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Abstract. The paper focuses on the redundancy resolution in kinematic control 

of a new type of serial manipulator composed of multiple tensegrity segments, 

which are moving in a multi-obstacle environment. The general problem is de-

composed into two sub-problems, which deal with collision-free path planning 

for the robot end-effector and collision-free motion planning for the robot body. 

The first of them is solved via discrete dynamic programming, the second one is 

worked out using quadratic programming with mixed linear equality/non-

equality constraints. Efficiency of the proposed technique is confirmed by simu-

lation. 
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1 Introduction 

In robotics, kinematic control of compliant serial manipulators attracted much atten-

tion recently [1, 2, 3]. Because of their specific design including not only rigid com-

ponents but also elastic elements, such manipulators allow achieving excellent flexi-

bility and ability of shape-changing in under the environment. However, kinematic 

control of such manipulators is not a trivial problem, which requires redundancy reso-

lution considering possible collisions of the robot end-effector and its body with the 

obstacles.  

The considered manipulator is composed of multiple tensegrity segments, each of 

which contains two rigid triangle parts connected by a passive joint and two elastic 

edges with controllable preload [4]. In practice, to achieve the desired target location 

of the end-effector, both the end-effector and the manipulator body must avoid touch-

ing the obstacles. The latter imposes very essential constraints on the redundancy 

resolution, which is usually resolved via the kinematic model linearization and the 

classical quadratic programming with the linear equality constraint applied to the end-

effector [5, 6]. In this paper, it is proposed to solve the problem sequentially, generat-

ing the collision-free path for the robot end-effector first, and collision-free motion for 
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the robot body at the second stage. Relevant techniques are based on the discrete dy-

namic programming and the quadratic programming with mixed equality constraints 

applied to the end-effector, and the non-equality constraints applied to the manipula-

tor segments. 

2 Problem Statement 

Let us consider a serial manipulator composed of n similar segments based on du-

al-triangle tensegrity mechanisms, composed of rigid parts connected by passive 

joints whose rotation is constrained by two linear springs as shown in Fig. 1. It is 

assumed that the mechanism geometry is described by two triangle parameters (a, b), 

and the mechanism shape is defined by the central angle q, which is adjusted through 

two control inputs influencing on the lengths of the springs L1 and L2. More details 

concerning the manipulator kinematics is given in our previous paper [4], here we 

concentrate on the control issues and the redundancy resolution. 

 

Fig. 1. Kinematic structure of the multi-segment serial manipulator. 

For this manipulator, the direct kinematics equations can be written as follows 
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where iq are the joint angles, ( , )i ix y  denote the position of the ith joint center and 

( , )e ex y is the end-effector position. Corresponding Jacobians involved in the differen-

tial kinematics can be presented in the following way 
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Obviously, for n>2 this manipulator is kinematically redundant since the desired 

end-effector location can be achieved in an infinite number of ways. So, the principle 

problem considered here is how efficiently to use this kinematic redundancy in a 

multi-obstacle environment, i.e. to ensure the end-effector displacement to the given 

end-effector location ( , )d d

e ex y with minimum joint motions iq , 1,...,i n while 

avoiding possible collisions of the manipulator body and the end-effector with the 

obstacles. In this paper, it is proposed to decompose these general problems into two 

sub-problems sequentially dealing with (i) collision-free path planning for the robot 

end-effector and (ii) collision-free motion planning for the robot body. More strict 

formalization of these problems and their solutions are presented in the following 

chapters. 

3 Path Generation for the Manipulator End-effector 

To find the best collision-free path for the end-effector let us apply the discrete 

dynamic programming technique allowing to generate the shortest trajectory in the 

obstacle-dense task space, which connects the initial and target points 0p , gp  and 

avoids collisions with the obstacles. To apply this technique, let us discretize the task 

space  

(x, y) and present it as a two-dimensional set of nodes defined in the following way 

  0 0( , ) , , 0,1,... , 0,1,...i j x x j y y i i m j n       L  (4) 

where x , y are the discretization steps such that the index j=0 corresponds to the 

initial point 0p  and the index j=n corresponds to the target point gp . Using such 

presentation the desired trajectory can be presented as the sequence of the nodes 

 0 1 1( ,0) ( ,1) ... ( , 1) ( , )n ni i i n i n    L L L L  (5) 

with the purely geometric definition of the distances between the successive nodes as 

   2 2 2( , ), ( , 1) ( )dist i j i j y i i x       L L  (6) 

To take into account possible collisions between the robot end-effector and the work-

space obstacles, let us also define the binary matrix B of size m n  whose elements 

 ( , ) 0, 1i j B  are equal to zero if there is no collision between the manipulator end-

effector and the workspace obstacles at the node ( , )i jL , (otherwise, it is equal to 

one). It is worth mentioning that the above presentation neglects the robot end-



4 

effector dimensions and presents it as a point. For this reason, while computing the 

matrix B it is reasonable to modify slightly the obstacle models and increase their 

dimensions by the value of 2 2a b , where a, b are the geometric parameters of the 

manipulator segments (see Fig.1). 

Such formalization operating with the discretized task space  ( , )i jL , which in-

cludes the obstacles defined by the binary matrix B, allows us to present the original 

problem of the collision-free path planning for the manipulator end-effector as the 

classical shortest-path searching on the graph: find the optimal path (5) on the graph 

connecting adjacent columns of  ( , )i jL , which (i) connects the given nodes
0( ,0)iL

and ( , )ni nL , (ii) passes through allowable nodes only ( , ) 0i j B  and (iii) satisfies 

the optimization criterion 
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1

1

0
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n

j j
i

j

dist i j i j



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Fig. 2. Generation of the obstacle-free path using discrete dynamic programming 

 

Fig. 3. Example of obstacle-free path generation for the robot end-effector. 

It should be noted that for such presentation the desired trajectory is defined by the 

sequence of the row indices  0 1, ,..., ni i i , where both 0i  and ni  are given (they are 

defined by the initial and target points). It is clear that this shortest-path problem can 

be solved via the discrete dynamic programming that is based on the following ex-

pression 

   * *
1( ) min ( ) ( , ), ( , 1) , 0,1,...,j j

i
d i d i dist i j i j i m

      L L  (8) 
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where *( )jd i  denotes the shortest distance between the initial node 
0( ,0)iL  and the 

node ( , )i jL  corresponding to the optimization of the lower dimension ( j n ). This 

expression is applied sequentially starting from j=1 and ending with j=n-1, and mem-

orizing the row indices  * *
1 1,..., ni i  obtained from (5) and corresponding to all interme-

diate optimal paths. At the final step, a single node *( , )ni nL  corresponding to the de-

sired endpoint is selected, and the desired solution is obtained through the backtrack-

ing allowing to find the remaining row indices  * *
1 1,..., ni i   describing the optimal path. 

Geometric explanation of this technique is given in Fig. 2, where the spatial location 

of the initial and target points corresponds to the motion “from left to right”.  

The efficiency of this technique has been confirmed by the simulation study. An 

example of obstacle-free path generation with the discretization of 2020 is presented 

in Fig. 3. It should be mentioned that here, to take into account the end-effector size, 

the obstacles were slightly increased. As follows from this study, for such relatively 

rough discretization the algorithm is very fast. However, for finer discretization the 

computing time may increase significantly. 

To overcome this difficulty, a two-step modification of the path-generation algo-

rithm was also proposed. The basic idea of the proposed modification (leading to the 

algorithm speed-up) is to find first an initial solution with the rough discretization, 

and to improve it further using a relatively small discretization step (and applying at 

both steps the same numerical technique based on the discrete dynamic program-

ming). Geometric explanation of this approach is presented in Fig. 4, where at the first 

step the task space is divided into several big areas ( , )u vS ,  0,1,...u m , 

 0,1,...v n . 

Then after applying the proposed technique, the confident areas in every column in 

the task space could be found, which contain the possible points for connecting the 

shortest path, and the corresponding trajectory could be obtained with the indices 

expressed as 0 1 1( ,0) ( ,1) ... ( , 1) ( , )n nu u u n u n    S S S S . As the second step, it 

is only necessary to search for the points ( , ) ( , )v vi v u vL S  inside of the confident 

areas obtained from the first step. It is clear that this approach allows us to increase 

significantly the computing speed. 

 

Fig. 4. Speed-up of the algorithm for obstacle-free path generation for the robot end-effector 
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4 Motion Generation for the Manipulator Body 

To generate motions for the manipulator body it is necessary to use the best way of 

the manipulator redundancy, which in our case can be treated as simultaneous 

achievement of two goals: (i) minimization of the joint motions for the desired end-

effector location; (ii) ensuring safe distances between the manipulator segments and 

the obstacles. The first of them can be presented as the minimization of the joint in-

crements q  

 T

1

min
n

i

i




  
q

q q  (9) 

subject to the geometric constraint 

 
e  p J q  (10) 

arising from the desired end-effector displacement p  computing via the kinematic 

Jacobian
eJ  of the manipulator end-effector. It is known that these constraint optimi-

zation problems can be easily solved analytically via the Jacobian pseudo-inverse 

  
1

T T
e e e



  q J J J p  (11) 

However, to take into account the second goal (collision avoidance), it is necessary 

to impose some additional constraints arising from the safety distances between the 

obstacles and the manipulator intermediate segments. It can be proved that these dis-

tances can be computed in the following way 

 o 0( , ) , 1,2,... ; 1,2,...,ij i j jd dist d i n j m    p p@  (12) 

where ijd denotes the distance between the ith joint center and the jth obstacle, and 

0
jd  is the allowable minimum value for the jth obstacle that takes into account its size 

(equivalent radius). In more detail, these definitions are explained in Fig. 5, where the 

joint axis locations are described by the points { , }i ip  and the obstacles are ap-

proximated by the circles with the centers 
o{ }jp and radiuses { }jr .  

 

Fig. 5. Computing the distances dij between the robot joints and obstacles. 
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To present these additional constraints more conveniently, let us use the linearized 

expression 
i i p = J q  for the manipulator joints, where 

iJ  is computed from (2). 

Such linearization allows us to present o( , )i jdist p p as the projection of the displace-

ment vector 
ip  onto the line segment connecting the points 

ip  and 
o

jp  (see Fig. 5), 

i.e.  

 T
ij ij id   e J q  (13) 

where the unit vector 
ije  is computed as o o( )/ || ||ij i j i j  e p p p p .  

So finally, for the n segment manipulator with m different task space obstacles, the 

m n collision-free constraints can be rewritten as the following way 

 0 0, 1,2,... ; 1,2,...,T
ij i jd i n j m     e J q  (14) 

where the safety parameter 0 2 2
j jd r a b    is computed taking into account both 

the obstacle equivalent radius 
jr  and the manipulator geometric parameters a, b. 

 

Fig. 6. Example of collision-free motion control for the multi-segment manipulator. 

Hence, the original optimization problem with the quadratic objective (9) and line-

ar equality constraint (10) is transformed to a more general one, which includes both 

the linear equality constraint (10) and a number of linear non-equality constraints 

(14). The main particularity of this mixed optimization problem is related to the influ-

ence of the non-equality constraints. In particular, some of them can be stronger than 

the other ones, leading to the situation when a limited number of non-equalities are 

active. In this work, it is proposed the following technique to solve this optimization 

problem: 

1. First, try to release all non-equality constraints and find the optimal solution *q  

of this reduced problem from (11).  
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2. For the obtained solution *q , verify all non-equality constraints (14) and find 

those that are violated. If no one of the constraints is violated, the final solution is 

obtained. 

3. If some of the non-equality constraints are violated, the strongest of them is select-

ed for each joint and transformed into the equality constraint.  

4. Then the problem is solved for the extended set of equality constraints and the ob-

tained new optimal solution *q  is evaluated by starting from step 2.  

To find the optimal solution for the extended optimization problem at step 4, the La-

grange technique can be applied dealing with the minimization of the function 

    T 0( , , ) minT T

ij ij i j

active

L d            q q q J q p e J q    (15) 

which leads to the following linear system 

 T T

a a a          q J J J q p J q d       (16) 

where the matrix aJ  and the vector ad  are composed of elements T
ij ie J  and 

0
jd  

corresponding to the active constraints, and   and   are the Lagrange multipliers. It 

is clear that this system can be solved in a usual way via the matrix pseudo-inverse. 

The efficiency of the develop technique is confirmed by the simulation results pre-

sented in Fig. 6, where the manipulator end-effector must follow the curved path lo-

cated inside of the narrow gap between the obstacles.  

5 Conclusion  

The paper proposes a new method of redundancy resolution in kinematic control of a 

new type of serial manipulator, which is moving in the multi-obstacle environment. 

Because of their specific design including not only rigid components but also elastic 

elements, such manipulators allow achieving excellent flexibility and ability of shape-

changing in accordance with the environment. However, kinematic control of such 

manipulators requires redundancy resolution taking into account possible collisions of 

the robot end-effector and its body with the obstacles. To find the desired robot mo-

tion, the general problem is decomposed in two sub-problems, which deal with colli-

sion-free path planning for the robot end-effector and collision-free motion planning 

for the robot body. The first of them is solved via discrete dynamic programming, the 

second one is worked out using quadratic programming with mixed linear equali-

ty/non-equality constraints. The efficiency of the proposed technique is confirmed by 

simulation. In the future, this technique will be extended for the 3D manipulator with 

similar tensegrity segments. 
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