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Abstract

In this work, an enriched Timoshenko beam model describing non-classical bending and shear motion is

employed to study its free wave propagation, frequency response, and sound radiation while considering

the local behavior of its internal heterogeneity. The enriched Timoshenko beam model is established based

on Mindlin’s Second Strain Gradient (SSG) theory, which can capture the long-range interactions between

underlying micro-structures in the frame of continuum mechanics. Dispersive behaviors of non-classical

bending waves, shear waves, and the extra evanescent waves appearing exclusively in the SSG theory model

are analyzed. Then investigations are carried forward into the modal density of non-classical bending

waves, shear waves, and energy flow through the enriched model. At last, the frequency response and sound

radiation of the Timoshenko beam are studied using wave approach based on its multi-modes character. The

resulting non-classical frequency response and radiation features are compared with the classical elasticity

theory result, upon which, impacts of local behavior in complex media on the structural dynamics and

radiation features are discussed. The role of local behavior is, among others, clearly shown in the frame of

the non-classical structural behavior.

Keywords: Second strain gradient theory, enriched Timoshenko beam model, wave propagation features,

energy flow, frequency response, modal densities, sound radiation from non-local structure.

1. Introduction

Most materials used in the industry field, acquired from nature or manufactured artificially are hetero-

geneous materials. They have a rich and complicated internal structure, characterized by micro-structural

details whose size typically ranges over many orders of magnitude. In classical formulations, material is

assumed as a continuous media, and the stress in one point is assumed to depend on the strain at that5

point. However, for highly heterogeneous cases, constitutive models conceived for the conventional con-

tinuum become increasingly insufficient. This is particularly true for nano-scale structure deformation [1],
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and also true for a macroscopic structure that posses a different scale internal structure. The conventional

continuum is only valid under long-wave approximation [2]. When the external wavelength is comparable

with the characteristic size of heterogeneous features, local behavior of the heterogeneity originating with the10

complex microstructure interactions plays a major role in characterizing the global behavior of the material.

In that case, local behavior and global behavior can be observed conjointly in the media, and that kind of

media is defined as enriched complex media in what follows. It should be mentioned that the expression

“micro-structure” in this work is used as a generic denomination for any type of internal material structure,

not necessarily on the level of micrometers.15

To describe the co-dynamic behavior (local and global) of multi-scale characters in complex media,

one solution could be by developing the model with the combination of discrete material governed by the

individual particles. The Molecular dynamics (MD) simulations approach is a candidate formulation. But

MD simulation requires enormous time and computational resources, and still, its applications are limited to

systems containing a relatively small number of molecules or atoms. As an alternative approach, generalized20

continuum theories based modeling have been developed in recent years, in which the local behavior of

heterogeneity caused by long-range interactions can be described by inserting length scale parameters.

Generalized theory can be categorized into three different branches: the higher gradient theory, the higher

order theory, and non-local elasticity theories. Higher gradient theories (e.g. couple stress theory [3],

strain gradient theory [4], second strain gradient theory [5]) generalized the classical continuum theory by25

enriching potential energy with higher order gradients of strain. Higher order theories (e.g. micropolar

theory, micromorphic theory [6] are developed by supplying additional degrees of freedom to a material

point which can describe the effects of the underlying micro-structure deformation. The nonlocal elasticity

theories [7] generalized the classical theory by associating the stress in one point directly to the strain of a

certain neighborhood of that point or even of the entire body.30

Generalized continuum elasticity theory has been employed by many researchers in complex media mod-

eling in short wave limits. One of its pioneering applications lays in the investigation of size-dependence

character and non-local behavior in nano-size structures, see [8, 9, 10, 4]. In addition to the distinct in-

fluences on structural static and free vibration characteristics, local behavior in complex media caused by

non-local interaction between internal structures also leads to high complexity in wave propagation. Some35

pioneering investigations have also been proceeded in this field by employing the generalized continuum

theory modeling. Recent work by Suiker et al. [11, 12] predicted ‘dispersive’ body waves based on the

proposed second-gradient micro-polar formulation, and its dispersion becomes more prominent when the

wavelength reaches the order the particle size. Wave propagation characteristics are also investigated by

Gopalakrishnan [13] with using the Erigen’s Stress Gradient model and Mindlin’s Strain Gradient model,40

by Li et al. [14] with using non-local strain gradient theory model. Length scale parameters are brought

into the continuum governing equations, and these scale parameters are proven to be significantly affecting

2
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the wave propagation features. In the work of Metrikin and Askes [15, 16], they suggested a dynamically

consistent gradient model in which each higher-order stiffness term is accompanied by a higher order inertia

term. The resulting dispersion equation suggested that one harmonic vibration of a point of this model45

perturbs three ‘waves’ (one propagating and two oscillations) from each side of this point.

However, it should be mentioned that this rich and abundant literature belonging to the development of

sophisticated models is rarely considered in the vibration and acoustic community. Indeed, most structural

models of use in the Noise and Vibration Harshness studies belong to classical or conventional theory class.

The reason is simple. The enriched model is sometimes hard to justify for the modeling of employed materials50

in some sectors. Some of these enriched models did not yet completely convince engineers and designers about

their intrinsic interest. This trend is expected however to reverse in the few coming periods. Most mechanical

construction developers are looking for lightweight materials for obvious ecological and economical reasons.

Most of these lightweight materials are composite made with more and more sophisticated architecture.

The emergence of the metamaterial and metastructure way of thinking is rapidly reinforcing this way of55

thinking. The present part is then a modest contribution to the use of the enriched models in vibration

and acoustics. The issue of wave propagation, as well as noise radiated from such complex structures, is

specifically studied. The main focus is the comparison between classical theories and non-classical ones. The

main question being, how local behavior affects the vibroacoustic indicators and for which expected benefit?.

Since the long-range interaction in one-dimensional structure is easier to understand and interpret,60

the investigation starts from the beam structure. In analyses of beam-like structures, two theories are

usually employed, namely Euler–Bernoulli theory and Timoshenko beam theories, and upon the classical

theories modified higher order beam theories have also been developed [17, 18]. Indeed, as shear effect is

evident for enriched media [7], higher order beam theories are more favorable. Consider the complexity

and accuracy of the model, classical Timoshenko beam theory is applied in this work. The Second strain65

gradient (SSG) theory based Timoshenko beam model, developed by Asghari [19], is employed to investigate

the wave propagation features considering the local behavior of internal heterogeneity caused by long-range

interactions. The governing equation and associated boundary conditions are normalized in Sec. 2, then

the dispersive behavior of wave modes in the non-local media is analyzed in Sec. 3.1. Subsequently, modal

densities of the propagating wave modes (Sec.3.2) and energy flow through the structure are calculated70

(Sec.3.3). Upon which, Frequency Response Functions (FRF) of the non-classical Timoshenko beam is

investigated in Sec.4. Sound radiation from the vibrating surface of the structure is derived in 4 in terms

of its normal square velocity, radiation impedance, and radiated pressure field. Numerical applications and

result discussions are presented in Sec. 6 and conclusions are drawn in Sec. 7. This work is not only a

contribution to the analysis of wave propagation and radiation of complex media but also aims at providing75

an original solution to analyze the wave propagation and radiation characteristics of complex media with

micro-scale periodicity.

3
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2. Normalized governing equations and boundary conditions

The research object considered in what follows is an SSG theory-based Timoshenko one. Taking into

account the bending motion allows a generic vibroacoustic analysis to be conducted while keeping the80

analytical and numerical reasoning. Deriving analytical expressions for the dynamic indicators when possible

allows comprehensive comparisons between classical and non-classical theories. Considering the Timoshenko

beam with a rectangular section, the coordinate system x − y − z and kinematic parameters of the model

are illustrated in Figure 1 with its x-axis along the axial direction of the beam, and its origin on the left-end

section. The plane x− y of the coordinate system is coincident with the mid-plane of the beam. The beam85

is assumed to be uniform, homogeneous, and initially straight along the x-direction with length L, and the

cross-section is assumed to remain plane after deformation. q (x, t) denotes the distributed loads acting on

the beam in the transverse direction as force per unit axial length.

Figure 1: The coordinate system and kinematic parameters of the enriched Timoshenko beam model

The components of the displacement field in the enriched Timoshenko beam model in an in-plane motion

are written as

ux (x, y, z, t) = −z ψ (x, t) ,

uy (x, y, z, t) = 0,

uz (x, y, z, t) = w (x, t) ,

(1)

where ux, uy, and uz denote the displacement of the beam particles along x, y, and z directions respectively.

w(x, t) represents the flexural deformation of the beam. The cross-sections are not assumed to remain90

perpendicular to the deformed axial line of the beam, instead ψ(x, t) represents the rotation angle of the

cross-sections after deformation with respect to the perpendicular section.

With Mindlin’s SSG theory, the potential energy density is generalized with higher order strain compo-

nents as in Eq. (2).

ū =
1

2
λεiiεjj + µεijεij + a1ηijjηikk + a2ηiikηkjj + a3ηiikηjjk + a4ηijkηijk + a5ηijkηkji

+ b1ξiijjξkkll + b2ξijkkξijll + b3ξiijkξjkll + b4ξiijkξllkj + b5ξiijkξlljk + b6ξijklξijkl

+ b7ξijklξjkli + c1εiiξjjkk + c2εijξijkk + c3εijξkkij + b0εiijj ,

(2)

4
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where λ and µ are the Lame’s constants. Parameters ai, bi and ci are sixteen higher-order material constants

which particularly appear in SSG theory. εij , ηijk and ξijkl (i, j, k, l = 1, 2, 3) are the components of strain

tensors ε, η and ξ, their expressions can be written in terms of the gradient of displacement vector u as

εij =
1

2
[∇u + u∇]ij , ηijk = [∇∇u]ijk , ξijkl = [∇∇∇u]ijkl . (3)

Substitution of the motion equations into the potential energy density gives the enriched potential energy,

and the governing equations can be obtained by applying Hamilton principle [19]. For parametric study of

the wave propagation behavior in higher frequency, the following dimensionless variables are defined as,

x =
x

L
, w =

w

L
, ω =

ω

ωk
, τ =

t

tk
(4)

in which, the frequency normalization term ωk =
√

Ak′µ
Iρ is the cut-on frequency of the shear wave in

classical Timoshenko beam theory, and k′ is the shear constant depending on the shape of cross sections.

The normalization parameter for time t tk = 1
ωk

=
√

Iρ
Ak′µ . With the newly defined variables, normalized

governing equations of motion can be written as,

−ψ +

(
B1 − 2c2A−Ac3

µAL2

)(
∂2ψ

∂x2

)
+

(
B4 −B2

µAL4

)(
∂4ψ

∂x4

)
+

B3

µAL6

∂6ψ

∂x6 +
∂w

∂x

+

(
B7 + 2 (c2 + c3)A

2µAL2

)(
∂3w

∂x3

)
− B8

2µAL4

∂5w

∂x5 =
m2

µAtk
2

∂2ψ

∂τ2

−
(
∂ψ

∂x

)
−
(
B7 + 2 (c3 + c2)A

2µAL2

)(
∂3ψ

∂x3

)
+

B8

2µAL4

(
∂5ψ

∂x5

)
+

(
∂2w

∂x2

)

+

(
c3A−B5

µAL2

)(
∂4w

∂x4

)
+

B6

µAL4

(
∂6w

∂x6

)
+ q =

m0L
2

µAtk
2

(
∂2w

∂t2

)

(5)

in which q = qL/µA is the dimensionless body load intensity, m0 = ρA, m2 = ρ
∫
A
z2dA, and Bi represents

the higher order material constant factors as

B1 = ζEI + 2A(a1 + 2a4 + a5),

B2 = 2I(a1 + a2 + a3 + a4 + a5) + 2A(2b2 + b3 + b5 + 3b6 + 2b7),

B3 = 2I(b1 + b2 + b3 + b4 + b5 + b6 + b7)

B4 = 2I(c1 + c2 + c3), B5 = 2A(a3 + a4), B6 = 2A(b5 + b6),

B7 = −2A(a2 + 2a5), B8 = −2A(b3 + 2b4 + 2b7),

with parameter A as the area of the beam cross section, and I =
∫
A
z2dA as the area moment of inertia for

the beam cross section around y axis. To avoid the influence of Poisson effect, ζ = 1 is set.

5
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With the same normalization parameters, the dimensionless boundary conditions are obtained as,

M0 =

(
2B1 − 2c2A− c3A

2µAL2

)(
∂ψ

∂x

)
+

(
B4 −B2

µAL4

)(
∂3ψ

∂x3

)
+

B3

µAL6

(
∂5ψ

∂x5

)

+

(
B7 + 2c2A+ c3A

2µAL2

)(
∂2w

∂x2

)
− B8

2µAL4

(
∂4w

∂x4

)
or δψ = 0

M1 =

(
2c2 + c3

2µL2

)
ψ +

(
2B2 −B4

2µAL4

)(
∂2ψ

∂x2

)
− B3

µAL6

(
∂4ψ

∂x4

)
−
(

2c2 + c3
2µL2

)(
∂w

∂x

)

+
B8

2µAL4

(
∂3w

∂x3

)
or δ

(
∂ψ

∂x

)
= 0

M2 =
B4

2µAL4

(
∂ψ

∂x

)
+

B3

µAL6

(
∂3ψ

∂x3

)
or δ

(
∂2ψ

∂x2

)
= 0

V 0 =− ψ −
(
B7 + 2 (c3 + c2)A

2µAL2

)(
∂2w

∂x2

)
+

B8

2µAL4

(
∂4ψ

∂x4

)
+

(
∂w

∂x

)

+

(
c3A−B5

µAL2

)(
∂3w

∂x3

)
+

B6

µAL4

(
∂5w

∂x5

)
or δw = 0

V 1 =

(
B7 + c3A

2µAL2

)(
∂ψ

∂x

)
− B8

2µAL4

(
∂3ψ

∂x3

)
+

(
B5 − c3A
µAL2

)(
∂2w

∂x2

)
− B6

µAL4

(
∂4w

∂x4

)

or δ

(
∂w

∂x

)
= 0

V 2 =− c3
2µL2

ψ +
B8

2µAL4

(
∂2ψ

∂x2

)
+

c3
2µL2

(
∂w

∂x

)
+

B6

µAL4

(
∂3w

∂x3

)
or δ

(
∂2w

∂x2

)
= 0

(6)

3. Analysis of wave dispersion characteristics, modal density and energy flow95

3.1. Dispersion relation

For media with internal heterogeneity due to micro-structures effects, classical elasticity theory is not

capable of describing their deformation behavior and capturing their wave dispersion properties especially

when the wavelength is of the same order with the major heterogeneity. This phenomenon has been illus-

trated in the research of Zhu et al. [20] for non-local rod structures. In this section, dispersion relation of100

free waves propagating in enriched Timoshenko beam model is investigated based on the proposed model.

Assuming the external loading q = 0, free wave propagation modes in enriched model can be achieved

by substituting the general exponential form of wave propagation solution:

w(x, t) = w0e
i(ωt−kx)

ψ(x, t) = ψ0e
i(ωt−kx)

(7)

into the governing equations (k indicating wavenumber and ω angular frequency), then we have

Rψ0 + Sw0 = 0,

Sψ0 + T w0 = 0,
(8)

6
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in which,

R = −B3k
6 + (−B2 +B4) k4 + (2Ac2 +Ac3 −B1) k2 +m2ω

2 − µA,

S =
B8

2
ik5 +

(
B7

2
+Ac2 +Ac3

)
ik3 − iµAk,

T = B6k
6 + (−Ac3 +B5) k4 + µAk2 −m0ω

2.

In order to have nontrivial solutions for ψ0 and w0 in Eq. (8), the determinant of coefficients must

be zero, consequently one 12th-order function with respect of wavenumber k is obtained as the dispersion

relation for the enriched Timoshenko beam model,

k12k
12 + k10k

10 + k8k
8 + k6k

6 + k4k
4 + k2k

2 + k0 = 0 (9)

in which,

k12 = −B3B6; k10 = B8
2

4 −B3B5 + (B4 −B2)B6 + c3AB3;

k8 = B4B5 −B2B5 −B1B6 + B7B8

2 + c3A (B2 −B4 +B6 +B8) + 2c2AB6+c2AB8 − µAB3;

k6 = B7
2

4 +A2c2
2 −B1B5 + c2A (2B5 +B7) + c3A (B1 +B5 +B7)

−Aµ (B2 −B4 +B6 −B8) + ω2 (B3m0 +B6m2) ;

k4 = m0ω
2 (B2 −B4) +m2ω

2 (B5 − c3A)−Aµ (B5 +B7 +B1) ;

k2 = m0ω
2
(
B1 − 2c2A− c3A+ m2

m0
µA
)

; k0 = m0ω
2
(
Aµ−m2ω

2
)
.

This dispersion equation is a 12th-order function concerning wavenumber, thus 12 wave modes can

be generated in the enriched Timoshenko beam model, among which 6 are positive-going wave and 6 are

negative-going waves. For parametric study, wavenumber is normalized with k = kL, then the normalized

dispersion relation is displayed as,

k12k
12

+ k10k
10

+ k8k
8

+ k6k
6

+ k4k
4 + k2k

2
+ k0 = 0 (10)

in which,

k12 = − k12
L10 ; k10 = k10

L8 ; k8 = k8
L6 ; k2 = k2

tk2 ; k0 = L2

tk2 k0.

k6 = 1
L4

[
B7

2

4 +A2c2
2 −B1B5 + 2c2AB5 + c2AB7 + c3A (B1 +B5 +B7)

]

− Aµ
L4 (B2 −B4 +B6 −B8) + ω2

tk2L4 (B3m0 +B6m2) ;

k4 = m0ω
2

tk2L2 (B2 −B4) + m2ω
2

tk2L2 (B5 − c3A)− Aµ
L2 (B5 +B7 +B1) ;

3.2. Modal density

Modal density n (ω) of a structure indicates the number of resonant frequencies in a neighborhood ∆ω

local to frequency ω. It may also be interpreted as the expected number of natural frequencies per radiant

per second as

n(ω) =
dN

dω
, (11)

7
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in which N , the mode count, represents the number of resonant frequencies below that given frequency ω.

Assuming δ represent the total phase change introduced by reflecting boundaries which varies with different

boundary conditions, then based on the ‘phase-closure principle’ the relation between wavenumber and mode

count for the studied beam of length L can be expressed as

2kL± δ = N · 2π ⇒ N(k) =
kL± δ
π

.

As the mode order increases, the number of resonances N(k) in frequency domain become increasingly less

sensitive to the boundary conditions. Hence, we may consider the mode count as,

N(k) =
kL

π
, (12)

and Eq. (11) can be simplified as

n(ω) =
dN

dω
=
dN

dk

dk

dω
=
L

π

1

Cg
, (13)

in which, the term Cg denotes the group velocity of the studied wave mode, and it represents information

and energy transported velocity by this wave mode.

3.3. Energy flow105

In enriched Timoshenko beam model, energy flow can be carried away by all the six wave modes. For

further exploration in FRF and vibration radiation, energy velocity at one point in the studied enriched

model is formulated in this section. At one observation point M , the instantaneous kinetic energy density

T(M, t), is defined [21] as

T =
ρ

2
Re (V) · Re (V) . (14)

where V is velocity vector. As the strain and stress tensors are defined differently in SSG theory, potential

energy density and energy flow should be revised accordingly. The potential energy density U(M, t) of the

studied model is enriched with the higher order components as in equation (2). The sum of the kinetic and

potential energy density yields the instantaneous total energy density as:

Wtotal = T + U. (15)

For a vibrating structure, the time averaged value is more important than the instantaneous value. In the

following investigations, the time will be removed. A physical quantity H, which represents here an energy

or a power density, can generally be expressed as

H = f · g,

8
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where f and g are complex harmonic physical variables denoting stress, strain, or displacement in the

formulation. Thus the time averaging of H is given by

〈H〉 =
ω

2π

∫ 2π

0

Re (f) · Re (g)dt =
1

2
Re (f · g∗) ,

where ‘*’ denotes complex conjugation, and ‘〈 〉’ denotes time averaged. For the studied beam model, time

averaged kinetic energy and time averaged potential energy per unit length can be deduced as

〈T〉 =
ρ

4

∫

A

[
Re (ẇ · ẇ∗) + z2 · Re

(
ψ̇ · ψ̇∗

)]
dA,

〈U〉 =
1

4
Re

[
B1

(
∂ψ

∂x

)(
∂ψ

∂x

)∗
+B2

(
∂2ψ

∂x2

)(
∂2ψ

∂x2

)∗
+B3

(
∂3ψ

∂x3

)(
∂3ψ

∂x3

)∗

+B4

(
∂ψ

∂x

)(
∂3ψ

∂x3

)∗
+B5

(
∂2w

∂x2

)(
∂2w

∂x2

)∗
+B6

(
∂3w

∂x3

)(
∂3w

∂x3

)∗

+B7

(
∂ψ

∂x

)(
∂2w

∂x2

)∗
+B8

(
∂2ψ

∂x2

)(
∂3w

∂x3

)∗
+Aµ

(
∂w

∂x
− ψ

)(
∂w

∂x
− ψ

)∗

−2c2A

(
∂w

∂x
− ψ

)(
∂2ψ

∂x2

)∗
+ c3A

(
∂w

∂x
− ψ

)(
∂3w

∂x3
− ∂2ψ

∂x2

)∗]
,

(16)

in which ‘ẇ’ ‘ψ̇’ denote the time derivative of w and ψ. The instantaneous active energy flow P0 for the

classical elasticity theory are defined [22] as

P0 = −Re (σ) · Re (V) ,

which is the power done by the stress σ. For the enriched Timoshenko beam model, power can be applied

not only through the classical stress σ but also the higher order stresses τ and η. After integrating through

the observation section, the expression of time averaging active energy flow per unit length is assumed in

form of

〈P〉 = −1

2
Re

[
V0 · ẇ∗ + V1 ·

(
∂ẇ

∂x

)∗
+ V2 ·

(
∂2ẇ

∂x2

)∗
+M0 · ψ̇∗ +M1 ·

(
∂ψ̇

∂x

)∗
+M2 ·

(
∂2ψ̇

∂x2

)∗]
, (17)

where V0, V1, V2 and M0, M1, and M2 are the loads dual to the corresponding kinematic parameters. They

are resultants of not only classical stress but also higher-order stresses. V0 and M0 are referred as shear

force and bending moment acting on the end sections. V1 and M1 denote the first higher-order loads with110

unit of N ·m and N ·m2, and V2 and M2 denote the second higher-order loads with unit of N ·m2 and N ·m3.

They are related with the displacement and derivatives of displacement at M position as in Eq.(6).

Meanwhile energy velocity through the enriched Timoshenko beam model equals the time averaged active

energy flow 〈P 〉 over the time averaged total energy 〈Wtotal〉 as

Ve =
〈P〉

〈Wtotal〉
. (18)

In the numerical study, the formulated expressions of energy flow and potential energy density will be verified

by the following theorem. When there is only one conservative wave propagating in the complex structure,

energy velocity Ve obtained by the above formulation should be equal with the group velocity of that wave Cg.115

9
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4. Frequency response function analysis

Frequency response analysis of the Timoshenko beam subject to a harmonic excitation and certain

boundary condition is investigated in this section. The studied cantilever bean is fixed at left-end, and

subject to a harmonic force F = Re
{
q0e

iωt
}

as shown Figure 2. The height of the cross-section is h, width

b, and the length of the beam is L. The observation point can be at any position, in this case, it is set to be120

at x = 0.7L. The investigation is done with wave approach and the result are verified with Finite Element

Method (in Appendix).

Figure 2: A fixed-free Timoshenko beam with loading in free end

Based on the previously obtained wave modes in section 3.1, the solution for the displacement field can

be given by the superposition of all the progressive and retrograde waves (±k1, ±k2, ±k3, ±k4, ±k5, ±k6).

With wave approach, the general expressions of the dimensionless displacement w and ψ can be expressed

as

w(x̄, τ) =

(
6∑

i=1

Aie−ik̄ix̄ +
6∑

i=1

Bieik̄ix̄
)
· eiωτ ,

ψ(x̄, τ) =

(
6∑

i=1

Cie−ik̄ix̄ +
6∑

i=1

Dieik̄ix̄
)
· eiωτ ,

(19)

To calculate the amplitudes in Eq. (19), boundary conditions at each end are required. There are two kinds

of conditions: a loading type and a geometric type, and only one kind need to be satisfied for each kinetic

parameter. For the case in Figure 2, the generalized loading type and geometric type boundary conditions125

are expressed in Eq. (20)

w (0, ω) = 0; V 0 (1, ω) = −q0;

ψ (0, ω) = 0; M0 (1, ω) = 0;

V 1 (0, ω) = 0; V 1 (1, ω) = 0;

M1 (0, ω) = 0; M1 (1, ω) = 0;

V 2 (0, ω) = 0; V 2 (1, ω) = 0;

M2 (0, ω) = 0; M2 (1, ω) = 0;

(20)

10
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where q0 = q0
µA denotes the normalized amplitude of harmonic excitation force. Physically speaking, the

extra kinematic parameters ∂w
∂x , ∂2w

∂x2 and ∂ψ
∂x , ∂2ψ

∂x2 represent the inner relative movement of the adjacent

micro-structures. The higher-order generalized loads represent the inner interactions between the adjacent

micro-structures generated by variation of the inner relative movement. At the fixed end x = 0, transverse130

displacement w and rotation angle ψ equal zero; The higher-order generalized forces V 1, V 2 and M1, M2

are set to be zero since the forces that possibly produced by the fixed base are only classical shear force and

bending moment. At the force excitation end x = 1, the produced classical force and moment V 0 and M0

follow the equilibrium for shear force and bending moment. The higher-order forces V 1, V 2 and M1, M2

are set to be zero.135

The above 12 equations are not sufficient to calculate the 24 variables in the solution (19). But we also

know that the general solution form of w and ψ should be valid to the governing Eqs. (5) on any frequency

ω for all the point x on the structure except the boundary points. Hence when substitute the solution of

Eq. (19) into the governing equations, the coefficient of each term e±ikix+iωτ should equal zero, which yields

amplitudes of w and ψ for each mode following the principles as

Ci =
−2i

(
−B6k̄

2
t k̄

6
i + c3AL

2k̄2
t k̄

4
i −B5L

2k̄2
t k̄

4
i − µAL4k̄2

t k̄
2
i +m0ω

2L6
)

k̄ik̄2
t

(
B8k̄4

i + 2c2AL2k̄2
i + 2c3AL2k̄2

i +B7L2k̄2
i − 2µAL4

) Ai; (i = 1, 2, 3, ...6)

Di =
2i
(
−B6k̄

2
t k̄

6
i + c3AL

2k̄2
t k̄

4
i −B5L

2k̄2
t k̄

4
i − µAL4k̄2

t k̄
2
i +m0ω

2L6
)

k̄ik̄2
t

(
B8k̄4

i + 2c2AL2k̄2
i + 2c3AL2k̄2

i +B7L2k̄2
i − 2µAL4

) Bi; (i = 1, 2, 3, ...6)

(21)

With Eqs.(20) and (21), 24 equations concerning the amplitudes of each progressive and retrograde wave can

be established. Then the amplitudes of transverse displacement w and rotation angle ψ at the observation

point on each frequency can be obtained.

5. Sound Radiation from the SSG theory based Timoshenko beam

Sound radiation from vibrating structures is of great impact on the surrounding environment. Sound140

radiation is generated by interactions between the structure and the ambient fluid, so it depends both

on the structure dimensions, boundary conditions, material properties, external excitation, and ambient

fluid properties. The SSG theory-based model enriches structural dynamic behavior with micro-structure

characters, which will surely affect the resulting sound radiation. This section intends to analyze the sound

radiation from the vibrating surface of the Timoshenko beam excited by a simple harmonic transverse force.145

Sound radiation from an infinite complex beam is analyzed concerning radiation impedance and radiated

pressure field. Then sound radiation from a finite-sized complex beam with proper boundary conditions is

calculated based on Kirchhoff-Helmholtz integral equation. The impact of the local behavior of heterogeneity

on the radiation features of complex structures will be discussed by comparing the results from the SSG

theory model and classical theory model.150
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5.1. Sound radiation from infinite beam

Figure 3: sound radiation from an infinite Timoshenko beam

As shown in Figure 3, the vibrating beam subject to a transverse harmonic force F = Re
{
q0e

iωt
}

at

x = 0 is assumed to be infinitely extended along x direction, and the waves generated by the vibrating

surface ΩΣ in the fluid domain Ωf propagate away from the source at speed c0. Acoustic wave motion

equation governing the propagation of acoustic disturbances through a homogeneous, inviscid, isotropic,

compressible fluid can be written in terms of the variation of pressure about the equilibrium pressure as

∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
− 1

c02

∂2p

∂t2
= 0. (22)

where p is the radiated acoustic pressure in the field, and c0 represents the frequency-independent speed

of sound govern by the fluid medium. In studying the sound radiation from beam structure to fluid,

the vibration is uniform along the y direction, so is the acoustic pressure field. Then the simplified two-

dimensional wave propagation form is expressed in association with simple harmonic time dependence as,

∂2p

∂x2
+
∂2p

∂z2
= −

(
ω

c0

)2

p = −k2
0p, (23)

where k0 = ω
c0

. Since the vibration field is symmetrical about the force excitation point x = 0, the main

attention is paid to the wave propagation field x ≥ 0. According to the enriched Timoshenko beam model,

the transverse velocity at the vibrating surface x in region [0,+∞) can be expressed in wave superposition

form as,

vn (x, t) = iω · w (x, t) = iω ·
(

6∑

i=1

Aie−ikix
)
· eiωt. (24)

This complex solution represents all the physically possible forms for transverse vibration velocity of the

surface, and each amplitude Ai can be expressed out in forms of the excitation force q0 by FRF analysis.

Generated by harmonic acceleration disturbance at the structure-fluid interface, the radiated acoustic pres-

sure may also be expressed by the superposition of six acoustic pressure fields to physically represent the

sound radiation from six wave modes generated at the source. Therefore the complex exponential form of

the acoustic pressure p (x, z, t) representing the propagation of sound pressure in the two-dimensional space

x ≥ 0, z ≥ 0 is given as,

p (x, z, t) =

(
6∑

i=1

Rj · e−i(kxi
x+kziz)

)
· eiωt, (25)

12
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in which kxi and kzi represent the component of wavevector ki in x and z direction generated by elastic wave

ki in the solid. Substitute the solution of acoustic pressure p (x, z, t) into (22), the relations of wavevector

components constituting the radiated acoustic pressure field are expressed as

k2
xi

+ k2
zi = k0

2; (i = 1, 2, 3, ...6). (26)

In deriving the wave equation, the linearised form of Euler momentum equations are used as

∇p+ ρ0
∂u̇

∂t
= 0. (27)

in which ∇p, u̇ respectively denote the pressure gradient and particle velocity vector, and ρ0 is the density of

fluid. In z direction, the vibration velocity uz of a point on the interface in fluid domain equals the transverse

vibration velocity vn (x, t) at that point on the beam surface. Then with Euler momentum equation, the

pressure gradient in z direction in fluid domain can be connected with the particle acceleration of the

structure normal to the interface between the two media as

∂p

∂z

∣∣∣∣
z=0

= −ρ0 ·
∂vn
∂t

∣∣∣∣
z=0

. (28)

Substitution of the solution form of acoustic pressure Eq. (25) and transverse displacement of the beam Eq.

(24) into Eq. (28) yields the following relation,

6∑

i=1

−ikziRi · e−ikxi
x = ρ0 · ω2 ·

(
6∑

i=1

Aie−ikix
)

(29)

To have acoustic pressure solution for Eq. (29) on arbitrary frequency for arbitrary position, kxi
should

take the same value with ki as

kxi
= ki, (i = 1, 2, 3, ...6). (30)

Combined with the above relation in Eq. (26), kzi should take the values as,

kzi =

√
k0

2 − ki2, (i = 1, 2, 3, ...6). (31)

To satisfy the Euler momentum in Eq. (29), the corresponding coefficients in front of component of each

wave mode on both sides of the equation should be identical to each other. Hence the coefficients Ri in

acoustic pressure solution are obtained as,

Ri =
iρ0ω

2Ai
kzi

=
iρ0ω

2Ai√
k0

2 − ki2
, (i = 1, 2, 3, ...6). (32)

Substitution of the obtained wavevectors and amplitudes into Eq. (25) yields the acoustic pressure in the

radiation field x ≥ 0, z ≥ 0 from the enriched Timoshenko beam model as (omitting the time component

eiωt)

p (x, z, ω) =
6∑

i=1

(
iρ0ω

2Ai√
k0

2 − ki2
· e−i(kix+kziz)

)
(33)
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A similar process can also be applied in calculating the solution of acoustic pressure in the region x ≤ 0, z ≥ 0.

The amplitude of the pressure field is determined by the application of the condition of compatibility of

normal velocities or displacements at the structure fluid interface. The specific acoustic impedance of the

fluid at the interface Z (x, ω) describing the relationship between the oscillator velocity perpendicular to the

vibrating surface and the resulting acoustic pressure at that point generated by that surface as shown in

Eq. (34)

Z (x, ω) =
p (x, 0, ω)

vn (x, ω)
=

6∑
i=1

(
iρ0ω

2Ai√
k02−ki2

· e−ikix
)

iω ·
(

6∑
i=1

Aie−ikix
) (34)

The active energy that can be radiated into the ambient fluid from surface S and the reactive energy stored

in the near field of the source can be respectively expressed as

PΣ =
1

2

∫

S

Re {p (x, 0, ω) · ṽ∗n (x, ω)} dS =
1

2

∫

S

Re {Z (x, ω)} · |vn (x, ω)|2dS

QΣ =
1

2

∫

S

Im {p (x, 0, ω) · ṽ∗n (x, ω)}dS =
1

2

∫

S

Im {Z (x, ω)} · |vn (x, ω)|2dS
(35)

We can see real part of the impedance represents the energy that can be radiated into the ambient medium

from surface S, while the imaginary part of the impedance represents the energy stored in the near field of

the source, the square normal velocity of the vibrating surface can be regarded as an input to the energy155

radiation.

5.2. Sound radiation from simply supported beam in a rigid baffle

Figure 4: sound radiation from simply supported beam in a rigid baffle

As shown in Figure 4, one beam of length 2L embedded in an infinite rigid baffle in x direction is

considered. The beam is simply supported at both ends and excited by one harmonic force in the middle.

14



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
The vibration displacement can be described by a superposition of all the vibrating modes as

w(x, t) = w̃ (x) · eiωt =

(
6∑

i=1

Aie−ikix +

6∑

i=1

Bieikix
)
· eiωt. (36)

in which w̃ (x) represents the product summation of complex mode amplitude and modes, and amplitudes

of each mode can be calculated out with FRF analysis. Then the surface vibration velocity distribution

vn (x, ω) is given as

vn(x, ω) = iω · w̃ (x) · eiωt = ṽn · eiωt. (37)

The total sound radiation due to the surface vibration can be physically regarded as the superposition of all

the sound radiation fields generated by the progressive and retrograde modes, and each mode can be regarded

as the superposition of several independent baffled piston cases. Therefore, the radiation from each mode

could be estimated individually and then summed to give the total radiation pressure field. To estimate

the pressure field of each mode, the direct boundary integral formulation based on the Kirchhoff–Helmholtz

integral theorem is employed here. The pressure at a field point r in the interior or the exterior volume can

be expressed in terms of the pressure p (r) and the normal velocity ṽn at a boundary point ra on the related

closed boundary surface Sa as

c(r)p (r) =

∫∫

Sa

(
p (r)

∂G (r, ra)

∂n
−G (r, ra)

∂p (ra)

∂n

)
dSa; (38)

where c(r) is a coefficient dependent on the location of the field point. For the studied exterior problem,

c(r) = −1 is set. n is the normal direction at the boundary surface directed to the fluid domain; G is a

Green’s function satisfying the Helmholtz equation. In the following analysis, Green’s function is applied

to one unbounded fluid. Without scattering boundaries, the Green’s function must satisfy the Sommerfeld

radiation condition that only waves traveling outward from the point source are allowed and that the pressure

tends to zero at an infinite distance from the source, one solution is

G (r, ra, ω) =
e−ik|r−ra|

4π |r− ra|
(39)

Combined with Eq. (38), the acoustic pressure in any point r in the studied fluid domain Ωf is determined

by the combination of the pressure distribution p (ra) and normal velocity distribution related with ∂G
∂n on

the vibrating boundary surface Sa.160

For the studied beam structure, assuming the pressure on each vibrating surface of are S+
a and S−a is

p(r), Green’s function on S+
a and S−a is GSa

, ∂G∂n on S+
a and S−a will have the same magnitude but different

sign. Then the contribution of the first term, pressure distribution, will be necessarily canceled out. The

only remaining term is the second term, the normal velocity distribution. The Green’s function propagate

the normal velocity which is related with ∂p
∂n , from the surface. Then the pressure at any point in the

15
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Table 1: High-order material constants for aluminum (Shodja et al.,2012).

a1(eV/Å)

0.1407

a2(eV/Å)

0.0027

a3(eV/Å)

−0.0083

a4(eV/Å)

0.0966

a5(eV/Å)

0.2584

b1(eV/Å)

0.7927

b2(eV/Å)

0.0644

b3(eV/Å)

−0.1943

b4(eV/Å)

−0.0009

b5(eV/Å)

−0.0009

b6(eV/Å)

16.1566

b7(eV/Å)

48.5291

c1(eV/Å)

0.5041

c2(eV/Å)

0.3569

c3(eV/Å)

0.1782

radiated field can be expressed purely in terms of the distribution of normal surface acceleration as

p (r) =

∫∫

S+
a +S−a

(
G (r, ra)

∂p (ra)

∂n

)
dSa =

∫∫

S+
a

(−2iρ0ωG (r, ra) ṽn (ra)) dSa; (40)

For the studied SSG theory-based Timoshenko beam model, the pressure at point (x′, z′) in the radiated

fluid domain can be obtained by substituting the normal velocity distribution (37) and form of Green’s

function into the Kirchhoff Helmholtz integral Eq. (40) as (omitting the time component eiωt)

p (x′, z′, ω) =
−iρ0ω

2π

∫ L

−L

e−ikR

R
ṽn (x) dx; (41)

in which R =

√
(x′ − x)

2
+ z′2 represents the distance between the observation point (x′, z′) and the source

(x, 0).

6. Numerical application and result discussion

Numerical cases are implemented in this section to illustrate the complex wave propagation and radiation

behaviors as well as the impact of local behavior of heterogeneity in the complex media. The geometric165

shape of the beam is shown as in Figure 1. The material is assumed to be aluminum with µ = 26 GPa. The

higher-order material constant values are given in Table 1, which refers to the work by Shodja et al. (2012)

[23] with the atomistic approach. The beam’s cross-section has width b = 3h, length L = 5h, and height of

the section h = 10a0, with the lattice parameter a0 = 4.04Å.

170

6.1. Dispersion curves

Employing the structural and material parameters into the dispersion relation in Eq. (8), one arrives 12

solutions which indicate 6 positive-going wave and 6 negative-going waves corresponding to each frequency.

The dispersion curves of positive-going wave modes are shown in Figure 5.
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Figure 5: Dimensionless dispersion relation

Figure 5 displays the dispersion curves of the positive-going wave modes in the enriched model and175

classical model in frequency range ω ∈ [0, 5]. Fig. 5(a) and fig. 5(b) respectively show the real parts and

imaginary parts. To be noted, the direction of propagation (positive-going or negative-going) is defined by

the Imag (k), which corresponds to the wave attenuation. The positive- or negative-going waves can have

arbitrary Real (k) sign. Thus wave k3 and k5, with negative imaginary part and negative real part are

considered as positive-going waves.180

Different from the dispersion relation in classical beam theory model, 6 wave modes (k1, k2, k3, k4, k6, k6)

are generated in the enriched Timoshenko beam model. k1-SSG is non-classical bending wave and k2-SSG

is non-classical shear waves. k3, k4, k5 and k6 are the evanescent waves which exist exclusively in enriched

model. Compared with k1-Classical and k2-Classical, k1-SSG and k2-SSG are less in value especially in

higher frequency, therefore waves propagation in complex media exhibits longer spatial periodicity on the185

same frequency than classical media. For the other 4 evanescent waves, k3 and k4 are real part conjugate,

so do k5 and k6. These four waves decay to zero in a very close range after being generated. They do not

transport energy to a far-field but they do affect energy attenuation in the near field.

To confirm the size-effect feature in wave propagation, dispersion curves of non-classical bending wave

k1-SSG in the enriched model of different sizes are investigated. The results are illustrated in Figure 6.190

As we can see in Figure 6, the resulting classical dispersion curve is size-independent, whereas the

non-classical dispersion curves are observed to exhibit size-dependent features. The structure’s height h

increases and deformation wavelength is proportional to h, therefore deformation wavelength becomes longer

than the characteristic length of internal heterogeneity, and the influence of long-range interaction between

internal micro-structures diminishes gradually. The enriched dispersion curve converges to the classical one195

in structure with fairly large dimensions. This is also the reason why the size effect can be observed in

17



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
nano-sized structures.
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Figure 6: Bending wave dispersion curves changing with dimension

6.2. modal density

In the enriched model, only non-classical bending wave k1-SSG and non-classical shear wave k2-SSG

can travel in long-distance and transfer energy to the far-field. Hence modal densities of these two waves200

are analyzed to study the statistical distribution of resonances of the enriched model in a higher frequency

range.
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Figure 7: Modal density of bending wave and shear wave

Fig. 7(a) and Fig. 7(b) respectively depict modal densities of bending wave and shear wave. To be

noted here, the studied frequency range of shear wave is ω ∈ [1, 5] as the shear wave propagate to far-

field only above the cut-on frequency (ω¿1). In higher frequency, the obtained modal densities from SSG205

theory model declines distinctly compared with the classical ones, which indicates the expected number of
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resonances is much less than the classical result on the same frequency. This difference comes from the

less transferred energy in the system, which originates from the influence of long-range interaction between

underlying micro-structures. In higher frequency, the deformation wavelength becomes more comparable

to the internal characteristic length of the structure, therefore the influence of internal micro-structures210

becomes more distinct.

6.3. Energy velocity
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Figure 8: Energy velocity of bending wave and shear wave

In section 3.3, energy flow expression for SSG theory-based beam model is established. The validation of

energy flow expression is important for the following research as knowledge of energy transportation pathway

are fundamental to build energy equilibrium. Figure 8 depicts the energy velocity Ve, group velocity Cg215

and phase velocity Cph of bending wave and shear wave resulting from SSG theory model and classical

theory model. The formulation of potential energy (16) and energy flow (17) in the enriched

model are proved to be correct with Cg = Ve for both bending wave and shear wave in the

whole frequency range. In addition, the results of the classical model and enriched model match well

in the low-frequency range (ω < 1 for bending wave and ω < 1.5 for shear wave). As frequency increases,220

Ve-Classical for both bending wave and shear wave approach to one constant value, whereas Ve-SSG of non-

classical waves keep increasing. Therefore, energy velocities of non-classical waves Ve-SSG are larger than

the classical ones in higher frequency. Meanwhile, phase velocity Cph-SSG is also increasing with frequency

and larger than Cph-Classical. The wider gap between Cg-SSG and Cph-SSG in high frequency implies the

more distinct dispersive character for both bending wave and shear wave propagating in the enriched model.225
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6.4. Frequency response analysis

The numerical investigation of frequency response is proceeded with the amplitude of excitation force

q0 = 0.05µA at x = L.

6.4.1. Wave approach result
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Figure 9: Frequency response of w and ψ

Figure 9 displays the normalized deflection amplitude w and rotation amplitude ψ at observation point230

x = 0.7L in Timoshenko beam. As we can see, the enriched frequency responses match well with the classical

results in the first about 10 resonances as the wavelength generated by the excitation is much larger than

the internal characteristic length of the beam. In higher frequency, fewer resonance peaks can be observed

in complex beam structures. In terms of energy, the input vibration energy can not only be transferred by

the propagating waves but also be converted into the other evanescent waves which decay rapidly in the near235

field of the excitation. The active power is distinctively less, so wave propagation features, as well as the

dynamic behavior of the complex structure, are affected. This can be the interpretation for the reduction

of resonance peaks. As frequency increase, wavelength generated by the excitation decrease and becomes

more comparable with the internal characteristic length of the media. Therefore micro-structure effects are

more prominent, and the resulting frequency response shows more difference with the classical model.240

6.4.2. Frequency response analysis in COMSOL

As we can see in Figure 10, the frequency response resulting from COMSOL matches well with frequency

response with wave approach. The previous formulations are proven to be rigorous and the result is validated.

With the analytical governing equations deduced based on generalized elasticity theory and proper input

in weak form, COMSOL can be employed to calculate the structural response of complex media with less245

computational effort and a wider frequency range.
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Figure 10: Frequency response of w and ψ in COMSOL

6.5. Sound radiation analysis

6.5.1. Sound radiation from an infinite enriched model

The numerical case is proceeded to study sound radiation features from an infinite complex beam

structure based on the previous enriched model. Media in the fluid domain is set to be air with density250

ρ0 = 1.2kg/m3 and sound velocity c0 = 343m/s. Amplitude of the harmonic transverse force q0 = 0.1µA

at x = 0 in Figure 3. The transverse displacement, as well as the square normal velocity of the vibrating

surface, can be obtained by FRF analysis.

(a) Square velocity (CT) (b) Square velocity (SSG)

Figure 11: Transverse square velocity of the vibrating beam

Figure 11 illustrates the square normal velocity of the vibration surface in space interval [0, 1] in frequency

range ω ∈ [0, 5]. We can see |vn|2 of the classical model varies spatially simply in sine form In higher frequency255

range 1 < ω < 5 as shown in Figure 11(a). In contrast, |vn|2-SSG is generated to be less than the classical

one at x = 0 in Figure 11(b), drops distinctly in the near field of excitation point and then varies sinusoidally
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in the far-field. The higher the frequency, the more distinct the decrease in the near field. Therefore, |vn|2

of the SSG theory is lower than the classical result. The lower square velocity at x = 0 is caused by energy

converting to evanescent wave modes in the enriched model, and the decrease of |vn|2 in the near field is260

caused by the rapid decay of evanescent waves in close distance.

The input normal velocity together with radiation impedance determine the radiated energy, thus the

decrease of normal velocity in the near field will significantly affect the acoustic radiation to the fluid domain.

To display the enriched pressure field and radiation impedance systematically, radiation impedance (Z) on

structure fluid interface ΩΣ in the region 0 < x < 1 is illustrated in Figure 12.265

(a) Acoustic impedance (CT) (b) Acoustic impedance (SSG)

Figure 12: Acoustic radiation impedance

Figure 12 illustrates the real part of radiation impedance, which represents the energy that can be

radiated into the fluid domain. As we can see, the first peak of radiation impedance arises at the frequency

when kz1 (generated by bending wave) changes from pure imaginary value to pure real value on the critical

frequency ωr, then radiation of bending wave becoming effective. This peak arises for both classical beam

model and enriched beam model on the entire spatial position x ∈ [0, 1]. The different behavior of the270

enriched beam is that another relatively small peak arises in the near field of excitation on a high frequency.

This small peak is caused by variation of kzi (i = 3, 4, 5, 6) from attenuating in the near field to propagating

to far-field. This kzi (i = 3, 4, 5, 6) corresponds to the evanescent waves in the enriched model, so the small

impedance peak appears exclusively in the near field of the force excitation. If the observation point is

moving to the far-field (i.e. x > 0.2), the second peak becomes gentle and eventually disappears.275
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(a) Acoustic pressure (CT) (b) Acoustic pressure (SSG)

Figure 13: Acoustic pressure amplitude

Radiation pressure modulus |p| on the structure fluid interface ΩΣ in region 0 < x < 1 is shown in

Figure 13. The peak appearing in a low-frequency domain for both the classical and the enriched model

is governed by the critical frequency ωr on which kz1 transfers from pure imaginary to pure real value. In

higher frequency range when log10(ω) > 0, namely ω > 1, |p| − SSG is obviously decreasing as frequency

increases, this decrease is resulting not only from the less input normal velocity but also the second peak of280

enriched radiation impedance.

To illustrate the radiation pressure field of the SSG theory-based Timoshenko beam varying in x − z
plan and study the impact of the extra evanescent waves in complex media, the radiation pressure field of

classical theory model and SSG theory model in the region x ∈ [0 − 1], z ∈ [0, 10] at different frequencies

(ω=0.5, 1.5 and 2.5) are plotted in Figure 14.285

Comparison of pressure field on each frequency yields the impact of the enrichment by the micro-structure

character on structural radiation behavior. Firstly, the enriched radiation pressure field on frequency ω = 0.5

matches well with the classical result, it is reasonable because the influence of microstructure is less important

in the low-frequency range. On frequency ω = 1.5, the pressure amplitude of the enriched model is lower than

the classical one. This difference becomes more remarkable when frequency increases to ω = 2.5. In higher290

frequency, the wavelength is more comparable with the characteristic size of underlying micro-structures,

therefore the resulting influence becomes more prominent. Moreover, the highest pressure in SSG theory

radiation field on frequency ω = 2.5 is near the energy input point at x̄ = 0, but after being generated, the

radiated pressure decreases rapidly in the near field.
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(a) Classical pressure field ω = 0.5 (b) Enriched pressure field ω = 0.5

(c) Classical pressure field ω = 1.5 (d) Enriched pressure field ω = 1.5

(e) Classical pressure field ω = 2.5 (f) Enriched pressure field ω = 2.5

Figure 14: Radiation pressure in x− z plane

To study the drop of pressure in the near field of force excitation, SSG theory-based pressure fields in295

region x ∈ [0− 0.1], z ∈ [0− 1] are illustrated respectively on frequency ω = 1.5 and 2.5 in Figure 15.
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(a) ω = 1.5 (b) ω = 2.5

Figure 15: Near field of enriched radiation pressure field

As we can see, the radiated pressure decreases rapidly with some slight fluctuation in the near field. This

phenomenon is the decay of short waves generated by the evanescent waves in a complex structure, which

originate with the long-range interactions between underlying micro-structures. After being generated by

the vibrating surface, sound pressure firstly decays rapidly to some extent in the near field then propagates300

away to infinity. Therefore we can say that the enrichment of micro-structure interaction character by SSG

theory can successfully capture the distinct radiation behavior of the complex media.

6.6. Sound radiation from simple supported Timoshenko beam based on SSG theory

In the numerical study of sound radiation from finite beam structure, the fluid is also set to be air, and

half of the beam length L = 10h. Amplitude of the harmonic axial force q0 = 0.01µA at x = 0 in Figure 4.305

Substitute the parameters into the formulation, the transverse displacement, as well as normal velocity of

the vibrating surface, can be obtained by FRF analysis, then the radiated pressure field can be calculated

out with the integral equation Eq. (41).

Figure 16 shows the radiated pressure field on frequency ω = 0.1 and the corresponding structure

vibration shape of the classical beam and enriched beam. The frequency is in the low-frequency range,310

and the deformation wavelength is quite longer than the characteristic length of internal micro-structures,

therefore the influence of microstructure is negligible, and results of classical model and SSG theory model

math well in terms of both structural vibration shape and radiation pressure.

Figure 17 illustrates the radiated pressure field on frequency ω = 1.5 and the corresponding structure

vibration shape for both classical beam and enriched beam. The frequency is higher and the deformation315

wavelength generated by excitation is comparable to the inner microstructure, thus amplitudes of radiation

pressure as well as structural vibration decrease distinctly.
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(a) Classical pressure field (b) Enriched pressure field
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Figure 16: Acoustic pressure field and corresponding transverse displacement of classical model and enriched model(ω = 0.1)

(a) Classical pressure field (b) Enriched pressure field
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Figure 17: Acoustic pressure field and corresponding transverse displacement of classical model and enriched model (ω = 1.5)

7. Conclusions

Wave propagation in the SSG theory-based model with considering local behaviors of internal hetero-

geneity is different from the classical one. An extended Timoshenko beam theory was employed and studied320
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further under dynamic conditions. Precisely important vibroacoustic indicators were considered for the

study. The enriched model based on Mindlin’s SSG theory allows the underlying microstructure interaction

to be captured by including the higher-order strains into strain energy density, meanwhile the local behavior

of heterogeneity to be described in the frame of continuum mechanics. From the numerical calculations, one

can see that the proposed SSG theory-based beam model is effective in predicting the non-classical disper-325

sive behaviors in complex media. Apart from the dispersion characteristics, this research also highlighted

a number of interesting features including the modal density, the formulation of energy flow, the frequency

response function, and sound radiation from the beam structure. Some conclusions can be drawn from the

numerical calculation and discussions as follows:

(1) Six wave modes can be generated in the enriched Timoshenko beam model based on SSG theory, of330

which the non-classical bending wave k1 and non-classical shear wave k2 propagate in a dispersive manner,

and the dispersive behavior become more prominent in higher frequency. The other 4 waves are all evanescent

waves (near field). Modal densities of the non-classical bending wave and non-classical shear wave are lower

than the classical ones due to the influence of the micro-structure effect. As dimension goes up, the micro-

structural effect is weakened due to the increase of structural characteristic length. Consequently, the335

non-classical results converges to the classical ones.

(2) The proposed formulation of the energy flow is validated, as the energy velocity Ve and group velocity

Cg of conservative waves are proved to be identical in the whole frequency range. Energy flow in the enriched

Timoshenko beam model based on SSG theory is a combination of work by the classical force, the classical

moment along with the higher-order forces and higher-order moments, which are all resultants of classical340

and higher-order stresses generated on the surface of the observed section.

(3) From the FRF analysis, the first few resonances match well with the classical result. In a higher

frequency range, when the deformation wavelength is comparable with the inner micro-structure length,

fewer resonance peaks can be observed. Due to the complex interaction between internal micro-structures,

the input vibration energy can not only be transferred to the far-field by the propagating waves but also345

be converted into the evanescent waves which will decay rapidly in the near field. The transfer power is

distinctively less, thus the resonant frequency of the complex structure is affected.

(4) Concerning the noise radiation, the square velocity of the vibrating surface is lower than the classical

one, which is attributed to lower force driving mobility and evanescent waves decaying in the near field of

excitation point. The second peak of radiation impedance can be observed exclusively in the near field of350

excitation in enriched model, which originates with wavevector generated by the evanescent waves. Another

interesting phenomenon is that radiated pressure field decreases with fluctuation in the near field of force

excitation. This phenomenon is caused by the decay of short waves (generated by evanescent waves) in the

fluid domain. Therefore we can conclude that the radiation level from the enriched model is lower caused by

firstly less vibrating energy input, then sound wave decay in the near field. The underlying physics lies in355
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the distinct local behavior of heterogeneity in complex media governed by both near range and long-range

micro-structure interactions.

(5) Radiation pressure from the finite enriched model is determined by the normal velocity of all the

points on the vibrating surface. The resulting radiation pressure of the enriched model matches with the

classical one in low frequency but is much lower than the classical one in higher frequency. The sound360

pressure reduction is caused by not only the reduced normal velocity of the vibrating surface but also the

energy decay through the evanescent waves in the enriched model.

Finally, with regards to the question: The main question being, how local behavior affects the vibroacoustic

indicators and for what expected benefit?, our conclusions clearly show that there is an important impact of

the local behavior with regards to vibroacoustic indicators. This trend can provide a means to improve the365

design of lightweight structures while considering specific materials.
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Appendix A: Frequency response analysis with FEM in COMSOL370

∂

∂x̄
V 0 + q̄ = m0

∂2w̄

∂τ2

V 0 = −ψ −
(

(c3 + 2c2)A

2µAL2

)(
∂ψ1

∂x̄

)
+

(
∂w̄

∂x̄

)
+

c3A

2µAL2

(
∂w2

∂x̄

)
−
(
∂V 1

∂x̄

)

V 1 =

(
B7

2µAL2

)(
∂ψ

∂x̄
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B5

µAL2

(
∂w1

∂x̄

)
−
(
∂V 2

∂x̄

)

V 2 = − c3A

2µAL2
ψ +

B8

2µAL4

(
∂ψ1

∂x̄
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+

(
c3A

2µAL2

)(
∂w̄

∂x̄
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B6

µAL4

(
∂w2

∂x̄
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∂w̄

∂x̄
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∂2w̄

∂x̄2
.

− ψ +
∂

∂x̄
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M0 −

(2c2 + c3)A

2µAL2

(
∂ψ

∂x̄

)
+ w̄ +

c3A

2µAL2

(
∂w1

∂x̄

))
= m2

(
∂2ψ

∂τ2

)
;
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B1

µAL2

(
∂ψ

∂x̄
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B4

2µAL4

(
∂ψ2

∂x̄

)
+

B7

2µAL2

(
∂w1

∂x̄

)
− ∂M1
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,
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2µAL2
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B2
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(
∂ψ1

∂x̄

)
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2µAL2

(
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∂x̄
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2µAL4

(
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B4

2µAL4

(
∂ψ

∂x̄

)
+

B3

µAL6
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)
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ψ1 =
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∂x̄
, ψ2 =

∂2ψ
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To verify the FRF results with the wave approach, the frequency response analysis of the enriched model

is implemented in COMSOL. The governing equations of six order partial difference is transformed to eq.

(42) and input in a weak form. The shape function used for discretization is six-tic Hermite polynomials to

guarantee higher-order derivative continuity. Then the solution of each variable can be calculated including

transverse displacement w and rotation angle ψ at the observation point.375
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Highlights

 Investigating the wave dispersion relation of SSG theory-based Timoshenko beam.
 Formulating and validating the expression energy flow in the enriched model.
 Studying the FRF and noise radiation based on the enriched model.
 Physical interpretation of the exhibited complex properties.
 Validation of FRF result with numerical method.
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