressure and therefore at 

439 higher CO partial pressure will not lead to CO inhibition. 

440 3.4 CO inhibition of carboxydotrophs 

441 The microbial inhibition by a given compound is generally due to the concentration 

442 experienced by the microorganisms. In the case of CO, the dissolved concentration results 

443 from gas to liquid mass transfer and from CO uptake by the microorganisms. In our case, as 

444 gases are converted, Pco varies in the reactor from the bottom where the gas in injected 

445 (Pco = 1.6 bar) to the top where it is vented out. Taking this into account, the logarithmic 

446 mean of the CO partial pressure in the reactor according to Eq. 8 was used to be able to 

447 study the response of the consortium to CO.   

448 In our experiments, the mass transfer coefficient in the reactor should not vary for constant 

449 operating parameters (total gas flow rate). However, the CO partial pressure in the 

444 gases are converted, Pco varies in the reactor from the bottom where the gas in injected 

445 (Pco = 1.6 bar) to the top where it is vented out. Taking this into account, the logarithmic 
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450 headspace can vary during transient states as the gas composition varies with the start-up 

451 of biological reactions. A transient state is represented in Fig. 5, with the restart of the 

452 reactor after a maintenance break during Phase 2. 

453 After the restart at 4 bars, we see that the first reaction was methanogenesis from H2 (from 

454 day 22 to day 24). At the same time, CO conversion did not occur. As methanogenesis from 

455 H2 decreases the quantity of moles of gas, and with no CO conversion, the proportion of CO 

456 in the headspace even increased. It was then decided to reduce the total operating 

457 pressure at 1 bar on day 25. This reduction of the CO partial pressure resulted in a recovery 

458 of the carboxydotrophic activity in less than 24h. Our hypothesis is that high CO partial 

459 pressure could inhibit the carboxydotrophic microorganisms. From day 22 to 25, the partial 

460 pressure experienced by the microorganisms PCO
log probably increased up to the inhibitory 

461 limit, before CO conversion could occur and participate in decreasing PCO
log. The reduction 

462 of the total pressure probably stopped this inhibition. This demonstrates the impact of 

463 PCO
log on CO conversion kinetics. 

464 This was the first time that we observed this phenomenon from the startup of the 

465 experiment. Indeed, during previous startups at 4 bar the reactor was nutrient limited 

466 (sulfur) and H2 was only partially converted to CH4. Hence, PCO
log remained below 1.6 bars 

467 from the start, allowing for CO conversion to slowly take place, resulting in a decrease of 

468 PCO
log due to CO consumption. This raises questions regarding the startup strategies of a 

469 syngas-biomethanation process with an adapted consortium. In our case, this observation 

470 led to a strategy following maintenance breaks consisting of a first step at atmospheric 

471 pressure until the substrates conversions were stabilized, then followed by a pressure 

472 increase up to 4 bar. 
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473 Fig. 5 shows that with an adapted consortium, methanogenesis from H2 occurred under 

474 PCO
log up to 2 bars, with H2 conversion efficiency up to 92%. To our knowledge no previous 

475 work has studied methanogenesis from H2 with such high PCO exposure. However, at such 

476 high PCO, CO conversion did not take place. 

477 So, it appears on Fig. 5 that after a short adaptation, methanogenesis from H2 started 

478 quickly at high pressure compared to CO conversion. This in accordance with the findings 

479 reported by Li et al. (2020), who also observed that methanogenesis from H2 started before 

480 CO conversion with initial 0.25 atm CO and 0.75 atm H2. However, the authors suggested 

481 that it was due to the lower solubility of CO compared to H2, thus inducing lower CO 

482 conversion rates. Yet, in our case, at day 22 of Phase 2, maximum mass transfer rates are 

483 estimated to 28.1 ± 4.7 mmol/(L.h) and 36.3 ± 7.9 mmol/(L.h) for CO and H2 respectively. 

484 Those values are rather close to each other, which probably excludes CO mass transfer 

485 limitations to explain the quicker start of methanogenesis from H2. 

486 However, other authors studying CO-biomethanation in thermophilic conditions observed 

487 the opposite, with methanogenesis starting only after CO was fully converted (Guiot et al., 

488 2010; Sipma et al., 2003). This seemed to indicate that CO was inhibitory to 

489 methanogenesis and carboxydotrophic hydrogenogenic activity was useful to “clean” the 

490 headspace from CO, allowing for methanogenesis to start. Yet, CO-biomethanation results 

491 and syngas-biomethanation results should be compared with caution, as it has been 

492 observed that the two enrichments methods performed on the same initial inoculum can 

493 lead to different microbial compositions (Alves et al., 2013), and therefore perhaps to 

494 different inhibition thresholds. 
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495 So, it can be deduced that, after adaptation, the microorganisms operating methanogenesis 

496 from H2 are more resistant to CO inhibition that carboxydotrophic hydrogenogens. More 

497 experiments should be performed to determine more accurately the inhibition limit for 

498 carboxydotrophs, as we only know for now that it is with at PCO at least higher than 2 bars.

499 Conclusions

500 This study has demonstrated, for the first time, the possibility for syngas-biomethanation to 

501 be operated in continuous mode at a pressure of 4 bars. The performances obtained were 

502 very promising, with methane productivity of 6.8 mmol/LR/h and high conversion of CO 

503 (97%) and H2 (98%). CO inhibition of carboxydotrophs was suspected in some conditions 

504 and was investigated for the first-time regarding syngas-biomethanation. Carboxydotrophs 

505 appeared to be more sensitive to CO than methanogens and to be inhibited at CO partial 

506 pressure higher than 2 bars. Overall, this study demonstrated that syngas-biomethanation 

507 in a pressurized reactor is a promising approach to industrialization. 
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516 Figure Captions

517 Fig. 1. Simplified representation of biological mechanisms involved in syngas 

518 biomethanation by a mixed consortium (Rafrafi et al., 2020). SAO: Syntrophic Acetate 

519 Oxidation. 

520 Fig. 2. Simplified scheme of the reactor system. (1) tank, (2) stirring system, (3) pressurized 

521 sulfide circuit, (4) thermostat, (5) CO gas bottle, (6) CO mass flow controller, (7) CO2 gas 

522 bottle, (8) CO2 mass flow controller, (9) H2 generator, (10) H2 mass flow controller, (11) 

523 liquid addition or withdraw, (12) pressure controller, (13) gas analyzer, (14) drum gas 

524 counter.

525 Fig. 3. Outlet flow rates (A) pH, and acetate, propionate and volatile solids concentrations 

526 (B) during operational days 0-50 of Phase 1. Data acquisition of outlet flow rates was 

527 interrupted due to technical difficulties from day 13 to 15, 18 to 19 and 48 to 50.

528 Fig. 4. Outlet flow rates (A) pH, acetate, propionate and volatile solids concentrations (B) 

529 during operational days 30-73 of Phase 2. Data acquisition of outlet flow rates was 

530 interrupted due to technical difficulties from day 57 to 60. 

531 Fig. 5. Effect of PCO
log during Phase 2, after a maintenance break of the reactor at day 22. Effect of PCO
log

530 interrupted due to technical difficulties from day 57 to 60. 
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532 Tables and Figures

533

SYNGAS H2/CO2CO

Acetate

CH4

Water-gas shift
CO + H2O  CO2 + H2

Homoacetogenesis/SAO
4H2 + 2CO2 3COOH + 2H2O

Carboxydotrophic acetogenesis
4CO + 2H2O  CH3COOH + 2CO2

Carboxydotrophic methanogenesis
4CO + 2H2O  CH4 + 3CO2

Acetoclastic methanogenesis
CH3COOH  CH4 + CO2

Hydrogenotrophic methanogenesis
4H2 + CO2  CH4 + 2H2O

534 Figure 1

CH

534 Figure 1

Acetoclastic methanogenesis

4H2 + CO
Hydrogenotrophic methanogenesis

 + CO2  CH

2O
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535

536 Figure 2536 Figure 2536 Figure 2
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549

550 Table 1 : Selected steady-state periods for mass balance calculations. 

N° Date reaction description
I Phase 1 - day 24-26 Methanogenesis from H2/CO2 with CO conversion

II Phase 2 – day 24-25 Methanogenesis from H2/CO2 – limited CO conversion

III Phase 2– day 30-39 Methanogenesis from H2/CO2 with CO conversion

IV Phase 2– day 47-49 WgS : CO conversion to H2/CO2  – limited methane 
production

V Phase 2– day 49-53 WgS : CO conversion to H2/CO2 – limited methane 
production

VI Phase 2– day 60-73 Methanogenesis from H2/CO2 with CO conversion

551 WgS: water gas shift

552

 with CO conversion

 – limited methane 

 with CO conversion

 – limited methane 

 – limited methane 

 with CO conversion

 – limited methane 
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553 Table 2 : Mass balance and specific rates during steady-state periods. 

Water Gas Shift periods
Limited CO 
conversion 

period
Methanation periods

IV V II I III VI
Conversion 
efficiencies (%)

91.3% ± 0.6% 92.9% ± 0.6% 10.9% ± 8.0% 97.8% ± 1.7% 97.6% ± 1.0% 96.6% ± 0.3%

2 -56.9% ± 7.3% -55.2% ± 7.9% 90.8% ± 2.2% 89.2% ± 19.1% 98.6% ± 0.4% 98.1% ± 0.2%
Volumetric rates 
[mmol/(LR.h)]

12.22 ± 0.21 12.43 ± 0.21 1.46 ± 2.66 12.85 ± 0.47 12.98 ± 0.26 12.94 ± 0.10

2 4.60 ± 2.58 5.04 ± 2.80 13.65 ± 3.27 24.58 ± 6.15 26.10 ± 0.41 26.07 ± 0.17

4 0.80 ± 0.15 1.01 ± 0.24 3.03 ± 0.26 5.49 ± 3.51 6.62 ± 2.07 6.80 ± 0.50
Specific rates 
[mmol/(gVSS.h)]

 1.15 ± 0.04 1.11 ± 0.02 0.24 ± 0.45 1.67 ± 0.11 1.58 ± 0.12 1.20 ± 0.02
 2 0.43 ± 0.25 0.45 ± 0.25 2.25 ± 0.65 3.19 ± 0.89 3.18 ± 0.23 2.43 ± 0.04
 4 0.08 ± 0.02 0.09 ± 0.02 0.50 ± 0.07 0.71 ± 0.48 0.88 ± 0.28 0.63 ± 0.05

3.19 
0.71 ± 0.48

± 0.11
± 0.89
± 0.48

± 0.11

26.10 
± 2.07

12.98 ± 0.26
± 0.41
± 0.26
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Table 3 : O
verview

 of existing continuous reactors in literature. M
ost production rates have been converted to unify the units.

V: w
orking volum

e, T: tem
perature,  

 and
 

: conversion efficiencies of CO
 and H

2  respectively, 
 : volum

etric m
ethane production 

2
4

rate, 
: specific m

ethane production rate, CSTR: Continuous Stirred Tank Reactor, N
M

: not m
entioned. 
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(%

)
2
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4
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Pressurized agitated 
colum

n
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60

45%
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2 , 25%
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8.49
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akopoulos et al. 
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N
M

M
ixed M

icrobial 
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45%
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2 , 25%
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, 10%

 N
2
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3.80
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akopoulos et al. 
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Trickle bed reactor
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5
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*
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Sun et al. (2020)
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N
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