Global climate models like any in sillico numerical experiments are affected by different types of bias. Uncertainties quantification remains a challenge in any climate attribution analysis. A fundamental methodological question is to determine which statistical summaries, while bringing relevant signals, can be robust with respect to multi-model errors. In this paper, we propose a simple statistical framework that significantly improves signal detection in climate attribution studies. Under a well-defined and verifiable assumption, the complex bias correction step can be entirely bypassed. To illustrate our approach, we infer emergence times in precipitation from the CMIP5 and CMIP6 archives. The anthropogenic signal in yearly maxima of daily precipitation clearly emerges at the beginning of the 21st century. In addition, no CMIP model seems to outperform the others and a convex combination of all improves the estimation of emergence times.

Significance statement. We show that the bias in multi-model global climate simulations can be efficiently handled when the appropriate metric is chosen. This metric leads to an easy-toimplement statistical procedure based on a checkable assumption. This allows us to demonstrate that optimal convex combinations of CMIP outputs can improve the signal strength in finding emergence times. Our data analysis procedure is applied to yearly maximum of precipitation from CMIP5 and CMIP6 databases. The attribution of the anthropogenic forcing clearly emerges in extreme precipitation at the beginning of the 21st century.

Introduction

Global climate model outputs like any numerical simulations correspond to an approximation of the true system under study, here the climate system. In the realm of Detection and Attribution (D&A), either in a transient setup or in the context of extreme event attribution (EEA), numerous review studies (see, e.g. [START_REF] Chen | Recent progress and emerging topics on weather and climate extremes since the fifth assessment report of the intergovernmental panel on climate change[END_REF][START_REF] Stott | Attribution of extreme weather and climate-related events[END_REF][START_REF] Shepherd | A common framework for approaches to extreme event attribution[END_REF]) listed different sources of variability, uncertainties and errors. In particular, these reviews highlighted that model error in numerical experiments like the Coupled Model Intercomparison Project (CMIP) can be large and has to be taken into account in any D&A statistical analysis (see, e.g. [START_REF] Knutti | Uncertainty quantification using multiple models -prospects and challenges[END_REF]National Academies of Sciences and Medicine 2016).

To address the issue of multi-model error in attribution studies, we need to go back to the origin of D&A. This research field aims at answering questions related to relative changes between two worlds. In EEA, a factual scenario of conditions that occurred around the time of a specific event is compared to the probability of the same event but under a counterfactual scenario in which anthropogenic emissions had never occurred (see, e.g. [START_REF] Angélil | An independent assessment of anthropogenic attribution statements for recent extreme temperature and rainfall events[END_REF]). In D&A with transient runs, the two worlds correspond to global coupled climate runs with all forcings (ALL) and with only natural forcings (NAT), respectively (see, e.g. [START_REF] Hegerl | Use of models in detection and attribution of climate change[END_REF]. To combine model error uncertainties, various authors (see, e.g. [START_REF] Lorenz | Prospects and caveats of weighting climate models for summer maximum temperature projections over north america[END_REF] noticed that giving equal weight to each available model projection may be suboptimal. In addition, model inter-dependencies have been identified as an important issue in uncertainties analysis (see, e.g. [START_REF] Abramowitz | Esd reviews: Model dependence in multi-model climate ensembles: weighting, sub-selection and out-of-sample testing[END_REF]. To integrate multi-model error into the EEA or transient D&A context, we leverage a hypothesis from the bias-correction community to propose an easy-to-implement strategy that, under well identified conditions, has the main advantage of bypassing multi-model error. In addition, the problem of model inter-dependencies is handled by fixing a robust referential invariant for this issue. Our main application is the inference of emergence times in yearly maxima of daily precipitation and temperatures from the CMIP database.

Methods

a. Notations and assumptions

A common hypothesis in most D&A studies is that, although numerical models may not be able to exactly reproduce the true world, one can expect that any appropriate bias correction technique for a given numerical model should be applied in the same way to correct the factual and counterfactual worlds. For example, if factual temperature runs from a given model are too warm with respect to recorded measurements during a specific period and have to be corrected, say by one Kelvin in the factual world, then this bias of one Kelvin has to be corrected in the counterfactual world of this model during the same specific epoch. In practice, such an hypothesis can be challenged and needs to be assessed with caution (see, e.g. [START_REF] Maraun | Towards process-informed bias correction of climate change simulations[END_REF]. Due to the lack of records in the counterfactual world, the assessment cannot be done without carefully designing the appropriate metric. To explain this point, we need a few mathematical notations. Let Z t and X t be the same real-valued continuous random variable of interest for the year t but from the hypothetical true factual and counterfactual worlds with cumulative distribution functions (cdf) F t (z) = P(Z t ≤ z) and G t (x) = P(X t ≤ x), respectively. In simulation studies, we never have accessed to these two random variables because perfect factual and counterfactual distributions cannot be reproduced exactly. Instead, imperfect ensemble outputs, say from M different numerical model experiments are available, and we denote this by Z (m) t and X (m) t the factual and counterfactual versions from model m and cdfs

F (m) t (z) = P(Z (m) t ≤ z) and G (m) t (x) = P(X (m) t ≤ x), respectively.
A popular approach in the bias correction literature for univariate continuous random variables is the quantile mapping transform that matches two random variables with different distributions (see, e.g. [START_REF] Maraun | Towards process-informed bias correction of climate change simulations[END_REF][START_REF] Cannon | Multivariate quantile mapping bias correction: an n-dimensional probability density function transform for climate model simulations of multiple variables[END_REF]. A positive aspect of quantile mapping is its theoretical basis. It can be viewed as the solution of an optimal transport problem (see, e.g. [START_REF] Robin | Multivariate stochastic bias corrections with optimal transport[END_REF] and it has been tested in various settings (see, e.g. for precipitation downscaling, [START_REF] Kallache | Nonstationary probabilistic downscaling of extreme precipitation[END_REF]. Quantile mapping can be adapted to our D&A framework in the following way. As any real-valued random variable, the climate model output X (m) t can always be transformed, in a distributional sense, into the unobserved true counterfactual random variable X as follows

X t d = G ← t • G (m) t X (m) t
, where d = corresponds to a equality in distribution and G ← t (.) represents the inverse of G t , i.e. its quantile function. The same type of operator can be implemented in the factual world, i.e.

Z t d = F ← t • F (m) t Z (m) t .
Then, the main assumption that we will test can be expressed in the following way. We say that model m verifies assumption (A) if

A : F ← t • F (m) t =G ← t • G (m) t , for t ∈ 1, . . .,T. (1) 
(1) means that the bias between the simulated and unobserved counterfactual worlds is the same as between the simulated and unobserved factual worlds. Note that (1) allows for non-linear bias correction. For example, heavy rainfall can have different tail behaviors in the observed and model runs (see, e.g. [START_REF] Coles | An Introduction to Statistical Modeling of Extreme Values[END_REF], for an introduction to upper tails modeling). It is also important to notice that, although none of the available climate models may exactly satisfy assumption (A), it makes sense to weigh models according to their capability to satisfy (A). Another key point is that assumption (A) is related to a specific variable. For the same climate model, (A) can be valid for mean hemispheric temperatures, but incorrect for heavy rainfall over a specific region.

Another feature of (A) is the temporal indexing. The subscript t makes the notation complex, but it allows for having different bias corrections for different years, and brings flexibility. The cooling effect of volcanic forcing, like Pinatubo in the early nineties, can be included in our bias correction approach. The same could be said for slow changes due to solar forcing. So, the hypothesis of temporal stationarity is not needed in our framework.

b. Quantities of interest

In D&A studies, most researchers (see, the bibliography in the review articles [START_REF] Stott | Attribution of extreme weather and climate-related events[END_REF][START_REF] Naveau | Statistical methods for extreme event attribution in climate science[END_REF] aim to contrast differences between two worlds, e.g. the factual and counterfactual worlds in EEA, or NAT and ALL worlds in long transient climate simulations analysis. In particular, making the distinction between the two survival functions

P(X t > u) and P(Z t > u) (2) 
has been a recurrent theme in this field. To explain our statistical approach, we can start by asking a typical hydrological D&A question. For the current year t, are precipitation intensities in the factual world heavier than the ones produced in the counterfactual one? If two random precipitation intensities would have the same distribution in the factual and counterfactual world, then the probability to observe the event {Z t > X t } would be as likely as {Z t < X t } for any given year, and consequently P(Z t > X t ) = 0.5 in this case1. If instead, one answers positively to the question, this will imply that the chance of Z t being greater than X t is greater than 0.5. To make the link with the classical (2), we can look at the special case where the threshold u in (2) is chosen to be equal to a random draw from G t . This choice leads to our definition of two simple probabilities q 0 = 1 2 and q t = P(Z t > X t ).

(3)

These two probabilities have many advantages. They are invariant with respect to non-decreasing changes. For example, if both X and Z are simultaneously multiplied by two, then q t remains the same. This is a critical feature when climate models are bias corrected. More precisely, under assumption (A), we always have, see SI for a proof,

q t = P Z (m) t > X (m) t
, for all t = 1, . . .,T .

The fact that the left-hand part of this equation does not depend on m anymore is fundamental in this work. The remaining part of this article is to explain its consequences, its applicability and its validity within the CMIP database.

Under (A), we do not need to have access to X t and Z t to compute q t . This probability can be directly obtained from numerical outputs encapsulated by X (m) t and Z (m) t . The most important consequence of (A) is that biased models outputs like (X (m) t , Z (m) t ) T do not need to be corrected.

Practically, this also implies that we do not need to know the cdf's, F t and G t , to estimate q t . In addition, q t in (3) is always equal to .5 whenever the true factual and counterfactual worlds are exchangeable. Consequently, no inference is required in this case. Last but not least, the value of .5 can be used a reference point when the factual and counterfactual start to differ.

1The independence between X t and Z t is not necessary to get P(Z t > X t ) = 0.5. As the sum P(Z t > X t ) + P(Z t < X t ) is always equal to one, the only requirement is that P(Z t > X t ) = P(Z t < X t ). This is always true under exchangeability, i.e. whenever(Z t , X t ) d = (Z t , X t ). For example, a standardized and correlated bivariate Gaussian vector is exchangeable.

c. Inference in the transient case

The temporal indexing t in the probability q t defined by (2) can be interpreted in two different ways. One can freeze the time to the current year and this leads to the so-called event attribution realm. Large ensembles of this given year are classically drawn from both factual and counterfactual worlds (see, e.g. [START_REF] Stott | Attribution of extreme weather and climate-related events[END_REF] In this work, the 16 model runs used in this work are listed in Table 12. Their main drawbacks are the model uncertainties, their small ensemble sample sizes and their spatial resolution, which can be too coarse for some applications. Statistically, a subtle point is the transient nature of these simulations. This implies that factual runs in CMIP contain some non-linear trends that should be taken into account in the statistical analysis (see, e.g. [START_REF] Kharin | Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere-ocean GCM[END_REF]. As the ALL run Z (m) t distribution may change over time, we estimate the time-varying q (m)

t = P Z (m) t > X (m)
t in a non-parametric regression manner. A classical kernel regression approach [START_REF] Nadaraya | On estimating regression[END_REF][START_REF] Watson | Smooth regression analysis[END_REF]) leads to the following estimator q(m)

t = 1 K h (t -t j ) J j=1 K h (t -t j ) G (m) I Z (m) t j , (5) 
2After the year 2006, we analyze CMIP precipitation under their respective worst-case scenarios (RCP8.5 and SSP5-8.5). Our approach can be easily implemented under different scenarios. Concerning emergence times, they occur during the first two decades of the 21st century.

Consequently, this result remains valid under other scenarios.

where the positive function K h (.) corresponds to a weighting Kernel with bandwidth h, and G (m) I (.)

represents any estimator of G (m) t (.). In the SI, the choices of the kernel and G (m) I (.) are discussed and the statistical arguments to build asymptotic confidence intervals for q t are given.

As an example, the inferred probability q(m) t for yearly maxima of CMIP daily precipitation for the grid point near Oxford in Great Britain is displayed in Figure 1. Each panel represents one CMIP climate model from Table 1. In each panel, the x-axis spans the year t = 1850 to t = 2100 and the y-axis corresponds to the probability q(m) t obtained from ( 5). The departure from the horizontal line at q t = .5 indicates a change between factual runs and counterfactual trajectories without anthropogenic forcing. All panels show a smooth increase in q(m) At this stage, assumption (A) has not been used yet. If (A) was satisfied, it would be straightforward to move, via (4), from q(m) t to a common estimator of q t . To combine climate model outputs, the capability to satisfy (A) for a given model m will be key.

Merging climate model simulations

The main roadblock to asses the quality of simulated runs is that we will never observe draws from X t , only measurements with observational errors at spatial scales different from climate gridded data. This lack of data is even worse from Z t , the hypothetical world of an unperturbed and never observed climate. To bypass this difficulty, we assume that there exists a time period, say T , during which the ALL and NAT worlds were identical (in distribution). In practice, this corresponds to the pre-industrial period for which we assume

F t = G t , for all years t ∈ T . (6) 
Again, we do not need to assume that F t = F t+1 as internal climate variability and natural forcings may change in time, even at the annual scale, e.g. like after the 1883 Krakatoa eruption. In our Application section, we define the pre-industrial epoch T as T = {1850, . . ., 1900}. Then, we can always write

q t = P(Z t > X t ) = 1 2 , for any year t ∈ T . ( 7 
)
This equality is parameter-free and it does not depend on model m. There is nothing to estimate, so no inferential error needs to be taken into account. As already highlighted in Section b, the bivariate vector (X t , Z t ) does not have to be stationnary in t, only exchangeability between X t and Z t . This last condition is always satisfied as X t and Z t are not computer simulated. They just represent conceptual independent draws from a thought experiment of two possible climate trajectories in pre-industrial times. For simulated runs from model m, we also expect to have

P(Z (m) t > X (m) t ) = .5 for any year t ∈ T if Z (m)
t and X (m) t are exchangeable (label free) during the pre-industrial period. Exchangeability is a weak hypothesis with respect to the issue of model interdependencies studied by [START_REF] Abramowitz | Esd reviews: Model dependence in multi-model climate ensembles: weighting, sub-selection and out-of-sample testing[END_REF]. Concerning the validity of

P(Z (m) t > X (m) t ) = .5
in regard to a given model, we leverage the following fact. During the time period T , we have F t = G t , and consequently, the following equivalence is always true ranges strongly vary among models, e.g. compare the precipitation spread between IPSL-CM5A-LR and CERFACS-CNRM-CM6. By construction, this difference is not an issue because we always look at relative changes within a CMIP run. According to (7), we also expect that q (m) t to be close to half for t ∈ T . This can be used to weight and merge our 16 models.

F (m) t =G (m) t , ∀t ∈ T ⇐⇒ (A) holds for any t ∈ T . Hence, checking that F (m) t is equal to G (m) t for
Binary events like {Z (m) t > X (m) t } during the preindustrial period are the building blocks of

q (m) t = P Z (m) t > X (m) t .
In our setup, the reference density is the Bernoulli sequence under the success probability q t = .5 and the competitor corresponds to a Bernoulli sequence with the success probability q (m) t . A statistical tool is needed to differentiate these two Bernoulli distributions. The Kullback Leibler divergence (see, e.g. [START_REF] Burnham | Model Selection and Inference: a Practical Information-theoretical Approach[END_REF][START_REF] Naveau | A non-parametric entropy based approach to detect changes in climate extremes[END_REF]) compares two distributions by calculating the expectation of the logarithmic difference between a target probability and a competitor, where the expectation is obtained with respect to the target density; see the SI method section for our Bernoulli and (e.g. [START_REF] Haughton | Weighting climate model ensembles for mean and variance estimates[END_REF][START_REF] Knutti | Challenges in Combining Projections from Multiple Climate Models[END_REF]).

As any Kullback Leibler divergence is convex, it is natural to merge our estimates as a convex combination defined in the following way

qt = M m=1 w m × q(m) t , with w i ≥ 0 and w 1 + • • • + w M = 1. ( 8 
)
To compute the weights (w 1 , . . ., w M ) T , we implement a two-step procedure. Small p-values of the two-sample Anderson-Darling test in the previous section, see yellow-orange diamonds in Figure 2, highlighted a poor fit. For this reason, our first step is to remove all models that have Anderson-Darling p-values smaller than 20%, a very conservative rejection rate. This first step allows to treat the rare but possible case when all models are wrong and to give give them null weights. Our second step is to simply find the weights of selected models that minimize the Kullback Leibler divergence between c(.5, . . ., .5) and qt∈T under the constraint

w 1 + • • • + w M = 1.
Concerning CMIP yearly maxima of precipitation around Oxford, the 90% green confidence band in Figure 3 represents the estimate of the convex weighted combination, i.e. of qt with the weights shown in Figure 1. In Figure 3 , the 90% red confidence band corresponds to the model with the highest Anderson-Darling p-value. As expected, combining estimates of q t reduces the confidence bandwidth. By construction, qt follows well the referential horizontal line centered at .5 during the pre-industrial period. The departure from this horizontal grey line is significant around the year 2000. Overall, the estimate qt has a smooth trajectory over time and the detected signal is strong in 2100. A clear indication that anthropogenic forcing can cause changes in precipitation intensities at this location.

Emergence times in yearly precipitation maxima

Our methodology can be applied to any type of real-valued continuous atmospheric variables:

temperatures, wind speeds, precipitation intensities and others. As many D&A studies have already focused on temperatures, we chose to study annual maxima of daily precipitation (results about temperatures are available upon request). Statistically, precipitation intensities are skewed and sometimes heavy tailed. So, this type of non-gaussian random variable represents a challenging testbed for our approach. In addition, multi-error analysis with annual precipitation maxima can reveal key information for impact studies. Details about our selected CMIP models can be found in the SI data section.

To illustrate our statistical method in the previous section, we focused on the Oxford grid point in figures 1, 2 and 3. The same type of analysis can be done for each individual grid point. The nine panels of Figure 4 provide global snapshots of the estimates qt for nine different years: 1850, 1900, 1940, 1970, 2000, 2020, 2030, 2050 and 2100. As already pointed out in Figure 3 Figure A1 shows that no specific model appears to outperform, in terms of weights, the other models. This complements our understanding at the Oxford grid point in Figure 2 where four among the 16 models had strong weights. For other grid point locations, other models are chosen.

Overall, if all models were equiprobable, then, in average, each model should have a weight around 1/16 = 0.0625. This value basically corresponds to the the fourth column of Table 1 indicates that the global estimate average weights for each model. Concerning the first step of our weight procedure during which we only kept models that have a Anderson-Darling p-value above 0.2 at a given grid point, the last column of Table 1 confirms that, at the global scale, the average number of grid point rejected by each model is, as expected, around 20%. This points toward the fact that no model appears to be superior (less rejected) at the global scale.

Emergence times definition

As already mentioned, a consequence of our definition q t is that, when there is no difference between the factual (ALL) and counterfactual (NAT) worlds, it has to be always equal to .5. This robust referential allows us to define a emergence time in the following way τ p = argmin{t for all t ≥ t, we have P ( qt > 0.5) > p}.

This means that, at the confidence level p, all years after the emergence time τ p have a q t significantly higher than 0.5. So, an increase in precipitation is detected at year τ p and this signal remains present after this specific year. From Figure 5, one can deduce that, in most regions, the anthropogenic signal becomes detectable in precipitation around the year 2000 at the confidence level of 90%. In northern latitudes (below 50N), the detection starts to emerge even as early 1950's. The grey areas do not mean that the signal is not attributable, but, instead of an increase, these regions correspond to a precipitation decrease, see the green areas in the bottom three panels of Figure 4 and (e.g., [START_REF] Pfahl | Understanding the regional pattern of projected future changes in extreme precipitation[END_REF][START_REF] Tandon | Understanding the dynamics of future changes in extreme precipitation intensity[END_REF][START_REF] Dong | Attribution of extreme precipitation with updated observations and cmip6 simulations[END_REF].

Conclusions and discussions

From a climatological point of view, our analysis clearly indicates changes in precipitation intensities. Emergence times and precipitation patterns are spatially coherent, see figures 4 and 5.

In 2100, precipitation in most regions of the globe appears, under scenario RCP8.5, to be either strongly or unequivocally affected by the prescribed anthropogenic forcing. We also found that a convex combination of all models perform better than any single one.

The optimization of model weights is tuned during the pre-industrial period. This calibration is assumed to be valid over other time periods and one can wonder if our results are robust with respect to weights changes. To explore this possibility, we also studied two other ways of setting weights. We implemented the classical form of weights in variable selection problems (see, e.g. [START_REF] Burnham | Model Selection and Inference: a Practical Information-theoretical Approach[END_REF] and used in the climate literature (see, e.g. [START_REF] Lorenz | Prospects and caveats of weighting climate models for summer maximum temperature projections over north america[END_REF].

Another approach is a so-called expert aggregation approach (e.g., [START_REF] Gaillard | Forecasting electricity consumption by aggregating experts; how to design a good set of experts[END_REF].

Overall, all three approaches gave similar emergence times, with well structured spatial patterns with the expert aggregation technique and our approach. For these two methods, estimated of qt are robust to weight changes during the pre-industrial period. For other time periods, the absence of counterfactual perfect observations makes it impossible to remove of the assumption of stationary weights in a D&A context. Other research avenues could be explored to integrate observational data in our statistical approach. A delicate issue, especially for precipitation, is to define the spatial scale of interest. In most CMIP based D&A studies like in [START_REF] Ribes | Making climate projections conditional on historical observations[END_REF], the analysis is done at global or regional scales. This facilitates the integration of observations and improve the signal-noise ratio. But, gridded spatial features like the ones in Figure 4 are lost. This also leads to the open question of how to find optimal regions that maximize the attribution power in a multivariate context (see, e.g. [START_REF] Kiriliouk | Climate extreme event attribution using multivariate peaksover-thresholds modeling and counterfactual theory[END_REF]. A related question is how to adapt our approach to a multivariate framework to attribute compounds events (see, e.g. [START_REF] Zscheischler | The effect of univariate bias adjustment on multivariate hazard estimates[END_REF]. Coupling the field of counterfactual theory and multivariate analysis could help in the direction (see, e.g. [START_REF] Hannart | Counterfactual causality theory for the attribution of weather and climate-related events[END_REF]. A last point is our use of the CMIP worst-case scenarios (RCP8.5 and SSP5-8.5). Our proposed technique can be easily applied to other scenarios. Still, most inferred emergence times of yearly maxima of precipitation span the period 2000-2020, see the blue to yellow regions in Figure 5. This period is prior to any strong differences among scenarios. Hence, our estimated emergence times for these regions will remain valid with other scenarios. From the CMIP5 archive, we select 12 models for which we found a complete set of precipitation simulations for the historical (1850-2005), historicalNat (1850-2012) and RCP8.5 (2006[START_REF] Zscheischler | The effect of univariate bias adjustment on multivariate hazard estimates[END_REF] experiments. Additionally, we also treat four CMIP6 models (see, e.g. [START_REF] Eyring | Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization[END_REF]) for which we found historical simulations in the CMIP6 deck, hist-nat simulations in DAMIP and SSP585 projection. The historical simulations combined with the RCP8.5 and SSP585 simulations represent the factual world whereas the historicalNat simulations correspond to the counter-factual world. All runs have been remapped to a common 5 o × 5 o HadCRUT grid (cdo rmapcon operator).
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Table 1 below provides the list of the 16 CMIP models used in this study.

b. Methods

Proof of Eq. ( 4): To simplify the proofs, we have drop the temporal indexing t whenever it was possible. We have by definition of Z t and X t ,

q t = P (Z t > X t ), = P F ← t • F (m) t (Z (m) t ) > G ← t • G (m) t (X (m) t ) , = P G ← t • G (m) t (Z (m) t ) > G ← t • G (m) t (X (m) t ) , from (A), = P G (m) t (Z (m) t ) > G (m) t (X (m) t ) , as G t (.) non-decreasing, = P Z (m) t > X (m) t , as (G (m) t ) ← (.) non-decreasing.

Computation of confidence intervals of q(m)

t

For each climate model m, the year-varying probability q (m)

t = P Z (m) t > X (m) t = E G (m) t (Z (m) t )
can be inferred from the Nadaraya-Watson estimate q(m) t defined by Eq. ( 5). To simplify the inference process, we consider the cdf G t of the NAT as a stationary process3. In this case, G t can be estimated by the classical empirical estimator G (m) I defined as

G (m) I (x) = 1 I I I=1 I(X (m) t i ≤ x),
where I(A) represents the indicator function equal to one if A is true and zero otherwise and (X t 1 , . . ., X t I ) T corresponds to a NAT run trajectory of I time steps. To derive confidence intervals around this estimate, we need to introduce q(m)

t = 1 K h (t -t j ) J j=1 K h (t -t j ) G (m) I Z (m) t j
that corresponds to a simpler version of q(m) t in which the cdf G (m) is supposed to be known. In this case, the asymptotic behavior of the difference A = q(m) tq (m) t is well known (see, e.g. [START_REF] Härdle | Smoothing Techniques: With Implementation in S. Springer Series in Statistics[END_REF]. It converges towards a Gaussian limit law with known asymptotic mean and variances, (nh) 1/2 q(t j )q(t j )

(σ 2 (t j ) K 2 2 / f (t j )) 1/2 k j=1 converges into toward N [q (t j ) + 2q (t j ) f (t j )/ f (t j )] ∫ s 2 K(s)ds k j=1 , I
where σ 2 (t) is the conditional variance of {G t (Z t )} and f is the density of the variable T. Hence, we can write q(m) tq (m)

t = A + B, with B = 1 K h (t -t j ) J j=1 K h (t -t j ) G (m) I Z (m) t j -G (m) Z (m) t j .
3This assumption could easily remove by adding a kernel estimator for G (m) t . But, this was not necessary for our precipitation application Following [START_REF] Naveau | Revising return periods for record events in a climate event attribution context[END_REF], we consider that

√ I G(m) (Z (m) t j ) -G (m) (Z (m) t j ) behaves (almost) like a Brownian Bridge B = 1 √ I K h (t -t j ) J j=1 K h (t -t j ) √ I EG (m) I Z (m) t j -G (m) Z (m) t j ≈ 1 √ I K h (t -t j ) J j=1 K h (t -t j ) √ I B(G (m) (Z (m) t j )),
where B(u) represents a classical Brownian Bridge on [0, 1] with E[B(u)] = 0 and covariance:

Cov(B(u), B(v)) = min(u, v) -uv. Thus, E[B] = E[ q(m) t -q(m) t ] ≈ 0E and Var[B] ≈ 1 I( K h (t -t j )) 2 J j=1 J i=1 K h (t -t j )K h (t -t i ) × E min G (m) (Z (m) t i ), G (m) (Z (m) t j ) -G (m) (Z (m) t i )G (m) (Z (m) t j ) .
Assuming that the terms A and B are independent and that their mean is negligible, we build confidence intervals for q (m) t assuming that asymptotically:

q(m) t ∼ N q (m) t , Var(A) + Var(B) .
To go one step further, we need to take into account that q (m) t may not be centered around the real quantity of interest q t . It is centered if assumption (A) is satisfied, otherwise a bias exists between q (m) t and q t . To deal with this issue, we additionally assume that such a bias is randomly distributed between all our climate models in the following way

q (m) t ∼ N q t , σ 2 t q(m) t |q (m) t ∼ N q (m) t , (σ (m) t ) 2
where q (m) t and (σ (m) t ) 2 = Var(A) + Var(B) from the previous paragraph. The variance σ 2 t captures the inter-model variability between the different climate runs. By marginalising over q (m) t , we then obtain by Bayesian conjugation for normal laws that q(m)

t ∼ N q t , σ 2 t + (σ (m) t ) 2 . (A1)
This variance decomposition simply means that the variance of q(m) t can be divided into the intra-model variance (σ (m) t ) 2 and the inter-model variance σ 2 t which can be estimated as:

σ2 t = 1 M M m=1 q(m) t -qt 2 , where qt = M m=1 w m × q(m) t .
The choice of the weights w m depends on the climate model capability to satisfy during preindustrial period. Given the weights, the weighted estimator of q t follows qt

∼ N q t , M m=1 w 2 m σ 2 t + (σ (m) t ) 2 . ( A2) 
(A1) and (A2) were used to obtain the confidence intervals displayed in our figures. The kernel used in q(m) t , see Eq. ( 5), is the classical Epanechnikov kernel [START_REF] Epanechnikov | Non-Parametric Estimation of a Multivariate Probability Density[END_REF]) with a bandwidth of 60.5 years. The bandwidth has been determined on using a leave-one-out cross-validation scheme to find out the bandwidth that minimises the root mean square error (RMSE) between the estimated q1 (t i ) and the GI (Z t i ). More precisely, the cross-validation has been performed for each model individually and then we select the median of bandwidths optimised for each model.

Note that the derivation of the confidence bands relies on the assumption of independence between the estimates of q t . Although various studies (see e.g., [START_REF] Knutti | Challenges in Combining Projections from Multiple Climate Models[END_REF][START_REF] Haughton | Weighting climate model ensembles for mean and variance estimates[END_REF] pointed out that climate models are not necessarily independent, this issue may not be too prevalent in our case for the following reasons. We do not require independence between raw atmospheric variables, but between events like

{Z (i) t > X (i) t } and {Z ( j) t > X ( j)
t } for climate models i and j. These events are based on increments like

Z (i) t -X (i) t and Z ( j) t -X ( j) 
t and consequently, by removing additive error, increments are more likely independent than raw data. Concerning the later, our main focus are gridded annual maxima of precipitation. Such variables have high variability and inter-model dependence of increments is secondary compared to the signal/noise ratio issue. In addition, Figure 1 indicates that the differences within a research center, see e.g.

IPSL, appear to be as important than the ones between different research laboratories.

c. Appendix Figure

The weights used in the aggregated estimator of q t defined by Eq. ( 8) are displayed in Figure A1.

The x-axis corresponds to the labels of the 16 CMIP models used in the aggregation, see Table 1.

The y-axis represents grid points locations of each model. The black (yellow) color corresponds a weight near one (zero) in Eq. ( 8).

d. SI Kullback-Leibler divergence computation

The log-likelihood of independent4 Bernoulli sequences, B (m) t = {Z (m) t > X (m) t }, over t ∈ T can be written as

t∈T log 1 -q (m) t 1-B (m) t q (m) t B (m) t .
For two binomial distributions with respective success rates p and q, the Kullback Leibler divergence is equal to D (q; p) = q log q p + (1q) log 1q 1p .

4As we analyze yearly maxima of daily values in our application, the hypothesis of year-to-year independence is reasonable. If it was not the case, then the full times series B (m) t with t ∈ T will have to be modeled as a multivariate binary random vector with a memory component (see, e.g. [START_REF] Tuel | Skillful prediction of multidecadal variations in volcanic forcing[END_REF][START_REF] Dai | Multivariate bernoulli distribution[END_REF]). This will lead to a more complex likelihood. Albeit added complexity, the principles based on the Kullback Leibler divergence exposed in this section will remain valid.

This leads to the following Kullback Leibler divergence that compares the T-dimensional vector q (m) t∈T with q t∈T = c(.5, . . ., .5) D c(.5, . . ., .5); q (m) t∈T = -T × log 2 -

1 2 t∈T log q (m) t 1 -q (m) t .
For each model m, we can measure the departure from the term T × log 2 with T = 50 years. A KL divergence is always non-negative and equals to zero if q (m) t = c(.5, . . ., .5). The estimate of q (m) t from Eq. ( 5) can be plugged in the expression D(.; .), and consequently each model m can be evaluated with respect to condition Eq. ( 7). The optimization to find the weights in Eq. ( 8) is numerically done using the solnp function in the R package Rsolnp.

In the model worlds, we also have that

P Z (m) t > X (m) t = 1 2
for all years t during which the two variables Z (m) t and X (m) t are exchangeable. The exchangeability assumption simply means that the labelling of the numerical model type (X and Z) are uninformative, i.e. P Z (m) t > X (m)

t = P X (m) t > Z (m) t .
This implies that, although climate runs from the same laboratory may be dependent and share the same code, see e.g. [START_REF] Knutti | Uncertainty quantification using multiple models -prospects and challenges[END_REF]), they are likely to be exchangeable (labelling free) during time periods with similar forcing. Another aspect is that the bivariate vector Z (m) t , X (m) t does not have to be stationary in time to have P Z

(m) t > X (m) t = 1 2 .
In particular, during the early period where the anthropogenic forcing was weak (pre-industrial period), natural forcings were still a source of non-stationarity in our climate system, but q t = .5 for t within this pre-industrial period.

I K

One can notice that, if q (m) t is stationary over T for model m, then the divergence D q t∈T ; q (m) t∈T can be expressed as a function of a variance ratio

D q t∈T ; q (m) t∈T = - T 2 × log VB (m) t VB t ,
where VB (m) t = q (m) t (1q (m) t ) is always smaller that VB t = 1/4. Equivalently, we can write the variance ratio as a function of the divergence

VB (m) t VB t = exp -2 × D q t∈T ; q (m) t∈T /T ≤ 1. If this
variance ratio is close to one (zero), then q (m) t is close (far) from q t = .5.
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Fig. 1. Analysis of yearly maxima of daily precipitation from 16 CMIP climate runs at the grid point near Oxford, Great Britain. In each panel, the x-axis corresponds to the years from t = 1850 to t = 2100 (RCP8.5 or SSP5-8.5 after 2006) and the y-axis represents the estimate of q t defined by (5) for the closest grid point location near Oxford. Each panel corresponds to a specific CMIP model setup, see Table 1. The shaded area denotes 90% confidence intervals around the mean estimate of q t . The horizontal black line centered on . Oxford, Great Britain. In each panel, the x-axis corresponds to the years from t = 1850 to t = 2100 (RCP8.5 or SSP5-8.5 after 2006) and the y-axis represents the estimate of q t defined by (5) for the closest grid point location near Oxford. Each panel corresponds to a specific CMIP model setup, see Table 1. The shaded area denotes 90% confidence intervals around the mean estimate of q t . The horizontal black line centered on .5 corresponds to the null-hypothesis where the factual and counterfactual worlds are indistinguishable.The diamond colors and sizes are proportional to the weight values.
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t

  over time, but each model appears to give a different speed and amplitude of change. Inter-model variability appears to be large and combining model errors is necessary.

  each model m during the pre-industrial epoch appears as the appropriate step. A simple scatter-plot between the ranked X (m) t and the ranked Z (m) t should be close to a straight line. Figure 2 indicates that, overall, most CMIP climate model runs behave appropriately with respect to simulated precipitation at the Oxford grid point. P-values of the two-sample Anderson-Darling test (Pettitt 1976; Anderson and Darling 1952) are represented by diamonds. Their respective size and color indicate the quality of the fit. As expected, precipitation

  , a signal starts to emerge in 2000 and, for some areas, becomes very clear in 2020. In 2050, qt departs from the referential .5 in vast regions (red and orange), especially southern and northern, and there annual precipitation maxima can be attributed to change in anthropogenic forcing. This statement integrates larger zones in 2100. It is noteworthy that a few patches of green colors indicate that anthropogenic forcing has a reverse impact, i.e. a decrease in precipitation intensities. These spatial precipitation patterns are consistent with the results of previous studies which showed that, under continued greenhouse gas emissions, heavy precipitation magnitude is expected to increase over much of the world, except in the subtropics where robust declines are projected (e.g.,[START_REF] Pfahl | Understanding the regional pattern of projected future changes in extreme precipitation[END_REF][START_REF] Tandon | Understanding the dynamics of future changes in extreme precipitation intensity[END_REF][START_REF] Dong | Attribution of extreme precipitation with updated observations and cmip6 simulations[END_REF]).
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 23451 Fig. 2. Visual check to know if, within each of the 16 models, NAT and ALL runs have similar distributions over the pre-industrial period defined as years in T = {1850, . . ., 1900} for the grid point near Oxford. The x-axis corresponds to the ranked yearly maxima of daily precipitation for the ALL run, the same quantity is displayed on the x-axis but for the NAT run. Each panel represents a CMIP model. If the points are aligned along the black diagonal, then NAT and ALL distributions can be considered similar. The diamond colors and sizes are proportional to the p-values of the two-sample Anderson-Darling test (Pettitt 1976; Anderson and Darling 1952). . . . . . . . . . . . . . . . . . . . . . 32 Fig. 3. Oxford grid point: comparison between the best individual model (red), with respect to the Anderson-Darling statistic, and the best convex combination (blue/green) qt defined by (8) that merges the 16 estimates. The probability q t should be equal to .5, see the horizontal black line, over the pre-industrial period when t ∈ T = {1850, . . ., 1900}. . . . . . . . 33 Fig. 4. Values of the multi-model estimates defined by (8) at each grid point for yearly maxima of daily precipitation from CMIP runs in Table1. A red (green) color indicates a significant increase (decrease) in precipitation intensities due to anthropogenic forcing. . . . . . . 34 Fig. 5. Emergence times: years after which all q t 's are significantly higher the 0.5 at the confidence level of 90%. The grey regions correspond to a detected decrease in precipitation, see green patches in Figure 4. . . . . . . . . . . . . . . . . . . . . . 35 Fig. A1. Weights of each model in Eq. (8) to obtain Figure 4. The x-axis represents the labels of our 16 selected CMIP runs and the y-axis corresponds to grid point locations over the full globe. . 36

  qq-plot(Xm, Zm) F . 2. Visual check to know if, within each of the 16 models, NAT and ALL runs have similar distributions over the pre-industrial period defined as years in T = {1850, . . ., 1900} for the grid point near Oxford. The x-axis corresponds to the ranked yearly maxima of daily precipitation for the ALL run, the same quantity is displayed on the x-axis but for the NAT run. Each panel represents a CMIP model. If the points are aligned along the black diagonal, then NAT and ALL distributions can be considered similar. The diamond colors and sizes are proportional to the p-values of the two-sample Anderson-Darling test[START_REF] Pettitt | A two-sample anderson-darling rank statistic[END_REF][START_REF] Anderson | Asymptotic theory of certain "goodness of fit" criteria based on stochastic processes[END_REF].
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pr, yearmax, q(t) multimodel F . 4. Values of the multi-model estimates defined by (8) at each grid point for yearly maxima of daily precipitation from CMIP runs in Table 1. A red (green) color indicates a significant increase (decrease) in precipitation intensities due to anthropogenic forcing.