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Multiplicative chaos of the Brownian loop soup

Elie Aidekon Nathanaél Berestycki Antoine Jego Titus Lupu

July 28, 2021

Abstract

We construct a measure on the thick points of a Brownian loop soup in a bounded domain D of the
plane with given intensity # > 0, which is formally obtained by exponentiating the square root of its
occupation field. The measure is constructed via a regularisation procedure, in which loops are killed at
a fix rate, allowing us make use of the Brownian multiplicative chaos measures previously considered in
[BBK94, ATIS20, Jeg20a]. At the critical intensity § = 1/2, it is shown that this measure coincides with
the hyperbolic cosine of the Gaussian free field, which is closely related to Liouville measure. This
allows us to draw several conclusions which elucidate connections between Brownian multiplicative
chaos, Gaussian free field and Liouville measure. For instance, it is shown that Liouville-typical points
are of infinite loop multiplicity, with the relative contribution of each loop to the overall thickness of
the point being described by the Poisson—Dirichlet distribution with parameter § = 1/2. Conversely,
the Brownian chaos associated to each loop describes its microscopic contribution to Liouville measure.
Along the way, our proof reveals a surprising exact integrability of the multiplicative chaos associated
to a killed Brownian loop soup. We also obtain some estimates on the loop soup which may be of
independent interest.
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The two-dimensional Gaussian free field (GFF) and its associated Gaussian multiplicative chaos (some-
times called Liouville measure) have been in recent years at the heart of some extraordinary devel-

opments, in particular in connection with the study of Liouville quantum gravity. Formally, the
multiplicative chaos associated to a field h in a domain D C R? is a measure of the form
py(dz) = lim e /2e7he(2) g, (1.1)

e—0

where v € R is a parameter, h is typically a logarithmically correlated field, and h. denotes some
regularisation of & at scale e. The convergence of this procedure (as the regularisation scale £ converges
to 0) is by no means obvious; in the case where h is in addition assumed to be Gaussian, this is precisely



the purpose of Gaussian multiplicative chaos theory, initially introduced by Kahane [Kah85| in the
1980s to model turbulence (following ideas of Kolmogorov and Mandelbrot) and further considerably
developed in the last decade [RV10, DS11, RV11, Shal6, Berl7]. Gaussian multiplicative chaos is a
powerful tool to study properties of the underlying field h, particulary in connection with its extreme
values. By now, Gaussian multiplicative chaos is a fundamental object in its own right which describes
scaling limits arising naturally in many different contexts, including random matrices [FK14, Web15,
NSW20, LOS18, BWW18], the Riemann zeta function [SW20], and stochastic volatility models in
finance [BDMO1] (see also [DRV12]); see the surveys [RV14], [Pow20] and the book in preparation
[BP21] for more context and references.

More recently, it has been shown that an analogous theory can be developed in the case where h
describes (at least formally) the square root of the local time (i.e., occupation field) of a Brownian tra-
jectory; see [BBK94, AHS20, Jeg20a, Jeg21, Jegl9]. The construction of the associated multiplicative
chaos, a measure which we will denote in the following by M# and which is now termed Brownian
multiplicative chaos (following the terminology of [Jeg20al), is one of the first examples (together
with [Jun20] which studies random Fourier series with i.i.d. coefficients) of a multiplicative chaos in
which the field & is not Gaussian or approximately Gaussian. It is, however, logarithmically correlated
as will be clear from the discussion below. More generally, as shown in [Jeg19], given a finite number of
independent Brownian trajectories g1, ..., @n, it is possible to define a multiplicative chaos associated
to the square root of the combined occupation field of g1, ..., p,; the corresponding measure (let us
denote it by M#®2-#n in this introduction) can be thought of as a uniform measure on points that are
thick for the combined local times of all paths. A nontrivial fact proved in [Jegl19] is that, sampling
from this measure yields a point of multiplicity &k (i.e., is visited by exactly k paths) with positive
probability for each 1 < k < n. More precisely, one can make sense of a measure M1 which is
the restriction of M¥®1---#n to points on the intersection of all trajectories; those two types of measures
are related by the a.s. identity

Mpl,...,gon — i Z Mg51ﬁ~-~ﬂg5k (12)

k=1{G1,....0 }

where the second sum runs over all the possible choices of collections {¢1,...,9r} C {©1,...,9n} of
pairwise distinct trajectories. This identity corresponds to choosing the trajectories which actually
contribute to the overall thickness at a given point z. (However we caution the reader that the identity
above is not entirely trivial because the measures M#®17 9% do not require the remaining paths in

{p1,- 00} \{H1,.--,Hr} to avoid this point).

Another, very different approach to the Gaussian free field is provided by the Brownian loop

soup, first introduced by Lawler and Werner [LW04]. This consists in a Poisson point processes /3% of

Brownian loops remaining in a domain D, where the intensity measure is of the form H,ulg(’p. Here ullg()p

is a certain infinite measure on unrooted loops (see (2.10) for a definition), and the intensity 6 > 0
describes roughly speaking the local density of loops. The Brownian loop soup is a fundamental object
closely connected to other conformally invariant random processes such as SLE, the conformal loop
ensemble CLE, and the Gaussian free field. In particular, the Gaussian free field and the Brownian loop
soup with critical intensity parameter § = 1/2 can be coupled in such a way that they are related via
Le Jan’s isomorphism ([LJ10, LJ11]), i.e., the occupation field of the loop soup (suitably recentered)
is given by half of the square of the Gaussian free field (also suitably recentered). See Section 2 for
more references on Brownian loop soup and in particular Theorem 2.5 for Le Jan’s isomorphism.

The main purpose of this paper is to show how these two a priori orthogonal points of view on
the Gaussian free field are in fact deeply interwoven. To do so we first extend the construction of
[AHS20, Jeg20a] to a finite number of loops, or in fact even to an infinite number of loops but with
finite “density”, such as the loops of a Brownian loop soup of fixed intensity # > 0 that are killed, if
each loop is killed independently at constant rate K > 0. This yields a measure MX which, informally
speaking, can be thought of as the uniform measure on the thick points of the occupation field of
this “killed” loop soup. Viewing this killing as an ultraviolet regularisation of the loop soup which
converges to the entire loop soup as K — oo, we show that, after suitable normalisation, the measures
ME converge to a limit M, which may be thought of as the multiplicative chaos associated to
the loop soup of intensity 6 > 0 and is the main object of interest in this article.



We then specify this construction to the critical intensity § = 1/2, and show that this measure co-
incides with the hyperbolic cosine of the GFF, which is closely related to Liouville measure (essentially,
it is an unsigned version of it). This identification may be considered the second main contribution of
this paper. Together, these two results allow us to elucidate multiple connections between Gaussian
free field, Brownian loop soup and Liouville measure. For instance, we are able to describe precisely the
structure of Brownian loops in the vicinity of a Liouville typical point. Conversely, this result allows us
to view the Brownian multiplicative chaos of [BBK94, AHS20, Jeg20a| as describing the microscopic
contribution of each loop to Liouville measure (or, more precisely, the hyperbolic cosine of the GFF).

1.1 Construction of Brownian loop soup multiplicative chaos

Let a € (0,2) and 6 > 0 be respectively a thickness parameter and an intensity parameter. Let D C C
be an open bounded simply connected domain and let L% be a Brownian loop soup in D with intensity
Q,uIBOP. As mentioned above, the first aim of this article is to build the “uniform measure” M, on a-
thick points of E%. We need to start by recalling that for any Brownian-like trajectory g, there exists
a random Borel measure M¥ supported on a-thick points of p [BBK94, AHS20, Jeg20a]. This measure
is now known as Brownian multiplicative chaos and can be constructed, for instance, by exponentiating
the square root of the local times of . Recall also (see Section 2.3 for precise definitions) that for any
finite number of independent Brownian-like trajectories g1, ..., pn, there exists a measure M7 Non
supported on a-thick points that have been generated by the interaction of the n trajectories [Jeg19].

To build the “uniform measure” on a-thick points of the loop soup, we start by thinning the set of
loops that we consider by killing each loop independently of each other at some rate K > 0, i.e. each
given loop p € £ is killed with probability 1 — e =¥ T(¢) where T(gp) denotes the duration of the loop
p. We denote by E%(K ) the set of loops that have been killed (note that this differs from the perhaps
more standard massive loop soup). Obviously, £4,(K) — £, as K — oo in the sense that £ (K) is
an increasing collection in K > 0 and (Jy. o L% (K) = L9, Consider

1
K o
M=) — Y MpTe (1.3)
nZl 'th_“,pneﬁ%(K)
ViZj,0i#e;

the measure on a-thick points that have been entirely created by loops in £%(K). This definition is
justified by (1.2). Note that the factor -; ensures that we count each subset {1, ..., p,} of loops only
once. It is not a priori obvious that the left hand side of (1.3) is a finite measure; roughly speaking
this comes from the fact that the collection of loops £} (K) has “finite density” for each K < oo (the
number of loops in EQD (K) of diameter roughly 277 close to a point z does not depend on j, which
translates into a finite expected total occupation time for L% (K); it is therefore not surprising that the
corresponding thick point measure MX is finite, see e.g. (3.3) for a computation of the expectation
which implies a.s. finiteness).

The first result is the construction of the measure M,, the multiplicative chaos defined by the
Brownian loop soup, and which is the main object of this paper.

Theorem 1.1. Let § > 0 and a € (0,2). Then as K — oo, the convergence
(log K) "ML — M,

takes place in probability for the topology of weak convergence, where the right hand side is defined by
this convergence. Moreover, the limit M, satisfies the following properties.

1. M, is non-degenerate: for all open set A C D, My(A) € (0,00) a.s. Furthermore, denoting by
CR(z, D) the conformal radius of D seen from a point z € D, we have

1

E[M,(dz)] = 24107 (9)

CR(z,D)%dz. (1.4)

2. Measurability: M, is independent of the labels underlying the definition of the killed loops and is
therefore measurable with respect to the loop soup. More precisely, M, is o(< E% >)-measurable
(see (2.18)).



3. Conformal covariance: if ¢ : D — Disa conformal map between two bounded simply connected

domains, then
24a

(Mapo) (@2) 2 (w1 (3)]

4. The carrying dimension of M, is almost surely equal to 2 — a.

M, p(dz).

Remark 1.2. We will define in (1.11) below another, simpler approximation to M, (essentially just
a uniform measure on the thick points of a discrete loop rather, instead of MX). The corresponding
convergence result is stated in Theorem 1.12.

Remark 1.3. We also show that for all Borel sets A, B C C, limg_,0(log K)"%E [ME(A)ME(B)] is
given by
1

T /A dz /B d2’ CR(z, D)* CR(<, DY* (25 (2, ) Iy 1 (4maGp(z ),  (L.5)
where Ip_; is a modified Bessel function of the first kind whose definition is recalled in (C.4) and
Gp is Green’s function in D (2.1). See Corollary 6.6. In particular, for all open set A C D,
limg o0 (log K)2°E [MX(A)?] < oo if, and only if, @ < 1. It should be possible to show that
one can exchange the expectation and the limit (in the L?-phase {a € (0,1)}, this exchange is straight-

forward), and this would show that E [M,(A)M,(B)] is given by (1.5). Because of the length of the
paper, we preferred to not include a proof of this statement.

Remark 1.4. In Theorem 9.3, we give a stronger form of conformal covariance which concerns not only
the measure M, but the couple (£%,, M,).

1.2 Multiplicative chaos and hyperbolic cosine of Gaussian free field

We now turn to the connections between the multiplicative chaos measure M, associated to the
Brownian loop soup and Liouville measure. This will require choosing the intensity of the loop soup to
be the critical value §# = 1/2. This value is already known to be special for two distinct (but related)
reasons. On the one hand, this is the value such that the (renormalised) occupation field of the loop
soup corresponds to the (Wick) square of the Gaussian free field (i.e., Le Jan’s isomorphism holds,
see Theorem 2.5 in the discrete and Remark 2.6 for the continuum case of interest here). On the
other hand, this is also the critical value for the percolation of connected components of the loop soup
clusters, as follows from the celebrated work of Sheffield and Werner [SW12]. We show here that in
addition, still at § = 1/2, the associated multiplicative chaos corresponds to the hyperbolic cosine of
the Gaussian free field. Formally, this is the measure of the form

2cosh(yh)dz = (e + e ")dz, (1.6)

where h = /27y is a Gaussian free field, and where a and  are related by the correspondence:

2
y=+V2a; a= %
In other words, the hyperbolic cosine of h is defined in (1.6) as the sum (up to an appropriate multi-
plicative factor specified below) of the Liouville measures (1.1) with parameters v and —y respectively
(as constructed e.g. in [DS11], [Berl7]). Note that formally, our multiplicative chaos measure M, is
the exponential of the square root of the (renormalised) occupation field : £: of the loop soup ,C%:l/ 2,
so it is natural to expect in view of Le Jan’s isomorphism, that M, (dz) = e7/"ldz, which on first
inspection does not immediately coincide with the hyperbolic cosine of h. However, since h is not a
continuous function, only points where h is either very negative or very positive contribute to e¥"ldz,
and it follows that for such points we may indeed write e?"l = 7" 4 ¢~ The theorem below makes
this connection precise.
Let h = 2wy (where as before ¢ is the Gaussian free field in D with zero-boundary condi-
tions whose covariance function is given by E[¢(z)p(w)] = Gp(z,w)). Thus with these notations,

'Recall that the carrying dimension of a measure p is given by the infimum of d > 0 such that there exists a Borel set A
with Hausdorff dimension d and such that p(A) > 0.



E(h(z)h(w)) = 2rGp(z,w) ~ —log |w — z| as w — z — 0, which is consistent with the choice of nor-
malisation in Liouville quantum gravity literature (see e.g. [WP21] and [BP21] for an introduction to
the Gaussian free field and to Liouville quantum gravity).

Theorem 1.5. Let 0 =1/2, a € (0,2) and v = v/2a. Then M, has the same law as

! cosh (yh) = 1
V2ma = 2V 2ma

h'is the Liouville measure with parameter £v associated with h. More precisely, there is a

("4,

where e

coupling ((p,ElD/Q,./\/la) between a Gaussian free field ¢, a Brownian loop soup with critical intensity
0 =1/2, and a measure M, in which the three components are pairwise related as follows:

o M, is the multiplicative chaos measure associated to L'}j/z as in Theorem 1.1;

e M, is the hyperbolic cosine of h = /2wy, i.e., M, = ﬁ cosh (vh);

o p and ElD/2 satisfy Le Jan’s isomorphism, in which the (renormalised) occupation field :Z(ﬁlD/z):
of the loop soup E}D/z is equal to the (Wick) square of the Gaussian free field ¢. That is, %:@2:
= :5(5}3/2): (see Remark 2.6).

Theorem 1.5 gives a new perspective on Liouville measures by embedding them, or more precisely

the hyperbolic cosine of the GFF, in a two-dimensional family of measures indexed by 6 > 0 and
v € (0,2).
Remark 1.6. One informal consequence of Theorem 1.5 is that it allows us to describe the contribution
of each loop to Liouville measure (or more precisely to the hyperbolic cosine of the GFF): namely,
each loop contributes a macroscopic amount (as we will see in Theorem 1.8), given by its Brownian
multiplicative chaos, as defined in [Jeg20a] and [AHS20] (see Section A for the extension to Brownian
loops).

Remark 1.7. We caution the reader that the relation between the GFF ¢ and the loop soup £%:1/ 2

as stated here (namely, Le Jan’s isomorphism) is not sufficient to determine uniquely the joint law of
0=1/2
(4103 ED )

1.3 Brownian loops at a typical thick point

Theorem 1.5 raises a number of questions concerning the relations between Brownian loop soup and
multiplicative chaos (i.e., hyperbolic cosine of the Gaussian free field or ultimately Liouville measure).
Chief among those are questions of the following nature: sample a point z according to the multi-
plicative chaos measure M,. What does the loop soup look like in the neighbourhood of such points?
In other words (for the value §# = 1/2) what does the Brownian loop soup look like in the vicinity
of a Liouville-typical point? Obviously we know that the point z is almost surely 7-thick from the
point of view of Liouville measure (see e.g. Theorem 2.4 in [BP21]) so we expect the point z to also
have an atypically high local time, and so is also “thick” for the loop soup (this will be formulated
precisely below in Theorem 1.11). How do loops combine to create such a thick local time? Does
the thickness come from a single loop which visits z very often, or from an infinite number of loops
that touch z, with each loop having a typical occupation field (so z is not “thick” with respect to any
single loop)? As we see, the answer turns out to be an intermediate scenario. More precisely, we show
below that Liouville-typical points are of infinite loop multiplicity, with the relative contribution of
each loop to the overall thickness of the point being described by the Poisson—Dirichlet distribution
with parameter § = 1/2 (see e.g. [ABTO03] for a definition and some properties of Poisson-Dirichlet
distribution).

In fact, the theorem below will hold without restriction over 8 > 0, and the parameter of the
corresponding Poisson—Dirichlet distribution will precisely be the intensity 6 of the loop soup. The
behaviour above is encapsulated by the following theorem, which gives a precise description of the
so-called “rooted measure”. To formulate the result, we will need to decompose the loops touching a
point z into excursions (analogous to It6 excursions in one dimension). Let us say that a function of
LY is admissible if it is invariant under reordering these excursions (see Definition 2.2 for a more



precise definition; see also Section 2.1 for details concerning the topology on the set of collections of
loops).

Let {ay,as,...} be a random partition of [0, a] distributed according to a Poisson-Dirichlet distri-
bution with parameter 6. Conditionally on this partition, let =5 , i > 1, be independent loops with the
following distribution: for all 7 > 1, =7 is the concatenation of the loops in a Poisson point process
with intensity 27a;pu7°. Here, p7;” is an infinite measure on loops that go through z (see (2.3)).

Theorem 1.8. Let § > 0 and a € (0,2). For any nonnegative measurable admissible function F,

1 —_ . a
E UD F(z,E%)./\/la(dz)] _ W/DE [F(z, L0 U{E%,i > 11)] CR(z, D)*dz  (L7)

where the two collections of loops EOD and {Z} ,1 > 1} appearing in the right hand side term are
independent.

Moreover, the joint law of the couple (L%, M,) is characterised by
e L% has the law of a Brownian loop soup in D with intensity 0;
e M, is measurable w.r.t. the equivalence class < L% > (see (2.18));

o (1.7) is satisfied for any nonnegative measurable admissible function F.

Remark 1.9. Recall that, by Girsanov’s theorem, shifting the probability measure by the hyperbolic
cosine of the GFF amounts to adding a logarithmic singularity with strength + to the GFF. More
precisely, and using the notations of Theorem 1.5, one has for any bounded measurable function F,

z,h) cos z))dz| = z v/ z Yo Z,- z
£ | [ Flemcomon()is] = [ CRG D PRIFG -+ 2m0Gie, )] d

where o is a spin independent of h taking values +1 or —1 with equal probability 1/2. Theorem 1.8
above can be seen as explaining the way the Brownian loop soup creates this logarithmic singularity at
z. Since here it is easy to check that cosh(vyh(z))dz is measurable with respect to h, the above identity
in fact characterises the joint law of (h, cosh(vh)) (see [Shal6] or (3.30) in [BP21]).

The above result, in conjunction with Theorem 1.5, immediately implies (in the case § = 1/2) some
notable consequences in connection with Le Jan’s isomorphism. We state below a simple instance of
such a statement. The isomorphism below is closely related to (and in fact could also be deduced from)
the isomorphism in [ALS20, Proposition 3.9] where the occupation field of a Poisson point process of
boundary-to-boundary excursions is added.

Corollary 1.10. Let z € D and let =% be a loop as in Theorem 1.8 independent of the Brownian loop
soup £}3/2 with critical intensity @ = 1/2. Let :f(ﬁgz): denote the (renormalised) occupation field of
E}D/Q, and let £(Z2) denote the occupation measure of 2% (which is well defined as a distribution in D,
without any centering). Then

1 2
LYy ez @ §:<p2:+’y\/27TGD(z,~)<p—|—%QWGD(Z,-)Q

where, as before, ¥ = v/2a. In particular, the expectation of £(ZZ) is given by a2rGp(z,-)?.

1.4 Dimension of the set of thick points

The study of the multifractal behaviour of thick points of logarithmically correlated fields has attracted
a lot of attention in the past two decades. In particular, the Hausdorff dimension of the set of thick
points was established both in the case of planar Brownian motion [DPRZ01] and in the case of the 2D
Gaussian free field [HMP10]. Related results were also obtained in the discrete; see [DPRZ01, Ros05,
BRO7, Jeg20b] for the random walk and [Dav06] for the discrete GFF. Many more articles studied
related questions concerning other log-correlated fields; see [Shil5, Argl7| for more references.

We now define precisely a notion of thick points for the loop soup described informally earlier, and
state some results concerning these points. We show that with this definition, M, is almost surely
supported on “a-thick points” of the loop soup. We also compute its Hausdorff dimension (a statement
which does not involve the multiplicative chaos). Our definition of thick points is in terms of crossings



of annuli. For 2 € D, 7 > 0 and p € L% a loop, we denote by N¢, the number of upcrossings from
OD(z,7) to dD(z,er) in p (since g is a loop, this is also equal to the number of downcrossings). Denote
6

also NZP =3 po NS,
Theorem 1.11. Let 6 > 0 and a € (0,2). M, is almost surely supported by the set

T(a) = {z eD: lim —N%b, — a}, (1.8)

n
n—oo n2 %€

that is, My(D\ T (a)) =0 a.s. Moreover, the Hausdorff dimension of T (a) equals 2 — a a.s.

We mention that it would have been possible to quantify the thickness of a point z via the normalised
occupation measure of small discs, or circles, centred at z. This would have been closer to the notion
of thick points in [DPRZ01] and [Jeg20a]. To keep the paper of a reasonable size, we do not attempt
to prove a result for these notions of thick points. Note that, before the current work, it was not even
a priori immediately clear that points of infinite loop multiplicity exist with probability one.

In the next section, we establish the scaling limit of the set of thick points of random walk loop soup.
In particular, we will obtain in Corollary 1.13 the convergence of the number of discrete thick points
when appropriately normalised; as we will see this identifies a nontrivial subpolynomial term which
goes beyond the calculation of the exponent 2 — a corresponding to the above dimension; interestingly
this subpolynomial term depends on the intensity 6 itself.

1.5 Random walk loop soup approximation

As mentioned before, Theorem 1.5 is natural from the point of Le Jan’s isomorphism in the continuum.
However this relation is far too weak to obtain a proof of this theorem (for instance, it is not even
clear at this point whether the hyperbolic cosine is a measurable function of the Wick square of
the GFF). Instead, we rely on a discrete approach where the relations hold pointwise, and with no
renormalisations, so that this type of difficulties does not arise. This approach also provides a very
natural approximation of the multiplicative chaos measure M, from a discrete random walk loop soup
([LTF07]): namely, M, is the limit of the uniform measure on thick points of the discrete loop soup.
Let us now detail this result.

Without loss of generality, assume that the domain D contains the origin. For all N > 1, we
consider a discrete approximation Dy C DN %ZQ of D by a portion of the square lattice with mesh
size 1/N. Specifically,

there exists a path in 1Z* from z to the origin } (1.9)

Lo
Dy = {Z epn NZ " whose distance to the boundary of D is at least %

Let E%N be a random walk loop soup with intensity 6. See Section 2.2 for a precise definition. For
any vertex z € Dy and any discrete path (p(t))o<¢<7(,) parametrised by continuous time, we denote
by £,(p) the local time of p at z, i.e.

T(p)
L.(p) = /o Lip(t)=zydt.

With our normalisation,

[ Z 2,( ]NelogN as N — oo.
PELY

We define the set of a-thick points by

Tn(a) == {Z € Dy : Z £5( (10gN) } (1.10)

peﬁ

We encode this set in the following point measure: for all Borel set A C C, define

(log N)1—9
MY (A) =355 Y Lseay (1.11)
zE€TnN (a)



In the next result and in the rest of the paper, we will denote
co 1= 2v/2e7EM (1.12)

where ygy is the Euler—Mascheroni constant (B.1). The constant ¢ arises from the asymptotic be-
haviour of the discrete Green function on the diagonal; see Lemma B.1.

Theorem 1.12. Let 0 > 0 and a € (0,2). The couple (E%N,Mflv) converges in distribution towards
(£%,,2ca M,), relatively to the topology induced by dg (2.17) for ﬁGDN and the weak topology on C for
MY,

In particular,

Corollary 1.13. The convergence

(log N)'—*

P #Tw(a) > 2§ M, (D)

holds in distribution.

Theorem 1.12 can be seen as an interpolation and extrapolation of the scaling limit results of [Jeg19]
and [BL19] concerning, respectively, thick points of finitely many random walk trajectories (informally,
6 — 0%) and thick points of the discrete GFF (6 = 1/2).

The proof of Theorem 1.12 ends up taking a large part of this article (essentially, all of Part Two).
At a high level, the difficulties stem from the fact that (unlike in the continuum) it is very difficult to
compare directly two random walk loop soups with different lattice mesh sizes, thereby ruling out the
possibility to apply an L' convergence argument as in Gaussian multiplicative chaos [Ber17|. Instead,
we rely on results of [Jeg19] in which analogous difficulties were resolved in the case of a finite number of
random walk trajectories, together with a new discrete description (see Proposition 11.1) of the rooted
discrete measure (i.e., a discrete loop soup version of the Girsanov transform) which must be proved
by hand. These computations reveal a surprising amount of integrability, which we think is interesting
in its own right. Another technical ingredient which we obtain along the way is a strengthening of a
KMT-type coupling between the discrete loop soup and the continuum loop soup proved by Lawler
and Trujillo-Ferreras [LTF07]. This coupling allows us to show that discrete and continuous loops of
all mesoscopic scales are close to one another (in contrast with [LTF07], where the comparison holds
for sufficiently large mesoscopic scales), provided we are only interested in loops that are localised close
to a given point z € D. This coupling is useful to obtain rough estimates on the discrete loop soup
such as large deviations for the number of crossings of annuli of a given scale. See Lemma 12.11 for
details.

1.6 Martingale and exact solvability

Before starting the proofs it is useful to highlight a few nontrivial aspects of the proofs. A crucial idea
is the identification of a certain measure-valued martingale mX (dz) with respect to the filtration Fx
generated by L£%(K). The definition of this martingale is in itself highly nontrivial and is described
in Proposition 3.4. As follows a posteriori from our analysis, this martingale corresponds to the
conditional expectation of M, given Fg. Although it is a priori far from clear that this conditional
expectation should take the given form, it is nevertheless possible to guess a rough form for this
conditional expectation. Indeed, consider the decomposition of the entire loop soup EGD into the killed
part (£%,(K)) and its complement. These two parts are independent. Furthermore, by the isomorphism
theorem (see Theorem 2.5), the occupation field of the complement is given by one half of the square
of a massive Gaussian free field. This suggests that M, can be described by the sum of two terms.
The first term comes just from the hyperbolic cosine of this massive free field (since it is possible that a
point is thick without being visited at all by £% (K)). The second term on the other hand describes the
possible interactions between these two parts: it measures the contribution of points whose thickness
comes in part from the massive free field and in another part from the killed loop soup. This interaction
term is thus described by an integral in which the integrand describes the respective thickness of each
part; however the precise law of this mixture cannot be easily inferred from combinatorial arguments
and was instead obtained by trial and error. We stress however that the appearance of the massive



free field (and its hyperbolic cosine) is what makes the ultraviolet regularisation by killing particularly
attractive from our point of view.

While these arguments are useful to guess the general rough form of the martingale, they cannot
be used to give a proof of the martingale property: rather, the martingale property is the engine that
drives the proof and the above explanation may only be seen as a justification after the facts. The
proof of the martingale property relies instead on a central observation (stated in Proposition 3.1 and
proved in Section 5), which allows us to compute ezactly the expectation of the approximate measure
/\/lff with finite K < oco. This expectation is computed in terms of the hypergeometric function | Fy
and the conformal radius of a point. This computation is the result of the triple differentiation of a
certain infinite series whose nth term involves an n-dimensional integral, see Lemma 5.4. The fact that
such a computation is at all possible is another stroke of luck which suggests the choice of ultraviolet
regularisation (by killing as opposed to say, by diameter) is particularly well suited to this problem.
The exact solvability which seems to underly this calculation is in fact a constant feature of the paper;
as shown in Part Two, analogous remarkable identities hold even at the discrete level. The existence
of such exact formulae for the ultraviolet regularisation of the Brownian loop soup by killing seems to
not have been noticed before; we hope it may prove useful in other contexts as well.

We end this introduction by pointing out that the results of this paper open the door to a generali-
sation, in particular to non-half integer values of 6, of constructions from the Euclidean Quantum Field
Theory that relate the Wick powers of the GFF, the Gaussian multiplicative chaos and the intersection
and self-intersection local times of Brownian paths (see e.g., [Sym65, Sym66, Sym69, Var69, Dyn84b,
Dyn84c, Sim74, Wol78b, Wol78a, LG85, LJ11]). We plan to develop this in future works.

Organisation of the paper In the next section, we will give some background on loop soups
and measures on paths both in the continuum and in the discrete. We will also recall the definitions of
Brownian multiplicative chaos measures. The rest of the paper is then be divided into two main parts
dealing with the continuum and the discrete settings respectively. Each of these parts starts with a
preliminary section (Sections 3 and 10 respectively) outlining the proofs of the main theorems at a
high level. The structure of each part is then described more thoroughly in these preliminary sections.
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2 Background

2.1 Measures on Brownian paths and Brownian loop soup

We start first by recalling some basic properties of the Brownian loop soup, mostly to introduce our
notations and choice of normalisations.

By Brownian motion we will denote the 2D Brownian motion with infinitesimal generator A rather
than the standard Brownian motion, which has generator %A. Let D be an open domain which we
may assume to be bounded without loss of generality. Let pp (¢, z, z) denote the transition probability
of Brownian motion killed upon leaving the domain D. If

t ) 1 ( |w — z|2)
z,w) = —exp [ — —————
beih %, art P 4t

denotes the transition probabilities of this Brownian motion in the full plane, and if 7p (¢, z, w) denotes

10



the probability that a Brownian bridge of duration ¢ remains in the domain D throughout, then
pp(t, z,w) = pe(t, 2z, w)mp(t, z,w).

Let Gp(z,w) denote Green function of —A on D with Dirichlet 0 boundary conditions; that is,

Gp(z,w) = /OOO pp(t, z,w)dt. (2.1)

In our normalisation,

G2 w) ~ —% log(|w — 2|) (2.2)

as |lw—z| — 0.

Next we recall the definitions of natural measures on Brownian paths and loops. For details, we
refer to [Law05, Chapter 5] and [LWO04]. Given z,w € D and ¢ > 0, let P3"; denote the probability
measure on Brownian bridges from z to w of duration ¢, conditioned on staying in D. Let u7" denote
the following measure on continuous path from z to w in D:

+oo
15 (dp) = / P55 (dp)pp(t, 2, w)dt. (2.3)

The total mass of u73" is Gp(z,w). In particular, it is infinite if 2 = w. The image of p7" by time
reversal is pupy®. Given a subdomain D’ C D and z,w € D/,
ug}u (d@) = 1{() stays in D’}Ngw (d@) (24)
Further, if z € D and x € 9D, and 9D is smooth near x, we will denote
up (dp) = lim E_IMZ*HE%}“' (dp) (2.5)
D e—0 D ’
%

where 77, is the normal unit vector at  pointing inwards. In this way, u7" is a measure on interior-
to-boundary Brownian excursions from z to x. Its total mass is given by

Hp(z,z) =lime 'Gp(z,z + M) (2.6)

e—0

This Hp(z,x) is the Poisson kernel, the density of the harmonic measure from z. The probability
measure 17" /Hp(z,x) is the law of the Brownian motion starting from z up to the first hitting time
of 0D, conditioned on hitting D in z. Now, if z,y € D and 9D is smooth near z and near y, we
similarly define
, . _9 xteRg,ytend
pp” (dp) = lim e ™" (d). (2.7)

In this way, u7;Y is a measure on boundary-to-boundary Brownian excursions from z to y. Its total
mass is given by
Hp(z,y) = lirr(l)s_QGD(m—keﬁI,y—i—sﬁy). (2.8)
e—

Here, Hp(x,y) is the boundary Poisson kernel. Note that Hp(x,2) = 400.

Notation 2.1. For any z € D and w € D, respectively w € D, we will denote by p3" a Brownian
trajectory distributed according to

w5 /Gp(z,w), respectively p3"/Hp(z,w). (2.9)

If z € OD and w € D, we will denote by p3;" a trajectory which is the time reversal of a path distributed
according to py*/Hp(w, z).

The natural measure on Brownian loops in D is

loop oo Z,2 dt
(dp) = P (do)pp(t, 2, 2)— , dz. (2.10)

11



1 . . . .
The measure pp°” has an infinite total mass because of the ultraviolet divergence. The measure on
loops is invariant under time reversal. Given a subdomain D’ C D,

loop

Kp: (d@) = 1{p stays in D/}MBOp(dﬁo)- (2.11)

1 .
The measure pp°" can be rewritten as

pp (dp) = ﬁ /D 1y (dp)dz, (2.12)

where T'(p) denotes the total duration of a generic path p.

We will also need in what follows the massive version of the measure on Brownian loops. Let K > 0
be a constant. Let Gp x(z,w) denote the massive Green function associated to —A + K, with
Dirichlet 0 boundary conditions. We have that

GD7K(Z,’LU):/ e Kipp(t, z,w)dt. (2.13)
0

In Quantum Field Theory, K corresponds to the square of a particle mass. In terms of Brownian
motion, K is just a killing rate. The massive measure on Brownian loops in D is

HECR (dp) = ¢ KTO R dp). (2.14)

Note that the massive measure on Brownian loops was introduced in early works on Euclidean QFT
by Symanzik [Sym65, Sym66, Sym69].

The loops under the measures ,ulf,Op (2.10) and ,ulf,?;; (2.14) are rooted, that is to say the loops

p have a well defined starting time and end time. However, one usually considers unrooted loops
[LW04, Law05], that is to say one identifies the loops under circular shifts of the parametrisation. Two
rooted loops p and ¢ correspond to the same unrooted loop if T'(p) = T(H), and there is s € [0, T(p)]
such that p(t) = p(t+s) for t € [0,T(p)—s], and §(t) = p(t+s—T(p)) for t € [T(p)—s,T(p)]. We will

1 . 1 . .

denote by """, respectively pupy", the measures on unrooted loops induced by p;°", respectively
loop
Kp K-

By considering unrooted loops, one gains a covariance under conformal maps for ulg‘)p*. Let D

and D be two conformally equivalent open domains and ¢ : D — D a conformal map. Let Ty be the
following transformation of paths induced by ¥. Given p a path in D, one applies to p the map ¥ and

performs a change of time ds = [¢/(p(t))|?dt. Then ,ulngp* is the image measure of ;2 under 7Ty;

see [LWO04, Proposition 6] and [Law05, Proposition 5.27]. Note that in general, ull%c’p is not the image

of p\5° under Ty,.

Given 6 > 0, a Brownian loop soup L'%, as introduced in [LWO04], is a Poisson point process of
intensity 0,2°". We see it as a random infinite countable collection of Brownian loops in D. We will
consider both rooted and unrooted loops, depending on the context, and use the same notation L%
in both cases. On simply connected domains, the Brownian loop soups were used in the construction
of Conformal Loop Ensembles CLE,, [SW12]. At the particular value of the intensity parameter
6 = 1/2, the loop soup E}D/Q is related to the continuum Gaussian free field (GFF) and to the CLEy4
[LJ10, LIJ11, SW12, QW19, ALS20]. These relations are part of the random walk/Brownian motion
representations of the GFF, also known as isomorphism theorems [Sym65, Sym66, Sym69, BFS82,
Dyn84a, Dyn84b, MR06, Sznl2].

Now let us define the loops in £%, killed by a killing rate K. Let U, p € L%, be a collection of
i.i.d. uniform random variables on [0,1]. Given K > 0, set

LO(K) = {p €Ll U, <1- e*KT(m} . (2.15)

The subset £9,(K) of L% consists of loops killed by K. The complementary £% \ L% (K) is a Poisson
point process of intensity Qulgolp(. In other words it is a massive Brownian loop soup. The construction

through the uniform r.v.s U,-s allows to couple £9, and the £9,(K) for all possible K on the same
probability space. Moreover, this coupling is monotone: if K’ < K, then £, (K') C £L%,(K) a.s.

12



It is easy to see that a.s., for every K > 0, £9,(K) is infinite. However,

E[|{p € LH(K)|T(p) > e}[] <log(e™"),  E[|{p € L(K)|diam(p) > e}|] < log(s ™),
whereas for the whole loop soup £%,

EH{@ e LY T(p) > E}H =e 1, EH{@ e £% | diam(p) > E}H = e 2,

For the sequel we will need to formalize a topology on collections of unrooted loops. First, let
us defined a distance on the continuous paths in C of finite duration. Given (p1(t))o<t<7(p,) and
(92(t))o<t<T(ps) such paths, let be the distance

dpaths (91, 2) = |log(T (p2)/T(p1))| + max, lp2(sT'(p2)) — 1(sT(91))]- (2.16)

If p1 and po are two rooted loops, i.e. p1(T(p1)) = ©1(0) and p2(T(p2)) = p2(0), and if [p4]
and [po] are the corresponding unrooted loops, i.e. the equivalence classes under circular shifts of
parametrisation, then let be the distance

dunrooted([@l]a [92}) = ~H1iIl dpaths(@v @2) = ~min dpaths(@lv @)
p€lp1] PE[p2]

Now let us consider finite collections of unrooted loops. Here and in the sequel by collection we mean
a multiset. The elements of a multiset are unordered, but may come each with a finite multiplicity. A
collection can also be empty. Given £; and L5 two such finite collections of unrooted loops on C, we
set the distance

dﬁn.col‘(ﬁla »CZ) = UEBir];(liﬁn £2) Z dunrooted(@7 U(p))
1,L2 oLy

if £, and L5 have same cardinal with multiplicities taken into account, and dgn.col.(£1,L2) = 400
otherwise. In particular, the distance of the empty collection to any non-empty collection is +oo.

Given z € C and r > 0, let D(z,7) denote the open disc with center z and radius r. Given L a
collection of unrooted loops, not necessarily finite, and r > 0, denote

Ly, :={p € L: p stays in D(0,r),diam(p) > r~'}.
Let £ be the following space:
£ := {L collection of unrooted loops on C : V7 > 0, L}, is finite}.

The empty collection also belongs to £. All the collections belonging to £ are countable. We endow £
with the following distance:

+oo
de(L1, L) == /1 e "(dn.col. ((L1))rs (L2)}r) A 1)dr. (2.17)

A sequence (Ly)r>0 converges to £ for dg if and only if there is a positive increasing sequence (7;) >0,
with lim;_, y o 7; = 400, such that for every j > 0,

kEI-ir-loo dﬁn.col.((ﬁk)\rj ) E\m) =0.
It is easy to see that the induced metric space (£,dg) is complete. Moreover, the finite collections
are dense in £. Further, the finite collections can be approximated by a countable subset of finite
collections. Consider for instance the trigonometric series. Thus, the metric space (£, dg¢) is separable.
So, (£,dg) is a Polish space. We will often see the Brownian loop soups £%, and £% (K) as r.v.s with
values in £.
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Equivalence relation on (£,d¢) and admissible functions We now formalise the notion
of functions F : £ — R that are invariant by exchanging the order of the excursions in the loops at a
given point z € C. We will call such functions z-admissible functions.

Let p : t € [0,T(p)] — g+ € C be a continuous path in C with finite duration and such that
©0 = pr(p)- Let z € C be a point visited by . To p and z we can uniquely associate an at most
countable collection of excursions {ef"*,i € I}, where by an excursion e we mean a continuous path
(e;,0 <t < () such that eg = ec = z and e; # z for all t € (0, (), and such that the reunion of all ef*
coincides with the loop p. In fact, these excursions inherit from p a chronological order but we will
not need this.

For a fixed z € C, we define an equivalence relation ~, on unrooted loops by saying that two loops
p and ' are equivalent if, and only if,

e either z is not visited by p, nor @', and in that case the unrooted loops [p] and [p] agree;

e or z is visited by both p and @’ and the collections of unordered excursions {ef"*,i € I} and
{e¥*,i € I'} coincide.
We will denote < g >, the equivalence class of a loop g under the relation ~,. If C € £ is a collection
of loops, we will denote < C >,:={< p >,,p € C}.
We can now give a precise definition of admissible functions.

Definition 2.2. Let z € C. We will say that a function F : £ — R is z-admissible if F(-) is invariant
under the relation ~, i.e. if for allC,C' € £, F(C) = F(C’) as soon as < C >,=< (' >,.

Functions F': D x £ - R (resp. F: D x D x £ — R) are called admissible if for all z € D, F(z,-)
is z-admissible (resp. if for all z,2 € D, F(z,2',+) is z-admissible and z'-admissible).

Examples of admissible functions include total time duration, number of crossings of an annulus,
etc.
Finally, we introduce the o-algebra

o((£$)) =0 (F(L}),F : £ — R bounded measurable s.t. Vz € C, F is z-admissible) . (2.18)

It is the o-algebra generated by the equivalence class of L% where two loops p and ¢’ are identified if
and only if p ~, @’ for all z € C. Note that this o-algebra is included in a(<£%>z) for any z € D.

2.2 Measures on discrete paths and random walk loop soup

Here we will recall some properties of the continuous-time discrete-space random walk loop soups.
Let N > 1 be an integer. We will denote Zy := %Z, and work on the rescaled square lattice Z3%.
Let Ay be the discrete Laplacian on Z%:

Anf)(2) =N Y (f(w) = f(2)), =z €L}
weZ,
lw—z|=%

Note that with our normalisation, Ay converges as N — 400 to the continuum Laplacian A on C. Let
(Xt(N))tzo be the Markov jump process on Z3; with infinitesimal generator Ay. In other words, this is
the continuous-time simple symmetric random walk, with exponential holding times with mean ﬁ.
As N — +o0, (Xt(N))tZO converges in law to the Brownian motion on C with infinitesimal generator
A.

Let Dy be a non-empty subset of Z3.. Note that in the sequel we will typically consider sequences
(Dn)n>1 converging to continuum domains D C C as in (1.9). Let TZ2\Dy denote the first hitting

time of Z% \ Dy by Xt(N). Denote
ppy (t, 2z, w) == NQ]P’Z(Xt(N) =W, Tz2\Dy > t), z,w € Dy.

Note that pp, (t,z,w) = pp, (t,w, z). Denote
+oo
Gpy(z,w) :/ Ppy (t, 2, w)dt.
0
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If 2 or wis in Z% \ Dy, we set Gp, (z,w) = 0. Defined this way, Gp, is the discrete Green function.
It satisfies
_AN,wGDN (Z, w) = ]\/vQ]_{Z:w}7 z,w € Dy,

where the notation Ay ,, indicates that the discrete Laplacian Ay is taken with respect to the variable
w.

Let P}, denote the law of (XM o<scr, with X$V) = 2z, conditionally on X = w and T22\Dy >
t. Next we recall the discrete analogues of measures (2.3) and (2.10). For details, we refer to [LJ10,
LJ11]. The measure p75; Dn “ will be a measure on nearest-neighbour paths from z to w in Dy, parametrised
by continuous time, and of final total duration:

+oo
o) = [ BB dolpoy (b )t (219
0

The total mass of u7" is Gp,. The image of ;" by time reversal is up”.
In the case when Z3% \ Dy is also non-empty, let Dy denote the subset of Z3 \ Dy made of

vertices at graph distance 1 from Dy, i.e. at Euclidean distance % Given z € Dy and x € 0Dy,
denote
G S (2.20)
weDN
lw—z|=%

Let Hp, (2, %) denote the total mass of the measure p7;" . We have that

Hpy(z,2)=N > Gpy(zw). (2.21)
weED N
jw—a|=4%

Usually, we will add to trajectories under ,u‘;‘j’fv an additional instantaneous jump to x at the end,
without local time spent at x. In this way, the probability measure /f’w /Hp, (z,x) is actually the

. (N) )
distribution of (X, )OStSTZ?V\DN T2 \Dy

given that X(() ) = 2 and conditionally on X7 N = z. Moreover,

z N
Hp, (z,2) = NP (Xﬁz?V)\DN =1).
So we see Hp, (z,z) as the discrete Poisson kernel.

The measure ulOOP will be a measure on rooted nearest-neighbour loops in Dy, parametrised by
continuous time, and of final total duration:

loo oo 2,2 dt
i) = 3 X [ ooyt T (222)
zGDN

op loop

The measure up, l0op s invariant by time reversal. Note that the total mass of up " is always infinite
because of the ultrav1olet divergence. The measure puts an infinite mass on terlal "loops" that stay
in one vertex, without performing jumps. To the contrary, ulg?vp puts a finite mass on loops that visit

at least two vertices and stay inside a finite box. More precisely, given z1,z29,...,29, € Dy, with
|z; — zi—1| = % and |z9, — 21| = %, the weight given to the set of rooted loops starting from z;, then
successively visiting 29, ..., z2,, and then returning to z; is (2n)~1472". Moreover, conditionally on

this discrete skeleton, the holding times are i.i.d. exponential r.v.s with mean ﬁ. Given a subset
DE\T C Dy,

W 1 Z,w 2w € D/ loop _ loop
N“D;V - {p stays in D;V}’LLDN’ ’ N> 'LLD’ {p stays in Dﬁv}N’DN :

The measure on continuous time discrete space loops (2.22) first appeared in [LJ10, LJ11]. Related
measures on discrete time loops appeared in [BFS82, LTF07, LL10].

~ 2, W w

We will also need a measure ji7;  related but different from ,uZD Given z,w € Dy, denote

’uD7N = Z 'uDN\{z w}’ (223)
2w e€Dn\{zw}
\zlfz\*ﬁ
o' —wl=%



This is a measure on continuous time nearest-neighbour paths from a neighbour of z to a neighbour
of w, and staying in Dy \ {z,w}. Actually, to a path under /i we will add an initial jump from 2 to
the corresponding neighbour 2/, and a final jump to w from the corresponding neighbour w’. In this
way we get a path from z to w, but with zero holding time in z and w.

We will also consider the massive case. Let K > 0 be a constant. Denote Gp, k (%, w) the massive

Green function N
Gpy i (z,w) 2/ efKtpDN(t,z,w)dt. (2.24)
0

The massive version of the measure on loops (2.22) is

P e (dp) = e KT PP (dp),
where T'(p) is the total duration of a loop.

Again, given 0 > 0, we will consider Poisson point processes of intensity oulgjvp , denoted EQDN.
We will consider both rooted and unrooted loops. These are random countable collections of loops
in Dy, known as continuous time random walk loop soups. Note that, if Dy is finite, then £9DN
contains a.s. only finitely many non-trivial loops that visit at least two vertices. However, a.s., for
every z € Dy, £%N contains infinitely many trivial "loops" that only stay in z.

Now, consider a constant K > 0. Let U, p € E%N, be a collection of i.i.d. uniform random
variables on [0, 1]. Define

E%N(K) = {p € E%N Uy, <1 - 67KT(W)}.

The subset EGDN (K) corresponds to loops killed by the killing rate K. The complementary E%N \

E%N (K) is a Poisson point process with intensity measure GMIB‘;VP k- Unlike in the continuum case,

L%N (K) is a.s. finite if Dy is finite. This is because
¢ dt
/ (1 —e 5 — < 4o0.
0 t

For a vertex z € Z3, and a path on Z3, parametrised by continuous time (p(t))o<¢<7(e), We denote
by £.(p) the local time accumulated by p at z, i.e.

T(p)
() = /O Lip()=-1dt.
Given L a collection of path on Z%;, we denote

l=(£) =) L:(p)- (2.25)

eL

First we state some Markovian decomposition properties for the measures u3” and i35". These
Dy Dy
are elementary, so we do not provide proofs.

Lemma 2.3. Let Dy C Z?\, such that both Dy and Z?\, \ Dy are non-empty.

—1. 2,z

1. Given z € Dy, under the probability measure Gpy (z,2)” " pup (dp), the local time (.(p) is an
exponential r.v. with mean Gp, (z,z). Conditionally on €,(p), the behaviour of p outside z is
given by a Poisson point process of excursions from z to z with intensity measure Ez(p)ﬂgfv.

2. Let z,w,z € Dy such that 2’ is at a graph distance at least 2 from both z and w, i.e. |2/ —z| > %
and |2’ — w| > 3. Then for any bounded measurable function F,

/1{5) visits z’}F(p)ﬂglNu (dp) = /[ngz\, (dpl)/lj‘z;\f\{z,w}(d@) /ﬂ%:fﬂ(dQQ)F(pl ApA @2),

where N\ denotes the concatenation of paths.
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3. Let z,w € Dy such that z and w are at a graph distance at least 2, i.e. |w — z| > % Then for
any bounded measurable function F,

[ P = [ o [ i) [u o Fennon o).

Next we describe the law of the local times of loops in a random walk loop soup. For details, we
refer to [LJ10, LJ11].

Proposition 2.4 (Le Jan [LJ10, LJ11]). Let Dy C Z3% such that both Dy and Z3 \ Dy are non-
empty. Fix 6 > 0 and consider the random walk loop soup E%N. Given z € Dy, the collection of

random times (Ez(p))Peﬁ%N’p visits = 15 a Poisson point process of (0,+00) with intensity measure

—t/Gpy () O (2.26)

1{t>0}9€ P

that is to say these are the jumps of a Gamma subordinator. In particular, £, (E%N) follows a Gamma(0)

distribution with density
1

1 - @ @O0
0T 0)Gp, (2, 2)?
Conditionally on the family of local times (£2(9)) e o,

t07167t/GDN (z,z)'

| visits 2 the loops g visiting z are obtained,

up to rerooting, by taking independent Poisson point processes of excursions from z to z with respective

intensities éz(p)/lgfv. The collections of loops not visiting z is independent from the loops visiting z,

and distributed as EDN\{Z}'

Furthermore, given K > 0 and z € Dy, the collection of random times (C2(9))pero, \£o (K)o visits =
N N ’

is a Poisson point process of (0,400) with intensity measure

/Gy (2) AL (2.27)

1{t>0}9€ P

For the particular value of the intensity parameter § = 1/2, the random walk loop soup /.ZlD/f,
is related to the discrete Gaussian free field (GFF) through the Le Jan’s isomorphism theorem
[LJ10, LJ11]. Let pn denote the discrete (massless) GFF on Dy with condition 0 on Z3 \ Dy. It is
a random centred Gaussian field with covariance kernel given by the Green function Gp,. Given a
constant K > 0, there is also the massive discrete GFF ¢y, i, with covariance kernel Gp, .

Theorem 2.5 (Le Jan [LJ10, LJ11]). Let Dy C Z3; such that both Dy and Z3 \ Dy are non-empty.

Consider the random walk loop soup L:}:)/f,' Then, the occupation field (£, (‘CID/I?;))ZGDN is distributed as

$¢%. Further, given a constant K > 0, the occupation field (Zz(ﬁgi \ﬁgi (K)))zepy is distributed
as %90?\7 I

Remark 2.6. Note that in dimension 2, Le Jan’s isomorphism has a renormalised version in continuum
space involving the Wick’s square of the continuum GFF [LJ10, LJ11].

2.3 Brownian multiplicative chaos

This section recalls some facts about Brownian multiplicative chaos measures. These measures were
introduced in [BBK94, AHS20, Jeg20a] in the case of one given Brownian trajectory and can be
formally defined as the exponential of the square root of the local time of the trajectory (see [Jeg20a,
Theorems 1.1 and 1.2] for a construction that uses an exponential approximation). In the current
article, we will need to consider “multipoint” versions of these measures for finitely many independent
trajectories. This generalisation has been studied in [Jegl9] and was key in order to characterise the
law of Brownian multiplicative chaos. The current article focuses on the subcritical regime, but let
us mention that Brownian chaos measures have also been constructed at criticality, i.e. when a = 2
(equivalently, v = 2); see [Jeg21].

For all ¢ > 1, let D; C C be a bounded simply connected domain and let z; € D; be a starting
point. Let us consider independent random processes ©; = (pi(t))o<i<r,? > 1, in the plane such
that for each ¢ > 1, the law of g; is locally mutually absolutely continuous with respect to the law
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of Brownian motion starting at z; and killed upon exiting for the first time D;. In order to recall
a rigorous definition of the Brownian chaos measures that we will consider in this article, we first
introduce local times of circles: for all ¢ > 1, z € D; and £ > 0 be such that D(z,e) C D;, let

. . 1 Ti
LZZ’E = lim 7‘/0 1{67T§|pi(t)7z‘g€+7“}dt'

r—0t 21T

As shown in [Jeg20a, Proposition 1.1], these local times are well-defined simultaneously for all z and e.
Recall that, in the current article, we consider Brownian motion with infinitesimal generator A instead
of the standard Brownian motion considered in [Jeg20a, Jegl9] which has generator %A. Because of
this difference of normalisation, the local times defined above are 2 times smaller than the local times
used in [Jeg20a, Jegl9].

This article will consider the following measures:

o MM N0n g € (0,2): measure on a-thick points coming from the interaction of the n trajecto-
ries. Each trajectory is required to visit the thick point, but the way the thickness is distributed
among the n trajectories is not specified. This measure is defined as the limit in probability,
relatively to the topology of weak convergence, of

N---N n I —
MEO 0o (A) = 811_r>r(1) |logele™ /A 1{%2?:1 L;,EZaIlogE|2}1{Vi:1...n,L;,E>0}dx’ A c C Borel.

See [Jegl9, Proposition 1.1].

° ﬂ?zl ME:, 7 a; < 2: measure supported on the intersection of the support of each measure, the
i-th trajectory is required to contribute exactly a; to the overall thickness. It is defined by:

e Tz, e

m MG (A) = 213% | lOg€|ng_Zai /A H 1{;Li >a7¢|logs|2}dx’ A C C Borel,
=1 i=1

where the convergence holds in probability relatively to the topology of weak convergence. See
[Jegl9, Section 1.4].
These two types of measures are closely related. Indeed, on the one hand, N}, M is the Brownian
chaos measure M with reference measure ﬂ?z_ll Mg de. (io, ME7 is also equal to

n—1

gi_ff(l)|10g€\5_a"1{ém >an|logel?} Q MG (dz). (2.28)

x,e =

See [Jegl9, Proposition 1.2 (ii)]. On the other hand, the following disintegration formula holds [Jeg19,
Proposition 1.3|:

M — / da [ M (2.29)
a€E(a,n) i=1
showing that the thickness is uniformly distributed among g1,...,p,. In this formula and in the

remaining of the article, we denote by E(a,n) the (n — 1)-dimensional simplex: for all n > 1,a > 0,
E(a,n):={a=(a1,...,an) € (0,a]" a1 + -+ + a, = a}. (2.30)

This disintegration formula allows us to naturally extend these definitions to “mixed” cases. For
instance, for a + a’ < 2, we define

n+m

n---N .
MG Mo / da / da’ (] Mg
a€FE(a,n) a’€E(a’,m) i=1

We finally explain a Girsanov-transform-type result associated to these measures, i.e. the way the
law of the paths p; changes after shifting the probability measure by M£:(dz). For this purpose, we
need to specify the laws of the trajectories gp;, ¢ > 1. For all i« > 1, let D; be a bounded simply
connected domain, let x; € D and let z; € dD; be a point where the boundary D; is locally analytic.
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The independent trajectories p;,i > 1 are then assumed to be Brownian paths from z; to z; in D;,
ie. pi~ pup ™ /Hp,(vi,2) (2.5). Let n > 1 and a; > 0,i = 1...n, be thickness parameters such that
E a; < 2.

We will see that this shift amounts to adding infinitely many excursions from z to z that are
sampled according to a Poisson point process. Such excursions will play a prominent role in this paper
and we define them now.

Notation 2.7. We will denote by =2 (or by =P when we want to emphasise the dependence in
the domain D) the random loop rooted at z, obtained by concatenating a Poisson point process of
Brownian excursions from z to z of intensity 2wapy;” (2.3). Such a Poisson point process appears in
the description of a Brownian trajectory seen from a typical a-thick point [BBKY94, AHS20, Jeg20a/.
We will denote by N the concatenation of paths.

Recall also Notation 2.1. [Jegl9, Proposition 1.4] states that for all bounded measurable function
F

)

E — (2m)" /ﬂD( Tz o CR(=.D,)")  (231)

-1 Hp, (@i, i)

/F(zapla"wpn) mMg):(dZ)
¢ i=1

1
x E[F(z,{p5" NEZP A o357 Yict.om)] d2

where all the paths above are independent. The factor (27)™ is due to the different normalisations
of the Green function in [Jegl9] and in the current paper. In words, after the shift, the path g; is

L,

distributed as the concatenation of three independent paths: a trajectory g Dl_z from x; to z in D;; a
loop 227 rooted at z going infinitely many times through z; and a path pp. from z to 2. Such a
description was already present in the paper [BBK94] in the context of one trajectory.

These results concern Brownian multiplicative chaos associated to independent Brownian trajecto-
ries from internal points to boundary points in fixed domains, but they can be extended to the loops

in the Brownian loop soup. This will be made clear in Section 4.

Part One: Continuum

3 High level description of Proof of Theorem 1.1

In this section, we give a high-level description of the proof of Theorem 1.1. We start with the first
moment computations for MX. As mentioned in the introduction the first moment is surprisingly
explicit, which suggests that there is a certain amount of exact solvability or integrability in this
approximation of the loop soup. Indeed we will see that the first moment is expressed in terms
of Kummer’s confluent hypergeometric function ;F;(6,1,-) whose definition is recalled in (C.7) in
Appendix C. Recall also that CR(z, D) denotes the conformal radius of D seen from a point z € D.

Proposition 3.1. Define for all u > 0,

u

F(u):=0 [ e "1 F(0,1,t)dt (3.1)
and for all = € D, 0
Ci(2) = 2m(Gp — Gp k)(2,2) = 27 /OOO po(t, 2 2)(1 — e Kyt (3.2)
Then
E[MX (d2)] = %F (Cre(2)a) CR(z, D) d-. (3.3)

The function Ck(z) plays a prominent role in the following; except for the factor of 27 in front,
Ck (z) corresponds to the Green function of loops that are killed and thus one may think of Cx (which
also depends on D, even though D does not appear in the notation) as the covariance of the Gaussian
field encoding the occupation measure of killed loops. Note that Ck(z) < oo, so that this field is in
fact defined pointwise.
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Remark 3.2. In Lemma 5.3, we will obtain a more precise version of Proposition 3.1: we will get
analogous (but more complicated) expressions when the underlying probability measure has been
tilted by MX (dz), thereby showing a version of Theorem 1.8 valid even when K < co. This will then
play a crucial role in second moment computations.

Proposition 3.1 allows us to compute asymptotics of the first moment in a relatively straightforward
manner.

Lemma 3.3. We have the following asymptotics:

1. There exists C > 0 such that for all u > 0,

u, if u<l,
F(u)SC{ Wi u> 1, (3.4)
Moreover,
. —6 _
ul;ngou Flu) = NGk (3.5)

_ Ck(z) 1
e @9

We note that this justifies the normalisation (log K)~¢ chosen in the statement of Theorem 1.1.
Heuristically, (3.6) can be derived by noting that loops in (3.2) have a duration of order 1/K and
hence a typical diameter of order 1/ VK, so that Cx corresponds roughly to the Green function Gp
evaluated at points z,y separated by ¢ = 1/v/ K. Plugging this in (2.2) yields (3.6).

A crucial consequence of this explicit first moment is a positive martingale which plays a key role
in our analysis. Recall that by (2.15), the collections E%(K ) are coupled on the same probability space
for different values of K, and the set of K-killed loops increases with K. We will denote by Fx the
o-algebra generated by the K-killed loops.

Proposition 3.4. Define a Borel measure mX (dz) as follows:

mE(dz) := CR(z, D)% *“x(Z) Jr/ dp L

a—p, —(a—p)Ck(z K
W o WCR(Z,D) Pe (a=p)C( )Mp (dZ) (37)
Then (mX(dz), K > 0) is a (Fx, K > 0)-martingale (that is, mX(A) is a martingale in that filtration,
for any Borel set A C D).

We mention that the measure m% is well-defined since we show that the process a € (0,2) — ME

is measurable relatively to the topology of weak convergence; see Definition 4.3 and the discussion
below.

The proof of Proposition 3.4 will be given in Section 5.3 (see also Section 8 for an alternative proof).
Intuitively (and as follows a posteriori from our results and Lévy’s martingale convergence theorem),
the measure on the left hand side corresponds to the conditional expectation of M, given Fx. To
understand what the identity (3.7) expresses, or alternatively to motivate the definition of m(dz),
consider for simplicity of this discussion the special case § = 1/2 where we may use isomorphism
theorems for clarity (Theorem 2.5). This conditional expectation should consist of two parts. The first
part of the conditional expectation is given by thick points created only by the massive GFF with mass
VK (this is the first term in the right hand side). The second part is given by points whose thickness
comes from a combination of the massive GFF and killed loops. The respective contribution to the
overall thickness a of the point is arbitrary in the interval [0, a], resulting in an integral. The variable
p € [0,a] of integration corresponds to points which have a thickness of order p in the soup of killed
loops, and a thickness a — p in the massive GFF. This identity is therefore an analogue of Proposition
1.3 in [Jeg19] (see also (2.29)). The presence of the factor 1/(a — p)*~% in front is not straightforward.
A posteriori, it may be viewed as describing the “law” of this mixture of thicknesses. See Remark 5.7
for more discussion on this point.

We now assume the conclusion of Proposition 3.4 and see how the proof proceeds. Since m& (A) > 0
for all Borel set A, we deduce that (mX, K > 0) converges almost surely for the topology of weak
convergence towards a Borel measure m, (see e.g. Section 6 of [Berl7]). We will show that except for

20



a normalisation factor, this is the same as M, in the statement of Theorem 1.1. To do this, the main
step will be to show that when K — oo, the integral in the right hand side of (3.7) concentrates around
the value p = a, so that mX is in fact very close to MX (up to a certain multiplicative constant). This
is the content of the following proposition:

Proposition 3.5. For all Borel set A C C,

2°T(0)

i B | ()~

K—oo

Mf(A)H =0. (3.8)

The convergence of ((log K)~? ME K > 0) follows directly from Propositions 3.4 and 3.5.

We now explain how Proposition 3.5 is obtained. The core of the proof, that we encapsulate in the
following result, consists in controlling the oscillations of MX with respect to the thickness parameter
a.

Proposition 3.6. Let a € (0,2) and A € D. Then,

lim sup lim sup sup [

(dz) /f }_0

where the supremum runs over all bounded, non-zero, non-negative measurable function f : D — [0, 00)
with compact support included in A.

The proof of Proposition 3.6 will be given in Section 7. We now explain how to prove Proposition
3.5 assuming Proposition 3.6.

Proof of Proposition 3.5, assuming Proposition 3.6. Let A C C be a Borel set and for 6 > 0, define
As =An{z e D :d(z D) > §}. Proposition 3.1 shows that

E [|[ME(A) — ME(45)]] =0

| -0

In other words, we can assume that A is compactly included in D. It is then easy to see that one has
the crude lower bound:

K
Jig ln sup E [ (4) =i’ (4s)[] = Juy im sup 7327

Therefore, it is sufficient to show that for all § > 0,

20T(0
(log}())ngf (45)

K—o0

lim E Hmff(Ag) -

inlf4 Ck(z) > clog K. (3.9)
z€
(Indeed, if z € As, then Ck(2) is at least equal to the function Cx(z) associated with a ball of radius

¢ around z, a quantity which in fact does not depend on z and whose asymptotics is given by Lemma
3.3). Let > 0 be small. Proposition 3.1 implies that

“ d
E Hm‘}((A) - / / ﬁp)l—e CR(Z,D)afpei(afp)CK(Z)Mf(dZ)
a—=n

} (3.10)
=~ / CR(z,D)"e™"“x()dz + / / ———— CR(z, D)* P~ (=P R MK (dz)]

=o(1) + /AdwR(z D)* / W F (Cr(2)p) e (@P)Cx(2)

0

as the first integral clearly converges to 0 when K — oo using (3.9). Using (3.4) we can bound the
second integral by

C/ dz / o — p)i-o max (CK( )p7 CK(Z)epo) e~ (a=p)Ck (2)
< CSUP{@WCK(Z) max(Cg(z),C }|A|/ —————3— max(p, p°).
z€EA
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The integral is in any case finite since § > 0 and does not depend on K. Since Ck(z) — oo, we deduce
that the right hand side above tends to zero. Overall, we see that (3.10) tends to 0 as K — oo.
Hence

Hm D iy M“‘DH

0
+E |: CR(Z D)a_pe_(a_P)CK(Z)MK(dZ) . 2 F(Q) MK

Ma— ’ P 19~ g ryo a“”H

I N
( ) a—n (CL - p)1_9
@ dp Y e 297°(9)
+/ E [ME(dz / ——  CR(z, D)* Pe~(0=P)Ck(z) _ 2 _ L
A [ )] a—n (a - p)lie ( ) (IOg K)O
To control the third term of the above sum, we recall that E [MX (dz)] =< (log K)? (by Proposition

3.1 and Lemma 3.3), and we make a change of variable CR(z, D)*Pe~(=P)Cx(2) = ¢=t S0 the third
term is bounded by

Acmzpypaprwawu@ ME (@)

(log K)° / (dp)l_QCR(z,D)“pe(“”)CK(z) _29r(9)‘
a—n a—p

0 Ck (z)—log CR(z,D
log K n(Ck (2)=log CR(z,D)) 4
_ 08 / ot _9f7()
Ck(z) —log CR(z, D) o t1-0

which goes to zero as K — oo, uniformly in z € A (see (3.6) and (C.1)). Therefore, the third term of
the sum vanishes. To bound the second term we use Proposition 3.6 where the function f is taken to
be f(z) = CR(z, D)a’pe*(a*P)CK(z)l{zeA} (this depends on K, but since the estimate in Proposition
3.6 is uniform, this is not a problem). We obtain that it is bounded by:

C

¢ dp —c(a—p) lo
ou(Dog )Y [ st € < o, (1)
a—n

where the term o, (1) can be made arbitrarily small by choosing n sufficiently close to zero, uniformly
in K. To conclude, we have proven that

207°(9)

limsupE Hmf(A) — W

K—oo

Mf(A)H < Coy(1).

Since the above left hand side term does not depend on 7, by letting n — 0, we deduce that it vanishes.
This finishes the proof. O

The rest of Part One is organised as follows:

e Section 4: Brownian chaos measures were defined for Brownian trajectories killed upon exiting
for the first time a given domain. This section explains how to transfer the definition to loops.
This specific choice of definition is important for some proofs in subsequent sections.

e Section 5: We study the first moment of MX and provide a Girsanov-type transform associated
to ME (Lemma 5.3). In particular, this gives an explicit expression for the first moment of MX.
The formula obtained is expressed as a complicated sum of convoluted integrals, but we show
in Lemma 5.4 that it reduces to a very simple form as stated in Proposition 3.1 above. Finally,
this first moment study culminates in Section 5.3 with a proof of the fact that (mX, K > 0) is a
martingale.

e Section 6: We initiate the study of the second moment of MX and give in Lemma 6.4 an exact
expression for the second moment of the (two-point) rooted measure. The exact formula we
obtain is arguably lengthy and the goal of Lemma 6.5 is to analyse its asymptotic behaviour.
This section concludes the proof of Proposition 3.6 in the L2-phase {a € (0,1)}.
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e Section 7: This section aims to go beyond the L2?-phase to cover the whole subcritical regime
{a € (0,2)}. To this end, we introduce a truncation requiring the number of crossings of dyadic
annuli to remain below a certain curve. Adding this truncation does change the measure with
high probability (Lemma 7.1) and turns the truncated measure bounded in L? (Lemma 7.2).
The truncated measure is then shown to vary smoothly with respect to the thickness parameter
(Lemma 7.3).

e Section 8: A proof of Theorem 1.8 is given. As a consequence of our approach, a new proof of
Proposition 3.4 is given.

e Section 9: A proof that the limiting measure M, is independent of the labels underlying the
definition of the killing is given (Theorem 1.1, Point 2). We then show that the characterisation
of the law of the couple (L%, M,) given in Theorem 1.8 implies the conformal covariance of this
couple (Theorem 9.3). Finally, the conformal covariance of the measure is shown to implies its
almost sure positivity (Theorem 1.1, Point 1).

e Appendix A: This section handles some technicalities concerning measurability of Brownian chaos
measures w.r.t. starting points, ending points, domains and thickness levels.

4 Multiplicative chaos for finitely many loops

Brownian multiplicative chaos measures have been defined for Brownian trajectories confined to a given
domain (for instance, killed upon exiting for the first time the domain). The purpose of this section is
to explain that we can also define these measures for the loops coming from the Brownian loop soup.
This is not a difficult task, but some proofs (not the results) in the subsequent sections depend on the
precise definition that we will take.

The rough strategy is to cut the loops into two pieces for which we can define a Brownian chaos.
We decided to do this by rooting the loops at the point with minimal imaginary part. We will restrict
ourselves to loops with height larger than a given threshold £ and we first want to describe the law of
this collection of loops. We start by introducing a few notations.

Notation 4.1. For any p € E%, we denote by

mi(p) := inf{Im(p(t)) : £ € [0, T(p)]}, Mi(p) := sup{Im(p(t)) : ¢ € [0, T(p)]}, (4.1)
and
h(p) = Mi(p) — mi(p) (4.2)
the height, or vertical displacement, of p. We also write
mi(D) :=inf{Im(z) : z € D} and Mi(D) :=sup{Im(z) : z € D},
and for any real numbers y <y,
Hy,:={z€C:Im(z) >y} and Sy, ={z€C:y<Im(z) <y} (4.3)
Consider now the collection of loops with height larger than some given € > 0:

LY :={pe Ll hlp)>c} (4.4)

In Lemma 4.2 below, we describe the law of L’QD’E. To do that, for each p € ,C%)E, we will root @ at the
unique point z; where the imaginary part of g is at its minimum. We will then stop the loop when
its height becomes for the first time larger than e:

7e(p) := nf{t € [0, T(p)] : Im(p(t)) > mi(p) + ¢}

The loop will therefore be decomposed into two parts:

Pe1 = (p(t))o<t<r. and g2 = (9(t))r.<t<1(p)- (4.5)

By construction, p. 1 is an excursion from z; to z. := p(7.) in the domain D N Smi(p),mi(p)+e and pe 2
is an excursion from the internal point z. to the boundary point z; in the domain D N H See
Figure 1.

We can now describe the law of E%E.

mi(p)-
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Figure 1: Rooting a loop at the point with minimal imaginary part.

Lemma 4.2. #EQDﬁ is a Poisson random variable with mean given by QuIOOp(h(p) > ¢g), with

Mi(D)—e
dzoHpns,, .. (21, 22) Hpam,, (22, 21),

%WM@>@:/

dm le /
mi(D) DN(R+im) DN(R+i(m—e))

where Hpns,, ... (21, 22) is a boundary Poisson kernel (2.8) in DN Sy mye(21,22) and Hpap,, (22, 21)
is a Poisson kernel (2.6) in D NH,,. Conditioned on {#EODﬁ =n}, EOD@ is composed of n i.i.d. loops
with common law given by

Lin(ysep i O /up P ({e  hlp) > €}). (4.6)

Moreover, if p is distributed according to the law (4.6) above, then the law of (21, %e, P1,e, P2,0) 1S
described as follows:

1. Conditioned on (21, z.) and denoting m =Im(z1), g1, and p2. are two independent Brownian
trajectories distributed according to

HDA80 s/ HDAS oy (21, 26)  and  ppiy [Hpom,, (22, 21)

respectively.

2. The joint law of (21, z-) is given by: for all bounded measurable function F : C* — R,

Mi(D)—e
Ewmﬁm=1/

dm dz / dzy (4.7
Z Jmi(D) DA(R+im) DA(R+i(m+e))

Hpns,, e (21, 22) Hpam,, (22, 21) F (21, 22)

Proof. Since D is bounded, we may assume without loss of generality that D is contained in the upper
half-plane H = Hy. Next, we consider the measure on loops on H, py 00p7 and root the loops at their

lowest imaginary part. According to [LW04, Proposition 7], MIOOP then disintegrates as

—+oo
/ dm dzy pg ™,
0 R+im
21

where iz is given by (2.7). Further, a path v under a measure jug '~ with h(p) > € can be
decomposed as

/1{h<m>e}F(@) i (dp) = /

dzy // (1 A p2)pg ™2 | (dp) g (dp2).
R+i(m+e)

This is similar to decompositions appearing in [Law05, Section 5.2]. So one gets the lemma in the
case of the upper half-plane H. The case of a domain D C H can be obtained by using the restriction
property (2.11). Indeed, given z; € DN (R +4m) and z5 € DN (R +i(m + ¢€)), we have that

21,22 22,21

'uDﬂSm,ers (d@1) = l{ng stays in D}Mfgﬁfnw (dpl)a EDAm,, (dpQ) = l{pz stays in D}leﬁ]ifl (d@Q) O
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From this lemma, it becomes clear that we can define Brownian chaos associated to the loops as
soon as we are able to define it for independent Brownian trajectories with random domains, starting
points and ending points. We explain this carefully in Appendix A; see especially Lemma A.1. We can
now give a precise definition of Brownian multiplicative chaos associated to the loops in £9,(K). We
start by fixing € > 0. For any p € E%ﬁ, we denote by g2 . the second part of the trajectory defined in
(4.5). Thanks to Lemmas 4.2 and A.1, we can define

1 M Aol
K, ._ E § : 2 ¢ 2 e
Ma fi= . a . (48)

n:
n>1 P(l)x--wﬁ(meﬁ%,gﬂﬁ%(K)
VizjpD#pl)

Definition 4.3. MZX is defined as being the nondecreasing limit of ME¢ as e — 0.

This procedure not only defines MX for a fixed a, but defines it as a measurable process, viewed as
a function of a € (0, 2), relatively to the topology of weak convergence. Indeed, Lemma A.1 gives not
only the measurability of the measures w.r.t. the starting points, ending points and domains, but also
w.r.t. the thickness level a. This justifies for instance that the martingale mX, defined in Proposition
3.4, is well-defined.

5 First moment computations and rooted measure

The goal of this section will be to give a proof of Proposition 3.1 and Proposition 3.4. We will also
state and prove in Lemma 5.3 a generalisation of Proposition 3.1, which describes the law of the loop
soup after reweighting by our measure MX (dz) (1.3).

5.1 Preliminaries

We will consider a finite number of Brownian-like trajectories g1, . .., p, and consider their distribution
seen from a typical thick point z generated by the interaction of the n trajectories.

Recall Definition 2.2 where admissible functions are defined. We also recall that =7 denotes the
loop rooted at z obtained by gluing a Poisson point process of Brownian excursions from z to z with
intensity measure 2rauy” (2.3). The goal of this section is to prove:

Lemma 5.1. For any n > 1 and any nonnegative measurable function F which is admissible,

/ PP (dpr) . P (dpn) F (2,01, - s on) METT 090 (d2)

- CR(z,D)“/ da

acE(a,n) ag...ap

E[F(z,E,...,B. )] dz, (5.1)

ay’

where (7 )1<i<n are independent.

In particular, note that when n = 1 the expected mass of the Brownian chaos generated by a single
loop coming from the Brownian loop soup is finite; however this becomes infinite as soon as n > 2.

Before starting the proof of this lemma, we point out that the emergence of the process =2 can be
guessed (at least in the case § = 1/2) thanks to isomorphisms theorems (from [ALS20, Proposition
3.9], but see also Corollary 1.10) in which the Gaussian free field has nonzero boundary conditions.

We also comment on the method of proof. A natural approach to this lemma would be to exploit
the identity (2.12) which relates the loop measure ulg’p in terms of excursion measures u7;°, and
then to approximate these excursion measures ;7 by the more well-behaved p7;", then letting w —
z. Indeed, Girsanov-type transforms of chaos measures associated to trajectories sampled according
to up"/Gp(z, w) have been obtained in [AHS20], and would lead (formally) relatively quickly and
painlessly to formulae such as (5.1).

Unfortunately this appealing approach suffers from a subtle but serious technical drawback, which
is that this does not tie in well with our chosen definition for M£17Mn in Section 4. The issue is that
it is not obvious that the chaos measures associated to excursions to soups of excursions sampled from
pP (z,w) converge to the chaos measure M17 "¢ defined in Section 4. Even if such a convergence
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could be proved (so that one might take this as the definition of M7 M=) it would not be clear
that the limit would be measurable with respect to the collection of loops g1, ..., @n. Unfortunately
this measurability is a crucial feature, and so a different route must be taken. The approach we use
in Section 4 does not suffer from this problem: indeed, although the idea is here again to reduce the
loops to excursions, these excursions are measurably defined from g, ..., @,.

The proof of Lemma 5.1 below may therefore at first sight look a little unnatural and somewhat
mysterious: the idea is to start from the answer (i.e., from the right-hand side of (5.1)), write down the
explicit law of the decomposition of each loop in =7 into excursions according to their point with lowest
imaginary part (this is the content of Lemma 5.2), and check that this agrees after simplifications with
the left hand side of (5.1).

Lemma 5.2. Let z € D, a > 0 and I be a nonnegative measurable function which is admissible.
Then, E [F(2ZP)] is equal to

Im(2) CR(z, D NH,,)"
27-”1/ dm dzl’—mHDﬁHm (2,7 ZL)Q]E F(pz,zL A szz A Ez,DﬁHm)
mi(D) (R+im)ND CR(z, D) [ DOfm DOHm ¢ ]
where the loops 955y 5 ©pam,, and 22 PMn are independent and distributed as in Notations 2.7 and
2.1.

In words, this lemma states that the point z; of Z%” with minimal imaginary part has a density
with respect to Lebesgue measure given by the above expression. Moreover, the law of 2P condition-
ally on z; € R +4m is given by the concatenation of two independents paths: the original path =Z in
the smaller domain D N H,, and a loop 755 A epig  in D NH,, joining z and z,. We point out
that it is not immediately obvious that the right hand side defines a probability law (i.e., is equal to 1
when F' = 1) but this can be seen directly using variational considerations on the conformal radius of

z in D NH,, as m varies.

Proof of Lemma 5.2. By density-type arguments, we can assume that F' is continuous (recall that the
topology on the space of continuous paths is the one associated to the distance dpatns (2.16)).

We first observe that it is enough to prove Lemma 5.2 in the case of the upper half plane H. Indeed,
let us assume that the result holds in that case and let D be a bounded simply connected domain. By
translating D if necessary, we can assume that D is contained in H. It is an easy computation to show
the result for D from the result for H as soon as we know the following two restriction properties:

E [F(EQHH{EZ,HCD}} - ME [F(E27)] (5.2)

and for any m > mi(D) and z; € (R4 im)N D,

2,2 21,2 HDﬁHm(szJ_)Q 2,2 21,2
E 1 F(py,," A 9w, )1{@;IZLA@;;*ZCD}} = WE [F(opim, A oprm,)] - (5:3)

(5.3) is a mere reformulation of the restriction property (2.4) on measures. To conclude the transfer

of the result to general domains, let us prove (5.2). It turns out that it is also a consequence of (2.4).
Indeed, by continuity of F',

—_ . —27 (27TGH Z,w " Z,W Z,W
E |:F(‘:Z7H)1{E§’HCD}i| = lim e praGia(z.w) Z #E I:F(p]Hf,l ARERRA pﬁ‘]f,n)]‘{Vizl...n,gJ;[’;”CD}

w—00 n!
n>0

where p},i=1...n, are i.i.d. and distributed according to (2.9). By the restriction property (2.4),
we further have

—z : —aTa zZ,w 2ﬂ'GD Z7w " Z, W Z,w
E |:F(:a7H)1{EZ,HcD}i| = lim e~2maGu(zw) Z ME [F(@é,1 ARRERA @ﬁ,n)]

w—00 n!
n>0
) _ _ — CR(z, D) _
_ 27a(Gr(z,w)—Gp (z,w)) —z,D\] _ —z,D
= (i e7ere(@emCo D ) [F(E30)] = (g B IFERY)

This shows (5.2).
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The rest of the proof is dedicated to showing Lemma 5.2 in the case of the upper half plane H. By
continuity of F', we have

270G n
E [F(E2)] = lim e~2reCuzw) 3™ (2maCu(z W) [F(pﬁfﬁ” ASERRA @Efﬁi)} : (5.4)

w—z n'
n>1
By symmetry,
E|[Fp§ A A pii)| =E[FoR A Agilvi=1...n = Lmi(pi) < mi(pz?)| . (5.5)

To make the n trajectories independent, we will condition further on min;_; ml(pfm’f) Let us first
compute its distribution. For all m € (0,Im(z)), we have

P (min mi(p5Y) > m) =P(pf" C Hyn)" = Gu, (2, 0)" Gu(2,0) ™",

1=1...n
The Green function in the upper half plane is explicit and is equal to

1
T or

|z — o] |z — @ — 2im)|

1
Gu(z,w) log , Gm, (z,w) = o log

|z — w] |z — w|

By differentiating w.r.t. m, we deduce that the density of min;—1 mi(pﬁ’?) is given by

n G, (2, w)" L Im(z — w) — dem.

7 Gu(z,w)” |z —@— 2im|?

We now want to expand (5.5). Conditioned on mi(pg',) = min;=1.., mi(pg) = m, the n trajectories
are independent with the following distributions: the first n — 1 trajectories are trajectories from z
to w in H,, with law ,uﬁ’f: /Gu,, (z,w) and the last trajectory pmin which reaches the lowest level is
distributed as follows: '

1

E [f(9min)] = Znlew)

m

[ deiHa, (o) Ha, (0,20 B [P0 A oi™)]
R+im
In the above equation, Z,,(z,w) is the normalising constant
Zm(z,w) = / Hy,, (2,21 )Hy,, (w,z1)dz] .
R+im

Overall, this shows that

n Gy, (z,w)" ! /Im(z) dmlm(z —w) —2m 1
0

E[F(pi} A Ao = 22

7 Gu(z,w)" |z —w — 2im|? Z,,(z,w)

X / dzy Hy,, (2,21)Hy,, (z,w)E [F(@Ef;”,l Ao N N N )]
R4+im

Plugging this back in (5.4), we have

n—1 Im(z) — ) —
E [F(Ez,H)] = 92q lim 6—27TCLGLH{(Z,1U) Z (27TCLG]H[m (Z,’UJ)) / dmIm(Z ’U}) 2m 1
0

woz = (n—1)! |z —w — 2im|? Z,.(z,w)

x / Qe Hi,, (2, 210) Hi, (2, 0)E [F( 1 A AR Ao A pi)]
R+im

Im(z) _0) —
— 924 lim 6727ra(GH(z,w)7G'Hm (Z,w))/ dmIm(Z U)) 2m 1
w—z 0 |z — @ — 2im|? Z,(z,w)

x [ dei s, (50 Ha, () [FEE™ A 057 Aoz
R+im ' ’"’
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where in the last line we wrote = "(z WhHm for a trajectory which consists in the concatenation (at z say)

of all the excursion in a Poisson pomt process with intensity 27ra,u]§1w At this stage, it is not a loop,

'—z]HI

but it converges to 22" as w — z. We are now ready to take the limit w — z. Firstly,

e~ 2ra(Gulzw) =G (20)) — CR(z,H,n)"/ CR(z, H)".
Secondly, since the Poisson kernel is explicit in the upper half plane

1Im(z) —m
He (2,2)) = L) —m

Tz —z1]2"

we can compute

. _ 1 (m(z)—m)* 1 1 LIRS S
dm Zm(2w) = 25 /]R @+ (m(z) —m2)2 " = 72 Tm(z) fm/R @+ 12 2r (s —m

Therefore, as w — z, we have
Im(z — @) — 2m 1

|z —w —2im|? Z,,(z,w)

By dominated convergence theorem, we obtain that

CR(z,H,,)* [™®)
E [F(EZ’H)] = 2ma (2, )) /0 dm - dz, Hy, (2,21 )°E [F( B A pﬂzﬂfb‘ O Z)]

CR(z,H)®
which concludes the proof. O

Proof of Lemma 5.1. By density-type arguments, we can assume that F' is continuous. By definition,
we can rewrite the left hand side of (5.1) as

. 00 00 n £, [ARNE €,
lim [ @™ (de") . ™ (") Lpvimt . cnoty>ey F(z, 01 0") pa 0 ()

= lim (5P (h(p) > &)"E |F(z, 015, 9%2) #z 20" 922 ()

e—0

where in the second line, ! ,, i =1...7n, are i.i.d. trajectories with law (4.6) described in Lemma 4.2.
Note also that in the second line we used the continuity of F' and the fact that the first portion of the
trajectory g. 1 vanishes as ¢ — 0. We are going to expand this expression with the help of Lemma 4.2.
The term ulo"p(h(p) > ¢) and the partition function Z in (4.7) will cancel out and we obtain that the
left hand side of (5.1) is equal to (we write below with some abuse of notation a product of integrals
instead of multiple integrals)

nooMiD)—e , . o o
lim / dm’ dz" / dz:Hs , ., (24,z0)Hprm , (2, 2%) (5.6)
5_’01[1 mi(D) (R+imi)ND + (Rti(mite)nD e e it

n .
xE | F(z (@Zﬁr’fﬁl)izl...n)/\/‘a ™ (dz)

The trajectories g Defwﬁ . are independent Brownian trajectories with law as in (2.9). By (2.31), the
last expectation above s equal to

HDF]]HI (Z ZL)

5.7
HDﬂHmi (stzL) ( )

(2m)" / da[J CR(z. D N H,)* Gprm, . (22, 2)
€E(a,n)

i=1

i —z,DNH ,28
XE [Pz (050, , AZa ™ Appa,Dimtn)] dz

where all the traJectorleb above are independent. When e — 0, 2 = 2| and it is easy to see that

07 DOH A o7 DOH , converges in distribution to a loop ¢ DOH . A @E;JH . that is the concatenation of

two mdependent paths distributed as in Notations 2.1. This loop will play the role of the loop whose
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imaginary part reaches the minimum among all loops in HZ_H (see Lemma 5.2). Coming back to (5.6)
and (5.7), we see that the Poisson kernels Hprm , (2%, 2 l) appearing in both equations cancel out.
Noticing that as soon as Im(z) > m® + ¢,

/ Hsz‘ mite (Ziv Z;)GDﬂHmi (Z;a Z)dzé = HDﬂHmz‘ (Za Zj_)v
(R+i(mi+e)) ’

we overall obtain that the left hand side of (5.1) is equal to

n Im(z) ) ]
(2m)" / da / dm’ dz’ CR(z, D NH,,:)* Hprm , (2, 2 )?
€E(a,n) —1J/mi(D) (R+im?*)ND
B 2,2¢ —z,DNH,_;
x E [F( (pDLmH AN 9pam, , NEd Ji=1..n)| -

Lemma 5.2 identifies this last expression with the right hand side of (5.1). This concludes the proof. [

5.2 First moment (Girsanov transform)

We now start the proof of Proposition 3.1 as well as describing the way the loop soup changes when
one shifts the probability measure by MX (dz). The following result is the analogue of Theorem 1.8
at the approximation level. It is a quick consequence of Lemma 5.1.

Lemma 5.3. For any bounded measurable admissible function F,

E [F(z,ﬁ%Wff (dz2)] =

R(z, D)® Z /

n>1 GE an

[ﬁ( fKT(EZ,i)) F(z L% U2 i=1...n})| dz,

i—1
where (27 )1<i<n are independent and independent of LY,.

Proof of Lemma 5.3. By definition of MX in (1.3) and monotone convergence, we want to compute

el Y ] (1 - e—KT<m>) F(z, L) M 00n () | (5.8)
P10 0n €LY =1
Vit],pi#0;
By Palm’s formula applied to the Poisson point process £9,, we can rewrite (5.8) as

n

0”/ HEPdgn) i (don) [T (1= e K7@D ) By [F(z£5 U pr, . pu D] M09 (d2).

=1

By Lemma 5.1, this is equal to

ﬁ( e KT )> F(z, L% U{EE i=1...n})| d=.

acE(a,n) al |J-_1

CR(z, D)"0" /

This concludes the proof of Lemma 5.3. O

=

We will get Proposition 3.1 simply by taking a function F' depending only on z in Lemma 5.3.
Before this, we first state a lemma which shows that (somewhat miraculously, in our opinion) the
integrals appearing in Lemma 5.3 can be computed explicitly in terms of hypergeometric functions;
this is where the function F comes from in our results.

Lemma 5.4. The function F defined in (3.1) can be expressed as follows: for all u > 0,

dan 1 " _ .
1 —e "), 5.9
n§>:1 ! /EE(ln) ai...an 1—[1( ) (5.9)

K2
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Proof of Lemma 5.4. For all u > 0, let IA:(u) denote the right hand side of (5.9). We will show that
F(u) = F(u). Note that we have

n n

diu H(l —e ") = Ze‘“‘” H(l — e ")

i=1 j=1 i#]

and by symmetry we deduce that

~ o dal...dan,l —u(l1—(ai+-+a s —
ACEUAED o e D | (R
TL—
i=1

a;>0,a1++an_1<1 @1---0n-1

n>2
on—1 dai ...dan,—1 nl
=0 1+ / — LT (et — 1) | (5.10)
Z a;>0,a14+an_1<1 @1.-.0An—1 11;[1

Differentiating further,

n—2
1 d / dal P dan72 ;i
2 T (et — 1)
9 du g ) a;>0,a1++an_2<1 a1-..0n—2 1];[1

1—(a1++an_2)
X / e da,_1
0
n—

_ 2
:eiuz gn—2 / day...da,—o H(l—e_uai)
a;>0,a14+an_o<1 @1 1

— 92
u = (n—2)! O,
n—2 n—2
—QZL/ Mn(euai_l)
u n>2 (n — 2)' a;>0,a144an_2<1 al...ap—9 paie

By (5.10), we see that the second term in the right hand side is equal to —e“F’(u)/u. We now define
the function G(u) to be the first term in the right hand side, multiplied by ue™* /6. Thus we have

e o fe" .
5" (F () + F'()) = Z-Glu) = TF (). (5.1)
We further have
o3 day ...dan_3 ¢
G'(u)=26 7/ S TS T (1 — o)
nZZ:g (n —3)! a;>0,a14+an_3<l Al---0n-3 };[1
17(a1+...+an73)
X / efuan_;_,dan_2
0
4 o3 / day ...day_3
= - — il i (1 — e uai)
u nzz;g (n—3)! a;>0,a1 4 +an_3<1 @1.--an-3 }:[1
B Qe U Z 0’”‘*3 / dal .. .dan daj ...dap—3 H ua;
u n>3 (n— 3)! a;>0,a1++an,_3<1 a1-
0 1.
= ~G(u) — —F(w)

by definition of G and (5.10). Reformulating,

d (G(@) _ G(u) —u'G(uw) _ F(u)

du u? uf+t’

Thanks to (5.11), we deduce that

L0 ) + (@) =~

u

SR
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and A . R .
(1= 0)F (u) + F"(u) + u(F" (u) + F"(u)) = 0.
By looking at the solutions of this equation (see [AS84, Section 13.1]), we deduce that there exist

c1, o € R such that .
Fl(u) = cre U0, 1,u) + cae”“1F1(0,1,u)

where U(6,1,u) = ﬁ fooo e 971(1 4+ t)=%dt is Tricomi’s confluent hypergeometric function and
oo 0(641)...(0+n—1) u”

1F1(0,1,u) = 50" ) =—————u" is Kummer’s confluent hypergeometric function. With (5.10),
we see that IA:’(u) — 6 as u — 0. Hence ¢; = 0 and ¢y = 0. We have proven that

F/(u) = e "1 F1 (6,1, u)
and, therefore, F = F. This concludes the proof of Lemma 5.4. O

We can now conclude with a proof of Proposition 3.1.

Proof of Proposition 3.1. By Lemma 5.3 applied to the function F = F(z) depending only on z, and
by doing the change of variable b; = a;/a, we have

EM[ (dz)] = 9 /bE(l o dbb HE[ e KT m} CR(z, D)%dz.
€ n

By Palm’s formula and by recalling the definition (3.2) of Ck(z), we have
E [1 — e KT Ean, )} =1—exp (27Ta . bi/ pp(t, 2z, 2)(e K - 1)dt> =1—exp(—Ck(2)a-b;). (5.12)
0
With Lemma 5.4, we conclude that

EME(dz)] = éF(CK(z)a) CR(z, D)"dz.

This concludes the proof. O

5.3 The crucial martingale

We now turn to the proof of Proposition 3.4. We will see that it is the consequence of the following
two lemmas. We will first state these two lemmas, then show how they imply Proposition 3.4, and
then prove the two lemmas.

The first lemma shows that the function F, defined in (3.1) and appearing in the first moment of
ME solves some integral equation. As we will see, this equation is precisely what is required in order
to show that the expectation of the martingale is constant.

Lemma 5.5. For alla >0 and v > 0,

“ 4 § 1 e
/0 We” F(p’U) + F = a1—9 . (513)

Let K’ < K. The second lemma expresses the measure MX in terms of ./\/lff/, p € (0,a). Denote
by ME-K" the measure on a-thick points of loops in £% (K)\L% (K'), i.e.

KK ._ 1 ©1N--Ngn
MER =% = S ME .
N2l o1 €LY (FO\LH (K')

ViFEj,0iF0;

For any p € (0,a), denote also Mff;l

a comes from a combination of loops in £, (K)\ £%,(K’) (with thickness a — p) and loops in £%,(K")
(with thickness p). More precisely,

N ./\/l,}f " the measure on thick points, where the total thickness

KK / 1 A Nom inengl,
M AME = Y — > > Mo Mt
a=p P nlm! a=r
n,m21 pl#'“vpn'eﬁ‘eD(K)\ﬁ%(K/) Pll""’@:nELSD(K,)
ViF],pi#0; Vit], 00
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where Mfir;mmp" AMET¥m is defined in Section 2.3. We recall that ./\/lf,’[p{/ ﬂ/\/lffl may be viewed
as the Brownian chaos generated by Mf_’lgl with respect to an intensity measure o, which is itself an
(independent) Brownian chaos generated by ./\/lff ": see (2.28).

We claim:

Lemma 5.6. Let K/ < K. We can decompose
ME = MEK L mE / dp MES n mE (5.14)

Remark 5.7. By taking K — oo, and writing K instead of K’, it should be possible to deduce from
Lemma 5.6 and from our results, a posteriori, that we have an identity of the type:

Vf—k/ Vf_pﬂ./\/lff = Vg (5.15)
0

Here, the measure v/€, is (informally) the uniform measure on thick points of the non-killed loop soup,
and v p N ./\/lff would be a uniform measure on thick points created by both measures; both would
need to be defined carefully. One should further expect that vX coincides with the exponential measure
on such points except for a factor of the form 1/a'~? (this can heuristically be understood in the case
6 =1/2 as coming from the tail of the Gaussian distribution).

Accepting the above, we see that (5.15) is consistent with the martingale in Proposition 3.4. The
identity (5.15) is in fact what motivated us to define the martingale in Proposition 3.4.

Let us see how Proposition 3.4 follows from Lemmas 5.5 and 5.6.

Proof of Proposition 3.4. Let K' < K. We first note that
, 1
E [MfK (dz)} = ZF (aCk(z) — aCx(z)) e~ 9= *) CR(z, D)%dz. (5.16)
a

Indeed, the only difference with the expectation of MX is that loops are required to survive the
K’-killing, so that 1 — e~ KT(®) is replaced by e % T(®) — ¢=KT() and we find that

, n —aiCK/(z) _ ,—a;Ck(2)
E[MER (@2)] = 3= o / € CR(z, D)"dz.

n>1 v JacE(a, ") i: @i

(5.16) then follows by factorising by [, =% “x’(*) = ¢=4Cx’(2) and by Lemma 5.4.
By (5.14) and properties of the intersection measure (in particular (1.6) in [Jegl9]), we have

E [MJ (d2)Fic] = ME + B [MEF] + /p 48 E (M ()] ME' (d2)

0
roo1
= ./\/lf,( + ;F (pC (2) — pCrr(2)) e PO 2) CR(z, D) dz

+ / ’ dﬁp%ﬁF ((p— B)(Ck (2) — Crer(2))) e~ =Dk CR(z, DY P MK (d2).

Hence the conditional expectation E [maK | F K/} is equal to

_
(@a—p)t=*

@ d
" / ——L o COR(z, D)%™ (A= 0Ck OF (pCye (2) — pCre (7)) dz
0

pla—p)t=*
+/ dp
0

a®~1 CR(z, D)% *“x () + / dp CR(z, D)~ P~ (@=PCx (I MK (d7) (5.17)
0

g 1
dp CR(z,D a=B¢=(a=p)Cx (2)=(p—B)Cr/(2)
o P Ba— o D)

F((p— B)(Ck(2) = Cir(2))) MK (dz).
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By Lemma 5.5 (with v = Ck(z) — Ck/(%)), the sum of the first and third terms in (5.17) is equal to

F CR(Z, D)ae_aCK/(z)dZ.

On the other hand, by exchanging the two integrals, the fourth term is equal to

/ dﬁ CR(Z,D)aiﬂei(afﬁ)cK(Z)Mg/(dz)

0

’ dp =B Cr(2)~C GV () 2 Con(z
e T F((p - B)Cx(2) - Cre(2).

By Lemma 5.5, the integral with respect to p is equal to
e(a=B)(Ck(2)=Cki(2)) _ 1
(a—pB)-°

implying that the fourth term of (5.17) is equal to

/ (dﬂ CR(Z, D)afﬁe*(a*,@)ck'(z)/\/lg/ (dz)
0

a= B
/a 4B Rz DyeBe-(a-BICK () (K (4
- . W (z,D)* Ve 8 (dz).

This second integral cancels with the second term of (5.17). Overall, this shows that

E [mf(dzﬂ]:](/]

1 a_ —a 1(z ¢ d/B a— —(a— 1(Z /
= FCR(%D) e 9Cx/( )dz—l—/o WCR(Z,D) Be=(a=A)Cr( )Mg (dz)
=mX (dz).
This concludes the proof of Proposition 3.4. O

The rest of the section is devoted to the proofs of Lemmas 5.5 and 5.6. We start with Lemma 5.5.

Proof of Lemma 5.5. By doing the change of variable p = af, it is enough to show that

1
1
| b e R ) = e 1.

w o)
— —t Yy oun
u) = 9/0 dt e ngzo P t

0@ =1  and 0™ :=00+1)...0+n—-1), n>1 (5.18)

Recall that for all u© > 0,

where we have let

By exchanging the integral and the sum, we find that for all « > 0,

o) Lk - pn) X
W=y S (1S ) e X0 S
= n =n-+

Hence

1 gin) =
/0 dﬁﬂ(lim BE(avB) —ez Z

'kn—i-l
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Now, by (C.3), for all £ > 1,

/1 i g1 (k—1)INO) _ (k1)
0

1—8)=0  T(k+6)  6m °

which implies that

< g &

1
1
/OdﬁWeavﬁF(cwﬁ)zezon! Z m(av)k

= k=n+1
) k=1 p(n)
=03 pgm ) Lo
Furthermore, we can easily show by induction that
F=lpm)y 1 gk
Zanl "0 (k1)

We can thus conclude that

! 1 — 1
A dﬂmeavﬁ':(avﬂ) = Z E(Gﬂ))!C =e* -1

as desired. 0
We now turn to the proof of Lemma 5.6.

Proof of Lemma 5.6. We have

MESYL T aggeon

n>1 " o1 # e, eLY (K)

SR 5 e

n>1 o1 AR €LY (K')
pk+1¢~'-¢pn,€£9D (K)\ﬁ%(Kl)

The terms k = 0 and k = n give rise to MK and MX" respectively. By Proposition 1.3 in [Jeg19]
(applied to Brownian loops instead of Brownian motions, although as explained in Section A this is
justified), we can disintegrate

a

@10-Npn _ P1N--NPk Pr4+1MNpn

MEINon 7/ dp M N M :
0

Therefore, letting m be n — k,
ME = MEE 1 pmE

fa(Te X mr)a(TE Y e

k21 o1 #ppellh (K') P17 Fem €LY, (K)\LE (K')

= Mf,K' +/\/lf/ +/ dp Mf/ ﬂ/\/lf,’l:/.

0

This concludes the proof of Lemma 5.6. O

6 Second moment computations and multi-point rooted mea-
sure

The goal of this section is to initiate the study of the second moment.
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6.1 Preliminaries

We start off by giving the analogue of Lemma 5.1 in the second moment case. A new process of
excursions will come into play, which we describe now. We first introduce the following special function:

= T > 0. (6.1)

k>1

B can be expressed in terms of the modified Bessel function of the first kind I (see (C.4)), but it is
more convenient to give a name to the function B instead of I, since it comes up in many places below.
Let z,2" € D be two distinct points and let a,a’ > 0. We consider the cloud (meaning the point

process) of excursions =7, such that for all k > 1,

1 2 Y "\ 2k
IP’( = —2k) @r i GD(Z"Z)) : (6.2)
B((Zﬂ)Qaa’GD(z, Z/)Q) El(k —1)!
and conditionally on {#Z7 Z, = 2k}, EZZ/, is composed of 2k independent and identically distributed

excursions from z to 2/, with common law MEZI/GD (z,2') (2.3). Note that ==’ Z, is not a Poisson point
process of excursions, since (6.2) is not the Poisson distribution. However, one can see that it becomes
asymptotically Poisson (conditioned to be even), in the limit when z — 2’. This fact will not be needed
in what follows but is useful to guide the intuition. The parity condition implicit in (6.2) is crucial,
since it allows us to combine these excursions into loops that visit both z and 2’.

Recall the notion of admissible functions intoduced in Definition 2.2 and also Notation 2.7 where
the loops =ZZ are defined.

Lemma 6.1. Let z,2 € D. Let 0 < a,a’ < 2. Let nym > 1,1 € {0,...,n Am} and F =

F(z,2' 91, 9ns 91415+ ) be a bounded measurable admissible function of two points and n +
m — 1 loops. We have
[ o) o k) W) (63)

Mflﬂ.ngﬂn( )Mm ‘Np1NE] 44 N.. Pm(dz )F(Z,Z/, Olse e Py @;4»1’ o p;n)
l

/ da da’
_ a / a 2 1 N2
= CR(z,D)*CR(%, D) /aEE(a,n) PRI — [1B(2m)2aia;Gp(z,2)?)

a’eE(a, m) moi=1

xE[F(z B, NEL NSRS s (B m)}dzdz

where all the random variables appearing above are independent and A denotes concatenation in some
order (the precise order does not matter by admissibility).

Before we start with the proof of this lemma, we make a few comments on its meaning. Note that
in the left hand side, we can think of z and 2z’ respectively as having been sampled from Brownian
chaos measures associated with loops which can overlap: namely, 1,...,¢; are common to both
collections. The right hand side expresses the law that results from this conditioning (or more precisely
reweighting): we get not only the Poisson point processes of excursions Z7 and EZ; which already
appeared in Lemma 5.1, but also an independent non-Poissonian collection of excursions joining z and
z' with law given by (6.2).

We encapsulate the heart of the proof Lemma 6.1 in Lemma 6.2 below. For a,a’ € (0,2), z € D,
let ./\/l * denote the measure on a’-thick points generated by the loop ZZ (recall Notation 2.7). More

premsely,
== 1
= H Yoo MgTnes (6.4)

E>1 01,0k
excursions of E2
Vi), 0i#9;

Lemma 6.2. Let z € D, a,d’ € (0,2). For any nonnegative measurable admissible function F,

'y —a

—z 1 ’
E | M3 (d2')F(2' w)} = = CR(z', D)"'B((2m)%adGp (=, #))E | F(+', B, N2y Ny, Zylde. (6.5)
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We now explain how Lemma 6.1 is obtained from this result. We will then prove Lemma 6.2.

Proof of Lemma 6.1. By Lemma 5.1, we can rewrite the left hand side of (6.3) as

d
CRD)ds [ gt g )

acE(a,n) ai...an
—_ fel /
55, N NES NPy NeNPm

xE [M;/ (d2")F(z,2 {25 }i=1..m; {@g}i:l+1..4m)} :

Concluding the proof is then routine: we use the disintegration formula (2.29) to specify the thickness
of each trajectory, Lemma 5.1 and Lemma 6.2. We omit the details. O

The rest of this section is dedicated to the proof of Lemma 6.2. As in the first moment computations
made in Section 5.1, we will need to have an understanding of the processes of loops involved in Lemma
6.2 seen from their point with minimal imaginary part. Lemma 5.2 already achieves such a description
for ZZ. We now completes the picture by doing it for loops p7;° A g}, appearing in the definition of

!
—z,z
“a,a’"

Lemma 6.3. Let 2,2’ € D be distinct points. For all nonnegative measurable function F,

’ ’ 1 mz
E|F(pps" A @E’Z)} = ="—n3 / deDﬂHm(Z;Z/)/ dzi Hprw,, (7', 20 )Hpew,, (2, 2.1)
Gp(2,2')? Jumi(p) (R+im)ND

XE |F(o5im, A O, NoBm,) + Fo5i, N Oha, N obia,)

We mention that the first (resp. second) term in the above expectation corresponds to the case

!
2,2

where the minimum of the loop p7° A pg’z is achieved by the second piece pg’z (resp. first piece
©p )
Proof. The proof is similar to the proof of Lemma 5.2. We first notice that, by restriction arguments,

it is enough to show the result for the upper half plane. We then show it exploiting explicit expressions
for the Green function and the Poisson kernel. We do not provide more details. O

We finally prove Lemma 6.2.

Proof of Lemma 6.2. By density-type arguments, we can assume that F' is continuous. Let m, :=
Im(z) and let =% . := {p excursion in = : mi(p) < m. — ¢} be the set of excursions in =} which go
below H,,,_. (recall Notation 4.1). In this proof, we will, with some abuse of notations, denote by
E: . both the set of excursions and the loop obtained as the concatenation of all these excursions.

EZ . is a Poisson variable with mean 27au7”(mi(p) < m. —¢) and conditioned on #Z; _ = n, E7 _
is composed of n i.i.d. excursions with common distribution g, that we describe now. We root p.
at the point z; with minimal imaginary part and, recalling Notation 2.1, we have for any bounded

measurable function F’,

1 me—e Z,Z z z
E[F(p.)] = — / dm dzy Hpos,, (2210 PE [F(o55a, Avii )], (6.6)
Ze Jumi(D) (R+im)ND " "

where Z. is the normalising constant

m,—e
7. = / dm/ dz; Hpm, (2, 21)2.
mi(D) (R+im)ND

Note that Z. = p3"(mi(p) < m, — ). We can now start the computation of the left hand side of
(6.5). By continuity of F, it is equal to

> (2waZ.)" g2
lim ety S [MEFe (@) (2 55 ) 1425 = 1) (6.7)
> 2raZ- )" n .ok
= lim ¢~ Z( 7“;7' ) 3 (Z)]E [Mgf” O (d2)F (2 gl A...Apg)}
n=0 ’ k=1

36



where pi,i = 1...n, are i.i.d. trajectories distributed according to (6.6). The binomial coefficient
corresponds to the number of ways to choose k trajectories that actually visit 2z’ among the collection
of n trajectories. We now use the disintegration formula (2.29) to specify the contribution of each of
the k trajectories. To ease notations, in the following computations we denote by D; = D N H,,,: and
we write with some abuse of notation a product of integrals instead of multiple integrals. Also, by
independence, the shift by the above intersection measure will not have any impact on pf“, R T
We will therefore remove these trajectories from the computations and add them back when it will be
necessary. We have

k _
1 m,—¢€ . .
[MW‘ 9L (42 F (z',pi/\--'/\plg)} :7/ da’ H/ dm’ dz\ | (6.8)
22 JacE(a k) iy Jmi(D) (Rtimi)ND
k ‘ koo e, s k .
< [ [[Hp.(2,20)% | E ﬂ/\/lafi Pi (dZ)VF | 2 /\(pDJ‘/\pJ") .
=1 i=1

i=1
We decompose for all : =1.. .k,

,zi ENRE z,zj_ﬂ zi,z

z, i, z
©p. ©p. ©p. X Pp. ©p.
MEPEREBE TR TP e O
i ;

and we then expand
k Z,Zi zi,z k
| r (4 At i) »
i=1 i1
z,zi zl,z szzi 2372 k
> E|N M A (M (M @)E (Z /\ OB A )ﬂ

I,I2,Is  Lien i€l, i€ls

where the sum runs over all partition of {1,...,k} in three subsets I;,I> and I3. Recall that the
disintegration formula (2.29) yields

Jz,ziﬂJzi,z a; J ZL \Z
MEPe P / da] MZ o m M7 (6.10)
' 0
Now, by (2.31), the expectation in the left hand side of (6.9) is equal to

S < I1 7?{]3 G20 i, (20 2/) CR(, D) )<Ha;HDi(Z/’Z})j(2w)2GDi(z7z')2CR(Z/,Di)a‘i)

I Iz, I \iel,ul, = Dt (2,21) icls (2 21)
(6.11)
<E[F(2, N (05 A op™ o AELPY A N (057 A pb ™ A e nEs™)
i€l i€ly
/\ pZDZ /\ D /\:Z:Di/\pzDzL/\sz»z))}'
i€l3

Note that the a! in the product over ¢ € Is comes from the integration of o} in (6.10). When we
will plug this back in (6.8), we will have to multiply everything with the product of Poisson kernel
Hp,(z,2% )% This latter product times the two products in parenthesis in (6.11) can be rewritten as

H Hp, (¢, 2 )Hp, (2,2 )27Gp,(z,2') CR(, D;) )( H a;Hp,(2',21)*(27)*Gp,(z,7')* CR(ZlyDi)ai)
i€l1Ul2 i€l3
' Gp,(z,2') CR(Z, D;)%
_ k l a D;
= (2m)* CR(z, D)* Gp(z,2')? (zegb {HD (#/,2)Hp,(z, ZJ_)GD(Z,Z )2} CR(+ D) )
- o CR(Z, D)%\ Gp,(z,2)?
/ ot \2 ) i\~
X (ZIE_IIS {Qﬂ'CliHDi (', 2") CR(> . D)" } NI )
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We recognise in the brackets above the density of the point 2% with minimal imaginary part in
the loops g7 HELN pj:j“ (t € I UIL) and EZ}_D (i € I3); see Lemmas 6.3 and 5.2. The term

CR(z', D)%/ CR(2', D)% (resp. Gp,(z,2")2/Gp(z,2')?) corresponds to the probability for EZ;’D (resp.

ZZZ ZZ’L

05 " AN ppT") to stay in D;. To make this more precise, we introduce the following events: for all
i=1. k let El( ), resp. Fi(e) and E%(e), be the event that the minimal height among the trajec-
tories pg , pg #" and EZ(’D is smaller than m, — e = Im(z) — € and is reached by the first, resp.

second and third. Lemmas 6.3 and 5.2 imply that for all 8 € {1,2}, for all i € I,

Gp,(2,72) }CR(Z/, D)%

My —¢€
i i ! 7 U
/ dm dzL{HDi(z,zL)HDi(Z’ZDGD(Z,ZI)z CR(z', D)™

mi(D) (R+tm?)ND
XE{F(Z psz /\p;n/\pﬂz/\:z;[))}
=E |F(, 05" Aoy ™ nE5 )Ly

and that for all ¢ € I3,

ms—e : : ' D)% v )2
/ dm? d21{27ra;HD, (Z/7 Zi)ZCR(z ) ) : }GD@ (Z7 Z/ )2
mi(D) (R+imi)ND CR(z', D)% J Gp(z,7)

B [F(z 057 Nt NEDDA o A i /)}

—E[F(, 057 Ao NS P Ly |
Overall, and going back to (6.8), we have obtained that

T Aok 1
E [Mfﬁm e (dVF(2 oL A A plg)} = 7(27r)kGD(z, z/)%/ da’
Zs a’eE(a’ k)
k
x > E[F( /\ 57 npp ™ AELY )H1E5<5>H1E;<5>H1Eg<s>]~
Iy,15,13 =1 i€l i€1s i€l3
Plugging this back in (6.7) and remembering that we have to add the trajectories pF*1, ... " we see
that the left hand side of (6.5) is equal to
lim ¢~ 27a%e ZZ%(%I Gp(z, 2'))%* / da’
=0 n=0k=1 k)!k! a’€E(a’,k)
S m B A A AP A A net) T T e
102,13 i=1 Be{1,2,3} i€ls
27T GD Z z 2k . z,2" 1 2z —z z
—Z VaGo(z 7)) / a3 B |F(< N nop= azn?)azi?) T T e
a’EE(a’7k) 1171'2’13 i=1 /36{1 2 3} ZeIﬁ

Since,

> I 1ee—0 =1

I, Iz, 15 i€lg

we can use additivity of Poisson point processes and then the fact that the Lebesgue measure of the
simplex E(a’, k) is equal to (a’)*~1/(k — 1)! to obtain that the left hand side of (6.5) is equal to

0 2 G , "\\2k
Z(”\/a RICED) F( N\ 057 A AEL DAE“’)]/ da’
! a’c€E(a’ k)

k!
1 = (27Vad'Gp(z,2'))**
72 k!(k:ﬁl)!

E

k

2,2 i 2z, —z',D —z

F( /\(@D Npp™) NEy A:a)D)]'
i=1

This is the right hand side of (6.5) which concludes the proof. O
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6.2 Second moment

Combining Lemma 6.1 with a Palm formula type of argument, we obtain the following expression for
the second moment of functionals of our measure.

Lemma 6.4. For any bounded measurable admissible function F = F(z,2', L) of a pair of points z, 2’
and a collection loops L, we have:
E[F(z, 2, L)) ME (dz) ME (dz')] = CR(z, D)* CR(#', D)*
1

« Z gn+m—1 / da da’ HB((Q?T)QG‘G/G (2 z/)2)
(n —D)Y(m — D! aGE(a"))al an dy...al S DA

nm21 a'€E( m =1
0<Il<nAm
l ’ ’ n m ’
—KT(E%7  AZZ AE? _KT(=* —KT(22
< E H (1 —e ag,af ey N ag > H (1 e KT(H,,,I.)) H (1 e ( ag))
i=1 i=l+1 i=l+1

F(z d L U{EL, NS, AE }ﬁ_lu{E;}?_lHU{Eéé}ﬁlﬂ)]dzdz’

where all the above processes are independent.

Proof. In what follows, to shorten notations, we will write with some abuse of notation “p; # ... #
on € L9(K)” instead of “p1,..., 0, € L5(K) and for all i # j, p; # ;7. By definition of MX
EF(z,2, L%) ME (dz) MK (d2') is equal to

1 n..
SooE Y P Lp)ME T () My (a2
n,m>1 @17’5~~7’5K37LEL%(K)

Pi#. . F9, €L (K)

- S

n,m>1
X E 3 F(z, 2, £3) M09 (dz) MO0 (d2).

P17 FPnFEP 1 P F P ELD (K)
Vi=1...1,0,=p;

[ represents the number of loops that are in both sets of loops. (7) (resp. (Tl")) is the number of ways
to choose a subset of [ loops in the set of n loops (resp. m loops). ! is then the number of ways to map
one subset to the other. Fix now, n,m > 1 and [ € {0,...,nAm}. By Palm’s formula, the expectation
above is equal to 87! times

[ o) o ) e ) TT (1 K760 T (1 ekTo0)
=1 i=l+1

E [F(z,2', £ U {pi} iy ULl g ] ME9n (dz) ME 0 lm g1y

a/
where the expectation is only with respect to EGD. Lemma 6.1 concludes the proof. O

In particular, Lemma 6.4 gives an explicit formula for the second moment. Indeed, we have already

seen that
E [e—KT(E;)} _ 0K ()

Moreover,
E e*KT(EZ’,i;) = 1 i 271— v.aa GD(Z Z ))2kE |:e—KT(z—>z/)} 2
B((27)2aa’Gp(z, 2') — Elk —1)!

B ((27T)2aa'GD(z, #)2E {e—KT(Z—m')r)
B((2m)%2aa’Gp(z, 2')?)
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where in the above T'(z — 2’) is the running time of an excursion from z to 2’ distributed according
to u3° /Gp(z,2"). We further notice that

Gp(z,2")E {e*KT(Z”Z/)} =Gpk(z,7).

Overall, this shows that E[ME (d2)ME(d2")] is equal to

, grtm—l da da’
D a / D a
CRiz DITCRE D) ;1 (n = D!(m = D! /aGE(“ .Gy

0£7§n/\m yen(d ™)
X H ( )2a;aiGp(z,2)?) — e"®Cr(x)—aiCx(=0p ((QW)zaiaéGD(z,z'F))
m
X H (1 - efa”’ck(z)> H (1 - efa;CK(z,)) dzdz'. (6.12)
i=l41 i=l+1

The purpose of the next section is to study the asymptotic properties of this expression. This will
basically conclude the proof of Theorem 1.1 in the L2-phase, but this will also be useful in order to go
beyond this phase to cover the whole L'-phase.

6.3 Simplifying the second moment

Let a,a’ > 0. Recall the definition (6.1) of B and define for all u,u’,v >0,

Haa (U ’U/,U) — Z 0”+mfl
(n—=Dl(m =D
n,m>1
0<I<nAm
B(vaja}) o4 1—e "0 & 1—e o
/aEE(M dada’ H — 11 ‘ 1T . (6.13)
a’eE(a’,m) T =l v i=l41 @

v will be taken to be a multiple of Gp(z, 2")?, whereas u and u’ will coincide with Cx(z) and Ck (2)
respectively.

To get an upper bound on the second moment, we will start from the expression (6.12), and bound
the second line in that expression with a quantity that does not depend on K. We do so simply by
ignoring the second term in the product, which leads to the expression for H in (6.13). Intuitively, this
amounts to ignoring the requirements that the loops that visit both z and 2’ are killed. Indeed, since
z and 2’ are typically macroscopically far away, such loops will be killed with high probability and so
ignoring the requirement gives us a good upper bound.

Lemma 6.5. Let a,a’ > 0. There exists C > 0 such that for all u,u’ > 1,v > 0,
Haar (u, ', v) < C(un)0ot/4=0/22Vvad”, (6.14)

Moreover, for all v > 0,

0—1
Heoo (u, v/, v) 1 [ad\
li LA R — Tg_1 |2V ") . 1
wa oo (w!)? NQ) ( v ) 0 1( ”“a) (6.15)

In particular, when 8 =1/2, for all v > 0,

) Ha o (u, v, v) 1
lim d = cosh(2Vvaa’). 6.16
u,u/ — 00 uu/ TV aa ( ) ( )

Proof of Lemma 6.5. We start off by doing the change of variable (n,m,1) < (n—I1,m—I,1) and obtain
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using Lemma 5.4 that Hy o (u, v/, v) is equal to

l was 41 —_Jd

grtmtl va;as) ] emuas AL —ula)

> dada’ Hi I — I —
nlmll! ) a€E(an+l) a;al ’ a’
n,m>1 and [>0 a’€E(a’ ,m+1) toi=l41 i=l+1 *

or n=m=0 and [>1

l
,Fluag4q) F(v'ag, ) (va;al) val
- Z dada 7 H Z dada’ H
aEE CL l+1) al+1 al+1 . azal l' aEE(a l

>0 a'cE(d,l+1) i=1 1>1 a'€E(d )

(6.17)

Let us explain briefly where this comes from. The first term is the “off-diagonal” term corresponding to
n,m > 1 and [ > 0, while the second term is the “on-diagonal” term corresponding to n = m = 0 and
[ > 1. Furthermore, to get the expression of the first term, we reason as follows. The term da in the
first line concerns n + [ variables, ay, ..., a,1;, whose sum is fixed equal to a. We freeze a1, ...,a; and
first integrate over a;41, ... aj+,. We may call a;41 the sum of these n variables; thus a;+...+a;11 = a.
Summing over n and applying Lemma 5.4 we recognise the expression for F(ua;4+1)/a;+1. The same
can be done separately for da’, leading us to the claimed expression.
Now, let I > 1, o, &’ > 0 and let us note that by definition of B,

l Iki—1
vaag) , Kyt (a;al)™
acE(a,) dada’ Hiaza = | aeB(ad) dada Z v | 7]%!(1% e
a'€eE(d 1) a'ceE(d/,l) k1,....ki>1 i=1

Using the fact that for all 8 >0, k, k' > 1,

/13 k-1 (ﬁ_x)k’—ldx: /Bk-i-k/—l ’
o k-1l W) k1 k1)

we find by induction that

a i—1 ki+e+k—1
da L = .
/aeE(a,z) 11;[1 (ki=1)V (bi 4+ k= 1)

Hence
l
va;al) (aa!)krtthi=l 1
dada’ Hi = Z phatth H—
E(a,l . _ 12 .
aagEga 3) =1 Zal ki,..ki>1 (kl + + ki 1)' i=1 ki
l
_ i (aa/)k—l 1
Z (k—1)2 Z H k.
E>1 ki,...kg>1 i=1""
ki+-+ki=k
and

: gl )
Z Al /aeE(a ) dada’ H Ua Z’U ZF Z ]:[ki

>1 a’€E(a’\l) k>1 =1 kki...ﬁ; i
1T 1

Looking at the series expansion of (1 — z)~% near 0 and recalling the definition (5.18) of #%*), we see
that for all £ > 1,

'l 1w
POLAD SR | E
=1 ki, ke >1 i=1
kit thi=k
‘We deduce that
6" ’ ! B(vaia;) k(ao/)kfl Q(k)
W [acE(n dada HW = ZU [CESER (6.18)
121 a’€E(al) i=1 v k>1



Taking a = a, o/ = d/, this gives an expression for the second term of (6.17). As for the first term in
(6.17), it can be computed in a similar manner: namely, we get

F(ua) F(v'a’) +Z —1)2 kl / da/ do/ (aa)*~ 1Flula = o)) Fw/(a’ = o)) (6.19)

a a’ I !
kl

a—« a —

with @ = a —a;41 = a1 +...a; and, respectively, o’ =a’ —a;, , =ay +... +a;.
We then use (3.4) and (C.3) to bound

a _ a k—1 |
/ k1 F(u(a a))da < Cu‘g/ - da — Oul g1+ (k- 1)-_
0 a—« o (a—a)t-? 6k

We finally find that the first term of (6.17) is at most

Nk
C(u)? (aa')? = + C(un')? (aa’)? ! Z (vaa)

gty = Clud) *(ad’ /v)°2712T(0)Ig-1 2V vaa’).

The second term of (6.17) can be bounded by cosh(2v/waa’). This concludes the proof of (6.14).
(6.15) follows as well by using the asymptotic F(w) ~ w?/I'(§) as w — oo and by applying dominated
convergence theorem in (6.19). (6.16) follows from (C.5) and (C.2). O

As a consequence, we obtain the following estimates on the second moment of MX.

Corollary 6.6. There exists C > 0 such that for all K > 1, 2,2 € D, a,a’ € (0,2),

E [ME(d2)ME (d2')] < Claa')?73/4(log K)* G p(z,2) /2 exp (47r\/ aa'Gp(z, z’)) .

Moreover,
9—1
CEME@MEE)] 1 ([ aw o
Klgnoo (log K)2¢ -~ 41(9) \ 27Gp(z,2) To-1 (47r aa'Gp (2,2 )) '
In particular, when 0 =1/2,
E [ME(dz)ME (d2")] 1
li = 2 = h (4 ! ).
A g X i cos ( ™ ad'Gp(z,z ))

7 Going beyond the L2-phase

The goal of this section is to prove Proposition 3.6. We now describe the proof at a high level. When the
thickness parameter a is smaller than 1, we can directly apply Cauchy—Schwarz inequality and control
the second moment. (This could be done directly using Corollary 6.6). However when a € [1,2), the
second moment blows up. The broad strategy is by now well understood and consists in introducing
“good events”, similar to [Ber17]. In our context, this good event at a given point z € D will take the
following form: we will require that the total number of crossings of each dyadic annulus centred at z
is upper bounded at each scale by some given scale-dependent quantity (see (7.1)). On the one hand,
adding these events does not change the measure with high probability (Lemma 7.1). On the other
hand, the measure restricted to the good events has a finite second moment which varies smoothly
with respect to the thickness parameter (Lemma 7.3).

In the entire section, we will fix a set A € D compactly included in D. We will always restrict
our attention to points lying in A and the estimates that we obtain may depend on A. We will only
provide the proof of Proposition 3.6 in the case p < a (which is in fact all that we use). The case p > a
would be similar as we have assumed a > 0.

We start by defining the “good events” that we will work with. For any countable collection C
of Brownian-like loops and for any r > 0 and z € D, we define Ng - to be the number of crossings
from 0D(z,7) to dD(z,er) in C (upward crossings, we do not count the way back). That is, N, =
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> pec NE,, and N¥, is the number of upcrossings of the interval [r, er] by the function |p(-) —2|. Note
that this is an admissible functional of C and z.

Recall that the parameter a € (0, 2) is the thickness parameter which is fixed throughout this paper.
We now choose a < b < 2 sufficiently close to a (in a way which will be specified later). Let rg € (0, 1)
be small. For a given z € D, we consider the good event

Gic(2) = {vr e {e=",n > 1} (0,0) ; NEPU) < b(logr)? } (7.1)

As will be clear from what follows from Lemma 7.2, for typical (in the sense of ./\/IK ) points, we expect
the number of crossings to be roughly a(logr)?, since the aspect ratio of the annulus is e. Given these
good events, we also define the modified version of M o P € (0,a] as follows:

ME(dz) = 1g, () MK (dz). (7.2)

Note that we use the same parameter b in the definition of the good event for all p < a above.
Proposition 3.6 will follow quickly from the following intermediate results.

Lemma 7.1. There exists wy : (0,1) — (0,00) such that wy(rg) — 0 as rg — 0 and such that for all
bounded measurable function f : D — R with compact support included in A, for all p € [a/2,a] and

K >1,
E[ dz /f dz

To analyse the behaviour of M » » a key role will be played by the following estimate.

} < wi(r0) |1, (log )"

Lemma 7.2. Letn € [0,2 —a). If b is close enough to a, then
1 1 ~ ~
Sub - SUP oe )20 T E {MK dz)ME (dz' } < c0.
pe[a/g,a] KZpl (10gK)29 /A><A |Z — z’|71 4 ( ) P ( )

Together with Frostman’s lemma, this essentially shows that any set S which supports M, (or
more precisely, M, but this has no impact by Lemma 7.1) has dimension at least 2 — a. We will also
use this estimate (with 7 = 0) to show the following control, which is the main required estimate for
Proposition 3.6.

Lemma 7.3. Let rg € (0,1) be fized. If b is close enough to a, then

([ semia - [ i MWdz))]—o,

where the supremum is over all bounded, non-zero, non-negative measurable function f : D — [0, 00)
with compact support included in A.

lim sup lim sup sup || f|| * (log K)~E
K>1  f

p—a~

Let us first briefly check that Lemmas 7.1 and 7.3 allow us to conclude the proof of Proposition
3.6.

Proof of Proposition 3.6. Let f : D — R be a bounded measurable function with compact support
included in A and let K > 1, p € [a/2,a]. By Lemma 7.1,

] }

< 2un(ro) | 1. (1og K)? +EH [ s - [ s

ME (dz) — / F(2)ME (dz2)

|

Lemma 7.3 and Cauchy—Schwarz allow us to control the second right hand side term, so that

lim sup lim sup su dz —/ z./\/lf dz } < 2wi(rg).
msuplimsupsp it || [ e - [ et | < 2
Since the left hand side term is independent of rq, by letting ro — 0, we deduce that it vanishes. This
concludes the proof. O

The rest of this section is devoted to the proof of the three intermediate lemmas.
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7.1 Number of crossings in the processes of excursions

We start by studying the number of crossings in the processes of excursions that appear in the second
moment computations. Recall that these processes are defined in Notation 2.7 and in (6.2). Let
—z,2

2,7 € D and r > 0 be such that |z — /| > er. We are going to study Ngr for C = Ej,Egl or =
We start off with the first two variables. We can decompose

a,a’"

P , P
NZ%:E G; and N:§ = E G,
i=1 i=1

where P (resp. P’) is the Poisson random variable corresponding to the number of excursions in =2
(resp. 2Z') that touch dD(z,er) (resp. dD(z,7)) and G; (resp. G}), i > 1, are i.i.d. random variables,
independent of P (resp. P’), and distributed according to the number of crossings from 9D(z,r) to
OD(z,er) in a path distributed according to 7" (+|7,er < 00) (resp. MZD/’Z/(-|TZ’T < 00))

If the domain D were a disc centred at z, then, by rotational invariance and Markov property, the
G;’s would be geometric random variables. In general, this is only asymptotically true as r — 0. We
recall that we fix a set A € D compactly included in D during the whole Section 7.

Lemma 7.4. 1. P and P’ are Poisson random variables with means given by

CR(z,D)

E[P] =alog and E[P'] = alog CR(z', D) — aép\p(z,r) (2, 2)

where w = Ep\pz,r) (2, w) is the harmonic extension of w € 0D UID(z,7) = log |2' —w| in the
domain D\D(z,r). In particular, for all z,2' € A,r > 0 such that €® < |z — 2'|/r < €3,

E[P] = alog% +0(1) and E[P]= alog% + O(1). (7.3)

2. Let 2,2/ € A,r > 0 be such that e* < |z — 2'|/r < €3. The random variable G; is stochastically
dominated by G and stochastically dominates G_ where G+ are geometric random variables
with success probabilities

_1+0o(1)

~ Jlogr|

There exist C1,C_ € R, uy(r),u_(r) € R that go to zero as r — 0 such that for all k > 1,

k-1 k-1
o iru-() 14 =) <p@ s p < (12 L) 1+ S ) (7
[log | log r |log 7| logr

(The quantities Cy,C_,uy(r),u—(r) and the implicit constants in O(1) and o(1) may depend on
A)

P+

Proof. 1. We will rely on the following (probably well known) fact about Green function in a domain
U (which however may be a non simply connected domain) with Dirichlet boundary conditions on 9U:
we claim that

1
Gu(z,w) = o log |z — w| + &y (z,w), (7.5)

where &y(z,-) is the harmonic extension of 5= log|z — -| from OU to U. Furthermore, when U is
simply connected and z = w then &y(z,z) = % log CR(z,U) (see, e.g., (1.4) in [BP21]). To see this,
observe that the difference between the two functions on the left and on the right hand sides of (7.5)
is harmonic in w (except possibly at w = z) and is at most o(log|z — w|) when w — z (for instance,
one may use domain monotonicity to see this). This difference also has zero boundary condition on
OU. An application of the optional stopping theorem therefore shows that this difference is identically
zero on U.

We obtain the mean of P by considering all trajectories that start from z and leave D(z,er);
equivalently we can subtract from all trajectories those that stay in D(z,er) and get the desired
asymptotics from Dirichlet Green function asymptotics:

27TCL,UJZD(7'z,eT < OO) = 27a lim Mgw(Tz,eT < OO)
w—z

=2ma lim Gp(z,w) — Gpz.er) (2, w) = alog M
w—rz er
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The mean of P’ can be computed similarly using (7.5). (7.3) then follows.

2. Consider a Brownian motion starting from a point on 0D(z,er), conditioned to hit z be-
fore exiting D. This is a Markov process (it can be described through a certain h-transform, where
h(z) = Gp(x,z)). By the strong Markov property and elementary properties of h-transforms, we can
stochastically dominate GG; by a geometric random variable whose success probability is given by

. M%Z(Tz,er < OO) . 1
—1— Hp \Teer = 00) _ 4 _ e B, [Co(Xe g o]
P+ :ceg})l?z,r) Gpl(z,z) ngnDl?z,r) Gpl(z,2) [ p(Xr.., ?) {rzper< }]

Here E,. denotes the expectation with respect to a Brownian motion starting from x. Hence

log 7CR‘(;’D) +o0(1) 1 < 1 )

Py =1~ = +o
log 7CR(5’D) +o(1) log 7CR(:’D) logr

where the o(1) terms are uniform over z restricted to A. The lower bound is similar with minima
replaced by maxima.

We now turn to the case of G. For all k& > 1, using again elementary properties of the h-transform,

. — . GD(y,Z/)
P(G, > k) > P, (1., < —_—
(Cizk)z ain  Polrar <o0)™" W Go@.7)
k-1
_ 1_1-i—0(1) 1+O(l) 7
[log | logr
as desired. 0

We now state three corollaries of Lemma 7.4. The first corollary will be used in the proof of Lemma
7.1 whereas the third one will be used in the proof of Lemma 7.2. The second one will be useful in
order to show that M, is supported by 7 (a) almost surely (Theorem 1.11). We will only prove the
first corollary, since it is the most difficult one to prove and the proofs of the other two only require
small adaptations.

Note that, in Corollary 7.5, we will need to take into account the killing associated to the mass.
On the other hand, in Corollaries 7.7 and 7.6, this will not be necessary thanks to FKG-inequality for
Poisson point processes (see [Jan84, Lemma 2.1]).

Corollary 7.5. Let u € (0,1/2). There exists C(u) > 0 such that for all z € A, r € (0,1) and p > 0,

E [(1 ) elgngf,r’iv] < (1= e 020K HCWN08TD ) <p -
—Uu

(14 0(1))]log r|) (7.6)

where o(1) = 0 as r — 0 and may depend on u and A.

By FKG-inequality for Poisson point processes, the expectation on the left hand side of (7.6) is at
least the product of the expectation of each of the two terms which behaves like (as we will see in the
proof below)

(1 _ e_pCK(Z))) exp (p %(1 +0(1))|log T|> .

The content of Corollary 7.5 is therefore that upper bound matches the lower bound with the only
difference that C'k(z) becomes the larger value 3/2Ck (z) + C(u)|logr|.

Proof. Since @Nz,ﬁ and KT(Z7) are additive functions of =%, Palm formula gives that the left
hand side of (7.6) is equal to

exp (27rp/u§3’z(d@) (eﬁw - 1)) — exp (27rp/u752(dp) (eHJ‘Tv-\Nﬁr-‘”(@) - 1))
) {e 15&er3] (1 — exp <27rp/ugz(dp)ellolér1v§r (e*KT(p) — 1))) .
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Our goal now is to bound from above
om [ " e (1 KTO)
We can rewrite it as
Crc(z) + 2 [ s (d) (T8 —1) (1= K T0)

and by bounding for z > 1 and y € (0,1), (z—1)(1-y) < ((z—1)2+(1-9)?)/2 < (22 -1)/2+(1—-y)/2,
we obtain that it is at most

1 1 2,2 2L N
— — ’ [Togr][ " z,r
CK(Z) + 20[((2) + 227‘(’//JD (dp) (6 1 1) .

We denote G a random variable whose law is given by N, where g is a trajectory distributed according
to i (|72 er) /157 (T2,er < 00). Thanks to Lemma 7.4 point 2, an easy computation with geometric
random variables shows that

1 2u
-1 1) =
1—2u +o(l)

E {e,lﬁgr‘G _ 1] -
With Lemma 7.4 point 1, this implies that
Qw/ugz(dp) (e\lgg"'\N§* — 1) =2mu (Ta,er < 00)E [ellsg*'\c — 1} < C(u)|logr|.

The same reasoning shows that

=z

E {eﬁmei‘T’"] = exp (p %(1 +o(1))] logr> :
—u
Wrapping things up, we have proven that the left hand side of (7.6) is at most

(1 —e” p(3/2CK(Z)+C(“)“OgTD> exp (p 1= ﬁ u(l +0o(1))] logr|> .

This concludes the proof. O

Corollary 7.6. There exist v > 0 andrg > 0 that may depend on a,b and A such that for allr € (0,r¢)
and z € A,

P (N,E,Z < {a - b;“} (logr)Q) <. (7.7)

Corollary 7.7. Let a > 0, 2,2 € A,r > 0 be such that €* < |z — 2'|/r < 3. Fiz a parameter u > 0.
Then,

E{exp( 4 Ni;)}—exp<—ali (1+0(1))|10gr|> (7.8)

_|1ogr| U

and

u == u
E —— N2 || = — 1 1))|1 7.9
o0 (= N5 )| = e (a4 o) o) (7.9
where the o(1) terms tend to 0 as v — 0 and may depend on A and u.

’

=z,
— ’ . . . .
We now move on to the study of N *, again in the setting where e? < |z — 2/|/r < 3. Tt is

7

convenient to first view the trajectories in 27’7, as excursions from z’ to z (rather than a mixture of
equal number of excursions going from z to z’ and vice-versa). When we time-reverse an excursion, an
upcrossing becomes a downcrossing. Since two upcrossings are necessarily separated by a downcrossing,
the error in counting the upcrossings when we fix the direction of the excursion as being from 2’ to z

is at most 1. We can decompose
’

z
a

Nt = S Gir)
=1

2 n

’
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!’
—2,2
—a,a’’

where GZ(r), i > 1, are i.i.d. random variables, independent of # that correspond to the number

of crossings from 0D(z, 1) to 0D(z, er) for a trajectory distributed according to ,u';“:;’Z/GD (¢, 2). In the
same vein as in Lemma 7.4, 1 + G?(r) dominates and is dominated stochastically a geometric random
variable with success probability
1+ 0(1)
— ) 7.10
b |log 7| (7.10)
Note in particular that since r — 0, p — 0.

When we then consider the quantity which is really of interest to us, i.e., the number of crossings
of the annulus D(z,er) \ D(z,r) associated with the loops coming from concatenating the pairs of
excursions in EZ:Z,, the resulting error from having considered the upcrossings of the reverse excursions
instead of those of the original excursions in (7.10) is therefore negligible.

In particular, we obtain:

Lemma 7.8. Let a,a’ >0, 2,2/ € A,r > 0 be such that e? < |z — 2'|/r < €3. Fiz a parameter u > 0.
Then

U ot B ((27r)2aa’GD(z,z’)2 (1;_082)
E |exp | — N, #° = , (7.11)
[logr| ™ B ((27)%2aa’Gp(z,2")?)

where the o(1) term tends to 0 as v — 0 (and may depend on A and u > 0).

Proof. For all ¢ > 0, we have trivially

C#EZ’,,Z,,// _ B ((27)%ad’Gp(z,2")c?)
E[ ] B((27)2aa’Gp(z,2')?) ’

where we have used the definition of EZ’Z/, in (6.2) and the definition of B just above. Therefore,

applying this with ¢ = E(e~ /(187D (where G is the geometric random variable coming from (7.10))
concludes the proof. O

7.2 Proof of Lemma 7.1 (typical points are not thick)

Before we begin the proof of Lemma 7.1, we will require an estimate which says that a Lebesgue-
typical, fixed point z is not thick for the measure MX. We will need to show this in a somewhat

quantitative way, and uniformly in K. For orientation, the number of crossings V. f f’? of the annulus
of scale r around z roughly corresponds to the local time regularised at scale r around z accumulated
by LY, and so is roughly of the order of the square of the GFF. For a typical point, we expect this
to be roughly log1/r. For a Liouville typical point, this would instead be of the order of (log1/r)2.
The deviation probability below may thus be expected to decay polynomially. Let us finally mention
that it will be important for us to nail the right exponent in order to obtain the upper bound on the
dimension of the set 7 (a) of a-thick points (Theorem 1.11).

Lemma 7.9. For any A € (0,1), there exists vy > 0 such that for all v € (0,r)), z € D and u > 0,

P (Nz‘fi? > u(logr)?) <. (7.12)

Proof of Lemma 7.9. First of all, N ZL fl? is stochastically dominated by V. ZL iU where U is the disc centred
at z with radius being equal to the diameter of D. Without loss of generality, we can therefore assume
that the domain D is the unit disc D and that z is the origin. In the remaining of the proof, we will
write N, instead of N_ .

For 0 < r; < rg, we will denote by A(ry,r2) the annulus oD \ D. For all k = 1,..., kpax :=
|—logr]| — 1, consider the set of “loops at scale k”

Ly :={peLll:pcetrD, o crosses A(e"~1/2r eFr)}.

We can decompose

kmax

NP =3T3 e

k=1 peLly
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We now make three observations. Firstly, by thinning property of Poisson point processes, Ly, k =
1...kmax, are independent collections of loops. Secondly, conditioned on #Lj, Ly is composed of #.Ly
i.i.d. loops with law

loo
1{@Ce’“+17]D) o crosses A(ek—1/2re 7)}luIDJ p(dp)
e ({p C ek +1rD, o crosses A(ek=1/2r, ekr)})’

Finally, for each k, #Lj is a Poisson random variable whose mean is, by scaling invariance of the
Brownian loop measure, given by

(7.13)

IS8 ({ crosses (127, b)) = s ({p crosses A(e™%/2 ¢},

Therefore E[#L] is a finite quantity that does not depend on k or r. Let Py, k = 1...kpax, be i.id.
Poisson random variables with the above mean. We have decomposed

kmax Pk

N S5 e

k=1 i=1

where for all k and i, pF are independent and distributed according to (7.13). Let A € (0,1) be a
parameter. We have

) G IO B

The rest of the proof is dedicated to showing that for all k =1... kyax,
#Npk
E |eTeerT™r | <14 Cy/|logr| (7.15)

for some constant C'y depending only on A. Indeed, this will imply that

E |exp LNTCQD < eIE[P}C,\
|log 7|

and the proof of Lemma (7.9) will be completed by Markov inequality.

We now turn to the proof of (7.15). Let k € {1,..., kmax}. We are going to describe the law (7.13)
by rooting the loop ©* at the unique point z where its modulus is maximal. We will denote R = |z|
and w the first hitting point of e*~1/2rD. The law (7.13) can be disintegrated as

k+1,.
1 € 4 dz 2,2
Z R dR ROD ﬁ]‘{p crosses A(ek’l/zraekr)}’uRD(dp)’

where the measure p73p(dp) is given by (2.7) and Zj, is the normalising constant. This decomposition
is somewhat similar to [LW04, Proposition 8|. Further, the measure 1{@ crosses A(ck—1/2y ekr)}ugﬂz)(dp)

is the image of the measure

/ek 1/2,8D dw 'uA’(Ek’l/QT,R) (dpl)/“l‘RD (dp2)

under the concatenation (g1, p2) — p1 A @2. This is similar to decompositions appearing in [Law05,
Section 5.2]. Moreover, in this decomposition, Nf1"¥2 = Ng2. It follows that for any bounded
measurable function F : R — R, we have

k+1
k 1 € " dz w.z
E |:}7‘(]\/v;‘p ):| = Z /k R dR/ROD ﬁ oD deA(ek—1/2T7R)(Z,w)HR[D)(’w7Z)]ERb [F(Nf)]
(7.16)

where E7i5 is the expectation associated to the law ppi (+)/Hrp(w, z) (2.5) and Zj, is the normalising

constant
k41

e T d
Zk = / R dR/ i / dWHA(ek—1/2T R)(Z,U))HRD(U), Z)
ekr ROD 2rR ek—1/2r9D '
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Let n > 1 and denote P¥ the law of planar Brownian motion (B;);>¢ starting from w and 7, the
first time that 70D is reached after having already crossed the annulus A(r,er) n — 1 times in the
upward direction. We also denote by Trap the first hitting time of ROD. The conditional law P can
be expressed as an h-transform of P¥ as follows:

HR]D(BTnv )

PY2(NF > n) = EY - er
R]D( r = ’I’L) HR]D(’UJ72) {Tn<TroD}

Therefore,

w,z Inax\yl——rHRD(yaz)
DWs 7\!@ > <
RD( T )_ HRD(w,z)

Since (log |By|):>0 is a martingale, for all 0 < rq < 73 < r3, for all = € ro0D, we have

P* (1, < Trop) - (7.17)

log(rs/12)

]P) (T’I“laD < TT36]D)) log(’rg/’r'l)

and by strong Markov property, we deduce that
log(R/eF=1/2r) (log(R/er)\" "
log(R/T) log(R/r) ’

Moreover, by Harnack inequality, the ratio of Poisson kernels in (7.17) can be bounded by some constant
independent of k and 7. Recalling that R € [eFr, ek*1r], this shows that

Pv (Tn < TR@]D)) =

Going back to (7.16), we have proven that when " is distributed according to (7.13), then for all

n>1, o
P(kazn)gi<1]1€) :

Since A < 1 and k < |logr|, we deduce from the above bound that

N C [ |logr| 1 ! C
E|eme™ | <14 = (= og(1—=)—-1] <1
[e ) ]_ +k< o k =" Tlogr|

for some constant C' that depends only on A. This proves (7.15) and concludes the proof of Lemma
7.9. O

We are now ready to prove Lemma 7.1.

Proof of Lemma 7.1. Let f : D — R be a bounded measurable function with compact support included
in A, p € [a/2,a] and K > 1. By a union bound, we have

B || [ o - [ ena)|| < ) [ 1fGIE | M

n>f10g(1/7’o)]
Let r = e~ for some n > [log(1/r¢)]. By Lemma 5.3, we have

Z o / (7.18)

n>1 EE(an . Qn

E (1 - *KT(E;-)) 1 _. d
H ¢ { ;;1Nz,’ii+Nf,?3(K)>b(1ogr)2} z

( ) {Nﬁtj’?(K)>b(log'r)2}

E l/\/lff(dz)l{ 20 )

N. P >b(10gr)2}

i=1
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Let w € (0,1/2) be a parameter. By an exponential Markov inequality, we can bound the above
indicator function by

1{ :;INZE,%( b;“)(logr>2}+1{zvff”“ 5 (log )2}

[ (g7 )+ 2  )

By Corollary 7.5 and then by using the fact that > a; = p, the expectation on the right hand side of
(7.18) is therefore at most

’U.

#)osr [ (1 = e os0/20m () +C0N081) ) gy (ai Y1+ o(1))] 1ogr|>
1
=1

n H (1 _ e—aiCK(z))) P (NQ:P(K) S b—
b— n
= exp {— (u <p—|— 5 a) Py ﬁ u(l + of ) |10g7"|} H ( — e_“i(3/2c’<(z)+c(“)|10gT|)) (7.19)

i=1
n b o
+II(1-emoxen)p (Nf,ff?(K’ > a(logr)2> .
=1

By choosing u small enough, we can ensure

erfa u 7bfa u?
“\PT PIzu™ "2 “"P1y

to be strictly positive. Therefore, if r is small enough, the first exponential in (7.19) can be bounded
by 7 for some v > 0 depending on u, a and b (recall that p € [a/2,a]). We use Lemma 7.9 to bound
the probability in (7.19) by 7 for some v > 0. With Lemma 5.4 we therefore see that

“(log)?)

B | M1 o (lw}] <~ CR(=. D) (F ((3/2C () + C(u)| og 1)) + F (0 Cc(2)

Using the inequality F(u) < Cu?, we conclude that

E < C(log K)’r

NEp{O

Mf(dm{ o

>b(logr)? }

for some C,c > 0 that may depend on a, b and A. Finally,

E { ME (dz) — /D F(2)ME (dz) ]
<C|fle (QogK) > 1¢<C|fll (og K)’(ro)°.

e~ ™

n>f10g(1/roﬂ

This concludes the proof. O

7.3 Proof of Lemma 7.2 (uniform integrability after truncation)

Proof. Let p € [a/2,a] and let 2,2’ € A. The constants appearing in this proof may depend on a,b, g
and A, but will be uniform in z, 2z’ and p. We want to bound from above

E [Mff (dz) MK (dz')] .
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If |z — 2’| > g, we simply bound this by
E [Mf (dz) ME (dz')} < C(log K)?dzd’

by Corollary 6.6, where C' > 0 is some constant depending on 9. We now assume that |z —z'| < ¢ and
we let r € (0,79)N{e™",n > 1} be such that e < |z—2'|/r < e3. By Lemma 6.4, E [/\;lff(dz)/\;lff(dz')}
is at most

!
1 et / da  da . o
C Z (n—l)!(m—l)!l!9 a€E(pn) qy...a,d)...dl H ((2m)?a;aiGp(z,2")?)

n,m>1 J€E TTM=1
()SiSnAm (p.m)

XE|F ((E57 NEa A B )imtots (B2 imttms (B2, )imtir.m ) | d2d

i@

with F(p1,..., 9n, 9111, 9hn) being equal to
1— ,;KT(m)) (1 _ ewa;)) 1 . .
};[1 ( i:l_Hl»l { 1 Nf,irJFZ:n:'z-H N.<b(log T)z}

Now, let u = %/pr — 1, which is positive if b is close enough to a, and observe that F(p1,..., @n,
9041+ @) is bounded from above by

n
u Z

Fu(@la-~-7@n7pz+1a-~-a@;n) = ebu‘logrlexp <_|10g7‘| NZT |10g7ﬂ‘ Z >
i=1

=l+1

% ﬁ (1 _ 67KT(£01‘)) ﬁ (1 _ e*KT(p;)) .

i=l+1 i=l+1

Here we both neglect the killing part for g5 ... ¢; and we bound the indicator function in the spirit of
an exponential Markov inequality. We have

E[Fu (E57 NEe AZS) izt (B2 Dimtitns (B2 )izt )

bul log r :‘ZLZIQ u Eii EZZ
=e |log |HE[€XP< ‘10gT|N )]E{exp (7WNZ’T )}Elexp( 10gr|Nzr>]
i=1
m

n ’ ’
H _KT(E*, u Eﬁ H KT(Z?)) “ Bz,
E[(l_e ( al)) exp (_UOET| ZT>:| E|:( i )exp(—mwz,r ):| .

i=l+1 i=l+1

By FKG-inequality for Poisson point processes (see [Jan84, Lemma 2.1]),

E [(1 _ eJ{T(EZi)) exp ( eV = )} <E [ o~ KTE: 1)} E {exp (—@Nw

Recall that (see (7.8) and (7.9))

- o
=z uto(1) r —udoll) o
E |exp Nogi)| = e arw allerl and B |exp | =g Nt | | = ¢ 15w illos™
|logr\ | log r| )

and (see (7.11))

(1+u)?

B ((2m)*aiaiGp(2,#)*) E leXp ( Toogr] Ve - IL> =B ((27r)2aia§GD(z,z/)2H0(1)) :

The o(1) above go to zero as r — 0. In what follows, to ease notations, we will not write the o(1).
This is of no importance: alternatively, one can increase slightly the value of the thickness parameter
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p and absorb the o(1) in doing so. We continue the computations and find that

/

1
[1B (2m2aid,Gp(z,2)?) E [F ((E;vja; AEZ, NEZ)im1. s (B2,)imt i1, (Eg;)i:m__m)]
i=1

n m n m
< ebullosrl oy (—1 _7_ (Z a; + Z a;») | log r|> H (1 — e“”cK(Z)) H (1 — e_a;CK(z/))
u
i=1 i=1 i=l+1 i=l+1

!
X H B ((27)%a;a}Gp(z,2')? /(1 +u)?).
i=1

Since .1, a; = >.i", a} = p, we have found that E [./\;lf(dz)./\;lf(dz’)} is at most

n 1— efaiCK(z)

(bu72p%)\ log r| 1 n+m-—I 1
o > = Dim =D wenpm 24 ] p

Ogigrlz/\lm a’€E(p,m) i=l+1
m ’ , 1
[] 1 —emtCx () 11 B ((2m)%a;a;Gp(z, 2')?/(1 + u)?
: : ; ((2r) ecaiGol 7 i ) )dzdz’
) a; ; a;a;
i=l+1 7 i=1 i

= elbu=2orm) eIy (Cpe(2), O (2), (27)2Gp (2, )%/ (1 + u)?)dzd2’

where the function H, , is defined in (6.13). By (6.14), we can further bound from above the expectation

E {/\;lff(dz)./\;lf(dz’)] by
C(log K) 2 e(bu=20riz ) lloarl G 11)1/2-04mpGn (2,2)/(14) o

Recalling that r has been chosen in such a way that 2rGp(z, 2’) = |logr|+O(1) and that u = 24/p/b—1,
we conclude that E [./\;lff(dz)./\;lf(dz’)} is at most

C(log K)??|log r|*/*7% exp ((b —2(Vb — \/5)2) |10gr\) dzd2’ < C(log K)*|z — 2/|70dzd7’.

Since b can be made arbitrary close to a, this concludes the proof. O

7.4 Proof of Lemma 7.3 (convergence)

Proof. Assume that b is close enough to a so that Lemma 7.2 holds for some n > 0. Let f: D —

[0,00) be a non-negative bounded measurable function with compact support included in A and let
a' € [a/2,a]. We have

]El(/fd/\;lf,—/fd/\;lf)j
=E [/fd/\hf, (/fde, —/fdef)] +E deMff (/fde —/fd/@lf/ﬂ .
Let 7 > 0 be small. Since f is non-negative, we can bound
| [ rants ([ rams = [rasts)| <11 [ tpeacn® M @) @)
[ O B [ME (@) (M @) — S5 ()]
Thanks to Lemma 7.2, we know that

- K YLYZ N
}]l_r% hir(njz;lop (log ) /AXA 1oz < E [Ma (dz) M (dz )} =0.

92



We now deal with the second term. Let z,2’ € A such that |z — 2’| > 1. We start by claiming that
there exist C' > 0,71 € (0,7¢) that may depend on n and b — a such that

(log K)~%E ./\;lf(dz)./\;lf(dz’)] <n+ (logK)"%E [/\;lf(dz)./\;lf(dz’) (7.21)

where M (dz) is defined similarly as MX (dz) but with the good event restricting the number of
crossings of annulus for r € (r1,7) instead of r € (0,79). We omit the proof of this claim since it
follows along similar lines as the proof of Lemma 7.1. The point is that since z and 2’ are at distance
macroscopic, there will be only a finite number of excursions between z and 2z’ so that (7.21) boils
down to Lemma 7.1. The conclusion of these preliminaries is that we have bounded

o) 21125 | [ gamtis ([ ramass - [ rans) (7.22)

< (logK)’%/AxA W1{|z_z'>n}E [Mff(dZ) (Mf(dZ') - M?(dZ’))} + 0p—o(1)

where 0,,0(1) = 0 as 7 — 0, uniformly in K > 1,a’ € [a/2,a] and f.
Now let z,2" € A such that |z — 2’| > n. By Lemma 6.4, E {/\;lff(dz)./\}lf,(dz’)] is equal to

1 , , 0n+m ! ,
a a
7 CREDCRE D) Y e /aeE .., dada
;m>1
Oglgn/\m a'€E(m)
Ly TKTED o) "KT(EL)-KTED ) n | o KTEL) m e—KT(Eziao
EH a;a’ H a; H a’
i=1 b i=l4+1 ¢ i=l+1
l , n l
F (/\ Chesd ol /\ A /\ =5, /A LY ) H B ((27)%ad’a;a,Gp(z,2)?)
i=1 i=1 i=1
where
F(C) = l{VTE{e*”,nZl}ﬂ(rl,ro),Nzcyrgb(log r)2 and Nf,yrgb(log r)2}'
We develop further this expression according to the number 2k; of excursions in il i=1...1

. !’ ol
aa;,a’a;’

r—ZZ

In partlcular E;” will denote the concatenation of 2k; i.i.d. trajectories distributed according to

wye /GD(Z, Z). E {/\;lf(dz)/\;lff/(dz’)} is equal to

1 a ’ a’ gt /
2 CREDY CR(D) Y e /BIGE(M) dada’ 3
Ogl?r?/\lm a'€E(1,m) ki, ki >1
L o KTED-KTEL)-KTE,) n | KT(E,) m o ~KTED)
EH a;a) H a; H al
i=1 ? i=l4+1 i=l+1 ?
l l .
2m\/aad'a;alGp(z, "))k
F CHAA AN\ E ALY ( : :
(A= Azt At ) [T E/osins

In what follows, we will naturally couple the PPP of excursions away of 2z’ by decomposing 52;7 =

’

Era; N Ef{;_a,)ai (recall that o’ < a). We can then decompose

a a

WE {Mf(dz) (CR()MK(dZ ) — CR(z/,D)a’Mé('(dz/))] =S +S5+53
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where

9n+m—l ,
Si= D, (n— Di(m — D1} /aeE(lm dada
n,m>1 a’€E(1,m)
0<i<nAm
Z {ﬁ (2mar/a;a\Gp(z,2'))?k ﬁ (2m\/ad'a;a,Gp(z, %) }
(. — | | —
k1,....k>1 li=1 kl'(kl 1)' i=1 ki k 1)
—KT(Ez,j‘z/)—KT(EZaA)—KT(EZH,Y) n _KT(E:,) m —KT(E%))
1-— ki ‘ i 1—e aag 1—e
EH a;ak H a; H al
= ? i=l+1 i=l+1 ?
l n
(/\E’f/\ aal/\/\:z//\£9>
=1 =1
9n+mfl l 9 5
! / / /
$:= % G i e 209 TIB (@R analGot:. )
n,m>1 a'cE(1,m) i=1
o<li<nAm
Lo e*KT(E:{Z’YQ,n/_)*KT(EZ%)*KT(E(ZI;;) no o KTEL) Mmoo e—KT(E;’a/_)
E{ H a;a H a; H al
i=1 ? i=l+1 i=l+1 4
_KT(E>" |, )-KT P KT_,, n — == m —KT(Z,,/
11[176 (E aay u./al) (Eaa,)—ET( ) H 1 _ e KT(EL,) 1—¢ KT(=] a’al
. a;a’ ) a; _ at
= ? i=l+1 i=l+1 ?
l
=7 =z (i
</\ “aa“a al /\ aa1 Za; A ED)
=1 =1
and
9n+m ! 9
Sy = Z D D /aeE ) dada’ HB ((2m)%ad'a;a}Gp(z, 2')?)
n,m>1 a’€E(1,m) i=1
o<i<nAm

z '—Z/
—KT(_zazZ oa ,_)—KT(:aai)—KT(:a,a{) n —KT(E? i) m —KT(_ al

L1—e i 1—e aa; 1—e
Eljl a;a} H a; H al

i=l+1 i=l+1
l l
- = 0 = = 0
x{F( Z;a,a,/\ aal/\/\f//\E) F( Z;a,a,A aal/\/\_z,,/\£>}
i=1 i=1 i=1 i=1
(7.23)
We now claim that for all ¢ € {1,2,3}, uniformly in z, 2z’ € A with |z — 2’| > 7,
. . 1
lim sup lim sup —————5; = 0. (7.24)

a’—a K—oo (log K)29

For S7 and S, this follows by bounding the function F' by one and then by noting that we obtained
explicit expressions for the limit in K that are continuous with respect to the thickness parameters.
See Corollary 6.6. We now explain how to deal with S3. We notice that on the event that none of
the excursions of /\z 1 H‘(za a)a! hits the circle dD(2’,r1), the difference of the function F' appearing

n (7.23) vanishes. Since 0 < F' < 1, we can therefore bound this difference by the indicator of the
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complement of this event. After applying a union bound, we find that

Ly 7KT(EM ’a - KT(EZQi)fKT(EZ:%) no o KTEL) mo e—KT(E;ﬁa,_)
E H a,a{ H a; H a{
i=1 v i=l+1 v i=l+1 v
l l
- =z’ 6 =z,z =z 6
x{F(/\_aa“M,A/\_m Bl AL ) F(/\_aai’aa,A/\_mA/\u ,A£>}
i=1 i=1 i=1
1 1_ efKT(:Z:L a/a/) KT(EZ, ) KT(EZ ;) n 1_ efKT(EZa-) m 1— e—KT(: )
<E]] 11 - 11 =
. (3 ] . 1 . ]
i=1 ? i=l+1 i=l+1 ?
m
X Z Z 1{@ hits 0D(z',r1)}
i=1 pez?’ /

Zl
" _Re KTEL) m —KT(E,,,) m

1-FE i
H c a ZE Z ]-{go hits 8D(2’,r1)}*

i=l+1 J=1  pez=

(a a )a_/7

ZE Z 1o nits oDz )} = 2277(0 - a/)a}#f)’z (Top (2 1) < )

j=1 @EEZ/7 ) j=1
= 21(a — a')a'uy ™ (ap () < 00) < Cla— )

for some constant C' > 0 which may depend on r1, we have obtained that

grtm=t ((2m)2ad’a;a;Gp(z,2')?)
! (3 ’
S3<Cla—d) (n— D)(m — D! /aeE (1,n) dada’ H a;d.
0Li%Am ertm Z
n m [ 7
] _emaaiCx(s) M | o—aalOx(z)
< 11 11 7

i=l+1 i=l+1 g

By Lemma 6.5, this is at most C'(a —a’)(log K)?? for some constant C' > 0 that may depend on r; and
7. This finishes the proof of (7.24) for Ss.
To conclude, we have proven that

lim sup lim sup(log K) "% E [/\;lf(dz) (CR(O/L
z )

a’'—a K—oo D)a

v / a v /
Mf(dz ) - WM‘I;’((LZ )):| = O7

uniformly over z, 2’ € A with |z — 2’| > 7. Hence

lim sup lim sup(log K) ~2E [./\}lf(dz) (j\}lf(dz’) — /\;lff,(dz/))} =0.

a’'—a K—oo
Coming back to (7.22), this implies that
lim sup lim sup(log &)~ || f| 2 E [/fd/\hff (/fde—/fdMgf)] < oy0(1).
a’'—wa K—oo

Since the left hand side term does not depend on 7, it has to be non positive. Similarly, the same
statement holds true when one exchanges a and a’ in the expectation above so that

a’'—wa K—oo

2
lim sup lim sup(log K) =2 ||fH;02E l(/fd/\hf —/fd./\;lf) ] <0.

This concludes the proof. O
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7.5 Proof of Theorem 1.11 (thick points)
We conclude Section 7 with a proof of Theorem 1.11.

Proof of Theorem 1.11 and Point 4 of Theorem 1.1. We first start by showing that M, is supported
on T (a). To this end, let us denote
)

Let A € D be a Borel set compactly included in D. We argue that the following version of Lemma
7.1 holds:

1 0
T(a,ro,m) = {ZGD:VTE {e",n>1}N(0,79) : ‘nQNZL"P —a

. 1
lim lim sup WE [/A 1{Z¢T(a,ro,n)}M§(dZ):| =0.

ro—0 K—o00

The only difference with Lemma 7.1 is that we require the number of crossings of annuli to be, not
only not too large, but also not too small. To prove that the number of crossings is not too small, we
use the same approach as what we did to prove Lemma 7.1 and we use FKG-inequality and Corollary
7.6 instead of Corollary 7.5. We omit the details. This shows that 1 4M, is almost surely supported
by

U T(a,ro,m) = {z €D:TIrg>0,Vre{e™,n>1N(0,79): ‘;Nﬁ% —a|l < 77}.

ro>0

Since this is true for all n > 0 and for all A € D, this concludes the proof that M, (D \ T (a)) =0 a.s.

We now turn to the proof of the claims concerning the carrying dimension of M, and the Hausdorff
dimension of T (a). We start with the lower bound and we let n € [0,2 —a), A € D and we assume
that b is close enough to a so that Lemma 7.3 holds. Let us denote Mo, the limit of (log K)~¢ MK
(we keep track of the dependence in ry). By Lemma 7.2 and by Fatou’s lemma, the energy

ery(4) = /A Wy (d2) M (d2)

XA |Z - ZI'"

has finite expectation and is therefore almost surely finite. Moreover, Lemma 7.1 and Fatou’s lemma
also show that

lim E [MG(A) — Mo (4)] = 0.

ro—0

The following event has therefore full probability measure

E:= ﬂ {lim inf My (A) = Mg en(A) =0 and Vro € {e ",n>1},e,(A4) < oo}
n—oo
A
where the intersection runs over all set A of the form {z € D,dist(z,0D) > e "},n > 1. Now, let
B C D be a Borel set such that M,(B) > 0. There exists some set A of the above form such that
M (BN A) > 0. Moreover, since for all rg > 0,

Ma(B N A) - MU«WG (B n A) < Ma(A) - -A;la,ro (A)7

we see that on the event E, we can find 7y € {¢~",n > 1}, such that M, (B N A) > 0. But because
on the event F, the energy e,,(A) is finite, Frostman’s lemma implies that the Hausdorff dimension of
BN A is at least . To wrap things up, we have proven that almost surely, for all Borel set B such that
M, (B) > 0, the Hausdorff dimension of B is at least 7. Since 1 can be made arbitrary close to 2 — a,
this concludes the lower bound on the carrying dimension of M,. The lower bound on the dimension
of T (a) follows since we have already proven that M, is almost surely supported on T (a).

We now turn to the upper bound. We will show that the Hausdorff dimension of 7 (a) is almost
surely at most 2 — a. Since My(D \ T(a)) = 0 a.s., this will also provide the upper bound on the
carrying dimension of M, and it will conclude the proof. Let § > 0 and denote by Ho_,1s the
(2 — a + ¢)-Hausdorff measure. Let 7 > 0 be much smaller than . We first notice that

1 re 1 e
T(a) C U ﬂ {ZGD:nQNZ7eDn>an}C ﬂ U {ZGD:mNz7fn>an}

N>1n>N N>1n>N
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and we can therefore bound,

Ha—ats(T(@) < lim Y Haars ({z €D: NZ L>a-— n}) .

n>N

Now, let n > 1 be large and denote by 7, = e™". Let {2;,i4 € I} C D be a maximal 71""-net of

D (in particular, #I < r, (Hn)). If z € D is such that |z — 2;| < r}*" we notice that the annulus
D(z,er,)\ D(z,ry,) contains the annulus D(z;, er,, —r1¥")\ D(z;, r, +7r1"), and therefore, the number
of crossings in £9, of the former annulus is smaller or equal than the number of crossings of the latter.
This shows that we can cover

_ 1 c
14+n)n
{zeD Nze_n>an}cZIEIl{zeD(zi,e (14m) )7712Nzl’rnn>an}

6
where we have denoted by N. zﬁﬁ"n,n the number of upcrossings of D(z;, er, — r1¥")\ D(z;, 7, +rL1™")

in £9,. Let A € (0,1) be close to 1. An immediate adaptation of Lemma 7.9 to annuli with slightly
different radii, shows that if n is large enough, then

1

E[H2a+5 ({ZGD —NEE, >a"7}>}

Z (T}L+n>27a+§ 1

1 AED
il w2 Nejrn,n>a=n

By choosing A and 7 close enough to 1 and 0, respectively, we can ensure the above power to be larger
than §/2 (¢ is fixed for now). We have proven that

Therefore

<CE < Cr{im(=atd)+A(a=n),

: 5/2 _
E[Ho—qts(T(a)] < Cngnoon;vrn/ =0

and the Hausdorff dimension of 7 (a) is at most 2 — a + d a.s. This concludes the proof. O

8 Poisson—Dirichlet distribution

The aim of this section is two-fold: proving Theorem 1.8 as well as giving a new perspective on
the martingale (mX(dz), K > 0). Indeed, it is likely that Theorem 1.8 could be also proven as a
consequence of the discrete approximation of M, (Theorem 1.12) and as a consequence of Proposition
2.4. We decided to take another route which remains in the continuum setting. The advantage of this
approach is that it gives an independent proof of the fact that (mX(dz), K > 0) is a martingale. This
is close in spirit to Lyons’ approach [Lyo97] to the Biggins martingale convergence theorem for spatial
branching processes originally established by Biggins [Big77].

We first prove (1.7). Recall from Section 2.1 that, conditionally on £%,, {U,,, p € L%} =: U denotes
a collection of i.i.d. uniform random variables on [0,1]. We will prove that for any nonnegative
measurable admissible function F,

1 - a
E UD F(z,ﬁ%ﬂ)/\/la(dz)] = z%l—er(m/D]E [F(z, L% UZq,U UU,)] CR(2, D)*d2 (8.1)

where in the RHS, the two collections of loops £9, and Z, := {E%,,4 > 1} are independent, and,
conditionally on everything else, U, denotes a collection of i.i.d. uniform random variables on [0, 1]
indexed by E,. This equation may seem stronger but is actually equivalent to (1.7). We recall that
LY (K {p €Ly : U, <1-— e‘KT(@)} denotes the loops killed at rate K and we further introduce
Z/{( ) ={U,,p € Ee % (K)}. Conditionally on £ (K), we see that U(K) is a collection of independent
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random variables where Uy, is uniformly distributed in [0, 1 —e K T(p)]. By the monotone class theorem,
it suffices to prove (8.1) for F(z, L}, U) = 1,4 G(L%(K),U(K)) for G an arbitrary nonnegative
measurable function, A C D a Borel set and K > 0.

Recall the deﬁnition of M, (A) in Theorem 1.1. By Proposition 3.5, M, (A) is the (L' by Propo-

sition 3.4) limit of zgr(e) mE (A) where we recall that

a
m&(dz) = CR(z D)ae_aCK(z)dz+/ dp CR(z, D) Pe (a=PCGH MK (dz).

a7 O o Vla— o
We want to compute the LHS of (8.1) for 1,e43G(L%(K),U(K)) instead of F(z,L%,U). Since
(m&(A), K > 0) is a uniformly integrable martingale by Proposition 3.4,

a

[G(LHE),UR))mE (D] (8.2)

a

1
/D E 1y GUED () UK Ma(d2)] = gorE

Set GF) .= G(LY,(K),U(K)) for concision. From the expression of mX(dz), we have

E [G<K>m§ (dz)] =E, +E, (8.3)
with
1 a,—aCk(z K
Ei = ——5 CR(z, D)% “*CIE [¢9)] az, (8.4)
@ 1
Eo := - D)o Pe—(a=p)Cr ()R | ) pE ) )
) /0 o i pyi=s OR(=. D) e [G ME (d2) (8.5)

To compute Es, we first need to compute E [G(K)Mf(dz)] for p € [0, a]. Recall that by Lemma 5.3,
for any nonnegative measurable function F,

E [F(z, LH)ME (dz)] =

B E T i L) (b3

n>1 =1

dz

7

where p = (p1,...,p,), dp = dp;...dp,_; and E := (E )i<i<n is independent of £f,. We rewrite
the RHS in a slightly different form. First, the term of index n in the sum is equal to

ﬁ (1 - eiKT(Ef’i)) F(z, L% U ”z)] dz.

i=1

d
o | T
PEE(p,n),p1<--<p, P1--Pn

Secondly, recall from (5.12) that B[l —e %7e)] = 1 — ¢ r: Ox(3), Hence

n n

H(lie—KT(Ezi)> F(z, E" ~z] H(lfe p; Ck ( )) [ (2, E‘) HZ)}

E

i=1 i=1

i=1...n}is a collection of independent loops independent of L%, and =2 has the

where =% := {=*
Pi

P =p;’
distribution of g, biased by 1 — e KTED, Combining the two, we see that
E[F(z, L))ME (dz)] =
1 — e PiCk(2)
CR(z, D)"Y 9”/ de ———E[F (L, UE})] .
EE(pin),p1<...<py -

n>1 =1

Again, one can actually take a function F(z,£%,,U). From the proof of Lemma 5.3 and the previous
lines, one can check that the function F in the RHS will turn into F(z, £, U =5,UU Z/IB) where U, =

{(7@, p € é;} is conditionally on everything else a collection of independent random variables, with
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ﬁp being uniform in [0,1 — e~ K7(®)]. Taking for F(z,£%,U) the function G*) = G(L£%(K),U(K)),
it implies that

E [G<K>M§ (dz)} -

R(z,D)pZG"/ de

1 — e riCOr(?)

[G(ﬁ%(K) UEZU(K) u@} dz

n>1 pEE(p,n),p1<...<p,  1—1
From the expression of E5 in (8.5), after a change of variables (p1,...,p,_1,0) = (P15 -+, Pp), We get
= CR(z,D)* Z "
n>1

e—(a=p)Ck(z) 1 1 — e PiCr(2) = ~
= [[an ————E[cwh) vE um vt a:
P1 PnHP<Q i

where p := p; +... + p, in the integral. We will reinterpret this equality via the following lemma
whose proof is deferred to the end of this section.

Lemma 8.1. Let {aj,as,...} be a random partition of [0,a] distributed according to a Poisson-
Dirichlet distribution with parameter 6. Let u > 0. Remove each atom a; independently with probability
e ", Denote by a; < ... < ay the remaining atoms (there are only a finite number of them). Then

P(N =0)=¢ "

and for any integer n > 1, and 0 < p; < ... < p, with p:=p;+...+p,,

P(N =n,a; €dpy,...,a, €dp,) = e~ e ”)H —e “Pi)dp; . (8.6)

(aip) 11p1

Using the lemma with u = Ck(z) and with the notation of the lemma, we get that

E; = —— CR(z, D)°E |G(Lh(K) UL U(K) Ully)1(nz1y | d2
where gz = {éiLJ =1...N} and Z?@ = {ﬁp, pE éé} with natural notation. We also have
1
B, = 5 OR(=, D)°E [G(LH(K), UK ) -0y
From (8.3) , we get that
1 N N
E [G<K>mff (d2)| = ——5 CR(z, D)°E [G(ﬁ%(K) UELU(K) U ué)] dz (8.7)

with the convention that =2

the RHS, the loop soup £% (K) U éz and the random variables U (K) UZ:I\@ are distributed respectively
as the collection of loops killed at rate K in the loop soup ﬁeD U E,, and the random variables U/ U U,
restricted to the killed loops. Integrating over z € A, and recalling (8.2), it shows that we proved
(8.1) for F(z,Lp,U) = 1(,es1G(Lp(K),U(K)). Note that (8.7) also proves that (mX (dz), K > 0) is
a martingale, independently of the first proof given in Section 5.3.

and Z?@ are empty when N = 0. We observe that in the expectation in

With Proposition 9.2 below, it shows that the couple (EQD, M,,) satisfies the three points of Theorem
1.8. The fact that they characterize the law is standard, see [BBK94, AHS20]. Fix £4,. We need to show

that if /\/la is another Borel measure which is measurable with respect to < 136 > and verifies (1.7),
then M = M, a.s. We define M ./\/l — M. By (1.7) applied to ./\/l and M,, the expectation
of [, F(z, D)Ma is zero for any bounded measurable admissible function F. Take F(z,L%) =

Ma(A)l{zeA}l{pﬂa(A)Kc} where ¢ > 0 and A is a Borel set. We get that E MQ(A)Ql{\ﬁa(A)KC}

0 is zero, hence that E {/T/I\Q(A)Q} = 0 by monotone convergence, so that My (A) = M,(A) a.s. It
completes the proof of the characterization.
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Proof of Lemma 8.1. That P(N = 0) = e “* is clear so we only prove (8.6). Let {a1,az,...} be a
random partition of [0, a] distributed according to a Poisson-Dirichlet distribution with parameter 6.
The atoms {a1, az, ...} can be constructed via the jumps of a Gamma subordinator. More precisely,
consider a Poisson point process {p1,p2, ...} on Ry with intensity 1,0} %e‘zdaz. Let ¥ :=)",o, pi be
the sum of the atoms of the PPP. Then, the collection {a%%,a%%, ...} is independent of ¥ and distributed
as {ai,asz,...}. One can also say that the atoms {p1,pa,...} conditioned on ¥ = a are distributed
as {ay,as,...}. Using this representation, we remove each atom p; of the PPP independently with
probability e™"Pi. The remaining atoms form a PPP of intensity 1{m>0}ge_“'(1 — e “")dx. Notice
that

X

0
/ —e (1 —e ")dx =0ln(u+1).
0

In particular, the set of remaining atoms is finite a.s. Let N, be its cardinality, and when N, > 1, let
P1 < ...<pn, these atoms ordered increasingly. For n > 1, and 0 < p; < ... < p,,

T 0
P(NP = 7’7/,]51 € dpla”wﬁ’ﬂ € dpn) = (U—|— 1)_01—[*.6_[)1'(1 - e_“pi)dpi .

i1 Pi
The removed atoms are independent of the remaining atoms and form a PPP of intensity %e_(“"’l)xdw.
It is the Lévy measure of a Gamma(6, u + 1) subordinator. In particular, the sum of all these atoms,
6
which is ¥ — Zzszl Pi, has the Gamma(f, v + 1) distribution, with density (uFJZ;)) s07lem(utlsds, Tt
implies that , with p:= ", p;,

P(NP = naﬁl € dpla"'aﬁn S dpn> NS da) =

T 0
—p)f—1le—(ut1)(a—p) —Pi(l—euPi
a e e Pi(l—e ""i)d p,; da.
O Z_lzll e )dp
0

Dividing by the probability that ¥ is in da, which is ﬁa ~le=ada, we proved that

01 LA
P(N, =n,py €dpy,...,pn €dp, | E=a)= (1 _ B) e ] (1= e Py,
a i1 Pi

By the discussion at the beginning of the proof, we know that the distribution of (Ny,p1,...,pnN,)
conditionally on ¥ = a is the one of (N, dy,...,dx). The lemma follows. O

9 Measurability, conformal covariance and positivity

We will start this section by proving that the measure M, is measurable w.r.t. the Brownian loop
soup, and even w.r.t. the smaller sigma algebra o((£%)) defined in (2.18). This will prove Point 2 in
Theorem 1.1. From this, we will obtain the characterisation of the joint law of (L%, M,) as stated in
Theorem 1.8. This characterisation will allow us to obtain the conformal covariance of the measure
(actually a stronger version of it) which is the content of Point 3 in Theorem 1.1. In the last part of
this section, we will use the conformal invariance of the measure to deduce its almost sure positivity,
i.e. Theorem 1.1, Point 1.

9.1 Measurability

The purpose of this section is to prove Theorem 1.1, Point 2. In Appendix A, we show that, essentially
by definition, for all K > 0, ME is measurable w.r.t. o({L%(K))); see Lemma A.2. Hence, this
section consists in showing that the limiting measure M, does not depend on the labels underlying
the definition of killed loops.

Consider the Brownian loop soup LGD. Since D is bounded, one can order the loops in the decreasing
order of their diameter, (©;);>1. Let (U;);>1 be an i.i.d. sequence of uniform r.v.s in [0, 1], independent
from £9,. Given K > 0, we consider that £% (K) is constructed according to (2.15), with the r.v.
U; associated to the loop ;. Let Fioops be the o-algebra generated by the Brownian loop soup EQD,
where the loops are considered to be unrooted. It is the Borel o-algebra for the topology on collections
of unrooted loops described in Section 2.1. For m > 1, denote F,, the o-algebra generated by <£%>
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and the r.v.s (U;)1<i<m, and F,. the o-algebra generated by <£9D> and the r.v.s (U;)i>m. By Lemma

A.2, the random measure M, is measurable with respect to F1. We want to show that M, admits a
modification coinciding a.s. with M, which is measurable with respect to o({£})).

Lemma 9.1. For every m > 1, M, is measurable with respect to F,.

Proof. For K > 0, denote

1
Km ,__ P10---Ngp
M, .—E o E M
n>1 P15050n
eL%(K)p{@i,i:L..mq}
ViZ],0i#;

Introducing this measure is useful since MX™ is independent of the first m labels U;,i = 1...m:
the m biggest loops will be always included, without having to check whether U; < 1 — e~ KT(94) or
not. By Lemma A.2, the random measure MX™ is measurable with respect to Fom. Moreover, a.s.
for K large enough, we have for all i € {1,...,m}, U; < 1 — e KT Thus, if K is large enough,
ME™ = ME and (log K)~? ME™ converges in probability as K — 400 to M,. This shows that
M, is F,,-measurable. O

Proposition 9.2. A.s., we have that E[M,|(L})] = Mq. In particular, M, admits a modification
coinciding a.s. with M, which is measurable with respect to <£%>.

Proof. Lemma (9.1) ensures that for every m > 1, E[M,|F,,] = E[M,|(L})] a.s. Further, as m —
+00, E[M,|F,,] converges to M, a.s. and in L. This concludes. O

9.2 Conformal covariance

Let v : D — D be a conformal map between two bounded simply connected domains. Recall that in
Section 2.1, we introduced the transformation 7, on paths defined by

Ty (90,0 < ¢ < T(p) = (oS54 (1), 0 << Syo(T())
where .
Seol) = [ 10/ (ole)Pds.
For any collection C of loops in D, we define T,,C := {Typ, 9 € C}.

Theorem 9.3. (TxL%,|(v 1) (2)|727 M, p o v~ 1(d?)) and (E%,Ma,f,) have the same joint distri-
bution.

Proof. We are going to use the characterisation of the joint law of (E%, /\/la7 5) given in Theorem 1.8
and we need to check that (7, L%, [¢' (¥ ~1(2))[*+2 M, poyp~!) satisfies the three properties therein. By
conformal invariance of the unrooted loop measure ;LIBOP*, 7;/,[,% has the same law as 5%. This shows
the first property. The second property concerning the measurability is clear since it is stable under
conformal transformations. To conclude, we need to check the third property. Let F : D x £ 5 — R
be a nonnegative measurable admissible function. By definition of the pushforward of M, p, we have

E [ [ P T 6 G M w(da} (9.1)
D
- [ / Fw(z),m%>|w’<z>|2+ww<dz>}.

Since (2, £) € Dx £p — F(¢(2), TpL)|Y' (2)[*T* € R is a nonnegative measurable admissible function,
we can apply Theorem 1.8 to obtain that the left hand side of (9.1) is equal to

1

T TE@) B 0 TolCh U 123,500 2 1)] ORGz, DY ()
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Above, we wrote EF ,, instead of = to emphasise that the underlying domain is D. By doing the

change of variable Z = 9 (z), and because CR(z, D)[¢/(z)| = CR(Z, D), we obtain that the left hand
side of (9.1) is equal to

1 . 0 (=t i) > Fyadqs
W/DE [F(Za%(ﬂp U{E,, p . i2 1}))} CR(2, D)*dz.
Since the image of the measure i, ") under Ty, is the measure 5° (see [Law05, Proposition

b
5.5]), and by conformal invariance of £9,, we can rewrite

E [F(z,n(c% u{El )i 1}))] —E [F(g,ﬁ% U{E 50> 1})} .

To wrap things up, we have proven that

E [ [ FE T 0 G M w(ds)]
D

1 ~ 0 —3 . ~ g 1~
= 50 1—ar o - =g >
20219 (3) /DE [F(z,z:D U{E: 5.i2 1})] CR(z, D)*d?

which is the third property characterising the joint law of (EQD, M, 5)- This concludes the proof. [J

9.3 Positivity
We conclude this section with the proof of Theorem 1.1, Point 1.

Proof of Theorem 1.1, Point 1. The claim that, for all open set A C D, M, (A) is finite almost surely,
is clear since the total mass of M, has finite expectation. We will therefore focus on proving that for
all open set A C D, M,(A) > 0 almost surely. Let A be such a set and let A; and As be two disjoint
subsets of A that are scaled copies of A, i.e. we can write A; = f;(A) where f;, i = 1,2, are affine
functions. In what follows, we keep track of the domain D where the loop soup lives by writing M, p
instead of M,. By only keeping loops that are contained in A, and by restriction property of Brownian
loop soup, we see that M, p(A) stochastically dominates M, 4(A). It is therefore sufficient to show
that P (M, 4(A) = 0) = 0. Similarly, by only keeping loops that are contained in A; U Ay, we obtain
that
P(Ma)A(A) =0)<P (Ma,A1UA2 (A1 UA2) =0).

Since Mg 4,u4,(A1 U Ag) is distributed like the independent sum M, 4, (A1) + Mg a,(A42), we can
rewrite the probability on the right hand side as the product of P (M, 4,(4;) =0), i = 1,2. Now,
by conformal covariance and because the A;’s are affine transformations of A, P (M, 4,(4;) =0) =
P (Mg, a(A) =0),i=1,2. We have therefore shown that

P(Mq,a(A) = 0) <P (M,,a(4) = 0)*.
Since this probability is strictly smaller than one (the expectation M, 4(A) is positive), it has to
vanish. This concludes the proof. O
Appendix A Measurability of Brownian multiplicative chaos

This section deals with some technicalities concerning the measurability of the Brownian chaos mea-
sures w.r.t. the starting points, ending points, domains and thickness levels.

Denote by . the set of Borel measures on C equipped with the topology of weak convergence, and
by € the set of continuous trajectories in the plane with finite duration equipped with the topology
induced by dpaths (2.16). Recall the definition (4.1) of mi(D) and Mi(D) and the definition (4.3) of
the half plane H,,. Denote by % the set

S = {(m,z9,2) € (mi(D),Mi(D)) x D x D : z9 € H,,,,Im(z) = m}
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equipped with its Borel o-algebra. Let n > 1. We consider a stochastic process
(mi; @i, 2i)i=1..0 € " = (9ph,, Ji=1..n €C

TisZi

such that for all (m;, 24, 2i)i=1..n € L™, ©phm,, -t =1...n, are independent Brownian trajectories
from z; to z; in the domain D NH,,,, i.e. distributed according to ughzﬁmi /Hpem,,, (i, 2i) (2.5). We
consider a measurable version of this stochastic process, that is a version such that

(w, (mi7xi,zi)i:1,,,n) EOXx " — (pfjr%[ml)lzln(w) cv

is measurable (2 stands here for the underlying probability space). In the next result, we consider
the multiplicative chaos measures associated to the above Brownian paths. The subset I C {1...n}
encodes the trajectories involved and we will need to consider all these measures jointly in 1.

Lemma A.1. The process

) Lg%
szI@Dm]ﬂmi

(CL, (miaxiazi)izlmn) € (072) X yn = (Ma %#I (Al)

) e
Ic{l.n}  1c{1..n}

is measurable.

Let us comment that the process (A.1) should actually possess a continuous modification, but
showing such a regularity is actually far from being simple (see Proposition 1.2 and Remark 1.1 of
[Jeg21]) and will not be needed in this article.

Proof. The Brownian chaos measures are defined as the pointwise limit of measures that are clearly
measurable w.r.t. the path (see Section 2.3 or [Jegl9, Proposition 1.1]). Therefore, the process (A.1)
is measurable as a pointwise limit of measurable processes. O

We finish this section by showing that the measure MX on thick points of the massive loop soup
Lp(K) is measurable w.r.t. o((£%)) (2.18), a o-algebra smaller than the one generated by L9,

Lemma A.2. The measure M is measurable w.r.t. o((L%(K))).

Proof. For all € > 0, n > 1 and pairwise distinct loops ), ..., p™ € L’%}E N LY9(K), the measure
P .
27022 49 a measurable function of the occupation measures of pé”w t =1...n. This is a

consequence of [Jegl9, Proposition 1.1]. Therefore, for all & > 0, MX¢ is measurable w.r.t. the
o-algebra F. generated by the occupation measure of po ., € L%(K). We conclude by noticing
that Nesgo(Fs,0 € (0,¢€)) is included in the o-algebra generated by the occupation measure of g, p €
L% (K). This proves Lemma A.2 since the occupation measure of a loop g is a function of its equivalence
class (). O

Part Two: Discrete

10 Reduction

The purpose of this section is to explain the main lines of the proof of Theorem 1.12. The idea is to use
the result of [Jegl9] that shows that the scaling limit of the set of thick points of planar random walk,
killed upon exiting for the first time a given domain, is described by Brownian multiplicative chaos.
In order to use this result, we will first compare the discrete measures and the continuum measures
at the “approximation level” i.e. for loops killed by the mass. We will then show that the discrete
measures with and without mass can be compared.

For K > 0, define the set of a-thick points of ﬁ%N (K) by

Tn k(a) = {z € Dy : KZ(E%N(K)) > ;Ta(logN)z} (10.1)
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(see (2.25) for the definition of £.(L, (K))) and the associated point measure

log N
MER(A) =5 Y Leeay (10.2)
zETN,K(a)

Importantly, the normalisation of the measure is the same as in the case of a single random walk
trajectory (see (1.1) of [Jeg19]). Without the mass cutoff, there are much more loops and the measure
has to be tamed a bit more (see (1.11)).

Our first step will be to prove:

Proposition 10.1. There exists a universal constant co > 0, given by (1.12), such that, for any
fired K >0, (L% (K), M) converges in distribution as N — oo towards (L%(K),cgME). The
underlying topologies are the topology induced by the distance dg (2.17) and the topology of weak
convergence of measures.

The second step will be to control the effect of the mass on the measure:

Proposition 10.2. For any Borel set A C C,

29
limsuplimsupE || MY (A) — ————- MN-K (A H =0.
KE»KP N¥»KP {’ ( ) Uogl()e ( )

Moreover, de(LY, , L}, (K)) goes to zero in probability as N — oo and then K — oo.

We can now prove Theorems 1.12 and 1.5.

Proof of Theorem 1.12. This is an immediate consequence of Theorem 1.1 and Propositions 10.1 and
10.2. O

Proof of Theorem 1.5. By Le Jan’s isomorphism (Theorem 2.5), we can couple a discrete GFF ¢ in
Dy and a random walk loop soup Egi with critical intensity in such a way that the occupation field

f(ﬁgﬁ) and % coincide. Let MDY be the measure defined as in (1.11) and Cy(D) be the space of
continuous functions on D that vanish on 9D. We view ¢y as a random element of R€0(P) by setting

for all f € Co(D),
1
vt = 2 en(fC)
z€DyN

We are going to show that (@N,C})/iﬂ’eco_ * MN) converges in distribution (along a subsequence)

towards a triplet that satisfies all the relations required by Theorem 1.5. The topologies associated to
['}3/13 and MY are the same ones as in Theorem 1.12 and the topology associated to ¢ is the product
topology on R€(P) To establish such a result, we only need to argue that

(1) (Cgi 2795 MY ), (ﬁlD/27 M) where M, is the multiplicative chaos associated to E}:,/Q from

Theorem 1.1;

(i) (pn,2 %5 MY) @, (¢, —2— cosh(vh)) where cosh(vh) is the hyperbolic cosine associated to

V2ma
h = 2mp;
1/2 (d) 1/2 . 1/2
(iil) (Lpy,¥n) —> (LH7,¢) along a subsequence (Ng)x>1, where the Brownian loop soup £~ and
the GFF ¢ satisfy Le Jan’s identity: :E(E}D/Q): =1:9%:.

Indeed, assume these three convergences. The law of (ka,ElD/f] ,27965 * MNk) is tight since each
k

of the three components converges. Let (@m,ﬁg’io,./\/lam) be any subsequential limit. The three

pairwise convergences above suffice to identify the law of this triplet: ¢, is a GFF in D and Eg’zoo is

a critical Brownian loop soup in D related by Le Jan’s identity; M, ~ is measurable w.r.t. C%,oo and
is the associated multiplicative chaos; M, o is measurable w.r.t. ¢, and is the associated hyperbolic
cosine.

To conclude the proof, we need to explain where (i)-(iii) come from. (i) is the content of Theorem
1.12. (ii) is a quick consequence of [BL19] as we are about to explain. By definition (1.11) of MY and
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because the occupation field of 5323 is equal to (3,/2 (without any normalisation), MY is equal to
n,]YV + nﬁy where v = v/2a and nﬂ,y are the measures defined by

 Wlog N 9
= N2 R Z 1ieal {i¢N(2)> logN} A C R? Borel set.

z€EDN

i (A)

By [BL19, Theorems 2.1 and 2.5], there exists some universal constant ¢, > 0 such that nf{V converges
in distribution to c.e? where h = \/ﬂcp is a Gaussian free field in D. This convergence can be easily
extended to the joint convergence of (@N,név ) to (@, c.e’™). Indeed, this extension follows from a
simple use of Girsanov’s theorem and the details can be found in the proof of [BGL20, Lemma 6.9] in
a slightly different setting. The two convergences (on,75) = (¢, c.e™) and (pn,n™,) = (@, c.e™"),
plus the fact that the limiting measures are measurable w.r.t. the underlying GFF ¢, imply the joint
convergence (on,nd,n",) — (¢, cue™ ce™ ). In particular, (on,n +nN)) = (@, 2¢. cosh(vh)) as
desired in (ii). The value of the constant ¢, can be computed looking at the first moment.
Finally, let us prove (iii). This is an immediate consequence of the two joint convergences

(LY, 002y~ Be(cl?)) 1D (22 0L

and (
d)
(on, ¥i — Epl) == (p,:9%2)
along a subsequence (N},)i>1 (see the proof of [QW19, Lemma 6]). Indeed, these convergences implies

tightness of the quadruple (51/2 €(£1/2) E€(£1/2) ©ON,1/20% — 1/2Ep3;) along (N]). Let (Ng)g>1
be a further subsequence of (N ) k>1 such that the quadruple above converges towards some

(L2 LY 0, 1/2:9%)

along (Ng). To conclude, we only need to make sure that the second and fourth components of the

limiting variable agree. Our specific choice of coupling between [,})/13 and @ ensures that this is always
true at the discrete level. Therefore, it is also true in the limit. O]

Remark 10.3. Notice that the above argument does not establish convergence since Le Jan’s isomor-
phism (as noted earlier) does not uniquely determine the joint law of the free field and loop soup.
Nevertheless, the subsequential limit satisfies the relations stated in Theorem 1.5.

The remaining of Part Two is organised as follows. In Section 11, we give exact expressions for
the first two moments associated to MY and M2XK as well as describing the associated conditional
laws of the random walk loop soup L’%N. These exact formulae will be instrumental in the proof
of Proposition 10.2 which is achieved in Section 12. Finally, Section 13 is dedicated to the proof of
Proposition 10.1.

11 Exact expressions

In this section we will give the expressions of the first and second moments for MY and MYK  as
well as give the corresponding conditional laws of the random walk loop soup E%N

11.1 First moment (discrete Girsanov)

Recall the definition (1.12) of the constant ¢y which appears in the asymptotic of the Green function
on the diagonal; see (B.4).
In this section Dy will be just a subset of Z%;, with both D and Z3; \ D non-empty. For z € Dy,
denote
CRy (2, Dy) := N¢jle (08 N)?/(2nGpy (2:2)

As the notation suggests, we will use CRy(z, Dy) in a situation where it converges to a conformal
radius as N — +oo; see (B.4). Let gy (z) be the ratio

log N

an(2) = 2nGpy(z,2)
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If N — +o00 and the Euclidean distance from z to Z% \ Dy is bounded away from 0, then gy (2) — 1;
see Lemma B.1.
Given z,w € Dy, we will denote by ﬂgﬁ the renormalised measure

~z.w 1 R
By = (%logj\o D (11.1)

where i7" is given by (2.23). Given z € Dy and a > 0, we will denote by =% , the random loop in
Dy, obtained by concatenating a Poisson point process of continuous time random walk excursions
from z to z of intensity 2wafi?® D and having a local time in z

. 1
£(Si ) = 5-allog N)2

As in Section 5, we will consider admissible functions F' which do not depend on the order of excursions
in a loop.

The following proposition is merely a rephrasing of Proposition 2.4 in terms of the random discrete
measure MY given by (1.11). It is to be compared to Theorem 1.8 for the continuum setting. The
Poisson-Dirichlet partition that appears below comes from the Gamma subordinator (2.26).

Proposition 11.1. Fix z € Dy and a > 0. For any bounded measurable admissible function F,
E [F(Lh, )M ({2})]

1 +oo & _ '
= mQN(Z)HogN/a p’” NP ~CRn (2, Dn)’E [F(ﬂ%N\{z} U{E%q,-1 > 1})| dp,

where on the right-hand side, EQDN and {Z%,,,i > 1} are independent, the (a;)i>1 is a Poisson-

\{z}

Dirichlet partition PD(0,0) of [0, p], and the =% ,. are conditionally independent given (a;)i>1-
Now let us consider the massive case. Fix K > 0 a constant. For z € Dy, denote

log N

Gy (2,2) Cn.k(2) :==21(Gpy(2,2) — Gpy k(2,2)),

QN,K(Z) =

dt

400
0

Again, gy k(2) tends to 1 if N — 400 and the Euclidean distance from z to Z% \ Dy is bounded away
from 0.

Lemma 11.2. For every z € Dy and a > 0,
B [eKTE ] = o2 alon 0 G (55 —Gy (2507

— ¢~ v (2)an k (2)Cn,k (2)a

Proof. The expectation above is simply given by the ratio between (2.27) and (2.26) for t = 5-a(log N )2.
O

The following proposition is to be compared to Lemma 5.3 and Proposition 3.1.

Proposition 11.3. For any bounded measurable admissible function F,
E [F(L )M F({=})] (11.2)

logN o 0Tn x(2) / o" /
= CRN (2, Dn)? _
N2 a Z eE(p,n)

n>1 An

lH (1—6_KT BN ) (EDN\{Z} UEDN K U{ENa 1= 1’”})1 5

i=1
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where on the right-hand side, the three collections of loops~£9DN\{z}, EN%MK’Z and {E%,,,i=1...n}
are independent, the different =%, are independent, and E%MK’Z is distributed as the loops in ﬁGDN \
LY, (K) visiting z. In particular,

log N too of d
B [MPS ({zh)] = B [ oz CRN (2 D) Flan (2)ax k (:)Cnc (2)p) 7, (11.3)

where F is given by (3.1).

Proof. The second identity follows from the first one and Lemma 11.2, by taking F' = 1. See also
Lemma 5.4.

Regarding the identity (11.2), observe that the loops in /JQDN(K ) visiting z form a Poisson point
process which is a.s. finite, regardless of Dy being finite or not. For instance, the intensity measure

for (62(@))pe£%N (K),p visits z is

dt
1{t>0}9(€_t/GDN(z’Z) - e_t/GDN‘K(Z’Z))77
which is the difference between (2.26) and (2.27). Its total mass is finite, equal to 0Jy x(z). We obtain
(11.2) by summing over the values of #{p € L], (K): g visits z}. We skip the details. O

As a corollary,

Corollary 11.4. Let D be an open bounded simply connected domain, (Dn)n be a discrete approxi-
mation of D as in (1.9) and f : D — [0,00) be a nonnegative bounded continuous function. Then

a

0—1
F(G)/Df(Z)CR(Z’D) dz.

sup E [<Mflv,f>] <oo and lim E [<Mflv,f>] =}
N>1 N—o0

Moreover,

sup E [(MIF f)] <oo and  lim E[(MIE f)] = CSM /D f(z) CR(z, D)*dz.

N>1 N— 00

Proof. With Propositions 11.1 and 11.3 in hand, checking this corollary is a simple computation. [

11.2 Second moment (two-point discrete Girsanov)

Here we will deal with the second moments of MY and MN-K.
Given z € Dy, the Green function on Dy \ {z} can be expressed as follows:

Gpy(7,2)Gpy(z,w")

G (2,2) (11.4)

Gpy\(z3 (7, 0') = Gpy (2, 0') —
Given z # w € Dy, denote

e (log N)?
N2, W) = 4n2(Gpy (2, 2)Gpy (w,w) = Gpy (2,w)?)

Let Gp, (z,w) denote the total mass of the measure A5 -

Lemma 11.5. Let z,w € Dy such that the graph distance on Z3; between z and w is at least 2, i.e.
lw—z| > +. Then,

éDN (Za ’LU) = QN(Z, w)GDN (27 w)'
Proof. From (3) in Lemma 2.3 follows that the total mass of /i7" equals

Gpy(z,w) _ Gpy(z,w)
Gpy(2,2)Gpy\(z3(w,w)  Gpy(2z,2)Gpy (w,w) — Gpy (z,w)?
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Given z # 2’ € Dy, denote
CRy..(2, Dy) = Ncale—(logN)2/(27TGDN\{Z}(ZCZ/))_

Given z # 2’ € Dy and o' > 0, let Ef\l,7z7a, denote the the random loop in Dy \ {z}, obtained by
concatenating a Poisson point process of continuous time random walk excursions from 2z’ to z’ of

intensity 2ma’ ﬂg;\f/\ (-)> and having a local time in 2!

o 1
ez/(‘:N,z,a’) = %a/(log N)2

’

By construction, =% ., does not visit 2. Applying Lemma 11.2 to Dy \ {2}, we have that

E e—KT(E}/,zﬁa/)} _ e*a/cN,K,Z(z/) (11.5)
where
(log N)?
Ot = G o (G ) (Goa3(22) = G2y (2, 2) - (11.6)

where we recall that the massive Green function is defined in (2.24).

Lemma 11.6. Let 2,2’ € Dy such that the graph distance on Z3; between z and 2’ is at least 2, i.e.
|2 — 2| > %. Let a > 0. Then for any bounded measurable function F,

/l{go visits z’}F(p)ﬂgiI (dp)

’

+oo a
C ! ~z,2 ~2' 2 —z
—om [ o G vy [ o) [ o) [Plon A5 n )]

where N\ denotes the concatenation of paths.

Proof. This is a consequence of Lemma 2.3. By applying (2) in Lemma 2.3 in the case z = w, and

then (1) in Lemma 2.3 for the measure ,u;;vz\{z}, we get that

/ 14 visits o) F(0)S (dp) (11.7)

471_2 +oo G ;. 2! o
= 7(logN)2/ dte™ /o2 ’Z)/ﬂD’N (dm)/ﬂp}v(d@z)
0

x E {F(@l NEN, 2 2mt(log N)—=2 N @2)} .
We conclude by performing the change of variables a’ = 27t(log N)~2. O

Given z # 2’ € Dy and a,a’ > 0, let Efvz; » denote the random collection of an even number of
excursions from z to z’ with the following law. For all k& > 1,

) = 1 (27Vad Gp, (z,2'))%k
B((%)Qaa’@pN (z, z’)2> k!(k —1)! :

P (#2550 = 2 (11.8)

’
—2z,z

where B is given by (6.1), and conditionally on {#Z37, ,, = 2k}, Ef\,z‘; o+ 1s composed of 2k i.i.d.

, o~
excursions with common law i3> /Gp,(z,2'). As in Section 6, we will consider admissible function,
invariant under reordering of excursions.
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Lemma 11.7. Let 2,2’ € Dy such that the graph distance on Z3; between z and 2’ is at least 2, i.e.
|2/ — z| > %. Let a > 0. Then for any bounded measurable admissible function F,

E |:1{Ef\,,a visits z’}F(E?V,a):|

~ +oo
o—a(2m)*Epy (2.)2Cp g (1 (+2')/ (log N)? / da’ ¢

— o CRv=(2', Dw)* 'B((27)%ad'Gpy (2, 7)?)
0

XE{F(:;J\/'Zaa’A‘—‘Nz a/\‘—‘Nza):|a

,2' —z —z' .
where Z37, s EX L, and EX; ,» are independent.

Proof. In Z% ,, the excursions away from z Visiting 2/ are independent from those not visiting 2z’. The
concatenation of the excursions not visiting 2’ is distributed as =%, ,, ,. The excursions visiting Z' form
a Poisson point process which is a.s. finite. According to (11.7), the total mass of the corresponding
intensity measure is

2
2ma x (IC;ZLNVéDN (2,2')’Gpy\ (7, 7).

According to Lemma 11.6, and excursion that goes k times there and back between z and 2z’ can be

decomposed into 2k excursion between z and z’ and k excursions va sal N zal, from 2’ to 2’

not visiting z. The "thicknesses" (i.e. renormalised local times) af,...,a} are randorn and i.i.d. The

excursions E?\;,z,a/l yeee ,Ef\l,’z’a; are conditionally independent given (a’l, ...,ay). The concatenation

=z =z’ : sl =z’ I ! L. / :
ENza, N AN EN e 1 distributed as 2y , ,, where a’ = al + -+ 4+ ay. The 2k excursions from z

) s s : / / —z'
to 2’ are i.i.d., independent from af,...,a; and =Nzl ,_N 2l

each one distributed according to

/:LEJZV /Gpy (2,2'). The distribution of (a},... ,a;) on the event that =% , performs & travels from z to
Z' (and k back) is

/)Qk

—a(2m)®G 2,2')2@ 2 (2',2") /(o N2(27T)2ka,kéD (z,z
1{a,1’ a/>0}e (2m)°Gpy (2,2") "G\ (23 ( )/ (log N) k!N

xH( - CRy.-(, Dy)* 2da;).

The induced distribution on a’ = a} +--- +aj, is

_ 2k Nk Y N2k /
—a2m) Gy (222G o (o1 (212)/(log N2 (27) P (aa') G Dy (2, ') o rda
1{a/>0}e Dy Dy \{=} (k= 1)] ~a7 CRNZ(Z DN) —

a/

One recognizes above the k-th term in the expansion of B((27r)2aa'éDN (z,2')%); see (6.1). This
concludes. m

Next we consider the loop measure u D P (2.22) and the decomposition of loops that visit two given
vertices z and 2.

Lemma 11.8. Let 2,2’ € Dy such that the graph distance on Z3; between z and 2’ is at least 2, i.e
|2/ — 2| > % Then for any bounded measurable admissible function F,

/1{p visits z and z’}F( )leo)?vp(dp)

*° da +° da’ cata

:/0 —CRNZ (z,Dn)* /0 —CRNZ(,Z Dny)® /Na+a/B((27T)2aa/(~;DN(Z’Z/)2)

:E[F(:f\fzaa’/\‘—‘Nz a/\‘—‘Nza):|'
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Proof. From Proposition 2.4 it follows that

It
/1{50 visits z and z’}F( )Mgfvp(d@)

+oo
_ / da_—a(iog N)?/(2xGp (22N [1
0 a

By combining with Lemma 11.7, we get that this further equals to

+oo o~
/ %efa(log N)2/(27rGDN (z,z))efa(Qﬂ')sGDN (z,z')2GDN\{z}(z',z')/(log N)?
0

a

0 4a’ Ca’ , =~
X / 7’# CRN,Z(Z/;DN)G B((27T)2CLCLIGDN (ZVZI)Q)
0

XE|:F(:§VZaa’/\‘—‘NZ a/\‘—'Nza)]‘
We have that

(log N)? +(QW)BéDN(%Z/)QGDN\{Z}(Z'J/)
2nGpy(z, 2) (log N)?
(log N)? (log N)2Gp, (2,2')?
2rGpy(2,2)  2mGpy (2,2)?°Gpy\(23 (2, 2')
7 (log N)2(Gpy (2, 2)Gpy\i23(2',2") + Gpy (2, 2')?)
2nrGpy (2,2)2Gpy\ (23 (2, 7))
(log N)? (log N)*Gp, (2, 2')?
- 21Gpy (2, 2) 21Gpy (2,2)?°Gpy\ (23 (2, 2')
(log N)2Gpy(2,2)Gpy (2, 2) (log N)2Gp, (', 2")
- 21Gpy (2,2)?Gpy\ (23 (2, 2') - 21Gpy (2,2)Gpy\ (23 (2, 2')
_ (logN)?
N QWGDN\{Z/}(Z,Z)

=log N — log(cp) — log(CRnN, ./ (2, Dn)).

This concludes.

Given z # 2’ € Dy, denote
log N

27.(-CTVDN\{Z}(Z/7 zl) ’

qn=(2) ==

JN K, z 1{@ visits z’} 1 —e (p))ﬂlgi,p\{z} (dp)

e~ t/GDy\{= y (22" e t/Goy\(=}.k (2,2 ))7’
t

/*"0 oy dE
0

JN(Z7 Z/) L= / 1{@ visits z and z’}/’LILO)?\,p(dp)’

JN,K(Z7 Z/) = /1{p visits z and 2’} (1 - e_KT(p ) IOOP(dp)

The following proposition is to be compared to Lemma 6.4 in the continuum setting.

{Ef\,,a visits z’}F(E?\/,a)] .

(11.9)

(11.10)

(11.11)

Proposition 11.9. Let z,2' € Dy such that the graph distance on Z3% between z and 2’ is at least 2,
ie |2 —z| > % Let a,a’ > 0 and K > 0. Then for any bounded measurable admissible function F

the following holds.
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1. The case massless-massless :

BIF(E,) M () ME(( ) = Lt LOBNY oo (11.19)

cp+p+p +p’
0

/pm dpp® ' dpCRy 2 (2, Dy)" "7 / L dp P E CRyy i (2, D) 7

5 >0 Np+ptp' +0 —a—a’
pt+p>a p'+p' >a’
l
6! da a’
2
S AL
1! Ja€E®D a;...qd]. ( 277 a;a; GDN(z 2') )
120 a’€E(p’ 1) =1

XE{ (’CDN\{ZZ’}U :j\}za“a//\‘—‘Nz al/\‘—‘Nza i= 1U{‘~Nz a,l>1}U “Nzaﬂ’z]'}>i|’

where on the right-hand side the four collections of loops /j% \{z,2}7 ”;ﬁawa, NEZ o a, /\:7\] ot L,
{EXN a1 2> 1} and {HN . a,,z > 1} are independent, (a;);>1 and (@});>1 are two mdependent Poisson-

Dirichlet partitions PD(0,0) of respectively [0, p] and [0, p'], the Z% .. ;., respectively = :NZ 2 are in-

dependent conditionally on (a;);>1, respectively (a;);>1, and the Ejvi;z o SN2ra, aNd Ef\}z o are all
independent. /
2. The case massless-massive :
N,K QNZ( )e(logN)Q - L (2 2,2
E[F (£, ) MY ()M ()] = BB et () (11.13)
0—1 _ [t , 8+p+p
~U— e /
ptp=a
da da’ l 2 1 "2
x Z —l (m — DY /aGE(pl) ai...a d...a HB((QW) a;ia;Gpy (2, 2') )
m>1 ' €E(p',m) 1 m ;1
0<l<m
l —_z,z m
e H<1 KT(“NQ a/\“Nza/\“Nzai)> H <1 KT(NZQ)>
1=1 i=l+1

0 70 =
F(‘CDN\{Z,Z’} U EDN,K,Z/ U {“7Vzal7a’ NE _‘Nz ,a NE ‘—‘Nz al, } i=1 U {‘—‘Nz L4 P> 1} U {‘—‘Nz a’ }z_l+1>] ’
where on the right-hand side the five collections of loops ﬁ% {22/} EQDN,K s :7\72 ! NEX 20 N
Ef\l, 2a! g, {EX 24,01 > 1} and {_NZ al Yitiq are independent, (@;)i>1 is a Pozsson Dirichlet parti-
tion PD(0,0) of [0,p], the =% . ;. are independent conditionally on (a;)i>1, the = HNya“a;, EXN 20, and

’_‘Z

EXN,z.a; 0re all independent, and ED K. is distributed as the loops in L9, \ LY, (K) visiting z'.
3. The case massive-massive :

2
BIF(Eh, ) MY (MY ()] = BN b s s ) (11.14)

+o0 +o0 , , , cg-i-p
X/a dpCRn,2 (2, Dn)” /a dp’ CRy -(2', DN)” Note

0n+m—l da da’ )
. Z (n =Dl m—-DW /aEE(pn) ai...an d. HB ( (2m)2a;aGpy (2, 2") )

n.m>1 a’€E(p’,m) m =1
0<i<nAm
l —z,z’ —z n m o=
xE H (1 e S AE3., N) H (1 _ e—KT(EE,z/,ai)) H (1 KTy .. ))
i=1 i=l+1 i=l+1

(‘C‘DN\{Z z’}U‘CDN,Kzz’U{“Na a’ /\“Nz Qi /\‘—'Nza i= IU{'_'NZ al}z H—IU{“Nza }z l+1>]
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!

—z,z
1y 1= ’
2z’ N,a;,a]

where on the right-hand side the five collections of loops E%N\{zyz,}, Z%MK’Z’ NEN 2 a; N

!
-z —Z,z

1 =z n =z m . = —z =z’
_N7z7a;}i:1, {EX 210, iz and {_N,Zﬂ;}i:lﬂ, are independent, the ENasal? BN .2 and EN s, OTE

all independent, and Z%N7K7Z7Z, is distributed as the loops in LY, \ LY, (K) visiting z or 2.

Proof. Let us first consider the case 1. massless-massless. We divide the random walk loop soup E%N
into four independent Poisson point processes:

e The loops visiting neither z nor z’. These correspond to C%N\{Z7z/}.

e The loops visiting z but not z’. We apply to these Proposition 11.1 in the domain Dy \ {z'}.
These loops correspond to {Efv,z/,aﬂi > 1}

e The loops visiting z’ but not z. We apply to these Proposition 11.1 in the domain Dy \ {z}.
These loops correspond to {25, ;/,i > 1}.

al
e The loops visiting both z and z’. These form an a.s. finite Poisson point process. The corre-
sponding intensity measure is described, up to the factor €, by Lemma 11.8. The corresponding
total mass is 6 Jxn(z, 2"). These loops correspond to Ef\’,’faha; NEYN 2 a; N 57\;727a;}§:1~
By combining the above, we obtain our expression.
Now let us consider the case 3. massive-massive. We divide the random walk loop soup E%N into
five independent Poisson point processes:

e The loops visiting neither z nor z’. These correspond to E%N\ (2,21}

e The loops visiting z or 2z’ and surviving to the killing rate K. These correspond to ZQDN,K,Z,Z,.

e The loops visiting z but not 2’, and killed by K. These form an a.s. finite Poisson point
process. The total mass of the corresponding intensity measure is 0.Jy i ./ (2). We apply to these
Proposition 11.3 in the domain Dy \ {2'}. These loops correspond to {Z% ., ..}ty -

e The loops visiting 2z’ but not z, and killed by K. These form an a.s. finite Poisson point
process. The total mass of the corresponding intensity measure is 0.Jn i .(2"). We apply to these
Proposition 11.3 in the domain Dy \ {z}. These loops correspond to {Z% ol Vil

e The loops visiting both z and 2’ and killed by K. These form an a.s. finite Poisson point process.
The total mass of the corresponding intensity measure is 0.Jy g (z, z"). We apply to these Lemma
11.8. These loops correspond to Ef\}fai’a; NEXN 2 a; N Ei\;,za;}é:l'
By combining the above, we obtain our expression.
The case 2. massless-massive is similar to and intermediate between the cases 1. and 3. We will
not detail it. O

We finish this section with an elementary lemma that we state for ease of reference. We omit its
proof since it can be easily checked.

Lemma 11.10. Let D C R? be a bounded simply connected domain, z,z' be two distinct points of D.
Consider a discrete approzimation (Dn)n of D in the sense of (1.9) and let zy and z be vertices of
Dy which converge to z and 2’ respectively. Then

1—gn.n(Zh), JIn(zn,2N),  Inkx(zn,2zN) and  JInk.n(2y) (11.15)

all converge to 0. Moreover,
Cn.k,zy (2) = Ck (&) (11.16)

11.3 Convergence of excursion measures

The goal of this section is to prepare the proof of Proposition 10.2 by establishing the convergence of
the various measures on discrete paths that appear in the formulas obtained in Sections 11.1 and 11.2
towards their continuum analogues.

Consider D C C an open bounded simply connected domain containing the origin and (Dy )y
a discrete approximation of D, with Dy C Z3%. See (1.9). First we deal with the convergence of

~Z

probability measures ;LDNN"“’N /éDN (zn,wn) with wy # zn.
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Lemma 11.11. Let z,w € D with z # w. Consider sequences (zn)n>1 and (W) N>1, With zy, wN €
Dy and
li = li =w.
.
Then the probability measures pp "~ /Gpy(2n,wn) (2.19) converge weakly as N — o0, for the
metric dpatns (2.16), towards 3" /Gp(z,w) (2.3).

Proof. Since D is bounded, by performing a translation we can reduce to the case when D C H, where
H is the upper half-plane
H = {z € C:Im(z) > 0},
and that for every N > 1, Dy C Z3% NH. First, we have that tzs v /Gzz (v, wi) converges
N
weakly towards pg " /Gu(z, w). This follows from the following two points:

HDZNﬂUN

72 ~n ¢ converges towards the Brownian bridge
N )

e For every t > 0, the bridges probability measures
measure Pg;Y.

e The transition densities pZ%mH(t, zZN,wpn) converge to py(t, z,w) uniformly in ¢ € [0, +00) (local
central limit theorem); see [LL10, Theorem 2.5.6].

e The discrete Green function Gyz u(2n,wn) converges to Gu(z,w). This follows from [LL10,
Theorem 4.4.4] and the reflection principle.

Further, the measure u7;" /G p(z, w) is obtained by conditioning a path under ;" /Gu(z, w) to stay in
D. Similarly, u7""“" /G py (2n,wn) is obtained by conditioning a path under u;%‘ﬁﬁv /Gzz,ru(2n, wN)
to stay in Dy. Moreover, on the event that the path under p;" /Gu(z, w) exits D, a.s. thereis e > 0
such that any continuous deformation of the path of size less than ¢ also has to exit D. This is because
a Brownian path exiting D will a.s. create a loop around the point where it first exits D. We refer

to [Lupl6, Lemma 2.6] for details. Thus, one gets the convergence of ,uijN’wN /Gpy (zn, wy) towards

w5 /Gp(z,w). O

Proposition 11.12. Let z,w € D with z # w. Consider sequences (zn)n>1 and (Wy)N>1, with
zn,wn € Dy and
lim zy =z, lim wy = w.
N—+oo N—+oco
Then the probability measures ﬁZDNA;wN/éDN (zn,wn) (11.1) converges weakly as N — 400, for the
metric dpatns (2.16), towards 3" /Gp(z,w) (2.3).

Proof. According to the Markovian decomposition of Lemma 2.3, a path o under u737"“~ /G p (25, wn)

has the same law as a concatenation of three independent paths 1 A G A pa, with ¢ following the distri-

bution i7"~ /Gpy (2n, W), o1 following the distribution o N /Gy (2N, 2n), and s following the

WN W

distribution MDN\{I;/N}/GDN\{ZN}(,LUN7 wy ). Moreover, it is easy to see that diam(p1), T(gp1), diam(p2)

and T'(pz) converge in probability to 0 as N — +oc. Thus, the convergence of i7"~ /Gpy (28, wN)
is equivalent to the convergence of up"~ /Gp, (2n,wn), and the latter converge to u3" /Gp(z, w)

according to Lemma 11.11. O

Next we deal with the convergence of measures ﬂENI\;ZN . Given z € D and r > 0, let E, , denote

the event that a path goes at distance at least r from z. If r < d(z,0D), then u5*(E,,) < +oc.

Lemma 11.13. Let z € D andr € (0,d(z,0D)). Consider a sequence (2n)nN>1, 2N € Dy, converging
to z. Then

W B (Bay ) = ().

Moreover, the probability measures 1{EzN,r MZDNA;ZN /M%NNVZN (E.y.») converge weakly as N — 400, for
the metric dpatns, towards 1¢g, yup" /up (Ez ).

Proof. Since D is bounded, by performing a translation we can reduce to the case when D C H and
that for every N > 1, Dy C Z% NH. We only need to show that

Nl—ig-loo N;%’;ﬁ (EZN,T) = NEZ(Ez,T) (11-17>
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and that the probability measures 1 (B} ,uZ2 ;ﬁ / u;év r:ﬁ

is a restriction of /fN N to the paths that stay in

(E,, r) converge weakly towards the measure
ZN )21\7

g, i /i (E.r). Indeed, the measure 7

Dy and p3” is a restriction of g to the paths that stay in D. Usmg thaut7 one can conclude as in
the proof of Lemma 11.11.
Now, consider (B;);>o a Brownian motion starting from z and let 7, be the stopping time

Tri=min{t > 0: |By — z| = r}.

Also consider (Xt(N))tzo the Markov jump process on Z3% (see Section 2.2) starting from zy and let
TN, be the stopping time
TN,y =min{t > 0: |Xt(N) —z| >r}

The following holds:

/*52]2\, ’;ﬁ (EZN,T) =[E*~ [GZ?VOH(Xg—ﬁ)N ZN)] y /’L]]?Z(Ez,r) =F* [GH(BTT7 Z)] .

So (11.17) follows from the convergence in law of Xﬁg) to Br, and the convergence of Gz ~u(w, 2n) to
G (w, z) uniformly for w away from z. Further, a path o under the probability 1¢g, g™ /pg” (E. )
can de decomposed as a concatenation pi A o with the following distribution. The distribution of g4
is that of (By)o<i<s, tilted by the density

GH(BTM z)

p” (Ezr)
Conditionally on 1, @2 follows the distribution py**/Gu(w, z), where w is the endpoint of p;. A
similar decomposition holds for a path under 1 (5. },uZ’; ey u%’;’ Z(Ezy ), with Xt(N) instead of By,

w,z

GZ2 ~m instead of Gy and “Z? instead of iy’ So the desired convergence of measures follows from

the convergence in law of (X t(N))OStSTN.r to (Bt)o<t<r,, the convergence of the Green functions Gzz ng

to Gy, and from Lemma 11.11.

ﬂH

Proposition 11.14. Let z € D and r € (0,d(z,0D)). Consider a sequence (zx)n>1, 2nv € Dn,
converging to z. Then

ZN,ZN — 57
N1—1>r£oou (EzN,r) =HMp (EZJ”)'

Moreover, the probability measures 1{ }ule\;zN [iD N (Bay ) converge weakly as N — +oo, for

the metric dpatns, towards 1{E2,T}M73’Z/M ( )

Proof. Denote
By :={w € Dy :|w—z,| <r}.
According to the Markovian decomposition of Lemma 2.3, a path p under 1{ }MZDNA;ZN /DN (B )

has the same law as a concatenation of three independent paths p1 A9 A 2, w1th ¢ following the distri-
bution 1{ }QZDN]\]’ZN/ DN (E.y ), 1 following the distribution pu7"*Y /Gp, (2n, 2n), and g fol-

lowing the dlstrlbutlon ps. N /Gy (2n, 2N ). Further, diam(p;), T'(p1), diam(ps) and T'(p2) converge

~EN

in probability to 0 as N — +o0. Thus, the convergence of 1{ }MDNZN /MZN,zN (E., ) is equivalent
to the convergence of 1{ }MDNNZN [ N (Ezy ), and the latter converge to 1yg_ yup /np” (Exr)
according to Lemma 11. 13 Moreover7

ZNL,ZN _ GDN(ZN?ZN)GBN(ZN7ZN) ~ZN,ZN

KDy ( ZN;) 1 2 Dn ( ZN7)
<—logN)
2w

Thus, i7" (E.y ) and pp"V (E.y ») have the same limit. O
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Corollary 11.15. Let z # 2’ € D and r € (0,d(z,0D)). Consider sequences (zn)n>1 and (2y)N>1,
with zn, 2y € Dy and

lim zy ==z lim 2% =2’
N —+4oc0 N ’ N—+oc0 N
Then
. ~ZN,ZN 2,z
Nl—lg-loo MDN\{ZEV}(EZN,T) = HUp (Ez,r)'

Moreover, the probability measures l{E }ﬂ’;NN’i?Z, }/[L%NA;ZN (B, r) converge weakly as N — +oo,
ZN T N

for the metric dyatns, towards 1ip, yup/np (Ezp).

Proof. The measure ﬂE)NN’i’{VZ}v} is obtained by restricting iy """ to the paths that do not visit zjy.

Given that almost every path under p7;” stays at positive distance from 2’, the result follows from
Proposition 11.14. O

12 Controlling the effect of mass in discrete loop soup

The purpose of this section is to prove Proposition 10.2. As in the continuum, the proof relies on a
careful analysis of truncated first and second moments. We start off by introducing the good events
that we will work with.

Let z € N=1Z% and r» > 0. We will denote by dDx(z,r) the discrete circle defined as the outer
boundary of the discrete disc

Dy (z,7):=2+{y € N'Z*: Jy| <r}.

If p is a discrete trajectory on N~1Z2? and if C is a collection of such trajectories, we will denote by
N, the number of upcrossings from 0Dy (z,7) to dDy(z,er) in p and NS, = >pcc NE,. We will
not keep track of the dependence in the mesh size N~! in the notations of the number of crossings
since it will be clear from the context.

Let n € (0,1 — a/2) be a small parameter, b > a be close to a and define the discrete analogues of
the good event G (2):

]
Gn(z) = {VT c{e ™ n>1}Nn (N r) - Nﬁf” < b logr|2} (12.1)
and
LY (K) 2
Onk(2):= {Vr efe ", n>1}nN (N71+’7,7'0) NN < bllogr| } . (12.2)

We emphasise here that we only restrict the number of crossings of annuli at scales » > N =17, We
will see that it is enough to turn the measure into a measure bounded in L? and it will simplify the
analysis since we will always look at scales at least mesoscopic (N4, for some 3 > 0).

Once the good events are defined, we consider the modified versions of MY and MN-X:

MY (d2) =16, (yMY (dz) and MY K (dz) = 1g,, . (s M (d2).

In the remaining of Section 12, we will fix a Borel set A compactly included in D and the constants
underlying our estimates will implicitly be allowed to depend on A, 7, a and b.

The proof of Proposition 10.2 relies on three lemmas that are the discrete analogues of Lemmas
7.1, 7.2 and 7.3. We first state these lemmas without proof and explain how the proof of Proposition
10.2 is obtained from them.

We will first need to show that the introduction of the good events almost does not change the first
moment:

Lemma 12.1. We have

lim limsupE HM;V(A) - M;V(A)H -0 (12.3)
r0o—0 N_oo
and ~
lim lim sup(log K)~% limsup E H./\/lfLVK(A) - MflVK(A)H =0. (12.4)
o0 K 00 N—oo
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Once the good events are introduced, the second moment becomes finite:

Lemma 12.2. For z € D and N > 1, denote by zn some element of Dn closest to z (with some
arbitrary rule). If b > a is close enough to a, then

/ sup N'E [/\;liv({z]v})./\;liv({zfv})} dzdz’ < o0 (12.5)
AxANZ>1
and
/ sup (log K)~% sup NE [MQVK({ZN})MQVK({Z&})} dzdz’ < oo. (12.6)
AxA K>1 N>1
Finally,

Lemma 12.3. Ifb > a is close enough to a, then

=0. 12.7
K—o00o N—oo logK)e ( )

P 2
lim sup limsup E l(/\;lflv(A) — (QMQVK(A))

Proof of Proposition 10.2. Proposition 10.2 follows from Lemmas 12.1 and 12.3 in a very similar way
as Proposition 3.6 follows from Lemmas 7.1 and 7.3; see below Lemma 7.3. Note that we can first
restrict ourselves to a Borel set A compactly included in D since the contribution of points near the
boundary to the measures is negligible. We omit the details. O

The remaining of Section 12 is organised as follows. We will start in Section 12.1 by analysing
the lengthy formulas appearing in Proposition 11.9 in the same spirit as what we did in Lemma 6.5.
We will then study in Section 12.2 the number of crossings in the processes of excursions that appear
in Propositions 11.1, 11.3 and 11.9. The proofs of Lemmas 12.1, 12.2 and 12.3 will then be given in
Sections 12.3, 12.4 and 12.5 respectively.

12.1 Simplifying the second moment
Define for all A, X > 0,0 < v < A2 AN? and u, v/ > 1,

o ! = 5 o~ AMp+p)50-1 "(p" +p") 6-1
a0y i= [ dpdp et [ a0 ) (125)
p+p a o +p'>a
aza v)
x Z I /aeE(pl) dada H
=1 a'€E(p' 1)
and
N ’ / e A e ; —=XNp grm-!
— —Xp -X'p
Ho (A, N, u, 0, v) .7/ dp e / dp'e > CENICEIT (12.9)
@ @ n,m>1
o<I<nAm
B(aidv) 14 1—e v {5 1— e ai
X /aGE(pn dada’ H za H . H T
a’€E(p’,m) ti=l+1 ' i=l+1 i

By Proposition 11.9, H, is related to the second moment of M as follows:

an .- (2)’qn = (2)° (log N)?

—0Jn (2,2
NBar(g)? e~ 0INEER (N )

E MY {zHMF ({2 })] =

with
A =log N —log CRy (2, Dn) —logcy, N =logN —logCRy (2", Dn) — log co (12.10)

and v = (27TGDN(Z 2'))2. On the other hand, by neglecting the killing for loops that visit both z and

Z', we see that Ha provides a good upper bound on the second moment of MY (see Proposition
11 9):

2 A
B (MY R ()M ()] < ETe o IOV (0, X i o)
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where A\, \ and v are as above and, recalling the definition (11.6) of Cy i ,(2'),
u=Cnk(2) and u' =Cpyxk.(2).

In the followmg lemma, which is the discrete counterpart of Lemma 6.5, we give exact expressions for

H and H and deduce upper bounds. These upper bounds will be crucial for us in order to prove
Lemma 12.2. Recall the definition (6.13) of H, .

Lemma 12.4. We have

o\ N, 0) = T(0)p(1-0)/2 / (1) O~ D/2e=Ate=N [ (ww) dtdt’ (12.11)
[a,00)?
and
Ho(O\, N, w0, v) = /[ . ef)‘pef)"p’pr/(u,u/,v)dpdp’. (12.12)
Moreover, if \AXN > \/v+1 and if u,u’ > 1, then
N 1 ,
Ho(\, N, v) < Col/4=9/2 e2Vv=A=A)a (12.13)
A= Vo)V =)
and 1
Ho (A, N, w0, v) < C(un)?0/40/2 eVr=A-Na, (12.14)

(A= Vo)X =)
Proof. In (6.18), we noticed that
aza U Uk(pp/)k—le(k)
Z Al /aeE(pl dada’ H _ZW
>1 a’eE(p’,l) k>1

We can therefore rewrite

MNo+P) 2)0—1 pk—l

/ ~ —Xp+p /

a(A N 2 k' /pf~>>0 d pdpe 7(1@— 0 A A
pt+p>a

where the second term in parenthesis is equal to the first one with A replaced by A’. We can further
compute (see (C.3))

=0-1 k-1 oo t 0-1 k-1 o0
L _ t—p) p 1 1 _
dpdpe—Nep+n)P_P :/ dt ,\t/ d ( _ $0+E—1 =t 4y
/ﬁ@ peve RS A S T O A ¢
p+p>a

‘We have obtained that
o) o] Nk
1 ’ o 0—1_—\t 7 o10=1 _\'¢ (Utt )
Ho(A, N v) = / dt t" ‘e / de' ¢ e E TICR
a a k>1

We recognise here a modified Bessel function (C.4) concluding the proof of (12.11).
To obtain the upper bound (12.13), we first bound (thanks to (C.6))

I@—l(u) < C’e"/\/ﬁ, u >0,

which gives

Ha(/\,)\/,v) < 001/479/2/ (tt/)9/273/467)\t7)\’t’e?\/Utt/ dt dt’.

[a7m)2

We next bound 2vtt’ <t +t' and

Ha(A, X, v) < Co!/470/2 (/ t0/23/4e“eﬁtdt> ()\ = X)

1 !
< (pl/4—0/2 (2v/o-A—\)a
=

7



where we used the assumption that A A X > /v 4+ 1 to obtain the last inequality. This concludes the
proof of (12.13).

(12.12) directly follows from the definition (6.13) of H, . The bound (12.14) then follows from
Lemma 6.5. This concludes the proof. O

Remark 12.5. We now state a generalisation of (12.11) that will be needed in the proof of Lemma
12.3. This generalisation is proven in a very similar way and we omit its proof. Let p : [0,00)? — [0, 1]
be a measurable function. Then for all £ > 1,

/pf)>0 dpdp e APTP R 1/p,_ﬁ,>0 dp/ dp'e G o+ py o + ) (12.15)
p+p=a o +5'>a

k

6 vFi(a;al)ki—t

Sy o [[ Xl

=1 aEE( 1) =1 kq,.. ,k‘l>1

ki+-+k=
’Uk

- G(k)k:'/( o) e M p(t ) (tt) T at at'.

To recover (12.11) from (12.15), one simply needs to take the function p = 1 and sum over k > 1.
Similarly, one can prove that

- o . gm
~ —Xp+p)=0—1 /=Nt
/p)ﬁ?o dpdpe p /a dt’e Z L (12.16)
p+pza m>1
1<i<m
dad ’ k ~ L ( a; m 1—67‘1;“/
X acE(p,l) ada Zv p(P+p,pa ) Z Hkl'(kl_l H a/_
a’eE(t',m) k>l ki,.. kz>1 i=1 i=l+1 v
ki+-- Jrk‘z
L. okl t’ L F (= o 3
_ Z / dt dt/ e—)\te—)\ t p(t t If)(/ dp/p/k 1 (u ( 14 )) + t/k 1>.
E>1 (a,00)? kl(k —1)! 0 th—p

This latter equality will be useful in the mixed case massless—massive.

12.2 Number of crossings in the processes of excursions

In addition to A, n and b, we will also fix some large M > 0 throughout Section 12.2.
Let 2,2 € A and r > 0 be such that D(z,er) C Aand 1 < Mr/|z—2'| < e. In view of Propositions

=z

11.1, 11.3 and 11.9, we will need to study the number of crossings NZC’T for ¢ = E§ ,,EX ./, and

!’
. . . .
EXN,z,q- By property of Poisson point processes, in each cases, we can decompose

p
NS, =) G;
=1

where G;,i > 1, are i.i.d. random variables independent of P with the following distributions: P is a
Poisson random variable with mean

E[P] = 27Taﬂgjzv (Toby (z,er) < 0),  C=E} 4
E[P] = 2maji};’, Vo3 (ToDy (z,er) < 00

~—

]E[P] = 27(&#’[);\]\{2}(7_3]])1\/(2,67") < OO),

and the common distribution of the G;’s is the law of N¥, where p is distributed according to

1{@ hits 6Dy (z, er)}IU/D’ (dp)

ND/ (TB]D)N(Z er) < OO)
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and
LA = = =%
Dy =Dy and w=z, C=E%.

Dy =Dy \ {7} and w=z, C=E% . a (12.17)
Dy =Dy \{z} and w=72, C=EX..a

In what follows, we will refer to the variables P and G; in “Cases 1, 2 and 3” when we mean
that we consider the number of excursions N ZC , in the cases C = 2% ,,E} ./ , and Ef\}?z’a, respectively.
In the upcoming Lemmas 12.6 and 12.7, we will respectively estimate the mean of P and show that
the G;’s can be well approximated by geometric random variable. These lemmas are to be compared
with Lemma 7.4 in the continuum, but we will see that the discrete setting leads to some technical
difficulties.

Lemma 12.6. Let 2 € A and v € {e™",n > 1},7 > N1 be such that D(z,er) C A. We have, in

Case 1, B
171 =o (140 (1)) (gt~ ) (12.18)

Let 2’ € A be such that 1 < Mr/|z — 2'| < e and denote f =1 — \ILOggJGI; so that r = N8, Then, in
Cases 2 and 3,

E[P] = a (1 +0 <|1o;r>> — (11_ Sz llogr (12.19)

Proof of Lemma 12.6. We will show upper bounds on E[P] as stated in the lemma. The matching
lower bounds will follow from the same proof: one simply has to replace maxima by minima below.
Let us first start by showing the following intermediate result: in Case 1,

(log N)?
ElP| < G 12.20
[ ] o a27TGDN (Za Z)GD(ZﬁB”’) (Za Z) yeagll\?‘é’e’f) b (y’ Z)’ ( )

in Case 2,

(log N)?
E[P] <a ma; G (Y, 2 12.21
[ ] - 27TGDN\{z'}(Z’ Z)GD(z,er)(Z7 Z) yE@DN(}i,eT) Dn\{ }(y ) ( )

and in Case 3,

B[P] < 108 N)°

2’ +
= 27TGDN\{Z}(Z’,Z’)4P (Tonn (zer) < T ATopy)  max  Gpu\3(y,2). (12.22)

yedDN (z,er)

We will show (12.20) and we will then explain what needs to be changed in order to have (12.21) and
(12.22). First of all, the total mass of 27177 is given by

1
%(IOgN)z Z GDN\{Z}(wlaw2)

1 Gpy(w1,2)Gpy (2, ws)
= — (I N 2 _ N ’ N \%>
Y e N

where we used (11.4) to obtain the last equality. For w; fixed, Gp, (wy,-) is harmonic outside of w;
which implies that

Z Gpy (w1, w2) = 4Gp, (w1, 2).

Worvz

Since

D Gpy(wi,z) =4(Gpy(z,2) — 1/4),

wi~vz
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we obtain that the total mass of 27177 is equal to

2
oy (log N)? Z Gpy (wy, 2 <Z Gpy (w2 )

wirvz wirvz
16

27T GDN(Z,Z)

_ %(logN)z (4_ Gle(zz)> '

Moreover, ﬂg; normalised by its total mass is the law of a random walk (Xy),, <.+ starting at z,
killed upon returning at z for the first time: T

= L log N2 (16(GDN(z, ) —1/4) — (G (2 2) — 1/4)2>

= inf{t >0: X; = 2,35 € (0,t), X, # 2}

and conditioned to stay in Dy . We wish to compute the probability for such a walk to visit 0Dy (z, er).
By strong Markov property, we have

P? (Tony (s,er) < T3 < Topy)
P> (Tz < TB]DJN)

P* (TBDN(z7er) < 7-z+|7-z+ < TaDN) =

P* (Topy (zer) < 73)
¥ max
Pz (Tz < TEDN) yedDN (z,er)

PY (1, < Topy ) -

We can express these probabilities in terms of Green functions as follows:

1 Gpy(z,2)—1/4
P + < =1- = A 5
(Tz TaIDJN) 4Gp, (2, 2) Gpy (2, 2)
maXycony (z,er) GDy (Y5 2)
ma. PY(r, < = yeoIN
yEBDN(};er) (T TaDN) GDN (Z’ Z)
and 1

P* (Toby (zer) < T3 ) = (12.23)

4GD(z,er)(za Z) .

Overall, we have shown that

IN

~2,2 1
2mapiy, (ToDy (2,er) < 00) %(log N)2 (4 —
(log N)?

= max G 2
27TGDN(Z Z)GD(z er)(z Z) y€aDy (z,er) Dw(y )

1 > mMaXyecoby (z,er) GDN (ya Z)
G(DN (272) 4GD(Z,€T)(Z?Z)(GDN(Z7Z) - 1/4)

which is the desired upper bound (12.20). The proof of (12.21) follows along the exact same lines. To
prove (12.22), the only thing that needs to be changed is that now, instead of (12.23), we have

P? (TBDN(z,er) < T:'; /\TaDN) .

We leave it as it is and directly obtain (12.22).
We now move on to explaining how (12.18) and (12.19) follow from (12.20), (12.21) and (12.22).
We start with (12.18). By Lemma B.1, we have

2rGpy(2,2) =log N+ O(1), 27Gp(s.er)(2,2) = log(Nr) + O(1)
and

) G =1 O(1
ﬁyeaglz\?éﬁr) DN(y?Z) | Ogr|+ ( )

and therefore, in Case 1,

1 log N|log | 1 1 1\
E[P] <a (1 =al1l - :
[ ]_a( +O<10g7’>> log(N7) a{1+o log r |logr| log N
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This concludes the proof of (12.18). We now prove (12.19) in Case 2. Recall that § = 1—|logr|/log N.
Using the expression (11.4) of the Green function in Dy \ {2’} and then Lemma B.1, we see that

Gp,(z,2)? 1
Gy (2)(:12) = Gy (2:2) = G255 = 5 (1= (1= BF) og N + O(1),

and if y € 0Dy (z, er),

B Gpy (ya Z/)GDN (Za Z/)
Gpy (7, 2)

% ((1 -B)—(1- 6)2) logN +0(1) = £|logr| +0(1).

GDN\{Z’}(ya Z) = GDN (yv Z)

Recall also that

1
G er)(22) = 5= log(Nr) + 0(1) = % log N + O(1).

Plugging these three estimates in (12.21) concludes the proof of (12.19) in Case 2.

To conclude the proof of Lemma 12.6, it remains to prove (12.19) in Case 3. We need to work a
bit more and we need to estimate precisely P’ (TaDN(Z’er) < TZJC A TaDN). In view of what we did, in
order to conclude, it is enough to show that

™

/ 1
. ‘) (110 _ 12.24
(TalD)N(z,er) <T, TaDN) ( + <log7‘)> 28log N ( )

The rest of the proof is dedicated to this estimate. We claim that the probability on the left hand side
of (12.24) is at most equal to

1 — P (T; < TaDN)

1 =P (Topy (2,er) < ToDy ) MaXyeab y (z,er) PY (T2 < ToDy)

P (Ta]D)N(Z,@T‘) < TODN) . (12.25)

Indeed, if we denote by
p="P (Toby (zer) < Tov ATopy) and ¢ = P (1} < ToDy (z,er) N TOD ) 5
the strong Markov property shows that
P? (Topy(z.er) < ToDy) =P+ qP% (Tony (z.er) < ToDy )

and also
P? (TZJT < TaDN) = q + pP? (TZJT < ToDx |Tony (z,er) < ’7'27 /\TaDN)
<g+p max PY(1 <Topy).

yedDN (z,er)

Combining the two above estimates yields the claim (12.25). Now, by [LL10, Proposition 6.4.1],

, log |2 — z|/(er) + O(1/logr) 1
P* (r- X =1- =1 :
(Td]DJN(z,e'r) < TaDN) | 10g 7«| + 0(1) +0 logr

Moreover, for all y € Dy (z, er),

GDN(yaz/) 1
Py(TZ/<TaDN):m:1—ﬂ+O @

and

’ ]_ Vs 1
1-P* (1) = = 140 .
(Tz <T8DN) 4Gpy(2',2")  2logN < + (logr))

Plugging those three estimates into (12.25) shows (12.24) (or more precisely, the upper bound, but the
lower bound is similar). This concludes the proof. O

We now turn to the study of the variables G;.
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Lemma 12.7. Let 2 € A and r € {e=",n > 1},7 > N=1*7 be such that D(z,er) C A. In Case 1, we
have for all k > 1,

)) <1 1+0(1/logr) 1 +0(1/1og(Nr))>’“—1 (12.26)

logr

Let 2 € A be such that 1 < Mr/|z — 2| < e and denote B = 1 — 181l 5o that r = N=148. There

log N
exists My > 0 such that if M > M,, then we have in Cases 2 and 3, }g‘or all k > 1,
1 2-B+n?+0(1/logr)\" "
P(G;, > k)= 1+O<>) (1— . 12.27
G20=(1+0(p Allog (1227

Proof. We start with the following claim: let Dy be a finite subset of +Z%, w € D)y \ Dn(z,er) and
let p be distributed according to

l{g) hits DN (z,er)}ﬂqz))’;,u (d@)

ﬁ;’;j (TBDN (z,er) < OO)

Then for all k > 1, P (Njf,, > k) is at most

GD’ (ylaw>
max N7< max PY (79pm < Top., N Tw 12.28
Y1,y2€0DN (2,e7) GD;V (yz,w) y€ODN (z,er) ( OD(zr) oD ) ( )

k—1

8 yeg&%}({z,r) P (TaID)N(Z’er) < Topy, A Tw) )
and at least the same quantity with maxima replaced by minima. We will apply this with D’ and w
given as in (12.17). The proof of this claim is a quick consequence of strong Markov property. Indeed,
the trajectory p, after hitting for the first time ODy(z, er), has the law of a random walk starting
at some vertex of 0Dy (z,er) (with some law that is irrelevant to us), stopped upon reaching w and
conditioned to hit w before exiting D’; and we wish to estimate the probability for such a trajectory
to cross the annulus at least £ — 1 times. We omit the details.

We now explain how the proof of Lemma 12.7 follows from (12.28). Recall that we will apply the
above claim with D), and w given as in (12.17). In all cases, one can show that the ratio of the Green
functions equals 1 4+ O(1/logr). In all cases, we also have that the second probability in (12.28) is
equal to

GD(z er) (y7 Z) >
max PY (7, ser) < Ty) = max 1— .
y€IDN(z,7) ( ODn (zer) Z) y€IDN(z,7) < GD(Z,GT)(Z,Z)

By [Law13, Propositions 1.6.6 and 1.6.7], we deduce that

1+ O0((Nr)h) L 1+ 0O(1/log(Nr))
log(Nr) + O(1) log(NT) ’

max PY (T, <71,)=1
YDy (2,1) ( ODn (z,er) z)

Now, in Case 1, the first probability in (12.28) is equal to

max PY (T < Top
seomax P (Top(s,r) ~)

which is estimated in [LL10, Proposition 6.4.1] and is equal to

~ 14+0(1/logr) 1 1+0(1/logr)
|logr| +O(1) |logr|

This concludes the upper bound (12.26). The lower bound is similar. In Cases 2 and 3, the first
probability in (12.28) is equal to

max PY (T, < ToDn NTor) .
yEODN (2,e7) ( oD (z,r) N z )
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To conclude the proof of (12.27), a small computation shows that it is sufficient to prove that for all

y € 0Dn(z,er),

14+ 0(1/M)+0O(1/logr)
Bllogr]| '

The rest of the proof is dedicated to this estimate. The strategy is very similar to the one we used to
prove (12.24). Let us denote

p:=PY (TaD(z,r) < Topy N Tz/) =1 (1229)

q= PY (Tz’ < Tapy N TGD(Z,T)) .

By the strong Markov property, we have

PY (Topy (2,r) < ToDn ) =P+ qP% (Tony (2,r) < ToDw )
and also
PY (1., < Topy) = q + pP? (Tz/ < TBDN|7—8DN(Z,T) < Ty A TBDN) .

Combining these two equalities yields

PY (Topy (s,r) < ToDw) — PY (120 < Topy ) P (Topy (2,) < ToDN )
1—P¥ (T@DN(Z,,.) < TBDN) Py (Tz/ < TGDN|7—6DN(Z,7-) < Ty /\TBDN)
1—=PY (Tony (2,r) < ToDw)
k %k ok
(PY (T2 < Ty [Tonn (2r) < T ATany ) — PV (7o < Tapn)) P2 (Tony (2.r) < ToDy)
k ok ok

=1-

where the denominator did not change from the first identity to the second one. The probability p
increases with the domain Dy. By including a macroscopic disc centred at z inside Dy (z is in the
bulk of D), we will obtain a lower bound on p and by including Dy in a disc centred at z (D is
bounded) we will obtain an upper bound. Therefore, assume that D = D(z, R) for some R > 0. Now,
by [LL10, Proposition 6.4.1],

_log|2’ —z|/r+ O(1/logr)

P (Topy (2r) < ToDy) =1

log(R/r)
and 1+0(1/logr)
+ ogr
PY -1\ /7o 7
(TaDN(z,r) < TaDN) log(R/r)
Moreover,
G /
PY (Tz’ <T8DN|T8DN(Z,T) < Ty /\TaDN) > min M:1—5+0(1/logN)

)

This shows that the denominator is equal to 5+ O(1/logr). Since for all x € dD(z,r), we can bound

z€dDN(z,7) GDN (Z/, 4

[ C k=fl_C
M~ |ly—21] "~ M’

we have

’Py (Tz/ < TaDN|TaDN(Z,T’) < Ty /\TaDN) — pY (Tzr < TE)DN)‘

’ /
G — 1
< max | Dn (y,z) GDN(m7Z >| < O(l)
s€ODg (2,1) Gpu(2,2) Mlog N

‘We obtain that
~1+0(1/M)+0(1/logr)

Bllogr|
which concludes the proof of (12.29). This finishes the proof of Lemma 12.7. O

=1
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From Lemmas 12.6 and 12.7, we obtain the discrete analogues of Corollaries 7.5 and 7.7 that we
state below. We provide them without proofs since they follow from Lemmas 12.6 and 12.7 in the
same way as the two aforementioned Corollaries in the continuum follow from Lemma 7.4.

Note that in Case 1, although E[P]/a and E[G;] differ from (1 + o(1))|logr| which contrasts the
continuous setting, the product E[P]E[G;] is still equal to a(1 + o(1))|logr|? like in the continuum.

Corollary 12.8. Let u € (0,1/2). There exists C(u) > 0, 7o > 0 and ¢ > 0 (which may depend on
a,b,n, A) such that for all z € A and r = N~'P € (N~147 1),

P (N:N > (a+ (b—a)/2)| logr|2) <re (12.30)
and
E [(1 - KT QTN ] < (1 - e G0N K Cllsr) (12.31)
u
X exp (al — /3(1 +0(1))] logr|)

u

To quickly see why we have T—uh instead of 1 as in Corollary 7.5, we compute

g [ormin ] = axp (BiPJE [erire 1))

= exp ((1 + 0(1))%| log | (ﬁ - 1)) = exp ((1 + o(l))a1 7uuﬂ|log r|)

Corollary 12.9. Let u > 0. There exists M, > 0 such that for all M > M,, for all z,2/ € Dy N A
and r = N~1H8 > N=147 being such that 1 < Mr/|z — 2'| < e, we have

E {exp (-HOUgr'N:;Yﬂ < exp (—a(2 s —2+ Guy (1oL log r|> (12.32)
and
E {exp (k:;ﬂN:Nﬂ < exp <a(2 0 _; (o) logr|> L (12.33)

Finally, we will need a control on the number of excursions in the process Ef\’,a o (11.8). The
following lemma is to be compared with Lemma 7.8.

Lemma 12.10. Let u > 0. There exists M = M(n) large enough, so that if z,2’ € Dy N A and
r= N8>0 are such that 1 < Mr/|z — 2'| < e, then

N (L e
E[ep<_|bgr| zr"““ﬂg ( BD((QW)QM@DN(Z)Z/P) B )

Proof. The proof follows from the definition (11.8) of =% N .o and from Lemma 12.7 in a very similar
way as Lemma 7.8 was a consequence of Lemma 7.4. We omit the details. O

12.3 Proof of Lemma 12.1 and localised KMT coupling

We remind the reader that Lemma 12.1 shows that the restriction to good events comes essentially
for free in an L' sense. To do this, a crucial argument is that a typical (deterministic) point z is
not thick for the discrete loop soups. In the continuum, the corresponding large deviation estimate
followed from Lemma 7.9. The proof of that lemma could probably be adapted with some tedious
but ultimately superficial difficulties coming from the fact that we cannot easily condition on the
maximum modulus of a loop when the space is discrete. However, we find it more instructive to
deduce Lemma 12.1 from a coupling argument between discrete (random walk) loops and continuous
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(Brownian) loops. This coupling is a relatively simple modification of an argument put forward by
Lawler and Trujillo-Ferreras [LTF07], in which discrete random walks loop soups were in fact first
introduced, with however one major difference. Indeed, [LTF07] shows that discrete and continuous
loops are in one-to-one correspondence provided that they are not too small (essentially, of discrete
duration at least N* with x > 2/3, corresponding to loops of mesoscopic diameter N*/2/N = N~2/3
when we scale the lattice so that the mesh size is 1/N). In this correspondence, Lawler and Trujillo-
Ferreras show furthermore that such loops are then not more than log N/N apart from one another
with overwhelming probability, similar to a KMT approximation rate from which the result of [LTF07]
follows.

While the KMT approximation is excellent (we in fact do not need the full power of the logarithmic
KMT rate), the restriction to mesoscopic loops of sufficiently large polynomial diameter is problematic
for us. It would indeed prevent us from getting any meaningful estimate concerning the crossings
of annuli of diameter r < N~2/3. This would place a restriction on the thickness parameter a or
equivalently 7; in order to treat the whole range of values v € (0,2) we need to be able to consider
crossings of annuli of any polynomial diameter » > N~1" with n > 0 arbitrarily small (depending on
v < 2).

On the other hand, it is fairly clear from the proof of [LTF07] that their result is sharp, and that
the coupling described above cannot hold without the restriction x > 2/3; that is, at all scales smaller
than N~2/3 some discrete and continuous loops somewhere will be quite different from one another.
The lemma below shows however that if one is interested in the behaviour of small mesoscopic loops
locally (close to a given point z) then discrete and continuous loops at all polynomial scales may be
coupled to be close to one another. In this sense, Lemma 12.11 below is a localised strengthening of
Theorem 1.1 of [LTF07].

This lemma may be of independent interest, and we state it now. Let EGDN denote the discrete
skeleton of EQDN, which is formed by turning the continuous-time loops of E‘QDN into discrete-time
ones, which consist of the ordered (rooted) sequence of successive vertices visited by each loop. If
pe LU E%N, let T'(p) denote the lifetime of p (which is an integer if p € EQDN)' With a small abuse

of notation, we will consider a path ¢ € E%N as being defined over the entire interval of time [0, T'({)]
via linear interpolation. Note that with our conventions, the time variable T'(¢) is typically of order
N? for a macroscopic discrete random walk loop ¢, while its space variable is of order 1 (i.e., the mesh
size is 1/N and { takes values in (Z/N)?). The following will be applied with 7 of order N~1*7 for
some 71 > 0.

Lemma 12.11. Fiz 0 > 0 and let n > 0. There exists ¢ > 0 (depending on the intensity 6 and on n)
such that the following holds. Let z € D. For all N=1*1 < < diam(D) we can define on the same
probability space LY, and C%N in such a way that :

A ={p € LD T(p) > qomyzs [9(0) — 2| < V/T(p) log N3 }

log N}

1 ~ A ~ r2N2 ~ -
and A, . n = {9 € E%N§T(@) > ﬁQ 19(0) — 2| < T]\(/g)

are in one-to-one correspondence with probability at least 1 — ¢(log N)¢/(rN) > 1 — eN—"/2. Further-
more, if p and p are paired in this correspondence,

‘T(@)
N2

sup [p(sT(p)) = $(sT(P)] < cN~'log N (12.35)

—T(p)| < (5/8)N"%; (12.34)

on an event of probability at least 1 — cN 2.

Proof. We observe that the law of E%N is that of a discrete random walk loop soup (in the sense of
[LTFO07], i.e., in discrete time) with intensity 6. Using the notations from [LTF07], let G, denote the
mass of discrete random walk loops with duration exactly n (rooted at a specific point), and let ¢,
denote the total mass of Brownian loops whose duration falls in the interval [n — 3/8,n + 5/8] starting
from a region of unit area (see top of p. 773 in [LTF07]). These constants are chosen so that the length
of this interval is 1 (needed for coupling) and ¢,, and §,, are as close as possible: that is, they coincide
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not only in their first but also their second order, so that
|Qn - (in| < CTL74.

To do the coupling it is easier to start with a random walk loop soup on the usual (unscaled) lattice
72 and then apply Brownian scaling. That is, the Poisson processes of discrete loops emanating from
each possible x € Z2? and of duration n > (rN)?/(log N)? with [Nz — z|z2 < /n(log N), can then
be put in one-to-one correspondence for each n > (rN)? with a Poisson point processes of continuous
Brownian loops of duration ¢t € [n —3/8,n+5/8] starting in a unit square centered at x. This coupling
fails with a probability at most

SC Z Z |Qn_q~n|

n>r2N2/(log N)2 z€Z?;
lt—Nz|,2<\/nlog N

<C Z n(log N)?n~*

n>(rN)?/(log N)>2
= C(log N)b/(rN)™.

We then apply Brownian scaling to the above Brownian loops (this leaves the Brownian loop soup
invariant in law), and scale the space variable of the discrete random walk loops, which provides the
desired correspondence between A, , and fl,«,z, N-

By definition, the loops in this correspondence satisfy (12.34). We now finish the argument in a
similar manner to [LTF07], coupling the discrete random walk and continuous Brownian loops of a
given duration and starting point in the manner of Corollary 3.3 in [LTF07|, but with exponent n~*
instead of n =3 (as remarked in Corollary 3.2, the exponent 30 was arbitrary, and can be replaced with
any number k with a suitably chosen constant ¢ = ¢ ). Let A be the event that in this coupling,
log(N°)

A={ sup |p(sT(p)) — H(sT(H))] = ck

for some p € A, .,p € Am,N}'
0<s<1 N

Then we get (similar to [LTF07], except we cannot take advantage of the fact that the duration of
loops is at least N2/3, and we use an error bound on the coupling which is O(duration) ™" instead of
O(duration) ~3%):

P(A) < cr’N=* 4+ 2 N2NSNo¢p(——)F
( )—CT +r Ck((logN)z)
< cr’N=* 4 ¢, N (log N)#(r2N?)1 -k

< C(N74 + N11+2n(17k)(logN)2k)

where ¢ depends on k and . If we choose k large enough that 2n(1 — k) + 11 < —4, we obtain
P(A) <eN4,
where ¢ depends on 8 and 7, as desired. O

Lemma 12.12. Fiz uw > 0 and n > 0. There exists ¢ > 0, such that for all r > N~ (and
r < diam(D), say), for all z € Dy,

LQ
P (Nzny\{Z} > ul logr|2> <rc.

o 6

Proof. We first dominate Nf, PANME By Nﬁ ~ N that is, we forget about the restriction that the loops
must not visit z itself. We then apply the coupling of Lemma 12.11. Note that to each crossing
of A(z,r,er) by a discrete loop must correspond a crossing of the slightly smaller annulus A’ =
A(z,1.01r,0.99er) by a continuous Brownian loop to which it is paired; let fo’, denote the number of
crossing of the annulus A’ by the Brownian loop soup Lp.

We now show that with overwhelming probability all possible loops that cross the annulus A(z,r, er)
are accounted for in the one-to-one correspondence of Lemma 12.11. To see this, observe that in order
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for a loop ¢ to cross the annulus A(z,r, er) and not to be accounted for in the set AZW’N, the loop @
must either be extremely short or start far away from z: more precisely, its duration T'(¢) should be
less than

T(p) < (12.36)

= (10gN)2 )

or its starting point should be at a distance at least

16(0) — 2| > 1/ 5 (log ) (12.37)

from z. Either possibility is of course very unlikely since it requires the loop to travel a great distance
in a short span of time. Let B; (resp. B) denote the set of (discrete) loops which verify (12.36) (resp.
(12.37)) and cross the annulus A(z,r, er).

Let us show first E(Bl) decays faster than any polynomial. Fix n < 72N?/(log N)? and a starting
point x. For a discrete random walk loop ¢ of duration T'(¢) = n and started at x, the probability to
cross an annulus of width r in time n is bounded by

Cn exp(—c#) < Cnexp(—c(log N)?),

for some universal constants ¢, C' > 0. The exponential term above is obtained from elementary large
deviation estimates (e.g. Hoeffding inequality) for discrete unconditioned random walk via a maximal
inequality, and the factor n in front accounts for the conditioning to return to the starting point in
time n. Summing over n < r2N? and multiplying by the intensity of loops of duration n (which is at
most polynomial) we see that E(Bl) < N%exp(—c(log N)?) and so decays faster than any polynomial.

Let us turn to Bs, which we can handle similarly. Fix n > 72N?/(log N)?, and a starting point
x € DN(Z/N)? such that |[xr—z| > y/nlog N/N (note that this means n < diam(D)(N/log N)? < CN2.
In order for a random walk loop ¢ starting from z and of duration n to cross A, it must touch A and
so travel a distance at least /nlog N/(2N) in time n. This is also bounded by

Cn exp(—cn(l%w) < Cnexp(—c(log N)?).

Summing again over all possible values of z and n < CN?, we get E(By) < N exp(—c(log N)?) and
so also decays faster than any polynomial.

Thus, except on an event of probability at most CN~"/2, Nﬁf”“” < ij?, We can now use
Lemma 7.9 to bound the probability that the continuous loop soup has many crbssing of the annulus
A" = A(z,1.017,0.99er). Since the right hand side of the bound in Lemma 7.9 is of the desired form

(in fact, is more precise), we deduce
l:(i
P (Nz,f)N\{Z} > logr|2> < CON™2 4y,

for some ¢ > 0. Since 7 > N~177_ the right hand side above is at most r¢ for some (possibly different)
value of ¢ (depending on 7 and u only). O

We now have all the ingredients we need to prove Lemma 12.1.

Proof of Lemma 12.1. By Proposition 11.1, we have
B (|12 - M ()] =B | [ 20yl )]
A

log N < e pft
- T'(A)N? DZ:ﬂAqN(Z)O/a dp ](ifp—a CRn(z, Dn)”
z€DnN

cé’ =z
x P <E|7" e{e ", n>1}nN (N*H”,ro),Nz,fN\{Z}U N> b logr|2>

Let z € Dy N A. By Lemma B.1, we can bound ¢y (z) < C and CRy(z,Dy) < C for some constant
C > 0. We divide the integral over p € (a,00) into two parts corresponding to the integrals from a
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to a+ (b—a)/2 and from a + (b — a)/2 to infinity respectively. To bound the latter contribution, we
simply bound the probability in the integrand by 1 and observe that

o cr pi—1 C
dp < — .
at(b—a)/2 NP N®=a)/2]og N

To bound the contribution of the integral for p € (a,a + (b — a)/2), we notice that the probability in
the integrand can be bounded by its value at p = a + (b — a)/2. Because

/a+(b—a)/2 4 cr p9—1 C
p < )
@ Np—a log N

this leads to

at(b—a)/2 p 0—1 0 -
/ dp CNpp_a P <37“ € fe"n > 1} N (N1, ), No PV =50 S ) logr|2>

L@ =z
< logNIP (37“ e{e™,n>1}nN (N_1+”,7“0),NZ75N\{Z}U Noetb=a)/2 o ) logr2>
A union bound, Corollary 12.8 and Lemma 12.12 show that the above probability is bounded by Cr§
for some C, ¢ > 0. This concludes the proof of (12.3). The proof of (12.4) is an interpolation of the
proofs of (12.3) and Lemma 7.1. Note that we use (12.31) instead of (12.30). We leave the details to
the reader. O

12.4 Proof of Lemma 12.2 (truncated L? bound)

Proof of Lemma 12.2. Let z,2' € AN Dy. Assume for now that |z — 2’| < N~1*7. By forgetting the
good events and the requirement that z’ is a-thick, we can simply bound

Y o (log N)>~*/ (log N)1—¢
B [MY (HMY ()] < S8 P (e € Tw(a) < 52—
Since |z — 2’| < N'*=", we can further bound
(log N)' "N < log(N)N® < — log [ — 1
- “1-n |z — 2| ) |z — 2/|o/(=m)"

Since 7 is smaller than 1 — a/2, a/(1 — 1) is smaller than 2 which guarantees that

1 1 ,
Joabs (|zzf|) o — o 4247 < 00

The remaining of the proof consists in controlling the contribution when |z — 2/| > N=1T7. We
will denote |z — 2’| = N~1*# and f is therefore at least . Let M > 0 be a large parameter. Let
re{e ™ n>1}N(0,ry) be such that

|z — 2| |z — 2|

M

We choose M large enough to ensure that r < rg, but it will be also important to take M large enough
to ensure that we can use Corollary 12.9 and Lemma 12.10. For any collection C of discrete loops,
define

<r<e

F(C) = l{NZCYr<b|10gr|2}'
By only keeping the requirement on the number of crossings of Dy (z,er) \ Dy(z,7), we can bound

E Miv({z})MiV({Z’})} <E[F(LD )M ({2HMI{ZD)] -

As in the proof of Lemma 7.2, we will bound F' in the spirit of an exponential Markov inequality:

define 1
Fi(C):=7""exp | — NE .
Togr] >

88



We have F' < F;. We use Proposition 11.9 and the notations therein to bound the expectation of
Fy (L% )MEY ({z})ME ({2'}). We end up with the following expectation to bound:

]E|:F1(£DN\{ZZ/}U{HN@ a’/\“‘Nz al/\“‘Nza i= 1U{‘_"NZ a>Z>1}U{‘—‘de’7l21}>:|' (1238)

This expectation does not increase when one forgets E%N\ (2,27} above and we bound it by

1 :z,z'v ,
717 N,a;,a
E — N, i
H l( [log 7] )]

l

1 =, =X, .
xE |E —-_— g e E Nzrz“’ it 2> 1
T\ \ & 5 e

X (z ¢ 2")

where in the above, we wrote informally that the last line corresponds to the second line with the
processes of excursions around z replaced by the corresponding processes of excursions around z’. By
superposition property of Poisson point processes and because ) .., d@; = p and 22:1 a; = p,

l
=z U =z (i) =z
=N aa’i ‘_‘NVZI;CM - ‘_lNZ 7P+P
i=1 i>1

and a similar result for z’. By Corollary 12.9 and by taking M large enough (depending on 7)), the
expectation in the second line is bounded by

p+p
exp (— ORI (1+0(1))]log r|>

The expectation in the third line can be bounded by the same quantity with p+p replaced by p’ +p’
(see (12.33)). Lemma 12.10 allows us to bound the expectation in the first line by

; B ((277)2612»@2@131\, (2,2")2(1 + o(1)) (2252;2’72)2>
1-1;[1 B ((QW)QaiagéDN(z,z’)Q) .

To wrap things up, we have obtained that (12.38) is at most

_ptpt+p R
(2-8)(2+n?)

B ((QW)QGiG/iéDN (2,2')2(1 + o(1)) (22£¥72)2> (

l
i B ((2n)20!Gy (2, /)2) (1-+ (1) log|)

Plugging this into Proposition 11.9 and using the function H defined in (12.8), we obtain that

4N,z (Z)GQN,Z(Z/)G(IOg N)2

E MY ({HMY ()] < e IIN TR, (O, )

N4-2aT(f)2
where )
A=log N —log CRy,./ (2, Dn) —logco + m(l + o(1))|log 7|,
N =log N —log CRy,.(2', Dy) —logco + m(l +o(1))|log |,
and b2
v=(27)Gpy(2,2)*(1 + o(1)) (2 ;f:};n )
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Since Jy(z,2') (11.10) is nonnegative and gy (') (11.9) is bounded from above (this follows from
(11.4) and Lemma B.1), we further bound

E (MY ({zHMY({'})] < CNT2(log N)*r " Ha (A, X', v) (12.39)

and it remains to estimate Hq (X, X, v). We have
__ (logN)®
27TGDN\{Z/}(Z,Z) (2—6)(24—7’]2)

1
= 25 log N 4+ (1+0(1))

A

(14 0(1))|logr|

m| logr| = (1 +o(1))N

and
2—B+7n°
(2+n?)B(2-8)

We see that A — /v is always of order log N. In particular, A > /v + 1 so that we can use (12.13) and
bound

Vi = (1+0(1))

|log r|.

1 2Vi-A-X)a c po(1) (2v/5-A—N)a_
A= Vo)V =) ~ (log V)2

Coming back to (12.39), we have obtained that

Ho(A, N, 0) < Col/4=0/2

E [V (DA ()] < N4 exp (a(2/o = A — X + 21og V)

An elementary computation shows that

B 2
ff)\+logN:(1+o(1))B(21_ﬁ> <2 ;f;;" (15)) |log 7|
2
<(1+ o<1>>m|1ogr| < (1+ o(1))n| log |

where we use the fact that 5 € [n,1] to obtain the last inequality. By choosing n and b — a small
enough, we can therefore ensure that

bllogr| + a(2y/v — A — X +2log N) < c|log |
for some constant ¢ smaller than 2. To conclude, we have proven that
E[MY({(2DMY ()] < Oz - 2

for some ¢ < 2. This provides an integrable domination as stated in (12.5).

The proof of (12.6) is very similar. Note that we use (12.14) instead of (12.13) and, as in the proof
of Lemma 7.2 (specifically (7.20)), we use FKG-inequality for Poisson point processes (see [Jan84,
Lemma 2.1]) in order to decouple, on the one hand, the killing associated to the mass and, on the
other hand, the negative exponential of the number of crossings. We do not give more details. O

12.5 Proof of Lemma 12.3 (convergence)

In this section, we assume that the parameter b, used in the definitions (12.1) and (12.2) of the good
events, is close enough to a so that the conclusions of Lemma 12.2 hold. By developing the product,
we have

~ 9 ~ 2
E (Mf(A)—agwMﬁvK(A))

_ [ N [w(z) (w<z/)_ ;

AxA

* /AxA N'E [(lc);;)e/\;liw{(z) <(log2i()9M‘]1V7K<z/) - /\;lflv(z’)ﬂ dzd?.
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Lemma 12.2 provides the domination we need in order to apply dominated convergence theorem and
it only remains to show that for fized distinct points z,z’ € A,

N - 0
s N2 [0 () - ) [ <0 2
and
- 20
LN CN 4 s N,K N,K N
e R (s ) S

We emphasise that, since z and 2’ are fixed points of the continuous set A, they are at a macroscopic
distance from each other. We will sketch the proof of (12.40). Since the proof of (12.41) is very similar,
we will omit it. Let r; > 0 be much smaller than |z — 2’| V 79 and consider the good events Gj (z)
and Gy ¢ (2) defined in the same way as Gn(z) and Gy i (2) (see (12.1) and (12.2)) except that the
restriction on the number of crossings of annuli is only on radii » € (r1,70) instead of (N~1F7 rq).
The advantage of the event Gi (z), compared to Gy (z), is that it is a macroscopic event which is well
suited to study asymptotics as the mesh size goes to zero (see (12.46)). Since z and 2’ are at a distance
much larger than r;, one can show that

P, N* SN (N YN (L
l}g&f 1}\I’Ti>lélof WE [./\/la ()M (2 )}
4

> —oro(1) + lim infliminf =g

E [Miv(Z)MiV’K(Z’)lgw)mg;v,K(z')}
where 0,, 0(1) = 0 as 1 — 0 and may depend on z,2’,a,b,n,ro. This estimate is in the same spirit
as Lemma 12.1 and we omit the details. We can therefore bound the left hand side of (12.40) by

. . 20
Or1—>0(1) + hII(n—?llcph]{/n_?llop NE M ( )1g/ (2) (M ( )1gN(z/) (logK) MN K( /)1g}\]:K(z/)>:| .
(12.42)

The rest of the proof is dedicated to showing that the second term above vanishes. Letting ;1 — 0 will
conclude the proof of (12.40).

Proposition 11.9 gives an exact expression for the expectation in (12.42). We use the notations
therein that we recall for the reader’s convenience. The loops visiting z are divided into two collections
of loops: the ones that also visit 2’ and the ones that do not. I > 0 corresponds to the number of
loops in the first collections and a;, i = 1...1, are the thicknesses at z of each individual loop in that
collection. a;, ¢ > 1, are the thicknesses at z of the loops which visit z but not z’. Finally, p = Zé:r a;
and p =) ,., d; are the overall thicknesses of the two above sets of loops. Similar notations are used
for the point z’. We define En(a;,al,i=1...1,p,p') the event that for all r € {e",n > 1} N (1, ro)

and w € {z,2'}, the number N¢ . of discrete crossings in the collection

C _EDN\{ZZ}U{:’JZ\}ZQ a’/\“‘Nz al/\“‘Nza}l 1. lU{“‘Nz a1}2>1U{‘-‘Nzal }’L>1

is at most b(logr)2. We also define px(a;,al,i =1...1,p,7") the probability of the event En(a;,al,i =
1...1,p,0"). Note that, by superposition property of Poisson point processes, this probability only
depends on the @; via their sum > a; = p. When [ = 0, this probability degenerates to the probabil-
ity py(p, #/,0) where the restriction concerns the number of crossings of E%N\{z oy U{EN 2 q bz U

Ef\;,z,ay}izr The notation py(p, p',0) is justified by the fact that it corresponds to the case k = 0
of the probability piy (5, 0’, k) that will be defined in (12.44) below. By Proposition 11.9, the expec-
tation E [Mév(z)lgjv(z)M(]lV(Z/)lg;\](z/)} is then equal to (11.12) where the expectation of the function
F has to be replaced by py(a;,al,i =1...1,p,p). In the display below, we develop this labt proba-
bility according to the number 2k; of trajectories that were used to form the i-th loop Z3° aal- BY

superposition of Poisson point processes and by definition of = N o (see (11.8)), we can rewrite

91



l 1 - R Tl
H Z (27TGDN(Z’Z)) Z HWPN(P+P>P + 7', k)

i—1 B ((QTF)QC%G;GDN(Z,Z’)Q) k>l K,k >1 =1 %
ki+---+ki=k
(12.43)
where
pn(p+p.p +0 k)= IP’(V?“ e{e ™™ n>1}N(r1,ro),Vw € {z,2'}, (12.44)

2k ’
LY el , =2 _ =2 _
NwﬁzN\{ 2"} + E Ng:, +wa¥,,z’,ﬁ+p +Nw71¥),z,p’+p’ < b(logr)Q)
i=1

and where p;,i = 1...2k, are i.i.d. trajectories with common law ﬂgi/@DN (2,2'). When one plugs
this in (11.12), the products of the functions B cancel out and, by using the notations A, A’ and v as
in (12.10), we deduce that

an . (2)%qn (7)) % (log N)? L 2%
N'E {Miv(z)lg;v(z)MaN(Z')lggv(z/)} = NOE e 0N (=) N2 (12.45)

= —Ap+p)z0—1 1=t =N (o +P) (5\0—1
X /MDO dpdp e p /p,)bo dp'dp'e ()
p+p=>a o +p'>a
o' I k1t ~ ~/ l (aia;)ki71
DD D SN R VAT AT I DI | b e
1>1 a'eE(p' ) k>l ki, k>1 i=1

plus the following term which corresponds to the case [ = 0:

0 0 2
qn,» (2)%qn 2(2')° (log N) e—eJN(z,z’)Nza/ e—)\t—)\’t’pljv(t7t/70)(tt/)9—1dtdt/.
F(0)2 (a,00)2

By Lemma 11.10, the multiplicative factor in front of the first integral in (12.45) is asymptotic to
(log N)2N2eT'(9)~2. (12.15) gives a simple expression for the remaining part of the right hand side of
(12.45) and

N'E [Mflv(z)lg;v(z)MiV(Z/)lg}v(z/)]
(log N)2N?a o

2 k
TO2 & 0wk

/( 2 e MY (R (1) TR e
a,00)

We now argue that for any fixed k > 0, ¢,¢' > a,
p;V(tatlvk) N—>p/(t7t/7k) =P (V’I‘ € {einvn Z 1} N (T17T0)7vw € {2721}7]\75) r S b(logr)2)
—00 ’
(12.46)

where

C:=LH U {pitiz1.on U{Z;, 20}
with @;,¢ = 1...2k, i.i.d. trajectories distributed according to ,u’;“j’zl/GD (z,7') and the above collec-
tions of trajectories are all independent. This follows from 1) the convergence of ﬂg}z\; /Gpy(2,7)
towards ugz//GD(z, z') established in Proposition 11.12, 2) the convergence of E%N\{Z’Z,} towards L%
[LTF07], and 3) the convergence of [Lgi]\{z,} towards 7 stated in Corollary 11.15. It is then a simple

verification that the integral concentrates around ¢ = ¢ = a as N — oo (recall that A and ) are
defined in (12.10) and go to infinity) and

1 (log N)2 _ / vk g20+2k—2
4 N N a, —a(A+A
N*E [Ma (2)1gy () Mo (Z')lgmz')] MOE oy Ve )kzmwp’(a,a,k) (12.47)
(00)2(1 u " (27TGD(Z, Z/))2ka29+2k—2
~ T (0 CR(z,D)*CR(Z, D) Z o P (a,a, k).

k>0
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For the mixed case, the situation is slightly different. Because of the killing, the expectation of
MY (2)1gr () MY (2')1gr (=) is expressed in terms of (see Proposition 11.9)

l m
_KT(E>" | AE2 o as AEZ ca! ) —KT( B a,)
E [| | (1 —e Noagaf TN e TN, ) [] <1 - a > 1EN<ai,ag,i—1...l,ﬁ,ﬁ'>] :

i=1 i=l+1

Since the points z and 2’ are macroscopically far apart, the durations of the loops Ef\}i;“a,_, i=1...1,
are macroscopic and one can show that the first product is very close to 1. With an aréument very
similar to what was done in Corollary 7.5, one can show that the expectation of the second product
times the indicator function is well approximated by

m

I (1)

i=141
m

= H (1 - e_a;CN’KYZ(Z/)) pN(aia a;vi =1... lvp~7 ﬁl)
i=[+1

E ]P)(EN(G,“CL;,’LZIZ,[),[)/))

where Cn k. (2') is defined in (11.6). Using (11.13) together with (12.43), we obtain that the expec-
tation N*E [MéV(Z)lg}\](z)Mév’K(Z/)lgév K(Z,)} has the same asymptotics as

(4 2
qN,z'<Z) (log N) e—e(JN,K‘z(Zl)-‘rJN,K(Z,Z/))N2a

NG
oo m
x dpdp e MeHRp0=1 [ qpf e L dada’

pp>0 CPPE P pe (m— D! | acBD
p+p>a “ 1T<nzz<1m a'€E(p',m)
l m ’ ’
) ( a; -1 1 — ¢~ %CONK,2(2)

> e+ k) D Hk,(k = 11 =

k>l ki, ky>1 i=1 0\ i=l+1 i

ki4-+ki=k
1 — ¢~ aCnx,2(2)
/d”"lAp/ dp'e ™ ply(5,0,0) Y ,/ daH c .

m>1 m a’€E(p',m) =1

The second term of the sum in parenthesis corresponds to the case [ = 0. The front factor is asymptotic
to I'(0) ~!(log N)?>N??, whereas the first term in parenthesis can be simplified thanks to (12.16) and
the second term in parenthesis can be directly expressed in terms of the function F (see (3.1)). Overall,

we obtain that N*E [Mfl\'(z)19&(2)./\/15’[((,2’)19;\].}((,)} has the same asymptotics as

(logN 2a e M —At t9+k !
>1
“ (/ " 1F(Cn k() = p')) +t’k’1)
0 t—=p

5 /t/
[ e e ) F (Onsca(2) >>_
(a,00)?

By dominated convergence theorem, Lemma 3.3 and the convergence (11.16) of Cn k .(2') towards
Ck (%), we have

2¢ v k-1 F(Cn g2 (2) (' = p')) 1 g k—1
li li d / / z — d / / t ! 9—1.
Koo Noyso (log K)? / t—p N /0 g (E-p)

(k=1)! k461

The right hand side term can be computed thanks to (C.3) and is equal to OS] . From this

and the asymptotic behaviour (12.46) of p/y(¢,t', k), one can easily deduce that the asymptotics of
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20 (log K)~ NE [Mflv(z)lg;v(z)MflV’K(z’)lggv K(Z/)} is given by
ok g 20+2k—2
2 19(k
INCIEEDYY = klok)
(CO)Za (27TGD(Z’Z/))2ka20+2k72 ,

CR(z, D)*CR(Z', D)" Z G p'(a,a, k).
k>0 :

1 (1 2 /
( 0og N) N2ae—a(A+A ) Z pl(a’ a, k)

Since we obtain the same limit as in (12.47), it concludes the proof of (12.40). The proof of (12.41)
follows from a very similar line of argument. This concludes the proof of Lemma 12.3.

13 Scaling limit of massive random walk loop soup thick points

The goal of this section is to prove Proposition 10.1. As already alluded to, it relies heavily on an
analogous statement from [Jeg19] about thick points of finitely many random walk trajectories running
from internal to boundary points that we state now.

Let (D;,xi,2;),i € I, be a finite collection of bounded simply connected domains D; C C with
internal points z; € D; and boundary points z; € dD;. Assume that the boundary points z; are
pairwise distinct (i # j = z; # z;) and that for all ¢ € I, the boundary of D, is locally analytic near
z; (below we will apply this result to boundaries that are locally flat at z;). Let p;, i € I, be independent
Brownian trajectories that start at x; and are conditioned to exit D; at z;, i.e. gp; ~ ﬂ“gi’zi/HDi (i, 24);
see (2.5). Let D; y be a discrete approximation of D; by a portion of the square lattice with mesh
size 1/N as in (1.9) (take z; as a reference point instead of the origin) and let z; y € D; ny and
zi N € 0D; n be such that x; v — 2; and z; v — 2 as N — oo. Let p; n,i € I, be independent
random walk trajectories starting at x; xy and conditioned to exit D; y at z; v.

For all subset J of the set of indices I, let Myi€793N be the measure supported on a-thick points
coming from the interaction of all the trajectories p; n,j € J: for all Borel set A C C,

o log N
ngeJKJJJV (A) = N2—a Z l{meA}l{ZjEJfz(sﬂj,N)Zﬁ(logN)2}1{vj6']’€w(pj’N)>o}. (131)

JieﬂngjYN

Recall also that M5’ denotes the Brownian chaos associated to ©;,7 € J, where each trajectory is
required to contribute to the thickness; see Section 2.3. Of course, when NjecsD; = @, these measures
degenerate to zero. [Jegl9] shows that:

Theorem 13.1 (Theorem 5.1 of [Jegl9]). As N — oo, the joint convergence

(MO€I9iN T C T, 05 nyi € ) = (cBMDY€9 J C T, ;i € 1)

holds in distribution where the topology associated to MGEIOIN s the topology of vague convergence

on NjesD; and the topology associated to p; n is the one induced by dpatns (2.16).

To use this result, we will first need to describe a decomposition of the loop soup similar to the one
described in Lemma 4.2 that holds in the discrete setting.

13.1 Decomposition of random walk loop soup

Let Dy C Z% be such that both Dy and Z%; \ Dy are non-empty. Denote
mi(Dy) :=inf{Im(z): z € Dy} and Mi(Dy) :=sup{Im(z):z € Dy}.

Consider the random walk loop soup LY, . For p € £}, , we will use the same notations mi(p), Mi(p)
(4.1) and h(gp) (4.2) as in the continuum case. Unlike in the continuum case, a loop p € LY, ~can
travel several times back and forth between R + ¢ mi(p) and R + i Mi(p). So we will restrict to loops
p € EQDN that do this only once in each direction. We will root such a loop at the first time (for the
circular order) it visits R + ¢ mi(p) after having visited R + ¢ Mi(gp) (see Figure 1 for an illustration in
the continuum setting). This time is well defined provided p travels only once back and forth between
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R 4 ¢mi(p) and R + ¢ Mi(p), and after rerooting it is set to 0. We will denote by z, the position of p
at this time, as in the continuum case. We have that z; € Zx +imi(p). Note however that in discrete
o may also visit other points in Zy + i mi(p). Given £ > 0, we will denote

L)y ={peLh, h(p)>cand (13.2)
p travels only once back and forth between R + i mi(p) and R + i(mi(p) + [¢]n)},

where [e]n := N7![Ne]. Note that in discrete we add this condition of a single round trip between
R + imi(p) and R + 4i(mi(p) + [¢]n). Recall that we root the loops p € £, _ at z,. Denote

Dn,e
7e(p) == nf{t € [0, T(p)] : Im(p(t)) = mi(p) + [e]n}

for p € EQDN@. As in the continuum, we decompose the loop into two parts

Pe1 = (p(t))o<i<r. and e o= (@(t))rggth(p)- (13.3)
Denote z := p(7:). Recall the notations H, and S, ,+ for upper half planes and horizontal strips (4.3).

Lemma 13.2. #EQDN is a Poisson random variable with mean given by

,€

1 1 1
N XN Xy )
mi(Dn)<m<Mi(Dn) z1€EDNN(R+im) z220€ DNN(R+i(mi+[e]n))

(NHDNHSM_N_l)deN (21,22))Hpyri,, (22, 21),

where Hpyns (z1,22) and Hpynm,, (22,21) are the discrete Poisson kernels (2.21) in

m—N—1 m+Te]n
DN NSy N-1 m[e]n s Tespectively Dy NH,,. Conditionally on #E%N’E, the loops in ﬁ%N are i.1.d.

€
Moreover, for each g € E%Nﬁ, the joint law of (21, ze, Pe.1, Pe,2) can be described as follows:

1. Conditionally on (z1, 2:), pe1 and g2 are two independent trajectories distributed according to

Z1,2¢ Ze %
NDLNmsmfN,lymHE]N/HDNmsm,Nq,MMN(ZLZE) and pp Ay [Hpyom,, (26,21)  (13.4)
respectively, where pp. and 35 Ay - follow the definition (2.20).

m—N~—1 m+[e]n
2. The joint law of (21, z:) is given by: for all z1,22 € Dy, P((z1,2:) = (21, 22)) is equal to

1
E1{z1,zgeDN,Im(22)=Im(z1)+[5]N} (NHDNmsmfN,l’mHﬂN (21,22))Hpyrm,, (22, 21), (13.5)

with m = Im(z1).

Proof. This is equivalent to saying that the concatenation p; A o under the measure

1 21,2 22,2
] > > BB ey, (AOVHE e, (d2) (13.6)
mi(Dy)<m<Mi(Dy) z1€DNN(R+im)
z22€ DNN(R+i(mi+[e]n))

corresponds, up to rerooting of loops, to the measure on loops MIE,(;VP restricted to the loops v with

h(p) > € and that travel only once back and forth between R + i mi(p) and R + i(mi(p) + [¢]n). For
this, it is enough to check that the weights of the discrete skeletons of unrooted loops under this two
measures coincide. Indeed, in both cases, the holding times conditionally on the discrete skeletons are
i.i.d. exponential r.v.s with mean ﬁ. Given k > 2, k even, the weight of a discrete-time nearest
neighbour rooted loop of length k in Dy under MIDO‘;VP is £47%. So the weight of the corresponding
discrete-time unrooted loop is 4%, provided the loop is aperiodic, that is to say its smallest period is
k. This is simply because then the unrooted loop corresponds to k different rooted loops. Moreover, a
loop that travels only once back and forth between R + ¢ mi(p) and R+ #(mi(p) + [¢]n) is necessarily
aperiodic. Further, the weight of a possible discrete-time path with k; jumps under ug;\fﬁ] S Nt 1

is N4=% . Similarly, the weight of a possible discrete-time path with ky jumps under HZS,’VZ%HM is

N4~F2_ Thus, the weight of the couple is N24~(kF1+k2) and ky + ks is the length of the loop created
by concatenation. The N? is compensated by the N2 factor in (13.6). So the weights of the discrete
skeletons coincide. O
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We conclude this section with a result about the convergence of the quantities appearing in Lemma
13.2 towards the quantities appearing in Lemma 4.2. In the following result, we assume that D is a
bounded simply connected domain and that (Dy)y is the associated discrete approximations as in
(1.9).

Lemma 13.3. 1. For alln > 0, we have
Jim P(#LD, . =n) =P (#Lp. =n). (13.7)
2. Let (21V,2N) and (21, 2c) be distributed according to the laws (13.5) and (4.7), respectively. Then

d
(2, 20) = (21, 2). (13.8)

3. Let oV and @ be distributed according to the laws described in Lemmas 13.2 and 4.2, respectively.
Then

T(p") =2 T(p). (13.9)
hade el

Proof. (13.7) and (13.8) follow from Lemmas 13.2 and 4.2 and from the convergence of the discrete
Poisson kernel towards its continuum analogue Alternatively, these two claims follow from the con-
vergence in distribution of Ee Dy towards E . for the topology induced by dg (2.17). This latter fact
is a direct consequence of the couphng of [LTFO?] between random walk loop soup and Brownian loop
soup. We omit the details. To prove (13.9), one only needs to notice that the law of T'(p") is given by
the law of the total duration of E%N’E conditioned on #L’%N’E = 1. The same holds for the Brownian
loop soup. Therefore, (13.9) follows from the joint convergence of #ﬁ%ms and the total duration of

LY, . which is again a consequence of [LTF07]. O

13.2 Proof of Proposition 10.1

We now have all the ingredients for the proof of Proposition 10.1.

Proof of Proposition 10.1. We will focus on the convergence of the measure MY towards its con-
tinuum analogue MX. Indeed, since Theorem 13.1 also takes care of the joint convergence of the
trajectories, it is not difficult to extend our proof to the joint convergence of the measure MK
together with the killed loops £9, (K).

Let ¢ > 0. We first restrict £} + (K) to the loops with height larger than e: recall the definition
(13.2) of 59 . and recall that loops p in CDN . are naturally split into two trajectories p. 1 and @ 2
(see (13.3)). The first part p.; becomes neghglble as € = 0. Therefore, we will not loose much by
only looking at the second part and we define the following measure: for all Borel set A,

_ logN

N,K,E .

MEPEE(A) = 150 D Tsempl S
peEL E

2
2€DnN (K)f (pe, 2)> (IOgN) }

This definition is very close to the one without the restriction on the height; see (10.1) and (10.2). In
(4.8) we define an analogous measure M¢ in the continuum. The main part of the proof is to show
that for any nondecreasing bounded continuous function g : [0, 00) — R and any nonnegative bounded
continuous function f : D — [0, 00),

tim il E [ (M9, £))] > E [g (¢§ (ME*, 1))]. (13.10)

Let us assume that (13.10) holds and let us explain how Proposition 10.1 follows. Firstly, Corollary
11.4 shows that

sup E [M2""(D)] < oo

N>1
implying tightness of (Mflv KON > 1) for the topology of weak convergence (see e.g. [Kal73, Lemma
1.2] for an analogous statement concerning the topology of vague convergence). Let MSX be any
subsequential limit. By first extracting a subsequence, we can assume without loss of generality
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that (MflV’K,N > 1) converges in distribution towards M2%. To conclude, we need to show that

MK @ A ME . To this end, it is enough to show that, for any nonnegative bounded continuous
function f : D — [0,00), (M5 f) and c§ (ME, f) have the same distribution (see e.g. [Kal73,
Lemma 1.1] for a similar statement for the topology of vague convergence). Let f be such a function,
g : [0,00) — R be a bounded nondecreasing function and let ¢ > 0. By first using the convergence
in distribution of <MflV’K, f> towards <M§°’K,f>, then by using monotonicity of g and finally by
exploiting (13.10), we have

Bl (M, £0)] = Tim E[g (Y5, )] > minfE [ (M5, 1))] > B [o (6 (ME, 1))
By definition of MX (see Definition 4.3), (M5, f) converges a.s. to (M, f) as ¢ — 0. Hence

E g (M) 2 E g (5 (M )] -

Since this is valid for all nondecreasing bounded continuous function g, we deduce that <MZO’K f >
stochastically dominates c§ <Mff f > Because their expectations agree (Corollary 11.4 and Proposition
3.1), they must have the same distribution. This shows the expected convergence MY-K — ca ME.

Next, we move on to the proof of (13.10). By conditioning on the number of loops in £0DN,5 and
by Fatou’s lemma, we have

HpinfE o (M2 1))) 2 3 Hpnint® (425, . =) B g (M2 1)) e, . =

The claim (13.7) in Lemma 13.3 shows that for all n > 0, P (#E%N’E = n) converges as N — oo to its
analogue in the continuum and it remains to show that

lim it E g (MY, 1)) |45, = n] > E g (6§ (M, ) 45, =n]. (1311
Fix n > 1. Let p"N,i = 1...n, be i.id. loops so that £, _, conditioned on #L% _ = n, has the
same distribution as {p>?, ..., ™"} (see Lemma 13.2). We split these loops into two pieces pzjlv and

ng as in (13.3). Let U;,i = 1...n, be i.i.d. uniform random variables on [0, 1] that are independent
of the loops above. By checking which loops are killed (in the next display, I corresponds to the set of
indices of killed loops), we can rewrite the expectation on the left hand side of (13.11) as

Z HE |:6—KT(@i’N):| E [g (< 52112\]72‘61, >> 1{Vi€[,U¢<1€KT(K’i’N>}:|

IC{1,....n}igI

"\ (n k(LN R LN LB
= Z (k-)]E [6 KT(p )] E |:g << Z’ ,2 Pe,2 7f>> 1{Vi_1...k,U1,<l—eKT(@'i’N>}:| (1312)
k=0

with the convention that, when k& = 0, the last expectation equals 1 and with, for all k =1...n,

RN L __log N
a (A) = Nz Z 1{z;§=1ez(@g?)z%(logmz}’ A Borel set. (13.13)
zeDNNA ’

The measure above differs from the measures introduced in (13.1) since it does not require all the
trajectories to visit the point z. By looking at the subset I C {1,...,k} of loops that actually
contribute to the thickness, we see that they are related by

AT CA _ Z Mmemi’g (13.14)

Ic{1,...,k}
Let us come back to the analysis of the asymptotics of (13.12). By (13.9) we already have the
convergence of E {e’KT(Pl‘N) towards E [e*KT(W)] where p is distributed according to (4.6). In

Lemma 13.4 below, we show that a consequence of Theorem 13.1 is that the liminf of the second
expectation in (13.12) is at least

CIIN
E [g <Cg< a2, 2, ,f>> I{Vizl...k,Ui<1—e*KT(Pi)} .
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above. More precisely, p',i = 1...k, are i.i.d. loops distributed according to (4.6) and

1 k ) i
MSE,Z"“vKJs,Z = Z M;"’LEI@E.2 (1315)
I1c{1,...,k}

where MQ*W?*? is the Brownian chaos associated to @7272' € I; see Section A. Wrapping things up,
we have obtained that the liminf of the left hand side of (13.11) is at least

n

n -~ 1yyn—Fk N S
Z (k)E [6 KT(p )} E [g (CO <M§2, ©2, ,f>> 1{Vi:1...k,U¢<1—e*KT(@i)} .

k=0

By reversing the above line of argument (which is possible thanks to Lemma 4.2), we see that this is
exactly the right hand side of (13.11). It concludes the proof. O

We finish this section by stating and proving Lemma 13.4. As in the proof of Proposition 10.1,

we will consider two sets of i.i.d. loops p"V,i =1...n, and p’,i = 1...n, in the discrete and in the
1,N n,N

5 5 1 n
continuum respectively, as well as their associated measures ME=2 P2 and ME=292 defined
respectively in (13.13) and (13.15). Let also U;,i = 1...n, be i.i.d. uniform random variables on [0, 1]
that are independent of the loops above.

Lemma 13.4. Let f : D — [0,00) be a nonnegative continuous function and g : [0,00) — R be a
nondecreasing bounded continuous function. Then,

. oyl e Y
lim inf B {g << o f>> 1{Vi_1...n,U71<1—eKT(W"N)}:| (13.16)

1 on
SE [g (cg < 52,5,...«2,5’f>> 1{vi1...n,Ui<leKT(W)}:| . (13.17)

Proof of Lemma 13.4. To ease notations, we will assume that n = 1. The general case follows from
similar arguments. In particular, note that the convergence of the Brownian chaos measures in Theorem
13.1 holds jointly for any number of trajectories. In what follows, we will denote (2,22, pl,, pl,),
resp. (2., Ze, Pe1, Pe,2), a random element whose law is described in Lemma 13.2, resp. in Lemma 4.2.
We also consider a uniform random variable U on [0, 1] independent of all the variables above.

The expectation in (13.16) is equal to

N
> P = N E o (M 1)) 1wy 252 = (2,)
N sNeDy

(13.18)

Let us fix Z,,% € D and denote 7} = N=! [Nz, | and 2 = N~!|NZ.]. Assume that the event
En = {(V,2N) = (2}, 2M)} has positive probability. By Lemma 13.2, conditioned on this event,
o1, and @y, are independent random walk trajectories distributed according to (13.4). By Theorem

N

13.1, the joint law of (Mg"?, T(pY,)) conditioned on Ey converges weakly towards the joint law of
(@ ME*?  T(pe2)) conditioned on E := {(z,,2.) = (21, 2.)}. The topology considered is the product
topology with, on the one hand, the topology of vague convergence of measures on D(Z,) := {z €
D :Im(z) > Im(2,)} and, on the other hand, the standard Euclidean topology on R. Because of this
topology, we introduce for any § > 0 a bounded continuous function fs : D — [0, 00) which coincide
with f on {z € D(2) : dist(z,C\ D(21)) > 0} and which has a support compactly included in D(Z, ).
We choose f5 in such a way that f > f5. Since the support of fs is a compact subset of D(Z)), we
will be able to use the convergence of the measures integrated against f;.

By conditional independence of pév ; and pé\’g (and of p. 1 and p. 2), we can add a third component

N
and we have the joint convergence of (M2, T(pY,),T(pl,)). We add this third component because
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we are interested in the total duration T(p™) = T(p,) + T(pl,). Overall, this shows that for all
6 >0,

32\72 ~ ~
lim inf E {g << b ,f>> Liycioe-xremy (21, 2) = (Ziv,zﬁv)]
N
> 1}&({?1}3 |:g (<M§E‘27f5>> 1{U<1—5*KT(@N)} (Zivazév) = (21\[72&{\[):|

=B [g (e (M5, f5)) Ly onrio} | (2, 20) = (21, 7)]

Since (Mg**, f5) = (ME*, f) as 6 — 0 in L* (see Remark 13.5 below), we have obtained

N
lim inf E [g <<M f>> Liyaioerromy| (21, 28) = (31, 2 )]

> E [g (e (M2 1) Ly rony | (2 20) = (B, 2]

Moreover, by (13.8), (2%, zI¥) converges in distribution towards (2, 2.). One can then use an approach

similar to the one used in [Jeg19] (see especially Lemma 3.6 therein) to deduce that the liminf of (13.18)
is at least

/ P ((Zlv ZE) = (déLvdZE))E g (Cg <M§€’27.f>) 1{U<1737KT(@)} (ZLv ZE) = (2l7 ZE)} .
DxD

We omit the details. This concludes the proof since the last display is equal to the expectation in
(13.17). O

Remark 13.5. In the above proof, we had to consider a function fs whose support was compactly
included in the underlying domain. We then got rid of this function by letting § — 0 and arguing
that (M&?, f5) — (ME*, f) in L'. This is justified by the simple fact that the first moment of the
measure (see (1.4) in [Jeg19]), evaluated against a set located at a distance at most § from the boundary
of the domain, vanishes as 6 — 0. In the discrete, because of poorer estimates on the discrete Poisson
kernel, these estimates near the boundary are not as clear and this is why the convergence obtained
in [Jegl9] is stated for the topology of vague (instead of weak) convergence. We mention nevertheless
that these difficulties might very well be overcome for a flat portion of the boundary, which is the case
in the setting of the current article. But our point is that this is not needed.

Appendix B Green function

In this section, we briefly recall the behaviour of the Green function in the discrete setting. The
Euler-Mascheroni constant ygy will appear in the asymptotics of the discrete Green function and we
recall that it is defined by

dev = lim(~log(n) + Y0 1) (B.1)

1<k<n

Lemma B.1. There exists C > 0 such that for all z,2’ € Dy,
Gpy(z,7) < ! log max | N ! +C (B.2)
— X T : .
Dyl %) =5 708 Tz — 2|
For all set A compactly included in D, there exists C = C(A) > 0 such that for all z,2" € AN Dy,

1 1
N> _—1 N — | -C. B.
Gpy(z,72') > 5 ogmax< ’|z—z’|) C (B.3)

For all z € D, if we denote zn a point in Dy closest to z, then

1

log N =
8 21

. 1
A}gnoo Gpy (2N, 2N) — o

1 1
log CR(z, D) + o (’YEM + 3 log 8) . (B.4)
™
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Proof. (B.2) and (B.3) are direct consequences of Theorem 4.4.4 and Proposition 4.6.2 of [LL10]. (B.4)
can be found for instance in Theorem 1.17 of [Bis20]. Note that the constant % (’yEM + %log 8) is
the constant order term in the expansion of the O-potential on Z?; see [LL10, Theorem 4.4.4]. We
emphasise that in the current paper Gp, (2, z) blows up like i log N whereas in [LL10] and [Bis20],
Gpy(z,2) blows up like %log N, hence the difference of factor 4 between our setting and theirs. [J

Appendix C Special functions
In this section, we recall the definition and list a few properties of some special functions that appear

in the current paper.
e Gamma function:

<1
I(z) = /0 Py e~tdt, = >0. (C.1)

When z =1/2,
'(1/2) = /. (C.2)

e The Beta function is related to the Gamma function as follows:

' L'(@)I'(y)
71—ty idt = =% 2,y > 0. C.3
|eta—gta= Gy (©3)
e Modified Bessel function of the first kind:
© 1 x 2n+a
1 = —_ | = —1. 4
a(®) nz:%n!I‘(n—i—a—l—l) (2) , >0, 0> (C.4)

Using Legendre duplication formula I'(z)['(z + 1/2) = 21722/7'(2x), we see that when o = —1/2,

I q1)5(z) = \/z\/l5 cosh(z). (C.5)

In general, for all a > —1,

In(z) ~

as & — oo. (C.6)
2mx

e Kummer’s confluent hypergeometric function:

00 +1)...(0+n—1) ,

VP01, 2) =14 5 ", x>0, 0>0. (C.7)
= n!
For any 6 > 0,
1F1(0,1,2) ~ %e)egﬂmefl as xr — 00. (C.8)

See [AS84, Section 13.5].
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