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Abstract—The subject addressed in the proposed paper is 
the estimation of uncertainty of deterministic forecasts of net 
demand, and a proposal to incorporate this information in the 
energy management system of small scale microgrids. This 
with the aim to decrease CO2 emissions. The information 
regarding the uncertainty of the forecasts is used for the 
scheduling of resources during the optimization stage of the 
energy management system. Results are compared with a base 
case deterministic and perfect forecast scenario to evaluate the 
usefulness of the method. 
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I. INTRODUCTION  

One of the key aspects that make electrical systems 
including renewable energy sources (RES) difficult to 
manage is the impossibility to foresee their precise output. 
The longer the forecasting horizon, the less accurate the 
forecast becomes. This makes planning, scheduling and 
management of resources in a microgrid a non-trivial issue if 
an optimal result is expected. Inaccuracies in net-demand 
(ND) estimations (difference between production and 
consumption) can lead to a variety of issues, going from 
stability problems to sub-optimal utilization of resources and 
performance of the system (i.e. low self-consumption/self-
sufficiency rates or high CO2 emissions levels).  An optimal 
management of a microgrid is also imperative to lower its 
LCOE, which in turn is a key aspect in achieving grid-parity 
for distributed energy systems (DES). With sinking feed-in-
tariffs in many countries, self-consumption and self-
sufficiency are incentivized and viewed as the way-to-go by 
many specialists in small-scale DES [1]. Also, with the 
climate crisis the need of decreasing CO2 emissions in 
energy systems worldwide has gain major importance in 
recent years. In order to decrease CO2 emissions, the best 
possible matching between RES production and consumption 
shall be attained, minimizing the use of electricity from the 
main electric network, that -depending on the country- might 
carry a strong CO2 content. Therefore, the imperative need of 
reliable and meaningful forecasts. An important percentage 
of the state-of-the-art EMS’s require deterministic/discrete 
forecasts of ND as inputs to perform the optimal scheduling 
[2]. Due to the intrinsic stochasticity of RES and electricity 
consumption, a measure of accuracy of the forecasts could 
make them more meaningful for the EMS, eventually 
allowing it to find a better scheduling, with a better matching 
between production and consumption that eventually help to 
lower CO2 emissions of the system. 

II. METHODOLOGY 

The microgrid upon study is supposed to serve a tertiary 
building that is isolated from the main grid with 15kWp of 
solar panels and a 42 kWh of battery storage with a carbon 
footprint of around 40 gCO2/kWh assuming average values 
of cycling life and carbon footprint during production of the 
battery [4]. The consumption has been recorded from the 
Drahi-X site École Polytechnique for several years and can 
be accessed in real time to perform the simulations. The 
system is assumed to have a backup 30kWp diesel generator 
(Genset) whose carbon footprint is 1270 gCO2/kWh [5]. 

A database of forecasts and measurements for net 
demand is build using PV production and electricity 
consumption ground measurements. PV production data is 
supplied by the SIRTA laboratory and meteorological station 
(Ecole Polytechnique site) for the years 2016 to 2018 while 
electricity consumption data is taken from the Drahi-X 
building at the same site and for the same period of time, all 
in an hourly-average basis. With these ground 
measurements, net demand is computed as the difference 
between PV production and consumption for every hour of 
the dataset. Regarding the ND -deterministic- forecasts, a 
simple weekly-persistence is used in order to generate the 
forecasts for the entire study period. The dataset is divided in 
two subsets, a ‘training-subset’ of one year (2016/08-
2017/08) and a ‘test-subset’ of one year (2017/08-2018/08). 
Due to the heavy computational burdens and time 
limitations, a sample of the test-set is used composed of four 
equally-spaced sample days per month (7th,14th,21th    and 
28th day of each month) summing up a total of 1152 samples 
(hours). 

A rolling horizon (RH) strategy is used for the scheduling 
of the battery power delivery with different optimization 
time horizons, going from one to thirty-six hours ahead. This 
means that the scheduling optimization algorithm is run 
every hour and optimizes for a given time horizon utilizing 
the ND forecasts. The objective of the energy management 
system (EMS) is to reduce the CO2 emissions of the 
electricity delivered by the microgrid.  Three different types 
of forecasts are compared: perfect forecast (PF), 
deterministic forecast (DF) and the inter quartile adjusted 
mean (IQAM). With the PF the EMS has the exact 
information about the upcoming ND. With the DF, EMS is 
supplied with the weekly-persistence forecast to perform the 
optimization and scheduling. The IQAM forecast consists on 
obtaining the mean value between quartiles Q2.5 and Q97.5 
of the ensemble of analogs which 
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provide a confidence of 95.7% (97.5% of the measurements 
in the training-subset fall within the two percentiles). This 
mean is adjusted proportionally with a factor that is 
experimentally determined to minimize the error between 
real and forecasted ND in the training set. 

 

  

 

An analogs ensemble method is used to convert the 
deterministic forecast provided by the weekly-persistence 
into a probabilistic one that is used to obtain the IQAM. This 
method is chosen due to its versatility as a data post-
processing method [3] and ability to produce probabilistic 
information out of past ground measurements. The workflow 
principle of the method is shown in Fig. 1, and it lies on the 
availability of two datasets with historical data of ground 
measurements and forecasts. When a new forecast is 
available, it is compared with the forecasts database and a 
certain number of past “similar” forecasts are chosen. This 
number is optimally chosen to achieve the best trade-off 
between resolution and reliability. The corresponding ground 
measurements to those “similar” forecasts are then taken as 
the ensemble of analogs. The dispersion of the samples 
contains information about the uncertainty of the forecast. 
From the same ensemble IQAM is obtained. 

 

 

 

 

 

 

 

 

Fig. 2 Example of the output of the AE method (2017-08-14) 
  

 

 
 

Fig 1. Flow diagram of the analogs ensembles algorithm 
 

Once the forecasts are produced with the three different 
approaches (PF, DF, IQAM) for the test period, the EMS is 
run over the same test period, using different optimization 
horizons (6h, 12h, 24h). An hourly RH strategy is used 
hence the optimization is repeated every hour taking into 
account the latest information available regarding the state 
of the system (state-of-charge (SoC) of the battery) and the 
forecasts (in case they are updated). Simulations are run 
over the sample test period and an average-hourly cost is 
found and used as the measure of performance of each 
strategy. 

III. ANALOGS ENSEMBLES  

To serve as base case to compare the performance of 
the AE to produce meaningful probabilistic forecasts, a 
climatology-like approach is used to produce an ensemble 
of samples too. The climatology ensemble (CE) takes its 
name from the climatology approaches used in the 
meteorological domain to produce a baseline for 
probabilistic forecasts out of historical data of 

meteorological variables such as windspeed, solar 
irradiance, temperature and rainfall, among others. The CE 
are formed by taking the hourly ND measurements of the 
training set forming an ensemble of 365 samples for every 
hour of the day. Once the twenty-four CE are formed, 
symmetric quantiles are found so that the ensembles 
present a confidence of 95%. The confidence is defined as 
the percentage of samples (of measured ND) on the test-
subset that fall within the two quantiles. The quantiles Q3 
and Q97 present an average confidence over 95% and a 
resolution of 12.98kW for the CE of all the hours of the 
day. In this approach the resolution is defined as the 
absolute difference between Q3 and Q97 (in kW). Then, 
the analogs ensembles are formed by taking from the 
training dataset the most similar 60 samples of ND for 
each hour of the test-subset. Similarity is found between 
the forecast for the upcoming ‘t’ hours (optimization time 
horizon) and the forecasts in the training set. The similarity 
criteria is defined in Eq. 1. 

  (1) 

where  is the distance (score/similarity) between 
the forecast for time t and the analog forecast at time t’ in 
the database,  is the weight of the ith variable,  is the 

number of variables,  is the standard deviation of the 
time series of past forecasts of a given variable,  is 
the forecast of the ith variable at time t+j,  is an 
analog forecast sample of the ith variable at time t+j and tw 
is the time window. 
To achieve an average confidence above 95% with the AE 
(as with the CE), the quantiles Q2.5 and Q97.5 have to be 
used yielding an average resolution of 9.57 kW, which is 
26% less with respect to the CE. Given that resolution can 
be interpreted a measure of uncertainty of the forecasts (or 
forecasting skill), one can conclude that the AE method 
produce less-uncertain ensembles than climatology. An 
example of the AE output can be seen in Fig. 2. 

 



IV. ENERGY MANAGEMENT SYSTEM 

The forecast of ND has to be fed to the EMS in order to 
perform the scheduling. The algorithm takes this forecast 
and optimizes for a given time horizon the best strategy for 
the battery and Genset power delivery (optimization 
variables). Given that in reality ND is different than the 
forecasted one, both variables cannot be fixed in the real 
system, otherwise it would collapse as the power balance 
of the system would not be fulfilled. Hence, the genset will 
be left free to compensate differences between forecasted 
and real ND (in case differences are negative) and PV 
production is curtailed in the case the differences are 
positive (more production than consumption). The cost of 
curtailed PV energy is considered as the difference 
between the genset energy cost and the battery energy cost, 
as the PV energy that is curtailed (not stored in the battery) 
shall be replaced in the future by energy taken from the 
genset at the genset cost, as per Eq. 2.  

Ccurt = Cgen - Cbatt = 1270 – 40 = 1230 (gCO2/kWhcurt) (2) 

The cost of charging the battery is considered to be zero, 
as all the CO2 emissions of the battery are charged to the 
energy delivered by the battery, as stated in section II. The 
objective function for the optimization accounts for the 
costs in terms of CO2 emissions per kWh of the system as 
per Eq. 3. 
Ct(Pb,Pg) = Cb*Pb*dt + Cg*Pg*dt (gCO2)  (3) 

where Cb, Cg are the battery and grid cost in terms of CO2 
emissions, Pb , Pg are the battery and grid hourly average 
power and dt is the timestep of the data (1 hour); where  
Cb = 39 gCO2/kWh when Pb > 0 (when battery discharges) 
and Cb = 0 when Pb < 0 (when battery charges); and 
similarly Cg = 1270 gCO2/kWh when Pg > 0 (when Genset 
delivers power) and Cg = CCURT when Pg < 0 (when PV 
energy is curtailed).  
     The constraints of the optimization consist in the upper 
and lower limits for the variables, the state-of-charge 
(SoC) of the battery plus the energy balance of the system. 
An additional constraint is added, to study the behavior of 
the system with and without it, which is the ‘sustainability 
of the SoC’ meaning that the system is forced to leave the 
battery by the end of the optimization horizon with the 
same SoC that it had at the beginning. These constraints 
are formulated in Eqs. 4 to 8. 

Battery limits: Pb < Pb max ,  Pb > Pb min   (4) 
Genset limits: Pg < Pg max ,  Pg > Pg min   (5) 
SoC limits : SoC < SoC max ,  SoC > SoC min  (6) 

 Energy conservation:    Pb + Pg + ND = 0          (7) 
 SoC sustainability:  SoCfinal = SoCinitial                          (8) 

Where Pbmax = -Pbmin = 15kW, Pgmax = -Pgmin = 30kW, 
SoCmax = 100, SoCmin = 0. As mentioned in section II, 
once the forecasts for the test-subset have been generated, 
the optimization is run to generate the optimal scheduling 
for the battery and genset power, for different time 
horizons, including and excluding the SoC sustainability 
restriction (Eq. 8). When Eq. 8 is excluded, the time 
horizons considered are 6h, 12h and 24h. Once the 
optimal strategy has been found (Pb opt and Pg opt), Pb opt is 
imposed in the system (simulated) in real conditions (with 

the real ND). The difference between the real and 
forecasted ND will cause Pg to be different than Pb opt 
which yields different total costs for each of the 
forecasting strategies. Pg is chosen as the pivot variable 
due to its higher power (and energy) capacity (flexibility). 

V. RESULTS 

The results of the different case scenarios are summarized 
in tables I and II. 
 

TABLE I. ERROR AND COST FOR DIFFERENT FORECAST 

SCENARIOS (CASE 1: SOCINI=SOCFINAL) 
MAE (kW) MBE(kW) RMSE(kW) Cost(gCO2/kWh)

PF 0 0 0 4679

DF 2.277 -0.109 3.64 5033

IQAM 2.082 0.372 2.949 5155

PF 0 0 0 3976

DF 2.275 -0.097 3.641 4873

IQAM 2.073 0.395 2940 4892

PF 0 0 0 3926

DF 2.289 -0.108 3.656 4996

IQAM 2.083 0.398 2.952 4898

Time horizon: 6 hours

Time horizon: 12 hours

Time horizon: 24 hours

* The cost is an hourly average value over the entire test-subset 

 
TABLE II. ERROR AND COST FOR DIFFERENT FORECAST 

SCENARIOS (CASE 2: SOCINI≠SOCFINAL) 
MAE (kW) MBE(kW) RMSE(kW) Cost(gCO2/kWh)

PF 0 0 0 2463

DF 2.277 -0.109 3.639 4046

IQAM 2.082 0.372 2.949 3658

PF 0 0 0 3463

DF 2.275 -0.097 3.641 4693

IQAM 2.073 0.395 2.94 4539

PF 0 0 0 3788

DF 2.289 -0.108 3.656 4890

IQAM 2.083 0.398 2.952 4722

Time horizon: 6 hours

Time horizon: 12 hours

Time horizon: 24 hours

* The cost is an hourly average value over the entire test-subset 

 
As expected, the perfect forecast yields the best results on 
both scenarios (with and without SoC constraint), being 
the difference higher for shorter time horizons in case 2 
and the opposite behavior is observed in case 1. The fact 
of having the real information about what is about to 
happen in the future allows the system to follow exactly 
the optimal strategy therefore obtaining the minimal cost. 
IQAM performs better than DF in case 2 for all time 
horizons, with differences ranging from 3% to 9%. This is 
reasonable when taking into account that IQAM is the 
result of collecting similar samples to the expected ND, 
yielding an overall smaller error between forecasted and 
real ND. On the other hand, in case 1 it is for longer time 
horizons when IQAM performs better than DF; this 
behavior can be better appreciated in Fig. 3. In this case, 



for the short term, the fact of having the restriction of the 
SoC, seems to counteract to some extent the advantage of 
more accurate forecasts of IQAM, which can be caused by 
the non-linearity of the cost function. This means that, 
over and underestimation of the ND weight different in 
terms of cost. However, the precise reason of this 
behavior for shorter time horizons (observed in Fig. 3) is 
yet to be analyzed. 
 

    
 

Fig 3. Comparison between costs using DF and IQAM (case 1: 
SoCini=SoCfinal) 

 
Overall costs are higher in case 1, which suggest that 
leaving the battery with no restriction regarding the final 
SoC allows the system to do better in the scheduling. This 
can be the result of having this arbitrary constraint that not 
necessarily is optimal from the point of view of cost, and 
not necessary from the point of view of the SoC as the 
algorithm always keeps it within the allowed limits. The 
costs decrease with time horizon in case 1 and the 
opposite behavior can be observed in case 2. This is 
observed in Fig. 4.  

 

 
 

Fig 4. Average cost of the system using perfect forecast with and without 
the SoC constraint 

 
It is interesting to note in Fig. 4 that the difference for 6h 
time-horizon surpasses 2kW, while for 36h it is practically 
zero. From the same figure it seems that the best 
combination is case 2 (no SoC restriction) and shorter 
time horizons for optimization. This could be explained 
by the fact that by optimizing for longer periods of time, 
will make the systems to take decisions that are good for 
the long term but not for the short term. Given that the 
system is run every hour (RH strategy), the only value that 
is actually used (out of all the future optimal-values 
obtained by the scheduling algorithm) is the one for the 
next hour. If this value is optimized for a longer period of 

time, it is understandable that could not be the optimal in 
the short term (i.e. next hour). 

VI. CONCLUSIONS 

-The AE method present an advantage over ND-
climatology in terms of resolution (for equal confidence 
level), being a viable alternative to produce probabilistic 
information out of deterministic ND forecasts, regardless 
the source of the latter.  
-IQAM is a viable alternative to take into account the 
uncertainty of a deterministic ND forecast (reflected in the 
spread between quantiles) and to convert it in a single 
value that can be input in a linear-programming-based 
EMS, that performs power scheduling. 
-Shorter optimization time horizons seem to perform 
better in terms of CO2 emissions than longer ones, which 
can be explained by the fact that optimal strategies made 
with a long-term view, are not necessarily optimal in the 
short-term (which takes more importance when a RH 
strategy is used). 
-The restriction of the SoC (SoCini = SoCfinal) seems to be 
unnecessary and counterproductive as it yields overall 
higher costs in terms of CO2 emissions. The boundary 
constraints (upper and lower limits for the SoC) are 
sufficient to keep the battery within its working limits. 
-For the present case study, putting no constraint on the 
final SoC and a 6h optimization horizon is the 
combination that yields the lowest levels of CO2 
emissions per hour. 

VII. ONGOING WORK 

The study of an grid connected system with the ability to 
send energy to the main grid is one of the next steps of the 
study. This will be accompanied by the utilization of the 
CO2 emissions of the main grid in real time which are 
variable (some times higher and some times lower than 
the battery value), which opens the possibility of doing 
CO2 trading; specially in moments when the solar 
production is low hence, utilization of the battery for peak 
shifting is useless. 
Besides, we want to study different objectives for the 
optimization, such as operation costs and self-
consumption/self-sufficiency. The objective is to study 
how the optimization for one objective affect the other 
ones, either in a positive or a negative way. 
A real microgrid is being deployed in order to test the 
algorithms developed and to observe other constraints and 
issues that might not be visible in the simulations. 
Demand side management is being implement as part or 
the EMS as a way to deal with diurnal variability in the 
PV production to try to minimize the requirement of 
storage and/or optimize its use. The study is being carried 
out following a real case of a microgrid being deployed in 
a tertiary sector building. 
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