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On Explaining Decision Trees

Decision trees (DTs) epitomize what have become to be known as interpretable machine learning (ML) models. This is informally motivated by paths in DTs being often much smaller than the total number of features. This paper shows that in some settings DTs can hardly be deemed interpretable, with paths in a DT being arbitrarily larger than a PI-explanation, i.e. a subset-minimal set of feature values that entails the prediction. As a result, the paper proposes a novel model for computing PI-explanations of DTs, which enables computing one PI-explanation in polynomial time. Moreover, it is shown that enumeration of PI-explanations can be reduced to the enumeration of minimal hitting sets. Experimental results were obtained on a wide range of publicly available datasets with well-known DT-learning tools, and confirm that in most cases DTs have paths that are proper supersets of PI-explanations.

.

Introduction

Decision trees (DTs) are well known machine learning (ML) models, studied since at least the 1970s [START_REF] Garey | Optimal binary identification procedures[END_REF][START_REF] Hyafil | Constructing optimal binary decision trees is np-complete[END_REF][START_REF] Breiman | Classification and Regression Trees[END_REF][START_REF] Quinlan | Induction of decision trees[END_REF][START_REF] Rivest | Learning decision lists[END_REF]. DTs embody what is widely regarded as an interpretable ML model [START_REF] Freitas | Comprehensible classification models: a position paper[END_REF][START_REF] Ribeiro | Model-agnostic interpretability of machine learning[END_REF][START_REF] Montavon | Methods for interpreting and understanding deep neural networks[END_REF][START_REF] Samek | Explainable AI: Interpreting, Explaining and Visualizing Deep Learning[END_REF][START_REF] Molnar | Interpretable Machine Learning[END_REF][START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF][START_REF] Guidotti | A survey of methods for explaining black box models[END_REF][START_REF] Xu | Explainable AI: A brief survey on history, research areas, approaches and challenges[END_REF][START_REF] Silva | Optimization methods for interpretable differentiable decision trees applied to reinforcement learning[END_REF] 1 . Motivated by this perception, there has been extensive work on learning DTs (and related logic ML models) with properties deemed important for interpretability, e.g. number of nodes, maximum/average depth, etc. [START_REF] Aglin | PyDL8.5: a library for learning optimal decision trees[END_REF][START_REF] Verhaeghe | Learning optimal decision trees using constraint programming[END_REF][START_REF] Hu | Learning optimal decision trees with MaxSAT and its integration in adaboost[END_REF][START_REF] Janota | SAT-based encodings for optimal decision trees with explicit paths[END_REF][START_REF] Aglin | Learning optimal decision trees using caching branchand-bound search[END_REF][START_REF] Avellaneda | Efficient inference of optimal decision trees[END_REF][START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF][START_REF] Holzinger | Causability and explainability of artificial intelligence in medicine[END_REF][START_REF] Hu | Optimal sparse decision trees[END_REF][START_REF] Verwer | Learning optimal classification trees using a binary linear program formulation[END_REF][START_REF] Verhaeghe | Learning optimal decision trees using constraint programming[END_REF][START_REF] Rudin | Learning customized and optimized lists of rules with mathematical programming[END_REF][START_REF] Narodytska | Learning optimal decision trees with SAT[END_REF][START_REF] Chen | An optimization approach to learning falling rule lists[END_REF][START_REF] Angelino | Learning certifiably optimal rule lists for categorical data[END_REF][START_REF] Wang | A bayesian framework for learning rule sets for interpretable classification[END_REF][START_REF] Lakkaraju | Interpretable & explorable approximations of black box models[END_REF][START_REF] Angelino | Learning certifiably optimal rule lists[END_REF][START_REF] Yang | Scalable bayesian rule lists[END_REF][START_REF] Verwer | Learning decision trees with flexible constraints and objectives using integer optimization[END_REF][START_REF] Bertsimas | Optimal classification trees[END_REF][START_REF] Lakkaraju | Interpretable decision sets: A joint framework for description and prediction[END_REF][START_REF] Wang | Bayesian rule sets for interpretable classification[END_REF][START_REF] Wang | Falling rule lists[END_REF][START_REF] Letham | An interpretable stroke prediction model using rules and bayesian analysis[END_REF][START_REF] Nijssen | Optimal constraint-based decision tree induction from itemset lattices[END_REF][START_REF] Bessiere | Minimising decision tree size as combinatorial optimisation[END_REF][START_REF] Nijssen | Mining optimal decision trees from itemset lattices[END_REF] 2 . Moreover, there has been work on distilling or approximating complex ML models with (soft) decision trees [START_REF] Frosst | Distilling a neural network into a soft decision tree[END_REF][START_REF] Bastani | Interpreting blackbox models via model extraction[END_REF][START_REF] Bastani | Interpretability via model extraction[END_REF][START_REF] Wu | Beyond sparsity: Tree regularization of deep models for interpretability[END_REF][START_REF] Wu | Optimizing for interpretability in deep neural networks with tree regularization[END_REF][START_REF] Roth | Conservative Q-improvement: Reinforcement learning for an interpretable decision-tree policy[END_REF][START_REF] Wu | Regional tree regularization for interpretability in deep neural networks[END_REF]. Nevertheless, recent work highlights that interpretability should correlate with how shallow DTs are [START_REF] Lipton | The mythos of model interpretability[END_REF][START_REF] Montavon | Methods for interpreting and understanding deep neural networks[END_REF].

In contrast with earlier work, this paper investigates the limits of interpretability of DTs. Concretely, the paper proposes Boolean functions for which a minimal DT contains paths with a number of literals that is arbitrarily larger (growing with the number of features) than a PI-explanation 3 of constant size. Experimental results demonstrate that for widely used tools for constructing DT classifiers, the resulting DTs often contain paths that are proper supersets of PI-explanations (which we refer as explanationredundant paths, in possibly irredundant DTs). Perhaps more importantly, for a significant number of datasets, and for the obtained DTs, most of their paths are explanationredundant. The results also indicate that for some DTs, as much as 98% of feature space will be explained by some path that is explanation-redundant. Motivated by these negative results, we propose a hitting set formulation for computing PI-explanations of DTs, distinguishing explanations restricted to literals in a tree path, and explanations unrestricted to literals in a tree path. In addition, we propose a polynomial time algorithm for computing a single PI-explanation for any given instance. Finally, the paper reduces enumeration of PI-explanations of DTs to the problem of enumerating minimal hitting sets (MHSes), and proposes a solution based on iterative calls to an NP oracle (e.g. SAT or a 0-1 ILP) oracle.

The paper is structured as follows. Section 2 introduces the notation and definitions used in the remainder of the paper. Section 3 studies functions that elicit poor DT interpretability. Section 4 proposes a polynomial-time algorithm for computing a single PI-explanation for a DT. Section 5 proposes a solution for enumerating PI-explanations of DTs, by reducing the problem to the computation of MHSes. Section 6 studies the DTs obtained with two state-of-the-art tools, on publicly available datasets, and shows that paths in learned decision trees are often proper supersets of PI-explanations. Moreover, the experimental results confirm that run times for extracting PI-explanations are negligible. Finally, Section 7 concludes the paper.

Preliminaries

Classification problems. We consider a classification problem defined on a set of features F = {1, . . . , n}, where each feature i takes values from a (categorical) domain D i 4 , and n denotes the number of features. Feature space is defined by F = D 1 × D 2 × . . . × D n , each defining the range of (categorical) values of each feature x i . To refer to an arbitrary point in feature space we use the notation x = (x 1 , . . . , x n ), whereas to refer to a concrete point in feature space we use the notation v = (v 1 , . . . , v n ), with v i ∈ D i , i = 1, . . . , n. We consider a binary classification problem, with two classes K = { , ⊕} 5 . (For simplicity, we will often use 0 for and 1 for ⊕.) An instance (or example) denotes a pair (v, π), where v ∈ F and π ∈ K. A machine learning model computes a function µ that maps the feature space into the set of classes: µ : F → K. To train an ML model (in our case we are interested in DTs), we start from a set of examples E = {e 1 , . . . , e m }, where each e j = (v j , π j ), such that v j ∈ F and π j ∈ K, and m is the number of examples.

Decision trees.

A decision tree T is a directed acyclic graph having at most one path between every pair of nodes. T has a root node, characterized by having no incoming edges. All other nodes have one incoming edge. We consider univariate decision trees (as opposed to multivariate decision trees [START_REF] Brodley | Multivariate decision trees[END_REF]); hence, a non-terminal node is associated with a single feature x i , and each outgoing edge is associated with one (or more) values from D i . Each terminal node is associated with a value of K. An example of a decision tree is shown in Figure 2. The number of nodes in a DT is r. When |K| = 2, a tree is characterized by two sets of paths, where each path starts at the root and ends at a terminal node. The set P = {P 1 , . . . , P k 1 } denotes the paths ending in a ⊕ prediction. The set Q = {Q 1 , . . . , Q k 2 } denotes the paths ending in a prediction. We will also use R = P ∪ Q. A literal is of the form x i 1 v i , where 1 ∈ {=, =}6 . x i is a variable that denotes the value taken by feature i, whereas v i ∈ D i is a constant. To model the operation of some DT learning tools [START_REF] Utgoff | Decision tree induction based on efficient tree restructuring[END_REF], we allow generalized literals of the form x i ∈ S i , with S i D i , such that the literal is consistent if the feature is assigned a value in S i . Given this generalization, DTs correspond to multi-edge decision trees [START_REF] Appuswamy | Network coding for computing: Cut-set bounds[END_REF]. Moreover, two literals are inconsistent if they cause the feature to take values that are inconsistent. For example, the literals (x 1 = 0) and (x 1 = 1) are inconsistent.

Each path in T is associated with a consistent conjunction of literals, denoting the values assigned to the features so as to reach the terminal node in the path. We will represent the set of literals of some tree path by L(R k ), where R k is either a path in P or Q. Each path in the tree entails the prediction represented by path's terminal node. Let π denote the prediction associated with path R k . Then, ∀(x ∈ F).

(x i 1v i )∈L(R k ) (x i 1 v i ) →(µ(x) = π) (1) 
where x = (x 1 , . . . , x i , . . . , x n ) and π ∈ { , ⊕}. Any pair of paths in R must have at least one pair of inconsistent literals.

Interpretability & DTs. Interpretability is generally regarded as a subjective concept, without a rigorous definition [START_REF] Lipton | The mythos of model interpretability[END_REF], albeit different authors have proposed different requirements for interpretability [START_REF] Lipton | The mythos of model interpretability[END_REF][START_REF] Sokol | Desiderata for interpretability: Explaining decision tree predictions with counterfactuals[END_REF]. Throughout this paper, we associate interpretability with irreducible sets of feature-value pairs that are sufficient for the prediction 7 . Moreover, as argued in Section 1, it is generally accepted that DTs epitomize interpretability. Nevertheless, there is recent work that relates DT interpretability with DTs being shallow [START_REF] Lipton | The mythos of model interpretability[END_REF][START_REF] Montavon | Methods for interpreting and understanding deep neural networks[END_REF], but also work that proposes counterfactual explanations for meeting interpretability desiderata for DTs [START_REF] Sokol | Desiderata for interpretability: Explaining decision tree predictions with counterfactuals[END_REF].

PI-explanations.

The paper uses the definition of PI-explanation [START_REF] Shih | A symbolic approach to explaining bayesian network classifiers[END_REF], based on prime implicants of some decision function. Let us consider some ML model, computing a classification function µ on feature space F, a point v ∈ F, with prediction π = µ(v), and let E denote a set of literals consistent with v (and defined on features variables x).

We say that E is a PI-explanation for π given v, if the set of literals E entails the prediction, and any proper subset of literals of E does not entail the prediction. Formally,

x 1 1 x 2 1 0 1 0 1 0 (a) DT for f (x 1 , x 2 ) = x 1 ∨ x 2 x 1 x 3 0 x 4 0 1 x 2 x 3 0 x 4 0 1 1 0 1 (b) DT for f (x 1 , . . . , x n ) = n/2 i=1 x 2i-1 ∧ x 2i , with n = 4
Fig. 1: Example DTs the following conditions hold:

∀(x ∈ F). l i ∈E (l i ) →(µ(x) = π) (2a) 
∀(E E)∃(x ∈ F).

l i ∈E (l i ) ∧ (µ(x) = π) (2b) 
Given a DT T and some path R k , associated with some prediction π, we say that path R k is explanation-redundant (or simply redundant) if R k is not a PI-explanation of π given the ML model T . If we associate DT paths with instance explanations, then path explanation-redundancy will manifest itself in instance explanations. The concept of explanation-redundancy is illustrated in Example 1.

Example 1. Consider the DT in Figure 1a, for function f (x 1 , x 2 ) = x 1 ∨ x 2 , and instance (0, 1). The path corresponds to the explanation {(x 1 , 0), (x 2 , 1)} for prediction f (0, 1) = 1. Clearly, this path is explanation-redundant, as a PI-explanation for prediction 1 is (x 2 , 1) (as is readily concluded from the function definition). As a less abstract example, we observe that the tree in Figure 1a also models the example DT used in [78, Ch. 01,page 5]8 , with x 1 denoting "is y > 0.73?", x 2 denoting "is x > 0.64?", class 1 denoting cross, and class 0 denoting circle. Hence, a PI-explanation for the instance (no,yes) with prediction "cross" is yes to question "is x > 0.64?", independently of the answer to question "is y > 0.73?". Section 3 investigates explanationredundancy in greater detail.

Related work.

As referenced in Section 1, there exists a growing body of work on exploiting DTs for interpretability. To our best knowledge, the assessment of paths in DTs when compared to PI-explanations has not been investigated. Recent work [START_REF] Choi | On symbolically encoding the behavior of random forests[END_REF] outlines logical encodings of decision trees, but that is orthogonal to the work reported in this paper. In addition, there has been work on applying explainable AI (XAI) to decision trees [START_REF] Lundberg | From local explanations to global understanding with explainable AI for trees[END_REF], but with the focus of improving the quality of local (heuristic) explanations, where the goal is to relate a local approximate model against a reference model; hence there is no immediate relationship with PI-explanations.

Decision Trees May Not be Interpretable

This section shows that there exist Boolean functions for which a learned decision tree will exhibit paths containing all features, and for which a PI-explanation has a constant size. Thus, if we associate explanations with DT paths, there will be explanations that are arbitraly larger (on n) than the actual (constant-size) PI-explanation. As the experimental results demonstrate, and as discussed later in this section, it is fairly frequent in practice for DT paths to include more literals that those in the associated PI-explanations.

Proposition 1. There exist functions for which an irreducible DT contains paths which are a proper superset of a PI-explanation. Furthermore, the difference in the number of literals is nk, where n is the number of features and k is the (constant) size of a PI-explanation.

Proof. Let us consider the following Boolean function f : {0, 1} n → {0, 1} (with even n): ) Furthermore, it is immediate to conclude that the decision tree shown is irreducible (i.e. no nodes can be removed while keeping accuracy). Moreover, let the target instance be (v, π) = ((1, 0, 1, 1), 1). In this case, the explanation (i.e. the path) extracted from the DT is

f (x 1 , x 2 , . . . , x n-1 , x n ) = n/2 i=1 x 2i-1 ∧ x 2i (3) 
(x 1 = 1) ∧ (x 2 = 0) ∧ (x 3 = 1) ∧ (x 4 = 1)
, which guarantees that the prediction is 1. However, it is immediate from the function definition (3), that (x 3 = 1) ∧ (x 4 = 1) entails f (x 1 , x 2 , x 3 , x 4 ) = 1, independently of the value assigned to x 1 and x 2 , i.e. in this case the PI-explanation is (x 3 = 1) ∧ (x 4 = 1). The same analysis generalizes to an arbitrary number of variables. For an instance of the form ((1, 0, 1, 0, . . . , 1, 0, 1, 1), 1), the DT would indicate an explanation with n literals, whereas the PI-explanation has size 2, namely (x n-1 = 1) ∧ (x n = 1).

It should be noted that the issue above does not depend on whether the DT is redundant (e.g. in the cases shown, the DTs are not redundant); the reported issues result solely from a fundamental limitation of DTs for succinctly representing certain classes of functions 10 . Figure 2 exemplifies that redundancy may occur even in very simple DTs. The DT was obtained with the optimal decision tree package from Feature Name Domain Values Meaning Interpretable AI [10,28] 11 , where the and the leftmost ⊕ are predicted with 75% and 83.3% confidence, respectively. (The branch annotated with 1, 2 denotes that x 1 ∈ {1, 2}.) Let the instance be (Humidity, Outlook, Wind) = (high, overcast, weak). As an explanation we could use the literals in the tree path, i.e. {(Humidity = high), (Outlook = overcast)}. However, careful analysis allows us to conclude that {(Outlook = overcast)} suffices to entail the prediction ⊕, i.e. as long as 'Outlook' is 'overcast', the prediction will be ⊕ independently of the value of 'Humidity'.

x 0 Humidity D 0 {0, 1} normal,high x 1 Outlook D 1 {0, 1, 2} overcast,rain,sunny x 2 Wind D 2 {0, 1} strong,weak ( 

Extracting PI-Explanations from DTs

Deciding explanation-redundancy with NP oracles. Let us consider a decision tree T , with sets of paths P and Q, denoting respectively the paths with prediction ⊕ and . Let us also consider an instance (v, ⊕), with v ∈ F and ⊕ ∈ K (the case for would be similar), and let P k denote that path consistent with v. To decide whether P k exhibits explanation-redundancy, one possible solution is to use an NP oracle.

For an instance consistent with P k , we can model the prediction of the decision tree (for prediction ⊕) as follows:

l j ∈L(P k ) (l j ) P i ∈P l s ∈L(P i ) (l s ) (4) 
Hence, we require the unsatisfiability of,

l j ∈L(P k ) (l j ) ∧ P i ∈P l s ∈L(P i ) (¬l s ) (5) 
Now, if there exists a literal l j that can be dropped from P k such that unsatisfiability is preserved, then P k exhibits explanation-redundancy. Hence, we need at most m calls to an NP oracle to decide explanation-redundancy, where m is the number of features.

(This high-level procedure was proposed in earlier work in more general terms [START_REF] Ignatiev | Abduction-based explanations for machine learning models[END_REF].) However, the special structure of a DT, makes the problem far simpler, and can be solved in polynomial time, as shown next.

Deciding explanation-redundancy in linear time. Observe that ( 4) is preserved iff at least one of the features with a literal in P k has another literal that is false along any path that yields prediction . Thus, there is explanation-redundancy if there exists a literal from P k that can be dropped while the remaining literals in P k still guarantee that at least one literal is false along any path in Q. Before detailing a polynomial time algorithm for deciding explanation-redundancy, let us consider a concrete example.

Example 2. For the DT from Figure 1b we have,

P = {P 1 , P 2 , P 3 } L(P 1 ) = {(x 1 = 0), (x 3 = 1), (x 4 = 1)} L(P 2 ) = {(x 1 = 1), (x 2 = 0), (x 3 = 1), (x 4 = 1)} L(P 3 ) = {(x 1 = 1), (x 2 = 1)} Q = {Q 1 , Q 2 , Q 3 , Q 4 } L(Q 1 ) = {(x 1 = 0), (x 3 = 0)} L(Q 2 ) = {(x 1 = 0), (x 3 = 1), (x 4 = 0)} L(Q 3 ) = {(x 1 = 1), (x 2 = 0), (x 3 = 0)} L(Q 4 ) = {(x 1 = 1), (x 2 = 0), (x 3 = 1), (x 4 = 0)}
We consider path P 2 (and so any feature space point consistent with P 2 ). We can readily conclude that if literal (x 1 = 1) is removed from the literals of P 2 , all the paths in Q remain inconsistent. This is true for example because (x 3 = 1) and (x 4 = 1). Similarly, we could drop literal (x 2 = 0).

The example above naturally suggests a quadratic time (on the size n of the decision tree) algorithm to decide whether a tree path exhibits explanation-redundancy. Concretely, for each literal in P k , we analyze each path in Q whether it is still inconsistent. If all paths in Q remain inconsistent, then the literal can be dropped, and the path exhibits explanation-redundancy. Nevertheless, it is possible to devise a more efficient solution, one that runs in linear time.

The proposed algorithm analyzes the features containing literals in P i 12 , in turn allowing each to be declared universal, i.e. the feature can take any value. For each feature f j , the algorithm recursively analyzes paths with a different prediction, checking whether each such path is inconsistent, due to some other literal. If that is the case, the path P i is explanation-redundant, at least due to feature f j . The algorithm analyzes the internal nodes of P i in reverse order, starting from deepest non-terminal node in the path. (For now, we assume that P i has at most one literal on any given feature; this restriction will be lifted below.) For each non-terminal node p j ∈ P i , the associated feature f j is made universal, i.e. it can take any value. Starting at p j , all child nodes not in P i are recursively visited, checking for a consistent sub-path (starting at p j ) to a terminal node with prediction . If such path exists, then f j cannot be made universal, and so it cannot be discarded from a PI-explanation. Otherwise, all sub-paths to prediction are inconsistent, and so the value of f j is irrelevant for the prediction. A path is declared redundant iff at least one feature is declared redundant. With filtering (i.e. rec = 0), each tree node is analyzed at most once, and so the amortized Algorithm 1: Deciding path redundancy ReportPath(R k , isPathRed) ; run time of the algorithm over all features is O(|T |). If a feature is tested more than once along P i , the algorithm requires minor modifications. In this case, a decision about whether feature f i can take any value, can only be made once all nodes involving f i have been analyzed and, for all such nodes, the feature f i has been declared redundant. Algorithms 1 and 2 summarize the two main steps of the proposed algorithm. The auxiliar functions serve to test/set whether a feature is universal (i.e. whether it can take any value of its domain) (resp. Universal/SetUniversal), aggregate the nodes associated with a given feature along some path (AggrFeatureNodes), list the nodes in a given path (PathNodes), get the prediction of some path (Prediction), list the child nodes of some node in the tree (ChildNodes), get the feature associated with a node (Feature), check whether some node is terminal (IsTerminal) and, finally, whether the sub-paths starting at some node can reach a prediction other than the one associated with the target path R k (HasPaths). Finally, the argument rec of CHKDOWN is a flag that serves to avoid re-visiting already visited paths. For removing redundant features this filtering does not apply, as clarified below.

Function DECIDEPATHREDUNDANCY(T ) 1 foreach R k ∈ T do 2 A ← AggrFeatureNodes(T , R k ) ; 3 N ← PathNodes(T , R k ) ; 4 isPathRed ← false ; 5 foreach f ∈ PathFeatures(T , R k ) do 6 isFeatRed ← true ; 7 SetUniversal(T , f ) ; 8 foreach n ∈ A( f ) do 9 if not CHKDOWN(T , N , R k , n,
Example 3. We consider again the DT from Figure 1b and path P 2 , where L(P 2 ) = {(x 1 = 1), (x 2 = 0), (x 3 = 1), (x 4 = 1)}, and prediction 1. The nodes of P 2 are analyzed in the order x 4 , x 3 , x 2 , x 1 . Clearly, the sub-path consistent with (x 4 = 0) yields prediction 0. Hence, feature x 4 (associated with literal x 4 = 1) is not redundant. For x 3 , we consider (only) the sub-path corresponding to (x 3 = 0). Again, the prediction is 0, and so the feature x 3 is not redundant. For feature x 2 , the only sub-path corresponds to (x 2 = 1), for which the prediction remains unchanged. Hence, x 2 can take any value, and so it is declared redundant. As a result, P 2 is also declared redundant. It is helpful to analyze the execution of the algorithm for x 1 . The sub-paths consistent with (x 1 = 1) correspond to P 1 , Q 1 and Q 2 . Hence, due to Q 1 and Q 2 , it might seem that x 1 might Algorithm 2: Inconsistent sub-path lookup be irredundant. However, both Q 1 and Q 2 are inconsistent with other non-redundant literals of P 2 , concretely x 3 = 1 and x 4 = 1. Hence, x 1 is declared redundant.

Function CHKDOWN(T , N , R k , n, rec) 1 π ← Prediction(T , R k ) ; 2 C ← ChildNodes(T , n) ;
Extracting one PI-explanation. One approach to find a PI-explanation is to use recent work based on compilation [START_REF] Shih | A symbolic approach to explaining bayesian network classifiers[END_REF] or iterative entailment checks with an NP oracle [START_REF] Ignatiev | Abduction-based explanations for machine learning models[END_REF]. However, a computationally simpler solution is based on the ideas described above.

Features are analyzed as proposed in Algorithms 1 and 2. However, a feature already declared as redundant signifies that it can take any value from its domain. This may allow inconsistent paths with prediction to become consistent, thus preventing some other feature from being declared redundant. One consequence is that the filtering of paths exploited in Algorithms 1 and 2 is not longer applicable. Concretely, the analysis of each feature requires visiting all of the sub-paths starting in any of the path nodes testing the feature. Algorithm 2 can still be used, in this case by setting rec to 1, i.e. all sub-paths will be analyzed. The worst-case complexity of the resulting algorithm is O(|T |) for each feature, thus yielding O(|T | 2 ) for the complete algorithm. Finally, we can conclude that an algorithm for finding one PI-explanation for each path in T runs in O(|T | 3 ).

Example 4. We consider the DT from Figure 1b and analyze path P 2 (and so any instance consistent with P 2 ). Literals are analyzed in reverse path order. (In this case, aggregation of nodes by feature is optional, as long as a decision with respect to a feature is delayed until all nodes associated with the feature have been analyzed, and keeping track whether non-irredundancy applies to all nodes.) As before, the literal (x 4 = 1) is not redundant; otherwise Q 4 would be consistent. Similarly, the literal (x 3 = 1) is not redundant; otherwise Q 3 would be consistent. In contrast, the feature x 2 can be made universal, as this does not change the prediction, i.e. P 2 is consistent with the prediction, and the other literals (x 3 = 1) and (x 4 = 1) block the paths in Q. A similar analysis applies in the case of feature x 1 . In this case, the algorithm analyzes all paths (since Algorithm 2 is invoked with rec = 1). Due to the literals (x 3 = 1) and (x 4 = 1), all paths in Q are inconsistent. As a result, feature x 1 can be declared redundant, and a PI-explanation for P 2 is thus {(x 3 = 1), (x 4 = 1)}.

Path-restricted vs. path-unrestricted explanations. For the algorithms described earlier we also need to decide the set of literals to consider. One option is the set of literals specified by the instance. Another option is the set of literals specific to the tree path consistent with the instance. If we are interested in finding PI-explanations for the prediction, given the instance, then we should consider the literals specified by the instance. However, if we want to report explanations that relate with the tree path consistent with the instance, then we should consider only the literals in the tree path. Clearly, path-restricted PI-explanations are a subset of path-unrestricted PI-explanations. The following example illustrates the differences between the two approaches.

Example 5. We consider the example DT shown in Figure 3. Given the point (x 1 , x 2 , x 3 , x 4 ) = (1, 1, 1, 1), the consistent path in the DT consists of the literals {(x 1 = 1), (x 3 = 1)}. The only PI-explanation that is restricted to this path is the path itself: {(x 1 = 1), (x 3 = 1)}. However, if we enable path-unrestricted explanations, we will also obtain the PI-explanation {(x 2 = 1), (x 3 = 1), (x 4 = 1)}, which is not even shown as (part of) a path in the decision tree.

Enumeration of PI-Explanations

The enumeration of multiple (or all) PI-explanations can help human decision makers to develop a better understanding of some prediction, but also of the underlying ML model. Recent work [START_REF] Shih | A symbolic approach to explaining bayesian network classifiers[END_REF] compiles a decision function into a Sentential Decision Diagram (SDD), from which the enumeration of PI-explanations can be instrumented. Moreover, from a compiled representation of the PI-explanations, each PI-explanation can be reported in polynomial time. The downside is that these representation are worstcase exponential in the size of the original ML model. Another line of work for computing PI-explanations is based on iterative entailment checks using an NP-oracle [START_REF] Ignatiev | Abduction-based explanations for machine learning models[END_REF]. However, this recent work does not address the enumeration of PI-explanations. This section develops a solution for the enumeration of PI-explanations in the case of DTs, by reduction to the enumeration of minimal hitting sets (MHSes).

We consider the situation where the prediction is ⊕ for some point v in feature space, which is consistent with some tree path P k ∈ P. As a result, each path in Q is inconsistent with at least one literal, among those either associated with v or with P k . Let the set of literals considered be R. For each path Q s ∈ Q, let L s denote the set of literals in R that are inconsistent with Q s . For a subset S of R to entail the prediction, it must hit each set of literals L s . Among the possible sets S, each subset-minimal set is a PI-explanation. Thus, we can list the PI-explanations (starting from the literals taken from v or from P k ) by enumerating minimal hitting sets.

Example 6. For P 2 in the DT of Figure 1, the sets to hit are:

Q 1 : {(x 1 = 1), (x 3 = 1)} Q 2 : {(x 1 = 1), (x 4 = 1)} Q 3 : {(x 3 = 1)} Q 4 : {(x 4 = 1)}
In this case, the only MHS is {(x 3 = 1), (x 4 = 1)}, representing a single PI-explanation {(x 3 = 1), (x 4 = 1)}.

Example 7. For the DT in Figure 3, and by considering the literals from the point v = (1, 1, 1, 1), the sets to hit are then:

Q 1 : {(x 1 = 1), (x 2 = 1)} Q 2 : {(x 1 = 1), (x 4 = 1)} Q 3 : {(x 3 = 1)}
The MHSes are {(x 1 = 1), (x 3 = 1)} and {(x 2 = 1), (x 4 = 1), (x 3 = 1)}, each denoting a path-unrestricted PI-explanation.

Experimental Results

This section presents a summary of experimental evaluation of the explanation-redundancy of two state-of-the-art heuristic DT classifiers. Concretely, we use the well-known DT training tools ITI (Incremental Tree Induction) [START_REF] Utgoff | Decision tree induction based on efficient tree restructuring[END_REF][START_REF]Incremental Decision Tree Induction[END_REF] and IAI (Interpretable AI) [START_REF] Bertsimas | Optimal classification trees[END_REF][START_REF]Interpretable AI[END_REF]. ITI is run with the pruning option enabled, which helps avoiding overfitting and aims at constructing shallow DTs. To enforce IAI to produce shallow DTs and achieve high accuracy, it is set to use the optimal tree classifier method with the maximal depth of 6 13 . The experiments consider datasets with categorical (non-binarized) data, which both ITI and IAI can handle 14 . The assessment is performed on a selection of 80 publicly available datasets, which originate from UCI Machine Learning Repository [START_REF]UCI Machine Learning Repository[END_REF], Penn Machine Learning Benchmarks [START_REF]Penn Machine Learning Benchmarks[END_REF], and OpenML repository [START_REF]OpenML: Machine learning, better, together[END_REF]. (Due to space restrictions, we report the results only for 30 datasets but the results shown extend to the complete benchmark set, and are included in the supplementary materials.) The number of features (data instances, resp.) in the benchmark suite vary from 2 to 118 (106 to 58000, resp.) with the average being 31.2 (6045.3, resp.). 13 Our results confirm that larger maximal depths would in most cases increase the percentage of redundant paths. A smaller maximal depth would not improve accuracy. 14 Other known DT learning tools, including scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF] and DL8.5 [START_REF] Aglin | Learning optimal decision trees using caching branchand-bound search[END_REF][START_REF] Aglin | PyDL8.5: a library for learning optimal decision trees[END_REF] The experiments are performed on a MacBook Pro with a Dual-Core Intel Core i5 2.3GHz CPU with 8GByte RAM running macOS Catalina. The polynomial-time explanationredundancy check and a single PI-explanation extraction proposed in Section 4 are implemented in Perl. (An implementation using the Glucose SAT solver was instrumental in validating the results, but for the DTs considered, it was in general slower by at least one order of magnitude.) Performance-wise, training DTs with IAI takes from 4sec to 2310sec with the average run time per dataset being 70sec. In contrast, the time spent on eliminating explanation-redundancy is negligible, taking from 0.026sec to 0.4sec per tree, with an average time of 0.06sec. ITI runs much faster that IAI and takes from 0.1sec to 2sec with 0.1sec on average; the elimination of explanation redundancy is slightly more time consuming than for IAI, taking from 0.025sec to 5.4sec with 0.29sec on average. This slowdown results from DTs learned with ITI being deeper on average, and features being tested multiple times.

The summary of results is detailed in Table 1. For each dataset, the table reports the number of features and also instances as #F and #S, respectively. Thereafter, it shows tree statistics for IAI and ITI, namely, tree depth D, number of nodes #N, test accuracy %A and number of paths #P. The percentage of explanation-redundant paths is given as %R while the percentage of data instances (measured for the entire feature space) covered by redundant paths is %C. Focusing solely on the explanation-redundant paths, a single PI-explanation is extracted and the average (min. or max., resp.) percentage of redundant literals per path is denoted by %avg (%m and %M, resp.). Observe that despite the shallowness of the trees produced by IAI and ITI, for the majority of datasets and with a few exceptions, the paths in trees trained by both tools exhibit significant explanation-redundancy. In particular, on average, 32.1% (46.9%, resp.) of paths are explanation-redundant for the trees obtained by IAI (ITI, resp.). For some DTs, obtained with either IAI and ITI, more than 85% of tree paths are redundant. Also, redundant paths of the trees of IAI (ITI, resp.) cover on average 20.1% (37.7%, resp.) of feature space. Moreover, in some cases, up to 89% and 98% of the entire feature space is covered by the redundant paths for IAI and ITI, respectively. This means that DTs produced by IAI and ITI are unable to provide a user with a succinct explanation for the vast majority of data instances. In addition, the average number of redundant literals in redundant paths for both IAI and ITI varies from 16% to 65%, but for some DTs it exceeds 80%.

To summarize, the numbers shown for the selected datasets and for the state-ofthe-art DT training tools contrast the common belief in the inherent interpretability of decision tree classifiers. Perhaps as importantly, the performance figures confirm that the elimination of explanation-redundancy in the DTs produced with available tools has negligible computational cost.

Conclusions

Decision trees are most often associated with interpretability. This paper shows that in some situations, paths in a decision tree may include many literals that are irrelevant for an explanation, and that this holds true even for irreducible decision trees. Moreover, the paper proposes a linear time test to decide whether a decision tree path contains irrelevant literals, and uses such test to devise a polynomial time algorithm for computing one PI-explanation of a decision tree. Furthermore, the paper shows the connection between enumerating the PI-explanations of DTs and the enumeration of minimal hitting sets. Experimental results obtained on publicly available datasets, using state-of-theart decision tree learners, show that in practice induced paths in decision trees may contain irrelevant literals, even when the decision tree is irreducible. For the decision trees considered in the experiments, the run times of the proposed algorithms are either negligible or comparable to tree learning times. path (Patrons=Ful and Hungry=Yes and Type=Frencg) is explanation-irredundant.

path (Patrons=Ful and Hungry=Yes and Type=Thai and Fri/Sat=Yes) is explanationirredundant. path (Patrons=Ful and Hungry=Yes and Type=Burger) is explanation-irredundant.

As result, 2 out of 8 paths exhibit explanation-redundancy. Thus, we conclude that the DT exhibits 25% of explanation-redundancy.

A.2 Analysis of DT from Poole&Mackworth's Book

Decision Tree This case study considers the decision tree shown in Figure 5, taken from [49, Ch. 07,page 298]. The example consists in predicting whether a person reads an article posted to a bulletin board given properties of the article. There are three features in the decision tree:

-Author: whether the author is known or not.

-Thread: whether the article started a new thread or was a follow-up.

-Length: the length of the article (short or long). Redundancy Analysis Results Analysis of the paths in the DT shown in Figure 5 yields the following results.

path (Length=long) is explanation-irredundant.

path (Length=short and Thread=follow-up and Author=unknown) is explanationredundant. If values of Thread and Author are fixed, then the value of Length is irrelevant for the prediction. path (Length=short and Thread=new) is explanation-irredundant.

path (Length=short and Thread=follow-up and Author=known) is explanation-redundant.

If the values of Length and Author are fixed, then the value of Thread is irrelevant for the prediction. Accordingly, 2 out of 4 paths exhibit explanation-redundancy. Therefore, we say that the DT exhibit 50% of explanation-redundancy.

A.3 Analysis of DT from Z.-H. Zhou's book

Decision Tree This case study considers the decision tree shown in Figure 6, taken from [78, Ch. 01,page 5]. The example consists in predicting the type of a drawing, to be chosen among the classes cross and circle. Two features are used, namely:

x > 0.64 ∈ {Y, N}.

y > 0.73 ∈ {Y, N}.

Redundancy Analysis Results

Analysis of the paths in the DT shown in Figure 6 yields the following results.

path (y > 0.73) is explanation-irredundant.

path (y ≤ 0.73 and x > 0.64) is explanation-redundant. If the value of y is fixed, then the value of x is irrelevant for the prediction. path (y ≤ 0.73 and x ≤ 0.64) is explanation-irredundant.

As a result, 1 out of 3 paths exhibit explanation-redundancy. Thus, we say that the DT exhibits 33.33% of explanation-redundancy. Fig. 6: Example of decision tree from Zhou's book [START_REF] Zhou | Ensemble methods: foundations and algorithms[END_REF].

A.4 Additional Examples

It is interesting to note that the DTs used in a number of books and surveys exhibit explanation-redundancy. A non-exhaustive list of references includes [START_REF] Moret | Decision trees and diagrams[END_REF][START_REF] Breslow | Simplifying decision trees: A survey[END_REF][START_REF] Rokach | Top-down induction of decision trees classifiers -a survey[END_REF][START_REF] Rokach | Data Mining with Decision Trees -Theory and Applications[END_REF][START_REF] Russell | Artificial Intelligence -A Modern Approach[END_REF][START_REF] Flach | Machine Learning -The Art and Science of Algorithms that Make Sense of Data[END_REF][START_REF] Kotsiantis | Decision trees: a recent overview[END_REF][START_REF] Alpaydin | Machine Learning: The New AI[END_REF][START_REF] Bramer | Principles of Data Mining[END_REF][START_REF] Valdes | Mediboost: a patient stratification tool for interpretable decision making in the era of precision medicine[END_REF][START_REF] Poole | Artificial Intelligence -Foundations of Computational Agents[END_REF]. 

B Full Table of Results

For the case n = 4 ,

 4 different off-the-self DT learners will obtain the DT shown in Figure 1b. (To obtain the decision tree, we considered a dataset composed of all possible instances, and used ITI [64] 9 .
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 2 Fig. 2: Another Example DT

3 foreach c ∈ C do 4 if 6 if 8 g

 3468 c ∈ N and rec = 0 then continue; 5 if not HasPaths(T , c, π) then continue; IsTerminal(T , c) then 7 return false ; ← Feature(T , c) ; 9 if not Universal(T , g) then continue; 10 if not CHKDOWN(T , N , R k , c, rec) then 11 return false ; 12 return true;

Fig. 3 :

 3 Fig. 3: Path-restricted vs. path-unrestricted explanations

Fig. 4 :

 4 Fig. 4: Example of decision tree from Russel&Norvig's Book.

Fig. 5 :

 5 Fig. 5: Example of decision tree from Poole&Mackworth's Book.

Table 1 :

 1 can only handle numerical and binary features, respectively, and so could not be included in the experiments. Explanation-redundancy in decision trees obtained with IAI and ITI.

	Dataset	(#F	#S)				IAI									ITI			
			D #N %A #P %R %C %m %M %avg D	#N %A #P %R %C %m %M %avg
	adult	( 12	6061) 6	83	78 42 33	25	20	40	25	17	509	73	255 75	91	10	66	22
	anneal	( 38	886) 6	29	99 15 26	16	16	33	21	9	31 100	16 25	4	12	20	16
	backache	( 32	180) 4	17	72	9 33	39	25	33	30	3	9	91	5 80	87	50	66	54
	bank	( 19 36 293) 6 113	88 57	5	12	16	20	18	19 1467	86	734 69	64	7	63	27
	biodegradation ( 41	1052) 5	19	65 10 30	1	25	50	33	8	71	76	36 50	8	14	40	21
	cancer	( 9	449) 6	37	87 19 36	9	20	25	21	5	21	84	11 54	10	25	50	37
	car	( 6	1728) 6	43	96 22 86	89	20	80	45	11	57	98	29 65	41	16	50	30
	colic	( 22	357) 6	55	81 28 46	6	16	33	20	4	17	80	9 33	27	25	25	25
	compas	( 11	1155) 6	77	34 39 17	8	16	20	17	15	183	37	92 66	43	12	60	27
	contraceptive	( 9	1425) 6	99	49 50	8	2	20	60	37	17 385	48	193 27	32	12	66	21
	dermatology	( 34	366) 6	33	90 17 23	3	16	33	21	7	17	95	9 22	0	14	20	17
	divorce	( 54	150) 5	15	90	8 50	19	20	33	24	2	5	96	3 33	16	50	50	50
	german	( 21	1000) 6	25	61 13 38	10	20	40	29	10	99	72	50 46	13	12	40	22
	heart-c	( 13	302) 6	43	65 22 36	18	20	33	22	4	15	75	8 87	81	25	50	34
	heart-h	( 13	293) 6	37	59 19 31	4	20	40	24	8	25	77	13 61	60	20	50	32
	kr-vs-kp	( 36	3196) 6	49	96 25 80	75	16	60	33	13	67	99	34 79	43	7	70	35
	lending	( 9	5082) 6	45	73 23 73	80	16	50	25	14	507	65	254 69	80	12	75	25
	letter	( 16 18 668) 6 127	58 64	1	0	20	20	20	46 4857	68 2429	6	7	6	25	9
	lymphography ( 18	148) 6	61	76 31 35	25	16	33	21	6	21	86	11	9	0	16	16	16
	mortality	(118 13 442) 6 111	74 56	8	14	16	20	17	26 865	76	433 61	61	7	54	19
	mushroom	( 22	8124) 6	39 100 20 80	44	16	33	24	5	23 100	12 50	31	20	40	25
	pendigits	( 16 10 992) 6 121	88 61	0	0	-	-	-	38 937	85	469 25	86	6	25	11
	promoters	( 58	106) 1	3	90	2	0	0	-	-	-	3	9	81	5 20	14	33	33	33
	recidivism	( 15	3998) 6 105	61 53 28	22	16	33	18	15 611	51	306 53	38	9	44	16
	seismic bumps ( 18	2578) 6	37	89 19 42	19	20	33	24	8	39	93	20 60	79	20	60	42
	shuttle	( 9 58 000) 6	63	99 32 28	7	20	33	23	23 159	99	80 33	9	14	50	30
	soybean	( 35	623) 6	63	88 32	9	5	25	25	25	16	71	89	36 22	1	9	12	10
	spambase	( 57	4210) 6	63	75 32 37	12	16	33	19	15 143	91	72 76	98	7	58	25
	spect	( 22	228) 6	45	82 23 60	51	20	50	35	6	15	86	8 87	98	50	83	65
	splice	( 2	3178) 3	7	50	4	0	0	-	-	-	88 177	55	89	0	0	-	-	-

Table 2

 2 presents the experimental results obtained on an extended set of datasets.

	Dataset	(#F	#S)					IAI						
				D #N %A #P %R %C %m %M %avg D	#N
	IndiansDiabetes	8	768	6 33	67 17 35	2	20	25	21	21	67
	adult data	12 6061 6 83	78 42 33	25	20	40	25	17 509
	anneal	38	886	6 29	99 15 26	16	16	33	21	9	31
	appendicitis	7	106	2	7	68	4	0	0	-	-	-	3	7
	australian	14	690	6 45	61 23 17	8	20	33	23	7	33
	auto	25	202	6 33	53 17 23	1	16	33	23	10 47
	backache	32	180	4 17	72	9	33	39	25	33	30	3	9
	balance	4	625	6 93	81 47 61	41	25	50	27	12 105
	bank	19 36293 6 113 88 57	5	12	16	20	18	19 1467
	banknote	4	1348 3	9	67	5	20	0	66	66	66	35 71
	biodegradation	41 1052 5 19	65 10 30	1	25	50	33	8	71
	biomed	8	209	3	9	66	5	20	1	50	50	50	8	33
	breast-cancer	9	272	6 61	74 31 41	13	16	33	20	7	25
	bupa	6	341	6 47	62 24 29	5	20	33	25	24 49
	cancer	9	449	6 37	87 19 36	9	20	25	21	5	21
	car	6	1728 6 43	96 22 86	89	20	80	45	11 57
	cars	8	392	2	5	100 3	0	0	-	-	-	14	45
	cleveland-nominal	7	187	6 81	31 41 24	15	16	33	20	7	65
	cloud	7	108	3	9	31	5	0	0	-	-	-	10	21
	colic	22	357	6 55	81 28 46	6	16	33	20	4	17
	compas	11 1155 6 77	34 39 17	8	16	20	17	15 183

Table 2 :

 2 Explanation-redundancy in decision trees obtained with IAI and I

For simplicity, most of the examples in the paper consider D i {0, 1} (i.e. binary features).

The results in the paper are readily applicable to multiple classes; the case |K| = 2 is considered solely for simplicity.

The ideas described in the paper generalize to univariate DTs where features are either categorical or real-or integer-valued ordinal, and literals are of the form x i 1 v i , where 1 ∈ {<, ≤, =, =, ≥, >}. The paper's main results can be extended to more general settings, but that these are beyond the scope of the paper.

Clearly, these subsets should be succinct, as it is generally accepted that human decision makers are only able to understand explanations with a reasonably small number of features.

This DT is shown in the supplementary material.

ITI is available from https://www-lrn.cs.umass.edu/iti/. We considered a number of publicly available DT learners, and reached the same conclusions (in terms of path length) in all cases.

Indeed, it is well-known that DTs are not as succinct as decision lists (DLs)[START_REF] Rivest | Learning decision lists[END_REF] (and so not as succinct as decision sets (DSs)). This means that there exist functions that have succint DLs or DSs, but not DTs. Although not the focus of the paper, we conjecture that similar results can be obtained for DLs and for restricted cases of DSs, among those where DSs compute functions.

We used the well-known PlayTennis dataset[START_REF] Mitchell | Machine learning[END_REF].

As before, we assume a path P i with prediction ⊕.

A Case Studies

A.1 Analysis of DT from Russel&Norvig's Book Decision Tree This case study considers the decision tree (DT) shown in Figure 4, taken from [58, Ch. 18,page 702]. The example consists in deciding whether to wait for a table at a restaurant. Six features are used in the DT, namely:

-Alternate: whether there is a suitable alternative restaurant nearby.

-Bar: whether the restaurant has a comfortable bar area to wait in.

-Fri/Sat: true on Fridays and Saturdays.

-Hungry: whether the people are hungry.

-Patrons: how many people are in the restaurant (values are None, Some, and Full).

-Type: the kind of restaurant (French, Italian, Thai, or burger).