
HAL Id: hal-03312487
https://hal.science/hal-03312487v1

Submitted on 2 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visualization of Object-Oriented Variability
Implementations as Cities

Johann Mortara, Philippe Collet, Anne-Marie Dery-Pinna

To cite this version:
Johann Mortara, Philippe Collet, Anne-Marie Dery-Pinna. Visualization of Object-Oriented Variabil-
ity Implementations as Cities. 9th IEEE Working Conference on Software Visualization (VISSOFT
2021), Sep 2021, Luxembourg (virtual), Luxembourg. �10.1109/VISSOFT52517.2021.00017�. �hal-
03312487�

https://hal.science/hal-03312487v1
https://hal.archives-ouvertes.fr


Visualization of Object-Oriented Variability
Implementations as Cities

Johann Mortara
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France
johann.mortara@univ-cotedazur.fr

Philippe Collet
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France
philippe.collet@univ-cotedazur.fr

Anne-Marie Dery-Pinna
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France
anne-marie.pinna@univ-cotedazur.fr

Abstract—Many large software systems are variability-rich,
object-oriented, and implemented in a single code base. They
then rely on multiple traditional techniques (inheritance, pat-
terns) to realize variability, making these implementations not
explicit. This directly hampers the comprehension of variability
implementations, especially for newcomers in a project that
need, in a short time, to understand the most important parts.
In this paper, we propose VariCity, a visualization using the
city metaphor to exhibit zones of interest, being zones of high
density of variability implementations. The different forms of
variability implementations are first detected through the usage
of symmetries in code (e.g., inheritance defines a substitution
symmetry between the immutable part of the superclass and the
possible changes in its subclasses). VariCity then creates a 3D
city representation with buildings being classes while the metrics
on the number of symmetries (e.g., the number of overloaded
methods, influence the building size, and their color if they are
heavily loaded in symmetries). Contrary to the usual package-
based organization in code-related city representations, the city
streets are arranged according to the usage relationships between
classes. Inheritance is simply represented with hoverable aerial
links. Variability-related design patterns are depicted as buildings
with specific geometric forms, while some classes specified as
entry points can help in shaping the whole city organization. We
also report on the evaluation of VariCity on a set of large object-
oriented systems, showing that several usage scenarios helping a
newcomer to spot critical variability-related zones are covered.

Index Terms—variability, software visualization, software cities

I. INTRODUCTION

Recent software-intensive systems of all scales and domains
are more and more variability-intensive [1]–[3]. Software
variability is usually defined as the ability of a software artifact
(i.e., system or element that enables to develop it) to be effi-
ciently extended, changed, customized, or configured towards
a specific context [4]. Being a key element of most systems [1],
variability management has been heavily studied, notably
leading to the Software Product Line (SPL) paradigm [5],
[6] Within an SPL, there is a clear separation between the
domain variability, commonly documented and managed in
terms of features (often organized in a feature model [7]), and
the implemented variability, that is mapped from the domain
variability, usually using a single implementation technique
such as preprocessor directives [8] or a form of modules [6].
Sometimes the implemented variability is also managed as
a feature model [9], [10], but the main benefits of an SPL

is to reason on consistency at the domain level and from a
configuration, to derive a consistent software product.

However, many variability-rich software systems are not
following a complete SPL approach. Many of them are object-
oriented and implemented in a single codebase in which
variability among the obtainable software products is imple-
mented using traditional techniques (i.e., inheritance, param-
eters, overloading, and some design patterns such as strategy
and factory) [4], [11], [12]. The implemented variability in
code assets is neither explicit nor documented, which hin-
ders its management, but more basically, hampers the simple
comprehension of it. As features to be understood are not
known in advance, and the code is not cloned and modified
per product, none of the feature location techniques [13]–[15]
can be applied in this context.

Facing this comprehension problem in identifying variabil-
ity implementations, we advocate that it demands a visual-
ization based solution. Software visualization is a research
area that focuses on methods and techniques for graphically
representing the many facets of software [16]–[18]. In more
than two decades, many visualization approaches have been
proposed to support a diversity of software engineering activi-
ties, such as maintenance, evolution, reverse engineering [19],
and more generally software comprehension and analysis [20],
[21]. In the variability management field, visual representa-
tions most entirely focus on the domain variability and feature
models [14]. When a visualization related to implementation
is provided, it is only dedicated to the validation of a detection
approach and not really adapted [22], [23].

In this paper, we propose VariCity, a visualization using
the city metaphor [24] to exhibit zones of interest, being
zones of high density of variability implementations. As the
city metaphor has been shown to scale on large projects for
visualizing metrics related to software quality [25]–[27], we
adapt it to our identification problem.

Reusing a recent approach [22], different forms of vari-
ability implementations are first detected through the usage
of symmetries in code [28], [29]. For example, inheritance
defines a substitution symmetry between the immutable part of
the superclass and the possible changes in its subclasses. These
symmetries also appear in mechanisms such as overloading of
constructors and methods, and patterns such as factories and
strategies. All the occurrences of these symmetries are thus



detected, gathered as metrics (e.g., the number of overloaded
methods in a class), and complemented with information on
inheritance and usage relationships between classes.

VariCity then creates a 3D city representation with buildings
being classes while the metrics on the number of symme-
tries influence the building size, and their color if they are
heavily loaded in symmetries. Contrary to the usual package-
based organization in code-related city representations, the
city streets are arranged according to the usage relation-
ships between classes. Inheritance is simply represented with
hoverable aerial links. Variability-related design patterns are
depicted as buildings with specific geometric forms, while
some classes specified as entry points can help in shaping
the whole city organization. As variability implementations
to be identified are close to elements being searched for
in onboarding activities [30]–[32], we organize the usage of
VariCity around scenarios based on these activities. This con-
sists of facilitating the comprehension for a skilled newcomer
while providing configuration capabilities for the expert to
create adapted views for newcomers. As a result, we show
that VariCity can facilitate both an high-level discovery of
the variability implementations within a codebase, and a deep
understanding in some specific areas. These usage scenarios
have been validated over a set of ten medium to large object-
oriented systems.

The remainder of this paper is organized as follows. Sec-
tion II introduces concepts of object-oriented variability im-
plementations and defines the visualization requirements based
on onboarding scenarios. Section III gives some background
on symmetry-based detection of object-oriented variability
implementations, as well as on the city metaphor in software
visualization. We then introduce the main principles and
configurable views of VariCity in section IV. In section V we
rely on the defined usage scenarios to evaluate the capabilities
of VariCity. Threats to validity and limitations are discussed
in section VI, while section VII studies related work. Finally,
section VIII concludes this paper and briefly discusses future
work.

II. MOTIVATIONS

Many object-oriented software systems are variability rich
but do not follow a fully-fledged software product line ap-
proach [5], [6]. Consequently, their domain variability (i.e.,
features) is not very well documented and is not made explicit
within code assets. In this context, comprehending the vari-
ability at code level is crucial for its management. Activities
related to comprehension can be as diverse as maintaining
or evolving the code, mapping the implemented variability to
domain features [33], or conducting an onboarding process for
newcomers [34].

A. Object-oriented variability implementations

When variability is present in object-oriented systems, code
assets can be structured into three different parts: core, com-
monalities, and variations [35]–[37]. The core part corresponds

to assets that are included in any of the final software prod-
ucts [35]. A commonality is the common part between the
related variations of code assets, while variations indicate how
and when should code assets vary [1]. Such commonalities and
variations are usually abstracted in terms of variation points
(vp-s) and variants, respectively [38]–[40]. A variation point
thus identifies one or more locations at which the variation
will occur, while the way that a variation point is going to
vary is expressed by its variants [38]. They are both related
to concrete elements in code assets [41].

Usually, in object-oriented variability-rich systems imple-
mented within a single codebase, the implementation of these
concrete elements rely on different traditional techniques, such
as inheritance, parameters, constructor and method overload-
ing, or some software design patterns [4], [11], [12], [42].
In this context, the code units that structure the systems are
classes, and they do not align well with domain features [6],
[43].

To comprehend implementation variability, SPL migration
techniques could be used in a reverse or forward engineering
way. Their approaches are characterized as feature location,
feature identification [13], [44], [45], feature delimitation (with
annotations) [8], or feature modularization [6]. In these ap-
proaches, features commonly tend to describe the domain vari-
ability of an SPL or variability-rich system, but are required to
be known in advance [10], [40]. However, domain variability
is hardly documented in variability-rich systems [46], and with
a single codebase, reengineering of features from clones of a
system cannot be used [47]. As a result, migrating requires
substantial manual effort and implies a complete paradigm
shift.

While many studies relate on how to address variability with
traditional object-oriented techniques [11], [12], [48], [49],
identifying vp-s with variants [50] implemented with these
techniques in a single codebase is known to be hard, by the
diversity of the implementations [42], [50] and the lack of
adapted visualization [22]. Moreover, according to a recent
mapping study by [14], while many visual representations of
variability management approaches are proposed in the context
of SPL, they most often target domain variability (e.g., features
in a feature model).

As a result, while identifying the variability implementa-
tions directly in code assets, that is, variation points and their
variants, is the first activity to comprehend variability, this
activity has no dedicated support.

B. Requirements

As program comprehension is seen as a process of both
information seeking [51] and feature location [13], it is
obvious that even if our problem is not related to domain
features in a classic SPL terminology, identifying vp-s with
variants is indeed a comprehension problem. Moreover, SPLs
and variable software in general are known to be complex and
difficult to apprehend [34], and tools are essential to illustrate
software reuse concepts [52]. We then first advocate that this



context naturally calls for visualization-based solutions [19]–
[21]. As the essence of software visualization consists of
creating an image of software by means of visual objects that
represent structure and/or behavior, we believe it is well suited
to enable perception of variability implementations with a
closer fit to the user mental model. Furthermore, the difficulty
of discovering a codebase increases with its complexity, we
believe that such visualization should be able to meet the
constraints of an onboarding process. Onboarding is a case
of program comprehension in which a new developer joins a
project or a company [30], [31]. Contrary to the usual infor-
mation seeking in program comprehension (i.e., information
pull), onboarding is more based on information push [53]
and is harder when little is known about the system [54].
In onboarding, it has also been shown that newcomers look
for major patterns [53], such as the ones used in variability
implementations. Finally, to avoid frustration by newcomers
being onboarded [55], the capability to configure and make
up adapted visualization for an expert is also crucial.

In this context, we structure our requirement analysis around
software comprehension scenarios for visualization within an
onboarding process. We are then supposed to target two types
of users:

• newcomers in the project, skilled but with no real knowl-
edge about the code (this role can be generalized to
anyone attempting to comprehend some software with
little or no prior knowledge);

• experts in the project, with knowledge of the code
and its architecture, but with no explicit vision of the
variability implementations. With experts, once they have
gained knowledge on the variability, they are likely to be
more interested in its evolution [25], [56]. We consider
that all evolution scenarios are out of the scope of this
paper, as we first need to provide a visualization for
a single snapshot of a project. Consequently, we focus
on scenarios that engage the expert to comprehend the
implemented variability while building a preconfigured
visualization for newcomers.

We then propose two scenarios:
• Scenario 1: The expert wants to facilitate the explo-

ration of the codebase by giving a pre-configured
visualization to the newcomer. Through this scenario,
the newcomer onboards on a large codebase of which he
needs to have a global comprehension of the implemented
variability (e.g., understand a library or API that is going
to be reused).

• Scenario 2: The expert wants the newcomer to compre-
hend a subpart of the codebase for the newcomer to
be able to reuse it. Through this scenario, the newcomer
onboards on a codebase in which she will be asked to add
a new feature. She, therefore, has to understand in more
detail the interactions between the classes implemented
variability in this subpart.

Finally, Yates et al. [53] analyze the different types of
information transmitted from an expert to a newcomer during

onboarding sessions. It results that newcomers find helpful
when experts give coarse-grained information about complex
zones (ranging from a group of classes to design patterns) of
the codebase to them, so they can dig into them by themselves.
According to these findings, we can say that a visualization
for a newcomer should: (i) display the main elements allowing
her to understand the codebase (design patterns, zones with
complex variability implementations), (ii) be configurable by
the expert to tailor it for newcomers, (iii) provide navigation
and interaction capabilities to be adapted by a newcomer
(filtering, zooming), (iv) scale on large codebases.

III. BACKGROUND

A. Object-oriented symmetries and variability

While symmetry in nature is often defined as the immunity
to a possible change, this concept has also been studied in
software, and especially in mechanisms of object-orientation,
such as inheritance, overloading, and design patterns, which
can also be interpreted in terms of symmetry [28], [29]. Taking
a codebase as a whole, these implementation techniques can
be seen as local symmetries [22], which allow a part of code
to change while another part remains unchanged.

As an illustration, let us take an example from JFreeChart1,
an object-oriented library that provides a variability-rich fam-
ily of charts (e.g., meters, pies). In the left part of Fig. 1 is
depicted a partial UML diagram of some important classes in
this library, namely the abstract class Plot with its two sub-
classes PiePlot and MeterPlot. As inheritance defines a
substitution symmetry for its subtypes [28], the possibility of a
change in Plot corresponds to its different subtypes, such as
PiePlot and MeterPlot (which vary in how they draw a
chart). On their side, these classes preserve and conform to the
common behavior of their superclass. Furthermore, the main
object-oriented (OO) techniques implementing variability can
be characterized by local symmetries (e.g., constructor and
method overloading, factory or strategy pattern), and at an
abstract level, a vp represents the unchanged part while its
variants are the changed parts in code assets of a system [22].

B. Automatic identification of variability implementations

Thanks to the available symmetries in object-oriented vari-
ability implementation techniques, its has been shown that
seven different techniques can be detected (class as type,
class subtyping, method and constructor overloading, strat-
egy, template, decorator, and factory patterns) inside Java or
C ++ code [22], [57], [58]. It has also been observed that they
represent good potential vp-s and variants [22], and that they
can even be successfully mapped to domain features if a list
of these features is provided [23]. In our example, the vp-s
are present at both class and method levels, as shown on the
UML diagram in Fig. 1. At the class level, the abstract class
Plot is a superclass of PiePlot and XYPlot, making it a
vp with two variants. At the method level, every overloaded
constructor or method represents a vp, with the number of

1http://www.jfree.org/jfreechart/

http://www.jfree.org/jfreechart/


Automatic identification 
of symmetries

Code base

Identified potential 
vp-s and variants

JFreeChart

types: CLASS, VP, FACTORY, METHOD_LEVEL_VP

constructorVPs: 1
constructorVariants: 3
methodVPs: 7
methodVariants: 17

attributes: Plot, Title, …

Plot

types: CLASS, ABSTRACT, VP, VARIANT, 
METHOD_LEVEL_VP, FACTORY, STRATEGY

constructorVPs: 0
constructorVariants: 0
methodVPs: 3
methodVariants: 6

attributes: AxisLocation, PlotRenderingInfo, 
PiePlot, MeterPlot, …

subclasses: PiePlot, XYPlot, MeterPlot, 
CategoryPlot, …

XYPlot

types: CLASS, STRATEGY, VP, VARIANT, 
METHOD_LEVEL_VP

constructorVPs: 1
constructorVariants: 2
methodVPs: 30
methodVariants: 77

attributes: Plot, Title, …

subclasses: CombinedDomainXYPlot, …

PiePlot

types: CLASS, VP, VARIANT, METHOD_LEVEL_VP

constructorVPs: 1
constructorVariants: 2
methodVPs: 4
methodVariants: 9

attributes: Plot, Title, …

subclasses: RingPlot,…

VP

V V
VP

V

Fig. 1: Symmetries in object-oriented code and metrics that can be extracted

overloads being the number of variants of the vp. The two
constructors in PiePlot and the two addDomainMarker
methods in XYPlot both represent a vp with two variants.
Information about the presence of a vp appear in the extracted
information (on the right of Fig. 1): class level vp-s are labeled
as VP, variants as VARIANT, and classes possessing method
level vp-s are labeled METHOD_LEVEL_VP. Finally, if the
class is the vp of a design pattern, a label with the pattern
name is associated with the class information.

Besides, it has also been shown that the density of the
variability implementations in a location denotes zones of
interest in terms of variability [22]. In other words, zones
with several techniques used, and/or with heavy usage of a
technique (e.g., a lot of methods being overloaded, a lot of
subclasses in a hierarchy, or inside a strategy pattern) are very
likely to be a zone of variability management.

Furthermore, if a class contains many usages of variability
implementations, it is also naturally related by inheritance to
some others, especially as the inheritance mechanism is the
backbone of many variability implementation techniques [22].
More recently, the importance of usage relationships between
classes, defined through typing of attributes and method pa-
rameters, has also been demonstrated to determine a zone
of variability interest [59]. As a result, with information on
symmetries, metrics on their occurrences, as well as relations
of inheritance and usage between classes, zones of interest
in terms of variability can be predetermined. For example,
the metrics on the right part of Fig. 1 indicate that XYPlot
possesses 30 overloaded methods (methodVPs), totalizing 77
overloads (methodVariants), making it a highly-variable
class2.

Taking all the information and metrics on potential vp-
s and variants that can be easily extracted from an object-
oriented code base, our aim with VariCity is thus to propose

2Since constructors all have the name of their class, multiple constructors
represent only one vp (constructorVPs), with the number of constructors
being the number of variants (constructorVariants).

a visualization that meets the usage scenarios devised in
section II-B.

C. On the city metaphor in software visualization

Metaphors are often used when designing visualizations
as they bring an understandable graphical representation to
concepts [17], such as the metaphor of the city [60], which has
been applied to multiple types of metrics on software systems:
dynamic behavior (such as concurrency between classes [61],
memory consumption of heaps [62]), and static properties
such as dependency and communication links between com-
ponents [63].

At a finer-grain, software cities to understand object-
oriented software systems have been proposed, the first of
them being CodeCity [24], [27] which uses buildings to repre-
sent classes, grouping them in districts representing packages.
These principles were enhanced by adding a temporal dimen-
sion in the analysis to visualize the evolution of the metrics
through multiple versions of the system, first in CodeCity [56]
and also in a more recent approach called M3TRICITY [25].
The Evo-Streets [64] approach also aims at visualizing the
evolution of the software but uses streets to represent the
package decomposition (instead of nested boxes in CodeCity).
Multiple approaches also reuse the city metaphor and adapt it
to more immersive techniques, as virtual reality in VRCity [65]
or Minecraft in CodeMetropolis [66].

IV. VARICITY

As shown in section III-C, the city metaphor is a recognized
way to visualize different properties of software systems. We
hence adapt this visualization to the data we want to visualize
and the defined scenarios.

A. Main principles

Buildings. In CodeCity, classes are buildings and their size
evolves according to metrics related to code quality which
are inherent to the represented class, such as the cyclomatic
complexity or the number of lines of code (LoC). For example,



(a) Visualization of JFreeChart 1.5.0

(b) Example from Fig. 1 in VariCity

Fig. 2: Sample views of VariCity

an important number of methods will lead to a tall building,
catching the attention of the user on it. In VariCity, we aim
to focus the user on classes making heavy use of variability
implementations. Therefore, the dimensions of every building
represent the class-based metrics related to variability (i.e., the
number of variants at method level – a tall building shows
an important number of method variants, whereas a large
building shows an important number of constructor variants).
Moreover, buildings in color on the visualization (by default
yellow for vp-s and blue for non vp-s) represent classes defined
as hotspots. Such classes are part of dense zones of variability
and are vp-s identified by matching one of the two following
requirements: (i) they have a minimum number of variants, 5
in our experiments, or (ii) they are close in usage to another
vp (i.e., they are situated at less than 3 transitive hops in the
usage relationships graph). The shape of the building is altered

according to the design pattern(s) exhibited by the class3 (cf.
table I).

Displaying differently classes being hotspots and/or ex-
hibiting design patterns brings to the user insights on highly
variable zones of the project, which she can then explore in
more detail by using the different interactions provided by the
visualization (spanning, zooming).

Streets. Analogously, as the representation proposed by
CodeCity groups classes belonging to the same package in
a district to exhibit the packages containing the most complex
classes, our goal is to group in the same neighborhood classes
concentrating a high density of variability implementations.

However, although the nested districts allow to efficiently
represent the decomposition hierarchy of classes belonging
to nested packages, it is not adapted to our notion of den-
sity of variability implementations which derives from usage
relationships between classes (as a class can use and/or be
used by multiple other classes). We thus rely on the visual-
ization proposed by Evo-Streets [64], which uses streets to
decompose a hierarchy instead of boxes. In the original Evo-
Streets layout, streets represent subsystems, with orthogonal
branching streets representing their subsystems. The buildings
on a street represent the modules belonging to this system.
We adapt the visualization with buildings on streets being
classes, and streets departing from a building (instead of
another street) to represent a usage relationship between this
class and every other class whose building is on the street. As
we consider inheritance links as less important for variability,
they are represented as aerial links between buildings, being
only displayed when hovering over a building. This enables
the user to see the inheritance information if needed, while the
hotspot coloring and streets for usage bring the most important
information first.

A summary of the visual properties is presented in table I
and illustrated in Fig. 3.

TABLE I: Visual properties and their default color

Representation in VariCity Signification

Buildings

Yellow color Variation point that is part of a hotspot
Blue color Non vp class that is part of a hotspot
Gray color Class that is not part of a hotspot
Pyramide crown Entry point class
Dome crown Strategy pattern
Chimneys crown Factory pattern
Inverted Pyramide crown Template pattern
Sphere crown Decorator pattern

Streets

Plan (red) Street aggregating entry point classes
Plan / Underground (green) Usage relationship
Aerial (blue) Inheritance relationship

Adaptable cities. While the view should allow to quickly
spot dense zones of variability implementations, a lot of

3A design pattern often involves multiple classes, however only the vp of
the design pattern has a special crown on it, not to overload the visualization.



Root street

Entry point 
classes

Usage link

Crown =
design pattern

Methods 
overloads

Constructors 
overloads

Hotspot

Hotspot and
VP / variant

(a) Elements displayed by default

Usage links

Inheritance links

(b) Inheritance links and underground usage links appear when
hovering a building

Fig. 3: Visual properties of VariCity

information of different nature needs to be displayed: classes,
links between them, design patterns. However, on a large
project, providing a first view with all classes (and their usage
/ inheritance relationships) displayed would bring too much
information. There is thus a need to focus the visualization
around known points of interest of the system. The idea is
therefore to allow the expert to create a city in line with the
most important elements for her and to give a first simplified
vision of the city which does not show all the relationships
between classes. The visualization algorithm thus relies on a
certain number of inputs that focus the view (cf. section IV-B).
From this first visualization, it will also be possible to gradu-
ally adapt the city, among other things, by adding or removing
relationships and classes (cf. section IV-C).

B. From buildings and streets to a city

The goal of VariCity is to display the main elements allow-
ing one to understand the variability implementations related
to a given point of interest in the system (cf. section II-B).
To do so, VariCity relies on three mandatory inputs. The first
one defines entry point classes, which represent important
points of interest for the comprehension of the system (e.g.,
endpoint of an API that could be automatically inferred, or

street

Fig. 4: Result example of the placement algorithm

complex classes of the system given by the expert). The
second input is the usage orientation, which can be IN and/or
OUT. An orientation IN means that the classes displayed will
be the classes using the defined entry points (i.e., having it
as an attribute or method parameter). On the opposite, an
orientation OUT means that the classes displayed will be the
classes being used by the defined entry points (i.e., being an
attribute or method parameter of the entry point). Depending
on the objectives of the onboarding scenario envisaged by the
expert, she might show either how the entry point uses or
is used by other classes. More detailed examples are given
in section IV-C. Finally, setting the orientation to IN/OUT
displays classes using or being used by the entry points. The
third input is the usage level, which is an integer value. With
a usage level of n, all classes distant from an entry point
by n usage relationships will be displayed. For example, a
visualization set up with an entry point, usage orientation
OUT and usage level of 2 will display the entry point, the
classes being used by the entry point, and the classes used
by these classes. Being able to adapt this value is important
as depending on the complexity or the layered architecture of
a system, a given level of usage might be adapted to it but
shows too many classes on another one.

The root (first) street, in red on Fig. 3a, aggregates all the
entry points. Then, starting from them, classes using (or being
used by) them up to the usage level set are displayed. A street
is initiated from an entry point, and for each class related to
it, a building is placed on the border on the street. In order
to exhibit density between classes, we need to place as close
as possible buildings linked by a usage relationship to the
same class. Following this principle, we place the buildings
by decreasing order of width on both sides of the street,
minimizing the total length of the street to keep the buildings
as close as possible (Fig. 4).

Our placing algorithm can lead to long straight streets
if a class uses many others. Work presenting techniques
to prevent this behaviour and keep cities compact (such as
folding) exist [67]. However, this information is valuable in
the case of VariCity as it allows to quickly visualize classes
concentrating many usage relationships. It is also likely to
happen that a class is linked through a usage relationship to
multiple visualized classes. In that case, these additional usage
relationships are represented as green underground streets
and appear only when hovering the class, as well as the
inheritance relationships not to overload the visualization 4.

4When hovering over, class names are also displayed in a sidebar for the
same reason.



An example of visualization after generation is presented
in Fig. 3a. Additional links appearing on hover are presented
in Fig. 3b.

C. Configuring the view to adapt the city

The configuration of VariCity is done in two steps. The first
step concerns the adaptation of the mandatory inputs required
to build the visualization (i.e., entry point classes, usage level,
and usage orientation), which are preconfigured by the expert.
Based on her knowledge, the expert determines which classes
are relevant enough to be entry point classes. The orientation
will be set depending on what she expects the newcomer to
understand from the system: if she wants the newcomer to
reuse a part of the implementation, she will likely choose the
IN orientation as it will show which classes already use the
entry point so that the newcomer can see how the class is
already used. On the opposite, if she wants the newcomer to
add a new feature, she will more likely choose OUT so that the
newcomer sees which classes are used by the entry points to
know which classes she may need to reuse. Finally, choosing
IN/OUT gives an overview of both aspects. Determining the
usage level can only be done empirically. A level too low
might hide important information for the comprehension of
the variability, and a level too high might display too much
information. Such characteristics are dependent on every code-
base. For example, the visualization of JFreeChart presented
in Fig. 2a has JFreeChart and Plot as entry points, a
usage level of 4, and a usage orientation OUT. The expert can
also choose not to display classes that she considers irrelevant
by putting them in a blacklist.

The second step represents options allowing to adapt the
visualization, such as visual settings (colors of the visual
elements, padding between the buildings) that may improve
the readability of the visualization. Metrics for the height and
width of the buildings can also be adapted. This parameter
may be useful for the expert that has a particularly deep
understanding of the system. For example, if the method level
variability of classes is due to constructor overloads, it might
be useful to use this metric for the height instead of the width
of the buildings.

Although all these parameters for both steps have default
values set by the expert, they can also be adapted by the
newcomer while exploring the visualization in a sidebar to
maximize her autonomy. We will illustrate in section V how
different values for the inputs in the first step impact the
structure of the visualization by detailing the two scenarios
presented in section II-B.

D. Implementation

VariCity implementation relies on an existing toolchain
complemented by its dedicated visualization.

The automatic identification of the symmetries and, re-
lying on them, of the potential vp-s and variants, depicted
in Fig. 1 is done by reusing symfinder [57]. After cloning the
Git repository of a single Java or C ++ codebase, symfinder

identifies the symmetries present in the code and stores their
representation in a graph database to perform the identification
of the potential vp-s and variants. Information is structured by
class and used by VariCity to build the visualization (cf. sec-
tion IV-B), relying on the settings provided in a configuration
file. The web-based visualization is standalone, and developed
in TypeScript with the Babylon.js5 3D library. The whole
application is deployed with Webpack and requires only a
web browser to be viewed. Both VariCity and symfinder are
deployed using Docker to ease their reuse and reproducibility
of the visualizations presented in this paper. The source code
of VariCity is available online [68].

V. EVALUATION

In [59], the symfinder toolchain, which detects potential
vp-s with variants, was applied on ten popular open-source
and variability-rich Java systems, being applications, frame-
work, or libraries, with different characteristics (size, variation
points, explicit API provided). We chose to select the same
systems to test the results of VariCity. In table II are listed
the systems and their VariCity configuration to facilitate the
exploration or deepening of a particular area, as shown by
our scenarios. The entry points have been determined by
exploring the codebases and documentations, and selecting
important classes accordingly. The values for usage level
and orientation were determined empirically to provide a
visualization showing interesting zones. By tailoring the inputs
for these systems, we show that our approach is applicable to
systems of various sizes and structures. The generated cities
for all systems are available in the reproduction package [68].
Entry point classes being preconfigured, the user just needs to
adapt the values for the usage level and orientation.

In this section, we evaluate whether VariCity answers to
the needs expressed in section II-B, relying on the scenarios
presented in section IV-C. We chose the Apache NetBeans IDE
with its 5 MLoC6 for Scenario 1 to illustrate the exploration
of a large codebase. We chose the JFreeChart charting library
for Scenario 2 to illustrate comprehension for reuse, as this
scenario requires a finer-grained knowledge of the codebase,
and we already detailed parts of its variability implementations
in previous work [22]. A video walkthrough of the scenarios
is available on VariCity’s website at https://deathstar3.github.
io/varicity-demo/.

A. Scenario 1: exploration of the codebase

Objectives: With this scenario, we want to evaluate how
VariCity and its configuration capabilities can help to dis-
tinguish zones of high density of variability in a codebase,
which are manifested by buildings of particular height or
width (i.e., important number of method level variability im-
plementations), in color (i.e., part of dense zones of variability
implementations), or with a crown (i.e., presence of a design
pattern).

5https://www.babylonjs.com/
6https://netbeans.apache.org/

https://deathstar3.github.io/varicity-demo/
https://deathstar3.github.io/varicity-demo/
https://www.babylonjs.com/
https://netbeans.apache.org/


TABLE II: Subject systems

Entry point(s) Usage
level

Usage
orientation

Java AWT

java.awt.Shape 3 IN/OUT

Apache CXF

org.apache.cxf.endpoint.Endpoint 6 OUT

JUnit

org.junit.Assert 3 IN/OUT
org.junit.rules.TestRule

Maven

org.apache.maven.Maven 7 OUT
org.apache.maven.execution.MavenSession

JFreeChart

org.jfree.chart.JFreeChart 2 OUT
org.jfree.chart.plot.Plot

ArgoUML

org.argouml.cognitive.Designer
2 IN/OUTorg.argouml.uml.ui.UMLModelElementListModel2

org.argouml.uml.diagram.ui.FigNodeModelElement

Cucumber

io.cucumber.plugin.event.Event 11 IN/OUT
io.cucumber.java.StepDefinitionAnnotation

Logbook

org.zalando.logbook.Logbook 4 OUT
org.zalando.logbook.Sink

Riptide

org.zalando.riptide.Http 6 IN/OUT

NetBeans

org.netbeans.api.java.platform.JavaPlatform 5 IN/OUT

Unfolding the scenario: The newcomer onboards on the
NetBeans IDE code base and needs to use the JavaPlatform
API, which configures the version and location of Java to
be used when building and running a project7. To better
understand the operation of the API, the newcomer thus needs
to have a global vision of the structure of the usage and
inheritance relationships between the classes. To this effect,
the expert configures the visualization to use the endpoint
of the API, namely JavaPlatform8, as the entry point
of the visualization. Both classes using and being used by
JavaPlatform on 5 levels (usage level 5, orientation IN
and OUT) are shown to have a first overview of the classes
being closely related to the endpoint of the API. The ob-
tained visualization is shown in Fig. 5a. A neighborhood
of tall and colored buildings (circled in yellow) detaches
from the other buildings in the city, showing to the user
zones with classes heavily using variability implementation
techniques. By zooming and spanning the visualization, the
user can focus on this precise part of the city (Fig. 5b)9.
The different implemented design patterns are distinguishable
due to the special shape of their buildings (e.g., JavaFix

7https://bits.netbeans.org/12.2/javadoc/org-netbeans-modules-java-platform/
overview-summary.html

8org.netbeans.api.java.platform.JavaPlatform
9The names and arrows have been manually added on the figure. The

name of the class corresponding to a building appears in a sidebar of the
visualization when hovering over the building. Packages, when unnecessary,
have been omitted for readability.

(a) NetBeans, usage level 5, orientation IN/OUT, JavaPlatform
as entry point.

(b) Zoom on a hotspot zone

Fig. 5: Visualization of the package java of NetBeans 12.2

is a Strategy, ngtest.AbstractTestGenerator and
junit.AbstractTestGenerator are Templates). The
two last classes are not only design patterns but also hotspots,
giving a strong intuition about the relevance of the potential
identified vp. In fact, these classes allow to generate test code
for two different unit test libraries, JUnit10 and TestNG11 and
are variants of the CancellableTask interface12.

B. Scenario 2: comprehension of a subpart of the codebase
for reuse

Objectives: With this scenario, we want to evaluate how the
customization of the view by the newcomer can allow her to
tailor the visualization to obtain fine-grained details about the
codebase.

10https://junit.org/junit5/
11https://testng.org/doc/
12See here and here.

https://bits.netbeans.org/12.2/javadoc/org-netbeans-modules-java-platform/overview-summary.html
https://bits.netbeans.org/12.2/javadoc/org-netbeans-modules-java-platform/overview-summary.html
https://junit.org/junit5/
https://testng.org/doc/
https://github.com/apache/netbeans/blob/c084119009d2e0f736f225d706bc1827af283501/java/junit/src/org/netbeans/modules/junit/AbstractTestGenerator.java#L93
https://github.com/apache/netbeans/blob/c084119009d2e0f736f225d706bc1827af283501/java/testng/src/org/netbeans/modules/testng/AbstractTestGenerator.java#L89


Unfolding the scenario: The newcomer onboards on
JFreeChart, a Java library allowing to draw different types of
charts, and is asked to implement a new type of chart in the
library. Contrary to the first scenario, the newcomer aims at
adding a new feature to the codebase, thus she needs a more
fine-grained understanding of it, as, for example, the classes
used by the other charts that she might also need to use. The
expert thus configures the visualization to use as entry points
JFreeChart13, being the endpoint of the library used by
the users to create plots and Plot14, the superclass of all
classes implementing a different type of chart. As the goal is
to display which classes are used by these two entry points,
the usage orientation is set to OUT and the usage level to 2.
The obtained visualization is shown in Fig. 6a.

We notice that the colored buildings, which represent classes
being part of dense zones of variability implementations,
do not align with the most variable classes. For example,
LegendItem is a factory and, due to its large base, ex-
hibits an important number of constructor variants. However,
although this class is internally dense in variability, it is a
utility object which not related to any other vp, and for this
reason, is not characterized as a hotspot.

By hovering over Plot, the newcomer can see the different
displayed subclasses of the class (i.e., the variants of the
vp Plot). To add another type of chart in the library, she will
need to implement a new variant of this vp and needs thus to
have an overview of the classes used by these subclasses. To
do so, the user adds the two most variable ones (XYPlot15

and CategoryPlot16) as entry points (Fig. 6b). The shape
of the city changes to display the usages related to each entry
point in separated neighborhoods, allowing to better visualize
if (i) a particular entry point is the starting point of a dense
zone of variability implementations, and (ii) a class is related
(to a certain degree) to two entry points with underground
streets. On Fig. 6b, an important number of classes making
heavy use of variability implementations is visible, and are
directly used by XYItemRenderer17, itself related to both
XYPlot and classes related to CategoryPlot. Given these
characteristics, the newcomer may need to reuse it to imple-
ment his feature and thus can add it as another entry point to
visualize its usage if needed.

To visualize the classes used by XYPlot and
CategoryPlot, the newcomer could also have chosen to
increase the usage level on the visualization given by the
expert, as shown on Fig. 6c. However, an important number
of classes and relationships not related to the newcomer’s
interest would appear, hampering the comprehension. The
newcomer could also have chosen other class variants of
Plot to add as entry points. However, most likely the
classes that will be added to the visualization are not dense
in variability, thus less interesting for the scenario.

13org.jfree.chart.JFreeChart
14org.jfree.chart.plot.Plot
15org.jfree.chart.plot.XYPlot
16org.jfree.chart.plot.CategoryPlot
17org.jfree.chart.renderer.xy.XYItemRenderer

PolarPlot
JFreeChart

CategoryPlot

XYPlot

Plot

LegendItem

(a) JFreeChart, usage level 2, orientation OUT, JFreeChart and
Plot as entry points. Displaying links of Plot reveals that XYPlot
and CategoryPlot are subclasses

(b) Fig. 6a after adding XYPlot and CategoryPlot as entry
points

CategoryPlotXYPlot

JFreechart

Plot

XYItemRenderer

LegendItem

(c) Fig. 6a after increasing the usage level to 4

Fig. 6: Scenario 2

C. Summary

Through these two scenarios, the newcomer is able, using
VariCity, to see variability implementations in an unknown
codebase from a high-level perspective, and also to dig into
them to have a more precise understanding. Providing a more
complete experimental evaluation based on feedback from
both experts and newcomers on the use of VariCity is part
of our future work.



VI. THREATS TO VALIDITY AND LIMITATIONS

Without an empirical assessment, the main threat of our
evaluation concerns the scenarios that we designed by our-
selves. Nevertheless, we relied on both empirical work on on-
boarding with real experts and newcomers [53] and challenges
related to the comprehension of variability concepts [52],
giving us good confidence in the relevance of the scenarios.

Another threat arises by the fact that both authors and
developers of VariCity determined empirically the inputs (entry
points, usage level and orientation) for each scenario, based on
their knowledge of the systems and of VariCity’s capabilities.
Still, even by having a coarse-grain understanding compared
to a real expert, the obtained visualizations already exhibit sat-
isfying results. We expect real experts to be able to determine
appropriate inputs in real settings.

Concerning the structure of the visualization, the placement
of the buildings on a street only relies on the width of the
buildings to compact them in the street. This implies that the
variability represented by the height of the buildings is not
taken into account. Even if this dimension is largely visible on
the visualization, this calls for an adaptation of the placement
algorithm to take into account both dimensions while placing
the buildings.

VII. RELATED WORK

Works on the city metaphor in software visualizations were
studied in section IV-A. In this section, we discuss work
related to visualization for variability management and to
assist onboarding activities.

A. Visualization in the Software Product Line field

A recent mapping study has shown that visualizations in
the SPL domain mainly target feature models, using tree or
graph representations [14]. These visualizations are mainly
used to facilitate the configuration process over features. To
visualize variability at the code level, some approaches use
colors [69] or bar diagrams [70], while some others focus
on feature traces [71] or feature interactions between features
and code [72], [73]. None of them focus on object-oriented
techniques as variability implementations.

In VariCity, we reused the symmetry-based detection part
of symfinder [22], [59], but this tool also provides a graph-
based visualization in which each class level vp and variant
is represented as a circle node that points out the used
implementation technique, with size and shades of nodes
indicating some occurrences of symmetries. These nodes are
linked with both inheritance and usage relationships being
different kinds of edges, forming a set of disconnected graphs.
While this visualization allows showing some dense zones of
variability and has filtering capabilities, it has only been used
for the validation of the capabilities of symfinder in identifying
potential vp-s and variant. It is not adapted for comprehending
variability as in our considered scenarios, especially in large-
scale systems in which the resulting visualization is not usable
(approx. 4k nodes for NetBeans).

B. Visual tools to assist onboarding

Some visualizations have been especially proposed for on-
boarding activities. Isopleth [74] represents call relationships
in front-end JavaScript implementations in the form of a call
graph, which is interactive and can be edited to see the impact
in real-time on the page. Other tools integrate information from
the organization to help information seeking during develop-
ment activities, such as Tesseract [75] which visualizes the
relationships between technical information from a codebase
and related social data (e.g., developers, communication, code,
and bugs). Finally, recent studies on onboarding in SPLs [34]
explore concept maps [76] to structure information about
the SPL. However, this approach, as many others evoked
in section VII-A relies on a feature model and documentation,
which does not apply in our case.

VIII. CONCLUSION

Variability-rich object-oriented software systems often im-
plement variability in a single code base using mechanisms
from the supporting language, such as inheritance, overload-
ing, and design patterns. These implementations are thus
not explicit and difficult to comprehend, especially for a
newcomer onboarding on a project and trying to comprehend
variability in it. In this paper, we proposed VariCity, a 3D
visualization based on the city metaphor to propose adapted
and configurable views that exhibit zones of high density of
variability implementations. The density relies on previous
work on automated detection of symmetries in the variability
implementation mechanisms. Metrics on their occurrences to-
gether with information on inheritance and usage relationships
are exploited to build a city with, notably, classes as build-
ings and streets as usage relationships. We also detailed two
onboarding scenarios showing how the different capabilities
of the visualization can help to spot critical variability-related
zones of a codebase and obtain fine-grained information about
them.

The visualization toolchain is publicly available and has
been applied to several large object-oriented systems. We
expect it can help different kinds of users, from experts to
newcomers, to understand variability in this kind of system.
As future work, we first plan to conduct an evaluation with
real experts of a codebase building scenarios for newcomers
onboarding on their project. We also plan to integrate the
visualization with a development environment that would
automate the interactions between the source code and the
city. At another level, we also want to explore the coupling
of the metrics used in this visualization with other software
metrics [77], such as complexity or test coverage. With these
experiments and improvements, we expect to gain new insights
on how to better facilitate the identification of variability
implementations.

ACKNOWLEDGMENT

We thank Paul-Marie Djekinnou, Florian Focas and François
Rigaut for their contribution in the development of VariCity.



REFERENCES

[1] R. Hilliard, “On representing variation,” in Proceedings of the Fourth
European Conference on Software Architecture: Companion Volume,
ser. ECSA ’10. ACM, 2010, p. 312–315. [Online]. Available:
https://doi.org/10.1145/1842752.1842810

[2] M. Galster, D. Weyns, D. Tofan, B. Michalik, and P. Avgeriou,
“Variability in software systems — a systematic literature review,”
IEEE Transactions on Software Engineering, vol. 40, no. 3, pp. 282–306,
2013. [Online]. Available: https://doi.org/10.1109/TSE.2013.56

[3] M. Galster, “Variability-intensive software systems: Product lines and
beyond,” in Proceedings of the 13th International Workshop on
Variability Modelling of Software-Intensive Systems, ser. VaMoS ’19.
ACM, 2019, pp. 1–1. [Online]. Available: https://doi.org/10.1145/
3302333.3302336

[4] R. Capilla, J. Bosch, K.-C. Kang et al., “Systems and software variability
management,” Concepts Tools and Experiences, 2013.

[5] K. Pohl, G. Böckle, and F. J. van Der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer Science
& Business Media, 2005.

[6] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-Oriented Software
Product Lines. Springer, 2013.

[7] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (FODA) feasibility study,” Carnegie-
Mellon Univ Pittsburgh Pa Software Engineering Inst, Tech. Rep., 1990.

[8] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An analysis
of the variability in forty preprocessor-based software product lines,”
in Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1. ACM, 2010, pp. 105–114.

[9] K. Schmid and I. John, “A customizable approach to full lifecycle
variability management,” Science of Computer Programming, vol. 53,
no. 3, pp. 259–284, 2004. [Online]. Available: https://doi.org/10.1016/
j.scico.2003.04.002

[10] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens, and G. Saval,
“Disambiguating the documentation of variability in software product
lines: A separation of concerns, formalization and automated analysis,”
in 15th IEEE International Requirements Engineering Conference,
ser. RE ’07. IEEE, 2007, pp. 243–253. [Online]. Available:
https://doi.org/10.1109/RE.2007.61

[11] C. Gacek and M. Anastasopoules, “Implementing product line
variabilities,” in Proceedings of the 2001 Symposium on Software
Reusability: Putting Software Reuse in Context, ser. SSR ’01. ACM,
2001, pp. 109–117. [Online]. Available: https://doi.org/10.1145/375212.
375269

[12] M. Svahnberg, J. Van Gurp, and J. Bosch, “A taxonomy of variability
realization techniques,” Software: Practice and experience, vol. 35,
no. 8, pp. 705–754, 2005.

[13] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: A taxonomy and survey,” Journal of Software:
Evolution and Process, vol. 25, no. 1, pp. 53–95, 2013. [Online].
Available: https://doi.org/10.1002/smr.567

[14] R. E. Lopez-Herrejon, S. Illescas, and A. Egyed, “A systematic mapping
study of information visualization for software product line engineering,”
Journal of software: evolution and process, vol. 30, no. 2, p. e1912,
2018.

[15] G. K. Michelon, L. Linsbauer, W. K. Assunção, S. Fischer, and
A. Egyed, “A hybrid feature location technique for re-engineeringsingle
systems into software product lines,” in 15th International Working
Conference on Variability Modelling of Software-Intensive Systems,
2021, pp. 1–9.

[16] J. A. Domingue, Software visualization: Programming as a multimedia
experience. MIT press, 1998.

[17] C. Knight and M. Munro, “Virtual but visible software,” in 2000 IEEE
Conference on Information Visualization. An International Conference
on Computer Visualization and Graphics. IEEE, 2000, pp. 198–205.

[18] S. Diehl, Software visualization: visualizing the structure, behaviour,
and evolution of software. Springer Science & Business Media, 2007.

[19] R. Koschke, “Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 15, no. 2, pp.
87–109, 2003.

[20] M.-A. D. Storey, D. Čubranić, and D. M. German, “On the use of
visualization to support awareness of human activities in software

development: a survey and a framework,” in Proceedings of the 2005
ACM symposium on Software visualization, 2005, pp. 193–202.

[21] A. R. Teyseyre and M. R. Campo, “An overview of 3D software visu-
alization,” IEEE transactions on visualization and computer graphics,
vol. 15, no. 1, pp. 87–105, 2008.

[22] Xh. Tërnava, J. Mortara, and P. Collet, “Identifying and visualizing
variability in object-oriented variability-rich systems,” in the 23rd
International Systems and Software Product Line Conference. Paris,
France: ACM Press, Sep. 2019, pp. 231–243. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02339296

[23] J. Mortara, Xh. Tërnava, and P. Collet, “Mapping Features to
Automatically Identified Object-Oriented Variability Implementations
- The case of ArgoUML-SPL,” in 14th International Working
Conference on Variability Modelling of Software-Intensive Systems
(VaMoS ’20), Magdeburg, Germany, Feb. 2020. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02421353

[24] R. Wettel and M. Lanza, “Visualizing software systems as cities,” in
2007 4th IEEE International Workshop on Visualizing Software for
Understanding and Analysis. IEEE, 2007, pp. 92–99.

[25] F. Pfahler, R. Minelli, C. Nagy, and M. Lanza, “Visualizing Evolving
Software Cities,” in 2020 Working Conference on Software Visualization
(VISSOFT). IEEE, 2020, pp. 22–26.

[26] F. Steinbrückner and C. Lewerentz, “Representing development history
in software cities,” in Proceedings of the 5th international symposium
on Software visualization, 2010, pp. 193–202.

[27] R. Wettel and M. Lanza, “CodeCity: 3D visualization of large-scale soft-
ware,” in Companion of the 30th international conference on Software
engineering, 2008, pp. 921–922.

[28] L. Zhao and J. Coplien, “Understanding symmetry in object-oriented
languages,” Journal of Object Technology, vol. 2, no. 5, pp. 123–134,
2003.

[29] J. O. Coplien and L. Zhao, “Toward a general formal foundation of
design. symmetry and broken symmetry,” (Forthcoming publication),
2020.

[30] L. M. Berlin, “Beyond program understanding: A look at programming
expertise in industry,” ESP, vol. 93, no. 744, pp. 6–25, 1993.

[31] S. E. Sim and R. C. Holt, “The ramp-up problem in software projects:
A case study of how software immigrants naturalize,” in Proceedings
of the 20th international conference on Software engineering. IEEE,
1998, pp. 361–370.

[32] Y. Park and C. Jensen, “Beyond pretty pictures: Examining the benefits
of code visualization for open source newcomers,” in 2009 5th IEEE
International Workshop on Visualizing Software for Understanding and
Analysis. IEEE, 2009, pp. 3–10.

[33] A. Metzger and K. Pohl, “Software product line engineering and
variability management: achievements and challenges,” in Future of
Software Engineering Proceedings, 2014, pp. 70–84.

[34] M. Azanza, A. Irastorza, R. Medeiros, and O. Dı́az, “Onboarding in
Software Product Lines: Concept Maps as Welcome Guides,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET). IEEE,
2021, pp. 122–133.

[35] C. R. Turner, A. Fuggetta, L. Lavazza, and A. L. Wolf, “A
conceptual basis for feature engineering,” Journal of Systems and
Software, vol. 49, no. 1, pp. 3–15, 1999. [Online]. Available:
https://doi.org/10.1016/S0164-1212(99)00062-X

[36] J. O. Coplien, Multi-Paradigm Design for C++. Addison-Wesley
Longman Publishing Co., Inc., 1999.

[37] F. Bachmann and P. Clements, “Variability in software product lines,”
Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, Tech. Rep. CMU/SEI-2005-TR-012, 2005. [Online]. Available:
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7675

[38] I. Jacobson, M. Griss, and P. Jonsson, Software reuse: architecture
process and organization for business success. acm Press New York,
1997, vol. 285.

[39] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wasowski,
“Cool features and tough decisions: a comparison of variability
modeling approaches,” in Proceedings of the sixth international
workshop on variability modeling of software-intensive systems,
ser. VaMoS’12, 2012, pp. 173–182. [Online]. Available: https:
//doi.org/10.1145/2110147.2110167

[40] R. Rabiser, “Feature modeling vs. decision modeling: History,
comparison and perspectives,” in Proceedings of the 23rd International
Systems and Software Product Line Conference-Volume B, ser.

https://doi.org/10.1145/1842752.1842810
https://doi.org/10.1109/TSE.2013.56
https://doi.org/10.1145/3302333.3302336
https://doi.org/10.1145/3302333.3302336
https://doi.org/10.1016/j.scico.2003.04.002
https://doi.org/10.1016/j.scico.2003.04.002
https://doi.org/10.1109/RE.2007.61
https://doi.org/10.1145/375212.375269
https://doi.org/10.1145/375212.375269
https://doi.org/10.1002/smr.567
https://hal.archives-ouvertes.fr/hal-02339296
https://hal.archives-ouvertes.fr/hal-02421353
https://doi.org/10.1016/S0164-1212(99)00062-X
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7675
https://doi.org/10.1145/2110147.2110167
https://doi.org/10.1145/2110147.2110167


SPLC ’19. ACM, 2019, pp. 134–136. [Online]. Available: https:
//doi.org/10.1145/3307630.3342399

[41] I. John, J. Lee, and D. Muthig, “Separation of variability dimension
and development dimension,” in Proocedings of the 1st International
Workshop on Variability Modelling of Software-Intensive Systems, ser.
VaMoS ’07, 2007, pp. 45–49.

[42] Xh. Tërnava and P. Collet, “On the diversity of capturing variability
at the implementation level,” in Proceedings of the 21st International
Systems and Software Product Line Conference - Volume B,
ser. SPLC ’17. ACM, 2017, pp. 81–88. [Online]. Available:
https://doi.org/10.1145/3109729.3109733

[43] N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira, J.-C. Royer,
A. Rummler, and A. Sousa, “A model-driven traceability framework
for software product lines,” Software & Systems Modeling, vol. 9, no. 4,
pp. 427–451, 2010.

[44] J. Rubin and M. Chechik, “A survey of feature location techniques,” in
Domain Engineering. Springer, 2013, pp. 29–58.

[45] W. K. Assunção, R. E. Lopez-Herrejon, L. Linsbauer, S. R. Vergilio,
and A. Egyed, “Reengineering legacy applications into software product
lines: a systematic mapping,” Empirical Software Engineering, vol. 22,
no. 6, pp. 2972–3016, 2017.

[46] J. Krüger, M. Mukelabai, W. Gu, H. Shen, R. Hebig, and T. Berger,
“Where is my feature and what is it about? a case study on recovering
feature facets,” Journal of Systems and Software, vol. 152, pp. 239–253,
2019. [Online]. Available: https://doi.org/10.1016/j.jss.2019.01.057

[47] J. Martinez, Xh. Tërnava, and T. Ziadi, “Software Product Line
Extraction from Variability-Rich Systems: The Robocode Case Study,”
in Proceedings of the 22nd International Systems and Software Product
Line Conference-Volume 1, ser. SPLC ’18. ACM, 2018, pp. 132–142.
[Online]. Available: https://doi.org/10.1145/3233027.3233038

[48] J. Coplien, D. Hoffman, and D. Weiss, “Commonality and variability
in software engineering,” IEEE Software, vol. 15, no. 6, pp. 37–45,
1998. [Online]. Available: https://doi.org/10.1109/52.730836

[49] T. Patzke and D. Muthig, “Product line implementation technologies.
programming language view,” Fraunhofer IESE, Tech. Rep., 2002.
[Online]. Available: http://publica.fraunhofer.de/dokumente/N-14684.
html

[50] A. Lozano, “An overview of techniques for detecting software
variability concepts in source code,” in International Conference on
Conceptual Modeling, ser. ER ’11. Springer, 2011, pp. 141–150.
[Online]. Available: https://doi.org/10.1007/978-3-642-24574-9

[51] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and answering
questions during a programming change task,” IEEE Transactions on
Software Engineering, vol. 34, no. 4, pp. 434–451, 2008.

[52] M. Acher, R. E. Lopez-Herrejon, and R. Rabiser, “Teaching software
product lines: A snapshot of current practices and challenges,” ACM
Transactions on Computing Education (TOCE), vol. 18, no. 1, pp. 1–
31, 2017.

[53] R. Yates, N. Power, and J. Buckley, “Characterizing the transfer of pro-
gram comprehension in onboarding: an information-push perspective,”
Empirical Software Engineering, vol. 25, no. 1, pp. 940–995, 2020.

[54] I. Steinmacher, M. A. G. Silva, and M. A. Gerosa, “Barriers faced
by newcomers to open source projects: a systematic review,” in IFIP
International Conference on Open Source Systems. Springer, 2014, pp.
153–163.

[55] A. Begel and B. Simon, “Struggles of new college graduates in their first
software development job,” in Proceedings of the 39th SIGCSE technical
symposium on Computer science education, 2008, pp. 226–230.

[56] R. Wettel and M. Lanza, “Visual exploration of large-scale system
evolution,” in 2008 15th Working Conference on Reverse Engineering.
IEEE, 2008, pp. 219–228.

[57] J. Mortara, Xh. Tërnava, and P. Collet, “symfinder: A Toolchain
for the Identification and Visualization of Object-Oriented Variability
Implementations,” in the 23rd International Systems and Software
Product Line Conference, vol. B. Paris, France: ACM Press, Sep.
2019, pp. 5–8. [Online]. Available: https://hal.archives-ouvertes.fr/
hal-02342730

[58] J. Mortara, P. Collet, and Xh. Tërnava, “Identifying and Mapping
Implemented Variabilities in Java and C++ Systems using symfinder,” in
24th ACM International Systems and Software Product Line Conference
(SPLC ’20), ACM, N. York, NY, and USA, Eds., MONTREAL,
QC, Canada, Oct. 2020, virtual Conference. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02908531

[59] J. Mortara, Xh. Tërnava, P. Collet, and A.-M. Dery-Pinna, “Extending
the Identification of Object-Oriented Variability Implementations using
Usage Relationships,” in SPLC 2021 - 25th ACM International Systems
and Software Product Line Conference, vol. Volume B. Leicester,
United Kingdom: ACM, Sep. 2021, pp. 1–8. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-03284626

[60] C. Knight and M. Munro, “Comprehension with [in] virtual environ-
ment visualisations,” in Proceedings Seventh International Workshop on
Program Comprehension. IEEE, 1999, pp. 4–11.

[61] J. Waller, C. Wulf, F. Fittkau, P. Döhring, and W. Hasselbring, “Syn-
chrovis: 3d visualization of monitoring traces in the city metaphor for
analyzing concurrency,” in 2013 First IEEE Working Conference on
Software Visualization (VISSOFT). IEEE, 2013, pp. 1–4.

[62] M. Weninger, L. Makor, and H. Mössenböck, “Memory cities: Visualiz-
ing heap memory evolution using the software city metaphor,” in 2020
Working Conference on Software Visualization (VISSOFT). IEEE, 2020,
pp. 110–121.

[63] F. Fittkau, A. Krause, and W. Hasselbring, “Software landscape and
application visualization for system comprehension with explorviz,”
Information and software technology, vol. 87, pp. 259–277, 2017.

[64] F. Steinbrückner and C. Lewerentz, “Understanding software evolution
with software cities,” Information Visualization, vol. 12, no. 2, pp. 200–
216, 2013.

[65] J. Vincur, P. Navrat, and I. Polasek, “VR City: Software Analysis in
Virtual Reality Environment,” in 2017 IEEE international conference on
software quality, reliability and security companion (QRS-C). IEEE,
2017, pp. 509–516.

[66] G. Balogh and A. Beszedes, “CodeMetropolis-code visualisation in
MineCraft,” in 2013 IEEE 13th International Working Conference on
Source Code Analysis and Manipulation (SCAM). IEEE, 2013, pp.
136–141.

[67] J. Kratt, H. Strobelt, and O. Deussen, “Improving Stability and Com-
pactness in Street Layout Visualizations,” in VMV, 2011, pp. 285–292.

[68] J. Mortara, P. Collet, and A.-M. Dery-Pinna, “Visualization of
Object-Oriented Variability Implementations as Cities — Reproduction
package,” Jun. 2021. [Online]. Available: https://doi.org/10.5281/
zenodo.5034199

[69] C. Kästner, S. Trujillo, and S. Apel, “Visualizing software product line
variabilities in source code,” in SPLC (2), 2008, pp. 303–312.

[70] S. Duszynski and M. Becker, “Recovering variability information from
the source code of similar software products,” in 2012 Third Interna-
tional Workshop on Product LinE Approaches in Software Engineering
(PLEASE). IEEE, 2012, pp. 37–40.

[71] B. Andam, A. Burger, T. Berger, and M. R. Chaudron, “Florida:
Feature location dashboard for extracting and visualizing feature traces,”
in Proceedings of the Eleventh International Workshop on Variability
Modelling of Software-intensive Systems. ACM, 2017, pp. 100–107.

[72] O. Greevy, M. Lanza, and C. Wysseier, “Visualizing feature interaction
in 3-d,” in 3rd IEEE International Workshop on Visualizing Software for
Understanding and Analysis. IEEE, 2005, pp. 1–6.

[73] A. Bergel, R. Ghzouli, T. Berger, and M. R. V. Chaudron, “Featurevista:
Interactive feature visualization,” in Proceedings of the 25th ACM
International Systems and Software Product Line Conference, ser. SPLC
’21. ACM, 2021.

[74] J. Hibschman, D. Gergle, E. O’Rourke, and H. Zhang, “Isopleth: Sup-
porting Sensemaking of Professional Web Applications to Create Read-
ily Available Learning Experiences,” ACM Transactions on Computer-
Human Interaction (TOCHI), vol. 26, no. 3, pp. 1–42, 2019.

[75] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb, “Tesseract:
Interactive visual exploration of socio-technical relationships in software
development,” in 2009 IEEE 31st International Conference on Software
Engineering. IEEE, 2009, pp. 23–33.

[76] J. D. Novak and A. J. Cañas, “The theory underlying concept maps
and how to construct them,” Florida Institute for Human and Machine
Cognition, vol. 1, 2006.

[77] S. El-Sharkawy, N. Yamagishi-Eichler, and K. Schmid, “Metrics for
analyzing variability and its implementation in software product lines:
A systematic literature review,” Information and Software Technology,
vol. 106, pp. 1–30, 2019.

https://doi.org/10.1145/3307630.3342399
https://doi.org/10.1145/3307630.3342399
https://doi.org/10.1145/3109729.3109733
https://doi.org/10.1016/j.jss.2019.01.057
https://doi.org/10.1145/3233027.3233038
https://doi.org/10.1109/52.730836
http://publica.fraunhofer.de/dokumente/N-14684.html
http://publica.fraunhofer.de/dokumente/N-14684.html
https://doi.org/10.1007/978-3-642-24574-9
https://hal.archives-ouvertes.fr/hal-02342730
https://hal.archives-ouvertes.fr/hal-02342730
https://hal.archives-ouvertes.fr/hal-02908531
https://hal.archives-ouvertes.fr/hal-03284626
https://doi.org/10.5281/zenodo.5034199
https://doi.org/10.5281/zenodo.5034199

	Introduction
	Motivations
	Object-oriented variability implementations
	Requirements

	Background
	Object-oriented symmetries and variability
	Automatic identification of variability implementations
	On the city metaphor in software visualization

	Varicity
	Main principles
	From buildings and streets to a city
	Configuring the view to adapt the city
	Implementation

	Evaluation
	Scenario 1: exploration of the codebase
	Scenario 2: comprehension of a subpart of the codebase for reuse
	Summary

	Threats to validity and Limitations
	Related Work
	Visualization in the Software Product Line field
	Visual tools to assist onboarding

	Conclusion
	Acknowledgment
	References

