
HAL Id: hal-03311961
https://hal.science/hal-03311961v1

Submitted on 2 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stiffness Analysis of a New Tensegrity Mechanism Based
on Planar Dual-triangles

Wanda Zhao, Anatol Pashkevich, Alexandr Klimchik, Damien Chablat

To cite this version:
Wanda Zhao, Anatol Pashkevich, Alexandr Klimchik, Damien Chablat. Stiffness Analysis of a New
Tensegrity Mechanism Based on Planar Dual-triangles. ICINCO 2020: 17th International Confer-
ence on Informatics in Control, Automation and Robotics, Jul 2020, Paris, France. pp.402-411,
�10.5220/0009803104020411�. �hal-03311961�

https://hal.science/hal-03311961v1
https://hal.archives-ouvertes.fr


Stiffness Analysis of a New Tensegrity Mechanism  

Based on Planar Dual-triangles 

Wanda Zhao
1
, Anatol Pashkevich

1,2
 Alexandr Klimchik

3
 and Damien Chablat

1,4
 

1Laboratoire des Sciences du Numérique de Nantes (LS2N), UMR CNRS 6004, 1 rue de la Noe, 44321 Nantes, France 
2IMT Atlantique Nantes, 4 rue Alfred-Kastler, Nantes 44307, France 

3Innopolis University, Universitetskaya St, 1, Innopolis, Tatarstan, 420500, Russia 
4Centre National de la Recherche Scientifique (CNRS), France 

Keywords: Tensegrity mechanisms, Equilibrium configurations, Stability analysis, Stiffness analysis. 

Abstract: The paper deals with the stiffness analysis and stability study of a new type of tensegrity mechanism based 

on dual-triangle structures, which actuated by adjusting elastic connections between the triangle edges. For 

a single segment of such mechanism, the torque-deflection relation was obtained as a function of control 

inputs and geometric parameters. It was proved that a single section of the mechanism can has either a 

single or three equilibrium configurations that can be both stable and unstable. Corresponding conditions of 

stability were found allowing user to choose control inputs ensuring the mechanism controllability, and the 

obtained results are confirmed by the simulation examples. The structure composed of two segments in 

serial was also analysed and an equivalent serial structure with non-linear virtual springs in the joints was 

proposed. It was proved that the stiffness of such structure decreases while the external loading increases, 

which may lead to the buckling phenomenon.  

1 INTRODUCTION 

Many modern robotic applications require new type 

of manipulators that possess high flexibility similar 

to an elephant trunk (Rolf, M., Steil, J. J. 2012), 

(Yang, Y., Zhang, W. 2015). Such manipulators are 

usually composed of a number of similar segments 

based on varies tensegrity mechanisms, which are 

assembly of compressive elements and tensile 

elements (cables or springs) held together in 

equilibrium (Skelton, R. E., de Oliveira, M. C. 

2009), (Moored, K. W., Kemp, T. H. et al. 2011). 

This paper concentrates on the stiffness analysis and 

equilibrium stability of a new type of tensegrity 

mechanism composed of two rigid triangle parts, 

which are connected by a passive joint in the centre 

and two elastic edges on each sides with controllable 

preload.  

Some kinds of the tensegrity mechanisms have 

been already studied carefully in literature (Duffy, 

J., Rooney, J. et al. 2000), (Arsenault, M., Gosselin, 

C. M. 2006). In particular, the cable-driven X-shape 

tensegrity structures were considered in (Furet, M., 

Lettl, M., et al. 2018), (Furet, M., Wenger, P. 2018), 

where each section was composed of four fixed-

length rigid bars and two springs. For this 

mechanism, the authors investigated influence on the 

cable lengths on the mechanism equilibrium 

configurations, which maybe both stable and 

unstable. Special attention was paid to the work 

space and singularities analysis. Another group of 

related works (Arsenault, M., Gosselin, C. M. 2006) 

deals with the mechanism composed of two springs 

and two length-changeable bars. The authors 

analysed the mechanism stiffness using the energy 

method, and demonstrated that the stiffness of this 

mechanism always decreases when it is subjected to 

external loads with the actuators locked, which may 

lead to “buckling”. Some other research in this area 

(Wenger, P., Chablat, D. 2018) focus on the three-

spring mechanisms, for which the equilibrium 

configurations stability and singularity were 

analysed. Using these results the authors obtained 

conditions under which the mechanism can work 

continuously, without the “buckling” or “jump” 

phenomenon. There are also some research studying 

a four-legged parallel platform (Moon, Y., Crane, C. 

D., et al 2012), which is based on the compliant 

tensegrity mechanisms. Here, each leg consists of a 

piston and a spring in series, which allows the 

platform to achieve in the desired position and 

orientation. The authors investigated the loaded 



equilibrium configurations and numerically 

computed the platform stiffness. However, the 

tensegrity mechanism based on dual-triangles were 

not studied in robotic literature yet. 

This paper focuses on the stiffness analysis of a 

new tensegrity mechanism, which is based on rigid 

dual-triangles connected by a passive joint that is 

actuated by adjusting elastic connections between 

the remaining triangle edges. This structure is 

proved to be very promising for designing of multi-

section series chain possessing very high flexibility. 

For this mechanism, we concentrate on the 

equilibriums computing, the stability analysis and 

the selection of the geometric parameters and control 

inputs allowing to achieve the desired configuration 

while ensuring its stability. The loaded and unloaded 

stiffness analysis of two-segments structure were 

also carried out in detail. The results provide a good 

base of the study of the multi-segment manipulators 

in the future work. 

2 GEOMETRY ANALYSIS AND 

EQUILIBRIUM EQUATION  

Let us consider first a 1-d.o.f. segment of the total 

flexible structure to be studied, which consists of 

two rigid triangles connected by a passive joint 

whose rotation is constrained by two linear springs 

as shown in Fig. 1. It is assumed that the mechanism 

geometry is described by the triangle parameters 

1 1( , )a b  and 2 2( , )a b  , and the mechanism shape is 

defined by the angle  that can be adjusted by means 

of two control inputs influencing on the spring 

lengths  1L  and 2L . Let us denote the spring lengths 

in the non-stress state as    
0

1L and 
0

2L ，and the 

springs stiffness coefficients   1k and 2k . 
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Figure 1: Geometry of a single segment of the mechanism. 

To find mechanism configuration angle q

corresponding to given control inputs 
0

1L  and 
0

2L , let 

us derive the static equilibrium equation. The forces

1F , 2F generated by the springs can be obtained 

from Hook’s law as follows. 

 
0 0

1 1 1 1 2 2 2 2( );    ( )F k L L F k L L     (1) 

where 1L and 2L  are the spring lengths AD , BC  

corresponding to the current value of the angle q . 

These values can be computed from the triangles 

AOD and BOC  using the formulas 

2 2

1 1 1 2 1 2 1

2 2

2 2 1 2 1 2 2

( ) 2 cos( )

( ) 2 cos( )

L c c c c

L c c c c

 

 

  

  

 (2) 

where 2 2

1 1 1c a b  , 2 2

2 2 2c a b   and  1 , 2  are 

expressed via the mechanism parameters 1 12 q  

; 2 12 q   ; 12 1 1 2 2atan( / ) + atan( / )a b a b  . 

The torques 1 1 1M F h  , 2 2 2M F h    created 

by the forces 1F , 2F  in the passive joint O can be 

computed using the triangle area relations 

1 1 1 2 1sin( )L h c c  , 2 2 1 2 2sin( )L h c c   of AOD  

and BOC , which yield the following expressions 
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  
 (3) 

 

where the difference in signs is caused by the 

different direction of the torques generated by the 

forces 
1F , 

2F  with respect to the passive joint. 

Further, taking into account the external torque 

extM  applied to the moving platform, the static 

equilibrium equation for the considered mechanism 

can be written as follows 

1 2( ) ( )+ 0extM q M q M   (4) 

Solving this equation we can get the rotation 

angle 0q corresponding to the control inputs 0

1L , 0

2L

and the external torque
extM applied to the moving 

platform. This equation is highly nonlinear and 

cannot be solved analytically, so it is reasonable to 

apply the numerical Newton technique, which leads 

to the iterative scheme  

 1 ( ) ( )k k k k

extq q M q M M q     (5) 

where  1 2( ) ( ) ( ), ( )kM q M q M q M q dM q dq   . 



3 STABILITY ANALYSIS OF A 

SINGLE SEGMENT  

Let us now evaluate the stability of the mechanism 

under consideration, which shows its controllability 

in relation to the external load. This property highly 

depends on the equilibrium configuration defined by 

the angle q  satisfying the equilibrium equation

( ) 0extM q M  . As follows from the relevant 

analysis, the function ( )M q  can be either monotonic 

or non-monotonic one, so the mechanism under 

study may have multiple stable and unstable 

equilibriums, which are studied in detail below. 
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Figure 2: The torque-angle curves and equilibriums for 

different combinations of mechanism parameters. 

 To analyse the mechanism equilibriums, let us 

consider the torque-angle curves 

1 2( ) ( ) ( )M q M q M q  defined by Eq. 3 and 

presented in Fig. 2. It is clear from Fig. 2a that for 

the monotonic function ( )M q  with negative 

derivative, the increase of the external loading 

always leads to higher mechanism resistance, so the 

equilibrium is unique and stable. However, in the 

non-monotonic case, while increasing the external 

loading, it is possible to achieve a point where the 

mechanism does not resist any more and suddenly 

changes its configuration as shown in Fig. 2b. It is 

worth mentioning that similar phenomenon can be 

observed in other mechanism and is known in 

mechanics as “buckling” (Jones, R. M.). Hence, in 

the non-monotonic case, there maybe three solutions 

of the equilibrium equation (two stables and one 

unstable). 

As follows from the above presented figures, the 

static equilibrium defined by angle q is stable if and 

only if the corresponding derivative ( )M q  is 

negative. However, taking into account possible 

shapes of the torque-angle curves ( )M q  that can be 

either monotonic or two-model one, the considered 

stability condition can be simplified and reduced to 

the derivative sign verification at the zero point only, 

i.e. 

 
0

0
q

M q


   (6) 

 

and it is easy to verify in practice. It should be noted 

 that here the derivative represent the mechanism 

stiffness for the unloaded configuration. 

To compute the desired derivative for any given 

q , it is convenient to represent the function ( )M q  

in the following way 

    

  

0

1 2 1 1 1 1 1

0

1 2 2 2 2 2 2

sin 1

sin 1

M q c c k L L

c c k L L

 

 

  

 
 (7) 

This allows us to express the mechanism stiffness in 

general case as follows 

 

    

  

     
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1 2 1 1 1

0

1 2 2 2 2

2 2 0 2 2 2 0

1 1

2 2
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1 2 1 1 1 1 2 2 21 2 221

1

1
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L

L LL sin





  


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 
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(8) 

For the special cases, when 0q   and 
12q   (or 

12q   ), the above expression is simplified 

respectively to 

      

 

2 2 2 0 0

1 2 12 1 1 2 2 12

0 0

1 2 12 1 2 1 2

3

1 2 12

0

( )

q
c c sin k L k L

c c cos k k

M

k

L

L Lk

q

L

 

 


 

    









 

(9) 

   

  

10 2

0

1 2 1 12 1 12

0 2 2 0 2

1 2 2 2 1 2 1 2 1 1 2 2

3

1 1

2 1 2

1 ( ) 2 2

q
c c k cos L

c c k L c c

M q L

Lc c k L sin


 

 


  
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 

   

(10) 

where      2 2

12 121 21 22 cosL c c c c    ,  

  2 2

1 22 121 212 cos2 2L c c c c    . 

 

Let us also consider in detail the symmetrical 

case, for which 
1 2a a , 1 2b b , 1 2c c , 1 2k k ,

0 0

1 2L L . In this case, we can omit some indices and 

present the torque-angle relationship as well as the 

stiffness expression in forms that are more compact  

  0 12
122 cos sin cos sin

2 2

q
M q ck c q L




 
  

 
    (11) 



  0 12
122 cos cos cos cos

2 2

q
ck c q LM q





 


 
 

   (12) 

where the control input must satisfy the condition 
00 2L b  , as follows from the mechanism 

geometry (Fig. 1). To distinguish the monotonic and 

non-monotonic cases presented in Fig. 2, let us 

compute the derivative for the unloaded equilibrium 
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Figure 3: Stable and unstable regions of the parameter plane for unloaded equilibrium q = 0.

configuration 0q  , which after simplification can 

be expressed in the following way 

 

   
0

2 2 02
q

k b a LM q b

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




 (13) 

The latter allows us to present the condition (6) of 

torque-angle curve monotonicity as 

20

2 1
L a

b b

  
      

 (14) 

and separate the parameter plane in two regions as 

shown in Fig. 3a. As follows from this figure, the 

unloaded equilibrium is always stable if a b . 

Otherwise, to have stable unloaded equilibrium, the 

control input 1 2

o oL L  should be higher than  

 

 
2

2 1 ; 1, 2o

iL b a b i   
 

  

The monotonic and non-monotonic cases are also 

illustrated by Fig. 3b, which includes the energy 

curves 

 
22 0

1

1
( ) ( )

2
ii

E q k L q L


    

as the function of the rotation angle q. As follows 
from this figure, the energy ( )E q  has either a single 
minimum 0q   corresponding to a stable 
equilibrium, or two symmetrical minima 

 

0

2 2
2 arccos

2
e

L b
q

b a

 
  
 
 

 (15) 

and a local maximum 0q   corresponding to two 

stable equilibriums and one unstable equilibrium. 

For the symmetrical case, where 0 0

1 2L L , let us 

also compute the torques at the boundary points 

12q    

 
12

0

2

2

2

22
( ) 2

q

abk
M q L c

a b
b a


 


 

 
 (16) 

which allows us to present the condition that in the 

non-monotonic case the stable equilibriums are 

located inside of the interval of feasible values of the 

configuration variable 12eq  : 

 2

0

2

2 2

2 b a
L

b a




  (17) 

and allows user to estimate if the energy minimum is 

achieved inside or on the border of the feasible 

region of q. A physical interpretation of this 

equation is shown in Fig. 4. where two cases are 

presented. In the first case, the mechanism is 

unstable in the desired configuration 0q   and 

jumps to one of two possible stable configurations 

12q    that are located inside of mechanical 

limits. In the second case, the mechanism is also 

unstable in the equilibrium configuration 0q   but 

it jumps to one of the mechanical limits 12q  

(because the stable configurations are out of the 



limits). So, a static error appears in both cases, 

where q is equal to either 
12  or eq . For this 

reason, it is necessary to avoid in practice the 

parameters combinations producing non-monotonic 

torque-angle curves. 
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Figure 4: Location of stable “●” and unstable “o” equilibriums with respect to geometric boundary  12 12,   

 

It is also useful to investigate the case when the 

control inputs are not equal, i.e. 0 0

1 2L L , assuming 

that they produce the desired stable configuration 

with the output angle 0q  . In this case, the torque 

and its derivative can be presented as follows. 
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0 012 12
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2 cos sin
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q

L L
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

 

(19) 

 

where all notations are the same as in the above 

expressions (7) and (8). It can be proved from the 

equilibrium equation that the control inputs 0

1L , 0

2L  

insuring the desired output angle q  must satisfy the 

linear relation 

0 012 12
1 2 12sin sin 2 cos sin

2 2

q q
L L c q

 


 
     (20) 

which gives infinite set of control variables  0 0

1 2,L L  

that may correspond either to stable or unstable 

equilibrium. To analyse sign of the derivative 

( )dM q dq , let us consider separately two cases: 

a b  and a b . In the first case, when a b  and 

mechanism geometry impose the constraint 

2q  , all three terms of (19) are negative, so the 

desired  equilibrium configuration q  is stable. 

In the second case, when a b , the equilibrium 

maybe either stable or unstable. Corresponding 

separation curves can be found from the conditions 

( ) 0M q   and ( ) 0dM q dq  , which yield the 

following system of linear equations with respect to 
0

1L , 0

2L  

0 012 12
1 2 12sin sin 2 cos sin

2 2

q q
L L c q

 


    
    
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 (21) 

 

0 0

1 2

2 2

sin cos sin cos
2 2 2 2

4 cos

q q q q
a b L a b L

b a q

   
      

   

  

       (22) 

whose solution allows us to present the stability 

condition in the following form 

0
3 31
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3 32
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2 cos sin
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L b a a q q

b a b b
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b a b b
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  
    

  

 (23) 

It is worth mentioning that in the case of 0q   

the above expressions give the stability condition 

Eq. 23.  

Hence, to achieve the desired configuration q  it 

is necessary to apply the control inputs 0

1L , 0

2L  

satisfying both the equilibrium condition Eq. 21 and 

the stability conditions Eq. 22. Corresponding 

regions of 
0

1L , 
0

2L  are presented in Fig. 5, which 

clearly shows for which combination of inputs the 

desired configuration can be reached geometrically 

and it is statically stable, and where the angle q  is 

constrained by the geometry conditions: 



 
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2atan ,

2atan ,

q a b a b

q a b a b

 

  
 (24) 

which allows us to get the value of qMax in Fig. 5.
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Figure 5: Regions of equilibrium stability for different inputs 0

1L , 0

2L . 

 

4 STABILITY ANALYSIS OF 

TWO SEGMENTS 

Let us consider now an aggregated mechanism 

presented in Fig. 6, which is composed of two 

segments considered in the previous section. It is 

assumed that the left hand-side of the mechanism is 

fixed and the desired configuration corresponds to 

the “straight” shape with 1 2 0q q  that is achieved 

by applying equal control inputs to all segments. 

Under the influence of the external force 
eF , the 

end-effector moves to a new equilibrium with the 

end-effector location    , 4 ,
TT

x yx y b     and 

nonzero configuration variables  1 2,q q . Let us 

evaluate the mechanism resistance to the external 

force eF  for this “straight” configuration expressed 

by the force-deflection relation ( , )e x yF   . 

If the end-effector deflection ( , )x y   is assumed 

to be known, the configuration angles can be 

computed from the triangle equations 

 

 

Figure 6: The model of two segment mechanism. 
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b bC bC b

bS bS





   

 
 (25) 

 

that can be solved using the technic used in the 

invers kinematics of the two-link manipulator, which 

yields 

 



 

 

1 2 2

2 2 2

atan2( , ) atan2 ,2

atan2 ,

q y x b bS b bC

q S C
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
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 where   2 2 2 2

2 5 4C x b y b b    , 2

2 21S C  

. It is worth mentioning that two symmetrical 

solutions are possible here and both of them are 

feasible. Then, for each segment the torque 

generated by the elastic virtual spring can be 

obtained by Eq. 12 
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And we can get the relation between the torque

 iM q  and the external force  ,
T

x yF F  
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where qJ is the Jacobian matrix, which is written as 

follows 

1 1 2 1,2
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and
1 1cosC q ,

1 1sinS q ,  12 1 2cosC q q  ,

 12 1 2sinS q q  . After substitution of the torques in 

the equilibrium equation, we can find the external 

force corresponding to the end-effector displacement  
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(30) 

allowing us to obtain the desired force-deflection 

relation, which is presented in Fig. 7. These results 

show that the mechanism stiffness under external 

loading can be considered as nearly constant but the 

quasi-linear force-deflection curve does not go 

through the zero point. Also, the considered 

mechanism possesses very specific particularity 

leading to the buckling phenomenon when the 

external force increases gradually and the 

mechanism configuration angles suddenly change 

from zero to non-zero values. To find the critical 

force for the buckling, let us compute the limits of 

 ,x yF F  while  , (0, 0)x y   . As follows from 

the mechanism geometry, which include a triangle 

with edges size of b and 2b , if the first angle 

1q   is small enough, the second angle can be 

approximately expressed as 2 3q   . The later 

allows us to express the Jacobian in the following 

form 

0 2

3
q

b
J

b b

 
  
 

 (31) 

and rewrite equation (30) as 
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(32) 

that gives us the desired critical force 
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It should also be mentioned that the buckling 

phenomenon occurs if  0 2 22 1L b a b  , which in 

the previous section was recognized as the boundary 

condition separating the monotonic and non-

monotonic areas in Fig. 3 ( see in Eq. 15 ). Here, the 

initial configuration is stable and it resists to the 

external loading if 0

x xF F . In contrast, if the 

geometry satisfies the condition:  0 2 22 1L b a b   

as shown in Fig. 7c, the initial configuration is 

unstable and the mechanism suddenly jumps from 

the initial position to slightly different stable 

equilibriums (even without external loading), which 

can be treated as the “jumping” phenomenon.  

To get the unloaded stiffness matrix of the 

mechanism for the general case, let us assume that 

1 2, 0q q   and the Jacobian is non-singular. This 

assumption allows us to apply an expression derived 

from the VJM method for the stiffness analysis of 

serial robots 
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 (34) 

where the diagonal matrix 1 2( , )q q qK diag K K  is 

composed of the stiffness coefficient of virtual joint 

described by Eq. 13. This allows us to compute the 

unloaded stiffness matrix for the two-segment 

mechanism for any given configuration. Let us 

consider now the case when the end-effector is 

located at the point ( , )x y   assuming that 0y  . 

Corresponding configuration angles 1 2( , )q q  can be 

computed from Eq. 26 and substituted further to the 

stable equilibrium condition (Eq. 19) for each 

segment of the mechanism. The latter also allows us 

to find equivalent stiffness coefficients 



 qi i iK dM q dq  of the virtual joints. Then, the 

stiffness matrix of the two-segment mechanism can 

be obtained from the VJM method and expressed as 
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Figure 7: Force-deflection relations  x xF  ,  y xF   for different geometric parameters , , oa b L  
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Then, let us investigate variations of the 

mechanism stiffness coefficients while the control 

inputs 
0

1iL  and 
0

2iL  are different. Also, let us assume 

that both of the sections are controlled by a single 

input, i.e. 
0

11L var , 
0

21L var  and 
0 0

12 22L L , which 

lead to the desired linear displacement 

( , 0)x yvar   . Corresponding simulation 

results are presented in Fig. 8, they demonstrate that  

 

the stiffness of the two-segment mechanism is very 

sensitive to its configuration. In particular, the 

mechanism stiffness is essentially reducing while the 

deflection 
x  is increasing. 

 It should be mentioned that, to have the stable 

equilibrium configuration, both two segments of the 

mechanism should satisfy the stability condition 

presented in the previous section. The latter is 

illustrated by Fig. 8c, where the right-hand side 

section of the mechanism is stable ( 2 0qK  ), but the 

left-hand side section is in unstable configuration (

1 0qK  ). So the left hand side section moves until 

being stopped by the angle constrain. This shows if 

the control inputs (
0 0

1 2,i iL L ) location is across the 

cusp of the parameter plan shown in Fig. 8c, the 

mechanism will be unstable also. 
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Figure 8: Stiffness coefficients for different geometric parameters ( unloaded mode ). 

 

5 CONCLUSIONS 

The paper presents some results on the stiffness 

analysis of a new type of tensegrity mechanism, 

which is composed of rigid triangles connected by 

passive joints. In contrast to conventional cable 

driven mechanisms, here there are two length-

controllable elastic edges that can generate internal 

preloading. So, the mechanism can change its 

equilibrium configuration by adjusting the control 

inputs length. Such design is very promising and 

convenient for constructing a multi-section serial 

structures with high flexibility, which are needed in 

many modern robotic applications.  

For one segment mechanism, the main attention 

was paid to a symmetrical structure composed of 

similar triangles. In particular, the case of equal 

control inputs was investigated in detail and 

analytical condition of equilibrium stability was 

obtained, which allows user to select the control 

inputs ensuring the mechanism controllability. The 

relation between the external torque and the 

deflection was also obtained allowing to find loaded 

equilibriums. It was proved that depending on 

parameters combinations, the actuation can lead to 

either the desired mechanism configuration 

(corresponding to a stable equilibrium) or undesired 

configuration corresponding to shifted stable 

equilibrium or joint limits. Besides, similar analysis 

has been done for the case of non-equal control 

inputs, and equivalent serial structure was proposed 

where the passive joint was replaced by a virtual 

actuated joint with variable stiffness. In future, these 

results will be used for the stiffness analysis of 

multi-section mechanisms that may demonstrate 

unusual behaviour under static load and suddenly 

change its configuration. 
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