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Abstract 29 

Rhythmic sensory or electrical stimulation will produce rhythmic brain responses. These rhythmic 30 

responses are often interpreted as endogenous neural oscillations aligned (or “entrained”) to the stimulus 31 

rhythm. However, stimulus-aligned brain responses can also be explained as a sequence of evoked 32 

responses, which only appear regular due to the rhythmicity of the stimulus, without necessarily 33 

involving underlying neural oscillations. To distinguish evoked responses from true oscillatory activity, 34 

we tested whether rhythmic stimulation produces oscillatory responses which continue after the end of 35 

the stimulus. Such sustained effects provide evidence for true involvement of neural oscillations. In 36 

Experiment 1, we found that rhythmic intelligible, but not unintelligible speech produces oscillatory 37 

responses in magnetoencephalography (MEG) which outlast the stimulus at parietal sensors. In 38 

Experiment 2, we found that transcranial alternating current stimulation (tACS) leads to rhythmic 39 

fluctuations in speech perception outcomes after the end of electrical stimulation. We further report that 40 

the phase relation between electroencephalography (EEG) responses and rhythmic intelligible speech 41 

can predict the tACS phase that leads to most accurate speech perception. Together, we provide 42 

fundamental results for several lines of research – including neural entrainment and tACS – and reveal 43 

endogenous neural oscillations as a key underlying principle for speech perception. 44 

 45 
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Introduction 57 

The alignment of oscillatory neural activity to a rhythmic stimulus, often termed “neural entrainment”, 58 

is an integral part of many current theories of speech processing [1–4]. Indeed, brain responses seem to 59 

align more reliably to intelligible than to unintelligible speech [5,6]. Similarly, rhythmic electrical 60 

stimulation applied to the scalp (tACS) is assumed to “entrain” brain oscillations and has been shown 61 

to modulate speech processing and perception [7–11]. Despite the prominence of entrainment theories 62 

in speech research and elsewhere [1,12–14], it has been surprisingly difficult to demonstrate that 63 

stimulus-aligned brain responses indeed involve endogenous neural oscillations. This is because, if each 64 

stimulus in a rhythmic sequence produces a brain response, the evoked brain responses will appear 65 

rhythmic as well, without necessarily involving endogenous neural oscillations. This is not only true for 66 

sensory stimulation: Rhythmic behavioural effects of tACS cannot be interpreted as evidence of 67 

entrained endogenous oscillations; they might simply reflect the impact of regular changes in current 68 

imposed onto the brain [15].  69 

 70 

In the present work, we provide evidence that rhythmic intelligible speech and tACS entrain endogenous 71 

neural oscillations. Neural oscillations are often proposed to align their high-excitability phase to 72 

important events in a rhythmic sequence so as to boost the processing of these events and enhance 73 

corresponding task performance [12,13]. It is possible that such a process entails a passive, “bottom-up” 74 

component during which oscillations are rhythmically “pushed” by the stimulus, similar to the regular 75 

swing of a pendulum (that is, the endogenous oscillation is “triggered” by an exogenous stimulus). On 76 

the other hand (and not mutually exclusive), an active, “top-down” component could adjust neural 77 

activity so that it is optimally aligned with a predicted stimulus. Importantly, in both cases we would 78 

anticipate that oscillatory brain responses are sustained for some time after the offset of stimulation: 79 

This could be because predictions about upcoming rhythmic input are upheld, and/or neural oscillations 80 

are self-sustaining and (much like a pendulum swing) will continue after the cessation of a driving input. 81 

Consequently, sustained oscillatory responses produced by a rhythmic stimulus after the cessation of 82 

that stimulus can provide evidence for entrainment of endogenous neural oscillations [16,17].   83 

 84 
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In this paper, we will contrast this theory of entrained oscillations with an alternative view in which 85 

entrainment is merely due to responses evoked directly by the stimulus per se. Note that both views are 86 

sufficient to accommodate existing evidence of brain signals aligned to a stimulus while the latter is 87 

present. Given the difficulty of distinguishing true oscillations from other responses during rhythmic 88 

input, we use the term “entrained” only to describe a signal aligned to a stimulus (irrespective of whether 89 

this alignment reflects oscillations or evoked responses; see “entrainment in the broad sense” in [14]). 90 

We then measure sustained rhythmic activity to infer its neural origins: Truly oscillatory activity that 91 

was entrained to the rhythmic stimulus would lead to sustained rhythmic responses, but sustained 92 

responses would not be expected for stimulus-evoked neural activity. In the current study, we provide 93 

two distinct sources of evidence for sustained oscillatory effects: (1) oscillatory MEG responses that 94 

continue after rhythmic intelligible speech and (2) oscillatory effects of tACS on speech perception that 95 

continue after the termination of electrical stimulation. Furthermore, we link these two effects in single 96 

participants to show how the phase of oscillatory neural responses measured with EEG can predict the 97 

tACS phase at which word report is enhanced. In combination, these findings provide evidence that 98 

endogenous neural oscillations in entrained brain responses play a causal role in supporting speech 99 

perception.  100 

 101 

Results 102 

Experiment 1: Rhythmic intelligible speech produces sustained MEG oscillations 103 

In Experiment 1, 21 participants listened to sequences of noise-vocoded [18] rhythmic speech (Fig. 1A), 104 

which were 2 or 3 seconds in duration and presented at one of two different rates (2 Hz and 3 Hz). 105 

Speech sequences consisted of 4, 6 or 9 one-syllable words, depending on sequence duration and speech 106 

rate. These words were either clearly intelligible or completely unintelligible and noise-like, depending 107 

on the number of spectral channels used during vocoding (16 or 1; see Materials and Methods). 108 
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 109 

Figure 1. Experimental paradigm and analysis. A. Participants listened to rhythmic speech sequences and were asked 110 

to press a button when they detected an irregularity in the stimulus rhythm (red targets). B. Performance (as d-prime) 111 

in the irregularity detection task, averaged across participants and shown for the main effects of intelligibility, duration, 112 

and rate. Error bars show standard error of mean (SEM), corrected for within-subject comparison [19]. Please refer 113 

to Data S1 for the numerical values underlying this figure panel. C. A rhythmic brain response measured during 114 

the presented sounds cannot distinguish true neural oscillations aligned to the stimulus from regular stimulus-evoked 115 

responses. However, only the oscillation-based model predicts a rhythmic response which outlasts the rhythmic 116 

stimulus. For each time point t throughout the trial, oscillatory phase was estimated based on a 1-s window centred on 117 

t (shaded grey). D. Inter-trial phase coherence (ITC) at time t is high when estimated phases are consistent across trials 118 

(left) and low otherwise (right). Note that the two examples shown differ in their 2-Hz ITC, but have similar induced 119 

power at the same frequency. E. ITC in the longer (3-s) condition, averaged across intelligibility conditions, 120 

gradiometers, and participants. Note that “time” (x-axis) refers to the centre of the 1-s windows used to estimate phase. 121 

ITC at 2 and 3 Hz, measured in response to 2 and 3 Hz sequences, were combined to form a rate-specific response index 122 

(RSR). The two time windows used for this analysis (“entrained” and “sustained”) are shown in white (results are shown 123 

in Fig. 2). F. ITC as a function of neural frequency, separately for the two stimulation rates, and for the example time 124 

point shown as a black line in E. 125 

 126 

In a subset of trials (12.5 %), one of the words in the sequence (red in Fig. 1A) was shifted towards 127 

another (± 68 ms), and participants were given the task to detect this irregularity in the stimulus rhythm. 128 

Replicating previous work [7], performance in this task (quantified as d-prime; see Materials and 129 

Methods; Fig. 1B) was enhanced for intelligible as compared to unintelligible speech (main effect of 130 
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intelligibility in 3-way repeated-measures ANOVA, F(1, 20) = 31.30, p < 0.0001). We also found that 131 

irregularities were easier to detect if the sequence was shorter (main effect of duration, F(1, 20) = 32.39, 132 

p < 0.0001) and presented at a faster rate (main effect of rate, F(20) = 26.76, p < 0.0001; no significant 133 

interactions). 134 

 135 

Using MEG and EEG, we measured brain responses during the presented sounds and, importantly, in a 136 

subsequent, silent interval of several seconds that continued until the start of the next sequence (Fig. 137 

1A,C). Due to its higher signal-noise ratio, we focused our initial analyses on the MEG data. We used 138 

inter-trial phase coherence (ITC) to quantify oscillatory brain responses (Fig. 1D). ITC makes use of the 139 

fact that, for each of the two speech rates, the timing of the presented speech sequences (relative to the 140 

“perceptual centre” of individual words, vertical lines in Fig. 1C) was identical across trials (see 141 

Materials and Methods). ITC therefore has the advantage of directly testing the predicted temporal 142 

evolution of the recorded signal (i.e. its phase), whereas power-based measures are focused on its 143 

amplitude [20]. Fig. 1E shows ITC, separately for the two stimulus rates, and averaged across MEG 144 

sensors and participants. For one example time point, Fig. 1F shows ITC as a function of neural 145 

frequency. 146 

 147 

Our hypothesis states that ITC at a given neural frequency is higher when that frequency corresponds to 148 

the stimulation rate than when it does not. For example, we expect that ITC at 2 Hz during (and after) 149 

the presentation of 2-Hz sequences (I in Fig. 1E,F) is higher than ITC at 2 Hz during (and after) 3-Hz 150 

sequences (II in Fig. 1E,F). By comparing ITCs across the two stimulus rates (I vs II and III vs IV in 151 

Fig. 1E,F), we thus developed a precise measurement of whether brain responses follow the rate of the 152 

stimulus, which we term the rate-specific response index (RSR; see Materials and Methods and formula 153 

in Fig. 1F). An RSR larger than 0 indicates a brain response that is specific to the stimulus rate. Spectral 154 

measures such as ITC can be biased by other neural activity than endogenous oscillations: For example, 155 

a response caused by the omission of an expected stimulus might produce an increase in ITC that is most 156 

pronounced at low frequencies (~250 ms in Fig. 1E). By contrasting ITC between two rate conditions, 157 

RSR removes such contamination if it is independent of stimulus rate (i.e. present in both rate 158 
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conditions). This property makes it – in the present case – also superior to other commonly used 159 

approaches, such as permutation tests [21,22], which would not only abolish the hypothesized rhythmic 160 

responses, but also non-rhythmic responses which produce high ITC for other reasons (e.g., evoked 161 

response to stimulus omission). 162 

  163 

We next defined two time windows of interest (white in Fig. 1E). The first time window (“entrained”) 164 

covered the period in which sound sequences were presented while but avoiding sequence onset and 165 

offset. This period allows us to measure entrained responses (i.e. neural responses synchronised with an 166 

ongoing stimulus). A large RSR in this time window reflects a brain response aligned to the stimulus 167 

rhythm (irrespective of whether a true oscillation is involved). The other time window (“sustained”) 168 

covered the silent interval between sequences while avoiding sequence offset. A large RSR in this time 169 

window is evidence for a sustained oscillatory response and, consequently, for the involvement of 170 

endogenous neural oscillations in generating stimulus-aligned entrained responses. 171 

 172 

In the entrained time window, when averaged across all conditions, the RSR was clearly larger than 0 173 

(cluster-based correction, p < 0.001; summed t = 883.39; 102 sensors in cluster), showing a typical 174 

auditory scalp topography (Fig. 2A). We then contrasted the RSR across conditions (Fig. 2B). We found 175 

a main effect of intelligibility (cluster-based correction, p < 0.001; summed t = 87.30; total of 29 sensors 176 

in 2 clusters), revealing stronger rate-specific responses to intelligible speech in a cluster of left frontal 177 

sensors. We also found a main effect of duration, revealing a preference for shorter sequences for left 178 

frontal sensors (cluster-based correction, p = 0.02; summed t = -11.11; 4 sensors in cluster) and one for 179 

longer sequences for parietal sensors (cluster-based correction, p = 0.05; summed t = 6.83; 3 sensors in 180 

cluster).  There was no significant interaction between intelligibility and duration.  181 

Although the RSR was larger for intelligible speech, it was significantly larger than 0 (indicating the 182 

presence of an entrained response) for both intelligible (cluster-based correction, p < 0.001; summed t 183 

= 783.56; 102 sensors in cluster) and unintelligible speech (cluster-based correction, p < 0.001; summed 184 

t = 706.67; 102 sensors in cluster). Despite being reliable at all MEG sensors, the effect was localized 185 

to superior temporal regions and frontal regions bilaterally (Fig. 2C). 186 

 187 
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 188 

Figure 2. Main results from Experiment 1. A-C. Results in the entrained time window. Bars in panel A show RSR in 189 

the different conditions, averaged across gradiometers and participants. Error bars show SEM, corrected for within-190 

subject comparison. The topography shows t-values for the comparison with 0, separately for the 102 gradiometer pairs, 191 

and after RSR was averaged across conditions. Topographies in B contrast RSR across conditions. Topography and 192 

source plots in C show t-values for the comparison with 0 in the intelligible conditions. In all topographic plots, plus 193 

signs indicate the spatial extent of significant clusters from cluster-based permutation tests (see Materials and Methods). 194 

In B, white plus signs indicate a cluster with negative polarity (i.e. negative t-values) for the respective contrast. In A 195 

and C, this cluster includes all gradiometers (small plus signs). In C, larger plus signs show the 20 sensors with the 196 

highest RSR, selected for subsequent analyses (Fig. 3). D-F. Same as A-C, but for the sustained time window. Please 197 

refer to Data S1 for the numerical values underlying this figure. 198 

In the sustained time window, when averaged across all conditions, the RSR was larger than 0 (cluster-199 

based correction, p = 0.05; summed t = 9.22; 4 sensors in cluster) and maximal at left-lateralized parietal 200 

sensors (Fig. 2D). When contrasting RSR across conditions (Fig. 2E), we again found a main effect of 201 

intelligibility (cluster-based correction, p = 0.01; summed t = 15.84; 6 sensors in cluster), revealing 202 

stronger sustained rate-specific responses for intelligible speech. Importantly, these sustained responses 203 

were only significant (i.e. RSR > 0) after intelligible speech (cluster-based correction, p = 0.01; summed 204 

t = 23.00; 10 sensors in cluster); no significant cluster was found after unintelligible speech. Sustained 205 
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effects after intelligible speech were localized to fronto-parietal brain regions, with a peak in left parietal 206 

regions (Fig. 2F). 207 

 208 

To ensure that sustained oscillatory activity was not a result of aperiodic (“1/f”) activity [23], which 209 

might differ between the two stimulus rates, we subtracted the “1/f component” from ITC measures of 210 

the sustained response (cf. [24]) by applying linear regression with reciprocal frequency (1/f) as a 211 

predictor of neural responses. We did this separately for the two stimulus rates, and re-computed the 212 

RSR using the residual (see Materials and Methods). This analysis confirms a sustained oscillatory 213 

response only after intelligible speech (Fig. S1). Together, these effects demonstrate rhythmic brain 214 

responses at a frequency corresponding to the rate of stimulation, which outlast the stimulation at parietal 215 

sensors, and are present after intelligible, but not unintelligible rhythmic speech.  216 

 217 

All sensors and conditions were included in our main analyses (Fig. 2). We then explored the observed 218 

effects further (Fig. 3), restricting analyses of orthogonal contrasts to sensors which are most important 219 

for those main results. For the entrained time window, we selected the 20 sensors with the largest RSR 220 

during intelligible speech (large plus signs in Fig. 2C; the significant cluster included all sensors). For 221 

the sustained time window, we selected all 10 sensors in the significant cluster obtained after intelligible 222 

speech in (Fig. 2F).  223 

We first verified that the rate-specific responses, revealed in our main analyses, were produced by 224 

responses at both of the stimulus rates tested.  We found this to be the case in both entrained (Fig. 3A) 225 

and sustained (Fig. 3B) time windows: ITC at both 2 Hz and 3 Hz was significantly higher when it 226 

corresponded to the stimulation rate than when it did not (entrained: 2 Hz, t(20) = 13.11, p < 0.0001; 3 227 

Hz, t(20) = 11.46, p < 0.0001; sustained: 2 Hz, t(20) = 1.91, p = 0.035; 3 Hz, t(20) = 2.17, p = 0.02). In 228 

the sustained time window, subtracting 1/f components (dashed lines in Fig. 3B) from the data 229 

(continuous lines) revealed clearer peaks that correspond to the stimulation rate (or its harmonics). We 230 

note again the RSR discards such 1/f components by contrasting ITC values at the same two frequencies 231 

across the two stimulus rates.  232 
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We then tested how rhythmic responses developed over time. Both selected sensor groups (based on 233 

entrained and sustained responses) showed a significant RSR throughout the entrained time window 234 

(horizontal lines in Fig. 3C; FDR-corrected). Importantly, the RSR at sensors selected to show a 235 

sustained response fluctuated at around the time of the first omitted word and then remained significantly 236 

above 0 during intelligible speech for most of the sustained time window. Although the presence of a 237 

sustained RSR is expected (given the method used to select the sensors), this result gives us valuable 238 

insight into the timing of the observed effect. In particular, it excludes the possibility that the sustained 239 

effect is a short-lived consequence of the omission of an expected stimulus (see Discussion).  240 

 241 

Figure 3. Follow-up analyses from Experiment 1, using selected sensors (plus signs in insets, reproducing Fig. 2C and 242 

F, respectively). A-B. ITC as a function of neural frequency, measured during (A) and after (B) intelligible speech, 243 

presented at 2 and 3 Hz. Note that these ITC values were combined to form RSR shown in Fig. 2, as described in Fig. 244 

1F. For the right panel in B, a fitted “1/f” curve (shown as dashed lines in the left panel) has been subtracted from the 245 

data (see Materials and Methods). Note that the peaks correspond closely to the respective stimulus rates, or their 246 

harmonics (potentially produced by imperfect sinusoidal signals). C. RSR during intelligible speech as a function of 247 

time, for the average of selected sensors. Horizontal lines on top of the panel indicate an FDR-corrected p-value of <= 248 

0.05 (t-test against 0) for the respective time point and sensor group. Shaded areas correspond to the two defined time 249 

windows (brown: entrained, green: sustained). Shaded areas around the curves show SEM. Please refer to Data S1 250 

for the numerical values underlying this figure. 251 

 252 

We did not measure the success of speech perception in Experiment 1. This is because such a task would 253 

have biased participants to attend differently to stimuli in intelligible conditions, making comparisons 254 

with neural responses in our unintelligible control condition difficult. Similarly, we refrained from using 255 

tasks which might have biased our measurement of endogenous oscillations in the silent period. For 256 

example, tasks in which participants are asked to explicitly predict an upcoming stimulus might have 257 

encouraged them to imagine or tap along with the rhythm. Our irregularity detection task was therefore 258 

primarily designed to ensure that participants remain alert and focused and not to provide behavioural 259 

relevance of our hypothesized sustained neural effect. Nevertheless, we correlated the RSR in both time 260 
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windows (and at the selected sensors) with performance in the irregularity detection task (Fig. S2). We 261 

found a significant correlation between RSR in the entrained time window and detection performance 262 

(Pearson’s r = 0.53, p = 0.01), demonstrating behavioural relevance of entrained brain responses. 263 

Perhaps unsurprisingly, given that there is no temporal overlap between the sustained response and 264 

target presentation, individual differences in the sustained RSR did not show a significant correlation 265 

with individual differences in rhythm perception (r = 0.27, p = 0.28). 266 

 267 

Experiment 2: tACS produces sustained rhythmic fluctuations in word report accuracy  268 

In Experiment 1, we showed sustained oscillatory activity after rhythmic sequences of intelligible 269 

speech, indicating that endogenous neural oscillations are involved in generating speech-entrained brain 270 

responses. In Experiment 2, we tested whether tACS produces sustained rhythmic changes in speech 271 

perception; if observed this would not only provide an equivalent demonstration for tACS (i.e. that 272 

endogenous neural oscillations are entrained by transcranial electrical stimulation), but also show that 273 

these endogenous neural oscillations causally modulate perceptual outcomes. 274 

 275 

Twenty participants were asked to report a single spoken, 16-channel vocoded target word, recorded 276 

rhythmically at 3 Hz, and embedded in background noise (Fig. 4A). The signal-noise ratio between 277 

target word and noise was adjusted for individual participants, ensuring similar task difficulty across 278 

participants and ensuring that effects of tACS were not obscured by floor or ceiling report accuracy (see 279 

Materials and Methods). 280 

 281 
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Figure 4. Experimental paradigm and main results from Experiment 2. A. Experimental paradigm. In each trial, a 282 

target word (red), embedded in noise (black), was presented so that its p-centre falls at one of six different phase lags 283 

(vertical red lines; the thicker red line corresponds to the p-centre of the example target), relative to preceding (“pre-284 

target tACS”) or ongoing tACS (which was then turned off). After each trial, participants were asked to type in the 285 

word they had heard. The inset shows the electrode configuration used for tACS in both conditions. B,C. Theoretical 286 

predictions. B. In the case of entrained neural activity due to tACS, this would closely follow the applied current and 287 

hence modulate perception of the target word only in the ongoing tACS condition. C. In the case that true oscillations 288 

are entrained by tACS, these would gradually decay after tACS offset and a “rhythmic entrainment echo” might 289 

therefore be apparent as a sustained oscillatory effect on perception even in the pre-target condition. D. Accuracy in 290 

the word report task as a function of phase lag (relative to tACS peak shown in A), averaged across tACS durations, 291 

and for four example participants. Phasic modulation of word report was quantified by fitting a cosine function to data 292 

from individual participants (dashed lines). The amplitude (a) of this cosine reflects the magnitude of the hypothesized 293 

phasic modulation. The phase of this cosine (𝛗𝒕𝑨𝑪𝑺) reflects the distance between its peak and the maximal phase lag of 294 

π. Note that the phase lag with highest accuracy for the individual participants, estimated based on the cosine fit, 295 

therefore corresponds to π-𝛗𝒕𝑨𝑪𝑺.  E. Distribution of 𝛗𝒕𝑨𝑪𝑺 in the two tACS conditions, and their difference. F,G. 296 

Amplitudes of the fitted cosines (cf. amplitude a in panel D), averaged across participants. In F, cosine functions were 297 

fitted to data averaged over tACS duration (cf. panel D). In G, cosine functions were fitted separately for the three 298 

durations. For the black bars, cosine amplitudes were averaged across the two tACS conditions. Dashed lines show the 299 

threshold for statistical significance (p<=0.05) for a phasic modulation of task accuracy, obtained from a surrogate 300 

distribution (see Materials and Methods). Error bars show SEM (corrected for within-subject comparisons in F). Please 301 

refer to Data S1 for the numerical values underlying panels E-G. 302 

 303 

While participants performed this task, tACS was applied at 3 Hz over auditory regions, using the same 304 

configuration of bilateral circular and ring electrodes that yielded successful modulation of speech 305 

perception in [8] (see inset of Fig. 4A). In each trial, the target word was presented so that its “perceptual 306 

centre” (see Materials and Methods) falls at one of six different phase lags (red lines in Fig. 4A), relative 307 

to tACS. Prior to target presentation, tACS was applied for ~3, 4, or 5 seconds. Importantly, the target 308 

word was presented either during tACS (“ongoing tACS”), which was turned off shortly afterwards, or 309 

immediately after tACS (“pre-target tACS”). We hypothesized that entrained neural activity due to tACS 310 

(irrespective of whether it involves endogenous oscillations; Fig. 4B) will produce a phasic modulation 311 

of speech perception in the ongoing tACS condition, as reported previously [8–10]. However, in the pre-312 

target tACS condition, such a phasic modulation can only be explained by sustained neural oscillations 313 

which lead to rhythmic changes in perception (Fig. 4C).   314 

 315 

Accuracy in reporting the target word was quantified using Levenshtein distance (similar to the 316 

proportion of phonemes reported correctly [25]; see Materials and Methods). When averaged across 317 
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phase lags, word report accuracy was slightly higher in the pre-target tACS condition (0.50 ± 0.09, mean 318 

± std) than in the ongoing tACS condition (0.49 ± 0.09), but not significantly different (t(19) = 1.67, p 319 

= 0.11; repeated-measures t-test). This result indicates that the two tACS conditions did not reliably 320 

differ in their generic (i.e. phase-independent) effects on speech perception. 321 

 322 

For each participant, and separately for the two tACS conditions, we determined how task accuracy 323 

varies with tACS phase lag (Fig. 4D). We then fitted a cosine function to data from individual 324 

participants (dashed lines in Fig. 4D). The amplitude of the cosine reflects how strongly speech 325 

perception is modulated by tACS phase. The phase of the cosine, labeled φ𝑡𝐴𝐶𝑆, reflects the distance 326 

between the peak of the cosine and the maximal phase lag tested (defined as π; Fig. 4D). For example, 327 

a φ𝑡𝐴𝐶𝑆 of π would indicate highest word report accuracy at a tACS phase lag of 0. 328 

 329 

Previous studies have reported that “preferred” tACS phase (leading to highest accuracy) varies across 330 

participants [7–10]. Indeed, in neither of the two conditions did we find evidence for a non-uniform 331 

distribution of φ𝑡𝐴𝐶𝑆 (Fig. 4E) across participants (Rayleigh’s test for non-uniformity; pre-target tACS: 332 

z(19) = 0.64, p = 0.53; ongoing tACS: z(19) = 0.71, p = 0.50). We also failed to reveal a non-uniform 333 

distribution of the individual phase differences between conditions (φ𝑡𝐴𝐶𝑆(𝑜𝑛𝑔𝑜𝑖𝑛𝑔) - φ𝑡𝐴𝐶𝑆(𝑝𝑟𝑒−𝑡𝑎𝑟𝑔𝑒𝑡); 334 

z(19) = 0.24, p = 0.79), indicating that the perceptual outcome in the ongoing and pre-target tACS 335 

conditions might not rely on identical neural processes. 336 

 337 

To statistically evaluate the hypothesized phasic modulation of word report accuracy, we compared the 338 

observed cosine amplitudes (Fig. 4F,G) with a surrogate distribution – an approach which has recently 339 

been shown to be highly sensitive to detect such a phasic effect [21]. The surrogate distribution was 340 

obtained by repeatedly shuffling experimental variables assigned to individual trials and extracting 341 

cosine amplitudes for each of those permutations. Here, these variables can refer to tACS phase lags, 342 

conditions, or durations, depending on the comparison of interest (see Materials and Methods).  343 

 344 
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We first pooled data over tACS durations (3, 4, and 5 s) before extracting cosine amplitudes (Fig. 4F). 345 

When tACS conditions were combined (i.e. their cosine amplitudes averaged), we found a significant 346 

phasic modulation of word report accuracy (z(19) = 2.80, p = 0.003). When conditions were analyzed 347 

separately, we found a significant phasic modulation of word report accuracy in the pre-target tACS 348 

condition (z(19) = 2.96, p = 0.002). This effect was not statistically reliable in the ongoing tACS 349 

condition (z(19) = 0.98, p = 0.16). However, the difference in modulation strength between tACS 350 

conditions was not significantly different from that obtained in a surrogate distribution (z(19) = 1.37, p 351 

= 0.17), indicating that the two conditions did not reliably differ in their efficacy of modulating speech 352 

perception. 353 

We next tested whether the phasic modulation of speech perception depends on tACS duration (Fig. 354 

4G). When tACS conditions were combined, we found an increase in phasic modulation of word report 355 

accuracy from 3-s tACS to 5-s tACS that was significantly larger than that observed in a surrogate 356 

distribution (z(19) = 1.82, p = 0.03). After five seconds of tACS, the phasic modulation was significant 357 

(z(19) = 2.36, p = 0.01), while the modulation was not statistically reliable after three seconds of 358 

stimulation (z(19) = -0.52, p = 0.70). When tACS conditions were analyzed separately, a significant 359 

effect of duration was observed in the pre-target tACS condition (z(19) = 1.86, p = 0.03), but not in the 360 

ongoing tACS condition (z(19) = 0.69, p = 0.24). After five seconds of tACS, the phasic modulation of 361 

word report accuracy was significant in the pre-target tACS condition (z(19) = 2.15, p = 0.016), but not 362 

in the ongoing tACS condition (z(19) = 1.17, p = 0.12). However, when effects of duration (3-s tACS 363 

vs 5-s tACS) were compared across tACS conditions, we did not find a reliable difference between the 364 

two (z(19) = 0.90, p = 0.37), indicating that there was no significant interaction between tACS condition 365 

and duration.  366 

 367 

Together, we found rhythmic changes in speech perception after the offset of tACS,  which depend on 368 

the duration of the preceding stimulation. This finding demonstrates that tACS can induce rhythmic 369 

changes in neural activity that build up over time and continue beyond the period of stimulation. Both 370 

of these effects are consistent with endogenous neural oscillations being entrained by tACS. 371 

 372 
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Experiment 1 vs 2: Phase of speech-entrained EEG predicts tACS effects in single participants 373 

In line with previous research [7–10], we found that participants differ in the tACS phase leading to 374 

more or less accurate perception, reflected by 𝜑𝑡𝐴𝐶𝑆 (Fig. 4E). Although adapting tACS protocols to 375 

individual participants has been suggested as a crucial step to increase effect sizes and advance the field 376 

[26–28], neural parameters that can predict these individual differences remain elusive. Here, we report 377 

an analysis of combined data from 18 participants who participated in both our experiments. Rather than 378 

the MEG data reported earlier, we analysed the concurrent EEG data collected during Experiment 1 and 379 

relate this to tACS effects observed in Experiment 2 in the same participants. This is because EEG is 380 

methodologically closer related to tACS than MEG: Both tACS and EEG, but not MEG, are similarly 381 

affected by distortions in current flow in the skull and other, non-neural tissues [29–32]. We therefore 382 

tested whether we can use EEG data to predict individual differences in 𝜑𝑡𝐴𝐶𝑆.  383 

 384 

In line with the MEG results reported earlier, EEG data in Experiment 1 showed a highly reliable rate-385 

specific response (RSR) in the entrained time window (Fig. 5A; p < 0.001; cluster-based correction). 386 

The RSR in the sustained time window was largest at fronto-parietal electrodes, similar to our reported 387 

findings in MEG. However, this sustained effect was not statistically reliable (i.e. no significant clusters 388 

were obtained). This could either be due to the lower signal-to-noise ratio of EEG or because EEG and 389 

MEG measure non-identical neural sources [33], which makes it possible that only one of the two 390 

methods captures a neural process of interest. 391 
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 392 

Figure 5. Combining Experiments 1 and 2. A. EEG results from Experiment 1. Topographies show RSR in the 393 

intelligible conditions. The time-frequency representation depicts ITC during 3-Hz sequences, averaged across EEG 394 

electrodes, participants, and conditions (cf. Fig. 1C).  B. Illustration of methodological approach, using example data 395 

from one participant and electrode (FCz, green in panel A). B-I. Band-pass filtered (2-4 Hz) version of the EEG signal 396 

that has been used to estimate 𝝋𝑬𝑬𝑮 in the panel below (B-II). In practice, EEG phase at 3 Hz was estimated using FFT 397 

applied to unfiltered EEG data. Consequently, 𝝋𝑬𝑬𝑮 reflects the distance between the peaks of a cosine, fitted to data 398 

within the analysis window (shaded grey), and the end of each 3-Hz cycle (green arrows). B-II. 𝝋𝑬𝑬𝑮 (green; in the 399 

intelligible conditions and averaged across durations) and phase of the 3-Hz sequence (𝝋𝑺𝒐𝒖𝒏𝒅, orange). The latter is 400 

defined so that the perceptual centre of each word corresponds to phase π (see example sound sequence, and its 401 

theoretical continuation, on top of panel B-I). B-III. Circular difference between 𝝋𝑬𝑬𝑮 (green in B-II) and 𝝋𝑺𝒐𝒖𝒏𝒅 402 

(orange in B-II), yielding 𝝋𝑬𝑬𝑮𝒗𝒔𝑺𝒐𝒖𝒏𝒅. Given that φ is defined based on a cosine, a positive difference means that EEG 403 

lags sound. C. Distribution of individual 𝝋𝑬𝑬𝑮𝒗𝒔𝑺𝒐𝒖𝒏𝒅, and its relation to 𝝋𝒕𝑨𝑪𝑺. Data from one example electrode (FCz) 404 

is used to illustrate the procedure; main results and statistical outcomes are shown in panel D. C-I. Distribution of 405 

𝝋𝑬𝑬𝑮𝒗𝒔𝑺𝒐𝒖𝒏𝒅 (cf. B-III), extracted in the intelligible conditions, and averaged across durations and within the respective 406 

time windows (shaded brown and blue in B-III, respectively). C-II,III: Distribution of the circular difference between 407 

𝝋𝒕𝑨𝑪𝑺 (Fig. 4E) and 𝝋𝑬𝑬𝑮𝒗𝒔𝑺𝒐𝒖𝒏𝒅 (C-I). Note that a non-uniform distribution (tested in panel D) indicates a consistent 408 

lag between individual 𝝋𝒕𝑨𝑪𝑺 and 𝝋𝑬𝑬𝑮𝒗𝒔𝑺𝒐𝒖𝒏𝒅. D. Z-values (obtained by means of a Rayleigh’s test; see Materials and 409 

Methods), quantifying non-uniformity of the distributions shown in C-II,III for different combinations of experimental 410 

conditions. Plus signs show electrodes selected for follow-up analyses (FDR-corrected p <= 0.05). E. Z-values shown in 411 

D for intelligible conditions as a function of time, averaged across selected EEG sensors (plus signs in D). For the 412 

electrode with the highest predictive value for tACS (F3), the inset shows the distribution of the circular difference 413 

between  𝝋𝒕𝑨𝑪𝑺 and 𝝋𝑬𝑬𝑮𝒗𝒔𝑺𝒐𝒖𝒏𝒅 in the pre-target condition, averaged within the entrained time window (shaded 414 

brown). Please refer to Data S1 for the numerical values underlying panels A,C-E. 415 

 416 

Although the RSR combines ITC measured during two different stimulus rates (Fig. 1E,F), we here 417 

focused on EEG responses at 3 Hz in response to 3-Hz sequences, corresponding to the frequency of 418 

tACS in Experiment 2. Fig. 5B,C illustrates our analysis procedure for one example participant (Fig. 419 

5B) and EEG electrode (Fig. 5B,C). For each EEG electrode, we extracted the phase of the 3-Hz 420 

response at each time point throughout the trial, and labeled it 𝜑𝐸𝐸𝐺 (Fig. 5B-II, green). We used Fast 421 

Fourier Transformation (FFT) to estimate 𝜑𝐸𝐸𝐺 (see Materials and Methods), which is equivalent to 422 

fitting a cosine at the frequency of interest (i.e. 3 Hz) to data in the analysis window (shaded grey in Fig. 423 

5B-I) and extracting its phase. The value of 𝜑𝐸𝐸𝐺 therefore corresponds to the distance between each of 424 

the three peaks of the fitted cosine and the end of the corresponding cycle (defined as π; Fig. 5B-I) 425 

 426 

For each participant and EEG electrode, we determined how 𝜑𝐸𝐸𝐺 relates to the timing of the presented 427 

sound sequences (𝜑𝑆𝑜𝑢𝑛𝑑; Fig. 5B-II, blue). Assuming rhythmic EEG responses reliably following the 428 



 

17 

 

presented sequences, the phase relation between EEG and sound (i.e. their circular difference) should 429 

be approximately constant over time. This phase relation, labeled 𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 (Fig. 5B-III), was 430 

therefore averaged within each of the two time windows of interest (entrained and sustained). The 431 

distribution of 𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 across participants in these time windows is shown in Fig. 5C-I for the 432 

selected EEG electrode. 433 

For each participant, EEG electrode, and the two time windows, we then calculated the (circular) 434 

difference between 𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 and 𝜑𝑡𝐴𝐶𝑆 in the ongoing (Fig. 5C-II) and pre-target tACS conditions 435 

(Fig. 5C-III), respectively. Importantly, a non-uniform distribution would indicate a consistent lag 436 

between 𝜑𝑡𝐴𝐶𝑆 and 𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 across participants. Fig. 5D shows the degree of non-uniformity of 437 

these distributions (as the z-values obtained in Rayleigh’s test for non-uniformity; see Materials and 438 

Methods), for all EEG electrodes, and different combinations of conditions in the two experiments. We 439 

found that the phase relation between EEG and intelligible speech in the entrained time window 440 

significantly predicts 𝜑𝑡𝐴𝐶𝑆 in the pre-target tACS condition. This effect was maximal at fronto-central 441 

EEG electrodes (e.g., F3: z(17) = 8.88, p = 0.003, FDR-corrected for 70 electrodes). While main results 442 

are shown for all electrodes and conditions (Fig. 5D), we again restricted follow-up analyses to those 443 

which are most relevant, and based on orthogonal contrasts. Here, we found that 𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 was most 444 

predictive for 𝜑𝑡𝐴𝐶𝑆 around the presentation of the last word in the sequence (Fig. 5E). At the sensor 445 

with the strongest effect (F3), we observed a shift of ~90 degrees (corresponding to ~83.3 ms) between 446 

𝜑𝑡𝐴𝐶𝑆 and 𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑  (inset in Fig. 5E). As expected from its increased dissimilarity to tACS, MEG 447 

responses measured in Experiment 1 did not reveal any predictive value for tACS results from 448 

Experiment 2 (Fig. S3). 449 

 450 

Findings shown in Fig. 5 have important implications for future studies: Given the previous reports of 451 

tACS-induced changes in speech processing [7–11], tACS may be a promising tool to treat conditions 452 

associated with deficits in speech comprehension. However, individual differences in 𝜑𝑡𝐴𝐶𝑆 have so far 453 

hampered this goal – existing data suggest that different tACS phases will lead to optimal perception for 454 

each individual participant and extensive testing might therefore be needed to determine this optimal 455 

phase before further interventions. Based on the consistent phase shift between 𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 and 𝜑𝑡𝐴𝐶𝑆 456 
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shown in Figure 5E, however, it should be possible to predict optimal tACS phase for single participants 457 

from EEG responses aligned to rhythmic intelligible speech. We tested this prediction in an additional 458 

analysis, as illustrated in Fig. 6 (see also Materials and Methods). This analysis was designed to illustrate 459 

the implications of findings depicted in Fig. 5D for future applications (e.g., when optimising tACS 460 

methods for use in interventions), rather than for providing new results. We selected EEG data from the 461 

entrained time window and the EEG electrode (F3) which was most predictive for effects of pre-target 462 

tACS (Fig. 5D), and behavioural data from the same tACS condition. Such a selection is permitted as 463 

main results were already reported – without pre-selection – in Fig. 5D. For each participant i, we 464 

determined their individual 𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 (Fig. 6B) and used it to estimate their individual 𝜑𝑡𝐴𝐶𝑆 (Fig. 465 

6C), based on the difference between the two that was observed on the group level (Fig. 6A,C). 466 

Importantly, for the latter, data from participant i was excluded, avoiding circularity of the procedure. 467 

For each participant, the estimated 𝜑𝑡𝐴𝐶𝑆 was then used to predict the tACS phase lag with highest 468 

accuracy in the word report task (blue dot in Fig. 6D,E). The behavioural data collected in Experiment 469 

2 was re-aligned, relative to this predicted optimal phase lag (Fig. 6D; see Fig. S4 for individual re-470 

aligned data from all participants). The outcome, averaged across participants, is shown in Fig. 6F (blue). 471 

As intended, word report accuracy was highest at the predicted optimal phase lag (0 in Fig. 6F), and 472 

significantly higher than in the opposite phase bin (+/-π in Fig. 6F), which should lead to worst 473 

performance (t(17) = 4.49, p < 0.001). This result confirms that optimal tACS phases for speech 474 

perception can be estimated, exclusively based on individual EEG data (if the average difference 475 

between 𝜑𝑡𝐴𝐶𝑆 and 𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 is known). 476 
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 477 

Figure 6. Predicted individual preferred tACS phases in the pre-target tACS condition from EEG data measured in the 478 

entrained time window at sensor F3. A, Step 1: For each participant i, data from all remaining participants was used to 479 

estimate the average difference between 𝝋𝒕𝑨𝑪𝑺 and 𝝋𝑬𝑬𝑮𝒗𝒔𝑺𝒐𝒖𝒏𝒅. B, Step 2: 𝝋𝑬𝑬𝑮𝒗𝒔𝑺𝒐𝒖𝒏𝒅 was determined for participant 480 

i. C, Step 3: This 𝝋𝑬𝑬𝑮𝒗𝒔𝑺𝒐𝒖𝒏𝒅 was shifted by the phase difference obtained in step 1, yielding the predicted 𝝋𝒕𝑨𝑪𝑺 for 481 

participant i. D, Step 4: The predicted 𝝋𝒕𝑨𝑪𝑺 was used to estimate the tACS phase lag with highest perceptual accuracy 482 

for participant i, and the corresponding behavioural data was shifted so that highest accuracy was located at a centre 483 

phase bin. Prior to this step, the behavioural data measured at the six different phase lags was interpolated to enable 484 

re-alignment with higher precision. E, Step 5: This procedure was repeated for all participants. F, Step 6: The re-aligned 485 

data was averaged across participants (blue). For comparison, the procedure was repeated for the ongoing tACS 486 

condition (using EEG data from the same sensor; brown). The shaded areas show SEM, corrected for within-subject 487 

comparison. G. Same as in F, but aligned at the predicted worst phase for word report accuracy. Please refer to Data 488 

S1 for the numerical values underlying panels F and G. 489 

 490 

Sustained oscillations produced by tACS enhance, but do not disrupt speech perception 491 

It remains debated whether a phasic modulation of speech perception, produced by tACS, reflects an 492 

enhancement or disruption of perception, or both [8–11,34]. Given that 𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 was not predictive 493 

of 𝜑𝑡𝐴𝐶𝑆 in the ongoing tACS condition (Fig. 5D), we used data from the latter to test this question. We 494 
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used the procedure illustrated in Fig. 6 (using data from the same EEG sensor F3) to predict optimal 495 

tACS phases in the ongoing tACS condition (see Materials and Methods). As 𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 does not 496 

predict 𝜑𝑡𝐴𝐶𝑆 in this condition, any tACS-dependent modulation of task accuracy should be abolished 497 

by the re-alignment, and the re-aligned data (Fig. 6F, brown) should therefore reflect the null hypothesis, 498 

i.e. task outcome in the absence of a phasic modulation. Indeed, word report accuracy was not higher at 499 

the predicted optimal phase lag for the ongoing tACS condition than at the opposite phase lag (t(17) = 500 

0.08, p = 0.53).  501 

Given that entrained EEG is predictive for 𝜑𝑡𝐴𝐶𝑆 only in the pre-target tACS condition (Fig. 5D), there 502 

must be some phase bins in which accuracy differs between the two tACS conditions after EEG-based 503 

re-alignment. However, these previous analyses did not reveal the direction of this difference 504 

(enhancement vs disruption). We therefore compared performance at the predicted optimal tACS phase 505 

between the two tACS conditions and found higher word report accuracy in the pre-target tACS 506 

condition (t(17) = 3.48, p = 0.001). For both conditions, we then re-aligned the behavioural data again, 507 

but this time at the tACS predicted to be worst for performance (i.e. 180° away from the tACS phase 508 

predicted to be optimal for performance). Performance at the predicted worst tACS phase did not 509 

significantly differ between the two conditions (t(17) = 1.34, p = 0.90). These results show that the 510 

sustained phasic modulation of word report accuracy, produced by pre-target tACS, reflects an 511 

enhancement of speech perception both relative to a non-optimal tACS phase and compared to EEG-512 

aligned data from an ongoing tACS condition in which EEG data was not predictive of optimal tACS 513 

phase. 514 

 515 

Discussion 516 

In 1949, Walter & Walter [35] observed that rhythmic sensory stimulation produces rhythmic brain 517 

responses. Importantly, in their paper, when listing potential explanations for their observation, they 518 

distinguished “fusion of evoked responses giving an accidental appearance of rhythmicity” from “true 519 

augmentation or driving of local rhythms at the frequency of the stimulus”. Now, more than 70 years 520 

later, it remains an ongoing debate whether “neural entrainment”, brain responses aligned to rhythmic 521 

input, is due to the operation of endogenous neural oscillations or reflects a regular repetition of 522 



 

21 

 

stimulus-evoked responses [16,36–39]. In two experiments, we provide clear evidence for entrained 523 

endogenous neural oscillations, by showing that rhythmic brain responses and rhythmic modulation of 524 

perceptual outcomes can outlast rhythmic sensory and electrical stimulation. We will discuss the 525 

implication of these sustained effects of sensory and electrical stimulation, before considering the 526 

functional interpretation of neural after-effects. We finish by discussing the potential for practical 527 

application of our combined EEG and tACS findings in supporting impaired speech perception.  528 

 529 

Endogenous neural oscillations entrained by rhythmic sensory and electrical stimulation  530 

Previous studies in a range of domains have similarly demonstrated sustained oscillatory effects after 531 

rhythmic sensory stimulation (summarized in [16]). Both perception and electrophysiological signals 532 

have been shown to briefly oscillate after a rhythmic sequence of simple visual [40–42] or auditory [43–533 

45] stimuli, such as flashes or pure tones. A recent study showed that such a sustained rhythmic response 534 

occurs when preceded by a stimulus evoking the perception of a regular beat, but not when participants 535 

merely expect the occurrence of a rhythmic event [46]. Although neural entrainment is widely explored 536 

in speech research [1,2], we are only aware of one study reporting sustained oscillatory effects produced 537 

by human speech: Kösem et al [17] showed that, immediately after a change in speech rate, oscillatory 538 

MEG responses can still be measured at a frequency corresponding to the preceding speech (summarized 539 

in [15]). Our results in Experiment 1 are in line with this study and extend it by showing that (1) sustained 540 

oscillations produced by speech can be measured in silence and (2) are not observed for acoustically-541 

matched speech stimuli that are unintelligible. Similar effects of intelligibility on neural entrainment 542 

have been described for combined tACS and fMRI: Neural responses in the STG to intelligible speech, 543 

but not to unintelligible speech, were modulated by tACS [7]. In Experiment 1, we also replicated our 544 

previous MEG finding of more reliable stimulus-aligned responses to intelligible than unintelligible 545 

speech [5,6]. We further show that (1) rhythmic responses to intelligible speech persist after the offset 546 

of the speech stimulus and (2) this sustained effect is absent for acoustically-matched, unintelligible 547 

speech. Our results should not be taken as evidence that endogenous neural oscillations are irrelevant 548 

for the processing of sounds other than human speech (e.g., [43–45]). However, they might suggest that 549 

endogenous oscillations are optimized to process speech, due to its quasi-rhythmic properties [3,47]. 550 
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Additionally, it is possible that the increased salience of intelligible speech (as compared to noise or 551 

tone stimuli) enhances participants’ alertness and encourages higher-level processing, which has been 552 

shown to lead to enhanced oscillatory tracking of rhythmic structures [48,49]. Together, our MEG 553 

findings suggest that endogenous neural oscillations are active during neural entrainment, and that these 554 

oscillatory mechanisms are of particular importance for processing intelligible speech.   555 

 556 

It is well established that the omission of an expected stimulus evokes a prominent neural response [50–557 

53]. One concern that could be raised regarding the present findings is whether our sustained effects 558 

could have been generated by an omission response rather than true oscillatory activity. Several aspects 559 

of our Experiment 1 suggest that omission-evoked responses are unlikely to explain the sustained effects 560 

of rhythmic stimulation: (1) omission responses would only lead to a sustained RSR if they were specific 561 

to the stimulation rate (i.e. if the omission leads to an increase in 2-Hz ITC after 2-Hz sequences and 3-562 

Hz ITC after 3-Hz sequences); (2) sustained oscillatory activity after the end of a sequence lasts longer 563 

than would be expected from a single, punctate omission response (see Fig. 3C); (3) previous 564 

observations of omission responses show that these are largely generated in brain regions that were most 565 

active while rhythmic stimuli were presented [52,53], whereas our study showed sustained responses in 566 

brain regions that were not the primary driver of responses measured during sensory stimulation 567 

(compare scalp topographies and source distributions in Fig. 2C and 2F). These findings therefore 568 

suggest that sustained activity is generated by true oscillatory neural activity produced in response to 569 

intelligible speech. 570 

 571 

Several studies have reported modulation of speech perception outcomes by tACS, and conclude that 572 

changes in neural entrainment, produced by varying the phase relation between tACS and speech 573 

rhythm, are responsible [8–11].  However, thus far these effects could reflect the rhythmic nature of the 574 

applied current, which might interfere with processing of speech presented with the same rhythm 575 

without any involvement of neural oscillations [15]. In Experiment 2, we found sustained rhythmic 576 

fluctuations in speech perception that continued after the offset of tACS. Our results are an important 577 

extension of previous work as they suggest that: (1) modulation of speech perception can be due to the 578 
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operation of neural oscillations entrained by tACS, and (2) sustained oscillatory effects after tACS can 579 

be measured in word report outcomes, and hence are causally relevant for speech perception. These 580 

findings for speech have precedent in other sensory modalities and brain regions. For example, a recent 581 

study [54] used tACS at 7 Hz to stimulate parietal-occipital regions and reported sustained rhythmic 582 

EEG responses at the frequency of electric stimulation. Although the functional role of these sustained 583 

neural effects for perceptual processes (such as perceptual integration) remain unclear, this previous 584 

study provides evidence for neural oscillations entrained by tACS that parallels the present work. The 585 

tACS method used here, in which perceptual effects are observed subsequent to the end of electrical 586 

stimulation are clearly amenable to further exploration in studies combining tACS and EEG.  587 

 588 

In Experiment 2, the phasic modulation of speech perception observed after tACS (in the pre-target 589 

tACS condition) was not significantly different from that during tACS (in the ongoing tACS condition). 590 

In light of results from Experiment 1, where the sustained rhythmic response was clearly weaker than 591 

the entrained one, this might seem surprising. Importantly however, the process that interferes with our 592 

ability to measure endogenous oscillations during rhythmic stimulation is not identical in the two 593 

experiments. In Experiment 1, rhythmic sensory stimulation produced strong, regular evoked activity 594 

which dominates the response in the entrained time window. In Experiment 2, the current applied during 595 

tACS alternated regularly between periods of strong stimulation (at the tACS peaks and troughs) and no 596 

stimulation (at the zero crossings). This, according to our assumptions, might produce rhythmic 597 

modulation of speech perception that does not necessarily involve endogenous oscillations (perception 598 

might simply “follow” the amount of current injected). However, tACS is not strong enough to evoke 599 

neural activity [55,56], and the described effect will not dominate responses as strongly as sensory 600 

stimulation in Experiment 1. Moreover, such a phasic effect on speech perception does not necessarily 601 

combine additively with that produced by entrained endogenous oscillations – indeed, these two 602 

processes might even interfere with each other. Consequently, and in line with our results, rhythmic 603 

modulation of speech perception is not necessarily expected to be stronger when both processes interact 604 

(regular changes in current vs entrained oscillations in the ongoing tACS condition) as compared to an 605 

effect that is due to endogenous oscillations alone (in the pre-target tACS condition).    606 
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 607 

Another line of evidence for endogenous oscillations entrained by a rhythmic stimulus comes from 608 

studies testing how brain responses vary as a function of stimulus rate and intensity (summarized in 609 

[16]). It is a clear prediction from classical physical models that the intensity required to entrain 610 

endogenous oscillations decreases when the rate of the entraining stimulus approaches their natural 611 

frequency [57–60]. Indeed, this phenomenon, termed “Arnold Tongue”, has recently been observed for 612 

visual stimulation [61]. There is tentative evidence that tACS-induced responses behave in a similar way 613 

(summarized in [59]), but more studies are needed to substantiate this claim. Based on similar reasoning, 614 

entrainment effects should also be stronger when the system has “more time” to align with the external 615 

oscillator [59,62]. Our finding that tACS effects on perception increase with stimulation duration (Fig. 616 

4G) is therefore clearly in line with oscillatory models. Importantly, such a behaviour was apparent in 617 

the pre-target tACS condition, in which effects of endogenous oscillations could be distinguished from 618 

those of other, potentially interfering neural processes. Although effects of tACS duration on behaviour 619 

were numerically larger and only statistically reliable in this condition, we hesitate to conclude that the 620 

effect is specific to pre-target tACS since the condition by duration interaction was not reliable. 621 

Nevertheless, this result not only adds to existing demonstrations of endogenous oscillations entrained 622 

by tACS, it also points to entrained neural oscillations being more than just a passive response to 623 

rhythmic input. This idea is discussed in detail in the next section. 624 

 625 

Rhythmic entrainment echoes – active predictions or passive after-effect? 626 

In both our MEG and tACS experiments, we demonstrate that entrained neural and perceptual processes 627 

are more than a simple reflection of rhythmic input driving an otherwise silent system (Fig. 7A): Based 628 

on the observation of sustained oscillatory responses after stimulus offset, we conclude that an 629 

endogenous oscillatory system is involved in such entrained brain responses. Although endogenous 630 

oscillations are difficult to measure during stimulation, the most parsimonious explanation of our results 631 

is that the entrained response entails both evoked responses and endogenous oscillations, with the former 632 

dominating the response. After stimulus offset only the latter prevails, leading to a change in 633 

topographical pattern and estimated source. Indeed, we found that sensors capturing sustained 634 



 

25 

 

oscillations also show a significantly entrained response during sensory stimulation (Fig. 3C, red), while 635 

stronger, stimulus-driven activity at distinct sensors, quickly subsided after stimulation (green in Fig. 636 

3C). 637 

 638 

Figure 7. Three physical models that could be invoked to explain neural entrainment, and their potential to explain 639 

rhythmic entrainment echoes. A. In a system without any endogenous processes (e.g., neural oscillations), driving input 640 

would produce activity which ceases immediately when this input stops. B. A more direct account of rhythmic 641 

entrainment echoes is that endogenous neural oscillations resemble the operation of a pendulum which will start 642 

swinging passively when “pushed” by a rhythmic stimulus. When this stimulus stops, the oscillation will persist but 643 

decays over time, depending on certain “hard-wired” properties (similar to the frictional force and air resistance that 644 

slows the movement of a pendulum over time). C. Endogenous neural oscillations could include an active (e.g., 645 

predictive) component that controls a more passive process – similar to a child that can control the movement of a 646 

swing. This model predicts that oscillations are upheld after stimulus offset as long as the timing of important upcoming 647 

input (dashed lines) can be predicted. Note that, for the sake of clarity, we made extreme predictions to illustrate the 648 

different models. For instance, depending on the driving force of the rhythmic input, pendulum and swing could reach 649 

their maximum amplitude near-instantaneously in panels B and C, respectively, and therefore initially resemble the 650 

purely driven system shown in A. Similarly, it is possible that the predictive process (illustrated in C) operates less 651 

efficiently in the absence of driving input and therefore shows a decay similar to that shown by the more passive process 652 

(shown in B). 653 

 654 

What is the neural mechanism and functional role played by these rhythmic echoes of previously 655 

entrained responses (hereafter, “entrainment echoes”, cf. [54])? We here illustrate two different, but not 656 



 

26 

 

mutually exclusive, models which can explain the observed entrainment echoes. In one model, these 657 

rhythmic echoes reflect the passive reverberation of an endogenous neural oscillation that has previously 658 

been activated by a rhythmic stimulus. A physical analogy for this would be a pendulum that responds 659 

to a regular “push” by swinging back and forth, and that continues to produce a regular cyclical 660 

movement without external input until its kinetic energy has subsided (Fig. 7B). In the other model, 661 

stimulus-aligned oscillations are the result of an active mechanism that, through predictive processes, 662 

comes to align the optimal (high-excitability) oscillatory phase to the expected timing of important 663 

sensory or neural events [12,13]. In this view, oscillatory activity can be actively maintained after 664 

stimulus offset and can persist for as long as these predictions are required. It is plausible that this active 665 

component is imposed onto a more “hard-wired”, passive mechanism, that is oscillations might be 666 

entrained passively, but that this mechanism is under top-down control and can be adjusted if necessary. 667 

A physical analogy for this is the way in which a child will move on a swing if pushed, but can also 668 

control whether or not the movement of the swing is sustained after their helper stops pushing (Fig. 7C).  669 

The active mechanism, in this case, is the timing and amplitude of small movements that a sufficiently 670 

skilled child can coordinate with the movement of the swing to maintain oscillations without external 671 

help. 672 

 673 

Several of our observations do point to an “active” component involved in generating rhythmic 674 

entrainment echoes, however, providing a definitive answer to this question remains for future studies. 675 

In both experiments, we found that the neural systems involved in producing sustained effects are 676 

distinct from those that are most active during the presence of the rhythmic stimulus. In Experiment 1, 677 

sustained MEG oscillations were maximal at parietal sensors and had a clearly different scalp 678 

topography and source configuration from typical auditory responses (cf. [46] for a similar shift towards 679 

parietal sensors after rhythmic stimulation). In Experiment 2, individual tACS phase lags leading to 680 

highest word report accuracy after tACS offset were unrelated to those measured during tACS. 681 

Together, these findings are important as they speak against purely “bottom-up” or stimulus-driven 682 

generators of sustained oscillatory responses that merely continue to reverberate for some time after 683 

stimulus offset. Instead, they suggest that a distinct oscillatory network seems to be involved that might 684 



 

27 

 

be specialized in “tracking” and anticipating important upcoming sensory events – potentially by 685 

adjusting and modulating a more passive, sensory processing system that aligns to rhythmic speech 686 

stimuli. It is possible that we can mimic such top-down effects using tACS, providing rhythmic 687 

predictions to auditory regions using electrical stimulation.   688 

 689 

This proposal that top-down predictions for the timing of up-coming stimuli are achieved using neural 690 

oscillations is also in line with previous studies suggesting that neural predictions are fundamental for 691 

how human speech is processed by the brain [25,63–65]. It is possible that predictive oscillatory 692 

mechanisms are particularly strong for intelligible speech, and therefore upheld for some time when the 693 

speech stops. In contrast, unintelligible noise-like sequences, typically irrelevant in everyday situations, 694 

might lead to weaker predictions or shorter-duration sustained responses – explaining the results 695 

observed in Experiment 1.  696 

 697 

Stronger rhythmic responses during intelligible than unintelligible speech [5,6], as well as sustained 698 

oscillatory effects for speech sounds [17], have previously been shown in auditory brain areas. However, 699 

all of these studies measured neural effects during auditory input, which might bias localization of the 700 

neural responses towards auditory areas. Our study, in contrast, revealed sustained effects during post-701 

stimulus silent periods at parietal sensors. This method might therefore yield a more precise estimate of 702 

where these effects originate. Auditory input fluctuates rapidly, which requires the auditory system to 703 

quickly adapt its oscillations to changes in input [66,67]. Auditory input is represented more faithfully 704 

(i.e. less abstractly), and therefore on a faster time scale, in auditory brain regions than in “higher-level” 705 

ones [68]. Thus, it is possible that oscillatory activity in the former involves more immediate responses, 706 

and hence disappears quickly after sound offset. In contrast, a more abstract representation of a rhythmic 707 

input – including phasic predictions about timing – might be more stable over time, and can remain 708 

present even after stimulus offset. This might be another reason to explain why our sustained oscillatory 709 

effects were found to be maximal at parietal sensors, potentially reflecting neural activity at a higher 710 

level of the cortical hierarchy. 711 

 712 
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Predicting tACS outcomes from EEG data – implications for future work and applications 713 

It is a common observation that participants differ in how they respond to a given tACS protocol. For 714 

example, there is typically no consistent tACS phase which leads to highest perceptual accuracy for all 715 

participants [7–10]. Individualizing brain stimulation protocols has therefore been proposed as a crucial 716 

step to advance the theoretical and practical application of this line of research [26–28]. A recent study 717 

[69] reported that the phase relation between tACS and visual flicker modulates the magnitude of EEG 718 

responses to the flicker when tACS is turned off. Moreover, the individual “best” phase relation between 719 

tACS and flicker (leading to strongest EEG responses) was correlated with the individual phase relation 720 

between EEG and flicker. We replicate and extend this finding in a new modality by showing that the 721 

individual phase lag between EEG and intelligible speech can predict which tACS phase leads to more 722 

or less accurate perception in the same participant. Indeed, we found that EEG data from individual 723 

participants is sufficient to predict which tACS phase is optimal for perception, so long as the average 724 

lag between the two can be estimated even when using other, independent participants (Fig. 6). This 725 

result is important, as it shows that tACS can be adapted to individual brains based on EEG observations 726 

and establishes a method for aligning EEG and tACS findings for single participants. In an applied 727 

setting, these methods make the application of brain stimulation more efficient since the search for the 728 

most effective phase can be guided by EEG data rather than by trial and error. This finding therefore 729 

increases the potential for clinical or educational applications of tACS methods in future.  730 

 731 

Perhaps surprisingly, given results from Experiment 1, the phase of the entrained, but not sustained EEG 732 

response was predictive for the phase of the sustained tACS effect. This result might be explained by 733 

the fact that, possibly due the lower signal to noise ratio of EEG, the sustained oscillatory response was 734 

not statistically reliable in the EEG in Experiment 1 (Fig. 5A). Consequently, a link between sustained 735 

oscillatory effects in EEG and tACS might not have been detectable, even if it exists, simply because 736 

the former was not measured reliably. Nevertheless, our finding that the entrained EEG response predicts 737 

sustained tACS phase indicates that entrained EEG responses can capture the phase of endogenous 738 

oscillations, despite observations of simultaneous evoked neural activity. MEG, showing statistically 739 

robust sustained responses (Fig. 2), is not as closely related to tACS as EEG (as its signal is not affected 740 
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by the same distortions by bone and tissue) and is therefore less likely to be predictive of tACS outcomes 741 

(cf. Fig. S3). Future studies may need electrophysiological methods with higher signal to noise ratio 742 

than EEG, such as electrocorticography, ECoG, to test the relationship between sustained neural 743 

responses and tACS-induced changes in perception in more detail. 744 

According to the simplest interpretation of the reciprocity between EEG and tACS, if the signal from a 745 

neural source is captured at a certain (EEG) electrode position, then the same electrode position should 746 

be efficient in stimulating this neural source (with tACS) [30–32]. Vice versa, if a tACS electrode 747 

configuration is successful in targeting a certain neural source, then activity from this source should be 748 

measurable with EEG at this electrode position. As the topographical pattern of EEG signals with high 749 

predictive value for tACS (fronto-occipital pattern; Fig. 5D) was different from the tACS electrode 750 

position (T7/8), our results indicate that this simple interpretation does not hold and that more complex 751 

mechanisms underlie our observations. This could be because multiple neural sources are involved and 752 

interact to produce the topographical distribution measured with EEG, while the tACS protocol used 753 

can only reach one or some of them. It is also possible that tACS modulates the efficacy of sensory input 754 

to activate neural ensembles, while EEG measures the output of these ensembles. Differences in neural 755 

populations contributing to input vs output processing, including their orientation to the scalp, might 756 

explain the observed deviance from simple reciprocity between EEG and tACS. Finally, it is possible 757 

that even stronger modulation of perception could be achieved if tACS were applied at those (fronto-758 

occipital) EEG electrode positions showing maximal predictive values for tACS effects – this could be 759 

explored in future work. 760 

It is of note that the phasic modulation of speech perception was not statistically reliable when the target 761 

was presented during tACS (i.e. in the ongoing tACS condition). This result seems in contrast to 762 

previous work [7–11]. However, in those studies, participants listened to and reported longer speech 763 

sequences while they were asked to detect a single target word (presented in background noise) in the 764 

current study. The quasi-regular rhythm of such sequences might act as an additional entraining stimulus 765 

which could boost or interact with tACS effects (see also next paragraph), in particular when perception 766 

is tested during tACS. Future studies should test the interesting question of whether and how the 767 

rhythmicity of the speech stimulus affects the efficacy of tACS during and after its application. 768 
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 769 

In previous work, using the same electrode configuration as applied in Experiment 2, we reported that 770 

tACS can only disrupt, and not enhance speech perception [8]. We previously hypothesized that this is 771 

because tACS was applied simultaneously with rhythmic speech sequences, which as Experiment 1 of 772 

our study shown can themselves entrain brain activity. If neural entrainment to the speech sequences 773 

were already at the limit of what is physiologically possible, tACS might only be able to disrupt, but not 774 

to enhance it further. Importantly, in the current study, tACS was applied during non-rhythmic 775 

background noise, i.e. without any simultaneously entraining auditory stimulus. Our finding of enhanced 776 

speech perception therefore supports the hypothesis that tACS can enhance neural entrainment. 777 

However, if it is applied simultaneously with a strong “competing” entraining stimulus, tACS might 778 

only be able to disrupt entrainment. Together with the finding that tACS can be individualized, the 779 

protocol used here seems a promising method for future technological applications in which tACS is 780 

used to enhance speech perception in a real-world setting. 781 

 782 

In conclusion, we report evidence that endogenous neural oscillations are a critical component of brain 783 

responses that are aligned to intelligible speech sounds. This is a fundamental assumption in current 784 

models of speech processing [1] that we believe is only now clearly established by empirical evidence. 785 

We further show that tACS can modulate speech perception by entraining endogenous oscillatory 786 

activity. In this way we believe our work critically advances our understanding of how neural 787 

oscillations contribute to the processing of speech in the human brain. 788 

 789 

 790 

 791 

 792 

 793 

 794 

 795 

 796 
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Materials and Methods 797 

 798 

Participants 799 

24 participants were tested after giving written informed consent in a procedure approved by the 800 

Cambridge Psychology Research Ethics Committee (application number PRE.2015.132) and carried out 801 

in accordance with the Declaration of Helsinki. 3 participants did not finish Experiment 1, leaving data 802 

from 21 participants (10 females; mean ± SD, 37 ± 16 years) for further analyses; 4 participants did not 803 

finish Experiment 2, leaving 20 participants for further analyses (11 females; 39 ± 15 years). 18 804 

participants (9 females; 40 ± 15 years) finished both experiments. 805 

All participants were native English speakers, had no history of hearing impairment, neurological 806 

disease, or any other exclusion criteria for MEG or tACS based on self-report. 807 

 808 

Stimuli 809 

Our stimuli consisted of a pool of ~650 monosyllabic words, spoken to a metronome beat at 1.6 Hz 810 

(inaudible to participants) by a male native speaker of British English (author MHD). These were time-811 

compressed to 2 and 3 Hz, respectively, using the pitch-synchronous overlap and add (PSOLA) 812 

algorithm implemented in the Praat software package (version 6.12). This approach ensures that 813 

“perceptual centres”, or “p-centres” [70] of the words were aligned to the metronome beat (see vertical 814 

lines in Fig. 1C) and, consequently, to rhythmic speech (in perceptual terms). Moreover, the well-815 

defined rhythmicity of the stimulus allows a precise definition of the phase relation between stimulus 816 

and tACS (see below). 817 

 818 

For Experiment 1 (Fig. 1A), these words were combined to form rhythmic sequences, which were 2 or 819 

3 seconds long and presented at one of two different rates (2 or 3 Hz). Depending on the duration and 820 

rate of the sequence, these sequences therefore consisted of 4 (2 Hz / 2 s), 6 (3 Hz / 2 s and 2 Hz / 3s) or 821 

9 words (3 Hz / 3s). Noise-vocoding [18] is a well-established method to produce degraded speech 822 

which varies in intelligibility, depending on the number of spectral channels used for vocoding. In 823 

Experiment 1, we used highly intelligible 16-channel vocoded speech and 1-channel noise-vocoded 824 
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speech, which is a completely unintelligible, amplitude-modulated noise (for more details, see [7,8]). 825 

Importantly, noise-vocoding does not alter the rhythmic fluctuations in sound amplitude of the stimulus 826 

that are commonly assumed to be important for neural entrainment [47]. Thus, acoustic differences in 827 

the broadband envelope between the two conditions cannot be responsible for differences in the 828 

observed neural responses. 829 

 830 

For Experiment 2 (Fig. 4A), we presented participants with single 16-channel noise-vocoded target 831 

words, time-compressed to 3 Hz. These words were embedded in continuous noise with an average 832 

spectrum derived from all possible (~650) target words. The noise was presented for ~ 5-7 s. The target 833 

word occurred between 2 and 1.722 s before noise offset, depending on its phase lag relative to tACS 834 

(see Experimental Design and Fig. 4A). The noise was faded in and out at the beginning and end of each 835 

trial, respectively. All stimuli were presented to participants via headphones (through insert earphones 836 

connected via tubing to a pair of magnetically-shielded drivers in Experiment 1; ER-2 insert earphones 837 

in Experiment 2; Etymotic Research Inc., USA). 838 

 839 

Experimental Design  840 

In Experiment 1, while MEG/EEG data was recorded, participants listened to the rhythmic sequences 841 

(Fig. 1A) and pressed a button as soon as they detected an irregularity in the sequence rhythm (red in 842 

Fig. 1A). The irregularity was present in 12.5 % of the sequences and was produced by shifting one of 843 

the words (excluding first and last) in the sequence by ± 68 ms. Participants completed 10 experimental 844 

blocks of 64 trials each. For each block, the rate of the sequences was chosen pseudo-randomly and kept 845 

constant throughout the block. In each trial, the intelligibility (16- or 1-channel speech) and duration (2 846 

or 3 s) of the sequence was chosen pseudo-randomly. Consequently, participants completed a total of 847 

80 trials for each combination of conditions (rate x intelligibility x duration). Each of the sequences was 848 

followed by a silent interval in which sustained oscillatory responses were measured (Fig. 1C). These 849 

silent intervals were 2+x s long, where x corresponds to 1.5, 2, or 2.5 times the period of the sequence 850 

rate (i.e. 0.75, 1, or 1.25 s in 2-Hz blocks, and 0.5, 0.666, or 0.833 s in 3-Hz blocks). x was set to 2 in 851 

50 % of the trials. 852 



 

33 

 

In Experiment 2, tACS was applied at 3 Hz and participants were asked to identify a target word 853 

embedded in noise, and report it after each trial using a standard computer keyboard. The start and end 854 

of each trial was signaled to participants as the fade in and out of the background noise, respectively 855 

(Fig. 4A). The next trial began when participants confirmed their response on the keyboard. We used an 856 

intermittent tACS protocol (cf. [69]), i.e. tACS was turned on and off in each trial. In two different tACS 857 

conditions, we tested how the timing of the target word relative to tACS modulates accuracy of reporting 858 

the target. In both conditions, the target word was presented so that its p-centre occurred at 3+y, 4+y, or 859 

5+y seconds after tACS onset, chosen pseudo-randomly in each trial (red lines in Fig. 4A). y corresponds 860 

to one out of six tested phase delays between tACS and the perceptual center of the target word, covering 861 

one cycle of the 3-Hz tACS (corresponding to temporal delays between 66.67 ms and 344.45 ms, in 862 

steps of 55.56 ms). In the pre-target tACS condition, tACS was turned off y seconds before the 863 

presentation of the target word. In the ongoing tACS condition, tACS remained on during the 864 

presentation of the target word and was turned off 1-y seconds after target presentation. In each trial, the 865 

background noise was faded in with a random delay relative to tACS onset (between 0 and 0.277 s). 866 

This ensured that the interval between noise onset and target was unrelated to the phase lag between 867 

tACS and target, avoiding potential alternative explanations for the hypothesized phasic modulation of 868 

word report by tACS. The background noise was faded out 1.5-y seconds after target presentation. 869 

 870 

Participants completed 10 blocks of 36 trials each, leading to a total of 10 trials for each combination of 871 

conditions (tACS condition x duration x phase delay). Prior to the main experiment, they completed a 872 

short test in which the signal-noise ratio (SNR) between target word and background noise was adjusted 873 

and word report accuracy was assessed. During this test, no tACS was applied. Acoustic stimulation 874 

was identical to that in the main experiment, apart from the SNR, which was varied between -8 dB and 875 

8 dB (in steps of 4 dB; 15 trials per SNR). From this pre-test, a single SNR condition at the steepest 876 

point on the psychometric curve (word report accuracy as a function of SNR) was selected and used 877 

throughout the main experiment (methods used for quantification of word report accuracy are described 878 

below in Quantification and Statistical Analysis). This SNR was, on average -1.05 dB (SD: 1.75 dB). 879 
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For those participants who completed both experiments, Experiment 1 was always completed prior to 880 

Experiment 2, with, on average, 23 days between experiments (std: 30.88 days). However, all but two 881 

participants completed both experiments within one week of each other. 882 

 883 

MEG/EEG Data Acquisition and Pre-processing (Experiment 1) 884 

MEG was recorded in a magnetically and acoustically shielded room, using a VectorView system 885 

(Elekta Neuromag) with one magnetometer and two orthogonal planar gradiometers at each of 102 886 

positions within a hemispheric array. EEG was recorded simultaneously using 70 Ag-AgCl sensors 887 

according to the extended 10–10 system and referenced to a sensor placed on the participant’s nose. All 888 

data were digitally sampled at 1 kHz and band-pass filtered between 0.03 and 333 Hz (MEG) or between 889 

0.1 and 333 Hz (EEG), respectively. Head position and electrooculography activity were monitored 890 

continuously using five head-position indicator (HPI) coils and two bipolar electrodes, respectively. A 891 

3D digitizer (FASTRAK; Polhemus, Inc.) was used to record the positions of the EEG sensors, HPI 892 

coils, and ∼70 additional points evenly distributed over the scalp relative to three anatomical fiducial 893 

points (the nasion and left and right preauricular points).  894 

 895 

Data from MEG sensors (magnetometers and gradiometers) were processed using the temporal 896 

extension of Signal Source Separation [71] in MaxFilter software (Elekta Neuromag) to suppress noise 897 

sources, compensate for motion, and reconstruct any bad sensors.  898 

MEG/EEG data were further processed using the FieldTrip software [72] implemented in MATLAB 899 

(The MathWorks, Inc.).  900 

 901 

EEG data was high-pass filtered at 1 Hz and re-referenced to the sensor average. Noisy EEG sensors 902 

were identified by visual inspection and replaced by the average of neighbouring sensors. For MEG and 903 

EEG data separately, artefacts caused by eye movements, blinks, or heartbeat, were extracted using 904 

independent component analysis (ICA). ICA was applied to data down-sampled to 150 Hz. ICA 905 

components representing artefacts were identified visually and removed from the data at the original 906 
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sampling rate of 1 kHz. The data were then epoched into trials from -3 s (longer condition) or -2 s 907 

(shorter condition) to +2.5 s, relative to the omission of the first word in each sequence (cf. Fig. 1C).  908 

 909 

Electrical Stimulation (Experiment 2) 910 

Current was administered using two battery-driven stimulators (DC-Stimulator MR, Neuroconn GmbH, 911 

Ilmenau, Germany). Each of the stimulators was driven remotely by the output of one channel of a high-912 

quality sound card (Fireface UCX, RME, Germany); another output channel was used to transmit diotic 913 

auditory stimuli to the participants’ headphones, assuring synchronization between applied current and 914 

presented stimuli. 915 

 916 

We used a tACS electrode configuration that has produced a reliable modulation of word report in a 917 

previous study [8]. This protocol entails bilateral stimulation over auditory areas using ring electrodes 918 

(see inset of Fig. 4A). Each pair of ring electrodes consisted of an inner, circular, electrode with a 919 

diameter of 20 mm and a thickness of 1 mm, and an outer, “doughnut-shaped”, electrode with an outer 920 

and inner diameter of 100 and 75 mm, respectively, and a thickness of 2 mm. The inner electrodes were 921 

centered on T7 and T8 of the 10-10 system, respectively. The parts of the outer electrodes which 922 

overlapped with participants’ ears were covered using electrically isolating tape. Electrodes were kept 923 

in place with adhesive, conductive ten20 paste (Weaver and Company, Aurora, CO, USA). Stimulation 924 

intensity was set to 1.4 mA (peak-to-peak) unless the participant reported stimulation to be unpleasant, 925 

in which case intensity was reduced (consequently, two participants were stimulated with 1.2 mA, one 926 

with 1.1 mA, and one with 1.0 mA). Current was not ramped up or down; we verified in preliminary 927 

tests that for sinusoidal stimulation this does not lead to increased current-induced sensations. 928 

 929 

Sham stimulation was not applied in this experiment. Sensations produced by tACS are typically 930 

strongest at the onset of the electrical stimulation. Based on this notion, during sham stimulation, current 931 

is usually ramped up and down within several seconds, leading to similar sensations as during “true” 932 

tACS, but with no stimulation in the remainder of the trial or block (e.g., [73]). In the current experiment, 933 

we tested whether tACS applied for only several seconds leads to a phasic modulation of perception. 934 
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Given the similarity of this approach to a typical sham stimulation condition, we did not expect that it 935 

would act as an appropriate control. Instead, we compared the observed tACS-induced modulation of 936 

speech perception with that obtained in a surrogate distribution, reflecting the null distribution (see 937 

Quantification and Statistical Analysis).  938 

 939 

We verified in pre-tests that turning on or off the electric stimulation does not produce any sensation 940 

that is temporally so precise that participants can distinguish the two conditions (note that tACS is 941 

applied intermittently in both conditions, only with different timings relative to the target word). 942 

However, we did not measure potential sensations quantitatively during the experiment to avoid drawing 943 

attention to the transient nature of our tACS protocol. However, even if tACS sensations differed 944 

between the two conditions at the relevant time points (e.g., during target presentation), they seem 945 

unlikely to have affected the hypothesized phasic modulation of word report (for this to happen, 946 

participants would also need to distinguish different tACS phases, and relate these phases to the time at 947 

which the target is presented; see [8] for further discussion). Rather, we might expect a generic effect of 948 

tACS such as a difference in overall word report accuracy (averaged across phase). This result was not 949 

observed in the current study and hence we feel confident that the phasic effects of pre-target tACS are 950 

due to entrainment of underlying neural mechanisms. 951 

 952 

Statistical Analyses 953 

All analyses were implemented using custom MATLAB scripts and the toolbox for circular statistics 954 

[74], where appropriate. 955 

 956 

Experiment 1  957 

We first quantified rhythmic responses in our data using inter-trial phase coherence (ITC; Fig. 1D). At 958 

a given frequency and time, ITC measures the consistency of phase across trials [75,76]. ITC ranges 959 

between 0 (no phase consistency) and 1 (perfect phase consistency). Although some studies used 960 

spectral power to quantify oscillatory activity in rhythmic paradigms (e.g., [2]), ITC can be considered 961 

more appropriate in our case as it (1) as a measure based on phase, not power, directly takes into account 962 
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the temporal structure of the data [20] and (2) is less affected by power differences across trials, which 963 

can bias results (e.g., trials with disproportionally high power can dominate the outcome). ITC at 964 

frequency f and time point t was calculated as follows: 965 

𝐼𝑇𝐶(𝑓, 𝑡) = | 
1

𝑁
∑ 𝑒𝑖(𝜑(𝑓,𝑡,𝑛))

𝑁

𝑛=1

| 966 

where 𝜑(𝑓, 𝑡, 𝑛) is the phase in trial n at frequency f and time point t, and N is the number of trials. 967 

𝜑 was estimated using Fast Fourier Transform (FFT) in sliding time windows of 1 s (step size 20 ms; 968 

shown in grey in Fig. 1C,D), leading to a frequency resolution of 1 Hz. Note that, when the outcome of 969 

this time-frequency analysis is displayed (Figs. 1E, 3C, 5A,B,E, 6B), “time” always refers to the center 970 

of this time window.    971 

 972 

ITC was calculated separately for each of the 204 orthogonal planar gradiometers and then averaged 973 

across the two gradiometers in each pair, yielding one ITC value for each of the 102 sensors positions. 974 

Data from magnetometers was only used for source localization (see below). 975 

 976 

Our hypothesis states that we expect stronger rhythmic responses (i.e. ITC) at a given frequency when 977 

it corresponds to the rate of the (preceding) stimulus sequence (I and III in Fig. 1E,F) than when it does 978 

not (II and IV in Fig. 1E,F). We developed an index to quantify this rate-specificity of the measured 979 

brain responses (RSR). An RSR larger than 0 reflects a rhythmic response which follows the stimulation 980 

rate: 981 

𝑅𝑆𝑅𝑡 = (𝐼𝑇𝐶(𝑓 = 2, 𝑟 = 2, 𝑡) − 𝐼𝑇𝐶(𝑓 = 2, 𝑟 = 3, 𝑡)) + 982 

(𝐼𝑇𝐶(𝑓 = 3, 𝑟 = 3, 𝑡) − 𝐼𝑇𝐶(𝑓 = 3, 𝑟 = 2, 𝑡))  983 

where f and r correspond to the frequency for which ITC was determined and sequence rate (both in 984 

Hz), respectively. For most analyses, t corresponds to a time interval within which ITC was averaged. 985 

Two such intervals were defined (white boxes in Fig. 1E): One to quantify rate-specific responses during 986 

the sequences, but avoiding sequence onset and offset (-1 to -0.5 s relative to the first omitted word), 987 

termed “entrained”. The other to quantify rate-specific responses that outlast the sequences, and 988 

avoiding their offset (0.5 to 2 s relative to the first omitted word), termed “sustained”. 989 
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 990 

To test whether rhythmic responses are present in these time windows and in the different conditions, 991 

we compared the RSR against 0, using Student’s t-test (one-tailed, reflecting the one-directional 992 

hypothesis). We used two-tailed repeated-measures t-tests to compare RSR between intelligible and 993 

unintelligible conditions (16-channel vs 1-channel speech, averaged across durations), between shorter 994 

and longer sequences (2 s vs 3 s, averaged across intelligibility conditions), and to test for their 995 

interaction (by comparing their difference). In experimental designs with two conditions per factor, this 996 

approach is equivalent to an ANOVA. For all sensors and conditions (intelligibility, duration) separately, 997 

we verified that the RSR is normally distributed (p > 0.05 in Kolmogorov-Smirnov test), a pre-requisite 998 

for subjecting it to parametric statistical tests. Note that such a behaviour is expected, given the central 999 

limit theorem (combining multiple measures leads to a variable that tends to be normally distributed). 1000 

Fig. S5A shows the distribution of RSR, averaged across sensors and conditions. Finally, we constructed 1001 

a surrogate distribution to verify that an RSR of 0 indeed corresponds to our null hypothesis. This was 1002 

done by adding a random value to the phase in each trial before re-calculating ITC and RSR as described 1003 

above, and repeating the procedure 100 times to obtain a simulated distribution of RSR values in the 1004 

absence of a rhythmic response. This distribution of RSR values was indeed centred on 0, and its 95% 1005 

confidence interval included 0 (Fig. S5B). Once again, this justifies our use of parametric statistical tests 1006 

to confirm whether the observed RSR is greater than zero. 1007 

Statistical tests were applied separately for each of the 102 MEG sensor positions (i.e. gradiometer pairs; 1008 

Fig. 2). Significant RSR (differences) were determined by means of cluster-based permutation tests 1009 

(5000 permutations) [77]. Sensors with a p-value <= 0.05 were selected as cluster candidates. Clusters 1010 

were considered significant if the probability of obtaining their cluster statistic ( sum of t-values) in the 1011 

permuted dataset was <= 5 %. 1012 

 1013 

Electro- or neurophysiological data analyzed in the spectral domain (e.g., to calculate ITC) often include 1014 

aperiodic, non-oscillatory components with a “1/f” shape [23,24]. These 1/f components can bias the 1015 

outcome of spectral analyses [23,24]. Although this primarily affects estimates of oscillatory power 1016 

(e.g., higher power for lower frequencies), higher power leads to more reliable estimates of phase and 1017 
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therefore potentially also to higher ITC (even though this measure is analytically independent of power, 1018 

see above). 1/f components are also influenced by stimulus input [78]. Consequently, it is possible that 1019 

these aperiodic components differ between stimulus rates and therefore affect our RSR. To rule out such 1020 

an effect, we repeated our RSR analysis, using ITC values corrected for 1/f components. For this 1021 

purpose, a 1/f curve [24] was fitted to the ITC as a function of neural frequency, averaged within the 1022 

time window of interest (dashed lines in Fig. 3B, left). This was done separately for each participant, 1023 

sensor, stimulus rate, and experimental condition (intelligibility and duration), as these factors might 1024 

influence the shape of the aperiodic component. Each of these fits was then subtracted from the 1025 

corresponding data; the resulting residuals (Fig. 3B, right) reflect 1/f-corrected ITC values and were 1026 

used to calculate RSR as described above. This procedure revealed prominent peaks at neural 1027 

frequencies corresponding to the two stimulus rate (Fig. 3B, right), suggesting successful correction for 1028 

aperiodic, non-oscillatory components. Given the absence of a pronounced 1/f component in the 1029 

entrained time window (Fig. 3A), we here only show results for the sustained time window (Fig. 3B, 1030 

Fig. S1). 1031 

 1032 

Participants’ sensitivity to detect an irregularity in the stimulus rhythm was quantified using d-prime 1033 

(d’), computed as the standardized difference between hit probability and false alarm probability: 1034 

𝑑′ = 𝑧(𝑝ℎ𝑖𝑡) − 𝑧(𝑝𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚)  1035 

where, in a given condition, 𝑝ℎ𝑖𝑡 and 𝑝𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 are the probability of correctly identifying an irregular 1036 

sequence and falsely identifying a regular sequence as irregular, respectively.  1037 

 1038 

To test whether performance in this task is correlated with rate-specific brain responses during or after 1039 

the rhythmic sounds, we selected MEG sensors which responded strongly in the two time windows 1040 

defined. In the entrained time window, all sensors were included in a significant cluster revealed by the 1041 

analyses described above (Fig. 2C); we therefore selected the 20 sensors with the largest RSR. In the 1042 

sustained time window, we selected all sensors which were part of a significant cluster (Fig. 2F). The 1043 

RSR from those sensors (averaged within the respective time window) was correlated with performance 1044 

(d-prime), using Pearson’s correlation. Even in conditions with relatively weak brain responses, these 1045 
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can still be related to task performance. For the correlation analysis, we therefore averaged both RSR 1046 

and d-prime across conditions (intelligibility, duration, and rate, the latter for d-prime only). 1047 

 1048 

MEG analyses in source space are not necessarily superior to those in sensor space, in particular when 1049 

the signal of interest is expected to be relatively weak [79], such as in the current study (rhythmic brain 1050 

responses in the absence of sensory stimulation). While sensor space analyses are assumption-free, 1051 

reconstruction methods required for transformation to source space all make certain assumptions which 1052 

can lead to increased uncertainty if they are invalid [80]. Given that we do not require inferences about 1053 

the exact spatial location or extent of the hypothesized sustained oscillations, we focus here on analyses 1054 

in sensor space. Nevertheless, we do also report results in source space for completeness, while 1055 

emphasizing that they should be, for these reasons, be interpreted with caution. 1056 

RSR measured with MEG were source-localized using the following procedure. First, for each 1057 

participant, MEG data was co-registered with their individual T1-weighted structural MRI, via 1058 

realignment of the fiducial points. A structural MRI scan was not available for one participant, who was 1059 

excluded from source analysis. Lead fields were constructed, based on individual MRI scans, using a 1060 

single shell head model. Brain volumes were spatially normalized to a template MNI brain, and divided 1061 

into grid points of 1 cm resolution. Source reconstruction was then performed, using a linear constrained 1062 

minimum variance beamformer algorithm (LCMV [81]). Spatial filters were estimated, one for each of 1063 

the two time windows of interest (entrained and sustained), and for each of the two neural frequencies 1064 

that contribute to the RSR (2 Hz and 3 Hz). For each spatial filter, data from the two stimulus rates (2 1065 

Hz and 3 Hz) was combined, and single trials were band-pass filtered (2nd order Butterworth) at the 1066 

frequency for which the filter was constructed (2 Hz filter: 1-3 Hz; 3 Hz filter: 2-4 Hz). Data from 1067 

gradiometers and magnetometers was combined. To take into account differences in signal strength 1068 

between these sensor types, data from magnetometers was multiplied by a factor of 20 before the 1069 

covariance matrix (necessary for LCMV beamforming) was extracted. Using other factors than 20 did 1070 

not change results reported here. The spatial filters were then applied to fourier-transformed single-trial 1071 

data at the frequency for which the filters were constructed (2 Hz and 3 Hz). The spatially filtered, 1072 

fourier-transformed single-trials were then combined to form ITC, using the formula provided above. 1073 
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For each of the two stimulus rates (2 Hz and 3 Hz), this step yielded one ITC value per neural frequency 1074 

of interest (2 Hz and 3 Hz), and for each of 2982 voxels inside the brain. These ITC values were then 1075 

combined to RSR values, as described above. 1076 

 1077 

Experiment 2 1078 

Participants’ report of the target word was evaluated using Levenshtein distance [82], which is the 1079 

minimum number of edits (deletions, insertions etc.) necessary to change a phonological representation 1080 

of the participants responses into the phonology of the target word, divided by the number of phonemes 1081 

in the word. Accuracy in the task was defined as 1 – Levenshtein distance; this measure varies between 1082 

0 and 1, where 1 reflects a perfectly reproduced target word (see [25] for details). 1083 

 1084 

For each participant, tACS condition and duration separately, we tested how report accuracy varies with 1085 

phase lag (corresponding to the delay between target word and tACS offset in the pre-target tACS 1086 

condition, and to the actual tACS phase in the ongoing tACS condition; see Fig. 4A). This was done by 1087 

fitting a cosine function to task accuracy as a function of phase lag (Fig. 4D), an approach which has 1088 

recently been revealed as highly sensitive at detecting a phasic modulation of perception [21]. The 1089 

amplitude of the cosine (a in Fig. 4D) reflects how strongly performance varies as a function of phase 1090 

lag. Note that a is always larger than 0. To test statistical significance, we therefore constructed a 1091 

surrogate distribution, which consists of amplitude values that would be observed in the absence of the 1092 

hypothesized phase effect. For this purpose, phase lags were randomly assigned to trials and the analysis 1093 

repeated to these shuffled datasets. This procedure was repeated 1000 times, yielding 1000 amplitude 1094 

values for each experimental condition. The surrogate distribution was then compared with the single 1095 

outcome obtained from the original, non-permuted data, resulting statistical (z-) values, according to: 1096 

z = (d-μ) / σ 1097 

where d is the observed data, and μ and σ are mean and standard deviation of the surrogate distribution, 1098 

respectively [21,22].  1099 

The phasic modulation of task accuracy, induced by tACS in a given condition, was considered reliable 1100 

if the z-value exceeded a critical value (e.g., z = 1.645, corresponding to a significant threshold of α = 1101 
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0.05, one-tailed). We first tested for a phasic modulation of word report accuracy, irrespective of tACS 1102 

duration (Fig. 4F). For this purpose, data was pooled over tACS duration before the cosine amplitudes 1103 

were extracted. We then repeated the cosine fit procedure, separately for each duration (Fig. 4G). We 1104 

analyzed the data separately for each tACS condition, as well as for their average. For the latter, cosine 1105 

amplitude values were averaged since this does not require a consistent preferred phase for both 1106 

conditions. For all statistical tests, values obtained from the surrogate distribution were treated in the 1107 

same way as described for the original data. 1108 

To evaluate differences in phasic modulation of task accuracy between tACS conditions and durations, 1109 

additional surrogate distributions were constructed by randomly assigning the variable of interest (i.e. 1110 

tACS condition or tACS duration) to single trials and re-computing cosine amplitudes. To test for 1111 

differences between tACS conditions, the difference in cosine amplitude between the two conditions 1112 

was compared with the same difference in the surrogate distribution, using z-values as described above 1113 

(two-tailed). Likewise, to test for differences between tACS durations, for each tACS condition 1114 

separately and for their average, the difference in cosine amplitude between the longest (5-s) and shortest 1115 

(3-s) durations was compared with the same difference in the surrogate distribution (one-tailed). To test 1116 

for an interaction between tACS condition and duration, we first determined the difference in cosine 1117 

amplitude between 5-s and 3-s tACS for each tACS condition, and then compared the difference between 1118 

the two conditions with the same difference in the surrogate distribution (two-tailed). 1119 

 1120 

Experiment 1 vs 2 1121 

Given the expected relationship between tACS and EEG [29–32], we tested whether the phase lag 1122 

between tACS and target word, leading to particularly accurate or inaccurate responses in Experiment 1123 

2, can be predicted from the phase of EEG responses to rhythmic speech sequences in Experiment 1.  1124 

For this purpose, at each time point throughout the trial, EEG phase (𝜑𝐸𝐸𝐺, green in Fig. 5B-II) was 1125 

extracted at 3 Hz (corresponding to the frequency at which tACS was applied in Experiment 2). Note 1126 

that 𝜑𝐸𝐸𝐺 corresponds to 𝜑(𝑓, 𝑡) defined above, where f = 3 Hz, and phase was averaged across trials 1127 

at time point t. As described above, 𝜑 was estimated using FFT and sliding analysis windows of 1 s. 1128 

𝜑𝐸𝐸𝐺 can therefore be understood as the phase of a 3-Hz cosine fitted to data within this 1-s window 1129 
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(shaded grey in Fig. 5B-I). The value of 𝜑𝐸𝐸𝐺 corresponds to the distance between each of the three 1130 

cosine peaks and the end of the corresponding cycle (defined as π; arrow in Fig. 5B-I).  1131 

To obtain a more reliable estimate of phase, we combined phase estimates within each of the two time 1132 

windows of interest (entrained and sustained). As averaging 𝜑𝐸𝐸𝐺  across time would lead to phase 1133 

cancellation effects, we first determined, for each time point, the phase relation (i.e. circular difference) 1134 

between EEG and the presented sequences. For the latter, 𝜑𝑆𝑜𝑢𝑛𝑑  (orange in Fig. 5B-II) was defined so 1135 

that the perceptual centre of each word corresponds to π (compare example sounds on top of Fig. 5B-I 1136 

with 𝜑𝑆𝑜𝑢𝑛𝑑 in Fig. 5B-II). Assuming a rhythmic EEG response that follows the presented sounds, the 1137 

phase lag between 𝜑𝐸𝐸𝐺 and 𝜑𝑆𝑜𝑢𝑛𝑑 should be approximately constant across time. The circular 1138 

difference between the two, labeled 𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 (Fig. 5B-III) was therefore averaged within each of 1139 

the two time windows. For the longer (3-s) sequences in Experiment 1, the entrained time window was 1140 

extended to -2 to -0.5 s relative to the first omitted word (-1 to -0.5 s for shorter sequences). 1141 

 1142 

For each the two tACS conditions, the phase of the cosine fitted to individual data, averaged across 1143 

durations, was extracted (𝜑𝑡𝐴𝐶𝑆 in Fig. 4D). 𝜑𝑡𝐴𝐶𝑆 reflects the position of the cosine peak (i.e. the 1144 

“preferred” tACS phase, leading to highest accuracy), relative to the maximal phase lag tested (here: π).  1145 

For each participant, EEG electrode, and combination of conditions in the two experiments, we then 1146 

extracted the circular difference between 𝜑𝑡𝐴𝐶𝑆 (Fig. 4D,E) and 𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 (Fig. 5B-III,5C-I). The 1147 

distribution of this difference (Fig. 5C-II,III) reveals whether there is a consistent phase lag between 1148 

𝜑𝑡𝐴𝐶𝑆 and 𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 across participants. In this case, we would expect a non-uniform distribution, 1149 

which was assessed with Rayleigh’s test for non-uniformity (Fig. 5D). Despite potential differences in 1150 

the magnitude of rhythmic brain responses, the different sequence durations tested in Experiment 1 1151 

should not differ in their phase relation to the sound. The 𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 obtained in these conditions 1152 

were therefore averaged. Finally, we selected 29 EEG sensors whose phase during intelligible speech 1153 

was predictive (FDR-corrected p <= 0.05 in Rayleigh’s test) for 𝜑𝑡𝐴𝐶𝑆 in the pre-target tACS condition 1154 

(cf. Fig. 5D). The z-values, obtained from Rayleigh’s test, were averaged and displayed as a function of 1155 

time (i.e. not averaged within the two windows as described above). 1156 

 1157 
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Although methodologically more distant to tACS than EEG (only the latter two are affected by 1158 

distortions by skull and tissue), we repeated the procedure for the simultaneously acquired MEG data 1159 

(Fig. S3). Here, to avoid phase cancellation effects, z-values were calculated separately for each of the 1160 

204 gradiometers and then averaged across the two gradiometers in each pair, yielding one z-value for 1161 

each of the 102 sensors positions (note that z-values from Rayleigh’s test are always larger or equal to 1162 

0). 1163 

 1164 

We also used the obtained results to re-align behavioural outcomes in Experiment 2 relative to the 1165 

predicted optimal tACS phase (leading to highest accuracy) in individual participants. The primary 1166 

purpose of this re-alignment is to illustrate implications of results obtained in the analysis described in 1167 

the preceding paragraph (Fig. 5D). We also used a leave-one-participant-out procedure to avoid the 1168 

inherent circularity in defining preferred phases or phase lags with the same data as used in the eventual 1169 

analysis. This procedure is depicted in Fig. 6.  1170 

Step 1 (Fig. 6A): For each participant i, data from all remaining participants was used to estimate the 1171 

average difference between 𝜑𝑡𝐴𝐶𝑆 (from the pre-target tACS condition) and 𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑. 𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 1172 

was determined in the entrained time window, at electrode F3 (showing the highest predictive value for 1173 

𝜑𝑡𝐴𝐶𝑆 in the pre-target condition). Step 2 (Fig. 6B): 𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 was determined for participant i. Step 1174 

3 (Fig. 6C): The 𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑, obtained for participant i in step 2, was shifted by the average difference 1175 

between 𝜑𝑡𝐴𝐶𝑆 and 𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑, obtained in step 1. This yielded the predicted 𝜑𝑡𝐴𝐶𝑆 for participant i. 1176 

Step 4 (Fig. 6D): The predicted 𝜑𝑡𝐴𝐶𝑆 was used to estimate the tACS phase lag with highest perceptual 1177 

accuracy for participant i. This phase lag was calculated as π-𝜑𝑡𝐴𝐶𝑆, based on the fact that 𝜑𝑡𝐴𝐶𝑆 reflects 1178 

the distance between the peak of a fitted cosine and the maximal tACS phase lag (Fig. 4B). The 1179 

behavioural data from participant i was then shifted by the predicted optimal phase lag, so that highest 1180 

accuracy was located at a centre phase bin. As behavioural data was only available for six different 1181 

phase lags, it was (linearly) interpolated between these data points (167 interpolated values between 1182 

each phase lag) to enable a more accurate re-alignment of the data (note that the predicted 𝜑𝑡𝐴𝐶𝑆 depends 1183 

on (1) the phase of the cosine fitted to individual data and (2) 𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑, neither of which are 1184 

restricted to the six phase values tested).  Step 5 (Fig. 6E): Steps 1-4 were repeated, separately for each 1185 
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of the 18 participants. Step 6 (Fig. 6F). The re-aligned data was averaged across participants, with the 1186 

hypothesis of highest accuracy at the predicted optimal phase lag for word report accuracy. This 1187 

hypothesis was tested by comparing accuracy at this phase lag (0 in Fig. 6F) with accuracy at the one 1188 

180 ° (or π) away, using a one-tailed (given the clear one-directional hypothesis) paired t-test.  1189 

 1190 

In a final analysis, we used this re-alignment procedure to test whether a modulation of perception during 1191 

or after tACS reflects enhancement or disruption of perception (or both). As our experimental protocol 1192 

prevented the inclusion of the usual sham stimulation condition (see Electrical Stimulation), we based 1193 

this analysis on the finding that 𝜑𝑡𝐴𝐶𝑆 was not reliably predicted by 𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 in the ongoing tACS 1194 

condition. We repeated the procedure described in the preceding paragraph; however, we used it to re-1195 

align behavioral outcome from the ongoing tACS condition to the phase lag predicted to be optimal for 1196 

word report accuracy. Consequently, the only difference to the procedure described above is the use of 1197 

𝜑𝑡𝐴𝐶𝑆 obtained in the ongoing (not pre-target) tACS condition. 1198 

 1199 

We compared accuracy at the predicted optimal tACS phase lag between the two tACS conditions. 1200 

Given that  𝜑𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑is not predictive for 𝜑𝑡𝐴𝐶𝑆 in the ongoing tACS condition, any tACS-dependent 1201 

changes in perception should be abolished by the re-alignment procedure, and the outcome reflects the 1202 

null hypothesis. Consequently, higher accuracy at the predicted optimal phase lag in the pre-target tACS 1203 

condition indicates an enhancement of speech perception, produced by tACS. This was tested by means 1204 

of a one-tailed (given the clear one-directional hypothesis) paired t-test. Finally, we repeated the 1205 

alignment procedure for both conditions, but this time aligned the behavioural data at the predicted worst 1206 

phase lag for speech perception (i.e. 180° or π away from the predicted optimal phase). Again, we 1207 

compared accuracy at this predicted worst phase lag between the two tACS conditions, using a one-1208 

tailed repeated-measures t-test. Lower accuracy at the predicted worst phase lag in the pre-target tACS 1209 

condition indicates a disruption of speech perception, produced by tACS. 1210 

 1211 

Data and Software Availability 1212 

Data and custom-built MATLAB scripts are available (https://osf.io/xw8c4/). 1213 

https://osf.io/xw8c4/
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SUPPORTING INFORMATION  1422 

van Bree et al., Sustained neural rhythms reveal endogenous oscillations supporting speech 1423 

perception 1424 

 1425 

 1426 

Data S1. Excel spreadsheet containing, in separate sheets, the underlying numerical data for Figure 1427 

panels 1B, 2A-F, 3A-C, 4E-G, 5A,C-E, 6F-G, S1A-D, S2, S3, S5A. 1428 
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 1439 

 1440 

 1441 

Figure S1. Rate-specific responses (RSR) in sustained time window after correction for 1/f 1442 

component. Same as in Fig. 2D-F, but using 1/f-corrected Inter-Trial Coherence (shown in Fig. 3B) to 1443 

calculate RSR. Same conventions as for Fig. 2. Please refer to Data S1 for the numerical values 1444 

underlying this figure. 1445 

 1446 

 1447 

 1448 

 1449 

 1450 

 1451 
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 1453 

Figure S2. Correlation between RSR in the entrained (left) and sustained (right) time windows (for 1454 

the selected sensors shown in Fig. 2C,F), respectively, and performance in the irregularity 1455 

detection task (cf. Fig. 1B). Both RSR and performance were averaged across intelligibility and 1456 

duration conditions; in addition, performance was averaged across rates. Shaded areas correspond to the 1457 

confidence intervals of the regression lines. Please refer to Data S1 for the numerical values underlying 1458 

this figure. 1459 
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 1470 

Figure S3. Using MEG responses to predict optimal tACS phase. Same as Fig. 5D, but using MEG 1471 

instead of EEG data from Experiment 1. Please refer to Data S1 for the numerical values underlying this 1472 

figure. 1473 
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 1482 

Figure S4. Data from all individual participants, re-aligned to predicted optimal tACS phase. Same 1483 

as Fig. 6D,E, but for all 18 participants who were included in the analysis. Note that the average across 1484 

participants is shown in Fig. 6F. 1485 
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 1499 
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 1501 

 1502 

 1503 

Figure S5. Control analyses validating RSR as an appropriate measure to reveal rate-specific 1504 

rhythmic brain responses. A. Distribution of RSR over participants. Note the approximate normal 1505 

distribution as required for parametric tests (e.g., t-test against 0). Please refer to Data S1 for the 1506 

numerical values underlying this figure panel. B. Distribution of RSR, averaged across participants, in 1507 

a surrogate dataset (see Materials and Methods). RSR is centred on 0 (dashed lines), validating our null 1508 

hypothesis of RSR = 0. For all results shown here, RSR values have been averaged across sensors and 1509 

conditions (corresponding to the average RSR shown in Fig. 2A,D), including those for which the RSR 1510 

is not reliably different from 0. Statistically significant rate-specific responses after intelligible speech 1511 

are shown in Fig. 2F. Note that x-axes are not identical across panels. 1512 
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