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Introduction

The alignment of oscillatory neural activity to a rhythmic stimulus, often termed "neural entrainment", is an integral part of many current theories of speech processing [START_REF] Giraud | Cortical oscillations and speech processing: emerging computational principles and operations[END_REF][START_REF] Ding | Cortical tracking of hierarchical linguistic structures in connected speech[END_REF][START_REF] Peelle | Neural Oscillations Carry Speech Rhythm through to Comprehension[END_REF][START_REF] Zoefel | The Role of High-Level Processes for Oscillatory Phase Entrainment to Speech Sound[END_REF]. Indeed, brain responses seem to align more reliably to intelligible than to unintelligible speech [START_REF] Peelle | Phase-locked responses to speech in human auditory cortex are enhanced during comprehension[END_REF][START_REF] Gross | Speech rhythms and multiplexed oscillatory sensory coding in the human brain[END_REF]. Similarly, rhythmic electrical stimulation applied to the scalp (tACS) is assumed to "entrain" brain oscillations and has been shown to modulate speech processing and perception [START_REF] Zoefel | Phase Entrainment of Brain Oscillations Causally Modulates Neural Responses to Intelligible Speech[END_REF][START_REF] Zoefel | Perception of Rhythmic Speech Is Modulated by Focal Bilateral Transcranial Alternating Current Stimulation[END_REF][START_REF] Riecke | Neural Entrainment to Speech Modulates Speech Intelligibility[END_REF][START_REF] Wilsch | Transcranial alternating current stimulation with speech envelopes modulates speech comprehension[END_REF][START_REF] Keshavarzi | Transcranial alternating current stimulation in the theta band but not in the delta band modulates the comprehension of naturalistic speech in noise[END_REF]. Despite the prominence of entrainment theories in speech research and elsewhere [START_REF] Giraud | Cortical oscillations and speech processing: emerging computational principles and operations[END_REF][START_REF] Lakatos | Entrainment of neuronal oscillations as a mechanism of attentional selection[END_REF][START_REF] Schroeder | Low-frequency neuronal oscillations as instruments of sensory selection[END_REF][START_REF] Obleser | Neural Entrainment and Attentional Selection in the Listening Brain[END_REF], it has been surprisingly difficult to demonstrate that stimulus-aligned brain responses indeed involve endogenous neural oscillations. This is because, if each stimulus in a rhythmic sequence produces a brain response, the evoked brain responses will appear rhythmic as well, without necessarily involving endogenous neural oscillations. This is not only true for sensory stimulation: Rhythmic behavioural effects of tACS cannot be interpreted as evidence of entrained endogenous oscillations; they might simply reflect the impact of regular changes in current imposed onto the brain [START_REF] Zoefel | Speech Entrainment: Rhythmic Predictions Carried by Neural Oscillations[END_REF].

In the present work, we provide evidence that rhythmic intelligible speech and tACS entrain endogenous neural oscillations. Neural oscillations are often proposed to align their high-excitability phase to important events in a rhythmic sequence so as to boost the processing of these events and enhance corresponding task performance [START_REF] Lakatos | Entrainment of neuronal oscillations as a mechanism of attentional selection[END_REF][START_REF] Schroeder | Low-frequency neuronal oscillations as instruments of sensory selection[END_REF]. It is possible that such a process entails a passive, "bottom-up" component during which oscillations are rhythmically "pushed" by the stimulus, similar to the regular swing of a pendulum (that is, the endogenous oscillation is "triggered" by an exogenous stimulus). On the other hand (and not mutually exclusive), an active, "top-down" component could adjust neural activity so that it is optimally aligned with a predicted stimulus. Importantly, in both cases we would anticipate that oscillatory brain responses are sustained for some time after the offset of stimulation:

This could be because predictions about upcoming rhythmic input are upheld, and/or neural oscillations are self-sustaining and (much like a pendulum swing) will continue after the cessation of a driving input.

Consequently, sustained oscillatory responses produced by a rhythmic stimulus after the cessation of that stimulus can provide evidence for entrainment of endogenous neural oscillations [START_REF] Zoefel | The Involvement of Endogenous Neural Oscillations in the Processing of Rhythmic Input: More Than a Regular Repetition of Evoked Neural Responses[END_REF][START_REF] Kösem | Neural Entrainment Determines the Words We Hear[END_REF].

In this paper, we will contrast this theory of entrained oscillations with an alternative view in which entrainment is merely due to responses evoked directly by the stimulus per se. Note that both views are sufficient to accommodate existing evidence of brain signals aligned to a stimulus while the latter is present. Given the difficulty of distinguishing true oscillations from other responses during rhythmic input, we use the term "entrained" only to describe a signal aligned to a stimulus (irrespective of whether this alignment reflects oscillations or evoked responses; see "entrainment in the broad sense" in [START_REF] Obleser | Neural Entrainment and Attentional Selection in the Listening Brain[END_REF]).

We then measure sustained rhythmic activity to infer its neural origins: Truly oscillatory activity that was entrained to the rhythmic stimulus would lead to sustained rhythmic responses, but sustained responses would not be expected for stimulus-evoked neural activity. In the current study, we provide two distinct sources of evidence for sustained oscillatory effects: [START_REF] Giraud | Cortical oscillations and speech processing: emerging computational principles and operations[END_REF] oscillatory MEG responses that continue after rhythmic intelligible speech and (2) oscillatory effects of tACS on speech perception that continue after the termination of electrical stimulation. Furthermore, we link these two effects in single participants to show how the phase of oscillatory neural responses measured with EEG can predict the tACS phase at which word report is enhanced. In combination, these findings provide evidence that endogenous neural oscillations in entrained brain responses play a causal role in supporting speech perception.

Results

Experiment 1: Rhythmic intelligible speech produces sustained MEG oscillations

In Experiment 1, 21 participants listened to sequences of noise-vocoded [START_REF] Shannon | Speech recognition with primarily temporal cues[END_REF] rhythmic speech (Fig. 1A), which were 2 or 3 seconds in duration and presented at one of two different rates (2 Hz and 3 Hz).

Speech sequences consisted of 4, 6 or 9 one-syllable words, depending on sequence duration and speech rate. These words were either clearly intelligible or completely unintelligible and noise-like, depending on the number of spectral channels used during vocoding (16 or 1; see Materials and Methods). In a subset of trials (12.5 %), one of the words in the sequence (red in Fig. 1A) was shifted towards another (± 68 ms), and participants were given the task to detect this irregularity in the stimulus rhythm.

Replicating previous work [START_REF] Zoefel | Phase Entrainment of Brain Oscillations Causally Modulates Neural Responses to Intelligible Speech[END_REF], performance in this task (quantified as d-prime; see Materials and Methods; Fig. 1B) was enhanced for intelligible as compared to unintelligible speech (main effect of intelligibility in 3-way repeated-measures ANOVA, F(1, 20) = 31.30, p < 0.0001). We also found that irregularities were easier to detect if the sequence was shorter (main effect of duration, F(1, 20) = 32.39, p < 0.0001) and presented at a faster rate (main effect of rate, F(20) = 26.76, p < 0.0001; no significant interactions).

Using MEG and EEG, we measured brain responses during the presented sounds and, importantly, in a subsequent, silent interval of several seconds that continued until the start of the next sequence (Fig. 1A,C). Due to its higher signal-noise ratio, we focused our initial analyses on the MEG data. We used inter-trial phase coherence (ITC) to quantify oscillatory brain responses (Fig. 1D). ITC makes use of the fact that, for each of the two speech rates, the timing of the presented speech sequences (relative to the "perceptual centre" of individual words, vertical lines in Fig. 1C) was identical across trials (see Materials and Methods). ITC therefore has the advantage of directly testing the predicted temporal evolution of the recorded signal (i.e. its phase), whereas power-based measures are focused on its amplitude [START_REF] Rajendran | Frequency tagging cannot measure neural tracking of beat or meter[END_REF]. Fig. 1E shows ITC, separately for the two stimulus rates, and averaged across MEG sensors and participants. For one example time point, Fig. 1F shows ITC as a function of neural frequency.

Our hypothesis states that ITC at a given neural frequency is higher when that frequency corresponds to the stimulation rate than when it does not. For example, we expect that ITC at 2 Hz during (and after) the presentation of 2-Hz sequences (I in Fig. 1E,F) is higher than ITC at 2 Hz during (and after) 3-Hz sequences (II in Fig. 1E,F). By comparing ITCs across the two stimulus rates (I vs II and III vs IV in Fig. 1E,F), we thus developed a precise measurement of whether brain responses follow the rate of the stimulus, which we term the rate-specific response index (RSR; see Materials and Methods and formula in Fig. 1F). An RSR larger than 0 indicates a brain response that is specific to the stimulus rate. Spectral measures such as ITC can be biased by other neural activity than endogenous oscillations: For example, a response caused by the omission of an expected stimulus might produce an increase in ITC that is most pronounced at low frequencies (~250 ms in Fig. 1E). By contrasting ITC between two rate conditions, RSR removes such contamination if it is independent of stimulus rate (i.e. present in both rate conditions). This property makes itin the present casealso superior to other commonly used approaches, such as permutation tests [START_REF] Zoefel | How to test for phasic modulation of neural and behavioural responses[END_REF][START_REF] Vanrullen | How to Evaluate Phase Differences between Trial Groups in Ongoing Electrophysiological Signals[END_REF], which would not only abolish the hypothesized rhythmic responses, but also non-rhythmic responses which produce high ITC for other reasons (e.g., evoked response to stimulus omission).

We next defined two time windows of interest (white in Fig. 1E). The first time window ("entrained") covered the period in which sound sequences were presented while but avoiding sequence onset and offset. This period allows us to measure entrained responses (i.e. neural responses synchronised with an ongoing stimulus). A large RSR in this time window reflects a brain response aligned to the stimulus rhythm (irrespective of whether a true oscillation is involved). The other time window ("sustained") covered the silent interval between sequences while avoiding sequence offset. A large RSR in this time window is evidence for a sustained oscillatory response and, consequently, for the involvement of endogenous neural oscillations in generating stimulus-aligned entrained responses.

In the entrained time window, when averaged across all conditions, the RSR was clearly larger than 0 (cluster-based correction, p < 0.001; summed t = 883.39; 102 sensors in cluster), showing a typical auditory scalp topography (Fig. 2A). We then contrasted the RSR across conditions (Fig. 2B). We found a main effect of intelligibility (cluster-based correction, p < 0.001; summed t = 87.30; total of 29 sensors in 2 clusters), revealing stronger rate-specific responses to intelligible speech in a cluster of left frontal sensors. We also found a main effect of duration, revealing a preference for shorter sequences for left frontal sensors (cluster-based correction, p = 0.02; summed t = -11.11; 4 sensors in cluster) and one for longer sequences for parietal sensors (cluster-based correction, p = 0.05; summed t = 6.83; 3 sensors in cluster). There was no significant interaction between intelligibility and duration.

Although the RSR was larger for intelligible speech, it was significantly larger than 0 (indicating the presence of an entrained response) for both intelligible (cluster-based correction, p < 0.001; summed t = 783.56; 102 sensors in cluster) and unintelligible speech (cluster-based correction, p < 0.001; summed t = 706.67; 102 sensors in cluster). Despite being reliable at all MEG sensors, the effect was localized to superior temporal regions and frontal regions bilaterally (Fig. 2C). In B, white plus signs indicate a cluster with negative polarity (i.e. negative t-values) for the respective contrast. In A and C, this cluster includes all gradiometers (small plus signs). In C, larger plus signs show the 20 sensors with the highest RSR, selected for subsequent analyses (Fig. 3). D-F. Same as A-C, but for the sustained time window. Please refer to Data S1 for the numerical values underlying this figure.

In the sustained time window, when averaged across all conditions, the RSR was larger than 0 (clusterbased correction, p = 0.05; summed t = 9.22; 4 sensors in cluster) and maximal at left-lateralized parietal sensors (Fig. 2D). When contrasting RSR across conditions (Fig. 2E), we again found a main effect of intelligibility (cluster-based correction, p = 0.01; summed t = 15.84; 6 sensors in cluster), revealing stronger sustained rate-specific responses for intelligible speech. Importantly, these sustained responses were only significant (i.e. RSR > 0) after intelligible speech (cluster-based correction, p = 0.01; summed t = 23.00; 10 sensors in cluster); no significant cluster was found after unintelligible speech. Sustained effects after intelligible speech were localized to fronto-parietal brain regions, with a peak in left parietal regions (Fig. 2F).

To ensure that sustained oscillatory activity was not a result of aperiodic ("1/f") activity [START_REF] Cole | Brain Oscillations and the Importance of Waveform Shape[END_REF], which might differ between the two stimulus rates, we subtracted the "1/f component" from ITC measures of the sustained response (cf. [START_REF] Haller | Parameterizing neural power spectra[END_REF]) by applying linear regression with reciprocal frequency (1/f) as a predictor of neural responses. We did this separately for the two stimulus rates, and re-computed the RSR using the residual (see Materials and Methods). This analysis confirms a sustained oscillatory response only after intelligible speech (Fig. S1). Together, these effects demonstrate rhythmic brain responses at a frequency corresponding to the rate of stimulation, which outlast the stimulation at parietal sensors, and are present after intelligible, but not unintelligible rhythmic speech.

All sensors and conditions were included in our main analyses (Fig. 2). We then explored the observed effects further (Fig. 3), restricting analyses of orthogonal contrasts to sensors which are most important for those main results. For the entrained time window, we selected the 20 sensors with the largest RSR during intelligible speech (large plus signs in Fig. 2C; the significant cluster included all sensors). For the sustained time window, we selected all 10 sensors in the significant cluster obtained after intelligible speech in (Fig. 2F).

We first verified that the rate-specific responses, revealed in our main analyses, were produced by responses at both of the stimulus rates tested. We found this to be the case in both entrained (Fig. 3A) and sustained (Fig. 3B) time windows: ITC at both 2 Hz and 3 Hz was significantly higher when it corresponded to the stimulation rate than when it did not (entrained: 2 Hz, t(20) = 13.11, p < 0.0001; 3 Hz, t(20) = 11.46, p < 0.0001; sustained: 2 Hz, t(20) = 1.91, p = 0.035; 3 Hz, t(20) = 2.17, p = 0.02). In the sustained time window, subtracting 1/f components (dashed lines in Fig. 3B) from the data (continuous lines) revealed clearer peaks that correspond to the stimulation rate (or its harmonics). We note again the RSR discards such 1/f components by contrasting ITC values at the same two frequencies across the two stimulus rates.

We then tested how rhythmic responses developed over time. Both selected sensor groups (based on entrained and sustained responses) showed a significant RSR throughout the entrained time window (horizontal lines in Fig. 3C; FDR-corrected). Importantly, the RSR at sensors selected to show a sustained response fluctuated at around the time of the first omitted word and then remained significantly above 0 during intelligible speech for most of the sustained time window. Although the presence of a sustained RSR is expected (given the method used to select the sensors), this result gives us valuable insight into the timing of the observed effect. In particular, it excludes the possibility that the sustained effect is a short-lived consequence of the omission of an expected stimulus (see Discussion). We did not measure the success of speech perception in Experiment 1. This is because such a task would have biased participants to attend differently to stimuli in intelligible conditions, making comparisons with neural responses in our unintelligible control condition difficult. Similarly, we refrained from using tasks which might have biased our measurement of endogenous oscillations in the silent period. For example, tasks in which participants are asked to explicitly predict an upcoming stimulus might have encouraged them to imagine or tap along with the rhythm. Our irregularity detection task was therefore primarily designed to ensure that participants remain alert and focused and not to provide behavioural relevance of our hypothesized sustained neural effect. Nevertheless, we correlated the RSR in both time windows (and at the selected sensors) with performance in the irregularity detection task (Fig. S2). We found a significant correlation between RSR in the entrained time window and detection performance (Pearson's r = 0.53, p = 0.01), demonstrating behavioural relevance of entrained brain responses.

Perhaps unsurprisingly, given that there is no temporal overlap between the sustained response and target presentation, individual differences in the sustained RSR did not show a significant correlation with individual differences in rhythm perception (r = 0.27, p = 0.28).

Experiment 2: tACS produces sustained rhythmic fluctuations in word report accuracy

In Experiment 1, we showed sustained oscillatory activity after rhythmic sequences of intelligible speech, indicating that endogenous neural oscillations are involved in generating speech-entrained brain responses. In Experiment 2, we tested whether tACS produces sustained rhythmic changes in speech perception; if observed this would not only provide an equivalent demonstration for tACS (i.e. that endogenous neural oscillations are entrained by transcranial electrical stimulation), but also show that these endogenous neural oscillations causally modulate perceptual outcomes. Twenty participants were asked to report a single spoken, 16-channel vocoded target word, recorded rhythmically at 3 Hz, and embedded in background noise (Fig. 4A). The signal-noise ratio between target word and noise was adjusted for individual participants, ensuring similar task difficulty across participants and ensuring that effects of tACS were not obscured by floor or ceiling report accuracy (see Materials and Methods). While participants performed this task, tACS was applied at 3 Hz over auditory regions, using the same configuration of bilateral circular and ring electrodes that yielded successful modulation of speech perception in [START_REF] Zoefel | Perception of Rhythmic Speech Is Modulated by Focal Bilateral Transcranial Alternating Current Stimulation[END_REF] (see inset of Fig. 4A). In each trial, the target word was presented so that its "perceptual centre" (see Materials and Methods) falls at one of six different phase lags (red lines in Fig. 4A), relative to tACS. Prior to target presentation, tACS was applied for ~3, 4, or 5 seconds. Importantly, the target word was presented either during tACS ("ongoing tACS"), which was turned off shortly afterwards, or immediately after tACS ("pre-target tACS"). We hypothesized that entrained neural activity due to tACS (irrespective of whether it involves endogenous oscillations; Fig. 4B) will produce a phasic modulation of speech perception in the ongoing tACS condition, as reported previously [START_REF] Zoefel | Perception of Rhythmic Speech Is Modulated by Focal Bilateral Transcranial Alternating Current Stimulation[END_REF][START_REF] Riecke | Neural Entrainment to Speech Modulates Speech Intelligibility[END_REF][START_REF] Wilsch | Transcranial alternating current stimulation with speech envelopes modulates speech comprehension[END_REF]. However, in the pretarget tACS condition, such a phasic modulation can only be explained by sustained neural oscillations which lead to rhythmic changes in perception (Fig. 4C).

Accuracy in reporting the target word was quantified using Levenshtein distance (similar to the proportion of phonemes reported correctly [START_REF] Sohoglu | Perceptual learning of degraded speech by minimizing prediction error[END_REF]; see Materials and Methods). When averaged across phase lags, word report accuracy was slightly higher in the pre-target tACS condition (0.50 ± 0.09, mean ± std) than in the ongoing tACS condition (0.49 ± 0.09), but not significantly different (t(19) = 1.67, p = 0.11; repeated-measures t-test). This result indicates that the two tACS conditions did not reliably differ in their generic (i.e. phase-independent) effects on speech perception.

For each participant, and separately for the two tACS conditions, we determined how task accuracy varies with tACS phase lag (Fig. 4D). We then fitted a cosine function to data from individual participants (dashed lines in Fig. 4D). The amplitude of the cosine reflects how strongly speech perception is modulated by tACS phase. The phase of the cosine, labeled φ 𝑡𝐴𝐶𝑆 , reflects the distance between the peak of the cosine and the maximal phase lag tested (defined as π; Fig. 4D). For example, a φ 𝑡𝐴𝐶𝑆 of π would indicate highest word report accuracy at a tACS phase lag of 0.

Previous studies have reported that "preferred" tACS phase (leading to highest accuracy) varies across participants [START_REF] Zoefel | Phase Entrainment of Brain Oscillations Causally Modulates Neural Responses to Intelligible Speech[END_REF][START_REF] Zoefel | Perception of Rhythmic Speech Is Modulated by Focal Bilateral Transcranial Alternating Current Stimulation[END_REF][START_REF] Riecke | Neural Entrainment to Speech Modulates Speech Intelligibility[END_REF][START_REF] Wilsch | Transcranial alternating current stimulation with speech envelopes modulates speech comprehension[END_REF]. Indeed, in neither of the two conditions did we find evidence for a non-uniform distribution of φ 𝑡𝐴𝐶𝑆 (Fig. 4E) across participants (Rayleigh's test for non-uniformity; pre-target tACS: z(19) = 0.64, p = 0.53; ongoing tACS: z(19) = 0.71, p = 0.50). We also failed to reveal a non-uniform distribution of the individual phase differences between conditions (φ 𝑡𝐴𝐶𝑆(𝑜𝑛𝑔𝑜𝑖𝑛𝑔) -φ 𝑡𝐴𝐶𝑆(𝑝𝑟𝑒-𝑡𝑎𝑟𝑔𝑒𝑡) ; z(19) = 0.24, p = 0.79), indicating that the perceptual outcome in the ongoing and pre-target tACS conditions might not rely on identical neural processes.

To statistically evaluate the hypothesized phasic modulation of word report accuracy, we compared the observed cosine amplitudes (Fig. 4F,G) with a surrogate distributionan approach which has recently been shown to be highly sensitive to detect such a phasic effect [START_REF] Zoefel | How to test for phasic modulation of neural and behavioural responses[END_REF]. The surrogate distribution was obtained by repeatedly shuffling experimental variables assigned to individual trials and extracting cosine amplitudes for each of those permutations. Here, these variables can refer to tACS phase lags, conditions, or durations, depending on the comparison of interest (see Materials and Methods).

We first pooled data over tACS durations (3, 4, and 5 s) before extracting cosine amplitudes (Fig. 4F).

When tACS conditions were combined (i.e. their cosine amplitudes averaged), we found a significant phasic modulation of word report accuracy (z(19) = 2.80, p = 0.003). When conditions were analyzed separately, we found a significant phasic modulation of word report accuracy in the pre-target tACS condition (z(19) = 2.96, p = 0.002). This effect was not statistically reliable in the ongoing tACS condition (z(19) = 0.98, p = 0.16). However, the difference in modulation strength between tACS conditions was not significantly different from that obtained in a surrogate distribution (z(19) = 1.37, p = 0.17), indicating that the two conditions did not reliably differ in their efficacy of modulating speech perception.

We next tested whether the phasic modulation of speech perception depends on tACS duration (Fig. 4G). When tACS conditions were combined, we found an increase in phasic modulation of word report accuracy from 3-s tACS to 5-s tACS that was significantly larger than that observed in a surrogate distribution (z(19) = 1.82, p = 0.03). After five seconds of tACS, the phasic modulation was significant (z(19) = 2.36, p = 0.01), while the modulation was not statistically reliable after three seconds of stimulation (z(19) = -0.52, p = 0.70). When tACS conditions were analyzed separately, a significant effect of duration was observed in the pre-target tACS condition (z(19) = 1.86, p = 0.03), but not in the ongoing tACS condition (z(19) = 0.69, p = 0.24). After five seconds of tACS, the phasic modulation of word report accuracy was significant in the pre-target tACS condition (z(19) = 2.15, p = 0.016), but not in the ongoing tACS condition (z(19) = 1.17, p = 0.12). However, when effects of duration (3-s tACS vs 5-s tACS) were compared across tACS conditions, we did not find a reliable difference between the two (z(19) = 0.90, p = 0.37), indicating that there was no significant interaction between tACS condition and duration.

Together, we found rhythmic changes in speech perception after the offset of tACS, which depend on the duration of the preceding stimulation. This finding demonstrates that tACS can induce rhythmic changes in neural activity that build up over time and continue beyond the period of stimulation. Both of these effects are consistent with endogenous neural oscillations being entrained by tACS.

Experiment 1 vs 2: Phase of speech-entrained EEG predicts tACS effects in single participants

In line with previous research [START_REF] Zoefel | Phase Entrainment of Brain Oscillations Causally Modulates Neural Responses to Intelligible Speech[END_REF][START_REF] Zoefel | Perception of Rhythmic Speech Is Modulated by Focal Bilateral Transcranial Alternating Current Stimulation[END_REF][START_REF] Riecke | Neural Entrainment to Speech Modulates Speech Intelligibility[END_REF][START_REF] Wilsch | Transcranial alternating current stimulation with speech envelopes modulates speech comprehension[END_REF], we found that participants differ in the tACS phase leading to more or less accurate perception, reflected by 𝜑 𝑡𝐴𝐶𝑆 (Fig. 4E). Although adapting tACS protocols to individual participants has been suggested as a crucial step to increase effect sizes and advance the field [START_REF] Romei | Information-Based Approaches of Noninvasive Transcranial Brain Stimulation[END_REF][START_REF] Zoefel | Transcranial electric stimulation for the investigation of speech perception and comprehension[END_REF][START_REF] Kasten | Integrating electric field modeling and neuroimaging to explain inter-individual variability of tACS effects[END_REF], neural parameters that can predict these individual differences remain elusive. Here, we report an analysis of combined data from 18 participants who participated in both our experiments. Rather than the MEG data reported earlier, we analysed the concurrent EEG data collected during Experiment 1 and relate this to tACS effects observed in Experiment 2 in the same participants. This is because EEG is methodologically closer related to tACS than MEG: Both tACS and EEG, but not MEG, are similarly affected by distortions in current flow in the skull and other, non-neural tissues [START_REF] Wagner | Using reciprocity for relating the simulation of transcranial current stimulation to the EEG forward problem[END_REF][START_REF] Helmholtz | Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche[END_REF][START_REF] Dmochowski | Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation[END_REF][START_REF] Fernández-Corazza | Transcranial Electrical Neuromodulation Based on the Reciprocity Principle[END_REF]. We therefore tested whether we can use EEG data to predict individual differences in 𝜑 𝑡𝐴𝐶𝑆 .

In line with the MEG results reported earlier, EEG data in Experiment 1 showed a highly reliable ratespecific response (RSR) in the entrained time window (Fig. 5A; p < 0.001; cluster-based correction).

The RSR in the sustained time window was largest at fronto-parietal electrodes, similar to our reported findings in MEG. However, this sustained effect was not statistically reliable (i.e. no significant clusters were obtained). This could either be due to the lower signal-to-noise ratio of EEG or because EEG and MEG measure non-identical neural sources [START_REF] Shahin | Sensitivity of EEG and MEG to the N1 and P2 Auditory Evoked Responses Modulated by Spectral Complexity of Sounds[END_REF], which makes it possible that only one of the two methods captures a neural process of interest. Although the RSR combines ITC measured during two different stimulus rates (Fig. 1E,F), we here focused on EEG responses at 3 Hz in response to 3-Hz sequences, corresponding to the frequency of tACS in Experiment 2. Fig. 5B,C illustrates our analysis procedure for one example participant (Fig. 5B) and EEG electrode (Fig. 5B,C). For each EEG electrode, we extracted the phase of the 3-Hz response at each time point throughout the trial, and labeled it 𝜑 𝐸𝐸𝐺 (Fig. 5B-II, green). We used Fast Fourier Transformation (FFT) to estimate 𝜑 𝐸𝐸𝐺 (see Materials and Methods), which is equivalent to fitting a cosine at the frequency of interest (i.e. 3 Hz) to data in the analysis window (shaded grey in Fig. 5B-I) and extracting its phase. The value of 𝜑 𝐸𝐸𝐺 therefore corresponds to the distance between each of the three peaks of the fitted cosine and the end of the corresponding cycle (defined as π; Fig. 5B-I For each participant, EEG electrode, and the two time windows, we then calculated the (circular) difference between 𝜑 𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 and 𝜑 𝑡𝐴𝐶𝑆 in the ongoing (Fig. 5C-II) and pre-target tACS conditions (Fig. 5C-III), respectively. Importantly, a non-uniform distribution would indicate a consistent lag between 𝜑 𝑡𝐴𝐶𝑆 and 𝜑 𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 across participants. Fig. 5D shows the degree of non-uniformity of these distributions (as the z-values obtained in Rayleigh's test for non-uniformity; see Materials and Methods), for all EEG electrodes, and different combinations of conditions in the two experiments. We found that the phase relation between EEG and intelligible speech in the entrained time window significantly predicts 𝜑 𝑡𝐴𝐶𝑆 in the pre-target tACS condition. This effect was maximal at fronto-central EEG electrodes (e.g., F3: z(17) = 8.88, p = 0.003, FDR-corrected for 70 electrodes). While main results are shown for all electrodes and conditions (Fig. 5D), we again restricted follow-up analyses to those which are most relevant, and based on orthogonal contrasts. Here, we found that 𝜑 𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 was most predictive for 𝜑 𝑡𝐴𝐶𝑆 around the presentation of the last word in the sequence (Fig. 5E). At the sensor with the strongest effect (F3), we observed a shift of ~90 degrees (corresponding to ~83.3 ms) between 𝜑 𝑡𝐴𝐶𝑆 and 𝜑 𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 (inset in Fig. 5E). As expected from its increased dissimilarity to tACS, MEG responses measured in Experiment 1 did not reveal any predictive value for tACS results from Experiment 2 (Fig. S3).

Findings shown in Fig. 5 have important implications for future studies: Given the previous reports of tACS-induced changes in speech processing [START_REF] Zoefel | Phase Entrainment of Brain Oscillations Causally Modulates Neural Responses to Intelligible Speech[END_REF][START_REF] Zoefel | Perception of Rhythmic Speech Is Modulated by Focal Bilateral Transcranial Alternating Current Stimulation[END_REF][START_REF] Riecke | Neural Entrainment to Speech Modulates Speech Intelligibility[END_REF][START_REF] Wilsch | Transcranial alternating current stimulation with speech envelopes modulates speech comprehension[END_REF][START_REF] Keshavarzi | Transcranial alternating current stimulation in the theta band but not in the delta band modulates the comprehension of naturalistic speech in noise[END_REF], tACS may be a promising tool to treat conditions associated with deficits in speech comprehension. However, individual differences in 𝜑 𝑡𝐴𝐶𝑆 have so far hampered this goalexisting data suggest that different tACS phases will lead to optimal perception for each individual participant and extensive testing might therefore be needed to determine this optimal phase before further interventions. Based on the consistent phase shift between 𝜑 𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 and 𝜑 𝑡𝐴𝐶𝑆 shown in Figure 5E, however, it should be possible to predict optimal tACS phase for single participants from EEG responses aligned to rhythmic intelligible speech. We tested this prediction in an additional analysis, as illustrated in Fig. 6 (see also Materials and Methods). This analysis was designed to illustrate the implications of findings depicted in Fig. 5D for future applications (e.g., when optimising tACS methods for use in interventions), rather than for providing new results. We selected EEG data from the entrained time window and the EEG electrode (F3) which was most predictive for effects of pre-target tACS (Fig. 5D), and behavioural data from the same tACS condition. Such a selection is permitted as main results were already reportedwithout pre-selectionin Fig. 5D. For each participant i, we determined their individual 𝜑 𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 (Fig. 6B) and used it to estimate their individual 𝜑 𝑡𝐴𝐶𝑆 (Fig. 6C), based on the difference between the two that was observed on the group level (Fig. 6A,C).

Importantly, for the latter, data from participant i was excluded, avoiding circularity of the procedure.

For each participant, the estimated 𝜑 𝑡𝐴𝐶𝑆 was then used to predict the tACS phase lag with highest accuracy in the word report task (blue dot in Fig. 6D,E). The behavioural data collected in Experiment 2 was re-aligned, relative to this predicted optimal phase lag (Fig. 6D; see Fig. S4 for individual realigned data from all participants). The outcome, averaged across participants, is shown in Fig. 6F (blue).

As intended, word report accuracy was highest at the predicted optimal phase lag (0 in Fig. 6F), and significantly higher than in the opposite phase bin (+/-π in Fig. 6F), which should lead to worst performance (t(17) = 4.49, p < 0.001). This result confirms that optimal tACS phases for speech perception can be estimated, exclusively based on individual EEG data (if the average difference between 𝜑 𝑡𝐴𝐶𝑆 and 𝜑 𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 is known). 

Sustained oscillations produced by tACS enhance, but do not disrupt speech perception

It remains debated whether a phasic modulation of speech perception, produced by tACS, reflects an enhancement or disruption of perception, or both [START_REF] Zoefel | Perception of Rhythmic Speech Is Modulated by Focal Bilateral Transcranial Alternating Current Stimulation[END_REF][START_REF] Riecke | Neural Entrainment to Speech Modulates Speech Intelligibility[END_REF][START_REF] Wilsch | Transcranial alternating current stimulation with speech envelopes modulates speech comprehension[END_REF][START_REF] Keshavarzi | Transcranial alternating current stimulation in the theta band but not in the delta band modulates the comprehension of naturalistic speech in noise[END_REF][START_REF] Riecke | Conveying Temporal Information to the Auditory System via Transcranial Current Stimulation[END_REF]. Given that 𝜑 𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 was not predictive of 𝜑 𝑡𝐴𝐶𝑆 in the ongoing tACS condition (Fig. 5D), we used data from the latter to test this question. We used the procedure illustrated in Fig. 6 (using data from the same EEG sensor F3) to predict optimal tACS phases in the ongoing tACS condition (see Materials and Methods). As 𝜑 𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 does not predict 𝜑 𝑡𝐴𝐶𝑆 in this condition, any tACS-dependent modulation of task accuracy should be abolished by the re-alignment, and the re-aligned data (Fig. 6F, brown) should therefore reflect the null hypothesis, i.e. task outcome in the absence of a phasic modulation. Indeed, word report accuracy was not higher at the predicted optimal phase lag for the ongoing tACS condition than at the opposite phase lag (t(17) = 0.08, p = 0.53).

Given that entrained EEG is predictive for 𝜑 𝑡𝐴𝐶𝑆 only in the pre-target tACS condition (Fig. 5D), there must be some phase bins in which accuracy differs between the two tACS conditions after EEG-based re-alignment. However, these previous analyses did not reveal the direction of this difference (enhancement vs disruption). We therefore compared performance at the predicted optimal tACS phase between the two tACS conditions and found higher word report accuracy in the pre-target tACS condition (t(17) = 3.48, p = 0.001). For both conditions, we then re-aligned the behavioural data again, but this time at the tACS predicted to be worst for performance (i.e. 180° away from the tACS phase predicted to be optimal for performance). Performance at the predicted worst tACS phase did not significantly differ between the two conditions (t(17) = 1.34, p = 0.90). These results show that the sustained phasic modulation of word report accuracy, produced by pre-target tACS, reflects an enhancement of speech perception both relative to a non-optimal tACS phase and compared to EEGaligned data from an ongoing tACS condition in which EEG data was not predictive of optimal tACS phase.

Discussion

In 1949, Walter & Walter [START_REF] Walter | The central effects of rhythmic sensory stimulation[END_REF] observed that rhythmic sensory stimulation produces rhythmic brain responses. Importantly, in their paper, when listing potential explanations for their observation, they distinguished "fusion of evoked responses giving an accidental appearance of rhythmicity" from "true augmentation or driving of local rhythms at the frequency of the stimulus". Now, more than 70 years later, it remains an ongoing debate whether "neural entrainment", brain responses aligned to rhythmic input, is due to the operation of endogenous neural oscillations or reflects a regular repetition of stimulus-evoked responses [START_REF] Zoefel | The Involvement of Endogenous Neural Oscillations in the Processing of Rhythmic Input: More Than a Regular Repetition of Evoked Neural Responses[END_REF][START_REF] Keitel | Stimulus-driven brain oscillations in the alpha range: entrainment of intrinsic rhythms or frequency-following response?[END_REF][START_REF] Capilla | Steady-state visual evoked potentials can be explained by temporal superposition of transient event-related responses[END_REF][START_REF] Haegens | Rhythmic facilitation of sensory processing: A critical review[END_REF][START_REF] Doelling | An oscillator model better predicts cortical entrainment to music[END_REF]. In two experiments, we provide clear evidence for entrained endogenous neural oscillations, by showing that rhythmic brain responses and rhythmic modulation of perceptual outcomes can outlast rhythmic sensory and electrical stimulation. We will discuss the implication of these sustained effects of sensory and electrical stimulation, before considering the functional interpretation of neural after-effects. We finish by discussing the potential for practical application of our combined EEG and tACS findings in supporting impaired speech perception.

Endogenous neural oscillations entrained by rhythmic sensory and electrical stimulation

Previous studies in a range of domains have similarly demonstrated sustained oscillatory effects after rhythmic sensory stimulation (summarized in [START_REF] Zoefel | The Involvement of Endogenous Neural Oscillations in the Processing of Rhythmic Input: More Than a Regular Repetition of Evoked Neural Responses[END_REF]). Both perception and electrophysiological signals have been shown to briefly oscillate after a rhythmic sequence of simple visual [START_REF] Spaak | Local entrainment of α oscillations by visual stimuli causes cyclic modulation of perception[END_REF][START_REF] De Graaf | Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation[END_REF][START_REF] Mathewson | Making waves in the stream of consciousness: entraining oscillations in EEG alpha and fluctuations in visual awareness with rhythmic visual stimulation[END_REF] or auditory [START_REF] Lakatos | The spectrotemporal filter mechanism of auditory selective attention[END_REF][START_REF] Hickok | The Rhythm of Perception: Entrainment to Acoustic Rhythms Induces Subsequent Perceptual Oscillation[END_REF][START_REF] Constantino | Dynamic cortical representations of perceptual filling-in for missing acoustic rhythm[END_REF] stimuli, such as flashes or pure tones. A recent study showed that such a sustained rhythmic response occurs when preceded by a stimulus evoking the perception of a regular beat, but not when participants merely expect the occurrence of a rhythmic event [START_REF] Bouwer | A silent disco: Persistent entrainment of lowfrequency neural oscillations underlies beat-based, but not memory-based temporal expectations[END_REF]. Although neural entrainment is widely explored in speech research [START_REF] Giraud | Cortical oscillations and speech processing: emerging computational principles and operations[END_REF][START_REF] Ding | Cortical tracking of hierarchical linguistic structures in connected speech[END_REF], we are only aware of one study reporting sustained oscillatory effects produced by human speech: Kösem et al [START_REF] Kösem | Neural Entrainment Determines the Words We Hear[END_REF] showed that, immediately after a change in speech rate, oscillatory MEG responses can still be measured at a frequency corresponding to the preceding speech (summarized in [START_REF] Zoefel | Speech Entrainment: Rhythmic Predictions Carried by Neural Oscillations[END_REF]). Our results in Experiment 1 are in line with this study and extend it by showing that (1) sustained oscillations produced by speech can be measured in silence and (2) are not observed for acousticallymatched speech stimuli that are unintelligible. Similar effects of intelligibility on neural entrainment have been described for combined tACS and fMRI: Neural responses in the STG to intelligible speech, but not to unintelligible speech, were modulated by tACS [START_REF] Zoefel | Phase Entrainment of Brain Oscillations Causally Modulates Neural Responses to Intelligible Speech[END_REF]. In Experiment 1, we also replicated our previous MEG finding of more reliable stimulus-aligned responses to intelligible than unintelligible speech [START_REF] Peelle | Phase-locked responses to speech in human auditory cortex are enhanced during comprehension[END_REF][START_REF] Gross | Speech rhythms and multiplexed oscillatory sensory coding in the human brain[END_REF]. We further show that (1) rhythmic responses to intelligible speech persist after the offset of the speech stimulus and (2) this sustained effect is absent for acoustically-matched, unintelligible speech. Our results should not be taken as evidence that endogenous neural oscillations are irrelevant for the processing of sounds other than human speech (e.g., [START_REF] Lakatos | The spectrotemporal filter mechanism of auditory selective attention[END_REF][START_REF] Hickok | The Rhythm of Perception: Entrainment to Acoustic Rhythms Induces Subsequent Perceptual Oscillation[END_REF][START_REF] Constantino | Dynamic cortical representations of perceptual filling-in for missing acoustic rhythm[END_REF]). However, they might suggest that endogenous oscillations are optimized to process speech, due to its quasi-rhythmic properties [START_REF] Peelle | Neural Oscillations Carry Speech Rhythm through to Comprehension[END_REF][START_REF] Ghitza | The theta-syllable: a unit of speech information defined by cortical function[END_REF].

Additionally, it is possible that the increased salience of intelligible speech (as compared to noise or tone stimuli) enhances participants' alertness and encourages higher-level processing, which has been shown to lead to enhanced oscillatory tracking of rhythmic structures [START_REF] Golumbic | Mechanisms underlying selective neuronal tracking of attended speech at a "cocktail party[END_REF][START_REF] Lakatos | The leading sense: supramodal control of neurophysiological context by attention[END_REF]. Together, our MEG findings suggest that endogenous neural oscillations are active during neural entrainment, and that these oscillatory mechanisms are of particular importance for processing intelligible speech.

It is well established that the omission of an expected stimulus evokes a prominent neural response [START_REF] Hughes | Responses of Human Auditory Association Cortex to the Omission of an Expected Acoustic Event[END_REF][START_REF] Sohoglu | Detecting and representing predictable structure during auditory scene analysis[END_REF][START_REF] Raij | Human auditory cortex is activated by omissions of auditory stimuli[END_REF][START_REF] Sanmiguel | I know what is missing here: electrophysiological prediction error signals elicited by omissions of predicted "what" but not "when[END_REF]. One concern that could be raised regarding the present findings is whether our sustained effects could have been generated by an omission response rather than true oscillatory activity. Several aspects of our Experiment 1 suggest that omission-evoked responses are unlikely to explain the sustained effects of rhythmic stimulation: (1) omission responses would only lead to a sustained RSR if they were specific to the stimulation rate (i.e. if the omission leads to an increase in 2-Hz ITC after 2-Hz sequences and 3-Hz ITC after 3-Hz sequences); (2) sustained oscillatory activity after the end of a sequence lasts longer than would be expected from a single, punctate omission response (see Fig. 3C); (3) previous observations of omission responses show that these are largely generated in brain regions that were most active while rhythmic stimuli were presented [START_REF] Raij | Human auditory cortex is activated by omissions of auditory stimuli[END_REF][START_REF] Sanmiguel | I know what is missing here: electrophysiological prediction error signals elicited by omissions of predicted "what" but not "when[END_REF], whereas our study showed sustained responses in brain regions that were not the primary driver of responses measured during sensory stimulation (compare scalp topographies and source distributions in Fig. 2C and2F). These findings therefore suggest that sustained activity is generated by true oscillatory neural activity produced in response to intelligible speech.

Several studies have reported modulation of speech perception outcomes by tACS, and conclude that changes in neural entrainment, produced by varying the phase relation between tACS and speech rhythm, are responsible [START_REF] Zoefel | Perception of Rhythmic Speech Is Modulated by Focal Bilateral Transcranial Alternating Current Stimulation[END_REF][START_REF] Riecke | Neural Entrainment to Speech Modulates Speech Intelligibility[END_REF][START_REF] Wilsch | Transcranial alternating current stimulation with speech envelopes modulates speech comprehension[END_REF][START_REF] Keshavarzi | Transcranial alternating current stimulation in the theta band but not in the delta band modulates the comprehension of naturalistic speech in noise[END_REF]. However, thus far these effects could reflect the rhythmic nature of the applied current, which might interfere with processing of speech presented with the same rhythm without any involvement of neural oscillations [START_REF] Zoefel | Speech Entrainment: Rhythmic Predictions Carried by Neural Oscillations[END_REF]. In Experiment 2, we found sustained rhythmic fluctuations in speech perception that continued after the offset of tACS. Our results are an important extension of previous work as they suggest that: (1) modulation of speech perception can be due to the operation of neural oscillations entrained by tACS, and (2) sustained oscillatory effects after tACS can be measured in word report outcomes, and hence are causally relevant for speech perception. These findings for speech have precedent in other sensory modalities and brain regions. For example, a recent study [START_REF] Stonkus | Probing the causal role of prestimulus interregional synchrony for perceptual integration via tACS[END_REF] used tACS at 7 Hz to stimulate parietal-occipital regions and reported sustained rhythmic EEG responses at the frequency of electric stimulation. Although the functional role of these sustained neural effects for perceptual processes (such as perceptual integration) remain unclear, this previous study provides evidence for neural oscillations entrained by tACS that parallels the present work. The tACS method used here, in which perceptual effects are observed subsequent to the end of electrical stimulation are clearly amenable to further exploration in studies combining tACS and EEG.

In Experiment 2, the phasic modulation of speech perception observed after tACS (in the pre-target tACS condition) was not significantly different from that during tACS (in the ongoing tACS condition).

In light of results from Experiment 1, where the sustained rhythmic response was clearly weaker than the entrained one, this might seem surprising. Importantly however, the process that interferes with our ability to measure endogenous oscillations during rhythmic stimulation is not identical in the two experiments. In Experiment 1, rhythmic sensory stimulation produced strong, regular evoked activity which dominates the response in the entrained time window. In Experiment 2, the current applied during tACS alternated regularly between periods of strong stimulation (at the tACS peaks and troughs) and no stimulation (at the zero crossings). This, according to our assumptions, might produce rhythmic modulation of speech perception that does not necessarily involve endogenous oscillations (perception might simply "follow" the amount of current injected). However, tACS is not strong enough to evoke neural activity [START_REF] Herrmann | Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes[END_REF][START_REF] Antal | Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms[END_REF], and the described effect will not dominate responses as strongly as sensory stimulation in Experiment 1. Moreover, such a phasic effect on speech perception does not necessarily combine additively with that produced by entrained endogenous oscillationsindeed, these two processes might even interfere with each other. Consequently, and in line with our results, rhythmic modulation of speech perception is not necessarily expected to be stronger when both processes interact (regular changes in current vs entrained oscillations in the ongoing tACS condition) as compared to an effect that is due to endogenous oscillations alone (in the pre-target tACS condition). Another line of evidence for endogenous oscillations entrained by a rhythmic stimulus comes from studies testing how brain responses vary as a function of stimulus rate and intensity (summarized in [START_REF] Zoefel | The Involvement of Endogenous Neural Oscillations in the Processing of Rhythmic Input: More Than a Regular Repetition of Evoked Neural Responses[END_REF]). It is a clear prediction from classical physical models that the intensity required to entrain endogenous oscillations decreases when the rate of the entraining stimulus approaches their natural frequency [START_REF] Pikovsky | Synchronization: Universal Concept: A Universal Concept in Nonlinear Sciences[END_REF][START_REF] Ali | Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance[END_REF][START_REF] Fröhlich | Experiments and models of cortical oscillations as a target for noninvasive brain stimulation[END_REF][START_REF] Vosskuhl | Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations[END_REF]. Indeed, this phenomenon, termed "Arnold Tongue", has recently been observed for visual stimulation [START_REF] Notbohm | Modification of Brain Oscillations via Rhythmic Light Stimulation Provides Evidence for Entrainment but Not for Superposition of Event-Related Responses[END_REF]. There is tentative evidence that tACS-induced responses behave in a similar way (summarized in [START_REF] Fröhlich | Experiments and models of cortical oscillations as a target for noninvasive brain stimulation[END_REF]), but more studies are needed to substantiate this claim. Based on similar reasoning, entrainment effects should also be stronger when the system has "more time" to align with the external oscillator [START_REF] Fröhlich | Experiments and models of cortical oscillations as a target for noninvasive brain stimulation[END_REF][START_REF] Thut | Rhythmic TMS causes local entrainment of natural oscillatory signatures[END_REF]. Our finding that tACS effects on perception increase with stimulation duration (Fig. 4G) is therefore clearly in line with oscillatory models. Importantly, such a behaviour was apparent in the pre-target tACS condition, in which effects of endogenous oscillations could be distinguished from those of other, potentially interfering neural processes. Although effects of tACS duration on behaviour were numerically larger and only statistically reliable in this condition, we hesitate to conclude that the effect is specific to pre-target tACS since the condition by duration interaction was not reliable.

Nevertheless, this result not only adds to existing demonstrations of endogenous oscillations entrained by tACS, it also points to entrained neural oscillations being more than just a passive response to rhythmic input. This idea is discussed in detail in the next section.

Rhythmic entrainment echoesactive predictions or passive after-effect?

In both our MEG and tACS experiments, we demonstrate that entrained neural and perceptual processes are more than a simple reflection of rhythmic input driving an otherwise silent system (Fig. 7A): Based on the observation of sustained oscillatory responses after stimulus offset, we conclude that an endogenous oscillatory system is involved in such entrained brain responses. Although endogenous oscillations are difficult to measure during stimulation, the most parsimonious explanation of our results is that the entrained response entails both evoked responses and endogenous oscillations, with the former dominating the response. After stimulus offset only the latter prevails, leading to a change in topographical pattern and estimated source. Indeed, we found that sensors capturing sustained oscillations also show a significantly entrained response during sensory stimulation (Fig. 3C, red), while stronger, stimulus-driven activity at distinct sensors, quickly subsided after stimulation (green in Fig. 3C). What is the neural mechanism and functional role played by these rhythmic echoes of previously entrained responses (hereafter, "entrainment echoes", cf. [START_REF] Stonkus | Probing the causal role of prestimulus interregional synchrony for perceptual integration via tACS[END_REF])? We here illustrate two different, but not mutually exclusive, models which can explain the observed entrainment echoes. In one model, these rhythmic echoes reflect the passive reverberation of an endogenous neural oscillation that has previously been activated by a rhythmic stimulus. A physical analogy for this would be a pendulum that responds to a regular "push" by swinging back and forth, and that continues to produce a regular cyclical movement without external input until its kinetic energy has subsided (Fig. 7B). In the other model, stimulus-aligned oscillations are the result of an active mechanism that, through predictive processes, comes to align the optimal (high-excitability) oscillatory phase to the expected timing of important sensory or neural events [START_REF] Lakatos | Entrainment of neuronal oscillations as a mechanism of attentional selection[END_REF][START_REF] Schroeder | Low-frequency neuronal oscillations as instruments of sensory selection[END_REF]. In this view, oscillatory activity can be actively maintained after stimulus offset and can persist for as long as these predictions are required. It is plausible that this active component is imposed onto a more "hard-wired", passive mechanism, that is oscillations might be entrained passively, but that this mechanism is under top-down control and can be adjusted if necessary.

A physical analogy for this is the way in which a child will move on a swing if pushed, but can also control whether or not the movement of the swing is sustained after their helper stops pushing (Fig. 7C).

The active mechanism, in this case, is the timing and amplitude of small movements that a sufficiently skilled child can coordinate with the movement of the swing to maintain oscillations without external help.

Several of our observations do point to an "active" component involved in generating rhythmic entrainment echoes, however, providing a definitive answer to this question remains for future studies.

In both experiments, we found that the neural systems involved in producing sustained effects are distinct from those that are most active during the presence of the rhythmic stimulus. In Experiment 1, sustained MEG oscillations were maximal at parietal sensors and had a clearly different scalp topography and source configuration from typical auditory responses (cf. [START_REF] Bouwer | A silent disco: Persistent entrainment of lowfrequency neural oscillations underlies beat-based, but not memory-based temporal expectations[END_REF] for a similar shift towards parietal sensors after rhythmic stimulation). In Experiment 2, individual tACS phase lags leading to highest word report accuracy after tACS offset were unrelated to those measured during tACS.

Together, these findings are important as they speak against purely "bottom-up" or stimulus-driven generators of sustained oscillatory responses that merely continue to reverberate for some time after stimulus offset. Instead, they suggest that a distinct oscillatory network seems to be involved that might be specialized in "tracking" and anticipating important upcoming sensory eventspotentially by adjusting and modulating a more passive, sensory processing system that aligns to rhythmic speech stimuli. It is possible that we can mimic such top-down effects using tACS, providing rhythmic predictions to auditory regions using electrical stimulation. This proposal that top-down predictions for the timing of up-coming stimuli are achieved using neural oscillations is also in line with previous studies suggesting that neural predictions are fundamental for how human speech is processed by the brain [START_REF] Sohoglu | Perceptual learning of degraded speech by minimizing prediction error[END_REF][START_REF] Blank | Prediction Errors but Not Sharpened Signals Simulate Multivoxel fMRI Patterns during Speech Perception[END_REF][START_REF] Norris | Prediction, Bayesian inference and feedback in speech recognition[END_REF][START_REF] Davis | Three functions of prediction error for Bayesian inference in speech perception[END_REF]. It is possible that predictive oscillatory mechanisms are particularly strong for intelligible speech, and therefore upheld for some time when the speech stops. In contrast, unintelligible noise-like sequences, typically irrelevant in everyday situations, might lead to weaker predictions or shorter-duration sustained responsesexplaining the results observed in Experiment 1.

Stronger rhythmic responses during intelligible than unintelligible speech [START_REF] Peelle | Phase-locked responses to speech in human auditory cortex are enhanced during comprehension[END_REF][START_REF] Gross | Speech rhythms and multiplexed oscillatory sensory coding in the human brain[END_REF], as well as sustained oscillatory effects for speech sounds [START_REF] Kösem | Neural Entrainment Determines the Words We Hear[END_REF], have previously been shown in auditory brain areas. However, all of these studies measured neural effects during auditory input, which might bias localization of the neural responses towards auditory areas. Our study, in contrast, revealed sustained effects during poststimulus silent periods at parietal sensors. This method might therefore yield a more precise estimate of where these effects originate. Auditory input fluctuates rapidly, which requires the auditory system to quickly adapt its oscillations to changes in input [START_REF] Zoefel | Oscillatory Mechanisms of Stimulus Processing and Selection in the Visual and Auditory Systems: State-of-the-Art, Speculations and Suggestions[END_REF][START_REF] Vanrullen | On the cyclic nature of perception in vision versus audition[END_REF]. Auditory input is represented more faithfully (i.e. less abstractly), and therefore on a faster time scale, in auditory brain regions than in "higher-level" ones [START_REF] Edwards | Syllabic (∼2-5 Hz) and fluctuation (∼1-10 Hz) ranges in speech and auditory processing[END_REF]. Thus, it is possible that oscillatory activity in the former involves more immediate responses, and hence disappears quickly after sound offset. In contrast, a more abstract representation of a rhythmic inputincluding phasic predictions about timingmight be more stable over time, and can remain present even after stimulus offset. This might be another reason to explain why our sustained oscillatory effects were found to be maximal at parietal sensors, potentially reflecting neural activity at a higher level of the cortical hierarchy.

Predicting tACS outcomes from EEG dataimplications for future work and applications

It is a common observation that participants differ in how they respond to a given tACS protocol. For example, there is typically no consistent tACS phase which leads to highest perceptual accuracy for all participants [START_REF] Zoefel | Phase Entrainment of Brain Oscillations Causally Modulates Neural Responses to Intelligible Speech[END_REF][START_REF] Zoefel | Perception of Rhythmic Speech Is Modulated by Focal Bilateral Transcranial Alternating Current Stimulation[END_REF][START_REF] Riecke | Neural Entrainment to Speech Modulates Speech Intelligibility[END_REF][START_REF] Wilsch | Transcranial alternating current stimulation with speech envelopes modulates speech comprehension[END_REF]. Individualizing brain stimulation protocols has therefore been proposed as a crucial step to advance the theoretical and practical application of this line of research [START_REF] Romei | Information-Based Approaches of Noninvasive Transcranial Brain Stimulation[END_REF][START_REF] Zoefel | Transcranial electric stimulation for the investigation of speech perception and comprehension[END_REF][START_REF] Kasten | Integrating electric field modeling and neuroimaging to explain inter-individual variability of tACS effects[END_REF]. A recent study [START_REF] Fiene | Phase-specific manipulation of rhythmic brain activity by transcranial alternating current stimulation[END_REF] reported that the phase relation between tACS and visual flicker modulates the magnitude of EEG responses to the flicker when tACS is turned off. Moreover, the individual "best" phase relation between tACS and flicker (leading to strongest EEG responses) was correlated with the individual phase relation between EEG and flicker. We replicate and extend this finding in a new modality by showing that the individual phase lag between EEG and intelligible speech can predict which tACS phase leads to more or less accurate perception in the same participant. Indeed, we found that EEG data from individual participants is sufficient to predict which tACS phase is optimal for perception, so long as the average lag between the two can be estimated even when using other, independent participants (Fig. 6). This result is important, as it shows that tACS can be adapted to individual brains based on EEG observations and establishes a method for aligning EEG and tACS findings for single participants. In an applied setting, these methods make the application of brain stimulation more efficient since the search for the most effective phase can be guided by EEG data rather than by trial and error. This finding therefore increases the potential for clinical or educational applications of tACS methods in future.

Perhaps surprisingly, given results from Experiment 1, the phase of the entrained, but not sustained EEG response was predictive for the phase of the sustained tACS effect. This result might be explained by the fact that, possibly due the lower signal to noise ratio of EEG, the sustained oscillatory response was not statistically reliable in the EEG in Experiment 1 (Fig. 5A). Consequently, a link between sustained oscillatory effects in EEG and tACS might not have been detectable, even if it exists, simply because the former was not measured reliably. Nevertheless, our finding that the entrained EEG response predicts sustained tACS phase indicates that entrained EEG responses can capture the phase of endogenous oscillations, despite observations of simultaneous evoked neural activity. MEG, showing statistically robust sustained responses (Fig. 2), is not as closely related to tACS as EEG (as its signal is not affected by the same distortions by bone and tissue) and is therefore less likely to be predictive of tACS outcomes (cf. Fig. S3). Future studies may need electrophysiological methods with higher signal to noise ratio than EEG, such as electrocorticography, ECoG, to test the relationship between sustained neural responses and tACS-induced changes in perception in more detail.

According to the simplest interpretation of the reciprocity between EEG and tACS, if the signal from a neural source is captured at a certain (EEG) electrode position, then the same electrode position should be efficient in stimulating this neural source (with tACS) [START_REF] Helmholtz | Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche[END_REF][START_REF] Dmochowski | Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation[END_REF][START_REF] Fernández-Corazza | Transcranial Electrical Neuromodulation Based on the Reciprocity Principle[END_REF]. Vice versa, if a tACS electrode configuration is successful in targeting a certain neural source, then activity from this source should be measurable with EEG at this electrode position. As the topographical pattern of EEG signals with high predictive value for tACS (fronto-occipital pattern; Fig. 5D) was different from the tACS electrode position (T7/8), our results indicate that this simple interpretation does not hold and that more complex mechanisms underlie our observations. This could be because multiple neural sources are involved and interact to produce the topographical distribution measured with EEG, while the tACS protocol used can only reach one or some of them. It is also possible that tACS modulates the efficacy of sensory input to activate neural ensembles, while EEG measures the output of these ensembles. Differences in neural populations contributing to input vs output processing, including their orientation to the scalp, might explain the observed deviance from simple reciprocity between EEG and tACS. Finally, it is possible that even stronger modulation of perception could be achieved if tACS were applied at those (frontooccipital) EEG electrode positions showing maximal predictive values for tACS effectsthis could be explored in future work.

It is of note that the phasic modulation of speech perception was not statistically reliable when the target was presented during tACS (i.e. in the ongoing tACS condition). This result seems in contrast to previous work [START_REF] Zoefel | Phase Entrainment of Brain Oscillations Causally Modulates Neural Responses to Intelligible Speech[END_REF][START_REF] Zoefel | Perception of Rhythmic Speech Is Modulated by Focal Bilateral Transcranial Alternating Current Stimulation[END_REF][START_REF] Riecke | Neural Entrainment to Speech Modulates Speech Intelligibility[END_REF][START_REF] Wilsch | Transcranial alternating current stimulation with speech envelopes modulates speech comprehension[END_REF][START_REF] Keshavarzi | Transcranial alternating current stimulation in the theta band but not in the delta band modulates the comprehension of naturalistic speech in noise[END_REF]. However, in those studies, participants listened to and reported longer speech sequences while they were asked to detect a single target word (presented in background noise) in the current study. The quasi-regular rhythm of such sequences might act as an additional entraining stimulus which could boost or interact with tACS effects (see also next paragraph), in particular when perception is tested during tACS. Future studies should test the interesting question of whether and how the rhythmicity of the speech stimulus affects the efficacy of tACS during and after its application.

In previous work, using the same electrode configuration as applied in Experiment 2, we reported that tACS can only disrupt, and not enhance speech perception [START_REF] Zoefel | Perception of Rhythmic Speech Is Modulated by Focal Bilateral Transcranial Alternating Current Stimulation[END_REF]. We previously hypothesized that this is because tACS was applied simultaneously with rhythmic speech sequences, which as Experiment 1 of our study shown can themselves entrain brain activity. If neural entrainment to the speech sequences were already at the limit of what is physiologically possible, tACS might only be able to disrupt, but not to enhance it further. Importantly, in the current study, tACS was applied during non-rhythmic background noise, i.e. without any simultaneously entraining auditory stimulus. Our finding of enhanced speech perception therefore supports the hypothesis that tACS can enhance neural entrainment.

However, if it is applied simultaneously with a strong "competing" entraining stimulus, tACS might only be able to disrupt entrainment. Together with the finding that tACS can be individualized, the protocol used here seems a promising method for future technological applications in which tACS is used to enhance speech perception in a real-world setting.

In conclusion, we report evidence that endogenous neural oscillations are a critical component of brain responses that are aligned to intelligible speech sounds. This is a fundamental assumption in current models of speech processing [START_REF] Giraud | Cortical oscillations and speech processing: emerging computational principles and operations[END_REF] that we believe is only now clearly established by empirical evidence.

We further show that tACS can modulate speech perception by entraining endogenous oscillatory activity. In this way we believe our work critically advances our understanding of how neural oscillations contribute to the processing of speech in the human brain. speech, which is a completely unintelligible, amplitude-modulated noise (for more details, see [START_REF] Zoefel | Phase Entrainment of Brain Oscillations Causally Modulates Neural Responses to Intelligible Speech[END_REF][START_REF] Zoefel | Perception of Rhythmic Speech Is Modulated by Focal Bilateral Transcranial Alternating Current Stimulation[END_REF]).

Importantly, noise-vocoding does not alter the rhythmic fluctuations in sound amplitude of the stimulus that are commonly assumed to be important for neural entrainment [START_REF] Ghitza | The theta-syllable: a unit of speech information defined by cortical function[END_REF]. Thus, acoustic differences in the broadband envelope between the two conditions cannot be responsible for differences in the observed neural responses.

For Experiment 2 (Fig. 4A), we presented participants with single 16-channel noise-vocoded target words, time-compressed to 3 Hz. These words were embedded in continuous noise with an average spectrum derived from all possible (~650) target words. The noise was presented for ~ 5-7 s. The target word occurred between 2 and 1.722 s before noise offset, depending on its phase lag relative to tACS (see Experimental Design and Fig. 4A). The noise was faded in and out at the beginning and end of each trial, respectively. All stimuli were presented to participants via headphones (through insert earphones connected via tubing to a pair of magnetically-shielded drivers in Experiment 1; ER-2 insert earphones in Experiment 2; Etymotic Research Inc., USA).

Experimental Design

In Experiment 1, while MEG/EEG data was recorded, participants listened to the rhythmic sequences (Fig. 1A) and pressed a button as soon as they detected an irregularity in the sequence rhythm (red in Fig. 1A). The irregularity was present in 12.5 % of the sequences and was produced by shifting one of the words (excluding first and last) in the sequence by ± 68 ms. Participants completed 10 experimental blocks of 64 trials each. For each block, the rate of the sequences was chosen pseudo-randomly and kept constant throughout the block. In each trial, the intelligibility (16-or 1-channel speech) and duration (2 or 3 s) of the sequence was chosen pseudo-randomly. Consequently, participants completed a total of 80 trials for each combination of conditions (rate x intelligibility x duration). Each of the sequences was followed by a silent interval in which sustained oscillatory responses were measured (Fig. 1C). These silent intervals were 2+x s long, where x corresponds to 1.5, 2, or 2.5 times the period of the sequence rate (i.e. 0.75, 1, or 1.25 s in 2-Hz blocks, and 0.5, 0.666, or 0.833 s in 3-Hz blocks). x was set to 2 in 50 % of the trials.

In Experiment 2, tACS was applied at 3 Hz and participants were asked to identify a target word embedded in noise, and report it after each trial using a standard computer keyboard. The start and end of each trial was signaled to participants as the fade in and out of the background noise, respectively (Fig. 4A). The next trial began when participants confirmed their response on the keyboard. We used an intermittent tACS protocol (cf. [START_REF] Fiene | Phase-specific manipulation of rhythmic brain activity by transcranial alternating current stimulation[END_REF]), i.e. tACS was turned on and off in each trial. In two different tACS conditions, we tested how the timing of the target word relative to tACS modulates accuracy of reporting the target. In both conditions, the target word was presented so that its p-centre occurred at 3+y, 4+y, or 5+y seconds after tACS onset, chosen pseudo-randomly in each trial (red lines in Fig. 4A). y corresponds to one out of six tested phase delays between tACS and the perceptual center of the target word, covering one cycle of the 3-Hz tACS (corresponding to temporal delays between 66.67 ms and 344.45 ms, in steps of 55.56 ms). In the pre-target tACS condition, tACS was turned off y seconds before the presentation of the target word. In the ongoing tACS condition, tACS remained on during the presentation of the target word and was turned off 1-y seconds after target presentation. In each trial, the background noise was faded in with a random delay relative to tACS onset (between 0 and 0.277 s). This ensured that the interval between noise onset and target was unrelated to the phase lag between tACS and target, avoiding potential alternative explanations for the hypothesized phasic modulation of word report by tACS. The background noise was faded out 1.5-y seconds after target presentation.

Participants completed 10 blocks of 36 trials each, leading to a total of 10 trials for each combination of conditions (tACS condition x duration x phase delay). Prior to the main experiment, they completed a short test in which the signal-noise ratio (SNR) between target word and background noise was adjusted and word report accuracy was assessed. During this test, no tACS was applied. Acoustic stimulation was identical to that in the main experiment, apart from the SNR, which was varied between -8 dB and 8 dB (in steps of 4 dB; 15 trials per SNR). From this pre-test, a single SNR condition at the steepest point on the psychometric curve (word report accuracy as a function of SNR) was selected and used throughout the main experiment (methods used for quantification of word report accuracy are described below in Quantification and Statistical Analysis). This SNR was, on average -1.05 dB (SD: 1.75 dB).

For those participants who completed both experiments, Experiment 1 was always completed prior to Experiment 2, with, on average, 23 days between experiments (std: 30.88 days). However, all but two participants completed both experiments within one week of each other.

MEG/EEG Data Acquisition and Pre-processing (Experiment 1)

MEG was recorded in a magnetically and acoustically shielded room, using a VectorView system (Elekta Neuromag) with one magnetometer and two orthogonal planar gradiometers at each of 102 positions within a hemispheric array. EEG was recorded simultaneously using 70 Ag-AgCl sensors according to the extended 10-10 system and referenced to a sensor placed on the participant's nose. All data were digitally sampled at 1 kHz and band-pass filtered between 0.03 and 333 Hz (MEG) or between 0.1 and 333 Hz (EEG), respectively. Head position and electrooculography activity were monitored continuously using five head-position indicator (HPI) coils and two bipolar electrodes, respectively. A 3D digitizer (FASTRAK; Polhemus, Inc.) was used to record the positions of the EEG sensors, HPI coils, and ∼70 additional points evenly distributed over the scalp relative to three anatomical fiducial points (the nasion and left and right preauricular points).

Data from MEG sensors (magnetometers and gradiometers) were processed using the temporal extension of Signal Source Separation [START_REF] Taulu | Applications of the signal space separation method[END_REF] in MaxFilter software (Elekta Neuromag) to suppress noise sources, compensate for motion, and reconstruct any bad sensors. MEG/EEG data were further processed using the FieldTrip software [START_REF] Oostenveld | FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data[END_REF] implemented in MATLAB (The MathWorks, Inc.).

EEG data was high-pass filtered at 1 Hz and re-referenced to the sensor average. Noisy EEG sensors were identified by visual inspection and replaced by the average of neighbouring sensors. For MEG and EEG data separately, artefacts caused by eye movements, blinks, or heartbeat, were extracted using independent component analysis (ICA). ICA was applied to data down-sampled to 150 Hz. ICA components representing artefacts were identified visually and removed from the data at the original sampling rate of 1 kHz. The data were then epoched into trials from -3 s (longer condition) or -2 s (shorter condition) to +2.5 s, relative to the omission of the first word in each sequence (cf. Fig. 1C).

Electrical Stimulation (Experiment 2)

Current was administered using two battery-driven stimulators (DC-Stimulator MR, Neuroconn GmbH, Ilmenau, Germany). Each of the stimulators was driven remotely by the output of one channel of a highquality sound card (Fireface UCX, RME, Germany); another output channel was used to transmit diotic auditory stimuli to the participants' headphones, assuring synchronization between applied current and presented stimuli.

We used a tACS electrode configuration that has produced a reliable modulation of word report in a previous study [START_REF] Zoefel | Perception of Rhythmic Speech Is Modulated by Focal Bilateral Transcranial Alternating Current Stimulation[END_REF]. This protocol entails bilateral stimulation over auditory areas using ring electrodes (see inset of Fig. 4A). Each pair of ring electrodes consisted of an inner, circular, electrode with a diameter of 20 mm and a thickness of 1 mm, and an outer, "doughnut-shaped", electrode with an outer and inner diameter of 100 and 75 mm, respectively, and a thickness of 2 mm. The inner electrodes were centered on T7 and T8 of the 10-10 system, respectively. The parts of the outer electrodes which overlapped with participants' ears were covered using electrically isolating tape. Electrodes were kept in place with adhesive, conductive ten20 paste (Weaver and Company, Aurora, CO, USA). Stimulation intensity was set to 1.4 mA (peak-to-peak) unless the participant reported stimulation to be unpleasant, in which case intensity was reduced (consequently, two participants were stimulated with 1.2 mA, one with 1.1 mA, and one with 1.0 mA). Current was not ramped up or down; we verified in preliminary tests that for sinusoidal stimulation this does not lead to increased current-induced sensations. Sham stimulation was not applied in this experiment. Sensations produced by tACS are typically strongest at the onset of the electrical stimulation. Based on this notion, during sham stimulation, current is usually ramped up and down within several seconds, leading to similar sensations as during "true" tACS, but with no stimulation in the remainder of the trial or block (e.g., [START_REF] Kasten | Sustained Aftereffect of α-tACS Lasts Up to 70 min after Stimulation[END_REF]). In the current experiment, we tested whether tACS applied for only several seconds leads to a phasic modulation of perception.

the temporal structure of the data [START_REF] Rajendran | Frequency tagging cannot measure neural tracking of beat or meter[END_REF] and ( 2) is less affected by power differences across trials, which can bias results (e.g., trials with disproportionally high power can dominate the outcome). ITC at frequency f and time point t was calculated as follows:

𝐼𝑇𝐶(𝑓, 𝑡) = | 1 𝑁 ∑ 𝑒 𝑖(𝜑(𝑓,𝑡,𝑛)) 𝑁 𝑛=1 |
where 𝜑(𝑓, 𝑡, 𝑛) is the phase in trial n at frequency f and time point t, and N is the number of trials.

𝜑 was estimated using Fast Fourier Transform (FFT) in sliding time windows of 1 s (step size 20 ms;

shown in grey in Fig. 1C,D), leading to a frequency resolution of 1 Hz. Note that, when the outcome of this time-frequency analysis is displayed (Figs. 1E, 3C, 5A,B,E, 6B), "time" always refers to the center of this time window.

ITC was calculated separately for each of the 204 orthogonal planar gradiometers and then averaged across the two gradiometers in each pair, yielding one ITC value for each of the 102 sensors positions.

Data from magnetometers was only used for source localization (see below).

Our hypothesis states that we expect stronger rhythmic responses (i.e. ITC) at a given frequency when it corresponds to the rate of the (preceding) stimulus sequence (I and III in Fig. 1E,F) than when it does not (II and IV in Fig. 1E,F). We developed an index to quantify this rate-specificity of the measured brain responses (RSR). An RSR larger than 0 reflects a rhythmic response which follows the stimulation rate: where f and r correspond to the frequency for which ITC was determined and sequence rate (both in Hz), respectively. For most analyses, t corresponds to a time interval within which ITC was averaged.

𝑅𝑆𝑅
Two such intervals were defined (white boxes in Fig. 1E): One to quantify rate-specific responses during the sequences, but avoiding sequence onset and offset (-1 to -0.5 s relative to the first omitted word),

termed "entrained". The other to quantify rate-specific responses that outlast the sequences, and avoiding their offset (0.5 to 2 s relative to the first omitted word), termed "sustained".

To test whether rhythmic responses are present in these time windows and in the different conditions, we compared the RSR against 0, using Student's t-test (one-tailed, reflecting the one-directional hypothesis). We used two-tailed repeated-measures t-tests to compare RSR between intelligible and unintelligible conditions (16-channel vs 1-channel speech, averaged across durations), between shorter and longer sequences (2 s vs 3 s, averaged across intelligibility conditions), and to test for their interaction (by comparing their difference). In experimental designs with two conditions per factor, this approach is equivalent to an ANOVA. For all sensors and conditions (intelligibility, duration) separately, we verified that the RSR is normally distributed (p > 0.05 in Kolmogorov-Smirnov test), a pre-requisite for subjecting it to parametric statistical tests. Note that such a behaviour is expected, given the central limit theorem (combining multiple measures leads to a variable that tends to be normally distributed).

Fig. S5A shows the distribution of RSR, averaged across sensors and conditions. Finally, we constructed a surrogate distribution to verify that an RSR of 0 indeed corresponds to our null hypothesis. This was done by adding a random value to the phase in each trial before re-calculating ITC and RSR as described above, and repeating the procedure 100 times to obtain a simulated distribution of RSR values in the absence of a rhythmic response. This distribution of RSR values was indeed centred on 0, and its 95% confidence interval included 0 (Fig. S5B). Once again, this justifies our use of parametric statistical tests to confirm whether the observed RSR is greater than zero.

Statistical tests were applied separately for each of the 102 MEG sensor positions (i.e. gradiometer pairs; Fig. 2). Significant RSR (differences) were determined by means of cluster-based permutation tests (5000 permutations) [START_REF] Maris | Nonparametric statistical testing of EEG-and MEG-data[END_REF]. Sensors with a p-value <= 0.05 were selected as cluster candidates. Clusters were considered significant if the probability of obtaining their cluster statistic ( sum of t-values) in the permuted dataset was <= 5 %.

Electro-or neurophysiological data analyzed in the spectral domain (e.g., to calculate ITC) often include aperiodic, non-oscillatory components with a "1/f" shape [START_REF] Cole | Brain Oscillations and the Importance of Waveform Shape[END_REF][START_REF] Haller | Parameterizing neural power spectra[END_REF]. These 1/f components can bias the outcome of spectral analyses [START_REF] Cole | Brain Oscillations and the Importance of Waveform Shape[END_REF][START_REF] Haller | Parameterizing neural power spectra[END_REF]. Although this primarily affects estimates of oscillatory power (e.g., higher power for lower frequencies), higher power leads to more reliable estimates of phase and therefore potentially also to higher ITC (even though this measure is analytically independent of power, see above). 1/f components are also influenced by stimulus input [START_REF] He | Scale-free brain activity: past, present and future[END_REF]. Consequently, it is possible that these aperiodic components differ between stimulus rates and therefore affect our RSR. To rule out such an effect, we repeated our RSR analysis, using ITC values corrected for 1/f components. For this purpose, a 1/f curve [START_REF] Haller | Parameterizing neural power spectra[END_REF] was fitted to the ITC as a function of neural frequency, averaged within the time window of interest (dashed lines in Fig. 3B, left). This was done separately for each participant, sensor, stimulus rate, and experimental condition (intelligibility and duration), as these factors might influence the shape of the aperiodic component. Each of these fits was then subtracted from the corresponding data; the resulting residuals (Fig. 3B, right) reflect 1/f-corrected ITC values and were used to calculate RSR as described above. This procedure revealed prominent peaks at neural frequencies corresponding to the two stimulus rate (Fig. 3B, right), suggesting successful correction for aperiodic, non-oscillatory components. Given the absence of a pronounced 1/f component in the entrained time window (Fig. 3A), we here only show results for the sustained time window (Fig. 3B, Fig. S1).

Participants' sensitivity to detect an irregularity in the stimulus rhythm was quantified using d-prime (d'), computed as the standardized difference between hit probability and false alarm probability:

𝑑 ′ = 𝑧(𝑝 ℎ𝑖𝑡 ) -𝑧(𝑝 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 )
where, in a given condition, 𝑝 ℎ𝑖𝑡 and 𝑝 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 are the probability of correctly identifying an irregular sequence and falsely identifying a regular sequence as irregular, respectively.

To test whether performance in this task is correlated with rate-specific brain responses during or after the rhythmic sounds, we selected MEG sensors which responded strongly in the two time windows defined. In the entrained time window, all sensors were included in a significant cluster revealed by the analyses described above (Fig. 2C); we therefore selected the 20 sensors with the largest RSR. In the sustained time window, we selected all sensors which were part of a significant cluster (Fig. 2F). The RSR from those sensors (averaged within the respective time window) was correlated with performance (d-prime), using Pearson's correlation. Even in conditions with relatively weak brain responses, these can still be related to task performance. For the correlation analysis, we therefore averaged both RSR and d-prime across conditions (intelligibility, duration, and rate, the latter for d-prime only).

MEG analyses in source space are not necessarily superior to those in sensor space, in particular when the signal of interest is expected to be relatively weak [START_REF] Jaiswal | Comparison of beamformer implementations for MEG source localization[END_REF], such as in the current study (rhythmic brain responses in the absence of sensory stimulation). While sensor space analyses are assumption-free, reconstruction methods required for transformation to source space all make certain assumptions which can lead to increased uncertainty if they are invalid [START_REF] Wendel | EEG/MEG Source Imaging: Methods, Challenges, and Open Issues[END_REF]. Given that we do not require inferences about the exact spatial location or extent of the hypothesized sustained oscillations, we focus here on analyses in sensor space. Nevertheless, we do also report results in source space for completeness, while emphasizing that they should be, for these reasons, be interpreted with caution.

RSR measured with MEG were source-localized using the following procedure. First, for each participant, MEG data was co-registered with their individual T1-weighted structural MRI, via realignment of the fiducial points. A structural MRI scan was not available for one participant, who was excluded from source analysis. Lead fields were constructed, based on individual MRI scans, using a single shell head model. Brain volumes were spatially normalized to a template MNI brain, and divided into grid points of 1 cm resolution. Source reconstruction was then performed, using a linear constrained minimum variance beamformer algorithm (LCMV [START_REF] Van Veen | Localization of brain electrical activity via linearly constrained minimum variance spatial filtering[END_REF]). Spatial filters were estimated, one for each of the two time windows of interest (entrained and sustained), and for each of the two neural frequencies that contribute to the RSR (2 Hz and 3 Hz). For each spatial filter, data from the two stimulus rates ( 2Hz and 3 Hz) was combined, and single trials were band-pass filtered (2 nd order Butterworth) at the frequency for which the filter was constructed (2 Hz filter: 1-3 Hz; 3 Hz filter: 2-4 Hz). Data from gradiometers and magnetometers was combined. To take into account differences in signal strength between these sensor types, data from magnetometers was multiplied by a factor of 20 before the covariance matrix (necessary for LCMV beamforming) was extracted. Using other factors than 20 did not change results reported here. The spatial filters were then applied to fourier-transformed single-trial data at the frequency for which the filters were constructed (2 Hz and 3 Hz). The spatially filtered, fourier-transformed single-trials were then combined to form ITC, using the formula provided above.

0.05, one-tailed). We first tested for a phasic modulation of word report accuracy, irrespective of tACS duration (Fig. 4F). For this purpose, data was pooled over tACS duration before the cosine amplitudes were extracted. We then repeated the cosine fit procedure, separately for each duration (Fig. 4G). We analyzed the data separately for each tACS condition, as well as for their average. For the latter, cosine amplitude values were averaged since this does not require a consistent preferred phase for both conditions. For all statistical tests, values obtained from the surrogate distribution were treated in the same way as described for the original data.

To evaluate differences in phasic modulation of task accuracy between tACS conditions and durations, additional surrogate distributions were constructed by randomly assigning the variable of interest (i.e.

tACS condition or tACS duration) to single trials and re-computing cosine amplitudes. To test for differences between tACS conditions, the difference in cosine amplitude between the two conditions was compared with the same difference in the surrogate distribution, using z-values as described above (two-tailed). Likewise, to test for differences between tACS durations, for each tACS condition separately and for their average, the difference in cosine amplitude between the longest (5-s) and shortest (3-s) durations was compared with the same difference in the surrogate distribution (one-tailed). To test for an interaction between tACS condition and duration, we first determined the difference in cosine amplitude between 5-s and 3-s tACS for each tACS condition, and then compared the difference between the two conditions with the same difference in the surrogate distribution (two-tailed).

Experiment 1 vs 2

Given the expected relationship between tACS and EEG [START_REF] Wagner | Using reciprocity for relating the simulation of transcranial current stimulation to the EEG forward problem[END_REF][START_REF] Helmholtz | Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche[END_REF][START_REF] Dmochowski | Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation[END_REF][START_REF] Fernández-Corazza | Transcranial Electrical Neuromodulation Based on the Reciprocity Principle[END_REF], we tested whether the phase lag between tACS and target word, leading to particularly accurate or inaccurate responses in Experiment 2, can be predicted from the phase of EEG responses to rhythmic speech sequences in Experiment 1.

For this purpose, at each time point throughout the trial, EEG phase (𝜑 𝐸𝐸𝐺 , green in Fig. 5B-II) was extracted at 3 Hz (corresponding to the frequency at which tACS was applied in Experiment 2). Note that 𝜑 𝐸𝐸𝐺 corresponds to 𝜑(𝑓, 𝑡) defined above, where f = 3 Hz, and phase was averaged across trials at time point t. As described above, 𝜑 was estimated using FFT and sliding analysis windows of 1 s.

𝜑 𝐸𝐸𝐺 can therefore be understood as the phase of a 3-Hz cosine fitted to data within this 1-s window (shaded grey in Fig. 5B-I). The value of 𝜑 𝐸𝐸𝐺 corresponds to the distance between each of the three cosine peaks and the end of the corresponding cycle (defined as π; arrow in Fig. 5B-I).

To obtain a more reliable estimate of phase, we combined phase estimates within each of the two time windows of interest (entrained and sustained). As averaging 𝜑 𝐸𝐸𝐺 across time would lead to phase cancellation effects, we first determined, for each time point, the phase relation (i.e. circular difference)

between EEG and the presented sequences. For the latter, 𝜑 𝑆𝑜𝑢𝑛𝑑 (orange in Fig. 5B-II) was defined so that the perceptual centre of each word corresponds to π (compare example sounds on top of Fig. 5B-I with 𝜑 𝑆𝑜𝑢𝑛𝑑 in Fig. 5B-II). Assuming a rhythmic EEG response that follows the presented sounds, the phase lag between 𝜑 𝐸𝐸𝐺 and 𝜑 𝑆𝑜𝑢𝑛𝑑 should be approximately constant across time. The circular difference between the two, labeled 𝜑 𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 (Fig. 5B-III) was therefore averaged within each of the two time windows. For the longer (3-s) sequences in Experiment 1, the entrained time window was extended to -2 to -0.5 s relative to the first omitted word (-1 to -0.5 s for shorter sequences).

For each the two tACS conditions, the phase of the cosine fitted to individual data, averaged across durations, was extracted (𝜑 𝑡𝐴𝐶𝑆 in Fig. 4D). 𝜑 𝑡𝐴𝐶𝑆 reflects the position of the cosine peak (i.e. the "preferred" tACS phase, leading to highest accuracy), relative to the maximal phase lag tested (here: π).

For each participant, EEG electrode, and combination of conditions in the two experiments, we then extracted the circular difference between 𝜑 𝑡𝐴𝐶𝑆 (Fig. 4D,E) and 𝜑 𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 (Fig. 5B-III,5C-I). The distribution of this difference (Fig. 5C-II,III) reveals whether there is a consistent phase lag between 𝜑 𝑡𝐴𝐶𝑆 and 𝜑 𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 across participants. In this case, we would expect a non-uniform distribution, which was assessed with Rayleigh's test for non-uniformity (Fig. 5D). Despite potential differences in the magnitude of rhythmic brain responses, the different sequence durations tested in Experiment 1

should not differ in their phase relation to the sound. The 𝜑 𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 obtained in these conditions were therefore averaged. Finally, we selected 29 EEG sensors whose phase during intelligible speech was predictive (FDR-corrected p <= 0.05 in Rayleigh's test) for 𝜑 𝑡𝐴𝐶𝑆 in the pre-target tACS condition (cf. Fig. 5D). The z-values, obtained from Rayleigh's test, were averaged and displayed as a function of time (i.e. not averaged within the two windows as described above).

of the 18 participants. Step 6 (Fig. 6F). The re-aligned data was averaged across participants, with the hypothesis of highest accuracy at the predicted optimal phase lag for word report accuracy. This hypothesis was tested by comparing accuracy at this phase lag (0 in Fig. 6F) with accuracy at the one 180 ° (or π) away, using a one-tailed (given the clear one-directional hypothesis) paired t-test.

In a final analysis, we used this re-alignment procedure to test whether a modulation of perception during or after tACS reflects enhancement or disruption of perception (or both). As our experimental protocol prevented the inclusion of the usual sham stimulation condition (see Electrical Stimulation), we based this analysis on the finding that 𝜑 𝑡𝐴𝐶𝑆 was not reliably predicted by 𝜑 𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 in the ongoing tACS condition. We repeated the procedure described in the preceding paragraph; however, we used it to realign behavioral outcome from the ongoing tACS condition to the phase lag predicted to be optimal for word report accuracy. Consequently, the only difference to the procedure described above is the use of 𝜑 𝑡𝐴𝐶𝑆 obtained in the ongoing (not pre-target) tACS condition.

We compared accuracy at the predicted optimal tACS phase lag between the two tACS conditions.

Given that 𝜑 𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 is not predictive for 𝜑 𝑡𝐴𝐶𝑆 in the ongoing tACS condition, any tACS-dependent changes in perception should be abolished by the re-alignment procedure, and the outcome reflects the null hypothesis. Consequently, higher accuracy at the predicted optimal phase lag in the pre-target tACS condition indicates an enhancement of speech perception, produced by tACS. This was tested by means of a one-tailed (given the clear one-directional hypothesis) paired t-test. Finally, we repeated the alignment procedure for both conditions, but this time aligned the behavioural data at the predicted worst phase lag for speech perception (i.e. 180° or π away from the predicted optimal phase). Again, we compared accuracy at this predicted worst phase lag between the two tACS conditions, using a onetailed repeated-measures t-test. Lower accuracy at the predicted worst phase lag in the pre-target tACS condition indicates a disruption of speech perception, produced by tACS. 
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 1 Figure 1. Experimental paradigm and analysis. A. Participants listened to rhythmic speech sequences and were asked to press a button when they detected an irregularity in the stimulus rhythm (red targets). B. Performance (as d-prime) in the irregularity detection task, averaged across participants and shown for the main effects of intelligibility, duration, and rate. Error bars show standard error of mean (SEM), corrected for within-subject comparison [19]. Please refer to Data S1 for the numerical values underlying this figure panel. C. A rhythmic brain response measured during the presented sounds cannot distinguish true neural oscillations aligned to the stimulus from regular stimulus-evoked responses. However, only the oscillation-based model predicts a rhythmic response which outlasts the rhythmic stimulus. For each time point t throughout the trial, oscillatory phase was estimated based on a 1-s window centred on t (shaded grey). D. Inter-trial phase coherence (ITC) at time t is high when estimated phases are consistent across trials (left) and low otherwise (right). Note that the two examples shown differ in their 2-Hz ITC, but have similar induced power at the same frequency. E. ITC in the longer (3-s) condition, averaged across intelligibility conditions, gradiometers, and participants. Note that "time" (x-axis) refers to the centre of the 1-s windows used to estimate phase. ITC at 2 and 3 Hz, measured in response to 2 and 3 Hz sequences, were combined to form a rate-specific response index (RSR). The two time windows used for this analysis ("entrained" and "sustained") are shown in white (results are shown in Fig. 2). F. ITC as a function of neural frequency, separately for the two stimulation rates, and for the example time point shown as a black line in E.

Figure 2 .

 2 Figure 2. Main results from Experiment 1. A-C. Results in the entrained time window. Bars in panel A show RSR in the different conditions, averaged across gradiometers and participants. Error bars show SEM, corrected for withinsubject comparison. The topography shows t-values for the comparison with 0, separately for the 102 gradiometer pairs, and after RSR was averaged across conditions. Topographies in B contrast RSR across conditions. Topography and source plots in C show t-values for the comparison with 0 in the intelligible conditions. In all topographic plots, plus signs indicate the spatial extent of significant clusters from cluster-based permutation tests (see Materials and Methods).

Figure 3 .

 3 Figure 3. Follow-up analyses from Experiment 1, using selected sensors (plus signs in insets, reproducing Fig. 2C and F, respectively). A-B. ITC as a function of neural frequency, measured during (A) and after (B) intelligible speech, presented at 2 and 3 Hz. Note that these ITC values were combined to form RSR shown in Fig. 2, as described in Fig. 1F. For the right panel in B, a fitted "1/f" curve (shown as dashed lines in the left panel) has been subtracted from the data (see Materials and Methods). Note that the peaks correspond closely to the respective stimulus rates, or their harmonics (potentially produced by imperfect sinusoidal signals). C. RSR during intelligible speech as a function of time, for the average of selected sensors. Horizontal lines on top of the panel indicate an FDR-corrected p-value of <= 0.05 (t-test against 0) for the respective time point and sensor group. Shaded areas correspond to the two defined time windows (brown: entrained, green: sustained). Shaded areas around the curves show SEM. Please refer to Data S1 for the numerical values underlying this figure.

Figure 4 .

 4 Figure 4. Experimental paradigm and main results from Experiment 2. A. Experimental paradigm. In each trial, a target word (red), embedded in noise (black), was presented so that its p-centre falls at one of six different phase lags (vertical red lines; the thicker red line corresponds to the p-centre of the example target), relative to preceding ("pretarget tACS") or ongoing tACS (which was then turned off). After each trial, participants were asked to type in the word they had heard. The inset shows the electrode configuration used for tACS in both conditions. B,C. Theoretical predictions. B. In the case of entrained neural activity due to tACS, this would closely follow the applied current and hence modulate perception of the target word only in the ongoing tACS condition. C. In the case that true oscillations are entrained by tACS, these would gradually decay after tACS offset and a "rhythmic entrainment echo" might therefore be apparent as a sustained oscillatory effect on perception even in the pre-target condition. D. Accuracy in the word report task as a function of phase lag (relative to tACS peak shown in A), averaged across tACS durations, and for four example participants. Phasic modulation of word report was quantified by fitting a cosine function to data from individual participants (dashed lines). The amplitude (a) of this cosine reflects the magnitude of the hypothesized phasic modulation. The phase of this cosine (𝛗 𝒕𝑨𝑪𝑺 ) reflects the distance between its peak and the maximal phase lag of π. Note that the phase lag with highest accuracy for the individual participants, estimated based on the cosine fit, therefore corresponds to π-𝛗 𝒕𝑨𝑪𝑺 . E. Distribution of 𝛗 𝒕𝑨𝑪𝑺 in the two tACS conditions, and their difference. F,G. Amplitudes of the fitted cosines (cf. amplitude a in panel D), averaged across participants. In F, cosine functions were fitted to data averaged over tACS duration (cf. panel D). In G, cosine functions were fitted separately for the three durations. For the black bars, cosine amplitudes were averaged across the two tACS conditions. Dashed lines show the threshold for statistical significance (p<=0.05) for a phasic modulation of task accuracy, obtained from a surrogate distribution (see Materials and Methods). Error bars show SEM (corrected for within-subject comparisons in F). Please refer to Data S1 for the numerical values underlying panels E-G.

Figure 5 .

 5 Figure 5. Combining Experiments 1 and 2. A. EEG results from Experiment 1. Topographies show RSR in the intelligible conditions. The time-frequency representation depicts ITC during 3-Hz sequences, averaged across EEG electrodes, participants, and conditions (cf. Fig. 1C). B. Illustration of methodological approach, using example data from one participant and electrode (FCz, green in panel A). B-I. Band-pass filtered (2-4 Hz) version of the EEG signal that has been used to estimate 𝝋 𝑬𝑬𝑮 in the panel below (B-II). In practice, EEG phase at 3 Hz was estimated using FFT applied to unfiltered EEG data. Consequently, 𝝋 𝑬𝑬𝑮 reflects the distance between the peaks of a cosine, fitted to data within the analysis window (shaded grey), and the end of each 3-Hz cycle (green arrows). B-II. 𝝋 𝑬𝑬𝑮 (green; in the intelligible conditions and averaged across durations) and phase of the 3-Hz sequence (𝝋 𝑺𝒐𝒖𝒏𝒅 , orange). The latter is defined so that the perceptual centre of each word corresponds to phase π (see example sound sequence, and its theoretical continuation, on top of panel B-I). B-III. Circular difference between 𝝋 𝑬𝑬𝑮 (green in B-II) and 𝝋 𝑺𝒐𝒖𝒏𝒅 (orange in B-II), yielding 𝝋 𝑬𝑬𝑮𝒗𝒔𝑺𝒐𝒖𝒏𝒅 . Given that φ is defined based on a cosine, a positive difference means that EEG lags sound. C. Distribution of individual 𝝋 𝑬𝑬𝑮𝒗𝒔𝑺𝒐𝒖𝒏𝒅 , and its relation to 𝝋 𝒕𝑨𝑪𝑺 . Data from one example electrode (FCz) is used to illustrate the procedure; main results and statistical outcomes are shown in panel D. C-I. Distribution of 𝝋 𝑬𝑬𝑮𝒗𝒔𝑺𝒐𝒖𝒏𝒅 (cf. B-III), extracted in the intelligible conditions, and averaged across durations and within the respective time windows (shaded brown and blue in B-III, respectively). C-II,III: Distribution of the circular difference between 𝝋 𝒕𝑨𝑪𝑺 (Fig. 4E) and 𝝋 𝑬𝑬𝑮𝒗𝒔𝑺𝒐𝒖𝒏𝒅 (C-I). Note that a non-uniform distribution (tested in panel D) indicates a consistent lag between individual 𝝋 𝒕𝑨𝑪𝑺 and 𝝋 𝑬𝑬𝑮𝒗𝒔𝑺𝒐𝒖𝒏𝒅 . D. Z-values (obtained by means of a Rayleigh's test; see Materials and Methods), quantifying non-uniformity of the distributions shown in C-II,III for different combinations of experimental conditions. Plus signs show electrodes selected for follow-up analyses (FDR-corrected p <= 0.05). E. Z-values shown in D for intelligible conditions as a function of time, averaged across selected EEG sensors (plus signs in D). For the electrode with the highest predictive value for tACS (F3), the inset shows the distribution of the circular difference between 𝝋 𝒕𝑨𝑪𝑺 and 𝝋 𝑬𝑬𝑮𝒗𝒔𝑺𝒐𝒖𝒏𝒅 in the pre-target condition, averaged within the entrained time window (shaded brown). Please refer to Data S1 for the numerical values underlying panels A,C-E.

  )For each participant and EEG electrode, we determined how 𝜑 𝐸𝐸𝐺 relates to the timing of the presented sound sequences (𝜑 𝑆𝑜𝑢𝑛𝑑 ; Fig.5B-II, blue). Assuming rhythmic EEG responses reliably following the presented sequences, the phase relation between EEG and sound (i.e. their circular difference) should be approximately constant over time. This phase relation, labeled 𝜑 𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 (Fig.5B-III), was therefore averaged within each of the two time windows of interest (entrained and sustained). The distribution of 𝜑 𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 across participants in these time windows is shown in Fig.5C-I for the selected EEG electrode.

Figure 6 .

 6 Figure 6. Predicted individual preferred tACS phases in the pre-target tACS condition from EEG data measured in the entrained time window at sensor F3. A, Step 1: For each participant i, data from all remaining participants was used to estimate the average difference between 𝝋 𝒕𝑨𝑪𝑺 and 𝝋 𝑬𝑬𝑮𝒗𝒔𝑺𝒐𝒖𝒏𝒅 . B, Step 2: 𝝋 𝑬𝑬𝑮𝒗𝒔𝑺𝒐𝒖𝒏𝒅 was determined for participant i. C, Step 3: This 𝝋 𝑬𝑬𝑮𝒗𝒔𝑺𝒐𝒖𝒏𝒅 was shifted by the phase difference obtained in step 1, yielding the predicted 𝝋 𝒕𝑨𝑪𝑺 for participant i. D, Step 4: The predicted 𝝋 𝒕𝑨𝑪𝑺 was used to estimate the tACS phase lag with highest perceptual accuracy for participant i, and the corresponding behavioural data was shifted so that highest accuracy was located at a centre phase bin. Prior to this step, the behavioural data measured at the six different phase lags was interpolated to enable re-alignment with higher precision. E, Step 5: This procedure was repeated for all participants. F, Step 6: The re-aligned data was averaged across participants (blue). For comparison, the procedure was repeated for the ongoing tACS condition (using EEG data from the same sensor; brown). The shaded areas show SEM, corrected for within-subject comparison. G. Same as in F, but aligned at the predicted worst phase for word report accuracy. Please refer to Data S1 for the numerical values underlying panels F and G.
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 7 Figure 7. Three physical models that could be invoked to explain neural entrainment, and their potential to explain rhythmic entrainment echoes. A. In a system without any endogenous processes (e.g., neural oscillations), driving input would produce activity which ceases immediately when this input stops. B. A more direct account of rhythmic entrainment echoes is that endogenous neural oscillations resemble the operation of a pendulum which will start swinging passively when "pushed" by a rhythmic stimulus. When this stimulus stops, the oscillation will persist but decays over time, depending on certain "hard-wired" properties (similar to the frictional force and air resistance that slows the movement of a pendulum over time). C. Endogenous neural oscillations could include an active (e.g., predictive) component that controls a more passive processsimilar to a child that can control the movement of a swing. This model predicts that oscillations are upheld after stimulus offset as long as the timing of important upcoming input (dashed lines) can be predicted. Note that, for the sake of clarity, we made extreme predictions to illustrate the different models. For instance, depending on the driving force of the rhythmic input, pendulum and swing could reach their maximum amplitude near-instantaneously in panels B and C, respectively, and therefore initially resemble the purely driven system shown in A. Similarly, it is possible that the predictive process (illustrated in C) operates less efficiently in the absence of driving input and therefore shows a decay similar to that shown by the more passive process (shown in B).
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 S3 Figure S3. Using MEG responses to predict optimal tACS phase. Same as Fig. 5D, but using MEG instead of EEG data from Experiment 1. Please refer to Data S1 for the numerical values underlying this figure.
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Materials and Methods

Participants

24 participants were tested after giving written informed consent in a procedure approved by the Cambridge Psychology Research Ethics Committee (application number PRE.2015.132) and carried out in accordance with the Declaration of Helsinki. 3 participants did not finish Experiment 1, leaving data from 21 participants (10 females; mean ± SD, 37 ± 16 years) for further analyses; 4 participants did not finish Experiment 2, leaving 20 participants for further analyses (11 females; 39 ± 15 years). 18 participants (9 females; 40 ± 15 years) finished both experiments.

All participants were native English speakers, had no history of hearing impairment, neurological disease, or any other exclusion criteria for MEG or tACS based on self-report.

Stimuli

Our stimuli consisted of a pool of ~650 monosyllabic words, spoken to a metronome beat at 1.6 Hz (inaudible to participants) by a male native speaker of British English (author MHD). These were timecompressed to 2 and 3 Hz, respectively, using the pitch-synchronous overlap and add (PSOLA) algorithm implemented in the Praat software package (version 6.12). This approach ensures that "perceptual centres", or "p-centres" [START_REF] Morton | Perceptual Centers (P-centers)[END_REF] of the words were aligned to the metronome beat (see vertical lines in Fig. 1C) and, consequently, to rhythmic speech (in perceptual terms). Moreover, the welldefined rhythmicity of the stimulus allows a precise definition of the phase relation between stimulus and tACS (see below).

For Experiment 1 (Fig. 1A), these words were combined to form rhythmic sequences, which were 2 or 3 seconds long and presented at one of two different rates (2 or 3 Hz). Depending on the duration and rate of the sequence, these sequences therefore consisted of 4 (2 Hz / 2 s), 6 (3 Hz / 2 s and 2 Hz / 3s) or 9 words (3 Hz / 3s). Noise-vocoding [START_REF] Shannon | Speech recognition with primarily temporal cues[END_REF] is a well-established method to produce degraded speech which varies in intelligibility, depending on the number of spectral channels used for vocoding. In Experiment 1, we used highly intelligible 16-channel vocoded speech and 1-channel noise-vocoded Given the similarity of this approach to a typical sham stimulation condition, we did not expect that it would act as an appropriate control. Instead, we compared the observed tACS-induced modulation of speech perception with that obtained in a surrogate distribution, reflecting the null distribution (see Quantification and Statistical Analysis).

We verified in pre-tests that turning on or off the electric stimulation does not produce any sensation that is temporally so precise that participants can distinguish the two conditions (note that tACS is applied intermittently in both conditions, only with different timings relative to the target word). However, we did not measure potential sensations quantitatively during the experiment to avoid drawing attention to the transient nature of our tACS protocol. However, even if tACS sensations differed between the two conditions at the relevant time points (e.g., during target presentation), they seem unlikely to have affected the hypothesized phasic modulation of word report (for this to happen, participants would also need to distinguish different tACS phases, and relate these phases to the time at which the target is presented; see [START_REF] Zoefel | Perception of Rhythmic Speech Is Modulated by Focal Bilateral Transcranial Alternating Current Stimulation[END_REF] for further discussion). Rather, we might expect a generic effect of tACS such as a difference in overall word report accuracy (averaged across phase). This result was not observed in the current study and hence we feel confident that the phasic effects of pre-target tACS are due to entrainment of underlying neural mechanisms.

Statistical Analyses

All analyses were implemented using custom MATLAB scripts and the toolbox for circular statistics [START_REF]CircStat: A MATLAB Toolbox for Circular Statistics | Berens[END_REF], where appropriate.

Experiment 1

We first quantified rhythmic responses in our data using inter-trial phase coherence (ITC; Fig. 1D). At a given frequency and time, ITC measures the consistency of phase across trials [START_REF] Lachaux | Measuring phase synchrony in brain signals[END_REF][START_REF] Makeig | Mining event-related brain dynamics[END_REF]. ITC ranges between 0 (no phase consistency) and 1 (perfect phase consistency). Although some studies used spectral power to quantify oscillatory activity in rhythmic paradigms (e.g., [START_REF] Ding | Cortical tracking of hierarchical linguistic structures in connected speech[END_REF]), ITC can be considered more appropriate in our case as it (1) as a measure based on phase, not power, directly takes into account For each of the two stimulus rates (2 Hz and 3 Hz), this step yielded one ITC value per neural frequency of interest (2 Hz and 3 Hz), and for each of 2982 voxels inside the brain. These ITC values were then combined to RSR values, as described above.

Experiment 2

Participants' report of the target word was evaluated using Levenshtein distance [START_REF] Levenshtein | Binary Codes Capable of Correcting Deletions, Insertions and Reversals[END_REF], which is the minimum number of edits (deletions, insertions etc.) necessary to change a phonological representation of the participants responses into the phonology of the target word, divided by the number of phonemes in the word. Accuracy in the task was defined as 1 -Levenshtein distance; this measure varies between 0 and 1, where 1 reflects a perfectly reproduced target word (see [START_REF] Sohoglu | Perceptual learning of degraded speech by minimizing prediction error[END_REF] for details).

For each participant, tACS condition and duration separately, we tested how report accuracy varies with phase lag (corresponding to the delay between target word and tACS offset in the pre-target tACS condition, and to the actual tACS phase in the ongoing tACS condition; see Fig. 4A). This was done by fitting a cosine function to task accuracy as a function of phase lag (Fig. 4D), an approach which has recently been revealed as highly sensitive at detecting a phasic modulation of perception [START_REF] Zoefel | How to test for phasic modulation of neural and behavioural responses[END_REF]. The amplitude of the cosine (a in Fig. 4D) reflects how strongly performance varies as a function of phase lag. Note that a is always larger than 0. To test statistical significance, we therefore constructed a surrogate distribution, which consists of amplitude values that would be observed in the absence of the hypothesized phase effect. For this purpose, phase lags were randomly assigned to trials and the analysis repeated to these shuffled datasets. This procedure was repeated 1000 times, yielding 1000 amplitude values for each experimental condition. The surrogate distribution was then compared with the single outcome obtained from the original, non-permuted data, resulting statistical (z-) values, according to: z = (d-μ) / σ where d is the observed data, and μ and σ are mean and standard deviation of the surrogate distribution, respectively [START_REF] Zoefel | How to test for phasic modulation of neural and behavioural responses[END_REF][START_REF] Vanrullen | How to Evaluate Phase Differences between Trial Groups in Ongoing Electrophysiological Signals[END_REF].

The phasic modulation of task accuracy, induced by tACS in a given condition, was considered reliable if the z-value exceeded a critical value (e.g., z = 1.645, corresponding to a significant threshold of α = Although methodologically more distant to tACS than EEG (only the latter two are affected by distortions by skull and tissue), we repeated the procedure for the simultaneously acquired MEG data (Fig. S3). Here, to avoid phase cancellation effects, z-values were calculated separately for each of the 204 gradiometers and then averaged across the two gradiometers in each pair, yielding one z-value for each of the 102 sensors positions (note that z-values from Rayleigh's test are always larger or equal to 0).

We also used the obtained results to re-align behavioural outcomes in Experiment 2 relative to the predicted optimal tACS phase (leading to highest accuracy) in individual participants. The primary purpose of this re-alignment is to illustrate implications of results obtained in the analysis described in the preceding paragraph (Fig. 5D). We also used a leave-one-participant-out procedure to avoid the inherent circularity in defining preferred phases or phase lags with the same data as used in the eventual analysis. This procedure is depicted in Fig. 6.

Step 1 (Fig. 6A): For each participant i, data from all remaining participants was used to estimate the average difference between 𝜑 𝑡𝐴𝐶𝑆 (from the pre-target tACS condition) and 𝜑 𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 . 𝜑 𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 was determined in the entrained time window, at electrode F3 (showing the highest predictive value for 𝜑 𝑡𝐴𝐶𝑆 in the pre-target condition). Step 2 (Fig. 6B): 𝜑 𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 was determined for participant i. Step 3 (Fig. 6C): The 𝜑 𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 , obtained for participant i in step 2, was shifted by the average difference between 𝜑 𝑡𝐴𝐶𝑆 and 𝜑 𝐸𝐸𝐺𝑣𝑠𝑆𝑜𝑢𝑛𝑑 , obtained in step 1. This yielded the predicted 𝜑 𝑡𝐴𝐶𝑆 for participant i.

Step 4 (Fig. 6D): The predicted 𝜑 𝑡𝐴𝐶𝑆 was used to estimate the tACS phase lag with highest perceptual accuracy for participant i. This phase lag was calculated as π-𝜑 𝑡𝐴𝐶𝑆 , based on the fact that 𝜑 𝑡𝐴𝐶𝑆 reflects the distance between the peak of a fitted cosine and the maximal tACS phase lag (Fig. 4B). The behavioural data from participant i was then shifted by the predicted optimal phase lag, so that highest accuracy was located at a centre phase bin. As behavioural data was only available for six different phase lags, it was (linearly) interpolated between these data points (167 interpolated values between each phase lag) to enable a more accurate re-alignment of the data (note that the predicted 𝜑 𝑡𝐴𝐶𝑆 depends on [START_REF] Giraud | Cortical oscillations and speech processing: emerging computational principles and operations[END_REF]