
HAL Id: hal-03311642
https://hal.science/hal-03311642

Submitted on 1 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experiments using a Software-Distributed Shared
Memory, MPI and 0MQ over Heterogeneous Computing

Resources
Loïc Cudennec, Kods Trabelsi

To cite this version:
Loïc Cudennec, Kods Trabelsi. Experiments using a Software-Distributed Shared Memory, MPI and
0MQ over Heterogeneous Computing Resources. Euro-Par 2020: Parallel Processing Workshops -
Euro-Par 2020 International Workshops, Warsaw, Poland, August 24-25, 2020, Revised Selected Pa-
pers, 12480, Springer, pp.237-248, 2021, Lecture Notes in Computer Science, �10.1007/978-3-030-
71593-9_19�. �hal-03311642�

https://hal.science/hal-03311642
https://hal.archives-ouvertes.fr


Experiments using a Software-Distributed
Shared Memory, MPI and 0MQ over
Heterogeneous Computing Resources

Löıc Cudennec1,2[0000−0002−6476−4574] and Kods Trabelsi1

1 CEA, LIST
F-91191, PC 172, Gif-sur-Yvette, France

kods.trabelsi@cea.fr
2 DGA MI, Department of Artificial Intelligence

BP 7, 35998 Rennes Armées, France
loic.cudennec@intradef.gouv.fr

Abstract. Distributed heterogeneous computing systems escalate the
problem of choosing the appropriate programming model. Programming
models such as message passing are efficient but require low-level man-
agement of communications. Higher level of programming such as shared
memory are convenient for the application design but they usually have
performance issues. With the recent development of distributed hetero-
geneous systems and new protocols to access remote memories, there is
an opportunity for distributed shared memory systems to offer a satis-
fying level of abstraction while not giving up on performance. In this
paper a video processing application is written using MPI, 0MQ and an
in-house software-distributed shared memory (S-DSM) backend and de-
ployed over a set of heterogeneous computing boards. Results show that
0MQ implementation is the most efficient but at the price of writing the
application with the targeted platform in mind. The S-DSM implemen-
tation runs up to 2 times faster than the pure OpenMPI implementation
and competes with 0MQ when the data granularity is small.

Keywords: Heterogeneous Computing · Distributed Computing · Dis-
tributed Shared Memory · Message Passing.

1 Introduction

Heterogeneous systems are now prevalent in everyday technology including em-
bedded devices, autonomous vehicles, high-performance computing architectures
and cloud infrastructures. They offer the possibility to build a specific platform
for specific needs in terms of functionality, power processing and energy con-
sumption. However such architectures are complex to program because they
escalate the classical problem of hybrid computing in which each resource type
exhibits a specific programming interface. Some of these heterogeneous systems
are distributed, composed by a mix of heterogeneous computing nodes intercon-
nected by a network, without physical shared memory. For example, microservers



2 L. Cudennec and K. Trabelsi

are built upon a backplane that provides networking capabilities, power supply
and extension slots to host heterogeneous boards such as high-end processors,
low-power processors, many-core processors, GPU and FPGA. A common way
of programming such platforms is to rely on the message passing paradigm, us-
ing popular libraries like MPI and ZeroMQ. With message passing the developer
has to manually manage shared data, keep track of their location and initiate
the transfers. Another possibility is to use computing frameworks, mainly based
on dataflow and workflow programming paradigms such as StarPU. Finally, it
is possible to deploy a software-distributed shared memory (S-DSM) that ag-
gregates remote physical memories into a global logical space. The system is in
charge of transparently managing shared data and is a step towards single system
image (SSI). Using S-DSM allows to conveniently design the application as a reg-
ular Posix-like parallel application. S-DSM have been studied from the late eight-
ies with networks of workstations [12], clusters [1], computing grids and clouds [8]
and more recently with heterogeneous platforms [6,7]. However it is a common
understanding that S-DSM offers poor performances in comparison to message
passing, because of the abstraction layer that comes with a price. This explains
why S-DSM has never really been used in HPC systems, except for DSM imple-
mented using cache-coherent hardware such as in the Tilera/Mellanox Tile GX
many-core processor and further developments in cache coherent interconnects.
However these hardware DSM are static by design, usually limited to processors
or small homogeneous clusters with dedicated high-performance networks and
not prone to be deployed on distributed heterogeneous architectures. Software-
DSM are more portable than hardware DSM, they can cope with dynamicity and
reconfiguration of the platform and they offer a higher level of abstraction for
the application. A few work in the literature evaluate the performance of using a
S-DSM compared to message passing. In 1997, Scales and Gharachorloo [17] pro-
vide some benchmarks between the Oracle 7.3 distributed database running on
2 DEC AlphaServer 4100 SMP (4 processors) and the Oracle database running
on top of the Shasta S-DSM. Results show that using the S-DSM is 2 to 4 times
slower than the baseline version. In the late nineties, Bader and Jaja [2] compare
the CVM [10] S-DSM to MPICH over the DEC AlphaServer 2100 system, using
up to 8 nodes. Results show that MPICH outperforms CVM by a factor of 10. In
the early 2000, Werstein et al. [19] evaluate the TreadMarks [1] DSM together
with the PVM and MPI message passing frameworks over a Beowulf cluster
composed by 32 Intel Pentium III nodes. Results show that the performance of
DSM is poorer than PVM and MPI especially when scaling up. However, using
the Mandelbrot computing kernel the DSM competes with PVM and MPI. In
2011, Dimakopoulos [18] compares data transfer overheads between MPI and the
MOME [8] and MOCHA [11] S-DSM over a 16-node Sun Fire x4100 cluster. Re-
sults show that MPI is faster by a factor of 6 to 8 compared to S-DSM. All these
results instigate a cold reception whenever a Yet Another S-DSM is submitted
to the HPC community. Furthermore, S-DSM systems presented in the litera-
ture rarely compare the performance of applications running over the S-DSM
with the same application running over a message passing framework. With the



Experiments using MPI, S-DSM and 0MQ over Heterogeneous Resources 3

recent development of high-performance networks, the specification of new re-
mote access protocols such as one-sided communications, RDMA, RoCE, PGAS,
OpenCAPI, CCIX, Gen-Z, CXL, there is a renewal of interest in shared memory
systems [16,13,5] to unify memory accesses between CPU, GPU, general-purpose
accelerators, FPGA and non-volatile memories. Unlike homogeneous computing
clusters, such distributed heterogeneous systems require more complex develop-
ment and tight optimizations to obtain performances. With classical MP-based
implementations this complexity is directly exposed to the user. Today S-DSM
can play a role not only by offering an abstraction layer, but also by bringing
optimization and smart decision for data management directly in the runtime.
In the Grappa [14] S-DSM proposed in 2015 the authors show that porting over
the S-DSM several computing frameworks such as MapReduce and GraphLab
can run up to 1.33 faster than the baseline implementations on a 128-node AMD
Interlagos cluster using a Mellanox Infiniband interconnect. In this momentum
of renewal, the Argo [9] DSM proposes new coherence mechanisms that allow to
match or exceed MPI implementations of some SPLASH and NAS benchmarks
running onto a cluster of 128 AMD Opteron NUMA nodes. Note that Argo is
implemented on top of MPI to manage remote connections. These are promising
results, being the demonstration that a S-DSM can perform better than other
MP-based implementations. It also advocates for the use of high-level program-
ming models without giving up on performance. The main contribution of this
paper is to report on the ins and outs of writing an application using message-
passing and S-DSM. We start from an application specification and we elaborate
different implementations to compare performance over a distributed heteroge-
neous computing platform. These implementations include the well-established
message-passing OpenMPI runtime, the lightweight ZeroMQ (0MQ) message-
passing runtime and an in-house S-DSM [3,4] built upon OpenMPI and designed
to study data management over heterogeneous architectures. Results show that
the S-DSM implementation outperforms the pure OpenMPI implementation by
a factor 2 and get close to the ZeroMQ implementation performance for data-sets
with smaller granularity.

2 Implementations of a Video Processing Application

In this work we consider a video processing application that has been used to ex-
periment and showcase several distributed heterogeneous computing platforms
such as the Christmann RECS|Box microserver [15]. This application opens a
video stream, either from a file or a camera, decodes the frames, distributes the
frames to remote processing tasks and encodes the processed frames back to a file
or a live display. The computing kernel is a 3x3 convolution used for edge detec-
tion. From this specification we have implemented three versions based on MPI,
ZeroMQ and the S-DSM. These versions share the exact same code in C, except
for data management. Figure 1 illustrates the communication sequences between
the input task, the processing tasks and the output task for the different imple-
mentations. MPI and ZeroMQ implementations are quite straightforward and



4 L. Cudennec and K. Trabelsi

Fig. 1: Transferring and accessing frames in MPI, 0MQ and S-DSM.

are similar to a split-join dataflow, using multiple producer-consumer patterns.
The S-DSM implementation is more complex (inner communications occurring
between S-DSM servers are not represented here) because each access to a shared
data triggers multiple communications between S-DSM servers and applications
tasks, according to the data coherence protocol. The MPI implementation gen-
erates around twice as much messages as ZeroMQ, and the S-DSM generates
10 times more messages than ZeroMQ.

MPI. The global behavior of the MPI implementation is as follows: 1) the
processing task sends a control message to the input task to indicate they are
ready to take a job, 2) the input task sends a control message with job informa-
tion followed by the input frame to the processing task and 3) once the frame
has been processed, the processing task sends a control message followed by the
processed frame to the output task. When deploying more than one process-
ing task, it implements an eager scheduling in which tasks that run faster are
whiling to process more frames than the others. This implementation is based on
simple MPI concepts including synchronous and asynchronous version of Send
for sending messages, Probe and Wait for checking if a message is available and
a communication is completed and Recv to receive a message. We do not use
collective primitives nor advanced group communication operations. There are
three variants of the code: 1) Synchronous single buffer means that a single buffer
is used on the input task to send frames to the processing tasks. Synchronous
means that the input process waits for the completion of the Send operation be-
fore decoding and sending the next frame. 2) Asynchronous single buffer allows
the input task and the processing tasks to not wait for the completion of the
Send operation, allowing local parallelism between the user code and the MPI
runtime (eg. decode next frame, process next frame while sending the previous
one). 3) Asynchronous multiple buffers means that one buffer is allocated on the
input task per processing task, allowing to drastically increase the parallelism
between frame decoding and the management of communications in the MPI
runtime. In these experiments we use the OpenMPI 3.x runtime because of its
popularity and the possibility to compile the source code without a glitch onto



Experiments using MPI, S-DSM and 0MQ over Heterogeneous Resources 5

different Linux distributions (Ubuntu, Debian, Raspbian, Lebian) and processors
(Intel Core i7, Arm Cortex) deployed in our heterogeneous platform.

ZeroMQ (0MQ). ZeroMQ is a lightweight message passing framework released
around 2010. It offers a low-latency implementation of sockets based on commu-
nication patterns instead of basic message passing. There is no logical process
overlay built on top of the communication sockets such as communicators and
ranks for MPI. Therefore, when connecting to a distant node, the IP address
or hostname must be known, which is platform-dependent and less elegant. Ze-
roMQ is expected to be more efficient than MPI notably because there is no
node bootstrapping, peer discovery and group communication overlay manage-
ment. In this implementation of the video processing application, a request-reply
REQ-REP communication pattern is used between the input task (acting as a
server, REP) and the processing tasks (acting as clients, REQ). The resulting
interaction makes the processing tasks ask the input task for the next frame to
compute. As for the MPI implementation, it implements an eager scheduling of
frames onto processing tasks. The PUSH-PULL communication pattern is used
between the processing tasks (PUSH ) and the output task (PULL) in order to
collect the results. Note that this pattern implements fair-queuing which ex-
plains it cannot be used between input and processing tasks because it would
evenly distribute frames onto processing tasks, hence not implementing an eager
scheduling.

S-DSM. The shared memory implementation is based on the S-DSM presented
in 2017 in Cudennec [3]. This S-DSM relies on the OpenMPI 3.x runtime in order
to manage the underlying peer network and message delivery. It is organized as
a super-peer topology made of a peer-to-peer network of S-DSM servers for
cache and metadata management, and a set of clients to run the user code. The
coherence protocol is a 4-state (MESI) home-based protocol. Shared data are
stored into atomic pieces of data called chunks. The S-DSM provides a regular
interface for accessing chunks and performing distributed synchronizations. It
also introduces an event-based programming language in which it is possible to
subscribe to chunks in order to be notified whenever the chunk has been modified,
as in a publish-subscribe communication pattern [4]. In this implementation
of the video processing application, frames are stored in the shared memory:
for each processing task a shared input buffer and a shared output buffer are
allocated in the S-DSM. The input task writes incoming frames into the input
buffer of a ready task. The processing task gets notified, reads the frame from
its input buffer and write the processed frame into its output buffer. The output
task gets notified that a new result is available, it reads the frame and checks for
frame reordering before sending to the output. The resulting application layout
is close to a dataflow, which is indeed a common way of implementing dataflow
runtimes over shared memory.



6 L. Cudennec and K. Trabelsi

Node Processor Cores RAM Storage Network #

Gateway Intel Core i7 6800K 6 64GB SSD Gb Ethernet 1

Raspberry Pi 3B+ ARM Cortex A53 4 1GB SD USB 2.0 2

Odroid XU4 ARM Cortex A15/A7 4/4 2GB SD USB 3.0 1

Odroid XU3 ARM Cortex A15/A7 4/4 2GB SD USB 2.0 1

HiKey Kirin 970 ARM Cortex A73/A53 4/4 6GB UFS USB 3.0 2

Nvidia Jetson TX2 Denver/ARM Cortex A57 2/4 8GB eMMC Gb Ethernet 1

Adapteva Parallella ARM Cortex A9/Epiphany 2/16 1GB SD Gb Ethernet 0

Table 1: Platform description and number of nodes (#) used in the experiments.

3 Results

The hardware platform is a small cluster of heterogeneous computers and de-
velopment boards connected to a Gigabit Ethernet switch. Table 1 describes
the node types of the platform and the number of nodes that are used in the
following experiments. These nodes are representative of the hardware that can
be integrated within HPC microservers, cloud infrastructures and platforms for
autonomous vehicles, albeit the form-factor of the resulting setup and the poor
network performance for some of the nodes connected via Ethernet over USB.
In all experiments, a processing task is deployed on each node and the two input
and output tasks are co-located on the Core i7 Gateway node. In the specific
case of a S-DSM deployment, a S-DSM data server is deployed on the Core i7
node. When deploying the configuration with 4 servers, 3 additional servers are
deployed on the Nvidia TX2 and the two Kirin 970 nodes.

Ideal computation time. It is possible to evaluate the ideal computation time
of the application by measuring the time it takes to run the computational kernel
on each node. This information is used to calculate the contribution of each node
in the global computation, without considering network communications and
other input-output operations. Table 2 presents the processing times measured
on each node type to run a convolution (stencil 3x3). The frame size follows the
HD, UHD-1 and UHD-2 standards and the corresponding frame representation
sizes are 2MB, 8MB and 33MB (as for a 256 bits, greyscale frame). Processing
times do not include input and output operations on local storage to read and
write the frame. The ideal computation time of the application when running on
the whole platform can be calculated because the convolution kernel is not data-
dependent, which means that its complexity does not depend on the input data,
therefore making the convolution processing deterministic. Table 2 presents the
results step-by-step. The first step is to calculate the normalized performance of
the node, taking the Raspberry Pi 3B+ as reference (RPI performance is set to
1). For example, the normalized performance of the Core i7 for UHD-2 indicates
that the Core i7 computes more than 13 times faster than the RPI. The second
step is to calculate the workload coefficient per input data-set. This can be done
using the following equation (note that we do not use the Adapteva Parallella



Experiments using MPI, S-DSM and 0MQ over Heterogeneous Resources 7

Core i7 TX2 XU3 XU4 Kirin 970 RPI 3B+ Deviation

HD

Time per frame (s) 0.041 0.131 0.145 0.219 0.153 0.341
Normalized to RPI 8.317 2.603 2.351 1.557 2.228 1
Ideal (nb of frames) 506 158 143 95 136 61 0
MPI (nb of frames) 178 180 131 152 175 153 680
S-DSM (nb of frames) 490 226 65 92 119 92 262
0-MQ (nb of frames) 196 166 147 151 160 158 620

UHD-1

Time per frame (s) 0.103 0.353 0.597 0.864 0.463 1.202
Normalized to RPI 11.669 3.405 2.013 1.391 2.596 1
Ideal nb of frames 590 172 102 70 131 51 0
MPI (nb of frames) 173 179 127 158 172 159 834
S-DSM (nb of frames) 475 228 66 94 124 93 330
0-MQ (nb of frames) 196 166 146 157 160 157 800

UHD-2

Time per frame (s) 0.342 1.363 2.091 3.478 4.260 4.625
Normalized to RPI 13.523 3.393 2.211 1.329 1.085 1
Ideal nb of frames 717 180 117 70 58 53 0
MPI (nb of frames) 355 237 118 118 120 119 724
S-DSM (nb of frames) 453 234 70 98 126 99 622
0-MQ (nb of frames) 752 123 40 79 99 58 268

Table 2: Calculating the ideal number of processed frames per node type using the
Pthread implementation (theory, no communications). Note that we use two RPI and
two Kirin boards in our experiments, which is taken into account when calculating the
ideal number of processed frames. The effective number of processed frames observed in
the experiments are given for MPI, S-DSM and 0MQ for each node type. Deviation is
the cumulative distance with the ideal number of processed frames (smaller is better).

board and that there are two RPI and two Kirin boards in the setup):

α ∗ (Pi7 + PTX2 + PXU3 + PXU4 + 2 ∗ PKirin + 2 ∗ PRPI) = NB FRAMES

With Pn the normalized performance of node type n, NB FRAMES the num-
ber of frames in the input video and α the unknown workload coefficient. In
the following experiments, the HD, UHD-1 and UHD-2 video samples are taken
from the ’3DMark Port Royal Demo’ benchmark, with a total of 1296 frames
for HD, 1298 for UHD-1 and 1306 for UHD-2. The α workload coefficient is
therefore 60.9 for HD, 50.6 for UHD-1 and 53.0 for UHD-2. The last step is to
calculate the ideal number of processed frames per node type using the following
formula: NB Framesn = α ∗ Pn. From this result it is possible to calculate the
ideal global processing time using the following formula: GLOBAL TIME =
max(NB Framesn ∗ TIME PER FRAMEn). This gives 20.8s for HD, 61.3s
for UHD-1 and 247.0s for UHD-2. This ideal processing time does not include
overheads such as distributing the computation over a network, managing the
communication buffers and processor caches.

Comparing implementations performance. The three main implementa-
tions of the video processing application (OpenMPI 3.x, S-DSM and ZeroMQ



8 L. Cudennec and K. Trabelsi

 0

 20

 40

 60

 80

 100

 120

1920x1080 HD 2MB

1296 frames

3840x2160 UHD-1 8MB

1298 frames

7680x4320 UHD-2 33MB

1306 frames

T
i
m
e
 
(
m
i
n
u
t
e
s
)

MPI vs S-DSM vs ZeroMQ

MPI Sync
MPI Async (single buffer)

MPI Async (multiple buffers)
MPI+OpenMP Async (multiple buffers)

S-DSM 1 server (stats logging)
S-DSM 4 servers (stats logging)

S-DSM 1 server
S-DSM 4 servers

ZeroMQ (high-water mark 10)
Ideal (theory, no communications)

Fig. 2: Comparing the different application implementations.

4.x) have been deployed on the heterogeneous platform and evaluated using
the three video samples (HD, UHD-1 and UHD-2). Results are given in Figure 2
and can be compared to the ideal computation time. The S-DSM implementation
generates around 39000 messages at the MPI level, the MPI implementation gen-
erates around 6500 messages and the ZeroMQ implementation generates around
3900 messages. The ZeroMQ implementation is the fastest for each data-set, and
even more when dealing with bigger data: the global computing time is smaller
when processing UHD-2 frames (568 seconds) than UHD-1 frames (731 seconds).
While being a counter-intuitive result, it is usually explained by the adequacy
between data granularity and the management of network and processor caches.
By default, the ZeroMQ runtime sets the capacity of communication pipes, also
called High-Water Mark, to 1000 messages (or even no limit for early versions
of the runtime) which leads to memory overflow and a segfault on nodes with
limited physical memory such as the Raspberry Pi. In these experiments, the
High-Water Mark is set to 10 which allows the proper termination of the ap-
plication with all data-sets. It also prevents from cache pollution that acts as
a performance killer on several nodes. The latter point being one of the main
reason why ZeroMQ performs significantly better than the other MPI-based im-
plementations. A second counter-intuitive result is that the S-DSM implementa-
tion (over MPI) is performing better than the regular MPI implementation. For
HD and UHD-1 it even gives results close to the ZeroMQ implementation. Four



Experiments using MPI, S-DSM and 0MQ over Heterogeneous Resources 9

configurations of the S-DSM are used, as a combination of enabling or not the
logging of events (stats logging) and deploying a single or 4 metadata and cache
servers. Stats logging generates around 240000 events per run that are stored in
the physical memories of the nodes before being dumped into files at the end of
the computation. This implies a significant overhead, while mandatory to finely
analyze the S-DSM behavior. Using 4 metadata and cache servers let the S-DSM
system balance access requests to shared data among different nodes, hence be-
ing more responsive. One of the main reason the S-DSM performs better than
MPI is because of the parallelism of data it introduces, similar to a pipeline:
each time a shared data is modified, it is sent to the S-DSM servers, and not to
the input buffer of another processing task. Therefore, processing nodes do not
have to undergo all incoming data, but rather ask for them in a on-demand basis
thanks to the S-DSM programming model. For small data-sets (HD and UHD-
1), the best MPI implementation computation time is more than 2 times slower
than the best S-DSM configuration computation time. For UHD-2, the async
multiple buffers implementations performances are close to the S-DSM, reveal-
ing the importance of manually managing the communication buffers to increase
the parallelism degree. However, it is very far from the ZeroMQ performance,
which is quite a surprise as it relies on the same programming model.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

MPI S-DSM
0MQ Ideal

MPI S-DSM
0MQ Ideal

MPI S-DSM
0MQ Ideal

0.35

1.530.25

0.36

1.460.23

1.04

1.37

1.4

T
i
m
e
 
(
m
i
n
u
t
e
s
)

 

Cumulative processing time
Cumulative waiting time

UHD-2UHD-1HD

Fig. 3: Cumulative processing and waiting times using the best implementations.

Influence on user code. The user code can be split into two parts: the pro-
cessing time which is the time spent in the computing kernel, and the waiting
time which is the time spent between the end of a kernel call and the beginning
of the next call. This waiting time includes operations to asynchronously send
the previously processed frame to the output task and to synchronously retrieve
the next incoming frame. This is a relevant indicator to know if frames are de-



10 L. Cudennec and K. Trabelsi

livered just in time and to identify a data starvation crisis. Figure 3 presents
the cumulative processing and waiting times for the best MPI, S-DSM and Ze-
roMQ implementations. Labels on top of bars represent processing times divided
by waiting times. Beware of this representation: the global processing time of
the application as shown in figure 2 is the consequence of particular intricacies
of individual processing and waiting times, and cannot be compared to a sim-
ple sum of processing and waiting times. There are several conclusions based
on this figure. First, the cumulative processing time of ZeroMQ is close to the
ideal cumulative processing time which means that the frames have been wisely
dispatched to the computing nodes and that the ZeroMQ runtime does not in-
terfere with the computing capabilities. Second, the S-DSM performance is close
to ZeroMQ for HD and UHD-1 data-sets despite a higher cumulative processing
time. As a counterpart, the cumulative waiting time is smaller which indicates
that the S-DSM runtime was able to deliver data in a more efficient way than
ZeroMQ. In that case, increasing the size of communication pipes (High-Water
Mark, HWM) for ZeroMQ might decrease the cumulative waiting time but at
the price of increasing the memory footprint, degrading the processing perfor-
mance and even getting a memory overflow as discussed previously. Therefore,
there is a trade-off to find when setting an arbitrary value for HWM, which is
not acceptable for a regular user. Finally, the pure MPI implementation reveals
important processing and waiting times with the three data-sets.

Load balancing. One of the main reason the cumulative processing times and
waiting times are increasing comes from a poor load balancing of frames onto
computing resources. The three implementations are all based on eager schedul-
ing of frames onto computing resources. Therefore, the effective load balancing of
frames is a direct consequence of the underlying communications and data man-
agement runtime. It is possible to compare the effective scheduling of frames
in the experiments with the ideal number of processed frames as presented in
Table 2. The Core i7 node is the most powerful node and should process more
frames than the other nodes. However in all the experiments the Core i7 node
is far from processing the expected number of frames. The cumulative distance
from the ideal number of processed frames shows that for the smaller data-sets
(HD and UHD-1) the S-DSM is able to manage a better load balancing than
MPI and ZeroMQ while for a larger data-set (UHD-2) ZeroMQ offers the best
load balancing which finally explains why processing UHD-2 is faster than UHD-
1. Communication runtimes such as MPI and ZeroMQ are complex distributed
software. The inability to achieve a proper load balancing for the smaller data-
sets might be the consequence of smart mechanisms against message delivery
starvation, which leads to a fair distribution of frames among the nodes instead
of favoring the Core i7 node as expected. Note that this underlying behavior is
hidden to the application developer. Despite being implemented over MPI, the S-
DSM has better load balancing, which can be explained by the important mix of
control and data messages exchanged between several nodes whenever accessing
a frame in the shared memory. Therefore the communication pattern to access
a frame is more complex and more resilient to specific runtime arbitration.



Experiments using MPI, S-DSM and 0MQ over Heterogeneous Resources 11

4 Conclusion

Software-distributed shared memory adoption in high-performance computing
systems is conditioned upon reaching acceptable performances. In this work,
a distributed application has been written over message passing and S-DSM
frameworks and deployed over an heterogeneous platform. Results show that
the S-DSM implementation is faster than the pure MPI implementation and
competes with the lightweight ZeroMQ implementation for small granularity
data sets. It appears that the MPI runtime is designed and optimized for super-
computing architectures with strong assumption on hardware capabilities (pro-
cessor speed, amount of physical memory and networking performance). With
the development of distributed heterogeneous architectures, these assumptions
are not reliable, especially with low-power processors and embedded devices. In
such a context, the S-DSM is able to introduce intermediate storage places which
prevents from the overload of communication buffers on processing nodes. The
management of such intermediate storage places is transparent for the applica-
tion, which is inherent to the S-DSM approach compared to message passing
frameworks. Several conclusions come with this work: 1) lightweight message
passing (0MQ) is faster but at the price of specializing the application to the
platform, 2) the OpenMPI runtime is not optimized for running onto low-power
processing boards, and 3) S-DSM overhead is getting smaller compared to mes-
sage passing, as the hardware is becoming more complex to deal with. Therefore,
while probably still not being fully adapted to large-scale homogeneous clusters,
this work shows that S-DSM is a serious contender to leverage the computing
capabilities of distributed heterogeneous architectures and their applications.

Acknowledgments. This work has received funding from the European Union’s
Horizon 2020 research and innovation action under grant agreement No 688201.

References

1. Amza, C., Cox, A.L., Dwarkadas, S., Keleher, P., Lu, H., Rajamony, R., Yu, W.,
Zwaenepoel, W.: TreadMarks: Shared memory computing on networks of worksta-
tions. IEEE Computer 29(2), 18–28 (Feb 1996)

2. Bader, D., Jaja, J.: Simple: A methodology for programming high-performance
algorithms on clusters of symmetric multiprocessors (smps). Journal of Parallel
and Distributed Computing 58, 92–108 (07 1999)

3. Cudennec, L.: Software-distributed shared memory over heterogeneous micro-
server architecture. In: Euro-Par 2017: Parallel Processing Workshops. pp. 366–
377. Springer International Publishing (2018)

4. Cudennec, L.: Merging the publish-subscribe pattern with the shared memory
paradigm. In: Euro-Par 2018: Parallel Processing Workshops. pp. 469–480. Springer
International Publishing, Cham (2019)

5. Dragojevic, A., Narayanan, D., Hodson, O., Castro, M.: FaRM: Fast remote mem-
ory. In: Proceedings of the 11th USENIX Conference on Networked Systems Design
and Implementation. pp. 401–414 (2014)



12 L. Cudennec and K. Trabelsi

6. Gelado, I., Stone, J.E., Cabezas, J., Patel, S., Navarro, N., Hwu, W.m.W.: An
asymmetric distributed shared memory model for heterogeneous parallel systems.
In: Proceedings of the Fifteenth Edition of ASPLOS on Architectural Support
for Programming Languages and Operating Systems. pp. 347–358. ASPLOS XV,
ACM, New York, NY, USA (2010)

7. Ghane, M., Chandrasekaran, S., Cheung, M.S.: Towards a portable hierarchical
view of distributed shared memory systems: Challenges and solutions. In: Proceed-
ings of the 11th International Workshop on Programming Models and Applications
for Multicores and Manycores. PMAM’20 (02 2020)

8. Jegou, Y.: Implementation of page management in MOME, a user-level dsm. In:
CCGrid 2003, 3rd IEEE/ACM International Symposium on Cluster Computing
and the Grid. pp. 479–486 (05 2003)

9. Kaxiras, S., Klaftenegger, D., Norgren, M., Ros, A., Sagonas, K.: Turning cen-
tralized coherence and distributed critical-section execution on their head: A new
approach for scalable distributed shared memory. In: Proceedings of the 24th In-
ternational Symposium on High-Performance Parallel and Distributed Computing.
pp. 3–14 (2015)

10. Keleher, P.: CVM: The coherent virtual machine TR93-215 (01 1995)
11. Kise, K., Katagiri, T., Honda, H., Yuba, T.: Evaluation of the acknowledgment

reduction in a software-dsm system. In: Proceedings of the 6th International Con-
ference on parallel Processing and Applied Mathematics. pp. 17–25 (2005)

12. Li, K.: IVY: a shared virtual memory system for parallel computing. In: Proc.
1988 Intl. Conf. on Parallel Processing. pp. 94–101. University Park, PA, USA
(Aug 1988)

13. Mitchell, C., Geng, Y., Li, J.: Using one-sided rdma reads to build a fast, cpu-
efficient key-value store. In: Proceedings of the 2013 USENIX Conference on An-
nual Technical Conference. pp. 103–114 (2013)

14. Nelson, J., Holt, B., Myers, B., Briggs, P., Ceze, L., Kahan, S., Oskin, M.: Latency-
tolerant software distributed shared memory. In: 2015 USENIX Annual Technical
Conference (USENIX ATC 15). pp. 291–305. USENIX Association, Santa Clara,
CA (2015)

15. Oleksiak, A., Kierzynka, M., Agosta, G., Barenghi, A., Brandolese, C., Pelosi,
W.F.G., Cecowski, M., Plestenjak, R., Cinkelj, J., Porrmann, M., Hagemeyer, J.,
Griessl, R., Lachmair, J., Peykanu, M., Tigges, L., v. d. Berge, M., Christmann,
W., Krupop, S., Carbon, A., Cudennec, L., Goubier, T., Philippe, J.M., Rosinger,
S., Schlitt, D., Adeniyi-Jones, C.P.C., Setoain, J., Ceva, L., Janssen, U.: M2DC
- modular microserver datacentre with heterogeneous hardware. Microprocessors
and Microsystems 52, 117–130 (2017)

16. Ross, J.A., Richie, D.A.: Implementing openshmem for the adapteva epiphany risc
array processor. Procedia Computer Science 80, 2353 – 2356 (2016), international
Conference on Computational Science 2016, ICCS 2016, 6-8 June 2016, San Diego,
California, USA

17. Scales, D.J., Gharachorloo, K.: Towards transparent and efficient software dis-
tributed shared memory. ACM SIGOPS Operating Systems Review 31(5), 157–169
(10 1997)

18. V. Dimakopoulos, P.H.: HOMPI: A hybrid programming framework for expressing
and deploying task-based parallelism. pp. 14–26 (08 2011)

19. Werstein, P., Pethick, M., Huang, Z.: A performance comparison of dsm, pvm and
mpi. pp. 476–482 (09 2003)


	Experiments using a Software-Distributed Shared Memory, MPI and 0MQ over Heterogeneous Computing Resources

