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In this work we study the continuum theories of Dipolar-Poisson models. Both the standard Dipolar-Poisson model as
well as the Dipolar-Poisson-Langevin model, which keeps the dipolar density fixed, are non-convex functionals of the
scalar electrostatic potential φ . Applying the Legendre transform approach introduced by A.C. Maggs [A.C. Maggs,
Europhys. Lett. 98, 16012 (2012)], the dual functionals of these models are derived and are given by convex vector-
field functionals of the dielectric displacement D and the polarization field, P. We compare the convex functionals in
P-space to the non-convex functionals in electric field E-space and apply them to the classic problem of the solvation of
point-like ions. Since the Dipolar-Poisson model does not properly describe polarization saturation, we argue that only
the Dipolar-Poisson-Langevin functional can be used to provide a nonlinear generalization of the harmonic polarization
functional used in the theory of Marcus for electron transfer rate to nonlinear regimes. We show that the model can be
quantitatively parametrized by molecular dynamics simulations.

I. INTRODUCTION

Modern soft matter electrostatics is commonly based on
Poisson-Boltzmann (PB) theory1. PB theory is a continuum
description which starts from on a non-convex free energy
functional U of the electrostatic potential, φ . The equilibrium
properties of charged soft matter systems are evaluated from
the Poisson-Boltzmann equation, the stationary point of U .
The concavity of U , however, makes impossible a global min-
imization of the energy of the system when associated with
other degrees of freedom such as, e.g., configurational en-
ergy. Maggs and collaborators have recently outlined a way
to overcome this convexity problem2–4. The Legendre trans-
form, a standard tool in statistical physics, allows to transform
the non-convex PB theory into a convex vector-field based
theory, in which the field variable is either, e.g., the dielec-
tric displacement field D or the polarization field P. Although
vectorial in character rather than scalar, such functionals enjoy
an important range of applications.

The most prominent example in the family of vector-field
based electrostatic functionals is certainly the one used in the
electron transfer theory pioneered by Marcus in the 1950’s5–7.
This classical continuum model of electron transfer in solution
relies on a harmonic polarization functional describing the di-
electric state of the solvent and allowing for a linear response
treatment to charge transfer5 (for reviews, see6,7). The linear
response/harmonic functional approximation for an aqueous
solvent has been questioned by several authors8–10 leading to
a debate about the relevance of nonlinear effects. More re-
cently, generalizations of Marcus theory have included molec-
ular details of the solvent response11. The authors of this
work develop a more microscopic approach based on molecu-
lar density-functional theory, arguing in particular that “Mar-
cus theory does not take into account the molecular nature
of the solvent which can break the linear assumption of sol-
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vent response. In such cases, we must resort to molecular
simulation”11. We here advocate for an alternative approach
based on continuum theory within dual electrostatics. We
derive nonlinear functionals for the solvent and validate and
parametrize them with molecular dynamics (MD) simulation.

Phenomenological nonlocal functionals of polarization
have been developed in recent years following a Landau-
Ginzburg approach and were shown to capture the proper-
ties of water at the molecular scale12–16. While the qualita-
tive behavior obtained with these models is in general agree-
ment with the results of MD simulations, the amplitude of
the structuration effects is overestimated in the linear mod-
els which raised doubts about the possibility to model water
with pure electrostatic functionals17. Nonlinear terms mod-
eling saturation effects have been therefore implemented also
in a phenomenological manner18,19. However, these terms re-
main corrections and the corresponding functionals are still
not sufficient to describe water subjected to the application of
large external fields.

In this work, we study two versions of generalized
continuum models of water electrostatics, the Dipolar-
Poisson model (D) and the Dipolar-Poisson-Langevin model
(DL)20–23. Commonly, these models run under the name of
Dipolar-Poisson-Boltzmann-(Langevin) models, but since our
models disregard the equilibrated ions in bulk, we suppress
the ‘Poisson-Boltzmann’-notions for clarity and brevity in the
following. For both models, the free energy of the system is
given in terms of the electrostatic potential φ , obtained from
a microscopic description of the solvent as an ensemble of
point dipoles. Whereas the dipole density can vary in response
to external field in the D-model, it is maintained constant for
the DL-model. By performing the Legendre transform of the
free energy density we exploit the duality between the scalar
and vector field-based descriptions for these two models. We
compare the properties of the non-convex functionals in elec-
tric field E-space and the convex functionals in polarization
P-space. We then apply them to the problem of ion solvation,
which has the advantage to allow for analytic calculations.
This example allows us to highlight the differences of the di-
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electric properties of the Dipolar-Poisson models by consid-
ering the response of the fields to a point charge. We argue
that the Dipolar-Poisson model has to be discarded because
of its unphysical behaviour at high external fields. For the
DL model we determine the polarization in the limits of low
and high polarization and identify its range of validity. MD
simulations for an SPC/E-water slab in the presence of an ex-
ternal field allow us to quantitatively parametrize the Dipolar-
Langevin model. The application of the nonlinear Dipolar-
Langevin model to the solvation of point-like ions results in a
reasonable, physically sound description of ion solvation de-
spite the model’s reductionist nature. Our results support the
view that the dual approach opens a path which will prove
useful for more complex models of soft matter electrostatics.

II. THE DIPOLAR-POISSON-LANGEVIN MODEL VS THE
DIPOLAR-POISSON MODEL

As discussed in the introduction, our starting point are dipo-
lar functionals and we will consider two cases: the first one
obtained by considering an ensemble of dipoles of moment
p0 located on an incompressible grid of mesh20 a, the Dipolar-
Langevin model (DL)

UDL =
∫

d3r
[
−ε

2
(∇φ)2− 1

βa3 log
(

sinh(β p0|∇φ |)
β p0|∇φ |

)]
(1)

and the second one obtained by modeling water as a gas of
dipoles, the Dipolar model (D),

UD =
∫

d3r
[
−ε

2
(∇φ)2− 1

βa3
sinh(β p0|∇φ |)

β p0|∇φ |)

]
+

1
βa3 , (2)

where ε is the vacuum permittivity and with φ as the electro-
static potential; β = 1/kBT . Note that we have shifted UD by
the constant 1/βa3 such that the free energy vanishes for a
vanishing potential.

We now introduce the electric field E =−∇φ with a vector-
valued Lagrange parameter D, the dielectric displacement
field, which yields

Ui =
∫

d3r
[
−ε

2
E2−hi(E)+D · (∇φ −E)

]
, (3)

where hi(E) abbreviates the nonlinear expression in (1), (2)
with

hDL(E) =
1

βa3 log
(

sinh(β p0|E|)
β p0|E|

)
, (4)

hD(E) =
1

βa3
sinh(β p0|E|)

β p0|E|
. (5)

The free energy densities of both models, ui = −εE2/2−
hi(E), (i = DL, D) are concave functions of the electrostatic
field E =−∇φ .

A. The Legendre transform of the Dipolar-Langevin and
Dipolar models

We introduce h̃i(P) the Legendre transformation2,3 of h(E)
defined as

h̃i(P) = P ·E−hi(E), (6)

P =
dhi(E)

dE
(7)

to express the free energy of the system as a functional of the
conjugated field P. It gives, for i = (D,DL),

Ui =
∫

d3r
[
− ε

2
E2 + h̃i(P)−φ∇ ·D+E · (D−P)

]
. (8)

The variation of Ui with respect to the electrostatic field E
leads to the relation D = εE+P and thus identifies P as the
polarization field. By replacing E by its mean-field value
εE = D−P, we obtain the functional in the P-space:

Ũi =
∫

d3r
[
(D−P)2

2ε
+ h̃i(P)−φ∇ ·D

]
. (9)

In the following, we consider only excitations D that satisfy
the Gauss relation (∇ ·D = 0 in the absence of free charge)
and therefore drop the term ∼ φ in the free energy density.

The nonlinear Dipolar-Langevin (DL) and Dipolar (D)
models can thus be studied in either E- and P-space and we
now investigate their properties in these spaces. We first com-
pare the two E- and P-functionals with the corresponding lin-
ear continuum dielectric medium. To do so, we expand the
dipole energy densities hi (i = D, DL), Eqs.(3)-(5), to second
order in E, they are equal to

hi,2(E) =
1
2

β p2
0

3a3 E2 . (10)

Using Eqs. (6,7), one obtains in the P-space,

h̃i,2(P) =
1
2

3a3

β p2
0

P2 . (11)

The harmonic approximations of the free energy densities in
E-space, fi(E) = −εE2/2− hi,2(E), and in P-space, f̃i(P) =
P2/2ε + h̃i,2(P), can be written as functions of the macro-
scopic response functions, -εεwE2/2, where εw is the rela-
tive dielectric permittivity and P2/2εχ . The susceptibility χ

controls the polarization response P2 of the linear dielectric
medium to an external excitation D0, since P2 = χD0. By
identification, one obtains the expressions

εw ≡ 1+
β p2

0
3εa3 , 1+ ε

3a3

β p2
0
≡ 1

χ
(12)

as functions of the microscopic variables (p0, a) of the D- and
DL-models. In particular, the expression for χ makes the link
with the phenomenological functional proposed by Marcus to
study the electron transfer kinetic rates and the models studied
here. We note particularly that the relations (10) and (11) are
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FIG. 1. Free energy of the dipoles for the Dipolar and Dipolar-Langevin models in E- (a) and P-space (b) . The dimensionless functions
hD(P)βa3 and hDL(P)βa3 are plotted using Eqs. (6), (7). The parameter values are a = 0.17 nm, p0 = 1.8 D, T = 300 K.

not only dual in the field variables E and P, but also in the
model parameters, in the temperature dependence β−1 and in
ε .

In Fig.(1), the functions −hDL(E) (dashed black curve)
and −hD(E) (green curve) and their harmonic approximation
−hDL,2(E) (blue curve) are plotted in panel a. The corre-
sponding functions for P-space are represented in panel b. As
parameter set to reproduce the properties of water were used:
p0 = 1.8 D corresponds to the dipole moment of one molecule
and a = 0.17 nm is adjusted to fix the relative dielectric permit-
tivity εw to 78 corresponding to water. We note that it differs
from the mesh size giving rise to the density of water which is
given by aw = 0.3 nm. As one sees, for both the D- and DL-
model the functions are concave in E and convex in P. We
compare the value of the dipole energy density with respect
to the harmonic approximation in E- and P- space. In the DL
model, h̃DL(P) increases faster than the quadratic expansion
in the P-space and saturates for large values of P. On the con-
trary, hDL(E) decreases more slowly than hDL,2(E). We ob-
serve the opposite trend for the Dipolar model (green curve).
A given excitation, D0, imposed on a medium described by
the DL-functional will thus induce an under-response in P and
an over-response in E compared to the corresponding linear
medium. On the contrary, a medium described with the D-
functional over-responds in P and under-responds in E.

These observations can be understood using the constitu-
tive relation of electrostatics D = εE+P, which imposes that
beyond the linear regime an over-response in P or E to an ex-
ternal field D0 will be compensated by the saturation of E or
P. This duality is also a property of the Legendre transform,
since the concave function of x, defined as

f (x) =−x2−δ

2
, with δ ≤ 1 (13)

grows more slowly in x than the quadratic function x2/2 for
δ > 0, and faster for δ < 0. Using the Legendre transfor-
mation, f can be expressed as a function of the conjugated
variable y, f (x) = xy− g(y), which can be expanded to first

order in δ , giving rise to a y−powerlaw in y2+δ . A concave
function that varies slower than a quadratic function is thus
transformed into a convex function that increases faster than a
quadratic function, as indeed observed in Fig.(1).

B. Response to an ion in P- and E-space

To deepen the comparison between the two models, in this
subsection we derive numerically the four responses, in E and
in P, of the D- and DL-models to a point-charge distribution
eδ (r) located in r = 0, generating an excitation field

D0(r) =
e

4πr2 er . (14)

We determine the radial component Eion,i(r) (with again (i =
D, DL) thorughout) of the electrostatic response induced by
the ion in the medium by minimizing the functional

Uion,i =Ui +
∫

d3r D0(r)E(r) (15)

with respect to E. One obtains

−εEion,i−
dhi(E)

dE

∣∣∣∣
Eion,i

=−D0(r) (16)

with D0(r) as the modulus of D0(r). Similarly, the radial com-
ponent Pion,i(r) of the polarization induced by the point charge
is obtained by minimizing

Ũion,i = Ũi−
1
ε

∫
d3r D0(r)P(r) , (17)

and solving the resulting equation

Pion,i

ε
+

dh̃i(P)
dP

∣∣∣∣
Pion,i

=
D0(r)

ε
. (18)

Eqs. (16), (18) are solved numerically for the Dipolar model
(green curves) using Eq. (2) for h and the Dipolar-Langevin
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0

50

100

150

200

250

P
io

n
,i

[V
/n

m
]

b
i = DL

i = D

i = 2

FIG. 2. Electrostatic field and polarization response of a dipolar (D) and Dipolar Langevin (DL) medium to a monovalent ion. Eion (a. ) and
Pion (b. ) as a function of the distance to the point charge for D (green curve) and DL (dashed black curve) models obtained by solving Eq.
(16) and Eq. (18). The blue curve corresponds to the response of the linear medium. Note that on the range shown, the cases i = 2 and i = D
superimpose. The parameter values are given in Fig.1.

model (dashed black curves) using Eq.(1). The results are
presented in Fig.(2). The linear electrostatic field Eion,2(r) =
e/4πεεwr2 and polarization response Pion,2(r) = χe/4πr2 to
the point charge are plotted in blue. The plots confirm that
a Dipolar-Langevin medium gives rise to an over-response in
E and under-response in P, in contrast to a Dipolar medium.
One sees that the polarization response obtained using the DL-
model is equal to the linear response at large distance of the
point charge, which corresponds to a low excitation field, and
then reaches a saturation value at small distances from the
charge when submitted to a large excitation. This saturation
in P-space is an essential property to describe a molecular
polar solvent such as water; it could be the at origin of the
decrease of the relative permittivity of aqueous electrolytes
with increasing ion concentration. Indeed, each ion would
create a sphere of only weakly responding water. The Dipolar-
Langevin model, in contrast to the Dipolar model, thus re-
produces this electrostatically ‘dead’ shell in the vicinity of
an ion. It also restores the linear behavior at large distances.
The polarization in the Dipolar model superimposes exactly
to the linear response for this range of excitation fields. At
very small distances and large field values an unphysical over-
responding shell would appear. Since the Dipolar-Poisson
model lacks essential physical properties, we discard it from
the following discussion in which we aim for nonlinear effects
in the polarization.

III. BEYOND THE HARMONIC (MARCUS)
POLARIZATION FUNCTIONAL

A. Asymptotic regimes of low and high polarization

Following our insights from the previous section, in this
section we focus on the DL model in P-space. We derive ex-
panded expressions of the free energy density in both limits of

low and high polarization in order to obtain an analytical ex-
pression of the DL-polarization response to an ion over the full
spatial range. For the sake of simplicity we drop the vectorial
notations for the fields. Using Eqs.(1), (7), the polarization as
a function of the electrostatic field can be written as

P(E) =
p0

a3

(
coth(β p0E)− 1

β p0E

)
. (19)

This expression can be expanded in the low-field regime,
around E = 0, or in the large-field regime for which the coth-
function in Eq.(19) can be replaced by 1. The range of va-
lidity of the second regime can be estimated by consider-
ing e−β p0|E| = 0.01eβ p0|E|, i.e., E ≥ 1/2β p0 log(100) = 1.4
109V.m−1 for water (p0 = 1.8 D).

We start with the low-field regime and expand Eq.(19)
around E = 0. As shown in Section II, the DL-model ex-
panded to second order in P can give rise to a quadratic dipole
energy density given by Eq. (11). Two orders further - odd
terms vanish - we get

PDL,4(E) = ε (εw−1)E− p4
0β 3

45a3 E3, (20)

a relation that can be inverted to obtain at the third order in P

EDL,4(P) =
1

ε(εw−1)
P+

9a3

5p4
0β

P3. (21)

Note that the index n in the expressions (Pn, En) refers to the
order of the expansion for the energy. We can thus write down
the dipolar free energy density h̃DL,4(P) to fourth order in the
polarization as

h̃DL,4(P) =
1

2ε

1
εw−1

P2 +
9

20p0β

(
a3

p0

)3

P4. (22)

The correction in P4 induces an increase of the free energy
density for a given polarization P compared to the linear
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model. It confirms that the DL-medium is associated with a
higher free energy density than the linear medium for a given
polarization and thus tends to saturate.

In the high-field regime, the expression of P as a function
of E is simply obtained by approximating the coth-function
by 1 in Eq.(19) so that

Psat(E) =
p0

a3 −
1

a3Eβ
, Esat(P) =

1
βa3(p0/a3−P)

. (23)

The polarization saturates to the value psat = p0/a3, which is
obtained when all the dipoles p0 are aligned. In this situation,
the electrostatic field Esat(P) diverges. The dipole energy den-
sity in this regime h̃sat(P) is written as

h̃sat(P) =
1

βa3

(
log
(

2p0/a3

p0/a3−P

)
−1
)
. (24)

The linear and saturated regimes in response to an excitation
are included in the Dipolar-Langevin model which could be a
good candidate to model dielectric properties of water over a
wide range of excitation amplitude.

The question we address now is whether we can we pro-
pose a parametrization for the microscopic values (p0,a) that
reproduces quantitatively these behaviors for simulated water.
The simulation of point charge ions in molecular dynamics
simulations is not straightforward, as the ions are represented
by Lennard-Jones spheres associated with a spatial extension.
We therefore employ a configuration of water in between two
slabs.

B. MD simulation-fit of the model

In order to enable an independent parametrization of the
model, we performed molecular dynamics simulations of wa-
ter confined between two graphene sheets in a slab geome-
try as illustrated by the simulation snapshot in Fig.(3) a. The
slab walls are perpendicular to the z-direction and are made
up of carbon atoms. The atoms are frozen, neutral and ar-
ranged in a hexagonal lattice. The two walls are separated by
L = 5nm. We use the SPC/E model for water which repro-
duces its dielectric properties best27. It is associated with a
relative permitttivity of 71. For the carbon-oxygen Lennard-
Jones interaction we use the GROMOS53a6 force field. The
simulation box is extended in the z-direction until it reaches a
length equal to 3L. Thus, even if we consider a periodic sys-
tem in the 3 directions of space, the periodized slab system is
separated by a 2L-thick void layer along the z-axis.

A z-directed excitation field DMD,0 = DMD,0ez is applied
between the two surfaces. After a short equilibration run of
0.01 ns with the NV E-ensemble, a long equilibration run of
2 ns was performed in the NPT -ensemble using the Berend-
sen thermostat T = 293.15 K and pressostat (P = 10−3 katm).
Finally, a simulation of 16 ns was performed in the NV E-
ensemble.

We measure the response of the system for increasing am-
plitude of the excitation from 0 V.nm−1 to 64 V.nm−1. The

symmetry of the system imposes a z-directed response, PMD =
PMDez, with

PMD(z) =
∫ z

−L/2
ρc,MD(z) (25)

where ρc,MD(z) is the charge density of the fluid. In Fig.(3)
b., the water mass density ρMD(z) (top panel) and the polar-
ization, PMD(z) (bottom panel) are plotted for different values
of DMD,0. For small excitations (up to 32V.nm−1), ρMD(z)
reaches the bulk density and PMD(z) a constant value on a
distance of the range of the correlation length of water (1.5
nm). For large DMD,0, density and polarization oscillate with
a period corresponding to the width of one molecule. This
corresponds to an alignment of the oxygen atoms in the (xy)-
plane. We estimate the spatial mean of the polarization Pm in
the bulk, i.e. excluding the interfacial water of width li = 1.5
nm28, as

Pm = 1/(L−2li)
∫ L/2−li

−L/2+li
PMD(z)dz. (26)

In Fig.(3) c., Pm is plotted as a function of D0 and one sees
that the polarization is an affine function of D0 at small values
and reaches a plateau at large excitations. This highlights the
linear and the saturated regime of the dielectric properties of
SPC/E water.

These two behaviors are captured by the DL-model and we
fit the values of microscopic parameters a and p0 by measur-
ing the slope χMD of the linear part of Pm(D0) its saturation
value psat,MD. By writing

χMD = 1+ ε
3a3

β p2
0
, psat,MD =

p0

a3 , (27)

we obtain p0 = 9.62 D and a = 0.51nm. By comparison, an
SPC/E water molecule with pSPC/E = 2.3 D is associated with
a mesh size aw = aSPC/E =0.3 nm where a3 is defined as the
mean volume occupied by a water molecule.

The most commonly used explicit water models (SPC,
TIPnP) are associated with different dielectric constants29 and
this set of parameters is not appropriate to all of these. How-
ever, TIP3P and SPC/E are in fact very similar and one can
check that the parameters (a, p0) allow to reproduce the po-
larization under external field for TIP3P shown in Fig. 1 of30.
The authors used a bulk-like simulation approach, which does
not show the oscillatory profiles of the slab configuration we
used, and which become more prominent at higher field val-
ues. The fact that our parametrization work equally well on
these data is a strong confirmation of our coarse-grained ap-
proach. In particular, the saturation polarization is comparable
for both models (psat/ε ≈ 25V.nm−1).

The dipolar fluid described by Eq.(1) reproducing the bulk
permittivity and the saturation polarization of SPC/E wa-
ter is composed of point dipoles with dipole moments 4
× larger and a density 7 × lower than SPC/E water. Us-
ing this parametrization, the asymptotic free energy densi-
ties h̃4(P) (low polarization, pink plot) and h̃sat (high polar-
ization, yellow plot) are plotted in Fig.(4). They are com-
pared to the exact model h̃DL(P) (dashed black curve) and to
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FIG. 3. Molecular dynamics simulations of SPC/E water under excitation field. a. Snapshot of the system composed of water molecules
between two graphene sheets. Mass density (b.) and polarization (c.) for three different excitation fields D0/ε = 0 V.nm−1 (blue plot),
D0/ε = 16 V.nm−1 (yellow plot), D0/ε = 32 V.nm−1 (green plot). d. Polarization response as a function of the excitation field: MD
simulations (black points); exact DL model (red plot); linear regime (dashed grey line), P = χMDD0; saturation polarization (horizontal dashed
grey line) P = psat.

the quadratic expansion h̃2(P) (blue curve), the Marcus func-
tional. The fourth-order expansion in the polarization and the
high-field expansion allow to cover the whole range of field
values with a very good precision. For the low-field regime,
the fourth-order expansion brings a quantitative improvement
when compared to the harmonic expansion that catches qual-
itatively the trend of the exact functional. For the high-field
regime, the polynomial expansions move away from h̃DL(P)
and the harmonic functional used by Marcus cannot be seen
as a valid approximation anymore.

C. Ion solvated in water

Finally, we derive the polarization field around a point
charge in the framework of the low- and high-field regime
approximations by writing Eq.(18) for h̃(P) = h̃DL,4(P) and
h̃(P) = h̃DL,sat(P). We solve the two corresponding equations
by taking advantage of the identity

dh̃i(P)
dP

= Ei(P), (28)

and using the expressions of Ei given in Eqs.(21), (23).
The polarization response Pion,4(r) obtained for the fourth-

order expansion h̃DL,4(P) is solution of a depressed cubic
equation and is equal to

Pion,4(r) =
Pt

21/3

[(
Pion,2(r)

Pt
+

√
4

27
+

(Pion,2(r))2

P2
t

)1/3

+

(
Pion,2(r)

Pt
−
√

4
27

+
(Pion,2(r))2

P2
t

)1/3]
, (29)
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FIG. 4. Free energy density in the low- and high-field regime for
the DL-model. The fourth-order expression h̃4,DL(P) (Eq. (22), pink
curve)) and the large polarization expansion h̃sat,DL(P) (Eq. (24),
yellow curve) of the dipolar free energy density are compared to the
exact density h̃(P) (dashed black curve) and its harmonic expansion
(blue curve). The cusp in P = 0 for h̃sat,DL(P) is outside of the valid-
ity zone of the expansion and has no physical meaning. The param-
eters used are obtained from SPC/E water simulations: p0 = 9.62 D,
a = 0.51 nm.

with the threshold polarization

Pt =

√
5

3

√
p4

0βεw

a3ε0(εw−1)
(30)

and the linear response Pion,2(r) = χD0(r). The polarization
in the solvation shell of the ion for low r and high excitation
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FIG. 5. Rescaled polarization response to a monovalent ion calcu-
lated for low and high fields regimes of the DL model. The rescaled
linear polarization Pion,2/Pion,DL (Eq. (18)) is plotted in blue, the
rescaled fourth-order polarization Pion,4/Pion,DL is plotted in pink
and the rescaled saturated polarization Pion,sat/Pion,DL is plotted in
yellow. The parameters used are given in Fig.(4).

is equal to

Pion,sat(r) =
p0

2a3 +
D0(r)

2

−
√

β (a3D0(r)− p0)2 +4a3ε

2a3
√

β
. (31)

The polarization saturates towards p0/a3. In Fig.(5) we plot
the polarization as a function of the distance r around an ion
obtained for the linear (blue curve) and the two asymptotic
regimes (4th order expansion in pink, saturation in yellow)
rescaled by the exact polarization given by the DL-model. We
use the parametrization determined in the previous section to
model SPC/E water. As one sees, the linear model overesti-
mates the response of the fluid for r ≤ 5 Å. The fourth-order
expansion brings a small gain in the 3-5 Å range, but fails to
reproduce the first solvation shell. The saturation model suc-
ceeds in this range (0.5-3 Å), but has no meaning outside of
this zone. Note that the range of validity of the different ex-
pansions depends on the charge of the ion. Roughly, the size
of the saturation shell can be estimated as the radius for which
the linear response Pion,2(r) equals the saturation polarization
psat giving rsat = Q1/2× (ea3/4π p0)

1/2, with Q denoting the
valence of the ion. This shell possesses a 2.3 Å radius for a
monovalent ion and a 4 Å radius for a trivalent ion.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have discussed the Dipolar-Langevin20 and
Dipolar21,22 Poisson models in the context of the recently
formulated dual theory to the Poisson-Boltzmann approach
which leads to convex free energy functionals. The Dipolar-
Langevin (DL) theory is derived from a microscopic model of

water as dipoles fixed on a grid. The corresponding free en-
ergy density is a concave function of φ that we transform in
a convex function of P. We have compared the concave func-
tionals in E-space and convex functionals in P-space for both
two models. For D-model, a notable deficiency is that it is
incapable to describe polarization saturation at large applied
fields, which leads us to discard this model. By contrast, the
DL-model in P-space captures both the linear polarization re-
sponse of the medium at low excitation and the saturation of P
in response to high excitation fields, as observed in MD simu-
lations for various explicit models of water31. We parametrize
the DL model by fitting simulation measurements in a slab ge-
ometry realized with the explicit SPC/E-water model, see our
Fig. 3 c. Our parametrization is in accord with earlier results
by30, using a different MD-setup and the TIP3P-model of wa-
ter. When adequately parametrized, the DL model fits very
well the nonlinear behavior of SPC/E water when submitted
to a constant field D0. Moreover, the Legendre transform of
the analytical φ -functional of the DL model (see Eq.(1)) com-
bined to an expansion around P = 0 or around large polariza-
tion values gives access to an analytical expression of a po-
larization functional capturing the local properties of fluid, i.
e. the bulk response function of a fluid to an excitation of any
amplitude. We have thus obtained expressions of P function-
als that fit simulated water and are associated to a well-defined
microscopic model of the system. The next step to consider in
the future will be short-range correlated gas of dipoles as a mi-
croscopic input to try have access to nonlocal P-functionals.

Finally, we have studied the solvation of a single point-
charge ion in the DL model and derived analytic expressions
for the polarization response in the two asymptotic regimes.
The polarization is saturated in the first hydration shell of the
ion of a radius that depends on the charge of the solute. This
nonlinear effect is omitted by the harmonic functional under-
lying Marcus theory and could therefore affect the derivation
of the electron transfer rates. We furnish here an analytical
framework to take this effect into account.

In conclusion, in this work we have demonstrated the
usefulness of the dual approach to soft matter electrostatics.
Importantly, the dual approach is likely to become a very
important tool to derive physically relevant properties when
starting from still more complex Poisson (-Boltzmann)
models, and in particular when additional, non-electrostatic
convex free energy contributions arise in combination with
non-convex PB functionals. The passage from the electric to
dielectric to polarization fields is easily performed by their
use as Lagrange multipliers2, beyond the specific model
system we chose, the DL-model of point dipoles, for more
realistic continuum theories. The resulting theory will then be
given by a completely convex functional for which numerical
minimization algorithms can be directly applied. While this
key advantage of the dual approach by Maggs is not strictly
needed in the context of our simple models, for which we
might as well have solved the corresponding mean-field
equations, our results already demonstrate that the change to
a dual perspective can, beyond this computational advantage,
improve the physical understanding of the phenomena at
hand and the quality of approximate theories.
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