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Abstract
Random Forests (RFs) are among the most widely
used Machine Learning (ML) classifiers. Even
though RFs are not interpretable, there are no ded-
icated non-heuristic approaches for computing ex-
planations of RFs. Moreover, there is recent work
on polynomial algorithms for explaining ML mod-
els, including naive Bayes classifiers. Hence, one
question is whether finding explanations of RFs can
be solved in polynomial time. This paper answers
this question negatively, by proving that deciding
whether a set of literals is a PI-explanation of an RF
is DP-complete. Furthermore, the paper proposes
a propositional encoding for computing explana-
tions of RFs, thus enabling finding PI-explanations
with a SAT solver. This contrasts with earlier work
on explaining boosted trees (BTs) and neural net-
works (NNs), which requires encodings based on
SMT/MILP. Experimental results, obtained on a
wide range of publicly available datasets, demon-
strate that the proposed SAT-based approach scales
to RFs of sizes common in practical applications.
Perhaps more importantly, the experimental results
demonstrate that, for the vast majority of examples
considered, the SAT-based approach proposed in
this paper significantly outperforms existing heuris-
tic approaches.

1 Introduction
The recent successes of Machine Learning (ML), and the
forecast continued growth of ML-enabled applications, in-
cluding applications that impact human beings or that are
even safety critical, has raised the need for identifying ex-
planations for the predictions made by ML models. As
a result, recent years witnessed the rapid growth of the
field of explainable Artificial Intelligence (XAI) (see e.g.
[Guidotti et al., 2019; Li et al., 2018; Montavon et al., 2018;
Shih et al., 2018; Shih et al., 2019; Ribeiro et al., 2016;
Ribeiro et al., 2018; Ignatiev et al., 2019; Ignatiev, 2020;
Audemard et al., 2020; Ignatiev et al., 2020; Ignatiev and
Marques-Silva, 2021; Marques-Silva et al., 2021]). Unfortu-
nately, the most promising ML models, including neural net-
works or ensembles of classifiers, due to their size and intrin-

sic complexity, are generally accepted to be non-interpretable
(or black-box), with the understanding that the predictions
made by such black-box models cannot be understood by hu-
man decision makers.

A large body of work on XAI is based on heuristic ap-
proaches [Ribeiro et al., 2016; Lundberg and Lee, 2017;
Ribeiro et al., 2018], offering no formal guarantees regard-
ing computed explanations1. In contrast, recent work focused
on non-heuristic approaches which offer formal guarantees
with respect to computed explanations [Shih et al., 2018;
Ignatiev et al., 2019; Shih et al., 2019; Ignatiev, 2020;
Darwiche and Hirth, 2020; Audemard et al., 2020; Marques-
Silva et al., 2020; Ignatiev et al., 2020; Ignatiev and Marques-
Silva, 2021; Marques-Silva et al., 2021].

Approaches to explainability can also be characterized as
being model-agnostic or model-precise2. Model-agnostic ap-
proaches do not require information about the ML model rep-
resentation, thus allowing the explanation of any class of ML
models. In contrast, in model-precise approaches, some rep-
resentation of the concrete ML model is reasoned about, and
so these are characterized by being model-specific. Whereas
model-agnostic approaches are in general heuristic, model-
precise approaches can either be non-heuristic [Shih et al.,
2018; Ignatiev et al., 2019; Shih et al., 2019; Ignatiev, 2020;
Darwiche and Hirth, 2020; Audemard et al., 2020; Marques-
Silva et al., 2020; Ignatiev et al., 2020; Ignatiev and Marques-
Silva, 2021; Marques-Silva et al., 2021] or heuristic [Zhao et
al., 2019; Petkovic et al., 2018; Mollas et al., 2020]. For
model-precise non-heuristic approaches different solutions
have been investigated. [Shih et al., 2018] propose an ap-
proach for explaining Bayesian network classifiers, which is
based on compiling such classifiers into Ordered Decision Di-
agrams representing all prime implicants of the boolean func-
tion representing the target class predictions. These represent
the so-called PI-explanations (which we revisit in Section 2).
A different approach, based on abductive reasoning [Ignatiev
et al., 2019; Ignatiev, 2020], exploits automated reasoning
tools (e.g. SMT, MILP, etc.) with explanations being com-

1For example, an explanation E, for an input I1 resulting in pre-
diction A, can also be consistent with input I2 resulting in prediction
B 6= A [Ignatiev, 2020]. Such loose explanations inevitably raise
concerns in applications where safety is critical.

2Orthogonal to the goals of the paper is the classification of ex-
planations as local or global [Guidotti et al., 2019].



puted on demand. In abductive reasoning approaches, the ML
model is represented as a set of constraints and, given some
target instance, a prime implicant is computed, which repre-
sents a minimal set of feature-value pairs that is sufficient for
the prediction. Earlier work investigated encodings of neural
networks [Ignatiev et al., 2019] and of boosted trees [Ignatiev,
2020].

This paper extends earlier work on model-precise non-
heuristic explainability. Concretely, the paper proposes a
novel approach for computing PI (or abductive) explana-
tions (AXps) of Random Forest classifiers [Breiman, 2001;
Yang et al., 2020; Zhang et al., 2019; Gao and Zhou, 2020;
Feng and Zhou, 2018; Zhou and Feng, 2017]. Random
Forests (RFs) represent a widely used tree ensemble ML
model, where each RF ML model is composed of a number
of decision trees (DTs). (The importance of RFs is further
illustrated by recent proposals for implementing deep learn-
ing (DL) with RFs [Zhou and Feng, 2017; Zhang et al., 2019;
Feng and Zhou, 2018].)

In contrast with earlier work [Ignatiev, 2020], we show that
in the case of RFs it is possible to devise a purely proposi-
tional encoding. In turn, this enables achieving very signifi-
cant performance gains. Concretely, the experimental results
show that our approach is able to compute explanations of
realistically-sized RFs most often in a fraction of a second.
The experiments also show that our approach is on average
more than one order of magnitude faster than a state of the art
model-agnostic heuristic approach [Ribeiro et al., 2018].

Recent work on model-precise non-heuristic explainability
has shown that some ML models can be explained in poly-
nomial time [Audemard et al., 2020; Marques-Silva et al.,
2020]. In contrast, this paper proves that it is DP-complete to
decide whether a set of literals is a PI-explanation (AXp) of
an RF, thus making it unlikely that RFs can be explained in
polynomial time.

The paper is organized as follows. Section 2 covers the
preliminaries. Section 3 proves the complexity of deciding
whether a set of literals is an explanation for an RF. Section 4
proposes a propositional encoding for computing one AXp of
an RF. Section 5 presents the experimental results. Finally,
Section 6 concludes the paper.

2 Preliminaries
ML Classification. We consider a machine learning clas-
sification problem, defined by a set of features F =
{1, . . . ,m}, and by a set of classes K = {c1, c2, . . . , cK}.
Each feature j ∈ F takes values from a domain Di. (Domains
may correspond to Boolean, Categorical or Continuous data.)
Thus, feature space is defined as F = D1 × D2 × . . . × Dm.
To refer to an arbitrary point in feature space we use the no-
tation x = (x1, . . . , xm), whereas to refer to a specific point
in feature space we use the notation v = (v1, . . . , vm), with
vi ∈ Di, i = 1, . . . ,m. An instance (or example) denotes a
pair (v, c), where v ∈ F and c ∈ K. An ML classifier is char-
acterized by a classification function τ that maps the feature
space F into the set of classes K, i.e. τ : F → K. To learn
a classifier, a set of instances {(v1, c1), . . . , (vk, ck)} is used
as training data by a learning algorithm that returns a function

with a best fit on the training data.

Decision Tree and Random Forest Classifiers. Decision
trees rank among the most widely-used techniques ML mod-
els [Breiman et al., 1984; Quinlan, 1993]. Formally, a deci-
sion tree T = (VT , ET ) is a directed acyclic graph, where
the root node has no incoming edges, and every other node
has exactly one incoming edge. The nodes of a tree are par-
titioned into terminal (VT ) and non-terminal (VNT ) nodes.
Terminal nodes denote the leaf nodes, and have no outgoing
edges (i.e. children). Non-terminal nodes denote the internal
nodes, and have outgoing edges. Each terminal node j ∈ VT
is associated with a class taken from K. We define a map
κ : VT → K to represent the class associated with each termi-
nal node. Each non-terminal node is associated with a feature
taken from a set of features F . Given a feature j ∈ F asso-
ciated with a non-terminal node l, each outgoing edge repre-
sents a literal of the form xj ./ Sj , where either Sj ∈ Dj or
Sj ⊆ Dj

3. Each path in T is associated with a consistent
conjunction of literals, denoting the values assigned to the
features so as to reach the terminal node in the path. We will
represent the set of literals of some tree path Rk by L(Rk).

A well-known drawback of decision trees is overfitting
with respect to the training data. In contrast, tree ensem-
bles such as Random Forests (RFs) [Breiman, 2001] com-
bine several tree-based models, which allows for improved
accuracy and ability to generalize beyond the training data.
More formally, an RF F is a collection of decision trees (DTs)
F = {T1, T2, . . . , TM}. Each tree Ti ∈ F is trained on a sub-
sample of the training dataset so as the trees of the RF are not
correlated. The prediction function in RF works by majority
vote, that is each tree votes for a class and the most voted
class is picked. (In case of ties, for simplicitly we will pick
the lexicographically smallest class.)

Running Example. Let us assume a simple binary classi-
fication problem for predicting whether or not a patient has
a heart disease. The class variables are: Yes and No (Yes to
classify the patient as suffering from heart disease and No to
classify the patient as without heart disease.) and a set of fea-
tures in the following order: blocked-arteries, good-blood-
circulation, chest-pain, and weight, where features 1, 2 and
3 represent Boolean variables, and feature 4 represents an or-
dinal variable. Let the set of trees, shown in Figure 1, be
the tree ensemble of an RF classifier F trained on the heart
disease problem and τ its classification function. There are
3 trees in the forest and each tree has a maximum depth of
2. Assume we have an instance v = (1, 0, 1, 70), namely,
blocked-arteries = 1, good-blood-circulation = 0, chest-pain
= 1, weight = 70. Hence, Trees 1 and 3 vote for Yes and Tree
2 votes for No. As the majority votes go for Yes, then the
classifier will return Yes for v, i.e. τ(v) = Yes.

Boolean satisfiability (SAT). The paper assumes the no-
tation and definitions standard in SAT [Biere et al., 2021],
i.e. the decision problem for propositional logic, which is
known to be NP-complete [Cook, 1971]. A propositional

3Features are either categorical (including boolean) or real- or
integer-valued ordinal, and ./ ∈ {=,∈}. (Observe that these opera-
tors allow for intervals to be represented.)



(a) Tree 1 (b) Tree 2

(c) Tree 3

Figure 1: Running example.

formula ϕ is defined over a finite set of Boolean variables
X = {x1, x2, . . . , xn}. Formulas are most often represented
in conjunctive normal form (CNF). A CNF formula is a con-
junction of clauses, a clause is a disjunction of literals, and
a literal is a variable (xi) or its negation (¬xi). Whenever
convenient, a formula is viewed as a set of sets of literals. A
Boolean interpretation µ of a formula ϕ is a total mapping
of X to {0, 1} (0 corresponds to False and 1 corresponds
to True). Interpretations can be extended to literals, clauses
and formulas with the usual semantics; hence we can refer to
µ(l), µ(ω), µ(ϕ), to denote respectively the value of a literal,
clause and formula given an interpretation. Given a formula
ϕ, µ is a model of ϕ if it makes ϕ True, i.e. µ(φ) = 1. A for-
mula ϕ is satisfiable (ϕ2 ⊥) if it admits a model, otherwise,
it is unsatisfiable (ϕ� ⊥). Given two formulas ϕ and ψ, we
say that ϕ entails ψ (denotes ϕ�ψ) if all models of ϕ are
also models of ψ. ϕ and ψ are equivalent (denoted ϕ ≡ ψ) if
ϕ�ψ and ψ �ϕ.
Abductive explanations. The paper uses the definition of
PI-explanation [Shih et al., 2018] (also referred to as abduc-
tive explanation (AXp) in [Ignatiev et al., 2019]) 4, based on
prime implicants of some decision function (related with the
predicted class). Let us consider a given ML model, com-
puting a classification function τ on feature space F, a point
v ∈ F, with prediction c = τ(v), with v = (v1, . . . , vm).
A PI-explanation (AXp) is any minimal subset X ⊆ F such
that:

∀(x ∈ F).
[∧

i∈X
(xi = vi)

]
→(τ(x) = c) (1)

In a similar vein, we consider contrastive explanations
(CXps) [Miller, 2019]. A formal definition of contrastive ex-
planation is proposed in recent work [Ignatiev et al., 2020].

4Throughout the paper we will use both terms PI-explanation
and abductive explanation (AXp) interchangeably.

Contrastive explanations. Contrastive explanation can be
defined as a minimal subset Y ⊆ F that suffice to changing
the prediction if features of Y are allowed to take some arbi-
trary value from their domain. Given v = (v1, . . . , vm) ∈ F
with κ(v) = c, a CXp is any minimal subset Y ⊆ F such
that,

∃(x ∈ F).
∧

j∈F\Y
(xj = vj) ∧ (κ(x) 6= c) (2)

Building on the results of R. Reiter in model-based diagno-
sis [Reiter, 1987], [Ignatiev et al., 2020] proves a minimal
hitting set (MHS) duality relation between AXps and CXps,
i.e. AXps are MHSes of CXps and vice-versa.

Example 1. Consider the binary classifier F of the running
example. and the instance (v = (1, 0, 1, 70),Yes). If the fea-
tures good-blood-circulation and weight are allowed to take
any possible value from their domain, and the values of the
features blocked-arteries and chest-pain are kept to their val-
ues in v, then the prediction is still Yes. This means that the
features good-blood-circulation and weight can be deemed
irrelevant for the prediction of Yes given the other feature
values in v. Moreover, by allowing either blocked-arteries
or chest-pain to take any value, prediction will change to No.
Hence, {blocked-arteries, chest-pain} is a subset-minimal set
of features sufficient for predicting τ(v) = Yes, that is
a PI-explanation (AXp). Additionally, setting the value of
blocked-arteries to 0 suffices to changing the prediction of v
(i.e. τ(0, 0, 1, 70) = No), thus {blocked-arteries} is a CXp.

3 Complexity of AXps for RFs
Recent work identified classes of classifiers for which one
AXp can be computed in polynomial time [Audemard et al.,
2020; Marques-Silva et al., 2020]. These classes of classifiers
include those respecting specific criteria of the knowledge
compilation map [Audemard et al., 2020]5, but also Naive
Bayes and linear classifiers (resp. NBCs and LCs) [Marques-
Silva et al., 2020]. (In the case of NBCs and LCs, enumera-
tion of AXps was shown to be solved with polynomial delay.)
One question is thus whether there might exist a polynomial
time algorithm for computing one computing AXp of an RF.
This section shows that this is unlikely to be the case, by prov-
ing that deciding whether a set of features represents an AXp
is DP-complete6.

Let F be an RF, with classification function τ , and let v ∈
F, with prediction τ(v) = c ∈ K. τ is parameterized with c,
to obtain the boolean function τc, s.t. τc(x) = 1 iff τ(x) = c.
A set of literals Iv is associated with each v. Let ρ be a subset
of the literals associated with v, i.e. ρ ⊆ Iv. Hence,

Theorem 1. For a random forest F, given an instance v with
prediction c, deciding whether a set of literals is an AXp is
DP-complete.

5The knowledge compilation map was first proposed in
2002 [Darwiche and Marquis, 2002].

6The class DP [Papadimitriou, 1994] is the set of languages de-
fined by the intersection of two languages, one in NP and one in
coNP.



Proof. Given an instance v and predicted class c, deciding
whether a set of literals ρ is an AXp of an RF F is clearly
in DP. We need to prove that ρ� τc, which is a problem in
coNP. We also need to prove that a set of literals ρ′, obtained
by the removal of any single literal from ρ (and there can be
at most m of these), is such that ρ2 τc, a problem in NP. To
prove that the problem is hard for DP, we reduce the problem
of computing a prime implicant of a DNF, which is known to
be complete for DP [Umans et al., 2006], to the problem of
computing a PI-explanation of an RF F.
Consider a DNF φ = t1 ∨ · · · ∨ tn, where each term ti is a
conjunction of literals defined on a set X = {x1, . . . , xm} of
boolean variables. Given φ, we construct an RF F, defined on
a set F of m features, where each feature i is associated with
an xi element of X , and where Di = {0, 1}. Moreover, F is
such that φ(x) = 1 iff τ1(x) = 1. F is constructed as follows.

i. Associate a decision tree (DT) Ti with each term ti, such
that the assignment satisfying ti yields class 1, and the
other assignments yield class 0. Clearly, the size of the
DT Ti is linear on the size of ti, since each literal not
taking the value specified by the term will be connected
to a terminal node with prediction 0.

ii. Create (n− 1) additional trees, each having exactly one
terminal node and no non-terminal nodes. Moreover, as-
sociate class 1 with the terminal node.

Next, we prove that φ(x) = 1 iff τ1(x) = 1.
i. Let x be such that φ(x) = 1. Then, there is at least

one term tj , such that tj(x) = 1. As a result, the corre-
sponding tree Tj in the RF will predict class 1. Hence,
at least n trees predict class 1, and at most n − 1 trees
predict class 0. As a result, the predicted class is 1, and
so τ1(x) = 1.

ii. Let x be such that τ1(x) = 1. This means that at least
one of the trees associated with the terms ti must predict
value 1. Let such tree be Tj , associated with term tj .
For this tree to predict class 1, then tj(x) = 1, and so
φ(x) = 1.

Now, let ρ be a conjunction of literals defined on X . Then,
we must have ρ�φ iff ρ� τ1. Every model of ρ is also a
model of φ, and so it must also be a model of τ1. Conversely,
every model of ρ is also a model of τ1, and so it must also be
a model of φ. �

4 AXps for Random Forests
This section outlines the computation of PI-explanations
(AXps) for RFs. We first present the algorithm’s organiza-
tion. The algorithm requires a logical encoding of RFs, which
are presented next.

Computing AXps. A minimal set of features X ∈ F is an
AXp if (1) holds. Clearly, this condition holds iff the follow-
ing formula is unsatisfiable,[∧

i∈X
(xi = vi)

]
∧ Enc(τ(x) 6= c)

The previous formula has two components 〈H,S〉. H repre-
sents the set of hard clauses, encoding the representation of
the ML model and also imposing a constraint on the predicted

class, i.e. Enc(τ(x) 6= c). S represents the unit (soft) clauses,
each capturing a literal (xi = vi). Since the clauses in S are
soft, they can be dropped (thus allowing xi to take any value)
while searching for a minimal subset of E of S, such that,[∧

(x1=vi)∈E
(xi = vi)

]
∧ Enc(τ(x) 6= c)

is unsatisfiable. Our goal is to find a minimal set S such that
the pair 〈H,S〉 remains unsatisfiable (where S can be viewed
as the background knowledge against which the clauses in S
are inconsistent). This corresponds to finding a minimal un-
satisfiable subset (MUS) of 〈H,S〉, and so any off-the-shelve
MUS extraction algorithm can be used for computing an AXp
(as noted in earlier work [Ignatiev et al., 2019]).

Clearly, adapting the descibed procedure above of comput-
ing one AXp to one that computes a CXp is straightforward.
That is, the minimal set Y of S to search is, such that,[∧

(x1=vi)∈S\Y
(xi = vi)

]
∧ Enc(τ(x) 6= c)

is satisfiable. Further, hitting set duality between AXps
and CXps allows to exploit any algorithm for comput-
ing MUSes/MCSes7 to enumerate both kinds of explana-
tions (AXps and CXps). (Recent work [Ignatiev et al.,
2020; Marques-Silva et al., 2021; Ignatiev and Marques-
Silva, 2021] exploits the MUS/MCS enumeration algorithm
MARCO [Liffiton et al., 2016] for enumerating AXps/CXps.)

We detail next how to encode an RF, while requiring some
prediction not to hold. We start with a simple encoding of an
RF into an SMT formula, and then we detail a purely propo-
sitional encoding, which enables the use of SAT solvers.

SMT Encoding. Several encodings of tree ensemble mod-
els, such as Boosted Trees (BTs), have been proposed and
they are essentially based on SMT/MILP (see e.g. [Chen et
al., 2019; Einziger et al., 2019; Ignatiev, 2020], etc). Hence,
it is natural to follow prior work and propose a straightfor-
ward encoding of RFs in SMT. Intuitively, the formulation
of RFs into SMT formulas is as follows. We encode every
single DT of an RF as a set of implication rules. That is,
a DT path (classification rule) is interpreted as a rule of the
form antecedent→ consequent where the antecedent is a con-
junction of predicates encoding the non-terminal nodes of the
path and the consequent is a predicate representing the class
associated with the terminal node of the path. Next, we aggre-
gate the prediction (votes) of the DTs and count the prediction
score for each class. This can be expressed by an arithmetic
function that calculates the sum of trees predicting the same
class. Lastly, a linear inequality checks which class has the
largest score.

The implementation of the encoding above resulted in per-
formance results comparable to those of BTs [Ignatiev, 2020].
However, in the case of RFs it is possible to devise a purely
propositional encoding, as detailed below.

7An MCS is a minimal set of clauses to remove from an unsatisfi-
able CNF formula to recover consistency . It is well-known that MC-
Ses are minimal hitting sets of MUSes and vice-versa [Reiter, 1987;
Birnbaum and Lozinskii, 2003].



SAT Encoding. Our goal is to represent the structure of
an RF with a propositional formula. This requires abstracting
away what will be shown to be information used by the RF
that is unnecessary for finding an AXp. Concretely, and as
shown below, the actual values of the features used as literals
in the RF need not be considered when computing one AXp.
We start by detailing how to encode the nodes of the decision
trees in an RF. This is done such that the actual values of the
features are abstracted away. Then, we present the encoding
of the RF classifier itself, including how the majority voting
is represented.

To encode a terminal node of a DT, we proceed as follows.
Given a set of classesK = {c1, c2, . . . , cK}, a terminal node t
labeled with one class of K. Then, we define for each cj ∈ K
a variable lj and represent the terminal node t with its corre-
sponding label class cj , i.e. κ(t) = cj .

Moreover, the encoding of a non-terminal node of a DT
is organized as follows. Given a feature j ∈ F associated
with a non-terminal node l, with a domain Dj , each outgoing
edge of l is represented by a literal lj of the form xj ./ Sj

s.t. xj ∈ F is the variable of feature j, Sj ./ Dj and ./
∈ {=,⊆,∈}. Hence we distinguish three cases for encoding
xj ./ Sj . For the first case, feature j is binary, and so the
literal lj is True if xj = 1 and False if xj = 0. For the
second case, feature j is categorical, and so we introduce a
Boolean variable zi for each value vi ∈ Dj s.t. zi = 1 iff
xj = vi. Assume Sj = {v1, . . . , vn}, then we connect lj
to variables zi, i = 1, . . . , n as follows: lj↔(z1 ∨ . . . ∨ zn)
or ¬lj↔(z1 ∨ . . . ∨ zn), depending on whether the current
edge is going to left or right child-node. Finally, for the third
case, feature j is real-valued. Thus, Sj is either an interval or
a union of intervals. Concretely, we consider all the splitting
thresholds of the feature j existing in the RF and we generate
(in order) all the possible intervals. Each interval Ii ⊆ Dj

is denoted by a Boolean variable zi. Let us assume Sj =
I1 ∪ . . . ∪ In and z1, . . . , zn are variables associated with
I1∪ . . .∪ In, then we have lj↔(z1∨ . . .∨zn) or ¬lj↔(z1∨
. . .∨zn). Moreover, this encoding can be reduced into a more
compact set of constraints (that also improves propagation in
the SAT solver). Indeed, if the number of intervals is large the
encoding will be as well. Hence, we propose to use auxiliary
variables in the encoding. Assume Dj = I1 ∪ I2 ∪ I3, nodes
l and l′ s.t. ¬lj↔ z1, ¬lj↔(z1 ∨ z2 ∨ z3), ¬l′j↔(z1 ∨ z2),
l′j↔ z3, then this can be re-written as: ¬lj↔ z1, lj↔(z2 ∨
l′j), ¬l′j↔(z2 ∨ ¬lj), l′j↔ z3.

The next step is to encode the RF classifier. Given an RF
F formed by a set of M DTs, i.e. F = {T1, T2, . . . , TM}, and
τ the classification function of F. For every DT Ti ∈ F, we
encode the set of pathsRi of Ti as follows:∧

Rk∈Ri

((∧
lj∈L(Rk)

lj

)
→ lij

)
(3)

where lij is a literal associated with Ti in which the voted
class is cj ∈ K.

For every DT Ti ∈ F, and every path Rk ∈ Ri, we enforce
the condition that exactly one variable lij is True in Ti 8. This

8Only one class is returned by Ti.

can be expressed as9:(∨K

j=1
lij

)
∧
∑K

j=1
lij ≤ 1 (4)

Finally, for capturing the majority voting used in RFs, we
need to express the constraint that the counts (of individual
tree selections) for some class ck 6= cj have to be large
enough (i.e. greater than, or greater than or equal to) when
compared to the counts for class cj . We start by showing
how cardinality constraints can be used for expressing such
constraints. The proposed solution requires the use of K − 1
cardinality constraints, each comparing the counts of cj with
the counts of some other ck. Afterwards, we show how to
reduce to 2 the number of cardinality constraints used.

Let cj ∈ K be the predicted class. The index j is relevant
and ranges from 1 to K = |K|. Moreover, let 1 ≤ k < j ≤
K. Class ck is selected over class cj if:∑M

i=1
lik >

∑M

i=1
lij ⇔

∑M

i=1
lik +

∑M

i=1
¬lij ≥M (5)

Similarly, let 1 ≤ j < k ≤ K. Class ck is selected over class
cj if:∑M

i=1
lik >

∑M

i=1
lij ⇔

∑M

i=1
lik +

∑M

i=1
¬lij ≥M + 1

(6)
(A simple observation is that these constraints can be opti-
mized for the case |K| = 2.)

It is possible to reduce the number of cardinality con-
straints as follows. Let us represent (5) and (6), respec-
tively, by Cmp≺(z

≺
1 , . . . , z

≺
M ) and Cmp�(z

�
1 , . . . , z

�
M ). (Ob-

serve that the encodings of these constraints differ (due to
the different RHSes).) Moreover, in (5) and (6) we replace
(z≺1 , . . . , z

≺
M ) and (z�1 , . . . , z

�
M ) resp. by l1k, . . . , lMk, for

some k. The idea is that we will only use two cardinality
constraints, one for (5) and one for (6).

Let pk = 1 iff k is to be compared with j. In this
case, Cmp./(z

./
1 , . . . , z

./
M ) (where ./ is either ≺ or �) is

comparing the class counts of cj with the class counts of
some ck. Let us use the constraint pk→(z./i ↔ lik), with
k ∈ {1, . . . ,K} \ {j}, and 1 ≤ i ≤ M . This serves
to allow associating the (free) variables (z./1 , . . . , z

./
M ) with

some set of literals (l1k, . . . , lMk). Moreover, we also let
p0→(z./i ↔ 1) and pj→(z./i ↔ 1), i.e. we allow p0 and pj
to pick guaranteed winners, and such that ¬p0 ∨¬pj . Essen-
tially, we allow for a guaranteed winner to be picked below
j or above j, but not both. Clearly, we must pick one k, ei-
ther below or above j, to pick a class ck, when comparing the
counts of ck and cj . We do this by picking two winners, one
below j and one above j, and such that at most one is allowed
to be a guaranteed winner (either 0 or j):(∑j−1

r=0
pr = 1

)
∧
(∑K

r=j
pr = 1

)
Observe that, by starting the sum at 0 and j, respectively, we
allow the picking of one guaranteed winner in each summa-
tion, if needed be. To illustrate the described encoding above
we consider again the running example.

9We use the well-known cardinality networks [Ası́n et al., 2011]
for encoding all the cardinality constraints of the proposed encoding.



Example 2. Consider again the RF F of the running exam-
ple and the instance v = (1, 0, 1, 70), giving the predic-
tion Yes. Let us define the Boolean variables x1, x2 and x3
associated with the binary features blocked-arteries, good-
blood-circulation, chest-pain, resp. and variables w1 and
w2 representing (weight > 75) and (weight ≤ 75) resp.
and an auxiliary variable w. Also, to represent the classes
No and Yes, we associate variables denoting the classes for
each tree: {l11, l12} for T1, {l21, l22} for T2 and {l31, l32}
for T3. Hence, the corresponding set of encoding con-
straints is: {x1 ∧ x3→ l12, x1 ∧ ¬x3→ l11, ¬x1→ l11,
x2→ l21, ¬x2 ∧ w→ l22, ¬x2 ∧ ¬w→ l21, x2 ∧ x1→ l32,
x2 ∧¬x1→ l31, ¬x2 ∧ x3→ l32, ¬x2 ∧¬x3→ l31, w↔w1,
¬w↔w2, (l11 + l21 + l31) ≥ 2, x1, ¬x2, x3, w2}. Observe
that {x1,¬x2, x3, w2} denotes the set of the soft constraints
whereas the remaining are the hard constraints.

5 Experimental Results
This section assess the performance of our approach to com-
pute PI-explanations (AXps) for RFs and also compares the
results with an heuristic explaining model Anchor [Ribeiro
et al., 2018]10 The assessment is performed on a selection
of 32 publicly available datasets, which originate from UCI
Machine Learning Repository [UCI, 2020] and Penn Ma-
chine Learning Benchmarks [Olson et al., 2017]. Bench-
marks comprise binary and multidimensional classification
datasets. The number of classes in the benchmark suite varies
from 2 to 26. The number of features (resp. data samples)
varies from 4 to 64 (106 to 58000, resp.) with the average
being 21.9 (resp. 5131.09). When training RF classifiers for
the selected datasets, we used 80% of the dataset instances
(20% used for test data). For assessing explanation tools,
we randomly picked fractions of the dataset, depending on
the dataset size. Concretely, for datasets containing, resp.,
less than 200, 200–999, 1000–9999 and 10000 or more, we
randomly picked, resp., 40%, 20%, 10% and 2% of the in-
stances to analyze. The number of trees in each RF is set
to 100 while tree depth varies between 3 and 8. (Note that
we have tested other values for the number of trees ranging
from 30 to 200, and we fixed it to 100 since with 100 trees
RFs achieve the best train/test accuracies.) As a result, the
accuracy of the trained models varies between 76% to 100%.
We use the scikit-learn [Pedregosa et al., 2011] ML tool to
train RF models. Note that, scikit-learn can only handle bi-
nary and ordinal features in the case of RFs. Accordingly, the
experiments focus on binary and continuous data and do not
include categorical features. In addition, we have overridden
the implemented RF learner in sciki-learn so that it reflects
the original algorithm described in [Breiman, 2001] 11. Fur-
thermore, PySAT [Ignatiev et al., 2018] is used to instrument

10Anchor computes heuristic local explanations and not PI-
explanations (AXp). Also, we do not consider other tools, such as
LIME [Ribeiro et al., 2016] or SHAP [Lundberg and Lee, 2017], as
these learn a simpler ML model as an explanation and not a set of
literals.

11The RF model implemented by scikit-learn uses probability
estimates to predict a class, whereas in the original proposal for
RFs [Breiman, 2001], the prediction is based on majority vote.

incremental SAT oracle calls.
The experiments are conducted on a MacBook Pro with

a Dual-Core Intel Core i5 2.3GHz CPU with 8GByte RAM
running macOS Catalina. Table 1 summarizes the results of
assessing the performance of our RF explainer tool (RFxpl)
on the selected datasets. (The table’s caption also describes
the meaning of each column.) As can be observed, and with
three exceptions, the average running time of RFxpl is less
than 1sec. per instance. In terms of the largest running times,
there are a few outliers (this is to be expected since we are
solving a DP-hard problem), and these occur when the num-
ber of classes is large. To assess the scalability of RFxpl,
we compared RFxplwith the well-known heuristic explainer
Anchor [Ribeiro et al., 2018]. (Clearly, the exercise does not
aim to compare the explanation accuracies of Anchor and
RFxpl, but only to assess how scalable it is in practice to
solve a DP-complete explainability problem with a proposi-
tional encoding and a SAT oracle.) Over all datasets, RFxpl
outperforms Anchor on more than 96% of the instances (i.e.
8438 out of 8746). In terms of average running time per in-
stance, RFxpl outperforms Anchor by more than 1 order
of magnitude, concretely the average run time of Anchor is
14.22 times larger than the average runtime of RFxpl.

6 Conclusion
This paper proposes a novel approach for explaining random
forests. First, the paper shows that it is DP-complete to de-
cide whether a set of literals is a PI-explanation (AXp) for a
random forest. Second, the paper proposes a purely propo-
sitional encoding for computing PI-explanations (AXps) of
random forests. The experimental results allow demonstrat-
ing that the proposed approach not only scales to realistically
sized random forests, but it is also significantly more effi-
cient that a state of the art model-agnostic heuristic approach.
Given the practical interest in RFs [Zhou and Feng, 2017],
finding AXps represents a promising new application area of
SAT solvers.

Two extensions of the work can be envisioned. One ex-
tension is to improve further the propositional encoding pro-
posed in this paper, aiming at eliminating the very few cases
where heuristic approaches are more efficient. Another exten-
sion is to exploit the proposed model (and any of its future im-
provements) to explain deep random forests [Zhou and Feng,
2017].
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