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Synthesis and Structure of the Stable Paramagnetic Cyclopentadienyl Polyhydride Complexes [Cp*MH 3 (dppe)] + (M ) Mo, W): Stronger M-H Bonds upon Oxidation

Transition-metal polyhydride derivatives have been at the focus of much experimental 2 and theoretical 3 work, especially dealing with their high fluxionality 4 and their structure type (i.e. classical vs nonclassical). 5 There is scarce information on how these properties change upon oxidation to the 17-electron configuration because of the paucity of stable complexes. Only a few monohydride complexes have have been isolated, 6 as facile decomposition via deprotonation or disproportionation pathways usually occurs. 7 Isolable paramagnetic polyhydrides are even less common. We are only aware of TaCl 2 H 2 L 4 (L ) PMe 3 or L 2 ) dmpe) 6g and [WCl 2 H 2 (PMe 3 ) 4 ] + BF 4 -, 6h as well characterized, unambiguous examples. 8 Chemical reactivity studies of such species are also rare. 9 When these compounds are obtained by one-electron oxidation of neutral precursors, H 2 reductive elimination is facilitated by the decreased metal p basicity 10 and adds to the array of decomposition pathways available. 11 We wish to report here the new complexes

[Cp*MH 3 (dppe)]- [PF 6 ] (M ) Mo, ([1]PF 6 ), W ([2]PF 6
)), which are accessible by 1-electron oxidation of the parent complexes 1 and 2 with FcPF 6 . [START_REF]To a solution of 2 (115 mg, 0.160 mmol) in 4 mL of CH2Cl2 was added FcPF6 (53 mg[END_REF] Cyclovoltammetric studies show a reversible oxidation for both 1 and 2 in THF (-0.75 and -0.88 V vs Fc/Fc + , respectively). Complex [1] + exhibits a triplet of quartets in the EPR spectrum (g ) 1.989, a P ) 28.9 G, a H ) 11.8 G; see Figure 1) consistent with coupling to three equivalent H and two equivalent P ligands. Chemical oxidation of Cp*MoD 3 (dppe) leads to the formation of [1] + -d 3 , which is characterized by an EPR broad triplet (g ) 1.991, a P ) 28.9 G; see Figure 1). IR investigations 13 show the expected isotope shift upon deuteration, and a 10-20 cm -1 blue shift upon oxidation. From simple theory, the vibrational frequency correlates directly with the bond energy. [START_REF] Berry | Physical Chemistry[END_REF] Thus, the IR data indicate that the M-H/D bonds are stronger in the oxidized materials, consistent with expectations on the basis of a M δ+ -H δ-bond polarity. Previous IR studies on Cp*FeH(dppe) and WH 2 Cl(PMe 3 ) 4 indicated either no change or a slight red shift upon oxidation, 6h,i,15 and a lowering of M-H BDE's was indicated for lower-valent carbonyl complexes by thermodynamic cycles involving acidity and electrochemical measurements. 16 Despite the supposedly greater Mo-H bond energy relative to the neutral precursor, complex [1] + decomposes rapidly (t 1/2 ) 2 min at 25 °C in either THF or CH 2 Cl 2 ) with gas evolution, to afford a new signal consisting of a doublet of triplets (g ) 1.950, a P ) 16.5 G, a H ) 24.0 G; solvent independent), consistent with the formation of Cp*MoH(dppe)(PF 6 ), 3. [1] + -d 3 correspondingly decomposes to yield a triplet of 1:1:1 triplets (a D ) 4.0 G). This indicates that [1] + decomposes by reductive elimination of H 2 . The similar decomposition rate in THF and CH 2 Cl 2 suggests that H 2 elimination may occur without solvent precoordination. Solvent-independent R-R reductive eliminations from dialkyl complexes have previously been reported. 17 No solvent is coordinated to solid 3, 18 which is therefore formulated as either the salt of a rather uncommon 19 15-electron cation or a 17-electron complex with a coordinated FPF 5 ligand. Solvent coordination cannot be excluded in solution. Additional studies on this compound are in progress and will be reported later.

Compound [2] + exhibits a broad triplet resonance in the EPR spectrum (g ) 2.017; see Figure 1), which decays slowly at room temperature in THF (t 1/2 ) 3 h). The nature of the decomposition products is under current investigation. Cooling to -80 °C does not affect the line shape of the signal. Oxidation of Cp*WD 3 -(dppe) leads to [2] + -d 3 , which better reveals the phosphorus coupling (g ) 2.022, a P ) 27.6 G; see Figure 1). A single crystal of [2]PF 6 could be investigated by X-ray diffraction, 20 which permitted the location and refinement of the three hydride ligands (see Figure 2).

The cation and anion are well separated, the closest contacts being between F atoms and Cp* and dppe C atoms (>3.0 Å). Neglecting the hydrogen positions, the geometry of [2] + is very close to that of [Cp*WH 4 (dppe)] + , previously determined as the BF 4 -salt. 21 The major difference consists of a small displacement (0.025(8) Å, as opposed to 0.002(9) Å in the tetrahydrido complex) of the W atom from the plane defined by CNT, P(1), and P( 2) toward the side of the molecule occupied by H2 and H3 (see Figure 2). The W-P and W-Cp* bond distances are also very similar for [2] + and [Cp*WH 4 (dppe)] + , 21a suggesting that the replacement of a W-H bond with a singly occupied W orbital does not greatly affect the effective metal charge (i.e. the W-H bond is highly covalent). Although the H positions are not determined with high precision, the relatively long H'''H separations (H1-H2 2.81 Å; H2-H3 2.11 Å) suggest a classical formulation for [2] + . The geometry of [2] + is intermediate between I (a pseudotrigonal prism) and II (a pseudooctahedron), i.e., the ideal geometries adopted by the isoelectronic d 2 complexes 1 and [Cp*MoH(dppe)(MeCN) 2 ] 2+ , respectively. 21a,22 The equivalence of the P and H hyperfine couplings in the EPR spectrum of [1] + clearly indicates fluxionality. A scrambling mechanism involving a pseudo-Bailar twist between I and II, as previously proposed for the precursor complexes 1 and 2, could also be adopted by [1] + and [2] + . 21a Our future work will attempt to define the chemical reactivity of this new class of 17-electron polyhydride complexes and their decomposition products.
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 1 Figure 1. EPR spectra of complexes [Cp*MX3(dppe)] + (M ) Mo, W; X ) H, D). Solvent ) THF. The starred peak in the spectrum of [2-d 3 ] + is due to an impurity.
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 15 Roger, C.; Hamon, P.; Toupet, L.; Rabaa ˆ, H.; Saillard, J.-Y.; Hamon, J.-R.; Lapinte, C. Organometallics 1991, 10, 1045-1054.

  (21) (a) Pleune, B.; Poli, R.; Fettinger, J. C. Organometallics 1997, 16, 1581-1594. (b) Crystals of [2] + PF6 -are orange, while those of [Cp*WH4-(dppe)] + BF4 -are colorless. Colorless crystals of [Cp*WH4(dppe)] + PF6 -have a significantly different unit cell from that of [2] + PF6 -: a ) 14.439(4) Å, b ) 16.575(4) Å, c ) 15.080(4) Å, β ) 100.29(2)°, V ) 3551.0(14) Å 3 .
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 2 Figure 2. A view of the cation in compound [2] + PF6 -. Selected bond distances (Å) and angles (deg):W1-P1, 2.474(2); W1-P2, 2.506(2); W1-CNT, 1.999(15); W1-H1, 1.71(2); W1-H2, 1.67(3); W1-H3, 1.69(3); CNT-W1-P1, 162.0(2); CNT-W1-P2, 119.1(2); CNT-W1-H1, 109(2); CNT-W1-H2; 103(2); CNT-W1-H3, 113(2); P1-W1-P2, 78.85(5).