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ABSTRACT
In this paper, we propose an operational solution for the yearly classification of crop
parcels at national scale (namely France) for Land Parcel Identification System
updating, under the Common Agricultural Policy (CAP) umbrella. Our pipeline is
based on the ι2 open source framework and fed with both time series of Sentinel-
1 radar and Sentinel-2 optical images, with complementary contributions. Three
conceivable scenarios are investigated with two sets of nomenclatures (17 and 43
classes): early, on-line, and late classifications. Experiments performed on 2017 show
very satisfactory results (82-97%), locally almost on-par with state-of-the-art deep
based methods. We can conclude our framework offers a strong basis for country-
scale operational deployment for 2020+ CAP.

KEYWORDS
Sentinel, optical, SAR, time series, crops, classification, operational system,
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1. Introduction

With almost 30% of the European budget, the Common Agricultural Policy (CAP)
has been the prominent European Commission policy for the last 30 years. It supports
farmers, ensuring food quality with secured prices. In return, it requires farmers to
declare their agricultural land cover/use every year (Land Parcel Identification System,
LPIS). The Paying Agency of every member state must supervise at least 5% of the
declaration, traditionally performed by field inspection and photo interpretation of
Very High Resolution geospatial images. The new regulation for 2020+ CAP payments
allows the possibility of integrating Sentinel data for monitoring and cross-compliance
assessment (Campos-Taberner et al., 2019). This change of paradigm is in line with the
current findings of the literature, which mainly focused on the crop classification task.
It highly benefits from the high temporal resolution of Sentinel (5-6 days). Similarly
to many countries, France is investigating the potential of Sentinel imagery for crop
monitoring so as to define an operational 2020+ CAP workflow. This paper details the
framework proposed to the French Paying Agency (Agence de Services et de Paiement,
ASP) that addresses various monitoring scenarios jointly built with ASP.

The vast literature dealing with crop mapping has demonstrated the relevance of
satellite image time series (STIS) both at the pixel and parcel levels (Belgiu and Csillik,
2018; Sitokonstantinou et al., 2018), especially with the joint exploitation of Synthetic



Aperture Radar (SAR) and optical images (Veloso et al., 2017; Neetu and Ray, 2020).
In particular, deep learning techniques have recently shown their suitability to foster
temporal information extraction from multi-modal STIS (Zhao et al., 2020; Adrian,
Sagan, and Maimaitijiang, 2021) and their high discrimination power for a large range
of crop types (Kussul et al., 2017; Ji et al., 2018; Sainte Fare Garnot et al., 2020;
Rußwurm and Körner, 2020). However, they have not yet proved to be country-wise
compliant. Several methods fit to operational constraints (scalability, automation, com-
puting times), with explainable algorithms (Inglada et al., 2017; Konduri et al., 2020),
assuming the desired nomenclature remains simple (<15 classes, e.g., (Pott et al.,
2021)). Our contribution both lies on the definition of an operational framework inte-
grating SAR and optical images as well as country-scale validation. Experiments show
our solution based on Sentinel-1 (S1) and Sentinel-2 (S2) images with Random Forests
provides satisfactory results both for 17 and 43-class crop classifications, on par with
various deep-based SITS methods of the literature.
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Figure 1. Our crop monitoring targeted workflow adapted from the standard ι2 processing chain. Data and
outputs are in purple while processes are colored in green. Main parameters, input and outputs of each atomic
process are indicated in italics and detailed in Table 1.

2. Operational workflow and experiments

2.1. Proposed solution

We target to discriminate crops every year at the parcel level using freely available
Sentinel images. Due to their well documented complementarity, both SAR Sentinel-1
and optical Sentinel-2 images are fed into the pipeline (Section 2.3). We classify these
crops according to several use cases (2 nomenclature - 3 time frames, Section 2.2). We
have access to the former French LPIS data, our discrimination problem can be cast
as a supervised classification task based on a stack of S1+S2 images. For that purpose,
we adopt the ι2 framework (Inglada et al., 2017) based on Random Forests (RF). This
is a perfectly tailored open-source solution (https://framagit.org/iota2-project/
iota2), that fits with operational constraints and with automatic high resolution crop
monitoring (Defourny et al., 2019). It has already demonstrated its high efficiency
in performing country wide land cover classification tasks with multi-temporal high
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resolution Landsat and Sentinel imagery at the pixel level. It is based on Orfeo Tool
Box library and python scripts. It can run either on standard desktop computers or
High Performance Computing clusters, therefore adapted to any end-user.
To remain scalable, explainable and adapted to parallelization schemes, we adopted
the per-pixel mono-modal RF classification scheme augmented with SAR data and
simple post-processing steps. Contextual classifiers and/or object-based (deep-based)
approaches are known to be efficient but were discarded. We adapted the standard ι2
workflow by (i) integrating S1 images and (ii) performing parcel monitoring with the
generated per-pixel classifications.

Step Parameter/Input/Output Explanation

1

nomenclature Set of classes to be discriminated (17 and
43 for Level 1 and Level 2, respectively)

DEM Digital Elevation Model used to orthorec-
tify Sentinel-1 images

S1 ASC/DESC Images both from Sentinel-1 Ascending
and Descending orbits

t0, tend Predefined starting and ending months for
analysis (3 scenarios are tested)

sampling period The regular temporal grid on which radar
and optical images are matched before fea-
ture computation

2 sample ratio Ratio between learning and testing sam-
ples for the randomly selected parcels per
class and ratio of pixels randomly kept for
each parcel

3 nb trees, max depth Number of trees of the Random Forest and
maximal depth of each tree

min samples Minimum number of samples required to
split an internal node in the Random For-
est

5 confidence Per-class confidence score computed for
each parcel as the ratio of pixels labelled
for this class among all pixels

Table 1. Explanation of the inputs, outputs and main parameters for the 5 steps of our framework (see
Figure 1 and Section 2.1 for more details).

Our approach can be decomposed into five main steps (Fig. 1), our contributions
lying in steps (1) and (5):
1. Data preparation. First, LPIS data is processed in order to fit to the desired
nomenclature and be ready for step (2). Secondly, in order to extract multi-modal
features, S1 images are orthorectified and matched onto S2 tiles (using S1tiling,
http://tully.ups-tlse.fr/koleckt/s1tiling), filtered and interpolated to be spa-
tially and temporally coherent with S2 images. S2 images are gap-filled with linear
interpolation. We work on a 10-day regular temporal grid handling initial clouds and
various temporal samplings.
2. Sampling. From reference data, we automatically extract training and validation
samples for the classification task. For each class, a random selection of 2,500 parcels
was performed. We kept only 50% of the parcels for classes with less than 5,000 objects.
The ratio between learning/testing is 70%/30% and is performed at the parcel level.
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For each learning parcel, a random subset of 10% of pixels is kept. More pixels would
lead to insert redundant information and would not lead to increase the discrimination
and generalisation ability of the classifier. No cleansing procedure is performed apart
from excluding border pixels of the training polygons.
3. Supervised learning. RF have proved to be efficient for multi-modal and national-
scale mapping (Inglada et al., 2017; Defourny et al., 2019) with noisy training data.
The unit for the definition of a training model is the S2 tile (see Section 2.4), albeit
the S1-S2 coregistration procedure allows to feed such models with both S1 and S2
information. This consists both of raw channels and attributes that have already been
assessed to be relevant for multitemporal land-cover classification: VV and VH polar-
isation channels for S1 (Whelen and Siqueira, 2018), all 10 m+20m spectral channels,
NDVI, and NDWI for S2. We extract 14 features for each epoch. It means that, for a
time range of n days, we have 14×

⌊ n
10

⌋
features in total.

4. Pixel map generation. The model is applied for each S2 tile, discarding non agri-
cultural areas (Region Of Interest - ROI - mask), using both S1 and S2 information.
It allows to generate a 10 m pixel-based crop raster map, which is known to be the
most adequate spatial resolution (Defourny et al., 2019; Griffiths, Nendel, and Hostert,
2019).
5. Parcel monitoring. Pixel-based maps are vectorised. A per-class confidence score
is computed for each parcel as the ratio of pixels labelled for this class among all pix-
els. The three dominant labels are kept, and the majority label is given to the parcel
(i.e., the class with the highest confidence score). This allows to remove salt and pep-
per noise due to non contextual classification as well as misclassification at the parcel
edges (mixed pixels, Fig. 4). The final decision and the three main labels can then
compared with On The Spot Check (OTSC) data available for the year of interest.

(a) A RF model is trained and applied for each
S2 tile, using both S1 and S2 features. Each color
corresponds to a specific server (10). Black tiles
with few data were discarded and the two full
blue tiles are the initial tuning areas.

(b) Results for ι2 OTSC with Level 1 (color code:
Table 2).

Figure 2. Classification at national scale.
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2.2. Use cases and implementation

Three scenarios have been tested with two sets of classes (17 and 43 classes, Table 2),
leading to 6 configurations. They correspond to different time ranges within the
November (Year (Y -1)) – November (Year Y ) time frame for crop monitoring of
Year Y. They correspond to use cases formalized by ASP for verification of farmers’
declarations with Copernicus data under the new regulation for 2020+ CAP payments.
A. Pre-filling farmers’ aid form (denoted ι2 Early in the following). The aim is

to help farmers by decreasing the time needed to fill up the official aid application.
The farmers would be only in charge of validating/correcting the proposed crop types.
We use Sentinel images from November to April.
B. Guiding On The Spot Checks (ι2 OTSC). Continuous monitoring can be a

solution for Paying Agencies, replacing the responsibility of supervising at least 5% of
the received declarations. Sentinels could help checking as fast as possible eligibility
criteria and would allow to comply with legal cross compliance control systems with
100% declarations. We consider data from November of July.
C. Seamless claim crop monitoring (ι2 Late). In such a case, we are moving

towards a fully automatic aid application and payment system. The full time frame
(November-November) can be fed into our system.

From the 300+ existing codes, two nomenclatures were set up by ASP experts. The
sets of classes are based on crop phenology and differences in aid payment: we do
distinguish between close crop species which lead to the same amount of CAP aid. At
Level 1, 17 classes are considered and at the finer-grained Level 2, 43 classes (Table 2).

2.3. Data

We worked with year 2017. Sentinel-1 images were downloaded from the Copernicus
portal at the L1C GRD (Ground Range Detected) level (Ascending and Descending or-
bits). Images were orthorectified with the SRTM (Shuttle Radar Topography Mission)
Digital Elevation Model (DEM). Sentinel-2 images were extracted at level L2A from
French Theia webportal. When we started our work, the MAJA (MACCS-ATCOR
Joint Algorithm) cloud mask algorithm and radiometric correction techniques avail-
able through Theia were of better quality than those from Copernicus (Baetens et al.,
2019). S2 images with less than 75% cloud cover were retained. 73 of the 98 Sentinel-2
tiles (110 km×110 km) covering France were processed. We discarded tiles with few
data (Fig. 2). In total, this corresponds to 75 TB of data, including 11.5, 20.5, 34, and
8.2 TB of Sentinel archives, uncompressed S1/S2 data, pre-processed S1/S2 data, and
classification results, respectively.
The French LPIS is the Référentiel Parcellaire Graphique (RPG), made available every
year. It was provided by the French Paying Agency (ASP). Such reference data come
from farmers’ declarations (both spatial extent and crop types), checked and refined
by human operators through visual interpretation of Very High Resolution images and
field surveys. Label noise-free data cannot be guaranteed. We assume noise having a
limited impact on the learning and the quantitative assessment procedures. For our
study, parcels were anonymised, merged according to the selected nomenclatures, their
geometry was corrected if necessary, split up into Sentinel tiles. Very small parcels
were filtered out from the learning stage due to their limited number of pixels, that
mostly fail at the border with other (potentially distinct) crops. Such mixed pixels are
likely to deteriorate the learning process A threshold of 10 pixels is selected to avoid
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Class No. of parcels Highest F -score
(France) (Method, Gain)

L
ev
el

1

Predominant herbaceous (1) 5,848,985 96.4 (PSE-TAE, 4.6)
Cereal (2) 3,134,464 97.7 (PSE-TAE, 7.3)
Hemp (3) 4,514 85.7 (ι2 OTSC, 13.7)

Leguminous fodder (4) 326,175 47.9 (ι2 OTSC, 2)
Other fodder (5) 33,297 54.1 (ι2 Late, 27)

Oilseed (6) 493,374 97 (PSE-TAE, 9.6)
Protein crop (7) 139,083 89.9 (PSE-TAE, 14.6)

Rice (8) 1,904 —
Industrial cultivation (9) 167,854 52.3 (ι2 OTSC, 2.1)

Fruit/vegetable/flower (10) 142,651 64.4 (PSE-TAE, 4.2)
Aromatic plant (11) 28,050 44.9 (ι2 OTSC, 19.7)

Ligneous (12) 201,639 40.9 (PSE-TAE, 9.7)
Orchard (13) 158,486 15.5 (PSE-TAE, 5.2)
Vineyard (14) 534,546 95.9 (PSE-TAE, 4.6)

Copse short rotation (15) 2,595 8.7 (ι2 Late, 1.6)
Non agricultural areas (16) 484,595 57.7 (PSE-TAE, 32.1)

Other (17) 44,525 27.9 (ι2 OTSC, 0.5)

L
ev
el

2

Predominant herbaceous (1.1) 5,848,985 96.6 (PSE-TAE, 5.3)
Spring durum wheat (2.1) 2,181 —
Winter durum wheat (2.2) 93,670 72.7 (ι2 Late, 26.8)

Spring cereal (2.3) 150,208 72.7 (ι2 OTSC, 7.2)
Summer cereal (2.4) 968,608 97.3 (PSE-TAE, 8.4)
Winter cereal (2.5) 1,837,711 96.5 (PSE-TAE, 7.6)
Maize zea (2.6) 13 —

Sorghum millet (2.7) 38,269 47.7 (ι2 Late, 6.6)
Other cereals (2.8) 43,804 46.1 (ι2 Late, 16.5)

Hemp (3.1) 4,514 92 (ι2 OTSC, 13.6)
Buckwheat (3.2) 18,036 42.4 (ι2 Late, 17.1)

Leguminous fodder (4.1) 326,175 48.2 (PSE-TAE, 6.2)
Other fodder (5.1) 33,297 53.2 (ι2 Late, 18.2)

Winter rapeseed (6.1) 304,166 98.4 (PSE-TAE, 10.4)
Spring rapeseed (6.2) 976 —

Sunflower (6.3) 183,390 91.9 (PSE-TAE, 4.7)
Other oilseed (6.4) 4,842 81.8 (ι2 OTSC, 24.2)

Soybean (7.1) 45,343 95.2 (PSE-TAE, 17.9)
Other protein crop (7.2) 93,740 67.3 (ι2 Late, 13.8)

Rice (8.1) 1,904 —
Beet (9.1) 81,308 —
Flax (9.2) 26,951 65.3 (ι2 Late, 20.5)

Potato (10.1) 57,828 51.2 (PSE-TAE, 2.5)
Tobacco (10.2) 1,767 —

Dried vegetables (10.3) 18,840 —
Other fruit/flower/veg. (10.4) 123,811 68.6 (PSE-TAE, 8.6)

Lavender (11.1) 16,734 —
Other aromatic plant (11.2) 11,316 39.1 (ι2 Late, 27.6)

Ligneous (12.1) 201,639 41.2 (PSE-TAE, 7.2)
Oliver grove (13.1) 20,210 —
Other orchard (13.2) 138,276 21.1 (PSE-TAE, 10.2)

Vineyard (14.1) 534,546 96.6 (PSE-TAE, 5.2)
Copse short rotation (15.1) 2,595 24 (ι2 Late, 14.9)
Non agricultural areas (16.1) 484,595 57.5 (PSE-TAE, 29.8)

Building (17.1) 573 —
Biomass (17.2) 3,469 68 (GRU, 2.9)
Woods (17.3) 12,510 23.1 (PSE-TAE, 3.4)
Hops (17.4) 638 —

Water marsh (17.5) 348 —
Other (17.6) 8,951 35.7 (ι2 Late, 25)

Table 2. The two nomenclatures (Levels 1 and 2). The top F -scores for each class are reported for T31FM
tile, with the corresponding method (see Table 3 and Section 3.2) and the increase in F -score with respect to
the best solution of the other family (RF ↔ deep learning). The mapping between classes of Levels 1 and 2
is provided between brackets (For Level 2, the number "X.Y " refers to the Y th sub-class of the class X of
Level 1

).
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irrelevantly selecting a single pixel in a given parcel (with the 10% training rate).

2.4. Moving towards country-wide classification

The proposed workflow is straightforwardly made scalable by considering each Sentinel-
2 tile independent and subsequently the unit for parallel computation. Therefore, all
steps are performed by tile (training, prediction, and evaluation), following Inglada
et al. (2017). Instead of standard batch processing, here, streaming computation is en-
abled thanks to the possibility of chaining Orfeo ToolBox applications in RAM instead
of handling temporary files. This allows to efficiently cope with the vast amount of
Sentinel data with significant pre-processing steps. The open source OpenMPI (Mes-
sage Passing Interface) library is adopted for distributing the jobs to the available 10
servers (Section 2.2).
We performed initial tests on 2 tiles to tune our processing chain (most suitable pa-
rameters and server configuration, Fig. 2): the sample ratios for Step (2), the Random
Forest hyperparameters (100 trees, 25-level depth, min. 5 samples per node), the strat-
egy for vector classification. A computing server with 12 CPU, 2 TB, 24GB RAM was
used for that purpose. For large scale experiments, we worked with 10 servers with at
least 8 vCpu, 5-8 TB, 16GB RAM each (5 from IGN-France and 5 from Copernicus
Data and Information Access Services).

3. Results

3.1. Quantitative and qualitative assessment

For a tile, 4 days are necessary to pre-process Sentinel and reference data for a full
year while 7-8 days suffice for performing the 6 classification tasks. The label with the
largest number of pixels is affected to the parcel. Confusion matrices, Precision, Recall,
F -score metrics were computed for each tile for each use case using farmers’ declara-
tions (Fig. 2 and 5). Initial experiments performed over T31FM tile for the ι2 OTSC
permits to assess the relevance of Sentinel-1 images. Feeding our pipeline with only S2
images lead to an Overall Accuracy of 83.25 and 82.8%, for Levels 1 and 2, respectively.
This is slightly inferior to our S1+S2 scenario with Overall Accuracy (OA)=87.97%
and% 86.59%.
At country-scale, high scores (82-97%) are obtained for most dominant classes (pre-
dominant herbaceous, cereal, oilseed, protein crop), as well as rare classes with specific
signatures (vineyard, rice, hemp, lavender). Orchards and Fruits are often misclassified
due to the poor texture and limited spatial resolution of S1/S2 images. The predom-
inant herbaceous class exhibits high scores but we noted a significant confusion with
fodder and protein crop. Due to its dominance, misclassification less affects herbaceous
recall than fodder/protein crop precision. Better results are obtained for flat landscapes
and in areas with many crops, compared to mountainous areas. Eventually, ι2 Early
results are worse that ι2 OTSC and ι2 Late. ι2 Late does not show genuine superior
performance compared with ι2 OTSC, several classes even show lower accuracy scores
(Fig. 5), OTSC (until July) could be considered as a valid scenario resulting in a smaller
amount of data to ingest. It varies with the crop type and can be explained with the
phenological stage (You and Dong, 2020) or the emergence of another crop type in
November.

The final vectorisation step allows to remove local errors either due to border (mixed)
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(a) Level 1 with 17 classes.

(b) Level 2 with 43 classes.

Figure 3. ι2 OTSC results. Color code is provided in Table 2.
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(a) Initial per-pixel classification. (b) One label per parcel, based on the dom-
inant class. We can observe less noise but
intra-parcel variability is lost.

Figure 4. Advantages and limitations of the object-based approach. Same behaviour is noticed for the three
investigated scenarios (ι2 Early, ι2 OTSC, ι2 Late). Color code is provided in Table 2.

Method Precision (%) Recall (%) F -Score (%) OA (%)

Le
ve
l1

ι2 Early (Q) 74.20 43.92 43.32 75.46
ι2 OTSC (Q) 81.06 52.27 54.89 87.97
ι2 Late (Q) 80.28 50.15 53.35 87.86
GRU (R) 50.26 52.85 50.94 92.97
LSTM (R) 49.54 52.32 50.51 92.96

ConvLSTM (S2, [) 64.00 44.50 49.20 93.10
PSE-TAE (S2, H) 62.65 54.15 56.9 94.05

Le
ve
l2

ι2 Early (Q) 79.05 34.29 39.07 82.84
ι2 OTSC (Q) 85.18 47.18 51.97 86.59
ι2 Late (Q) 81.23 53.24 55.89 84.71
GRU (R) 46.15 51.96 48.37 92.08
LSTM (R) 45.95 52.99 48.61 92.08

ConvLSTM (S2, [) 56.98 48.50 50.94 92.50
PSE-TAE (S2, H) 67.35 58.01 61.35 94.2

Table 3. Performance of various existing solutions on the T31FM tile for the 2 nomenclatures. S2: classification
performed only on Sentinel-2 images. Values in bold correspond to the highest value among all methods for
each of the four criteria. Q, R, [, H indicate the learning strategy (details are provided in (Sainte Fare Garnot
et al., 2019)). Direct comparison is not possible due to varying learning schemes.
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Figure 5. Accuracy for the three ι2 scenarios for the 17-class problem (Full France). Bars correspond to
Precision and Recall is reported on top.

pixels or irrelevant objects within parcels. This also suppresses multiple crop types
within one parcel (Fig. 4) and potentially highly relevant information about the intra-
parcel variability. Keeping the 3 dominant classes is bound to be relevant if further
refinement is required by the Paying Agency.

3.2. Performance with respect to existing solutions

Our RF-based solutions are tested against several deep-learning approaches, using our
own available implementations and prediction at the parcel level on T31FM tile: Recur-
rent Neural Networks (GRU, LSTM (Ienco et al., 2017), ConvLSTM (Rußwurm and
Körner, 2018), for Gated Recurrent Unit, Long Short-Term Memory, and Convultional
LSTM, respectively) and a hybrid Spatio-Temporal attention-based architecture (PSE-
TAE, for Pixel-Set Encoder Temporal Attention Encoder) exhibiting state of the art
results (Sainte Fare Garnot et al., 2020). We selected such methods since the temporal
dimension is superior to the spatial one for Sentinel-based crop mapping (Sainte Fare
Garnot et al., 2019) and since recurrent and attention-based mechanisms are superio
to convolutional approaches (Rußwurm and Körner, 2020). Similarly to us, GRU and
LSTM solutions are fed with S1+S2 handcrafted features (28: mean and standard de-
viation for the 10 S2 spectral bands, NDVI, HH, VV, VV/HH) to assess the impact
of keeping the temporal structure of the data. ConvLSTM and PSE-TAE are fed only
with S2 images but are adopted to evaluate the relevance of end-to-end learning. Di-
rect comparison is not possible: features, training procedure (number of samples, split
train/test/validation) and validation are not aligned. In particular, ι2 solutions were
tested on all parcels, including training ones. For classes with limited samples (<5,000),
this can lead to a slightly positive bias for mean accuracy metrics. PSE-TAE discard
classes with less than 100 samples leading to 20 classes for Level 2.
Performances are provided in Table 3. RF-based solutions give higher precision scores
while deep-based ones exhibit higher OA values. PSE-TAE performs better but with-
out a significant gap and without considering rare classes. In such a case, our solution
shows higher precision/recall/F -Score values for both levels, validating its relevance at
the local scale. Table 2 shows also that PSE-TAE is prone to provide a better accuracy
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even without S1 imagery. It better exploits the temporal coherence, lost with a RF-
based approach. Still, almost 50% of the classes of both levels are better discriminated
with our workflow, even sometimes with a large margin (protein crop, winter durum
wheat, other fodder and oilseed for the most significant classes). This again shows the
validity of our solution in a strongly unbalanced and large-scale context and that the
temporal structure of time-series of images is not always a meaningful information.
However, we can only conclude that our framework is on par with the state of the art
with a majority of crop classes and perform worse for several key dominant classes. We
therefore validate the conclusions of (Xu et al., 2020) at larger scale and with more
classes.

4. Conclusion

We satisfactorily provided an operational framework for country-wide crop classifica-
tion. It is based on an improved version of the open source ι2 solution with Sentinel
imagery. Results show high accuracy for the main classes, locally close to state-of-the-
art methods. This validates both the proposed nomenclatures and the remote sensing
capability to fulfill CAP 2020+ requirements. Improvement lies in the design of a more
hierarchical strategy that handles separately dominant and rare classes at the tile and
national levels, respectively.
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