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A B S T R A C T 

We study the connection of matter density and its tracers from the probability density function (PDF) perspective. One aspect 
of this connection is the conditional expectation value 〈 δtracer | δm 

〉 when averaging both tracer and matter density o v er some 
scale. We present a new way to incorporate a Lagrangian bias expansion of this expectation value into standard frameworks for 
modelling the PDF of density fluctuations and counts-in-cells statistics. Using N-body simulations and mock galaxy catalogues 
we confirm the accuracy of this expansion and compare it to the more commonly used Eulerian parametrization. For haloes 
hosting typical luminous red galaxies, the Lagrangian model provides a significantly better description of 〈 δtracer | δm 

〉 at second 

order in perturbations. A second aspect of the matter-tracer connection is shot-noise, i.e. the scatter of tracer density around 

〈 δtracer | δm 

〉 . It is well known that this noise can be significantly non-Poissonian and we validate the performance of a more 
general, two-parameter shot-noise model for different tracers and simulations. Both parts of our analysis are meant to pave the 
way for forthcoming applications to surv e y data. 

Key words: theory – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

tudying the evolution of the cosmic density field with the help 
f galaxy positions is like trying to understand a mountain range 
rom knowing the location of (some of) its mountain peaks. One 
an hardly hope to infer the full profile of the density field from
a subset of) its luminous tracers. But one can hope that statistical
roperties of the galaxy density field can be expressed as functions of
orresponding statistical properties of the total matter density field. 
 or e xample, in the case of two-point statistics, one may assume that

he galaxy clustering correlation function is just a multiple of the 
atter density correlation function (linear galaxy bias). In that case, 

ny cosmological information contained in the shape of the matter 
ensity two-point function can still be retrieved from the galaxy 
ensity two-point function. 
For such a program to be successful, one would optimally like 

o know the precise functional form that relates statistics of the 
atter density and galaxy density fields. And if there are unknown 

eatures in that functional form, then one would at least like to break
 E-mail: oliver.friedrich@physik.lmu.de 
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own these features into a well defined set of unknown numbers
hat parametrize our ignorance. The earliest attempt at finding such 
 parametrization was made by Kaiser ( 1984 , Kaiser bias), who
ound that at sufficiently large-scales the two-point function of 
ollapsed objects (clusters as modeled by o v erdense re gions) is
ndeed proportional to the two-point function of the density field. 
t small scales, this picture of linear bias must be corrected due

o halo exclusion and non-linear biasing effects (see e.g. Baldauf, 
chaan & Zaldarriaga 2016 ; Desjacques, Jeong & Schmidt 2018 ;
vano v, Simono vi ́c & Zaldarriaga 2020 ; P ande y et al. 2020 ; Baldauf
t al. 2021 ). Even the simple linear bias model renders the amplitude
f the galaxy clustering correlation function useless for inferring 
osmological information. This de generac y between galaxy bias 
nd the variance of matter density fluctuations is broken when 
tudying the full shape of the probability density function (PDF) 
f galaxy density fluctuations (Friedrich et al. 2018 ; Uhlemann et al.
018a ; Repp & Szapudi 2020 ). Ho we ver, analysing the full PDF
hape comes with the additional complication that one also has to
nderstand the scatter between galaxy density and matter density 
uctuations [shot-noise or stochasticity, see e.g. Friedrich et al. 
 2018 ) and Gruen et al. ( 2018 ) for a PDF context or Hamaus et al.
 2010 ) and Desjacques et al. ( 2018 ) for stochasticity in two-point

http://orcid.org/0000-0002-7537-6921
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tatistics]. Both for two-point and PDF statistics recent analyses had
o employ quite complex models of the stochastic relation between
atter density and galaxy density [e.g. Friedrich et al. ( 2018 ) and
ruen et al. ( 2018 ) using one parameter for galaxy bias and two
arameters for density dependent shot-noise, Uhlemann et al. ( 2018a )
sing three parameters to describe a function relating the cumulative
istribution function of matter and galaxy density fluctuations, and
vanov et al. ( 2020 ) using three parameters for galaxy bias and one
hot-noise amplitude]. 

In the PDF context, the bias of haloes (or galaxies) wrt. the matter
ensity field is typically incorporated through an Eulerian expansion
f the conditional expectation value 〈 δhalo | δm 

〉 (see e.g. Efstathiou
995 ; Manera & Gazta ̃ naga 2011 ; Clerkin et al. 2017 ; Friedrich et al.
018 ; Gruen et al. 2018 ; Salvador et al. 2019 ; Repp & Szapudi 2020 ,
ith an exception found in Uhlemann et al. 2018c ). This is somewhat
nnatural, because standard methods to model the matter density PDF
re typically built around the symmetric collapse of a leading order
saddle-point) configuration of the density field (e.g. Bernardeau
994 , 1995 ; Valageas 2002a ; Bernardeau, Codis & Pichon 2015 ;
hlemann et al. 2016 , 2018b ; Friedrich et al. 2020 ) which would

eem to suggest a Lagrangian point-of-view. 
We implement such a Lagrangian model in Section 2, where we

lso give a general o v erview of PDF modelling and also re vie w the
on-Poissonian shot-noise model of Friedrich et al. ( 2018 ) and Gruen
t al. ( 2018 ) (hereafter F18 and G18 ). Section 3 presents details of
he simulated data used in this study and in Section 4 we assess
he importance of different aspects of our theory, by comparing our
odel of the joint PDF p ( δm 

, δg ) to the corresponding measured
istribution of matter density and galaxy density fluctuations in those
imulations. In particular, we are fitting both the Lagrangian and
ulerian bias models to measurements of 〈 δhalo | δm 

〉 in simulated
ata at different redshifts, for different smoothing scales and using
aloes in different mass bins. We check whether the Lagrangian and
ulerian best-fitting parameters conform to consistency relations that
hould hold between them, and we compare them to corresponding
alues obtained from two-point function measurements and from
nalytical predictions of bias as a function of halo mass. Section 4.3
nvestigates details concerning shot-noise of tracer density fields. We
iscuss our results, summarize open questions, and give an outlook
n future work in Section 5. 
Throughout this paper, we consider the matter density and galaxy

ensity fields averaged over cylindrical apertures (as opposed to e.g.
pherical ones). This makes our results more directly applicable to
ine-of-sight projections of the cosmic density fields, since PDF-
elated statistics of such projected fields are most efficiently ex-
ressed in terms of line-of-sight integrals of corresponding cylindri-
al quantities (cf. Bernardeau & Valageas 2000 ; Friedrich et al. 2018 ;
arthelemy et al. 2020 ; Boyle et al. 2021 ; this is the equi v alent of the
imber approximation – Limber 1953 – for two-point statistics). But
ur results can be easily transferred to the 3D case and to spherical
pertures. 

 B IAS  IN  T H E  L A N G UAG E  O F  PDF  

O S M O L O G Y  

.1 Galaxy bias from the joint cumulant generating function of 
atter and galaxy density 

n the following let δm,R,L ( x , z) and δg ,R ,L ( x , z) respectively be the
atter and galaxy density contrast at redshift z and location x when

v eraging o v er a c ylindrical aperture of radius R and length L (the
rientation of the cylinder does not play a role in the following due
NRAS 510, 5069–5087 (2022) 
o statistical isotropy). In a statistically homogeneous and isotropic
niverse, local moments of the form 

 δm,R,L ( x , z) k δg ,R ,L ( x , z) l 〉 (1) 

o not depend on the spatial location x and we can define the joint
oment generating function of matter and galaxy density contrast

s 

 R,L ( λm 

, λg , z) ≡
∑ 

k,l≥0 

〈 δm,R,L ( x , z) k δg ,R ,L ( x , z) l 〉 λ
k 
m 

λl 
g 

k! l! 
. (2) 

s evident from this definition, moments are obtained as derivatives
f that function e v aluated at λm 

= 0 = λg . For the rest of this sub-
ection, we will suppress any dependencies of our notation on x ,
, R , and L . From the moment generating function ψ we define the
umulant generating function (CGF) as 

( λm 

, λg ) ≡ log ( ψ( λm 

, λg )) 

≡
∑ 

k,l≥1 

〈 δk 
m 

δl 
g 〉 c 

λk 
m 

λl 
g 

k! l! 
, (3) 

here the last line serves as a definition of the connected moments
or cumulants) 〈 δk 

m 

δl 
g 〉 c . 

One quantity of interest for our study is the bias between galaxy
ensity and matter density contrast as encoded by the conditional
xpectation value 

 δg | δm 

〉 = 

1 

p( δm 

) 

∫ 
d δg δg p( δg , δm 

) . (4) 

ere p ( δm 

) is the PDF of matter density contrast δm 

and p ( δg , δm 

) is
he joint PDF of both δg and δm 

(at the same location and redshift
nd av eraged o v er the same c ylindrical aperture). This joint PDF is
elated to the CGF via an inverse Laplace transformation (see e.g.
ernardeau & V alageas 2000 ; V alageas 2002a ; Bernardeau et al.
015 ; Friedrich et al. 2018 ). Hence, the abo v e e xpectation value can
e computed as 

 δg | δm 

〉 = 

1 

p( δm 

) 

∫ 
d λg d λm 

(2 π) 2 
e −iλm δm + ϕ( iλm ,iλg ) 

∫ 
d δg δg e 

−iλg δg 

= 

1 

p( δm 

) 

∫ 
d λg d λm 

2 π
e −iλm δm + ϕ( iλm ,iλg ) i 

d δDirac ( λg ) 

d λg 

= 

∫ 
d λm 
2 π e −iλm δm + ϕ( iλm ) ∂ l g ϕ( l m 

, l g ) 
∣∣
l m = iλm , l g = 0 ∫ 

d λm 
2 π e −i λm δm + ϕ( i λm ) 

, (5) 

here ϕ( λm 

) is the CGF of δm 

alone. 

.2 The joint CGF from functional integration 

o calculate 〈 δg | δm 

〉 according to equation (5) we need to know the
oint CGF ϕ R ( λg , λm 

), where we have re-introduced the dependence
n the radius R of our smoothing aperture, since we will occasionally
ary R . The CGF can be calculated from the joint PDF as (Bernardeau
t al. 2015 ) 

 

ϕ R ( λm ,λg ) = 〈 e λg δg,R + λm δm,R 〉 
= 

∫ 
d δg , R d δm , R p( δg , R , δm , R ) e 

λg δg , R + λm δm , R . (6) 

e want to stress again that our smoothing apertures are cylindrical,
.e. R is the radius of these cylinders. The only reason for our use
f cylindrical filtering is that we prepare for an analysis in line-of-
ight projected data (Friedrich et al. in prep). And the CGF of a
ine-of-sight projected density field can be calculated in a Limber-
ype approximation (Limber 1953 ; Bernardeau & Valageas 2000 ;
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riedrich et al. 2018 ; Barthelemy et al. 2020 ) from the CGF of the 3D
ensity field in cylindrical apertures. But the following derivations 
pply in an almost identical manner to spherical filters as well. 

Let us assume that both the galaxy density and matter density field
re completely determined by the initial density field, or equi v alently:
oday’s linear density field which is related to the initial density field
hrough linear growth. Then the expectation value in equation (6) 
an also be expressed through a functional integral over all possible
onfigurations of the linear density contrast (Valageas 2002a ). This 
ields 

 

ϕ R ( λm ,λg ) = 

∫ 
Dδlin e 

λg δg,R [ δlin ] + λm δm,R [ δlin ] P[ δlin ] , (7) 

here δg, R [ · ] and δm, R [ · ] are now functionals and P[ ·] is the
robability density functional of the random field δlin ( x ). For Gaus- 
ian initial conditions P[ ·] is a Gaussian functional and determined 
ompletely by the linear power spectrum (Valageas 2002a ). By re-
xpressing the probability density functional of δlin in terms of its 
umulant generating functional, equation (7) can be brought into a 
ore general – and for our purposes more convenient – form. We 

hus follow Friedrich et al. ( 2020 ) who derived that 

 

ϕ R ( λm ,λg ) = 

1 
N 

∫ 
D δlin D J lin e 

−S λm ,λg [ δlin ,J lin ] , (8) 

here J lin is an auxiliary source associated with the initial conditions 
nd the action S λm ,λg 

[ δlin , J lin ] is defined as 

 λm ,λg 
[ δlin , J lin ] ≡ −λm 

δm,R [ δlin ] − λg δg,R [ δlin ] + iJ lin · δlin 

−� [ iJ lin ] . (9) 

ere � [ · ] is now the cumulant generating functional of the random
eld δlin , and N is an irrele v ant normalization constant that drops in
ur final result (cf. Friedrich et al. 2020 ). 
For detailed analyses of these and related functional integrals 

e e.g. refer the reader to Valageas ( 2002a , b ), Ivanov, Kaurov &
ibiryakov ( 2019 ), and Friedrich et al. ( 2020 ). For the purpose of our
tudy, we only state that the saddle point approximation to equation 
8) yields 

 R ( λm 

, λg ) ≈ −S λm ,λg [ δ
∗
lin , J 

∗
lin ] , (10) 

here δ∗
lin and J ∗lin are the saddle point configurations of the fields

lin ( x ) and J lin ( x ) which minimize the action S λm ,λg 
[ ·, ·] and hence

ive the largest contribution to the functional integral. These saddle 
oint configurations can be shown to exhibit the same symmetry 
s the aperture used to define the functionals δg , R [ · ] and δm , R [
] (Friedrich et al. 2018 , 2020 ; Valageas 2002a ). In the case of

ong cylindrical apertures ( L � R ) this means that δ∗
lin and J ∗lin will

e cylindrically symmetric functions. They can even be explicitly 
alculated (Friedrich et al. 2020 ; Valageas 2002a ), which is, ho we ver,
ot needed for our purposes. What is more important is the fact that
he functional δm , R [ · ] can be easily determined in the cylindrically 
ymmetric situation. If we are observing the density field at redshift
 then δm,R [ δ∗

lin ] is given by 

m,R [ δ
∗
lin ] = F ( δ∗

lin ,R lin 
, z) . (11) 

ere R lin is the initial (Lagrangian) radius of all the matter that is
nclosed within R at redshift z, and δ∗

lin ,R lin 
is the average value of the

addle point configuration δ∗
lin within this radius. Because of mass 

onservation R lin is given by the (implicit) equation 

 lin = R 

√ 

1 + F ( δ∗
lin ,R lin 

, z) , (12) 

nd the function F ( δ∗
lin ,R lin 

, z) describes how a cylindrically symmet-
ic perturbation evolves when today’s linear density contrast within 
ts initial radius is δ∗
lin ,R lin 

. We detail the equations of motion needed
o calculate F in Appendix A. 

So far we have re vie wed existing results on calculating the CGF
nd extended the notation of Friedrich et al. ( 2020 ) to the joint CGF
f both galaxy density and matter density fluctuations as well as to
ylindrical apertures instead of spherical ones. We will now see how
he saddle point approximation of equation (10) allows for a practical
mplementation of a Lagrangian bias model within PDF theory. 

.3 Lagrangian bias along the saddle point configuration 

o implement a parametric model for halo bias, let us have a closer
ook at the functional δg, R [ δlin ]. Since the saddle point configuration
s cylindrically symmetric, we will only consider cylindrically 
ymmetric configurations and ef fecti vely consider 2D density fields. 
f δg ( r ) is the (smooth, shot-noise free) galaxy density contrast at
the 2D) location r , then δg, R is given by 

g ,R = 

1 

πR 

2 

∫ 
| r |≤R 

d 2 r δg ( r ) . (13) 

racing back the cylindrically collapsing evolution of the saddle 
oint, a mass element at location r will originate from some 
nitial (Lagrangian) location q . Following standard Lagrangian bias 
arametrizations (see e.g. Lazeyras et al. 2016 ; Desjacques et al.
018 ) we assume δg ( r ) can be expressed in terms of both the linear
nd non-linear matter density contrast field as 

 + δg ( r ) = (1 + δm 

( r )) 
(

1 + b L 1 δlin ( q ) + 

b L 2 

2 
δlin ( q ) 2 

)
, (14) 

here we have stopped the bias expansion at quadratic order in
oday’s linear density contrast. The cylindrical average 1 + δg, R is 
hen given by 

1 

πR 

2 

∫ 
| r |≤R 

d 2 r (1 + δm 

( r )) 
(

1 + b L 1 δlin ( q ) + 

b L 2 

2 
δlin ( q ) 2 

)

= 

(
R lin 

R 

)2 1 

πR 

2 
lin 

∫ 
| q |≤R lin 

d 2 q 

(
1 + b L 1 δlin ( q ) + 

b L 2 

2 
δlin ( q ) 2 

)

= 

(
R lin 

R 

)2 (
1 + b L 1 δlin ,R lin + 

b L 2 

2 
[ δ2 

lin ] R lin 

)
. (15) 

ere R lin is again the initial, Lagrangian (or linear ) radius of the
ylindrical perturbation now enclosed within R , δlin ,R lin is the average 
f today’s linear density contrast within R lin , and [ δ2 

lin ] R lin is the
verage of the squared linear density contrast within R lin . Since we are
onsidering cylindrically collapsing perturbations, the Lagrangian 
adius R lin is related to R through 

 lin = R 

√ 

1 + δm , R . (16) 

ence, δg , R within our quadratic Lagrangian bias model is given by 

 + δg,R = (1 + δm,R ) 

(
1 + b L 1 δlin ,R lin + 

b L 2 

2 
[ δ2 

lin ] R lin 

)
. (17) 

n Fig. 1 , which is based on calculations presented in our Appendix B,
e show that for the saddle point configuration δ∗

lin the operations of
quaring and cylindrically averaging approximately commute, i.e. 

 δ∗
lin 

2 ] R lin ≈ ( δ∗
lin ,R ) 2 . (18) 
lin 

MNRAS 510, 5069–5087 (2022) 
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Figure 1. At the saddle point configuration that dominates the path integral 
of equation (8) the operations of squaring and filtering the linear density 
contrast field commute approximately. 
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his allows us to express δg , R [ · ] along the saddle point as 

 + δg , R [ δ
∗
lin , z] ≈ (1 + δm , R [ δ

∗
lin , z]) 

×
(

1 + b L 1 δ
∗
lin ,R lin 

+ 

b L 2 

2 
( δ∗

lin ,R lin 
) 2 
)

. (19) 

e now have all the ingredients to formulate our main technical
esult. In complete analogy to the deri v ations of Friedrich et al.
020 (but for cylindrical apertures and using the modified action of
quation (9)) the task of determining the saddle point value of the
ction, S λm ,λg [ δ

∗
lin , J 

∗
lin ], is equi v alent to minimizing the 2D function 

 λm ,λg ( δ, j ) = −λg (1 + F ( δ, z)) 

(
b L 1 δ+ 

b L 2 

2 
δ2 

)
− ( λm 

+λg ) F ( δ, z) 

+ j δ − ϕ lin ,R (1 + F( δ,z)) 1 / 2 ( j ) . (20) 

ere ϕ lin, R is the CGF of the linear density contrast (which is a
uadratic function for Gaussian initial conditions) and δ and j should
e understood as scalar variables. Minimizing s λm ,λg ( δ, j ) wrt. these
ariables yields an approximation of the joint CGF of matter density
nd galaxy density fluctuations via equation (10). This is the main
esult of our paper. Our formalism based on functional integration
ould be equi v alent to a deri v ation within large deviation theory

LDT; see Bernardeau & Reimberg 2016 , who introduced LDT for
he matter density PDF), so we will refer to our calculation as the
DT model. 
In practice we enhance the accuracy of this approximation with

 linear-to-non-linear variance re-scaling of the CGF that leaves the
educed cumulants S n ≡ 〈 δn 

m 

〉 c / 〈 δ2 
m 

〉 n −1 
c unchanged (see e.g. section

V.A.2 of Friedrich et al. 2018 ). This, ho we ver, does not af fect
rst deri v ati ves of the CGF and has hence little impact on our
alculation of 〈 δg | δm 

〉 via equation (5). Numerical implementation of
he minimization of s λm ,λg ( δ, j ) can be achieved in a manner similar to
he one detailed step-by-step in section 4.6 of Friedrich et al. ( 2020 ).
quipped with the abo v e approximation for the CGF we are now in a
osition to e v aluate equation (5) and hence calculate the expectation
alue 〈 δg | δm 

〉 . In the following we will compare this Lagrangian bias
odel to an Eulerian model, which we directly define as a Taylor

xpansion of 〈 δg | δm 

〉 , i.e. 

 δg | δm 

〉 = b E 1 δm 

+ 

b E 2 

2 

(
δ2 

m 

− 〈 δ2 
m 

〉 ) . (21) 

his parametrization ignores tidal bias terms that can also contribute
t second order in δm 

(e.g. Baldauf et al. 2012 ; Desjacques et al.
018 ). Since we are av eraging o v er c ylindrical apertures we e xpect
NRAS 510, 5069–5087 (2022) 
hese contributions to partially average out for the filtered density
ontrast (cf. fig. 3 of Baldauf et al. 2012 ) but our best-fitting values for
 

E 
2 may absorb residual tidal contributions and hence may be slightly
iased. We do not investigate this here. Subtracting the constant term
 

E 
2 / 2 · 〈 δ2 

m 

〉 in equation (21) ensures that 〈 δg 〉 = 0. Note that this is
ot necessary in our Lagrangian model because of the Lagrangian-
o-Eulerian mapping that is built into our path integral formulation. 

.4 Non-Poissonian shot-noise 

he joint PDF of δm 

and δg can be expressed as 

( δm 

, δg ) = p( δm 

) p( δg | δm 

) . (22) 

he matter density PDF p ( δm 

) appearing on the right-hand side of
his equation can be computed as the inverse Laplace transform of
he CGF of δm 

(cf. the denominator in the last line of equation (5) as
ell as Bernardeau et al. 2015 ; Friedrich et al. 2018 , 2020 ; Valageas
002a for practical implementations of that transform). The second
actor of the abo v e equation, p ( δg | δm 

), is the conditional PDF of
racer density fluctuations given a fixed value of δm 

. In the previous
ubsections we have focused on computing the expectation value of
hat distribution, 〈 δg | δm 

〉 . 
To model the full distribution p ( δg | δm 

) we have to consider
tochasticity (resp. shot-noise) around the expectation value 〈 δg | δm 

〉 .
his noise is often assumed to be Poissonian (see e.g. Efstathiou
995 ; Clerkin et al. 2017 ; Salvador et al. 2019 ; Repp & Szapudi
020 ). Ho we ver, the results of F18 and G18 indicate that for certain
ypes of tracers (in their case luminous red galaxies; cf. Rozo
t al. 2016 ) this assumption can be in inaccurate (see also Hamaus,
eljak & Desjacques 2011 ; Dvornik et al. 2018 for non-Poissonian
hot-noise in different contexts). To account for deviations from
oisson noise, F18 and G18 have modelled the distribution of a
iscrete random variable N with expectation value N̄ as 

 α( N ) = N exp 

{
N 

α
ln 

[
N̄ 

α

]
− ln 
 

[
N 

α
+ 1 

]
− N̄ 

α

}
. (23) 

ere α parametrizes deviations from Poisson noise (with α = 1
eading to a Poisson distribution), 
 is the gamma-function, and N is
 normalization factor. That normalization is to a good approximation
iven by 1/ α, though we do not rely on this here. 
The abo v e ansatz for P α( N ) can be used to model the distribution

f tracer counts N g in an aperture filled with a matter density contrast
m 

if we perform the identifications 

N → N g 

N̄ → N̄ g (1 + 〈 δg | δm 

〉 ) 
 α( N ) → P α( N g | δm 

) , 

here N̄ g is the mean tracer count across all apertures in a given
urv e y volume. F18 and G18 then allow α to be a function of δm as
ell, hence making deviations from Poisson noise a function of the
nderlying matter density. They found that a linear ansatz, 

( δm 

) = α0 + α1 δm 

(24) 

escribes the redMaGiC galaxy sample of the Buzzard N-body
imulations (DeRose et al. 2019 ) well. We will test this linearity
ssumption here for a different set of simulations and different tracer
amples of the large-scale structure. 

 SIMULA  TED  DA  TA  

he following section presents details of the different simulated data
ets we use to test the theoretical ansatzes of Section 2. 
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.1 T17 N-body simulations 

e use publicly available data from cosmological simulations run 
y Takahashi et al. ( 2017 ). 1 In the following we refer to these
s the T17 simulations. The simulations were generated primar- 
ly for the gravitational lensing studies for the Hyper Suprime 
am Surv e y. In this paper, we use the full-sky light-cone halo
atalogues and matter density contrast shells of the simulation 
uite. 

These data sets were obtained from a cold dark matter (CDM)
nly cosmological N-body simulation in periodic cubic boxes. 
he simulations consist of 14 boxes of increasing side lengths L ,
 L , 3 L ,..., 14 L (with L = 450 Mpc/h), nested around a common
 erte x (see fig. 1 of Takahashi et al. 2017 ). Each box contains
048 3 particles (smaller boxes hence have better spatial and mass 
esolution) and their initial conditions were set with second-order 
agrangian perturbation theory (Crocce, Pueblas & Scoccimarro 
006 ) with an initial power spectrum computed for a flat � CDM
osmology with the following parameters: �cdm 

= 0.233, �b = 

.046, �m 

= �cdm 

+ �b = 0.279, �� 

= 0.721, h = 0.7, σ 8 = 

.82, and n s = 0.97. The particles in each box were then made to
volve from the initial conditions using the the N-body gravity solver
ADGET2 (Springel, Yoshida & White 2001 ; Springel 2005 ). Dark 
atter haloes and sub-haloes in each simulation box were identified 

sing the 6D phase-space friends-of-friends algorithm ROCKSTAR 
Behroozi, Wechsler & Wu 2013 ). These ROCKSTAR halo catalogues 
nd the evolved particle distribution of the different nested boxes are 
ombined in layers of shells, each 150 Mpc/h thick, to obtain full-
ky light cone halo catalogues and matter density contrast inside 
he shells, respectively. The simulation boxes were also ray traced 
sing the multiple-lens plane ray-tracing algorithm GRAYTRIX 
Hamana et al. 2015 ; Shirasaki, Hamana & Yoshida 2015 ) to obtain
eak lensing convergence/shear maps for several source redshifts. 
ultiple simulations were run to produce 108 realizations (with 

abels r000 to r107) for each of these data products (see Takahashi
t al. 2017 for more details). The authors report that the average
atter power spectra from their several realizations of the simulations 

greed with the theoretical revised Halofit power spectrum (Smith 
t al. 2003 ; Takahashi et al. 2012 ) to within 5 (10) per cent for k <
(6) h/Mpc at z < 1. 
In this paper, for studying the bias as a function of halo properties

e use the matter density contrast and the identified haloes in 
hree 150 Mpc/h thick shells centred at z = 0.476, 0.751, 0.990 of
ealization r000 of the simulation suite. The all-sky halo catalogues 
ome with a variety of halo properties such as halo mass, positions
tc. of which we make use of the halo positions (right ascension,
eclination and redshift), halo mass M 200 b (i.e. the mass contained 
n a radius within which the o v erdensity equals 200 times the
ackground density), the virial radius of the halo R vir , and the scale
adius R s , obtained by fitting an NFW profile (Navarro, Frenk &

hite 1996 ) to a given halo. The concentration parameter of the
alo can then be calculated as c ≡ R vir / R s . Technically, our halo
atalogues do contain sub-haloes. But the sub-halo fraction is 
egligible ( < 0 . 1 per cent of the total halo population for the shell
t z = 0.476 and even smaller for the other shells) such that for
ll practical purposes all haloes can be considered to be parent 

aloes. 

 The data products of the simulation are available at http://cosmo.phys.hiros 
k i-u.ac.jp/takahasi/allsk y r aytr acing/

f  

2

C

.2 Populating galaxies within T17 haloes using an halo 
ccupation distribution approach 

he T17 simulation suite does not come with galaxy catalogues. We
ould, ho we ver, like to v alidate our methods for typical luminous red
alaxies (LRGs) similar to those observed by eBOSS (e.g. Zhai et al.
017 ; Ross et al. 2020 ; z ≈ 0.7). We hence create our own full-sky
ock galaxy catalogue by populating the T17 halo catalogue at z =

.75 using an empirical halo occupation distribution (HOD) method 
Berlind & Weinberg 2002 ) based on the widely used halo model
f large-scale structure (see Cooray & Sheth 2002 for a re vie w).
riefly, an HOD describes a probability distribution P ( N g | M h ), i.e.

he probability that a given halo of mass M h hosts N g galaxies of
 specific type (e.g. eBOSS LRG-like galaxies). We assume that 
he HOD does not depend on environment or formation history of
he haloes (also known as assembly bias). We follow the work of
hai et al. ( 2017 ) who empirically studied the clustering of more

han 97 000 LRGs in the eBOSS surv e y within z = 0.6–0.9 (which
ontains the redshift range of the shell centred at z = 0.75) using a
ve-parameter HOD (we refer to this as the Zhai HOD). Zhai et al.
 2017 ) parametrize their HOD by separating the contribution of a
entral galaxy from that of the satellite galaxies in a given halo of
ass M h . They characterized these contributions using the following 

unctional forms for the mean values of the central and satellite
alaxies, 

 N cen | M h 〉 = 

1 

2 

[
1 + erf 

(
log M h − log M min 

σlog M h 

)]
, (25) 

 N sat | M h 〉 = 

(
M h 

M sat 

)γ

exp 

(
−M cut 

M h 

)
〈 N cen | M h 〉 . (26) 

he first of the abo v e equations describes a smooth transition between
aving either 0 or 1 central galaxy with M min being the mass at which
alf the haloes (in a given sample) host a central galaxy and σlog M h 

ives the scatter of the halo mass M h at a fixed galaxy luminosity.
he second equation gives the mean occupancy of satellite galaxies 
ithin the halo and is further parametrized by γ – a power-law index

or the mass dependence of the number of satellites, M sat – threshold
ass for haloes to contain one satellite, and M cut which allows for a

alo-mass dependent cutoff. Together, the mean number of galaxies 
osted within a halo of mass M h is given by 

 N g | M h 〉 = 〈 N cen | M h 〉 + 〈 N sat | M h 〉 . (27) 

hai et al. ( 2017 ) provide their best-fitting values for the five
arameters by fitting analytical correlation functions 2 written in 
erms of their HOD to the observed galaxy clustering two- 
oint correlation functions of the eBOSS LRGs sample. We re- 
ort their best-fitting values here (see table 2 of Zhai et al.
017 ): log M min = 13 . 67 , log M sat = 14 . 93 , γ = 0 . 43 , log M cut =
1 . 62 , σlog M h 

= 0 . 81, where it is assumed that all the masses are
xpressed in units of M �/ h . In order to obtain these values Zhai et al.
 2017 ) have adopted M 200 b as their halo mass definition and we do
o as well throughout our paper. 

In order to create our mock galaxy catalogue from the T17
imulation, we use the HALOTOOLS software (Hearin et al. 2017 ) to
rst combine the T17 r000 halo shells which span the redshift range
 = 0.6–0.9 to obtain a halo catalogue. Using M 200 b as the mass proxy
or the halo mass M , we use the Zhai HOD that we have described
h 

 the one-halo and two-halo correlation functions, see e.g. appendix A of 
oupon et al. ( 2012 ). 

MNRAS 510, 5069–5087 (2022) 

http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/


5074 O. Friedrich et al. 

a  

t  

t  

o  

n  

e  

s  

w  

r  

T  

w  

p  

a  

r  

d  

a  

s  

a  

o

3

T  

2  

f  

c  

m  

a  

Q  

m  

fi  

a  

z  

t  

P  

f
 

f  

f  

g  

(  

g  

f  

t  

0

4  

D

W  

t  

b  

g  

3

m
t
w
4

f
h

o  

i  

d

4

I  

o  

i  

S  

c  

s  

r  

e  

e  

E  

w  

o  

t  

h  

p  

c  

m  

p  

i  

r
 

3  

e  

f  

o  

t  

e  

m  

2
 

i  

t  

i  

m  

h  

d  

a  

s
 

m  

d  

o  

F  

w  

s  

w  

n  

M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/510/4/5069/6505138 by C
N

R
S user on 24 M

arch 2023
bo v e along with their best-fitting parameters to populate each halo in
he catalogue with galaxies. Note, ho we ver, that we restrict ourselves
o haloes with masses M 200 b > 7.4 × 10 12 M �/ h for the generation
f our galaxy catalogue. This is to ensure that we have a similar
umber density of mock galaxies (per arcmin 2 ) as reported by Zhai
t al. ( 2017 ) in their table 1 for the total BOSS + eBOSS LRG
ample. 3 To this end, for a given halo we perform a Bernoulli draw
ith expectation given by equation (25) to get N cen and a Poisson

andom draw with expectation given by equation (26) to obtain N sat .
he halo is then assigned to have a count of N cen + N sat galaxies,
here the central galaxy is placed at the same location as that of the
arent halo’s coordinates whereas a given satellite galaxy is placed
t a distance r Mpc from the centre of the halo where r is a random
ealization 4 of a point drawn from an NFW profile. Besides the radial
istance from the centre of the given halo, each satellite galaxy is
ssigned a uniformly distributed random angular direction on the
phere of radius r , from the centre of the halo. In this way, we create
 mock full-sky eBOSS LRG like galaxy catalogue which we use for
ur analysis. 

.3 Quijote N-body simulations 

he Quijote suite of N-body simulations (Villaescusa-Navarro et al.
020 ) have been developed for quantifying the cosmological in-
ormation content of large-scale structure observables. The suite
onsists of 43 100 simulations e v aluated for more than 7000 cos-
ological models, varying the standard � CDM parameters, M ν ,

nd w. For our study we made use of the high-resolution runs of
uijote, which follow the evolution of 1024 3 particles o v er a co-
oving volume of 1 (Gpc/ h ) 3 starting from z = 127 for a fixed
ducial cosmology. Snapshots and halo catalogues (generated using
 friends-of-friends algorithm) are publicly available for redshifts
 = 0, 0.5, 1, 2, 3. Matter density PDFs are already included with
he associated data products, and we extracted the joint tracer-matter
DFs. We refer the reader to Villaescusa-Navarro et al. ( 2020 ) for
urther details. 

The Molino suite of mock galaxy catalogues has been created
rom the Quijote N -body simulations in order to extend cosmological
orecasts to galaxy observables. The suite contains 75 000 mock
alaxy catalogues that are constructed by applying the Zhai et al.
 2017 ) HOD model (Section 3.2) to the Quijote halo catalogues. The
alaxy catalogues are available at multiple cosmologies necessary
or Fisher matrix forecasts (though here we only use catalogues at
he Quijote fiducial cosmology of ( �m 

, �b , σ 8 , n s , h ) = (0.3175,
.049, 0.834, 0.9624, 0.6711)). 

 C O M PA R I S O N  O F  T H E O RY  A N D  SIMULATED
ATA  

e now compare the theoretical ansatzes developed in Section 2 to
he simulated data described in Section 3. We start in Section 4.1
y looking at the joint PDF of matter density and our T17 synthetic
alaxy sample. In Section 4.2 we then investigate the performance
 A more accurate approach would be to re-fit our HOD parameters by 
atching a sufficiently constraining set of statistics of our mock galaxies 

o a target observed galaxy sample. This is, ho we v er, be yond the scope of this 
ork. 
 Precisely, we use the mc generate nfw radial positions method 
rom halotools to draw a satellite galaxy’s radial location r inside a given 
alo of mass M 200 b , concentration parameter c , and redshift z. 

w  
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f our bias models as a function of mass, scale, and redshift. And
n Section 4.3 we have a more detailed look at the shot-noise of
ifferent kinds of tracer samples. 

.1 The joint PDF of matter and galaxy density 

n Fig. 2 we compare different models for the joint distribution
f galaxy density and matter density fluctuations to a correspond-
ng measurement of that distribution in the T17 simulations (cf.
ection 3). The total matter density contrast of T17 is available in
oncentric shells of thickness 150 Mpc/h. For Fig. 2 we choose the
hell centred around z ≈ 0.75, which is e.g. similar to the average
edshift of galaxy samples recently used in analyses of eBOSS (Zhai
t al. 2017 ; de Mattia et al. 2021 ; Bautista et al. 2020 ; Gil-Mar ́ın
t al. 2020 ; Tamone et al. 2020 ). The redshifts of the eBOSS LRG and
LG (emission line galaxy) samples span ranges that are significantly
ider than 150 Mpc/ h . Hence, the Limber-type approximation that
ne would employ when studying the line-of-sight projected PDF of
hese samples will not significantly deteriorate the accuracy we find
ere for the T17 shell width. To generate our mock galaxy sample we
opulates T17 haloes with the HOD described by Zhai et al. ( 2017 ,
f. our Section 3.2). To both the matter density and galaxy density
ap we then apply a circular top-hat filter with radius R = 20 Mpc/ h

erpendicular to the line-of-sight, i.e. we are averaging both fields
n approximately cylindrical apertures of length L = 150 Mpc/ h and
adius R = 20 Mpc/ h . 

The blue contours in the two panels of Fig. 2 represent 1 σ , 2 σ , and
 σ quantiles of the joint distribution p ( δg , δm 

) in our T17 + Zhai
t al. mock data. The black contours represent the same quantiles
or the theoretical model of p ( δg , δm 

) presented in Section 2. To
btain the Lagrangian bias parameters of that model, we have fit our
heoretical prediction of 〈 δg | δm 

〉 to measurements of that conditional
xpectation value in the simulated density fields. We performed these
easurements in 25 equidistant bins of δm 

within a range that cuts
 per cent of the probability from each tail of the PDF p ( δm 

). 
The red contours in the left-hand panel of Fig. 2 show the theoret-

cal distribution p ( δg , δm 

) that one would obtain when assuming
hat p ( δm 

) is a Gaussian PDF (and hence solely determined by
ts variance). Clearly, such a description is not sufficient for the
atter density field at the smoothing scales and redshift considered

ere. The red contours in the right-hand panel of Fig. 2 show the
istribution p ( δg , δm 

) that would be predicted when fitting only
 linear Lagrangian bias model. Clearly, such a model does not
ufficiently capture the curvature of 〈 δg | δm 

〉 wrt. δm 

. 
The difference between our best-fitting Lagrangian and Eulerian
odels for p ( δg , δm 

) is significantly smaller than the differences
isplayed in Fig. 2 . Hence, we do not visualize them on the level
f the full PDF, but for the conditional expectation values 〈 δg | δm 

〉 .
ig. 3 shows the residuals of 〈 δg | δm 

〉 measured in our simulated data
rt. our best-fitting, quadratic Lagrangian, and Eulerian model (blue

quares and red circles; within the range used to fit both models
hich cuts 2 per cent of probability from the tails of p ( δm 

)). We
ormalize these residuals by the 1 σ standard deviations estimated
ith a jackknife scheme (cf. Section 4.2 for more details). The
agrangian model manages to achieve a significantly better fit to
ur simulated data than the Eulerian one. The figure also shows
he residuals of a best-fitting cubic Eulerian model which adds
 term b E 3 / 6 · ( δ3 

m 

− 〈 δ3 
m 

〉 ) to equation (21). This model performs
ery similar to the second order Lagrangian fit. Note, ho we ver,
hat the errorbars of Fig. 3 represent all-sky data, i.e. they might
 v erestimate the accurac y required for realistic analyses and the
econd order Eulerian model may still perform well enough for
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Figure 2. Comparing different models of the joint PDF p ( δg , δm ) of galaxy and matter density fluctuations in cylindrical apertures of length L = 150 Mpc/ h 
and radius R = 20 Mpc/ h at redshift z ≈ 0.75 to the distribution measured in simulated data. In both panels the blue contours represent the PDF measured 
in T17 mock data and using the mock galaxy catalogue described in Section 3.2. The black, dashed contours represents our fiducial model, which consists of 
three parts: an LDT model for the matter density PDF p ( δm 

), a second order Lagrangian bias expansion within LDT, and a shot-noise model that allows for 
deviations from Poisson shot-noise (cf. Section 2.4 for the shot-noise model, and Section 4.3 for a detailed analysis of shot-noise in our simulations). The red, 
dash–dotted contours in the left-hand panel show what happens to the joint PDF model, if one assumes that p ( δm ) is Gaussian. The red, dash–dotted contours in 
the right-hand panel show a model that only fits a linear Lagrangian bias expansion. 

Figure 3. Residuals of 〈 δg | δm 

〉 measured in simulated data (T17 haloes 
populated with the HOD description of Zhai et al. 2017 ) wrt. our best-fitting, 
quadratic Lagrangian (blue squares) and Eulerian (red circles) models. The 
figure uses the same scales and redshift as Fig. 2 and the residuals have been 
normalized by an estimate of the standard deviation of our measurements 
of 〈 δg | δm 

〉 . We also show that a third order Eulerian model (green crosses) 
performs similar to the second order Lagrangian one. 
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hose. Also, we find in Section 4.2 that this comparison is somewhat
ass dependent: the Lagrangian model tends to perform better 

or intermediate mass haloes, while the Eulerian one achieves 
etter fits of 〈 δg | δm 

〉 for v ery massiv e tracers of the density
eld. 
.2 Halo bias as a function of mass and consistency among bias 
easures 

n Fig. 4 we show measurements of the conditional expectation value
 δhalo | δm 〉 in three different shells of the T17 simulations (with z =
.476, 0.751, 0.990) and when averaging halo and matter densities 
n cylindrical apertures of radius R = 20 Mpc/ h and length L = 150

pc/ h . The different symbols in the figure represent measurements
or different bins of halo mass. We choose bins of ±10 per cent
round the central masses M 200b /(10 13 M �/ h ) = 0.5 (squares), = 1.0
circles), = 2.0 (crosses), = 4.0 (pluses), = 8.0 (hexagons), and =
6.0 (diamonds). The z = 0.99 shell of T17 does not resolve the
owest of these mass bins and the z = 0.751 shell only resolves
aloes down to exactly M 200b /(10 13 M �/ h ) = 0.5, i.e. for that shell
nly the upper half of that bin enters our measurement. For each of
he mass bins we measure 〈 δhalo | δm 

〉 in 25 equidistant bins of δm 

and
he lowest and upper most bound of these bins were chosen such as
o cut away exactly 2 per cent of the probability from each tail of the
nderlying matter density PDF p ( δm 

). We estimate the errorbars of
ach measurement from a jackknife approach (Norberg et al. 2009 ;
riedrich et al. 2016 ), splitting the all-sky maps of T17 into 196
ub-patches. The solid blue and dashed orange lines in the figure are
est-fitting models from second order Lagrangian and Eulerian bias 
 xpansions, respectiv ely (cf. Section 2). 

We summarize the best-fitting values of our bias parameters as well 
s the χ2 values between best-fitting models and measurements of 
 δhalo | δm 

〉 in T able 1 . T aking into account that the noise in our covari-
nce matrices adds a relati ve v ariance of about 

√ 

2 / (196 − 25 − 2)
o our best-fitting χ2 (see e.g. Taylor, Joachimi & Kitching 2013 ,
e add this noise in quadrature to the expected statistical scatter of
MNRAS 510, 5069–5087 (2022) 
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Figure 4. Conditional expectation value 〈 δhalo | δm 〉 in cylindrical aperture of R = 20 Mpc/ h and L = 150 Mpc/ h at different redshifts and for different halo 
masses. Mass bins are M 200b /(10 13 M �/ h ) ≈ 0.5 (squares), ≈1.0 (circles), ≈2.0 (crosses), ≈4.0 (pluses), ≈8.0 (hexagons), and ≈16.0 (diamonds). The z ≈ 1.0 
shell of the T17 sims does not resolve the lowest mass bin. The solid blue and dashed orange lines are best-fitting models from second order Lagrangian and 
Eulerian bias e xpansions, respectiv ely. Errorbars of the symbols are for an all-sky shell and are estimated from a jackknife procedure. The grey shaded area 
displays the PDF p ( δm 

) (cf. right y -axis) and our binning of 〈 δhalo | δm 

〉 cuts away 2 per cent of the probability from the tails of that PDF. 
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Table 1. Best-fitting parameters and χ2 values obtained from the fits shown in Figs 3 and 4 . 

M 200b /(10 13 M �/ h ) ∈ b L 1 b L 2 χ2 
L b E 1 b E 2 χ2 

E χ2 
L − χ2 

E 

Optimally: 
Var( χ2 ) = 6.78 2 (statistical) 

+ 2.49 2 (cov. noise) 
⇒ χ2 ∼ 23 ± 7.22 

z ≈ 0.5: 
[0.45, 0.55] 0.39 ± 0.01 −0.72 ± 0.06 21.14 1.41 ± 0.01 −0.62 ± 0.06 20.17 0.97 
[0.9, 1.1] 0.64 ± 0.01 −0.59 ± 0.08 20.28 1.66 ± 0.01 −0.42 ± 0.08 18.5 1.78 
[1.8, 2.2] 0.96 ± 0.02 −0.43 ± 0.13 14.77 1.96 ± 0.01 −0.19 ± 0.14 14.13 0.64 
[3.6, 4.4] 1.42 ± 0.02 0.35 ± 0.17 21.94 2.39 ± 0.02 0.73 ± 0.18 23.95 −1.99 
[7.2, 8.8] 2.11 ± 0.04 2.6 ± 0.28 31.19 2.99 ± 0.03 3.36 ± 0.31 34.6 −3.4 
[14.4, 17.6] 3.07 ± 0.06 6.72 ± 0.45 26.35 3.79 ± 0.05 8.32 ± 0.51 24.78 1.58 

z ≈ 0.75: 
[0.5, 0.55] 0.68 ± 0.01 −0.55 ± 0.12 16.53 1.7 ± 0.01 −0.39 ± 0.13 15.78 0.75 
[0.9, 1.1] 0.97 ± 0.01 −0.26 ± 0.09 22.72 1.97 ± 0.01 −0.02 ± 0.09 22.05 0.67 
[1.8, 2.2] 1.41 ± 0.01 0.75 ± 0.14 28.79 2.37 ± 0.01 1.11 ± 0.15 37.68 −8.88 
[3.6, 4.4] 2.03 ± 0.02 2.2 ± 0.19 21.84 2.95 ± 0.02 2.87 ± 0.2 27.49 −5.64 
[7.2, 8.8] 2.81 ± 0.04 5.16 ± 0.31 21.12 3.61 ± 0.03 6.31 ± 0.33 24.2 −3.07 
[14.4, 17.6] 4.08 ± 0.08 11.35 ± 0.58 39.16 4.7 ± 0.06 14.25 ± 0.67 22.36 16.8 

z ≈ 1.0: 
[0.9, 1.1] 1.32 ± 0.01 0.29 ± 0.09 35.52 2.3 ± 0.01 0.62 ± 0.1 43.46 −7.93 
[1.8, 2.2] 1.86 ± 0.01 1.74 ± 0.14 25.88 2.8 ± 0.01 2.28 ± 0.14 41.71 −15.81 
[3.6, 4.4] 2.64 ± 0.02 4.23 ± 0.26 22.58 3.52 ± 0.02 5.25 ± 0.28 30.36 −7.78 
[7.2, 8.8] 3.75 ± 0.05 10.19 ± 0.43 29.31 4.5 ± 0.04 12.31 ± 0.48 19.76 9.54 
[14.4, 17.6] 4.96 ± 0.09 16.46 ± 0.76 70.05 5.6 ± 0.07 20.6 ± 0.89 45.73 24.32 

Fitting 〈 δg | δm 

〉 at z ≈ 0.75 1.77 ± 0.008 2.11 ± 0.068 34.62 2.69 ± 0.007 2.69 ± 0.073 59.41 −24.79 
(with the synthetic galaxies described 
in Section 3.2 and used for Fig. 3 ) 
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2 ), most of the fits in Fig. 4 agree with the measurements within
ither 1 σ or 2 σ . For the Lagrangian parametrization, only two of the
 v erall 17 fits lie outside of 2 σ . On average one would expect one
uch outlier. Ho we ver, at least one of these outliers is at a very high
2 (6.5 σ ) and both of them are at the highest mass of their respective

edshifts. Hence, there seems to be a systematic shortcoming of the 
agrangian model for very high halo masses. 
The Eulerian parametrization performs somewhat better in these 

wo instances (though it is still > 3 σ off for the highest mass bin in
he highest redshift shell). But in total, four of the Eulerian fits lie
utside of 2 σ . When ignoring the highest mass bins in the z = 0.75
nd z = 1.0 shells, the Lagrangian model performs either similarly
ell or significantly better than the Eulerian one. This is the reason
hy the Lagrangian model was a significantly better fit to 〈 δg | δm 

〉 for
ur synthetic galaxy sample discussed in Section 4.1 (cf. Fig. 3 ). The
est-fitting parameters and χ2 of that comparison are also displayed 
n Table 1 . 

Let us now investigate whether the best-fitting parameters of our 
ias models conform to basic theoretical expectations. In Fig. 5 we 
ho w the v alues obtained for the linear Lagrangian bias b L 1 at z =
.75 as a function of the radius of our cylindrical aperture and for all
f our different mass bins. The different symbols in the figure show
easurements of b L 1 obtained from fitting our Lagrangian model for 

 δhalo | δm 

〉 to T17 data. Abo v e radii of R cylinder ≈ 20 −30 Mpc/ h there
s only a mild scale dependence of these best-fitting v alues. Dif ferent
orizontal lines in the figure display different theoretical predictions 
or the large-scale limit of b L 1 . Dashed lines show predictions obtained
rom the peak-background split (PBS) approach together with Press–
chechter halo mass function (Press & Schechter 1974 ), solid lines
how predictions based on Sheth, Mo & Tormen ( 2001 , i.e. including
 b
heir moving barrier correction), and dotted lines show predictions 
rom the fitting formula of Tinker et al. ( 2010 ). All three sets of
heoretical predictions match the large-scale limit of the bias values 
e fit with our Lagrangian parametrization to within 10 per cent 

ccuracy . Surprisingly , the Press–Schechter predictions seem to 
atch our measurements of b L 1 best (but with the Tinker et al.

redictions performing very similarly). At very high masses ( ∼8 
10 13 M �/ h and ∼16 × 10 13 M �/ h ) we find that the predictions

f Sheth et al. ( 2001 ) are significantly lower than the other two
odels the biases measured from 〈 δhalo | δm 〉 (and the other sets of

redictions). 
Lazeyras et al. ( 2016 ) have found a tight relationship between

inear and quadratic Lagrangian bias, as measured from the response 
f halo density to changes in the o v erall matter density in a set of
eparate universe simulations. We expect our finding to closely match 
heir results, because the expectation values 〈 δhalo | δm 

〉 resemble 
xactly that kind of response approach, with each of our apertures
epresenting a (miniature) separate universe. In Fig. 6 we show our
easurements of b L 1 and b L 2 in the three different redshift shells

f the T17 data and for different mass bins. The colour coding
f the mass bins is identical to that of Fig. 5 (higher bias values
orrespond to higher masses) and the different symbols represent fits 
o 〈 δhalo | δm 

〉 for different radii of our cylindrical aperture ( R = 10,
0, 50 Mpc/ h ). The solid line in the figure displays the empirical
elation found by Lazeyras et al. ( 2016 ). Despite directly measuring
he Lagrangian bias parameters, they present their fit in terms of
ransformed, Eulerian biases. For reference, we translate that fit to 
agrangian space, which yields 

 

L 
2 ≈ −0 . 794 − 0 . 642 b L 1 + 0 . 953 ( b L 1 ) 

2 + 0 . 008 ( b L 1 ) 
2 . (28) 
MNRAS 510, 5069–5087 (2022) 
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Figure 5. Measurement of linear Lagrangian bias through fits to 〈 δhalo | δm 

〉 in T17 simulated data. Different symbols (and colours) correspond to different halo 
mass bins and the x -axis represent the radius of the smoothing aperture used to measure 〈 δhalo | δm 

〉 . Different horizontal lines correspond to different predictions 
of b L 1 ( M halo ) (see main text for details). We chose to leave those lines uncoloured for aesthetic reasons. 
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his relation indeed closely describes our measurements of b L 1 

nd b L 2 . This is encouraging and confirms that the bias parameters
ne would measure from our Lagrangian formalism in a PDF-type
nalysis indeed correspond to the bias parameters that have been
nvestigated in other contexts. This is particularly important when
onsidering combined analysis of the joint PDF p ( δtracer , δm 

) and other
ummary statistics of the cosmic density field. But the agreement
een in Fig. 6 does unfortunately not mean that one can hope to
liminate one free parameter from our bias model. The tracers of the
osmic density field available in real analyses are galaxies, and in
rder to make use of the relation observed in Fig. 6 for such analyses
ne would have to model the HOD of these galaxies, which in itself
ould introduce a plethora of free parameters (see e.g.Dvornik et al.
018 ). Hence, the strategy we aim for in future data analyses is to fit
f fecti ve bias parameters for the tracer samples at hand, as we have
.g. done in Section 4.1. This is also why we do not further pursue
ccurate modelling of b L 1 as a function of halo mass. 

In a next step, we want to check for consistency between the bias
arameters measured from our Lagrangian and Eulerian models for
 δhalo | δm 

〉 . In the large-scale limit b L 1 , b 
L 
2 and b E 1 , b 

E 
2 should be related

y 

 

E 
1 ≈ 1 + b L 1 , b E 2 ≈ ν − 1 

ν
b L 1 + b L 2 , (29) 

here typically one assumes ν = 21/13 (Wagner et al. 2015 ; Lazeyras
t al. 2016 ). The deri v ation of that value uses a spherical collapse
pproximation which may not be appropriate for our cylindrical
pertures. Substituting spherical with cylindrical collapse one arrives
t ν = 7/5 (Uhlemann et al. 2018c ). In our situation we find both
NRAS 510, 5069–5087 (2022) 
alues for ν to giv e v ery similar values of b E 2 (as calculated from
 

L 
1 and b L 2 ) and for cylinders of finite length, the truth is anyway
xpected to lie between both choices (see again Uhlemann et al.
018c ). So in the following we will stick with the spherical value
uch that ( ν − 1)/ ν = 8/21. In Fig. 7 we plot our measurements of b E 1 
s a function of 1 + b L 1 and our measurements of b E 2 as function of
 

8 
21 b 

L 
1 + b L 2 ). Different colours again represent different halo mass

ins and different symbols represent different aperture radii. One
an see that for our largest aperture (50 Mpc/ h ) the agreement with
he relation (29) is indeed excellent (note that the measurement
ncertainties of b E 2 and b L 2 are highly correlated, which is the reason
hy the measurements in the bottom panel are suspiciously spot
n). This demonstrates that the machinery we have developed in
ection 2 indeed represents a sensible Lagrangian bias model for
DF statistics. 
Finally, we want to compare our linear bias values obtained from

 δhalo | δm 

〉 to the halo biases that would be inferred from measure-
ents of large-scale two-point statistics (cf. Manera & Gazta ̃ naga

011 , who have performed an analogous study for spherical apertures
n simulation snapshots). Since we are using the T17 data in radial
hells, we will consider the angular power spectra of the matter
ensity and halo density fields in these shells projected on to the sky.
et C 

mm 

� be the auto power spectrum of the matter density field in a
articular shell, and let C 

hm 

� be the cross power spectrum of matter
nd halo density. Following a similar procedure to that of Lazeyras
t al. ( 2016 ) we assert that those are related by 

 

hm 

� ≈ ( b 2 pt 
1 + b 

2 pt 
NL � 

2 ) C 

mm 

� . (30) 

art/stab3703_f5.eps
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Figure 6. Displaying our measurements of b L 2 from 〈 δhalo | δm 

〉 as a function 
of the corresponding measurements of b L 1 for different halo mass bins, 
different radii of our smoothing aperture, and in different redshift shells of 
the T17 sims. The colour coding of the mass bins is identical to that of Fig. 5 
(higher bias values correspond to higher masses). The solid lines represent an 
empirical relation between linear and quadratic bias found by Lazeyras et al. 
( 2016 ) using a response approach in separate universe simulations (see main 
text for details). 
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Figure 7. Testing whether standard relations between Lagrangian and 
Eulerian bias coefficients hold for our measurements of these coefficients 
from 〈 δhalo | δm 

〉 in the large-scale limit (see main text for details). Different 
colours again represent different halo mass bins and the colour coding is the 
same as that in Fig. 5 . In the lower panel, the agreement between Eulerian 
and Lagrangian parameters looks suspiciously good, given the statistical 
uncertainties of our fits. This is caused by the fact that the measurement 
uncertainties for both sets of parameters are highly correlated. 
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ere b 2 pt 
1 is the linear Eulerian halo bias (in the two-point function

ontext) and the term proportional to b 
2 pt 
NL � 2 aims to capture 

orrections from non-linear (resp. scale dependent) bias. We fit the 
bo v e relation to measurements of C 

hm 

� and C 

mm 

� in T17 data. This has
he advantage that we do not need to employ any analytic modelling
f the involved power spectra. Also, it removes the dependence of the
t on shot-noise. We follow Lazeyras et al. ( 2016 ) in restricting the fit
o co-moving wave numbers below k = 0.06 h /Mpc. Coincidentally,
his roughly corresponds to real space scales of π / k � 50 Mpc/ h ,
.e. to about the largest aperture radius in which we have measured
 δhalo | δm 

〉 . If w is the average co-moving distance of a shell, then
he co-moving wavenumber k probed by an angular mode � is
pproximately � / w. Hence, we restrict ourselves to modes � ≤ 0.06
w h /Mpc. 
To estimate the statistical uncertainties of this fit, let us assume

hat bias is perfectly linear, and that both the matter density and
alo density field are Gaussian random fields. These assumptions are 
ikely sufficient for our two-point analysis, since the power spectrum 

ovariance at small scales (where the assumptions may break down) 
ill be dominated by shot-noise (cf. Friedrich et al. 2021 ). This
ill especially be the case for the narrow bins in halo mass that we

onsider here. 
A measurement of the matter auto power spectrum will be given

y 

ˆ 
 

mm 

� = 

1 

2 � + 1 

� ∑ 

M=−� 

| a �M 

| 2 (31) 
MNRAS 510, 5069–5087 (2022) 
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Figure 8. Testing whether the Eulerian linear bias b E 1 measured from 

〈 δhalo | δm 

〉 agrees with the bias measured from comparing the auto power 
spectrum of matter density fluctuations to the cross power spectrum of matter 
and halo density fluctuations (see main text for details, the lower panel shows 
relati ve de viations between the two sets of measurements). Different colours 
again represent different halo mass bins (cf. Fig. 5 for the colour coding). To 
perform the power spectrum fits we only considered scales with π / k � 50 
Mpc/ h . 
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here a � M 

are the spherical harmonics coefficients of the matter
ensity field projected on to the sky . Similarly , a measurement of
 

hm 

� will be given by 

ˆ 
 

hm 

� = 

1 

2 � + 1 

� ∑ 

M=−� 

a ∗�M 

( b �M 

+ ε�M 

) (32) 

here ε� M 

represents shot-noise and b � M 

are the spherical harmonics
oefficients of the (hypothetical) shot-noise free halo density field.
e need to know the covariance matrix of 

ˆ 
 

hm 

� − b 
2 pt 
1 

ˆ C 

mm 

� ≈ 1 

2 � + 1 

� ∑ 

M=−� 

a ∗�M 

ε�M 

. (33) 

ithin our Gaussianity and linearity assumption it is easy to see that
his covariance is diagonal and that the variances for each value of �
re given by 

ar 
(

ˆ C 

hm 

� − b 
2 pt 
1 

ˆ C 

mm 

� 

)
= 

C 

mm 

� 

(2 � + 1) n halo 
≈

ˆ C 

mm 

� 

(2 � + 1) n halo 
. (34) 

ere, n halo is the number density of haloes (projected on to the
ky) and we have assumed that the shot-noise is uncorrelated to the
nderlying matter density field. So the figure of merit that we are
ptimizing in order to fit for the bias parameters in equation (30) is 

2 [ b 2 pt 
1 , b 

2 pt 
NL ] ≈

∑ 

�<� max 

(
ˆ C 

hm 

� − ( b 2 pt 
1 + b 

2 pt 
NL � 

2 ) ˆ C 

mm 

� 

)2 

ˆ C 

mm 

� 

(2 � + 1) n halo . 

(35

he best-fitting reduced χ2 values we obtain this way indeed scatter
losely around 1. In Fig. 8 we display the corresponding best-fitting
NRAS 510, 5069–5087 (2022) 
alues of b 2 pt 
1 as a function of b E 1 obtained from the conditional

xpectation value 〈 δhalo | δm 

〉 in different halo mass bins (the same bins
nd colour coding as before). Different symbols again correspond to
ifferent aperture radii. One can indeed see that the two types of
ias measurements agree in the large-scale limit. For our largest
perture radius, the relative agreement is better than 3 per cent in
ll mass bins and within the statistical uncertainties of the two-
oint fit. The systematic shift of b E 1 when going to smaller radii
oes not necessarily signify a systematic difference between two-
oint function and PDF biases but rather implies a general scale-
ependence of bias when moving to smaller scales. Note especially,
hat we only measured our power spectra on scales of π / k � 50

pc/ h . Allowing the two-point fit to use even smaller scales leads to
 shift in b 2pt 

1 similar to that observed in 〈 δhalo | δm 

〉 . 
Lazeyras et al. ( 2016 ) perform a similar test also for the quadratic

ias coefficients. This would require us to either model the non-
inear part of the halo power spectra or to measure complicated
ombinations of bispectra in the T17 shell. We do not attempt
hat because we take our comparison for the linear coefficients in
ombination with the results obtained for the quadratic coefficients
n Figs 6 and 7 as sufficient indication that our language for quadratic
ias in the PDF agrees with the parametrizations that appear in more
tandard contexts. 

.3 Shot-noise of haloes and galaxies 

e conclude this section by investigating the shot-noise of our
ifferent tracer samples in more detail. The upper panel of Fig. 9
lots the ratio Var( N tracer | δm 

)/ 〈 N tracer | δm 

〉 measured in the T17 shell
ith z ≈ 0.75 and with cylindrical apertures of radius R = 20
pc/ h . The bins in δm 

are the same as those we have consid-
red for 〈 δtracer | δm 

〉 in the previous subsections and the statisti-
al uncertainties have been estimated using the same jackknife
rocedure as before. The dark blue band in the figure represents
he ratio measured for the synthetic galaxy sample described in
ection 3.2 while the semi-transparent bands represent the same
alo mass bins as considered previously. For Poissonian shot-
oise, the ratios Var( N tracer | δm 

)/ 〈 N tracer | δm 

〉 should be equal to 1.
or the different halo mass bins it is slightly below that, with the
ariances of halo counts being on average about 3 per cent below
he Poisson value and with a slight increase of this effect towards
igher matter densities. For our synthetic galaxies the situation
s quite different: they show variances that are up to 8 per cent
bo v e the Poissonian value for ne gativ e δm 

, which then steeply
all to give sub-Poissonian variances for positive δm 

. Our HOD
rescription of Section 3.2 should in principle return a weighted
v erage o v er haloes of different masses and at a first glance it is
urprising that this would give such a qualitatively and quantitatively
ifferent behaviour of shot-noise compared to the individual mass
ins. 
To understand this in more detail, note that for halo bins with a

ery narrow mass range the ratio Var( N | δm 

)/ 〈 N | δm 

〉 will al w ays tend
o 1. This is because for a small enough mass range, there will al w ays
e either 0 or 1 halo in any of our apertures. And in that case, the
hot-noise becomes binomial with number of trials N trial = 1 and
robability of failure 1 − p ≈ 1, which results in Var( N | δm 

)/ 〈 N | δm 

〉
1. Now what happens to the ratio when summing o v er man y of

hese narrow bins? Let N i , i = 1, . . . , n be the counts of n of such
arrow halo bins in our aperture and consider their sum 

 = 

n ∑ 

i= 1 

N i . (36) 

art/stab3703_f8.eps
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Figure 9. Upper panel: Ratio between the variance and expectation value 
of tracer counts in cylindrical apertures as a function of the matter density 
contrast in those apertures. For Poisson shot-noise this ration should be equal 
to 1. The red dashed line represents a linear fit to the ratio observed for 
our synthetic galaxy sample in the T17 shell. Lower panel: Same ratio but 
considering different tracer samples. 
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b viously, the e xpectation value of N is just the sum of the
xpectation values of the N i , 

 N | δm 

〉 = 

n ∑ 

i= 1 

〈 N i | δm 

〉 , (37) 

here we have inserted a dependence on δm 

to be closer to our
ituation of interest. For the variance of N the situation is more
omplicated since 

Var ( N | δm 

) = 

∑ 

i,j 

Cov ( N i , N j | δm 

) 

≈
∑ 

i 

〈 N i | δm 

〉 + 

∑ 

i �= j 

Cov ( N i , N j | δm 

) 

 

Var ( N | δm 

) 

〈 N | δm 

〉 ≈ 1 + 

∑ 

i �= j Cov ( N i , N j | δm 

) 

〈 N | δm 

〉 . (38) 

ow each of the finite mass bins in the upper panel of Fig. 9 can
e seen as a sum o v er man y, ev en narrower mass bins. In order for
he shot-noise of the finite mass bins to be sub-Poisson we would
ence need the covariance between the narrow bins to be ne gativ e.
n the following intuitive sense this would indeed be expected: if
here are already a lot of haloes of one bin in our aperture, one
ould expect less mass to be left for forming other haloes which
ould cause ne gativ e correlations among the shot-noise of the two
ass bins. This is also in line with arguments of halo-exclusion (e.g.
aldauf et al. 2013 , 2021 ) and with the finding that certain weighting

chemes among halo masses can reduce tracer stochasticity (e.g. 
amaus et al. 2010 ; Jee et al. 2012 ; Uhlemann et al. 2018a ). In
articular, Ginzburg, Desjacques & Chan ( 2017 ) noted that within
 halo model description halo shot-noise would also be present in
he matter density field itself (cf. their equation 29). That shot-noise
ould be positively correlated with the noise of any tracer sample,

uch that the relative noise between tracers and matter would indeed
e lower than naive expectations. 
We could in principle estimate the covariance Cov( N i , N j | δm 

) from
ur simulated data. Unfortunately, for very narrow mass bins such an
stimate will be extremely noisy, because the standard deviation of 
ff-diagonal elements of the estimate will be proportional to diagonal 
lements of the covariance (Taylor et al. 2013 ) which are significantly
igher than the off-diagonal elements in the limit of narrow bins.
e vertheless, to qualitati vely test our above considerations, we 
easure the covariance of the shot-noise of wide mass bins instead.
e choose those to be centred around the same masses as our

revious bins, but widen the mass ranges to touch each other (but we
eep the binning logarithmic). We then re-fit the Eulerian bias model
o these new bins and apply the best-fitting parameters to the dark
atter density field δm 

in the T17 data. This way we ef fecti vely obtain
 shot-noise free estimate of the halo density field which we can then
ubtract from the actual halo density field to obtain shot-noise-only 
aps. 
In the upper panel of Fig. 10 we show the covariance matrix of

hese shot-noise-only maps, divided by the mean number count of 
ll haloes (i.e. the matrix Cov( N i , N j )/ 〈 N 〉 appearing on the right-
and side of equation (38)), using again the T17 shell at z ≈ 0.75
nd filtering with R cyl = 20 Mpc/ h . All off-diagonal elements of this
atrix are indeed ne gativ e. We can furthermore split the T17 shell

nto regions of positive and negative δm 

. The middle panel of Fig. 10
hows Cov( N i , N j )/ 〈 N 〉 obtained only from o v erdense re gions while
he lower panel uses only underdense regions. Most of the elements
f Cov( N i , N j )/ 〈 N 〉 are more ne gativ e for δm 

> 0 than they are for δm 

 0. From this behaviour of the shot-noise correlation matrix we can
raw the following qualitative conclusions: we expect the shot-noise 
f haloes with a wide mass range to be even more sub-Poissonian
han what we observed for our narrow mass bins in the upper panel
f Fig. 9 . And we expect the shot-noise of wide halo bins to be more
ub-Poissonian in o v erdense re gions than in underdense re gions. 

These qualitative statements are indeed confirmed by the green 
and in the lower panel of Fig. 9 , which shows the ratio
ar( N tracer )/ 〈 N tracer 〉 for a halo mass bin that includes all haloes that
nter our HOD as described in Section 3.2 (i.e. all haloes with masses
 200b > 7.4 × 10 12 M �/ h ). The shot-noise of that pure halo sample is

trongly sub-Poissonian and the ratio Var( N tracer )/ 〈 N tracer 〉 is lower in
 v erdense re gions than it is in underdense re gions. In that panel, we
lso plot the shot-noise behaviour of the central galaxies within our
ock galaxy sample (orange band; i.e. those galaxies that are central

o their host halo, cf. Section 3.2) as well as the behaviour of the full
ynthetic galaxy sample (blue band; same as in upper panel). These
ands show a subsequent increase in the ratio Var( N tracer )/ 〈 N tracer 〉
ith centrals being already less sub-Poisson than the haloes and 

atellites showing almost Poissonian noise again. One could think 
hat this suggest that the randomness in the HOD is increasing the
MNRAS 510, 5069–5087 (2022) 
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Figure 10. The covariance matrix of shot-noise-only maps for haloes in 
different mass bins, divided by the mean number count of all haloes (i.e. the 
matrix Cov( N i , N j )/ 〈 N 〉 appearing on the right-hand side of equation (38)). 
The figure uses our fiducial aperture of R cyl = 20 Mpc/ h and the z ≈ 0.75 
shell of our T17 data. The upper panel measures the correlations from the full 
T17 shell, the middle panel only from parts of the shell where δm 

> 0 and 
the lower panel from parts where δm 

≤ 0. 
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hot-noise wrt. a pure halo sample and hence pushes the noise closer
o Poisson again (or even beyond). Ho we ver, the situation is more
omplicated as we explain in the following. 

The behaviour of shot-noise in our mock LRG sample strongly
iffers from what has been observed in a different mock sample
y Friedrich et al. ( 2018 ) or even for real Dark Energy Surv e y
DES) galaxies by Gruen et al. ( 2018 ). The y hav e observ ed super-
oissonian noise for redMaGiC(-like) galaxies (Rozo et al. 2016 )

hat increases with increasing matter density. Since this is so different
rom our findings, we want to cross check the latter wrt. data from
 different N-body simulation – the Quijote suite (cf. Section 3.3).
or that suite we only have a snapshot available at z = 0.5. So

n order to compare our Quijote results to the T17 results we also
epeat some of our measurements in the T17 shell at z ≈ 0.476. We
opulate haloes in both of these data sets with the same HOD as
efore (see also Hahn & Villaescusa-Navarro 2021 for the general
ethodology) and we again consider the ratio Var( N tracer )/ 〈 N tracer 〉

or haloes (with M 200b > 7.4 × 10 12 M �/ h ), for central galaxies and
or the full mock galaxy samples. This is not entirely realistic, since
he HOD description of Zhai et al. ( 2017 ) has been specifically fit
o LRGs at z ≈ 0.6–0.9, but it should nevertheless suffice for a
ualitative comparison. Note also that we have only had access to
 vir for the Quijote haloes, instead of M 200b . But we find that a lower
ass cut at M vir = 6.986 × 0 12 M �/ h within the T17 sims gives a

imilar halo density as the cut in M 200b , so we apply this M vir cut in
uijote. 
The upper panel of Fig. 11 shows the behaviour of shot-noise for

he three different tracer samples in the Quijote data while the lower
anel shows the measurements from the T17 data. One feature that
ersists in both data sets compared to what we found in Fig. 9 is
hat satellite galaxies show an increase of Var( N tracer )/ 〈 N tracer 〉 wrt.
entral galaxies that is almost independent of the total matter density
m in the smoothing aperture. But the shot-noise behaviour of the
alo samples is quite different both between Quijote and T17 and
ompared to the z ≈ 0.75 shell of T17. For all halo samples we
onsidered there is a significant curvature of Var( N tracer )/ 〈 N tracer 〉 as a
unction of δm 

. But that curvature is strongest for the Quijote haloes
nd even causes them to be super-Poissonian at very high densities.
e could not find an obvious explanation for this difference but

ssume that it is caused by the different cosmologies at which the
imulations are run (cf. Appendix C for a comparison of the halo mass
unctions of the two simulations, and Fig. C1 where it is shown that
uijote has significantly more high-mass haloes). Given a precise
easurement of the covariance Cov( N i , N j ) of halo shot-noise in

arrow mass bins as well as a model for the halo mass function and
 given HOD we could in principle model Var( N | δm )/ 〈 N | δm 〉 exactly.
here is, ho we ver, a number of practical reasons that prevent us from
oing so: 

(i) As mentioned earlier in this section, measuring Cov( N i , N j ) in
uf ficiently narro w bins will require a prohibitively large amount of
imulations. Alternatively one could attempt to model the shot-noise
ovariance, but as of now no such model is available. 

(ii) HOD descriptions themselves make the assumption that satel-
ite counts in a given halo are drawn from a Poisson distribution.
his assumption is similarly ad hoc as the assumption that galaxies
re Poissonian tracers of the matter density field (see e.g. Boylan-
olchin et al. 2010 ; Mao, Williamson & Wechsler 2015 , who

ndeed find non-Poissonianity in the occupation distribution of
ub-haloes). 

(iii) HOD descriptions also introduce a large number of free
arameters which – unless they can be constrained a priori – may

art/stab3703_f10.eps
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Figure 11. Same as the lower panel of Fig. 9 but at z = 0.5 in the Quijote 
simulations (upper panel) and z ≈ 0.476 in our T17 mock galaxy catalogue 
(lower panel). 
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Figure 12. Impact of non-Poisson shot-noise on the joint PDF of δg and 
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. The filled contours represent measurements in our mock data sets, the 
black dashed contours represent our fiducial model, and the red dash–dotted 
contours show a model that assumes Poissonian shot-noise (see main text for 
details). 
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ignificantly dilute the cosmological constraining power of PDF 

nalyses (or at least make them significantly more complicated). 

Given our current (poor) understanding of shot-noise we hence 
onclude that ef fecti ve parametrizations of non-Poisson shot-noise 
uch as the one described in Section 2 are the most promising way for-
ard for PDF analyses. In Fig. 12 we show that this parametrization

an indeed capture the impact of the non-Poissonianity observed in 
igs 9 and 11 on the joint PDF of δm 

and δg . The blue, filled contours
n Fig. 12 represent measurements of the PDF in our different mock
ata sets. For the black dashed lines we have fit a linear slope to
ur measurements of Var( N | δm 

)/ 〈 N | δm 

〉 in order to determine the
arameters α0 and α1 of our fiducial model presented in Section 2 (cf.
he red dashed line in the upper panel of Fig. 9 and analogous fits for
he other tracer samples). The red dash–dotted contours represent an 
lternative model that assumes that shot-noise is exactly Poissonian. 
or the centrals in our fiducial T17 shell (i.e. z ≈ 0.75) such a
odel clearly o v erestimates the v ertical width of the distribution (cf.

pper panel). But for the full sample the values of Var( N | δm 

)/ 〈 N | δm 

〉
ecome close to Poissonian again. Hence, even the Poissonian model 
ccurately captures the shape of the joint PDF for that sample (middle
anel). This is, ho we ver, only coincidental, and for our alternative
ample in the Quijote simulations ( z = 0.5, full HOD) even the PDF
MNRAS 510, 5069–5087 (2022) 
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Table 2. Best-fitting parameters of the shot-noise model from Section 2.4 
for the different galaxy samples considered in Figs 11 and 12 . 

Tracer sample Redshift α0 α1 

T17 centrals 0.751 0.872 ± 0.005 −0.329 ± 0.033 
T17 all 0.751 1.015 ± 0.006 −0.310 ± 0.043 
T17 centrals 0.476 0.829 ± 0.003 −0.234 ± 0.016 
T17 all 0.476 0.945 ± 0.003 −0.274 ± 0.018 
Quijote centrals 0.5 0.608 ± 0.001 −0.061 ± 0.004 
Quijote all 0.5 0.868 ± 0.001 −0.142 ± 0.007 
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f the full sample is noticeably different from the Poisson model
lower panel). The best-fitting parameters of our shot-noise model
or the different galaxy samples we considered are summarized in
able 2 . 
Understanding shot-noise remains one of the most crucial tasks in

he program of fully harvesting the information content of PDF-type
nalyses. Our results can serve as a foundation and starting point for
hat but they remain qualitativ e. We hav e also only qualitatively
hown that our shot-noise model is effective in capturing the
ehaviour of the joint PDF p ( δm 

, δg ) (though see Friedrich et al. 2018 ,
or a quantitative analysis of the performance of this parametrization
or density split statistics). To determine the accuracy of our model
uantitatively, we need to specify a target surv e y (and hence target
tatistical uncertainties) as well as an observable that can replace
atter density in our pair of ( δm 

, δg ), since δm 

cannot directly be
bserved on real data. We leave this to the next step in our program
nd give a preliminary outlook in Section 5. 

 DISCUSSION  

n this paper we investigated the relationship between the matter
ensity field and its tracers from the PDF perspective, i.e. the impact
f the matter-tracer connection on the joint PDF p ( δtracer , δm 

). To
 v aluate this PDF we considered the matter density and tracer density
elds in (long) cylindrical apertures as opposed to the spherical filters

hat are more commonly used in the theoretical literature. This choice
as moti v ated by the fact that the CGF of line-of-sight projected
ensity fields can be expressed as Limber-type integral over CGFs
f density fields in cylindrical apertures. Hence, it is only a small
tep to transfer our results to realistic observational situations of e.g.
hotometric galaxy surv e ys. 
The matter-tracer connection in the PDF context can be viewed

s consisting of two ingredients: the conditional expectation value
f δtracer given δm 

, 〈 δtracer | δm 

〉 , and the scatter of δtracer around this
xpectation value which is usually referred to as shot-noise. The
ducial model for p ( δtracer , δm 

) which we present here then consists
f 

(i) a standard, LDT model for the PDF of matter density fluc-
uations p ( δm 

), following the work of e.g. Bernardeau ( 1994 ),
ernardeau & V alageas ( 2000 ), V alageas ( 2002a ), Friedrich et al.
 2018 ), Uhlemann et al. ( 2018c ), and Barthelemy et al. ( 2020 ); 

(ii) a Lagrangian bias expansion for 〈 δtracer | δm 

〉 , incorporated into
he LDT formalism; 

(iii) a generalization of the Poisson distribution as proposed by
riedrich et al. ( 2018 ) and Gruen et al. ( 2018 ). 

Our Figs 2 and 12 show that all of these aspects of our model
re important for describing the full shape of p ( δtracer , δm 

). In the
ollowing two subsections we first summarize the results of our study
nd then briefly discuss open tasks for PDF cosmology. 
NRAS 510, 5069–5087 (2022) 
.1 Summary of results 

e have added a number of tools and observations to the already
ich subject of cosmic density PDFs: 

(i) We consistently incorporated a Lagrangian bias expansion for
he conditional expectation value 〈 δtracer | δm 

〉 into the standard LDT
ormalism for modelling cosmic density PDFs. We also demonstrated
hat at the saddle point configuration of the initial density field
hich determines the LDT predictions (cf. the path integral in

quation (8)) the operations of filtering and squaring the density
eld approximately commute (cf. Fig. 1 ). This makes it possible

o e v aluate the Lagrangian expansion up to second order with
ssentially no additional computational coast. An advantage of our
agrangian model that we did not discuss here is that it allows one to
onsistently incorporate scale-dependent bias from primordial non-
aussianity (e.g. Dalal et al. 2008 ; Desjacques, Seljak & Iliev 2009 ;

eong & Komatsu 2009 ) into the LDT formalism. This is because
ur ansatz in Section 2.3 can be used to translate scale-dependence
f b L 1 into a density dependence. 
(ii) We fitted both the Langrangian and an Eulerian expansion

o measurements of 〈 δhalo | δm 

〉 for different halo mass bins and at
ifferent redshifts and filtering scales in simulated data by Takahashi
t al. ( 2017 ). In this way we could validate that the bias expansion we
eveloped in Section 2 conforms to standard consistency relations
etween the Eulerian and Lagrangian perspective of halo bias. We
lso checked for the consistency of our best-fitting bias parameters
ith expectations from other methods: our values of b L 1 as a function
f halo mass agree well with a number of different theoretical and
mpirical predictions; the relation we observe between b L 1 and b L 2 

grees with an empirical formula found by Lazeyras et al. ( 2016 )
n separate universe simulations; and for large smoothing scales
ur best-fitting linear bias converges to the corresponding parameter
easured from the large-scale cross power spectrum of matter and

alaxy density. This array of tests confirms that the theory we
eveloped in Section 2 represents a sensible Lagrangian bias model
nd hence mo v es PDF analyses one step closer to being on equal
ooting with the more advanced field of N-point correlation functions.

e also showed that for a synthetic galaxy sample mimicking
BOSS-like luminous red galaxies, the Lagrangian expansion yields
 significantly better fit to 〈 δhalo | δm 

〉 than the Eulerian expansion
t second order. This is, ho we ver, not a general statement and we
aw indications that for very massive haloes the Eulerian expansion
erforms better. 
(iii) We established that the deviation of shot-noise from Poisson

oise in a sample of haloes with a wide mass range is determined
y the covariance matrix Cov( N i , N j ) of the shot-noise of haloes
n a very narrow binning of that mass range. Considering the ratio
ar( N tracer )/ 〈 N tracer 〉 for different tracer samples in both the Quijote
nd T17 simulations we have found a wide variety of deviations from
oissonian shot-noise. We have ho we ver sho wn that our shot-noise
odel from Section 2.4 is ef fecti ve in capturing the impact of these

eviations on the joint PDF p ( δg , δm 

). 

As mentioned in the previous section, our results on shot-noise
emain qualitative and more insights may be needed to efficiently
odel that part of the PDF. We discuss this further in the following

utline. 

.2 Open tasks for PDF cosmology 

osmological analyses of the full shape of p ( δtracer , δm 

) can be seen
s an extension of the density split statistics frame work de veloped by
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riedrich et al. ( 2018 ) and Gruen et al. ( 2018 ). In year-1 data of the
ES the y hav e analysed a data v ector consisting of (a compressed
ersion of) the galaxy density PDF p ( δtracer ) and a number of lensing
ignals that ef fecti vely probe the expectation values 〈 δm 

| δtracer 〉 as
ell as the slope of the lensing power spectrum. Moving away 

rom these compressed statistics and directly analysing p ( δtracer , δm 

)
nstead will, at any given smoothing scale, open up an entire 2D
lane of data for cosmological analysis. There is a number of steps
hat still need to be completed to implement this program. 

Cosmological constraining power: Numerous studies have 
hown that the cosmological information contained in the PDF of 
ensity fluctuations strongly complements the information obtained 
rom more standard probes such as the two-point correlations of 
uctuations – see e.g. Codis et al. ( 2016 ), Patton et al. ( 2017 ),
hlemann et al. ( 2020 ), Friedrich et al. ( 2020 ), and Boyle et al.

 2021 ) for recent examples. Some of their results, ho we ver, only
pply to idealized situations where one has direct access to the 
atter density field and the question remains to what extent the 

osmological power of the PDF carries o v er to realistic data sets.
oyle et al. ( 2021 ) have considered the PDF of lensing convergence,
hich can in principle be obtained from observations of cosmic 

hear. And Friedrich et al. ( 2018 ) and Gruen et al. ( 2018 ) analysed
ompressed statistics of the joint PDF p ( δtracer , δm 

), showing that it
as a competiti ve po wer to constrain cosmological models. But as
entioned abo v e, their density split statistics are also sensitive to

he slope of the lensing power spectrum, and that information would 
e lost if one would only consider p ( δtracer , δm 

) at one smoothing
cale. Two solutions to this problem would be to analyse the PDF at
 number of different smoothing scales (as was e.g. done by Boyle
t al. 2021 ) or to analyse the joint PDF of galaxy densities in apertures
hat are located at a finite distance (a two-point PDF, cf. Uhlemann
t al. 2018a ). Alternatively, one could consider combined analyses 
f the PDF and the two-point function. We have shown that at large
cales the linear bias of a PDF analysis agrees with the large-scale
ias of the tracer-matter cross power spectrum. This would suggest 
hat a combination of a PDF-type analysis with measurements of the 
 alaxy–g alaxy lensing correlation function (gg-lensing; see e.g. Prat 
t al. 2018 , and references therein) is a promising route to take. To
fficiently analyse such a combined data vector, one will need to make 
ontact between the shot-noise and higher order bias parameters of 
ur PDF model and stochasticity effects and non-linear biasing in 
he gg-lensing correlation function. This leads us to the next point. 

Impro v ed modelling: In the model presented here, the galaxy–
atter connection is described by four free parameters. While 
riedrich et al. ( 2018 ) and Gruen et al. ( 2018 ) have shown that

he rich information content of the PDF can constrain complex bias 
odels, a more efficient modelling would be highly desirable. This 

an e.g. be achieved by choosing informative, physically motivated 
riors on our parameters (cf. Britt et al., Ried et al. in preparation),
r by identifying consistency relations between them. For example, 
on-linear bias at a small scale will lead to an ef fecti ve change
n shot-noise at a larger scale (Philcox et al. 2020 ), which should
ead to a relation between bias and the scale dependence of shot-
oise. Understanding these kinds of relations will also enable a more 
ruitful combination of PDF and two-point function analyses, and the 
nformation present in the PDF may be able to constrain nuisance 
arameters in two-point function models. 
Proof of concept: A more immediate goal that we envision as a

ollow-up to this study is a proof-of-concept study that demonstrates 
he feasibility of analysing the full shape of p ( δtracer , δm 

) in real
ata. Since matter density is not directly directly observable, we aim 

t the joint PDF of lensing convergence and 2D-projected galaxy 
ensity. The results of this paper can be readily generalized to such
ine-of-sight projected fields (see e.g. Bernardeau & Valageas 2000 ; 
riedrich et al. 2018 ; Uhlemann et al. 2018c ; Barthelemy et al. 2020 ;
oyle et al. 2021 ), so such an analysis is indeed within reach. 
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PPENDI X  A :  E QUAT I O N S  O F  MOTI ON  F O R  

Y L I N D R I C A L  COLLAPSE  

e repeat here an appendix of Friedrich et al. ( 2020 ) about the
volution of symmetric density perturbations. In the Newtonian
pproximation and setting G = 1 = c the evolution of spherical,
ylindrical or planar perturbations δ is described by 

¨ + H ̇δ − N + 1 

N 

δ̇2 

1 + δ
= 4 πρ̄m 

a 2 δ(1 + δ) , (A1) 

here τ is conformal time, H = d ln a/ d τ is the conformal expansion
ate, and N = 3 for a spherical perturbation, N = 2 for a cylindrical
erturlation, and N = 1 for a planar perturbation (see Mukhanov
005 who demonstrates this for N = 1 and N = 3). To compute the
volution of the saddle point fluctuation in Section 2.2 we choose
 = 2 and solve equation (A1) with the initial conditions 

i = δ∗
lin ,R lin 

D( z i ) , δ̇i = δi H( z i ) , (A2) 

here z i is a redshift chosen during matter domination. (In fact, in
ur calculation of D ( z) we set the radiation density �r to zero and
hen choose z i = 4000.) 
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PPENDIX  B:  C Y L I N D R I C A L  AV ER AG E  O F  

H E  SQUARED  LINEAR  SADDLE  P O I N T  

djusting the results of Valageas ( 2002a ) and Friedrich et al. ( 2020 )
o cylindrical filters, the saddle point configuration of the linear 
ensity contrast, δ∗

lin , filtered with a cylindrical aperture of radius R
s given by 

∗
lin ,R = δ∗

lin ,R lin 

〈 δlin ,R δlin ,R lin 〉 
〈 δ2 

lin ,R lin 
〉 . (B1) 

ere we have assumed Gaussian initial conditions (see Friedrich 
t al. 2020 , for general non-Gaussian initial conditions) and we have
et λh = 0, which is the case that is of interest for the calculation of
 δhalo | δm 

〉 (cf. equation (5)). 
At any point r the saddle point configuration is then given by 

∗
lin ( r ) = δ∗

lin ,r + 

r 

2 

d δ∗
lin ,R ′ 

d R 

′ 

∣∣∣∣
R ′ = r 

. (B2) 

n equation (19) we need to know the average of δ∗
lin ( r ) 

2 in cylindrical
pertures. This average can be calculated as 

 δ∗
lin 

2 ] R lin = 

2 

R 

2 
lin 

∫ R lin 

0 
d r r 

{
δ∗

lin ,r + 

r 

2 

d δ∗
lin ,R ′ 

d R 

′ 

∣∣∣∣
R ′ = r 

}2 

. (B3) 

n Fig. 1 we show that on the scales we are interested in, this full
omputation is well approximated by simply squaring the cylindri- 
ally averaged saddle point configuration. This approximation will 
ias our values of quadratic Lagrangian bias by a couple of per cent
rt. other measures of bias, which does not significantly affect the 

onclusions of our study. 

PPENDIX  C :  C O M PA R I N G  T H E  MASS  

U N C T I O N S  O F  QU IJ OTE  A N D  T 1 7  

n Fig. C1 we compare the mass function n ( M vir ) of the two different
-body data sets considered in Section 4.3 at z = 0.5 (Quijote) and
 = 0.476 (T17). Our reason for using M vir is that we do not have
 200b available for Quijote. The differences in the mass functions 

re likely caused by the different cosmology of the simulations –
 �m 

, �b , σ 8 , n s , h ) = (0.3175, 0.049, 0.834, 0.9624, 0.6711) for
uijote and (0.279, 0.046, 0.82, 0.97, 0.7) for T17. We think that

his difference in cosmology and the mass function is at least in part
esponsible for the differences in shot-noise behaviour of the two 
ata sets that we observed in Section 4.3. 

igure C1. Upper panel: The mass function n ( M vir ) of the two different
-body data sets considered in Section 4.3 at z = 0.5 (Quijote) and z = 0.476

T17). We are only plotting n ( M vir ) abo v e the mass cut of M vir = 6.986 ·
0 12 M �/ h that we considered in that section. Lower panel: Ratio of the mass
unctions in the two simulations. 
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