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Abstract. The paper deals with the equilibrium configurations and their stabil-

ity study of a new type of compliant tensegrity mechanism based on dual-

triangle structures, which actuated by adjusting elastic connections between the 

triangle edges. For a single segment of such mechanism, the torque-deflection 

relation was obtained as a function of control inputs and geometric parameters. 

It was proved that a single section of the mechanism can has either a single or 

three equilibrium configurations that can be both stable and unstable. The de-

rived conditions of stability were used to choose control inputs ensuring the 

mechanism controllability, which was illustrated efficient to give the corre-

sponding control algorithm. The structure composed of two segments in serial 

was also analyzed and an equivalent serial structure with non-linear virtual 

springs in the joints was proposed. It was proved that the stiffness of such struc-

ture decreases while the external loading increases, which may lead to the buck-

ling phenomenon. Then the control algorithm based on the above principle was 

carried on, and the obtained results are confirmed by the simulation examples.  

Keywords: Tensegrity mechanisms; Equilibrium configurations; Stability anal-

ysis; Stiffness analysis; Mechanism control. 

1 Introduction 

In designing conventional robotic mechanisms, only rigid parts are usually used for 

connecting at articulating joints (such as hinges, axles, or bearings), while elastic 

deformation of links/joints are considered undesirable. However, there are a growing 

number of applications that require compliant mechanisms that contain passive or 

active elastic members such as springs or motors, and can gain their motions from the 

constrained bending of flexible parts. This allows users to increase the flexibilities of 

devices and achieve complex motions in very constraint environment. Consequently, 

in the field of robotics, many new kinds of manipulators appeared, with multi degree 

of freedom, and a large or even infinite degree of kinematic redundancy [1, 2, 3, 4, 5, 

6]. 
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Generally, the robotic manipulators can be classified into three types, conventional 

discrete, serpentine, and continuum robots [7]. The first one is made of traditional 

rigid components, usually used in industry. The serpentine robots use discrete joints 

but combine very short rigid links with a large density joints, which produce smooth 

curves and make the robot similar to a snake or elephant trunk [8]. Different with the 

serpentine robots, the continuum robots do not contain any rigid links or joints, they 

are very smooth and soft, bending continuously when working [9].  

Both the serpentine and continuum robots received very great attention in the re-

cent years, their highly articulated structures make them well suited for many applica-

tions, such as inspection and operation in highly constrained environments [10]. But 

the pure soft continuum robot cannot provide great output force, and considering at 

the application field, difficulties of design and analysis, the research of it is not so 

more as the serpentine robots. Thus, combining rigid and elastic or soft components to 

make part of robot manipulator becomes a popular and useful practice. The typical 

earlier hyper-redundant robot designs and implementations can be date to 1970’s, 

[11], which includes a series of plates interconnected by universal joint and elastic 

control components for pivotable action with respect to one another, through adjust-

ing the elastic control components, it can be pivoted to desired positions resulting in a 

snake-like movement of the entire arm assembly [12, 13, 14, 15]. 

Nowadays, a very promising trend in compliant robotics is using a series of similar 

segments based on varies tensegrity mechanisms, which are assembly of compressive 

elements and tensile elements (cables or springs) held together in equilibrium [16, 

17]. This paper concentrates on the stiffness analysis and equilibrium stability of a 

new type of compliant tensegrity mechanism composed of two rigid triangle parts, 

which are connected by a passive joint in the center and two elastic edges on each 

sides with controllable preload. Some kinds of the tensegrity mechanisms have been 

already studied carefully in literature [18, 19]. In particular, the cable-driven X-shape 

tensegrity structures were considered in [20, 21], where each section was composed 

of four fixed-length rigid bars and two springs. For this mechanism, the authors inves-

tigated influence on the cable lengths on the mechanism equilibrium configurations, 

which maybe both stable and unstable. Special attention was paid to the work space 

and singularities analysis. Another group of related works [19] deals with the mecha-

nism composed of two springs and two length-changeable bars. The authors analyzed 

the mechanism stiffness using the energy method, and demonstrated that the stiffness 

of this mechanism always decreases when it is subjected to external loads with the 

actuators locked, which may lead to “buckling”. Some other research in this area [22] 

focus on the three-spring mechanisms, for which the equilibrium configurations sta-

bility and singularity were analysed. Using these results the authors obtained condi-

tions under which the mechanism can work continuously, without the “buckling” or 

“jump” phenomenon. There are also some research studying a four-legged parallel 

platform [23], which is based on the compliant tensegrity mechanisms. Here, each leg 

consists of a piston and a spring in series, which allows the platform to achieve in the 

desired position and orientation. The authors investigated the loaded equilibrium con-

figurations and numerically computed the platform stiffness. However, the tensegrity 

mechanism based on dual-triangles were not studied in robotic literature yet. 
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This paper focuses on the stiffness analysis of a new tensegrity mechanism, which 

is based on rigid dual-triangles connected by a passive joint that is actuated by adjust-

ing elastic connections between the remaining triangle edges. This structure is proved 

to be very promising for designing of multi-section series chain possessing very high 

flexibility [24]. The loaded and unloaded stiffness analysis of two-segment mecha-

nism were carried out in detail. The results provide a good base of the study of the 

multi-segment manipulators in the future work. While different from our previous 

research, here we concentrate on the equilibriums computing, the stability analysis 

and the selection of the mechanism geometric parameters, which are both for symmet-

rical and nonsymmetrical control inputs of this mechanism. Then one control algo-

rism based on the equilibrium condition for this mechanism was presented in this 

paper, which allows to define the suitable control inputs for the elastic parts of this 

mechanism and get the desired equilibrium configurations. The simulation for both 

loaded and unloaded mode were carried on, the results demonstrated that this algo-

rithm can maintain the desired stable equilibrium configuration, and avoid the nega-

tive equivalent rotational stiffness causing unfeasibility of the desired configuration. 

2 Analysis of A Single Segment Mechanism 

2.1 Geometrical Model and Static Equilibrium Equation 

 

Fig. 1. Geometry of a single segment mechanism. 

Let us consider first a 1-d.o.f. segment of the total flexible structure to be studied, 

which consists of two rigid triangles connected by a passive joint whose rotation is 

constrained by two linear springs as shown in Fig. 1. It is assumed that the mechanism 

geometry is described by the triangle parameters 1 1( , )a b  and 2 2( , )a b  , and the mech-

anism shape is defined by the angle that can be adjusted by means of two control 

inputs influencing on the spring lengths  1L  and 2L . Let us denote the spring lengths 

in the non-stress state as 
0

1L and 
0

2L ，and the springs stiffness coefficients 1k  and 2k .  
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Fig. 2. The torque-angle curves and static equilibriums for 
0 0

1 2L L  (
0 0q  ). 

To find the mechanism configuration angle  q  corresponding to given control in-

puts 
0

1L and 
0

2L , let us derive first the static equilibrium equation. Here, the forces 1F , 

2F  generated by the springs can be obtained from Hook’s law as follows.  

 
0 0

1 1 1 1 2 2 2 2( );     ( )F k L L F k L L     (1) 

where 1L and 2L  are the spring lengths AD , BC  corresponding to the current val-

ue of the angle q. These values can be computed from the triangles AOD and 

BOC  using the formulas 

 

2 2

1 1 1 2 1 2 1

2 2

2 2 1 2 1 2 2

( ) 2 cos( )

( ) 2 cos( )

L c c c c

L c c c c

 

 

  

  
 (2) 

where 
2 2

1 1 1c a b  , 
2 2

2 2 2c a b   and the angles 1 , 2   are expressed via the 

mechanism parameters as follows 

 1 12 q   , 2 12 q   , 12 1 1 2 2atan( / ) + atan( / )a b a b   

The torques 1 1 1M F h  , 2 1 1M F h   created by the forces 1F , 2F  in the passive 

joint O can be computed using the triangle area relations 1 1 1 2 1sin( )L h c c  , 

2 2 1 2 2sin( )L h c c   of AOD  and BOC , which yield the following expressions 

 

0

1 1 1 1 1 1 2 1

0

2 2 2 2 2 1 2 2

( ) (1 ( )) sin( )

( ) (1 ( )) sin( )

M q k L L c c

M q k L L c c

 

 

  

  
 (3) 

where the difference in signs is caused by the different direction of the torques gener-

ated by the forces 1F , 2F  with respect to the passive joint. 
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Further, taking into account the external torque extM  applied to the moving plat-

form, the static equilibrium equation for the considered mechanism can be written as 

follows 

 1 2( ) ( )+ 0extM q M q M   (4) 

Solving this equation we can get the rotation angle q  defining the mechanism 

equilibrium configuration and corresponding to the control inputs
0

1L , 
0

2L  and the ex-

ternal torque extM  applied to the moving platform. This equation is highly nonlinear 

and cannot be solved analytically, so it is reasonable to apply the numerical Newton 

technique, which leads to the iterative scheme 

  1 ( ) ( )k k k k

extq q M q M M q     (5) 

where 1 2( ) ( ) ( )M q M q M q  , and the derivative ( ) ( )M q dM q dq   can be comput-

ed analytically, in order to speed up the computations. 

2.2 Equilibrium Configurations and Their Stability 

Let us now evaluate the stability of the mechanism under consideration, which shows 

its resistance against the external disturbances. In general, this property highly de-

pends on the equilibrium configuration defined by the angle q  , which satisfies the 

equilibrium equation ( ) 0extM q M  . As follows from the relevant analysis, the 

function ( )M q  can be either monotonic or non-monotonic one, so the single-segment 

mechanism under study may have multiple stable and unstable equilibriums, which 

are studied in detail below. 

To analyze the mechanism equilibriums, let us consider the torque-angle curves 

1 2( ) ( ) ( )M q M q M q   defined by (3) and presented in Fig. 2 [24]. It is clear that for 

the monotonic function ( )M q  with negative derivative ( see Fig. 2a ) increase of the 

external loading extM  always leads to higher mechanism resistance, so the equilibri-

um is unique and stable. However, in the non-monotonic case, while increasing the 

external loading, it is possible to achieve a point where the mechanism does not resist 

any more and suddenly changes its configuration as shown in Fig. 2b. It is worth men-

tioning that similar phenomenon can be observed in other mechanism and is known in 

mechanics as “buckling” [25]. Hence, in the non-monotonic case, there maybe three 

solutions of the equilibrium equation (two stables and one unstable).  

As follows from the above presented figures, the static equilibrium defined by an-

gle q is stable if and only if the corresponding derivative ( )M q  is negative. However, 

taking into account possible shapes of the torque-angle curves ( )M q  that can be ei-

ther monotonic or two-model one, the considered stability condition can be simplified 

and reduced to the derivative sign verification at the zero point only, i.e. 
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  
0

0
q

M q


   (6) 

which is easy to verify in practice. It should be noted that here the derivative ( )M q  

represents the equivalent rotational stiffness of the mechanism for the unloaded con-

figuration with q=0.  

To express the above derivative ( )M q  analytically, let us represent the function 

( )M q  in the following way 

  
   

0 0

1 2
1 2 1 1 1 2 2 2

1 1 2 2

1 sin 1 sin
L L

M q c c k c c k
L L

 
 

   
           

   
 (7) 

This allows us to express the mechanism stiffness in general case as follows 

 
   

     

0 0

1 2
1 2 1 1 1 2 2 2

2 2 0 2 2 0
2 21 2 1 1 1 2 2 2

1

1 1 2 2

3 3

1 1 2

2

2

1 1( )
L L

c c k cos c c k cos

c c k L c c k L
sin sin

M q
L L

L L

 
 

 
 

   
         

   

 

 

 (8) 

For the special cases 0q   and 12q   , which are needed for further analysis, the 

above expression is simplified respectively to 

  
    

2 0 0
2 2 0 0 12 1 1 2 2
1 2 1 1 2 2 1 2 12 1 2

122

30

1

( )
q

M q
LL

sin k L k L
c c k L k L c c cos k k







 
     









 (9)

 
 

  

120

0

1
1 2 1 12

12

0 2
2 2 02 12

1 2 2 1 2 1 1

1 2

3

12

( ) 2 1
2

2
1

2

q

L
c c k cos

L sin
c c k c c k L

c c

M q
L

L












 
   

 

 
   



 



 (10) 

where      2 2

12 121 21 22 cosL c c c c    ,   2 2

1 22 121 212 cos2 2L c c c c    . 

Here the geometry constrain is taken into account which making sure that triangles 

AOD  and BOC  (See Fig. 1) exist at the same time.  

Let us also consider in detail the symmetrical case, for which 1 2a a , 1 2b b , 

1 2c c , 1 2k k , 1 2

o oL L . In this case, we can omit some indices and present the 

torque-angle relationship as well as the stiffness expression in the more compact 

forms: 

   0 12
122 cos sin cos sin

2 2

q
M q ck c q L




 
  

 
 (11) 
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0 12

122 cos cos cos cos
2 2

( )M q
q

ck c q L



 

 


 


 (12) 

 

Fig. 3. Monotonic and non-monotonic regions of the parameter plane for 1 2

o oL L  

where the control input 
oL  must satisfy the condition 0 2oL b  , as follows from 

the mechanism geometry (Fig. 1). To distinguish the monotonic and non-monotonic 

cases presented in Fig. 2, it is also necessary to compute the derivative ( )M q  for the 

unloaded equilibrium configuration 0q  , which after simplification can be ex-

pressed in the following way  

   0

2 22( )
q

ok b L bM q a

    (13) 

The latter allows us to present the condition (6) of torque-angle curve monotonicity as 

  0 22 1 ( )L b a b   (14) 

and separate the parameter plane in two regions, monotonic and non-monotonic ones 

as shown in Fig. 3. As follows from Fig. 3a, the unloaded equilibrium is always stable 

if a b . Otherwise, to have stable unloaded equilibrium, the control inputs 1 2

o oL L  

should be higher than certain value 

  
2

2 1 ; 1, 2o

iL b a b i   
 

 (15) 

The monotonic and non-monotonic cases are also illustrated by Fig. 3b, which in-

cludes the energy curves  
22 0

1

1
( ) ( )

2
ii

E q k L q L


  as the function of the rotation 

angle q. As follows from this figure, the energy ( )E q  has either a single minimum 

0q   corresponding to a stable equilibrium, or two symmetrical minima 
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 

0

2 2
2 arccos

2
e

L b
q

b a

 
  
 
 

 (16) 

 

Fig. 4. Location of stable “●” and unstable “o” equilibriums with respect to geometric bounda-

ry  12 12,  . 

and a local maximum 0q   corresponding to two stable equilibriums and one unsta-

ble equilibrium. 

For the symmetrical case with equal control inputs 
0 0

1 2L L , let us also compute the 

torques (7) at the boundary points 12q   . 

   
12

0 2 2

2 2

2 22
2

( )
q

b a
abk

M q L a b
a b

 


   (17) 

which allows us to decide if the stable equilibriums in the non-monotonic case are 

located inside of the interval of feasible rotation angles  12 12,q     . It can be 

proved that the relevant condition can be expressed as (18), and allows user to esti-

mate if the energy minimum is achieved inside or on the border of the feasible region 

of q. A physical interpretation of this non-equality is shown in Fig. 4, where two cases 

are presented. In the first case, the mechanism is unstable in the desired configuration 

q=0 and jumps to one of two possible stable configurations eq q   that are located 

inside of mechanical limits.  

 
 2

0

2

2 2

2 b a
L

b a




  (18) 

In the second case, the mechanism is also unstable in the equilibrium configuration 

q=0 but it jumps to one of the mechanical limits 12q   (because the stable configu-

rations are out of the limits). So, a static error appears in both cases, whose value is 
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equal to either 12  or eq . For this reason, it is necessary to avoid in practice the 

parameters combinations producing non-monotonic torque-angle curves. 

 

 

Fig. 5. Regions of equilibrium stability for different inputs
0

1L ,
0

2L . 

It is also useful to investigate the case when the control inputs are not equal, i.e.
0 0
1 2L L , assuming that they produce the desired stable configuration with the output 

angle 0q  . In this case, the torque and its derivative can be presented as follows. 

   2 0 012 12
12 1 22 cos sin sin sin

2 2

q q
M q c k q ck L L

 


  
   

 
 (19) 

  
0 0 0 0

2 2 1 2 1 22 cos cos sin( )
2 2 2 2

L L L Lq q
k b a q k bM q a

  
   


 


 (20) 

where all notations are the same as in the above expressions (7) and (8). It is clear that 

to implement such control, the desired configuration must correspond to stable equi-

librium for which ( ) 0M q  , ( ) 0M q  . It is also obvious that for 
0 0

1 2L L  the equi-

librium correspond to positive angle 0q  , and vice versa.  
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It can be proved from the equilibrium equation that the control inputs 
0

1L , 
0

2L  in-

suring the desired output angle q  must satisfy the linear relation 

 
0 012 12
1 2 12sin sin 2 cos sin

2 2

q q
L L c q

 


 
   (21) 

which gives infinite set of control variables  0 0

1 2,L L , which may correspond either to 

a stable or unstable equilibrium, depending on the derivative ( )M q . To analyze sign 

of the derivative, let us consider separately two cases: a b  and a b . In the first 

case, when a b  and mechanism geometry imposes the constrain 2q  , so all 

three terms of (20) are negative, and the desired equilibrium configuration q  is stable. 

In the second case, when a b  and the angle q maybe out of the range  2, 2  , 

and the equilibrium maybe unstable. Corresponding separation curves can be found 

from the conditions ( ) 0M q   and ( ) 0dM q dq  , which yield the following system 

of linear equations with respect to the control variables 
0

1L , 
0

2L . 

 
0 012 12
1 2 12sin sin 2 cos sin

2 2

q q
L L c q

 


    
    

   
 (22) 

  0 0 2 2

1 2sin cos sin cos 2 cos
2 2 2 2 2 2 2 2

a q b q a q b q
L L b a q

   
        

   
 (23) 

whose solution allows us to present the stability condition in the following form.  

 

 

0
3 31

0
3 32

2 cos sin
2 2

2 cos sin
2 2

L b a a q q

b a b b

L b a a q q

b a b b

  
    

  

  
    

  

 (24) 

It is worth mentioning that in the case of 0q   the above expressions give the stabil-

ity condition (24). 

Hence, to achieve the desired configuration q  it is necessary to apply the control 

inputs 
0

1L , 
0

2L  satisfying both the equilibrium condition (22) and the stability condi-

tions (23). Corresponding regions of 
0

1L , 
0

2L  are presented in Fig. 5, which clearly 

shows for which combination of control inputs the desired configuration q can be 

reached geometrically and it is statically stable. This results are also confirmed by the 

case study presented in Fig. 6 that demonstrate the monotonic and non-monotonic 

torque-angle curves for the parameters a/b=0.75, and control inputs (a) 
0

1 0.88L b ,

0

2 0.92L b , and (b) 
0

1 0.75L b ,
0

2 0.65L b , which produce the unloaded equilibrium 
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configurations with the same angle 
0 6q   (but with different stability properties). 

It should be also noted that here there are only two equilibriums in the non-monotonic 

case presented in Fig. 6b, while normally three equilibriums exist for equal control 

inputs as shown in Fig. 2b. The latter is caused by the geometric constrains which 

eliminate the third equilibrium for non-equal control inputs. 

 

Fig. 6. The torque-angle curves and static equilibriums for 0 0

1 2L L  ( 0 6q  ). 

2.3 Controlling Mechanism Configurations 

As follows from the mechanism structure (see Fig. 1), the desired configuration is 

defined by single variable q which is adjusted by two control variables 
0

1L and
0

2L . The 

latter creates redundancy and ambiguity in control inputs selection. To eliminate this 

difficulty, it is reasonable to define 
0

1L and
0

2L  in a symmetrical way, i.e. as 

0 0

1L L   and 
0 0

2L L  . This allows us to rewrite (19) as follows  

 2 2 02 ( )sin( ) sin( ) cos( )
2 2

q

q q
M k b a q L b a

 
      

 
 (25) 

and present the control law ( )q  for the unloaded case ( 0extM  ) in the following 

way 

 
0 2 2sin( 2) ( )sin( )

( )
cos( 2)

L b q b a q
q

a q

 
   (26) 

It should be noted that the desired configuration defined by the angle q should al-

ways satisfy the geometric constrains 

 
 

 

2atan ,

2atan ,

q a b a b

q a b a b

 

  
 (27) 
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Fig. 7. Relations between the control input  , sensitivity coefficient K, stiffness coefficient Kq  

and the desired configuration angle q (unloaded case 0extM  ). 

 

Fig. 8. Relations between the control input  , sensitivity coefficient K, stiffness coefficient Kq  

and the desired configuration angle q (loaded case 0extM  ). 

that can be easily obtained from Fig. 1. The obtained control law ( )q  as well as the 

corresponding sensitivity and stiffness coefficient are presented in Fig. 7. As follows, 

from these figures, for the proposed control strategy it is necessary carefully select 

initial values of control inputs 
0 0

1 2L L , in order to avoid the negative equivalent rota-

tional stiffness causing instability of the desired configuration of the mechanism. 

It is worth mentioning that the above equations were derived assuming that the 

external loading extM is equal to zero. So, in more general case when 0extM  , the 

control law must be revised, the corresponding sensitivity and stiffness coefficient are 

presented in Fig. 8. It can be proved that to achieve the desired configuration with the 

angle q and the external loading extM , the control input   should be computed using 

an expression 

 
0 2 22 sin( 2) ( )sin( )

( , )
cos( 2)

ext
ext

M k L b q b a q
q M

a q

   
 


 (28) 

which shows that in the loaded case, the symmetrical configuration with q0=0 is 

achieved by applying a non-zero control input that compensate the external loading. 
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However, it is necessary to be careful about selection of the parameter L
0
 which in 

some cases can cause negative stiffness leading to the buckling phenomenon. 

3 Analysis of A Two-Segment Mechanism 

3.1 Stiffness Analysis of A Straight Configuration 

 

Fig. 9. The two segment mechanism in the “straight” and “non-straight” configurations. 

Let us consider first an aggregated mechanism presented in Fig. 9, which is composed 

of two segments considered in the previous section. It is assumed that the left hand-

side of the mechanism is fixed and the desired configuration corresponds to the 

“straight” shape with 1 2 0q q  that is achieved by applying equal control inputs to 

all segments. Under the influence of the external force 
eF , the end-effector moves 

from the unloaded equilibrium configuration 0 0( , ) (4 ,0)T Tx y b to a new equilibrium 

with the end-effector location ( , ) (4 , )T T
x yx y b     corresponding to the nonzero 

angles  1 2,q q . Let us evaluate the mechanism resistance to the external force eF  for 

this “straight” configuration described by the force-deflection relations ( , )x x yF   and

( , )y x yF   . 

It is clear that if the end-effector deflection ( , )x y   is given, the configuration an-

gles  1 2,q q can be computed from the mechanism geometry, using the triangle equa-

tions 

 
1 12

1 12

2 4

2

x

y

b bC bC b

bS bS





   

 
 (29) 

that can be solved using the technic used in the invers kinematics of the two-link ro-

botic manipulator, which yields 

 
 

 

1 2 2

2 2 2

atan2( , ) atan2 ,2

atan2 ,

q y x b bS b bC

q S C

   


 (30) 
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where   2 2 2 2

2 5 4C x b y b b    , 
2

2 21S C   . It is worth mentioning that two 

symmetrical solutions are possible here and both of them may be feasible, i.e. belong 

to the geometric limits described by (27). Then, for each segment the torque generated 

by the elastic virtual spring can be computed using (12), which for this mechanism is 

rewritten as 

    2 22 sin sin , 1, 2
2

o i
i i

q
M q k b a q bL i

 
    

 
 (31) 

 

 

Fig. 10. Force-deflection relations ( , )x x yF   , ( , )y x yF    corresponding to unloaded straight 

configuration for different combinations of geometric parameters , , oa b L  

This allows us to obtain the desired equilibrium equation, which relates the virtual 

spring torques  iM q  and the external force ( , )T

x yF F in the following form 

 
 

 
1

2

0
xT

q

y

FM q
J

FM q

   
   

  
 (32) 
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where
qJ is the Jacobian matrix, which is derived from the geometry model and is 

written as follows 

  1 1 2 1,2 2

2

1 1 2 1,2

2
; det 2

2q q

bS bS bS
J J b S

bC bC bC

   
  

 

，

，

 (33) 

and
1 1cosC q ,

1 1sinS q ,  12 1 2cosC q q  ,  12 1 2sinS q q  . After substitution of 

the virtual torques  iM q  in the above equilibrium equation, we can find the desired 

external force corresponding to the end-effector displacement  ,x y  expressed via 

the angles (q1, q2) 

 
 

 
 

2 2
1 1

20
2 2

sin sin 2
2 , 0

sin sin 2

x T

q

y

F q q b a
kJ q

F q q bL


    

      
     

 (34) 

allowing us to obtain the desired force-deflection relation in the neighborhood of the 

straight configuration where the Jacobian is invertible. Relevant force-deflection 

curves for different combinations of the mechanism parameters are presented in Fig. 

10. 

 

Fig. 11. Force-deflection relations ( , )x x yF   , ( , )y x yF    corresponding to unloaded straight 

configuration with parameters a/b=1.1, Lo/b=0.7. 

As follows from the force-deflection curves presented in Fig. 7, the mechanism 

stiffness behavior for the considered configuration possesses some particularities. In 

particular, at the beginning the mechanism resistance in the x-direction is infinite 

(corresponding curves do not go through the zero point). Further, when the loading is 

increasing, the mechanism resistance behavior is quasi-linear. Hence, the buckling 

phenomenon is observed when the external force increases gradually and the mecha-

nism configuration angles suddenly change from zero to non-zero values. To find the 
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critical force for the buckling, let us compute the limits of ( , )x yF F  while 

 , (0, 0)x y   .  

As follows from the mechanism geometry, which include a triangle with edges 

length of b and 2b , if the first angle 1q   is small enough, the second angle can be 

approximately expressed as 2 3q   . The later allows us to write the Jacobian in the 

following form 

 
0 2

3
q

b
J

b b

 
  
 

 (35) 

and rewrite equation (34) as 

 

2 2

0

0 2 2
2

3 3 3 2

T

x

y

F b b a
k

F b b bL

  

 


      

       
      

 (36) 

that gives us the desired critical forces in the x- and y- directions 

 
   

 

0 2 2

0

0

0

lim 5 2 3

lim 0

o

x x

y y

F F k b a bL b

F F













    
 

 
 (37) 

It should also be mentioned that the buckling phenomenon can be observed if and 

only if  0 2 22 1L b a b  , which in the previous section was considered as the 

boundary condition separating the monotonic and non-monotonic areas in Fig. 3 ( see 

in Eq. 15 ). In this case, the unloaded straight configuration is stable and it resists to 

the external loading if 0

x xF F . In contrast, if the geometry satisfies the opposite 

condition:  0 2 22 1L b a b   as shown in Fig. 10c, the unloaded configuration is 

unstable and the mechanism suddenly jumps from the initial position to slightly dif-

ferent stable equilibriums (even without external loading), which can be treated as the 

“jumping” phenomenon. The properties of the force-diflection relations ( , )x x yF    

and ( , )y x yF    can be also estimated from the 3D-plots presented in Fig. 11, where 

the buckling corresponds to the discontinuty at the point ( , ) (0,0)x y   . 

3.2 Stiffness Analysis of Non-Straight Configurations 

To evaluate the mechanism stiffness for the general case, let us assume that the initial 

unloaded configuration is non-straight, i.e. 2 0q  , which guaranties that the kinemat-

ic Jacobian is non-singular and can be inverted. This allows us to rewrite the equilib-

rium equation in the following way 
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1x T

q q q

y

F x
J K J

F y





 
   

    
  

 (38) 

where the diagonal matrix 1 2( , )q q qK diag K K  is composed of the stiffness coeffi-

cients of the virtual joints  qi i iK dM q dq  described by (20). This equation also 

allows us to express the mechanism 22 stiffness matrix explicitly in the following 

form 

 1T

F q q qK J K J   (39) 

where 

 

2 2

xx xy

F

yx yy

k k
K

k k


 
  
 

 (40) 

is the symmetrical positive definite matrix composed of scalar stiffness coefficients 

xxk , yyk for the directions x and y, as well as a mixed stiffness coefficient xyk . 
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Fig. 12. Sensitivity of the stiffness coefficients of the two-segment mechanism with respect to 

initial unloaded configuration for different geometric parameters. 

 

Fig. 13. Force-deflection relations ( , )x x yF   , ( , )y x yF     corresponding to unloaded non-

straight configuration ( , ) (5, 0)x y    with geometric parameters a/b=1.1, Lo/b=0.7. 

Let us investigate now the sensitivity of the above stiffness coefficients with re-

spect to the control inputs 0

1iL and 0

2iL , assuming that both segments of the mechanism 

are controlled by single inputs, i.e.
0

11 1L var ,
0

21 2L var and
0 0

12 22L L const  , which 

insure the desired unloaded end-point location ( , ) = (4 , 0)x y b x . Corresponding 

computation results for several case studies are presented in Fig. 12, they demonstrate 

that the stiffness of the two-segment mechanism is very sensitive to its initial unload-

ed configuration. In particular, the mechanism stiffness coefficients for the x-direction 

are essentially reducing while the displacement x  is increasing. It should be men-

tioned that, to have the stable equilibrium configuration, both two segments of the 

mechanism should satisfy the stability condition presented in the previous section. 

The latter is illustrated by Fig. 12c, where the right-hand side segment of the mecha-



19 

nism is stable ( 2 0qK  ), while the left-hand side segment is in unstable configuration 

( 1 0qK  ). So the left-hand side segment moves until being stopped by the rotation 

angle constrain. This situation is also in accordance with the control inputs location 

on the parameter plane (
0 0

1 2,L b L b ) shown in Fig. 11c, which allows evaluate the 

segment stability in the unloaded configuration. 

The stiffness properties of the two-segment mechanism for the non-straight initial 

configuration can be also estimated from 3D-plots of the force-diflection relations 

( , )x x yF    and ( , )y x yF    presented in Fig. 13, which correspond to the non-loaded 

displacements ( , ) (5,0)x y   . As follows from this plots, the forces xF  and yF are 

changing continuously with respect to the deflections ( , )x y  , and there is no the 

buckling phenomenon, that was detected for the straight initial configuration (see Fig. 

11 in subsection 3.1). 

Another way of evaluating the mechanism stiffness properties is based on the sin-

gular value decomposition (SVD) of the 2x2 stiffness matrix computed at the initial 

unloaded point. This approach allows us to estimate the max/min compliance of the 

mechanism via the stiffness matrix singular values [26]. Geometrically, it can be also 

described by the stiffness ellipse that is produced by the linear mapping (38) of the 

unit circle 
2 2 1x y   in the deflection space into the force space ( xF , yF ). It can be 

proved that the lengths of the major and minor semi-axes of this ellipse are equal 

respectively to the maximum and minimum singular values of the stiffness matrix. 

Example of the stiffness ellipses for the case a/b=1.1, L
o
/b=0.7 and the evaluation 

though out the workspace is presented in Fig. 14. As follows from this figure, the 

mechanism resistance to the external force in the longitudinal direction is much high-

er than in the transverse one. Also, the mechanism longitudinal compliance increases 

while the initial configuration becomes closer to the straight one. 

 

Fig. 14. Stiffness ellipses of the two-segment mechanism and the evaluation through the work-

space. 
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3.3 Controlling Mechanism Configurations 

To achieve the desired end-point position (x, y), the two-segment mechanism must be 

controlled by two pairs of the control inputs (
0 0

11 12,L L ) and (
0 0

21 22,L L ). To simplify the 

mechanism control, let us apply the asymmetrical approach proposed in subsection 

1.3 allowing to use only two control variables  (
1 2,  ) producing four physical con-

trol inputs: 
0 0

11 1L L  , 
0 0

12 1L L    for the first segment, and 
0 0

21 2L L  ,

0 0

22 2L L   for the second one. Since the considered two-segment mechanism is 

non-redundant, the values of the control variables corresponding to the desired end-

point position can be easily computed using the above presented expressions for the 

two-link manipulator inverse kinematics (30) and one-segment mechanism control 

law (26). The latter yields the following algorithm for controlling law of the two-

segment mechanism: 

1. Using expressions (30), compute the configuration angles 1( , )q x y and 2( , )q x y cor-

responding to the desired end-point position (x, y). 

2. Using expression (26), compute the control inputs 
1 1( )q and

2 2( )q  for the first 

and second segments corresponding to the configuration angles (q1, q2). 

An example of computing based on the above algorithm is presented in Fig. 15, where 

the mechanism parameters a/b=1.1, L
0
/b =0.7 were chosen to ensure the mechanism  

stability in the unloaded mode 0extM  (see subsection 2.3). 

 

Fig. 15. Relations between the required control inputs
1 ,

2 and the desired end-point position 

(x, y) for the two-segment mechanism with geometric parameters a/b=1.1, Lo/b=0.7  (unloaded 

case 0x yF F  ). 
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Fig. 16. Relations between the control input   and the desired end-point position (x, y)  

with geometric parameters a/b=1.1, L
o
/b=0.7 (unloaded case 3, 3x yF F   ). 

In more general case when the external forces ( ,x yF F ) are not equal to zero, the 

control inputs (
1 2,  ) should be computed using equation (28) that includes the 

virtual joint torques ( 1 2,M M ) ensuring the mechanism equilibrium.  

These torques can be obtained from the static equilibrium (32). Corresponding al-

gorithm allowing to find the control inputs (
1 2,  ) for the desired end-point position 

(x, y) for the loaded case as presented below: 

1. Using expressions (30), compute the configuration angles 1( , )q x y and 2( , )q x y cor-

responding to the desired end-point position (x, y). 

2. Using expression (32), compute the joint torques  1 2,q qM M from the external force 

( ,x yF F ). 

3. Using expression (28), compute the control inputs 
1 1 1( , )q M and

2 2 2( , )q M  for 

the first and second segments corresponding to the configuration angles (q1, q2) and 

the joint torques  1 2,q qM M . 

An example of computing based on the above algorithm is presented in Fig. 16, where 

the geometric parameters are similar to the previous figure. 

4 Conclusion 

The paper presents some new results on the equilibrium configurations analysis of a 

new type of compliant tensegrity mechanism as mentioned in our previous paper [24], 

which is composed of rigid triangles connected by passive joints. In contrast to con-
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ventional cable driven mechanisms, here there are two length-controllable elastic 

edges that can generate internal preloading. So, the mechanism can change its equilib-

rium configuration by adjusting the control inputs length. Such design is very promis-

ing and convenient for constructing a multi-section serial structures with high flexibil-

ity, which are needed in many modern robotic applications.  

For a single segment mechanism, the main attention was paid to a symmetrical 

structure composed of similar triangles. In particular, the case of equal control inputs 

was investigated in detail and analytical condition of equilibrium stability was ob-

tained, which allows users to select the suitable control inputs ensuring the mecha-

nism controllability. The control algorithm for such mechanism based on the above 

stable condition analysis was presented also, which was approved efficient through 

simulation for defining different control inputs to get the desired stable equilibrium 

configurations for this type of mechanism. The relation between the external torque 

and the deflection was also obtained allowing to find loaded equilibriums. It was 

proved that depending on parameters combinations, the actuation can lead to either 

the desired mechanism configuration (corresponding to a stable equilibrium) or unde-

sired configuration corresponding to shifted stable equilibrium or joint limits. Be-

sides, similar analysis has been done for the case of non-equal control inputs, and 

equivalent serial structure was proposed where the passive joint was replaced by a 

virtual actuated joint with variable stiffness. It was shown that, to achieve the desired 

stable equilibrium configuration, the control inputs should not only satisfy the condi-

tion of stability, but also been located inside the feasible regions. For a two segment 

mechanism, the buckling phenomenon where detected occurring when the mechanism 

initial configuration is straight. However, in contrast to the traditional buckling, such 

phenomenon does not lead to unstable configuration. The 3D plots of the force-

deflection relation curves were obtained through simulation for both the initial 

straight and non-straight configurations, which demonstrated the continuous change 

of the mechanism stiffness after buckling.  

In future, these results will be used for the stiffness analysis of multi-segment 

mechanisms that may demonstrate unusual behavior under static load and suddenly 

change its configuration, if the control inputs do not satisfy the stability condition.  
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