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1 ABSTRACT 

The integration of users’ perception in the design process is an important challenge for the 
optimization of products. This study describes how design recommendations can be drawn, from a 
perceptual experiment with a panel of subjects using a multi-objective interactive genetic algorithm 
(IGA). The application concerns the bi-objective optimization of the unpleasantness and the 
detectability of sounds for electric vehicles (EV). After a description of the experimental protocol for 
the assessment of the detectability and the unpleasantness of EV sounds (listening test), a set of 
optimal sounds (Pareto efficient) is defined with an IGA experiment. The analysis of these sounds, 
based on a probabilistic analysis of the selection process, leads to the definition of design 
recommendations. A second listening test, involving recommended sounds but also other design 
proposals, allows an evaluation of the validity of the approach. Results show that the sounds 
recommended obtain interesting performance, in particular to improve the detectability of EV sounds. 
 
Topics: Designing with sensory data, Modelling consumer preferences/ behaviour, Researching of 
designs and design methods, Design for emotion and experience 
Keywords: Optimisation, User centred design, Participatory design, sound design, interactive 
optimisation 

2 INTRODUCTION 

The increasing use of Hybrid or Electric Vehicles (EV) has led to safety concerns for pedestrians 
(Gillibrand et al., 2011). Below 40 km/h, the noise emitted by those vehicles is lower than for Internal 
Combustion Engine Vehicles (ICEV). In urban environments in particular, this makes it potentially 
more difficult to detect an approaching vehicle. Visually impaired people are particularly affected, as 
they rely mostly on auditory cues to assess the presence of vehicles (Parizet et al., 2014). Because of 
this, some countries have started to create a legislation requiring EV to be equipped with a warning 
sound generation device, as well as specifications regarding the sound that should be emitted (Konet et 
al., 2011). Several studies have come up with recommendations regarding the nature of such sounds 
(Misdariis et al., 2013)(Robart et al., 2013)(Poveda-Martinez et al., 2017). These recommendations 
must also take into account potential noise pollution that could negatively affect the experience of 
pedestrians, cyclists and other drivers (Petiot et al., 2013). 
There is then clearly a conflict between detectability and annoyance for the perception of EV sounds. 
Different studies addressed this problem (Lee et al., 2017), (Parizet et al., 2014). All these studies are 
based on hearing tests of a predefined set of sound stimuli. 
In a previous paper (Petiot et al., 2019), we proposed a method based on an Interactive Genetic 
Algorithm (IGA) for the design of EV sounds that takes into account in the same time detectability 
and unpleasantness. Based on listening tests and a parametric synthesis of EV sounds, it provided 
efficient solutions, validating the relevance of the approach. 
This work is a continuation of this study. It uses the same experimental protocol for the assessment of 
the detectability and the unpleasantness, but the experiments and the analysis of the results are 
different. A multiobjective optimization using IGA is now proposed, and design recommendations are 
drawn from the analysis of the set of Pareto efficient solutions.  
The objectives of this paper are: 
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• To present a method for the analysis of a set of Pareto efficient sounds obtained after a 
multiobjective IGA experiment, in order to make design recommendations, 

• To test the efficiency of recommended designs, compared to other EV sound proposals. 
The remainder of the paper is organized as follows. Section 2 presents a background on the 
experimental protocol for the assessment of detectability and unpleasantness of EV sounds: 
presentation of the sound synthesis method and description of the scenario for the listening tests. 
Section 3 presents the material and methods for the experiments and the analysis of the data. A first 
experiment (experiment 1) uses IGA for a biobjective optimization of the detectability and the 
unpleasantness, leading to a set of Pareto efficient sounds (termed Optimal_set). The method for the 
analysis of the optimal set of sounds is presented, in order to draw design recommendations. In a 
second experiment (experiment 2), design recommendations are assessed and compared to current 
design proposals. Results are presented in section 4, and the concluding section provides implications 
for sound design. 

3 BACKGROUND 

The objective of this section is to make a summary of the EV sounds synthesis method, the scenario 
for the assessment of the detectability and the unpleasantness, and the IGA implementation. 
For more information, the reader is invited to read the initial paper (Petiot et al., 2019). 

3.1 EV Sound synthesis 
The EV sounds were synthesized using the mathematical modeling software Matlab and the additive 
synthesis technique. In order to generate different but plausible sounds for an electric car, after an 
analysis of current sounds of different carmakers (Misdariis et al., 2012) and personal propositions 
(Petiot et al, 2013), four main components of the sound were considered. 
• Component C1 “A thermic motor sound”. This component synthesizes the first harmonics of a 

classical 4-stroke internal combustion engine (H0.5, H1, H1.5, H2, H4, H6), 
• Component C2 “A Harmonic Sound”. This component synthesizes different musical ‘notes’, 

harmonic, that constitute a major chord (chord with 3 notes), 
• Component C3 and C4: “A broad band Noise”. These components synthesize two filtered noises. 
The resulting sound 𝑠𝑠(𝑡𝑡) is finally a weighted sum of these four components (equation 1), to which 
amplitude modulation is applied, with modulation index m and modulation frequency fm: 

𝑠𝑠(𝑡𝑡) = (1 + m. sin(2π𝑓𝑓𝑚𝑚𝑡𝑡)) . (𝑎𝑎1.𝐶𝐶1(𝑡𝑡) + 𝑎𝑎2.𝐶𝐶2(𝑡𝑡) + 𝑎𝑎3.𝐶𝐶3(𝑡𝑡) + 𝑎𝑎4.𝐶𝐶4(𝑡𝑡)) (1) 

Since it is out of the scope of this paper to describe all the parameters of the synthesizer (there are 
more than 70 independent parameters to define a sound), we can mention that all the frequencies and 
amplitudes of the components are adjustable, to create credible and original sounds. The sound is not 
constant but controlled by a control parameter of the car: the speed. To make the sound evolve with 
the speed of the car, we choose to adjust the frequencies and the amplitudes of the different 
components according to the speed with parameterized patterns.  
Among the different synthesis parameters of the sounds, it is necessary to define the optimization 
variables of the problem, i.e. the variables which are manipulated by the IGA and coded in the genome 
(design space of the genetic code). After several experiments, the following 6 factors (A, B, C, D, E, 
F), and their corresponding levels (A1 for level 1 of factor A), were chosen to get a large diversity of 
sounds (Table 1). 
  



  ICED 

Table 1. Definition of the 6 factors (design variables) and their levels 

Factor Variable Level 1 Level 2 Level 3 Level 4 
A Motor/chord 

proportion 
𝑎𝑎2 = 0 𝑎𝑎1

𝑎𝑎2
= 2 𝑎𝑎1

𝑎𝑎2
=

1
2

 𝑎𝑎1 = 0 

B Fundamental/center 
frequency 

𝑓𝑓1 = 𝑓𝑓3
= 80Hz 

𝑓𝑓2 = 120Hz 
𝑓𝑓4 = 240Hz 

𝑓𝑓1 = 𝑓𝑓3
= 120Hz 
𝑓𝑓2 = 180Hz 
𝑓𝑓4 = 360Hz 

𝑓𝑓1 = 𝑓𝑓3
= 160Hz 
𝑓𝑓2 = 240Hz 
𝑓𝑓4 = 480Hz 

𝑓𝑓1 = 𝑓𝑓3
= 200Hz 
𝑓𝑓2 = 300Hz 
𝑓𝑓4 = 600Hz 

C Harmonic/noise 
proportion 

𝑎𝑎1 = 𝑎𝑎2 = 0 𝑎𝑎3+𝑎𝑎4
𝑎𝑎1+𝑎𝑎2

= 2 
𝑎𝑎3+𝑎𝑎4
𝑎𝑎1+𝑎𝑎2

=
1
2

 𝑎𝑎3 = 𝑎𝑎4 = 0 

D Number of harmonics Motor: 1 
Chord: 1 

Motor: 2 
Chord: 2 

Motor: 3 
Chord: 3 

Motor: 6 
Chord: 6 

E Amplitude 
modulation frequency 

𝑓𝑓𝑚𝑚 = 0.5Hz 𝑓𝑓𝑚𝑚 = 2Hz 𝑓𝑓𝑚𝑚 = 5Hz 𝑓𝑓𝑚𝑚 = 10Hz 

F Amplitude 
modulation ratio 

m = 0% m = 17% m = 33% m = 50% 

With these six factors and four level, the design space counts 46 = 4096 possible designs (all the 
possible combinations of the full factorial). 

3.2 Listening tests of EV sounds 

3.2.1 Scenario  
The scenario chosen for the test corresponds to the following situation (Misdariis et al., 2013): a 
pedestrian located on the sidewalk of a street waits before crossing. An EV may pass by, coming 
either from the right or from the left. The listener is static, and must indicate when he/she detects the 
EV. 
To obtain a pseudo-realistic passing-by scenario, the following properties have been implemented: 
• The sound level of the EV is modulated according to the vehicle/listener distance. The model 

used, based on acoustic theory, considers the EV as a monopole and provides a sound level 
inversely proportional to the distance to the listener (1/r) (see Figure 1) (Misdariis et al., 2013), 
(Lee et al., 2017), 

• The speed of the EV is considered as constant and equal to 20km/h, 
• The duration of the sound stimuli is 15 seconds, 
• The Doppler effect (shifting in frequency due to the speed of the source) is taken into account for 

a more realistic experience, 
• The direction of the car (from the right or from the left) is randomly chosen, 
• The panning of the EV sound is managed in such a way that the source goes progressively from 

one canal (left or right, depending of the direction of the EV) to the other (right or left) according 
to the position of the vehicle. 

Given that the objective of the test is to assess the reaction time associated to the detection of the EV 
sound, the sound must be incorporated in a background noise (masking signal). The background noise 
considered in the study corresponds to a stereo street recording of a busy intersection in Paris, France. 
The level of the background noise was adjusted to a convenient level and kept constant for all the 
stimuli proposed in the listening test. Figure 1 describes the mixture of the background and the EV 
sounds and their respective sound level evolution. 
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Figure 1. Timeline of the assembly of the background and the EV sound, with their respective level 

evolution (the x axis represents indifferently the time or the distance of the EV, given that the speed of 
the vehicle is constant) 

3.2.2 Task of the subject  
The audio stimuli were presented to the participants with a computer interface and Beyerdynamics DT-
990 headphones in a quiet environment. The same sound output level was set by the experimenter for 
all computers. Participants had to strike the “space bar” to start playing the stimuli (t = 0), and next 
strike the “a” key as soon as they detect the EV coming from the left, or the “e” key if it is coming 
from the right (French AZERTY keyboard). This strike allows the definition of the detection time 𝑡𝑡2.  
To avoid habituation of the participant in the detection time (and detect inconsistent subjects), the 
starting time 𝑡𝑡1 of the EV sound in the mixture (figure 2) was variable, randomly chosen in the interval 
[1, 3] seconds. The detection duration 𝐷𝐷𝑑𝑑 is then given by (equation 2): 

𝐷𝐷𝑑𝑑 = 𝑡𝑡2 − 𝑡𝑡1 (2) 

After assessing the detectability of the sound, participants were asked to rate the unpleasantness of the 
sound on a structured semantic scale from “0” (not at all unpleasant) to “10” (very unpleasant). These 
two assessments (detection time, unpleasanteness) constitute the two objectives of the optimization 
problem that must be minimized. 

3.3 IGA implementation 
The optimization problem addressed in this paper being bi-objective, there are potentially several 
equally satisfying solutions (Pareto efficient). To address this constraint, the proposed method 
considers an adaptation of the NSGA-II algorithm (Deb et al., 2002), which aims at finding an 
approximation of the Pareto front. The solutions are compared based on the so-called crowded-
comparison operator: 
• A solution is considered better than another one if it has a lower non-domination rank.  The non 

domination rank of a solution corresponds to the non dominated front it belongs to, 
• Within a non-dominated front, the solutions are ranked based on their distances to other solutions 

of the same front in the objective space. Solutions that are further away from other solutions are 
considered better. This aims at ultimately obtaining solutions that are evenly spread along the 
optimal Pareto front. In this elitist algorithm, a register of the best solutions evaluated is updated 
after each generation and is used to create the next one. 

Concerning the operators of the IGA, the procedure was implemented as follows. The first generation 
of Ng

 solutions was generated using a Latin Hypercube Sample. After evaluation by the user, the best 
solutions register was initialized with all Ng solutions of this first generation. The next generation was 
created by randomly applying one of the following genetic operators to each solution within the 
register: 
• Mutation: the solution was replicated to the next generation, with one gene value randomly 

changed, 

Background sound 

level 

t=0 

EV sound 

level 

t1 

Listener 
position 

t2: detection time 

Fade in Fade out 

Time/distance 

0 

0 

t3 

r: distance to 
pedestrian 1/r 
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• Crossover: another solution was selected within the register through a binary tournament based 
on the crowded-comparison operator. The chromosomes representing the two solutions were 
combined, in order to create a new one. This was done by randomly selecting a chromosome 
location, splitting each chromosome into two parts around that location and connecting the first 
part of one solution with the second part of the other one. The order in which the solutions were 
combined was chosen randomly, 

• Selection: the solution was replicated in the next generation without any modification. 
The probability for each operator to be applied is controlled by the crossover rate (𝑐𝑐𝑟𝑟), the mutation 
rate (𝑚𝑚𝑟𝑟) and the selection rate (𝑠𝑠𝑟𝑟). These values were chosen between 0 and 1 in such a way that 
 𝑐𝑐𝑟𝑟 + 𝑚𝑚𝑟𝑟 + 𝑠𝑠𝑟𝑟 = 1. This process was repeated at each generation. A simulation process (Monte-Carlo) 
was implemented to tune the different parameters of the IGA (see (Poirson et al., 2013) for more 
information). The size of the register was kept constant, only containing the Ng best solutions. At the 
end of the iterations, the Pareto solutions of a participant j were recorded in a set called Optimal_Set_j. 

4 MATERIAL AND METHODS 

4.1 Experiment 1: multiobjective optimization with IGA  
32 students (16 males, 16 females) from the École Centrale de Nantes, France, with no reported 
auditory deficiencies, used the IGA sound optimization tool with the scenario and the sound stimuli 
described in the “Background” section. They evaluated 11 generations of Ng = 9 sounds, which took 
approximately half an hour. Values of mutation rate: 𝑚𝑚𝑟𝑟 = 0.7, crossrate:  𝑐𝑐𝑟𝑟 = 0.25, selection rate: 
𝑠𝑠𝑟𝑟 = 0.05, were used for the IGA. A high mutation rate was chosen, to preserve diversity in spite of 
the small number of individuals per generation and to avoid premature convergence. 
The union for all the participants of all the Pareto solutions that satisfy the safety criterion was formed. 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂_𝑠𝑠𝑠𝑠𝑠𝑠 = ⋃ �Optimal_set𝑗𝑗�m
j=1  (3) 

Optimal_Set represents a selection of EV sounds that, from a perceptual point view, make a satisfying 
trade-off between detectability and unpleasantness. To provide information that could be used as 
recommendations for a sound designer, an analysis of these sounds and the most occurring factors 
levels in Optimal_Set is conducted. 

4.2 Analysis of the sound of Optimal_set 
The principle of the method to draw design recommendations from the analysis of the designs in 
Optimal_Set is to consider the selection process of the designs made by the participants as a random 
process that depends on probability laws. The set Optimal_set, of size N, is a subset of the sample 
space Ω (full factorial design). From the chosen designs in Optimal_Set, estimates of the parameters of 
these probability laws can be calculated. And with these parameters, it becomes possible to make 
inference and provide a probability score for any design of the design space. 

4.2.1 Joint probability 
Given the sample space Ω (set of all possible designs of the design space), and the design variables 
X𝑖𝑖, (𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 6) that describe the design, the first model that can be made is to assume that the choice 
of the designs in Optimal_set depends on all the variables and all their possible interactions. 
In this case, the probability law of the selection process of any design d defined by the design 
variables X𝑖𝑖, (𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 6), d = (𝑋𝑋1 = 𝑥𝑥1,𝑋𝑋2 = 𝑥𝑥2, … ,𝑋𝑋6 = 𝑥𝑥6)  by the IGA experiments is given by 
the joint probability: 

P(D = d) = P(𝑋𝑋1 = 𝑥𝑥1,𝑋𝑋2 = 𝑥𝑥2, … ,𝑋𝑋6 = 𝑥𝑥6) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐{𝐷𝐷∈𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠 𝐷𝐷⁄ =𝑑𝑑}
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠)

 (4) 

 Where card represents the cardinality of a set (number of elements) 
For example, if a design is present once in Optimal_set, its probability is P = 1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠)
, if it is 

not chosen, its probability is P = 0. 
This 6-dimensions joint probability is not so interesting to make design recommendations because it is 
only able to recommend designs that are present (and abundant) in Optimal_set. To be able to make 
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recommendations on the levels of the design variables X𝑖𝑖, it is necessary to make assumptions on the 
independence of the variables in the selection process. 

4.2.2 Marginal probability 
If we consider that the variables X𝑖𝑖, (𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 6) are mutually independent in the selection process (no 
interaction between them), then the probability law of the selection process of any design d = (𝑋𝑋1 =
𝑥𝑥1,𝑋𝑋2 = 𝑥𝑥2, … ,𝑋𝑋6 = 𝑥𝑥6)  is given by: 

P(𝑋𝑋1 = 𝑥𝑥1,𝑋𝑋2 = 𝑥𝑥2, … ,𝑋𝑋6 = 𝑥𝑥6) = ∏ P(𝑋𝑋i = 𝑥𝑥i)6
𝑖𝑖=1  (5) 

This is simply the product of the marginal probabilities, where: 

P(𝑋𝑋i = 𝑥𝑥i) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐{𝐷𝐷∈𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠 𝑋𝑋𝑖𝑖=𝑥𝑥𝑖𝑖⁄ }
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠)

 (6) 

In this case, the designs recommended by the model (designs with the largest probability), is the 
designs with the most occurring level (largest size) for each variable. Of course the mutual 
independence of all the variables is a very strong assumptions that only holds if there is no interaction 
between the variables in the selection process (in the perception of participants). This is rather unlikely 
in design where the global assessment of a product may be different to the sum of the assessments of 
each of its variables (Sylcott et al., 2015). 

4.2.3 Independence checking of the variables 
The two previous models being not satisfactory to make design recommendations, it is interesting to 
propose a model that is based on assumptions that can be checked concerning the independence of the 
variables in the selection process. That’s why we propose first to check the independences between the 
variables, from the choices made in Optimal_set. 
Our proposal is to check, with a statistical test, the independence of any pairs of variables in 
Optimal_set. We propose to use the chi-square independence test to determine whether there is a 
significant association between two qualitative variables.  
For example, suppose that the pairwise independence test shows that the two groups of variables 
{𝑋𝑋1,𝑋𝑋2,𝑋𝑋3} and {𝑋𝑋4,𝑋𝑋5,𝑋𝑋6} are independent. This can be shown in the pairwise comparison matrix 
(see example in Table 3). 
Then it is possible to use a model where the probability law of the selection process of any design d =
(𝑋𝑋1 = 𝑥𝑥1,𝑋𝑋2 = 𝑥𝑥2, … ,𝑋𝑋𝑛𝑛 = 𝑥𝑥𝑛𝑛)  is given by: 

P(𝑋𝑋1 = 𝑥𝑥1,𝑋𝑋2 = 𝑥𝑥2, … ,𝑋𝑋6 = 𝑥𝑥6) = P(𝑋𝑋1 = 𝑥𝑥1,𝑋𝑋2 = 𝑥𝑥2,𝑋𝑋3 = 𝑥𝑥3). P(𝑋𝑋4 = 𝑥𝑥4,𝑋𝑋5 = 𝑥𝑥5,𝑋𝑋6 = 𝑥𝑥6) (5) 

Where: 

P(𝑋𝑋1 = 𝑥𝑥1,𝑋𝑋2 = 𝑥𝑥2,𝑋𝑋3 = 𝑥𝑥3) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐{𝐷𝐷∈𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠 𝑋𝑋1=𝑥𝑥1,𝑋𝑋2=𝑥𝑥2,𝑋𝑋3=𝑥𝑥3⁄ }
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠)

 (7) 

P(𝑋𝑋4 = 𝑥𝑥4,𝑋𝑋5 = 𝑥𝑥5,𝑋𝑋6 = 𝑥𝑥6) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐{𝐷𝐷∈𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠 𝑋𝑋4=𝑥𝑥4,𝑋𝑋5=𝑥𝑥5,𝑋𝑋6=𝑥𝑥6⁄ }
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠)

 (8) 

It is then possible to calculate the probabilities of all the designs d = (𝑋𝑋1 = 𝑥𝑥1,𝑋𝑋2 = 𝑥𝑥2, … ,𝑋𝑋6 =
𝑥𝑥6) of the design space. Designs with the largest probabilities should be recommended.  
Some of them are of course present in Optimal_set, but it is likely that designs not present in 
Optimal_set get a high probability, and be interesting for the design problem.  
The method presented allows uncovering combinations of the levels of the variables that are efficient 
for the objectives considered in the study. It is the strong point of the method: to make 
recommendations according to the values of the variables instead of the designs themselves. This 
information is of course more interesting for designers that may take into account recommendations, 
but also be free to adjust the design according to personal orientations and other constraints or 
objectives, not taken into account in the objective functions optimized. 

4.3 Experiment 2: validation test 
After the analysis of Experiment 1, a second panel of subjects (different of the previous panel) was 
asked to assess the detectability and unpleasantness of different EV sound proposals, including 
recommended designs with the previous method. 17 students (14 males, 3 females) from the École 
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Centrale de Nantes, France, with no reported auditory deficiencies, participated to the test with the 
protocol described in the “Background” section. 18 EV sounds were proposed to the evaluation: 
• 8 sounds (rand1 to rand8 – category random) randomly defined in the experimental space, 
• 2 sounds (design1 and design2 – category designed), designed by a sound designer with 

instructions for “good detectability” and “low unpleasantness”, 
• 8 sounds (reco1 to reco8 – category reco), recommended by the method described in the previous 

sections (largest probability). 
To be able to assess the experimental error in the assessments, 4 repetitions of each sound were 
proposed. In total, each participant had to assess 72 (18*4) EV sounds, proposed in a random order. 
The global performances of the sounds and of the sound categories (random, designed, reco) were 
compared using Duncan Multiple Comparison tests. 

5 RESULTS 

5.1 Experiment 1: IGA test 
To show the convergence of the solutions across the different generations, the fitness (N.B. the lower, 
the better) of the entire population of sounds can be examined. Since there are two objectives, the 
fitness can be reduced to the sum of the two objectives (the value of the detection time has been scaled 
so that its range matches the one of the unpleasantness). Of course, this is not how the IGA operates (it 
is a multiobjective optimization) but this reduction to a single objective is a convenient way to display 
the results. Figure 2 (left) shows the average sum of the two objectives calculated across all the 
generations, and averaged over all participants, with the standard error bars. This is plotted for two 
conditions, the mean value of the solutions of a generation, and the minimum value of a generation. A 
diminution of the fitness is noticed, both for the mean and the minimum value. This means that the 
adaptation of the EV sounds generated by the IGA to the problem is noticeable after 6 or 7 
generations. This is also a sign of the reliability of the experimental protocol for the assessment of the 
detection time and the unpleasantness, and a correct tuning of the IGA parameters. 

 
Figure 2. (left): Average values of the sum of the two objectives (unpleasantness and 

detectability) by generation. (right): Scatterplot of the average performances of the different 
EV sounds 

The Optimal_Set counts N=113 sounds. All designs are present once, except d1(A1 B4 C4 D4 E2 F1) 
present twice and d2(A2 B4 C4 D4 E1 F1) present 4 times. The occurrences of each level of the 
variables in Optimal_Set are given in Table 2. To define the variables for which the occurrence of the 
levels is not equiprobable, a multinomial goodness of fit test of the distribution of the occurrences was 
carried out. 
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Table 2: Occurrences of the levels of the variables in Optimal_set 

 A B C D E F 
Level 1 35 14 19 27 39 36 
Level 2 20 36 21 28 23 33 
Level 3 31 33 23 25 28 24 
Level 4 27 30 50 33 23 20 
Multinomial 
test Signif. N.S. * ** N.S.  N.S. N.S. 
 *: p<0.05 **: p<0.01 N.S.: not significant 
 
Only two variables, B(frequency) and C(Harmonic/noise proportion), obtain occurrences significantly 
different from a random distribution at the 5% level. For the frequency of the sounds, the level B1 
(low frequency) is under-represented (size = 14). For the Harmonic/noise proportion, the level C4 
(broad band noise absent) is over-represented (size = 50). For the whole group of participants, it seems 
necessary to avoid low frequencies and broadband noise for the high detectability and low 
unpleasantness of EV sounds. For the other variables (and their possible interactions), it is not possible 
to make recommendations with this simple sorting one variable at once. 

5.2 Analysis of the sound of Optimal_set 

5.2.1 Independence test of the variables 
With the definition of the N designs of Optimal_set, contingency tables of all pairs of variables were 
formed. The results of the Chi-square test of independence (p-value) are given in Table 3. 
The p-values corresponding to a rejection of the independence are presented in bold (a Bonferroni 
correction was applied to deal with the multiple comparisons problem - threshold value of 0.05/15 = 
0.003 – 15 is the number of pairs). For the non-significant pairs, test shows that the dependence in the 
sample is too weak to distinguish it from independence. From this table, the corresponding 
dependence graph can be drawn (Table 3). 

Table 3. Pairwise comparison matrix of the chi-square test of independence (p-value) 

 A B C D E F  

 

A / 0.002 0.003 0.953 0.264 0.393 
B  / 0.015 0.001 0.052 0.109 
C   / 0.001 0.530 0.466 
D    / 0.219 0.026 
E     / 0.001 
F      / 

 
The graph shows that two groups of independent variables can be considered in Optimal_set: 
{𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷} and {𝐸𝐸,𝐹𝐹}. The probability law of the selection process is then given by: 

P�A = 𝐴𝐴𝑖𝑖, B = 𝐵𝐵𝑗𝑗, C = 𝐶𝐶𝑘𝑘 , D = 𝐷𝐷𝑙𝑙, E = 𝐸𝐸𝑚𝑚, F = 𝐹𝐹𝑛𝑛� = P�A = 𝐴𝐴𝑖𝑖, B = 𝐵𝐵𝑗𝑗, C = 𝐶𝐶𝑘𝑘, D = 𝐷𝐷𝑙𝑙�. P(E =
𝐸𝐸𝑚𝑚, F = 𝐹𝐹𝑛𝑛) (9) 

The probability can be calculated for all the design samples. Designs with the largest probability are 
recommended. 

5.2.2 Design recommendations  
The 8 designs with the largest probability are presented in Table 4. They present combinations of 
variables that are interesting for the optimization problem. 

5.3 Experiment 2: validation test 

5.3.1 Multiple comparisons 
From the assessments of the participants according to detectability and unpleasantness, the average 
scores of detectability and unpleasantness of the 18 EV sounds was calculated. To investigate the 



  ICED 

differences in the performances of the sounds according to their category (reco, designed, random), 
the average scores with their standard errors are presented in Figure 3 left (Unpleasantness) and right 
(Detection time). To study the differences in the average score, a Duncan multiple comparison test is 
carried out for every pair of sounds (significant threshold: p = 0.05). The results are presented with 
bold lines connecting the sounds in the figures. When sounds are connected, pairs are not significantly 
different, whereas they are when not connected.  

Table 4. Definition of the 8 recommended designs (design variables’ levels) 

 A B C D E F 
reco1 A3 B2 C2 D2 E1 F1 
reco2 A1 B4 C4 D4 E1 F1 
reco3 A2 B4 C4 D4 E1 F1 
reco4 A3 B2 C2 D2 E3 F2 
reco5 A1 B4 C4 D4 E3 F2 
reco6 A2 B4 C4 D4 E3 F2 
reco7 A1 B2 C4 D2 E1 F1 
reco8 A4 B3 C4 D2 E1 F1 

 
According to unpleasantness, the recommended designs (reco) are significantly more unpleasant than 
the two other categories (Figure 3 left). 
According to detection time, all the categories are significantly different: the recommended designs 
(reco) are significantly more detectable than the two other categories (Figure 3 right). 
The results are a little disappointing because they don’t show that in average, the recommended 
designs are always better than the other proposals. But given that the objective are conflicting, we 
cannot rule out the assumptions that it is even not possible to find, in our design space, 8 designs that 
dominates all the designs of our design space. 
 

 
Figure 3. Bar graph of the average value of the unpleasantness (left) and Detection time 

(right) for the different EV sounds categories. Non significant differences between pairs of 
sounds (p>.05) are linked with an horizontal line (Duncan multiple comparisons test). 

The method presented is still interesting because it allows the definition of EV sounds that are 
significantly more detectable than other proposals. 

5.3.2 Average assessments 
To have a more accurate view of the results, Figure 2 (right) presents the average performances of 
each EV sounds of the three categories (reco, designed, random) according to detection time and 
unpleasantness.  
It is clear on Figure 2 that all the recommended sounds (reco) do not Pareto-dominate all the other 
sounds. The Pareto front is made of 3 recommended sounds (reco3, reco2, reco1), one designed sound 
(Design1) and 2 random sounds (rand2 and rand4). 
It is noticeable that the range of the random sounds according to unpleasantness is large, but very 
narrow for detectability: it is unlikely to obtain detectable EV sounds by choosing them randomly. 



ICED 

The two designed sounds obtain average performances, the sounds Design1 (Pareto efficient) being an 
interesting trade-off between the two objectives. 
It is also noticeable on Figure 2 (right) that the ranges of the reco sounds according to unpleasantness 
and detectability are large. The most detectable EV sounds are recommended sounds (reco2, reco5, 
reco3 reco6). 
Sounds that are highly detectable seem to be very particular, given that neither random nor designed 
sound obtains comparable performances. The main result is that the recommendation method and the 
experimental protocol using the IGA allow the determination of very detectable EV sounds. The price 
to pay is an increase of the unpleasantness. The recommendation method presented in this paper 
produces interesting results to help the work of a sound designer. 

6 CONCLUSION 

This paper presented a method to make design recommendations after an experiment with an 
interactive genetic algorithm (IGA). The application concerns the bi-objective optimization of the 
unpleasantness and the detectability of sounds for Electric Vehicles, and uses listening tests with a 
panel of participants and an IGA for the multi-objective optimization. 
Based on an analysis of the sounds of the Pareto front of all the participants, the method to make 
recommendations studies the independence of the design variables and calculates a probability score 
of the designs, in order to recommend the designs with the largest probabilities. A validation 
experiment shows that the results are promising: even if the recommended designs do not over-rank 
proposals of a designer according to both objectives, they obtain very good performances according to 
detectability. The next stage of the project will be to explain the relationships between the design 
variables of the sounds and the two objectives. 
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