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Abstract: The paper focuses on the stiffness modeling of a new type of compliant manipulator and its non-linear 

behavior under external loading. The manipulator under study is a serial mechanical structure composed of 

dual-triangle segments. The main attention is paid to the possible equilibriums and the manipulator stiffness 

behavior under the loading for the initial non-straight configuration. It was demonstrated that there is a 

quasi-buckling phenomenon for this manipulator while the external loading increasing. In the neighborhood 

of these configurations, the manipulator behavior was analyzed using the enhanced Virtual Joint Method 

(VJM). Relevant simulation study confirmed the obtained theoretical results.    

 

1 INTRODUCTION 

Compliant manipulators are used nowadays in many 

fields due to their flexibility, modularized 

construction, and low weight. A lot of new 

mechanical structures were studied in this area 

(Frecker, Ananthasuresh et al., 1997), (Albu-

Schaffer et al., 2008), (Wang and Chen, 2009), 

(Howell, 2013), which showed quite good 

performances compared with traditional rigid robots.  

Recently, in literature particular attention is paid to 

tensegrity mechanisms, which are made up of a 

series of similar segments composed of compressive 

and tensile elements (cables or springs) (Skelton and 

Oliveira, 2009), (Moored, Kemp, et al., 2011). One 

of such structures is studied in this paper.  
Stiffness properties of some tensegrity 

mechanisms have been already studied carefully. In 
(Arsenault and Gosselin, 2006), the authors 
considered the mechanism composed of two springs 
and two length-changeable bars. They analyzed the 
mechanism stiffness using the energy method, 
demonstrated that the mechanism stiffness may 
decrease under external loading with the actuators 
locked, which may lead to the “buckling” 
phenomenon. Also, in (Furet, Lettl and Wenger, 
2018), the cable-driven X-shape tensegrity structures 
were considered; here the authors investigated the 

influence of cable lengths on the mechanism 
equilibrium configurations, which may be both 
stable and unstable. The relevant analysis of the 
equilibrium configurations as well as the stability 
and singularity study can be found in (Wenger and 
Chablat, 2019). 

For robotics, similar to classical mechanics 
dealing with the Euler column, the buckling is 
usually treated as an undesirable phenomenon, 
because the robot may suddenly change its shape 
when the loading force exceeds some critical value. 
However, such property can be useful in some fields 
(Yamada, Mameda, et. al., 2010). Also, sometimes 
the quasi-buckling phenomenon may occur, which 
changes the robot resistance in one direction 
suddenly while the external loading is increasing. It 
is not typical for robotics and was rarely studied 
before. For this reason, this phenomenon should be 
obligatory taken into account in stiffness analysis.  

This paper is an extension of our previous results 
(Zhao, Pashkevich et al., 2020 & 2021), which 
concentrated on the stiffness analysis of the simplest 
manipulator composed of two and three segments. It 
was assumed that each segment is a composition of 
two rigid triangle parts, which are connected by a 
passive joint in the center and two elastic edges on 
each side with controllable preload. In contrast to the 
previous results, here we consider a general case 



 

Figure 1: Geometry of a dual-triangle mechanism 

 

Figure 2: The torque-angle curves of dual-triangle mechanism 

 
Figure 3: Geometry of a multi-segment manipulator. 

with an arbitrary number of segments, and its 
stiffness behavior under the loading.  

2 MECHANICS OF A SINGLE 

SEGMENT 

Let us present first a single segment of the compliant 
serial manipulator under study. It consists of two 
rigid triangles connected by a passive joint whose 
rotation is constrained by two linear springs as 
shown in Fig. 1. It is assumed that the mechanism 
geometry is described by two triangle parameters (a, 
b), and the mechanism shape is defined by the 
central angle q, which is adjusted through two 
control inputs influencing on the springs L1 and L2. 
Let us denote the spring lengths in the non-stress 
state as 0L ，and the spring stiffness coefficient as k. 

The mechanism configuration angle q 

corresponding to the given control inputs 0L  can be 

computed through the static equilibrium equation of 

this mechanism, which can be easily derived using 

the forces generated by the springs: 0( )i i i iF k L L  , 

where the lengths iL  are computed using the 

formulas ( ) 2 2cos( )i iL q c   , 2 2c a b  , 

1 2 q   , 2 2 q   , and atan( / )a b  . It can 

be proved that the torques generated by the springs 

can be obtained as the following form. 
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where k  denote the springs stiffness coefficients,  
L1(q) and L2(q) are the spring lengths, 0L  are control 
inputs, while c  and  are the geometric parameters 
described above (see Fig. 1). So, taking into account 
the external torque Mext applied to the moving 
platform, the static equilibrium equation for the 
considered mechanism can be written as M(q)+Mext 
=0, where M(q)= M1(q)+ M2(q) and 

  02 cos(2 )sin cos( )sin( 2)M q ck c q L q      

It should be noted that the static stability of this 
mechanism highly depends on the equilibrium 
configuration defined by q. As follows from the 
relevant analysis, the function M(q) can be either a 
monotonic or non-monotonic one (Fig. 2), so the 
single-segment mechanism may have multiple stable 
and unstable equilibriums, which are studied in 
detail in (Zhao, Pashkevich et al. 2020). As follows 
from the relevant analysis, the  stability condition for 
this mechanism can be expressed via the derivative 
sign at the zero point, i.e.   0| 0qM q   , which is easy 
to verify in practice. So, the relevant analytical 
expression for the derivative  

02 cos(2 )cos cos c )) 2( os(cM k c q L qq        

allows us to present the condition of the torque-
angle curve monotonicity as follows  

  0 22 1 ( )L b a b    

This expression is extensively used below. 

3 MECHANICS OF MULTI-

SEGMENT MANIPULATOR 



Table 1 Two typical initial configurations of the manipulator for the end-point location (x0, y0) = (7.7b, 0). 

 Initial shape 
Initial configuration angles 

q1 q2 q3 q4 

Case #1 U-shape:  ‒0.3093 +0.1348 +0.4246 +0.2288 

Case #2 Z-shape:  ‒0.1136 +0.3768 ‒0.6242 +0.7869 
 

 

Figure 4: The energy function 1 2( , )E q q  and manipulator equilibriums for initial U-shape configuration  

(end-effector deflection δx/b=0.4, δy=0;  geometric parameters a/b=1.0;  q4>0). 

The serial manipulator considered in this paper is 
composed of n similar sections connected in series 
as shown in Fig. 3, where the left-hand-side is 
assumed to be fixed. For the initial straight 
configuration, the stiffness properties of this 
manipulator were studied in our previous paper, 
where the buckling phenomenon (similar to the 
Euler column) was discovered and the critical force 
was computed. In this paper, a general case is 
considered where the initial shape is assumed to be 
non-straight, and the stiffness analysis is carried out 
for the loaded mode. 

Let us assumed that the initial configuration of 
the n-link manipulator is a non-straight one, which 
corresponds to the non-zero angles (

0 0, 1,2,...,iq i n  ) and the initial end-point 
location is 0 0( , ) (2 , 0)x y n b x    with 0x  . It 
is assumed that the corresponding control inputs 

0 0
1 2( , ) 1,2,..,i iL L i n  are computed from the 

equilibrium conditions, where 0 0
1i iL L  , 

0 0
2i iL L   and 0L b  (causing the pre-stress). It is 

clear that if 3n  this manipulator is redundant with 
respect to the end-effector location control in the (x, 
y)-plane. So, for given 0 0( , )x y  the configuration 
angles 0

iq  cannot be computed in a unique way. For 
this reason, we will consider two typical initial 
shapes of the manipulator, which in our previous 
paper were referred to as the U-shape and Z-shape 
(Zhao, Pashkevich et al. 2020). Examples of such 

initial configurations for n=4 are shown in Table 1, 
and their elastostatic properties will be carefully 
studied below.  

First, let us investigate the force-deflection 
relations ( )xF x and ( )yF x corresponding to the 
end-effector displacement with 0y  , i.e. from the 
initial location 0 0( , ) (2 , 0)x y n b x    to the 
current one ( , ) (2 , 0)x y n b x x    where x is 
the end-effector deflection caused by the external 
forces ( , )x yF F  and x  denotes the initial 
displacement of the end-effector. Let us apply the 
energy method (detailed of this elastic energy were 
in Zhao, 2020) allowing us to find possible 
equilibrium configurations corresponding to the 
given x . It should be noted that the geometric 
constraint coming from the given end-effector 
location is  
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and allows us to reduce the number of variables in 
the energy function 1 2 2( , ,... )nE q q q   by applying the 
2-link manipulator inverse kinematics to compute 
the remaining angles 1( , )n nq q . Further, by 
detecting the max/min and saddle points of the 
function 1 2 2( , ,... )nE q q q  , it is possible to find the 



 

Figure 5: The energy function 1 2( , )E q q  and manipulator equilibriums for initial Z-shape configuration  

(end-effector deflection δx/b=0.2, δy=0;  geometric parameters a/b=1.0;  q4>0). 

 

Figure 6:The energy function 1 2( , )E q q  and manipulator equilibriums for initial U-shape configuration  

(end-effector deflection δx/b=0.8, δy=0;  geometric parameters a/b=1.0;  q4>0). 

configuration angles for all possible equilibriums. 
To evaluate their stability and compute the external 
forces ( , )x yF F  corresponding to the end-effector 
deflection x , let us apply the Moore-Penrose 
pseudo-inverse on the static equilibrium condition, 
which is shown as follows, 
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where both the Jacobian qJ  and the joint torques 

iMq  are computed using the configuration angles iq  
corresponding to the stable equilibriums. 

Examples of the obtained energy surfaces for 
n=4 are presented in Figs 4, 5 and 6, where the end-
effector elastic deflection is   0.2 ,0.4 ,0.8x b b b   
and the initial shapes correspond to the end-effector 

displacement 0.3x b   (see Table 1). As follows 
from these figures, for the initial U-shape (see Fig. 
4) there are two cases of the energy surfaces 

1 2( , )E q q  corresponding to q4>0 and q4<0 which are 
symmetrical. Totally, they have 6 critical points; 
each of them contains a single maximum, a single 
minimum and a single saddle point. Also, their 
evolution with respect to x  is continuous, their 
topology remains the same while increasing the 
deflection x . In contrast, for the initial Z-shape 
(see Figs. 5, 6), the energy surfaces 1 2( , )E q q  are 
quite different, their evolution with respect to x  is 
discontinuous. The latter leads to sign-changing of 
some configuration angles iq  under the external 
loading F as shown in the figures (see angle q1 for 
instance). Besides, if the deflection x  is large 
enough as in Fig. 6, the energy surfaces may contain 
a “hole”, i.e. an unfeasible area, caused by the 



 

Figure 7: Force-deflection curves Fx(δx), Fy(δx) and manipulator shape changing under the loading for initial U-shape  

for (x0, y0) = (7.7b, 0), geometric parameters a/b=1.0 and δy=0. 

 

Figure 8: Force-deflection curves Fx(δx), Fy (δx) and manipulator shape changing under the loading for initial Z-shape  

for (x0, y0) = (7.7b, 0), geometric parameters a/b=1.0 and δy=0. 

violation of the geometric constraints 
max

i iq q   
inside of the manipulator segments. 

4 MANIPULATOR STIFFNESS 

UNDER THE LOADING 

By applying the above-presented energy method and 
computing minimums of the energy function 

1 2 2( , ,... ) minnE q q q    for different x , it is 
possible to obtain the desired force-deflection 
relations ( )xF x and ( )yF x describing the 
manipulator stiffness properties. Examples of such 
computations for n=4 are presented in Figs 7 and 8.  

For the initial U-configuration (see Fig. 7), the 
change of the manipulator shape is smooth, the 
manipulator resistance against the external loading is 
gradually increasing while the deflection x
becomes larger. Also, the stiffness coefficient in the 
x-direction is decreasing continuously. This 
tendency is observed until the manipulator reaches 
its geometric constraints.  

In contrast, for the initial Z-configuration (see 
Fig. 8), there are two intervals of the manipulator 

deformation. In the beginning when x  is relatively 
small the manipulator maintains its Z-shape and the 
resistance against the external force is monotonically 
increasing, similar to the previous case. Further, 
when the deflection x is larger than some critical 
value, the buckling phenomenon is occurring, and 
the manipulator resistance against the external force 
is not increasing anymore. Correspondingly, the 
stiffness coefficient  xdF dx  becomes very small, 
the stiffness coefficient  ydF dx  changes its sign 
and the manipulator does not keep its initial Z-shape 
(some of the angles iq  change the signs). Finally, 
after the buckling, the manipulator moves in the 
direction of its internal geometric constraints. 
Hence, in practice, it is preferable to use the U-shape 
of the manipulator if the task space obstacles 
(external constraints) allows. It should be also noted 
that for the Z-shape it is necessary to avoid high 
loadings exceeding the critical force causing 
buckling. 

Further, in addition to the above presented force-
deflection relations ( )xF x  and ( )yF x  derived 
from the assumption of varx  , 0y  , let us 
analyze the changing of the manipulator stiffness 
coefficients under the loading  ,x yF F  without 
imposing any kinematic constraints of the end-



effector location. To obtain the desired relations it is 
necessary to compute the configuration angles 

1( ,..., )nq q  corresponding to the manipulator 
equilibriums for different given external forces 

 ,x yF F . It is clear that these angles can be found 
numerically by solving the system of n independent 
equations  




   
T

q q n 2
M + J F 0  

describing the static equilibrium condition (by 
applying Newton’s method for instance). However, 
the initial guess of the angles 0 0

1( ,..., )nq q  should be 
evaluated correctly, to ensure that they are in the 
neighborhood of the minimum energy configuration, 
because only such cases can be observed in practice. 
Such initial guess can be obtained using the above-
presented energy method applied in the space 

1( ,..., )nq q  with rather rough grid with large step. 
Also, the desired angles corresponding to the 
external loading  ,x yF F  can be found using the 
Matlab function fminsearch which minimizes the 
sum of the squared residuals i.e.     


2

T

1 2
arg min

n n 

           
q q

q
q M J F  

where both the internal torques qM  and the 
Jacobian qJ  depend on the angles 1( ,..., )nq q . It 
should be also mentioned that it is possible to 
simplify the problem of the initial guess 0 0

1( ,..., )nq q  
selection by gradually increasing the forces  ,x yF F  
and using solutions from the previous loaded-
equilibrium as the initial guess for the next one 
corresponding to  ,x x y yF F F F   . However, 
when the forces  ,x yF F  approach the buckling 
point, the initial guess from the previous step is not 
suitable because the configuration angles are 
changing essentially and only the straightforward 
energy method allows to obtain the correct initial 
guess. 

5 EVOLUTION OF STIFFNESS 

COEFFICIENTS 

If the equilibrium configuration angles 1( ,..., )nq q  
corresponding to the given force  ,x yF F  are 
computed, it is possible to find the desired stiffness 
coefficients using the formula for the loaded case, 

  
1

1
T


  

 F q q g qK J K K J  

that includes two essential components, the first of 
which qK  corresponds to the unloaded case, and the 
second one gK describes the external force influence 

on the stiffness. In this expression, the nn matrix of 
the joint elastic stiffness coefficients 

1( ,..., )eq eqidiag K KqK  can be computed using the 
segment torque equilibrium equation from section 2, 
which yields  


 2 2

0 0 0 0
1 2 1 2

2 cos

cos sin
2 2 2 2

i

i i
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k b a q
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It should be stressed that here, the control inputs 0
1iL  

and 0
2iL  are constant values, which correspond to the 

initial unloaded joint angles iq .  
The second matrix gK  containing the stiffness 

coefficients caused by the loading is symmetrical 
and can be computed as T

iq  gK J F@ , which 
gives us the following formula 


21 11 2 1

2 1

...
... ... ...
... ...

x y n x n y

n x n y

J F J F J F J F

J F J F

    
  

   
gK  

where Jij denotes the element of the Jacobian matrix 

Jq with the ith row and jth colomn. 

It is obvious that when the external forces are 

equal to zero, the stiffness matrix expression is 

reduced to the form, which is known from the 

unloaded mode analysis 
1

1 T
0


   q q qK J K J . It should 

be also mentioned that, in contrast to the classical n-

link serial manipulators, here the diagonal matrix 

qK  is configuration dependent (not constant) 

because each initial configuration with the angles 

1( ,..., )nq q  produces its own control inputs 0

1iL  and 
0

2iL  included in the expression (10). Besides, here 

the unloaded compliance matrix 0C  can be 

expressed analytically in the following way  
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C  

To illustrate the practical importance of the 
above-presented results, they were applied to the 
case n=4 assuming that the initial (unloaded) 
endpoint location is    0 0, 7.7 , 0x y b , and the 
initial shape is either U- or Z- one. The 
configuration angles under the loading, 
corresponding to the external force  ,x yF F F , 
were computed numerically using the technique 
proposed above. Relevant results of the initial U-
shape and Z-shape are presented in Figs. 9 and 10 
respectively. As follows from these figures, the 
manipulator stiffness essentially changes if the 
external loading is applied. For the initial U-shape 
case, the absolute value of the manipulator stiffness 
coefficient |Kxx| decreases first, while the force Fx is 



 

 

Figure 9: Stiffness coefficients under the Fx- and Fy-loading for initial U-shape configuration  

with (x0, y0) = (7.7b, 0) and geometric parameters a/b=1.0 

increasing (see Fig. 9a) , until Fx is reaching some 
critical value when |Kxx| is the minimum, then it 
begins to increase slowly. In contrast, the stiffness 
coefficient Kxy (describing the manipulator reaction 
in the y-direction) changes its sign under the loading. 
These stiffness properties can be also interpreted 
from the geometrical and physical point of view, 
using the right-hand side of the Fig. 9a, which shows 
the evolution of the manipulator configuration under 
the loading. In general, such manipulator behavior 
can be treated as “quasi-buckling”, because for 
certain loading Fx the stiffness in both x- and y-
direction is very small. And the manipulator rotates 
quickly until one of the segment goes close to its 
joint limits, where the equivalent rotational stiffness 
coefficient is very low. Hence, in practice, it is 
necessary to avoid applying too high loading in x-

direction causing approaching either to the “quasi-
buckling” or the joint limits and losing the 
manipulator stiffness.  

On the other side, while increasing the force Fy 
(i.e. in the orthogonal direction), the absolute value 
of the stiffness coefficient |Kyy| is monotonically 
increasing first, then it keeps the same tendency 
slowly (see Fig. 9b) because of the restriction of the 
geometric length of the manipulator. At the same 
time, the stiffness coefficient Kyx demonstrates non-
monotonic behavior. Such performance can be seen 
from the evolution of the manipulator configuration 
at the right-hand side of Fig. 9b, where the 
manipulator end-point moves towards the extreme 
location, as far as possible from the initial one. 
Therefore, the high loading in y-direction should be 
also avoided, to prevent from the manipulator 



 
Figure 10: Stiffness coefficients under the Fx-loading for initial Z-shape configuration  

with (x0, y0) = (7.7b, 0) and geometric parameters a/b=1.0 

changing its shape change to a pure straight line (see 
case IV).  

However, for the second case study dealing with 
the initial Z-shape, the stiffness properties under the 
loading are quite different compared to the U-shape 
case. In particular, as follows from Fig. 10, under the 
Fx-loading, the absolute value of the stiffness 
coefficient |Kxx| decreases gradually at the 
beginning, then it decrease quickly to zero. In 
contrast, the absolute value of the stiffness 
coefficient |Kxy| increases monotonically. This 
phenomenon can be also treated as “quasi-buckling” 
because for certain loading the manipulator stiffness 
in x-direction is equal to zero, and the stiffness in y-
direction is very high. These results are illustrated 
geometrically by the right-hand side of Fig. 10 
showing the evolution of the manipulator 
configuration under the Fx –loading. It is clear that 
here each segment of the manipulator tends to move 
close to its geometric limits before the “quasi-
buckling” is occurring. In this configuration, even a 
quite small change of the external force may lead to 
large manipulator deflection, so in practice, it is 
reasonable to avoid such situations. It is worth 
mentioning that the case of Fy –loading is not 
presented in Fig. 10, because it is quite similar to the 
U-shape case.  

Hence, for the manipulator under study, the 
stiffness properties are essentially non-linear with 
respect to the loading force. Moreover, if the loading 
exceeds a certain value, the stiffness coefficients 
may become very low or even change their sign. The 
latter may be treated as the quasi-buckling, which 
normally should be avoided.  

6 CONCLUSIONS 

The paper focuses on the stiffness analysis of a new 

type of compliant serial manipulator under the 

loading, which is composed of multiple dual-triangle 

segments. It is a specific case of the tensegrity 

mechanisms that currently are widely used in soft 

robotics. The main attention is paid to the initial 

non-straight configuration of the manipulator. It was 

proved that under the external loading there may be 

the quasi-buckling phenomenon, which suddenly 

changes the manipulator resistance in one direction 

of its deflection, but may do not influence the 

resistance in another direction. It was also 

demonstrated that normally there are six equilibrium 

configurations of this manipulator (two stable ones 

and four unstable ones). But if the deflection of the 

end-effector is large enough some of the 

equilibriums may be unfeasible due to the geometric 

constraints.  
To find the possible equilibriums and to analyze 

the manipulator shape under the loading, the energy 
method was used. Further, the stiffness analysis was 
based on the VJM approach allowing to find 
linearized relations between the end-effector 
deflection and the external force. Relevant 
simulation confirmed the obtained results. In the 
future, this technique will be used for the 
development of relevant control algorithms and 
related redundancy resolution. 
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